Date of Award

January 2023

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Aerospace Sciences

First Advisor

James Casler

Abstract

This dissertation aims to advance the efficacy of Long-Duration Space Flight (LDSF) pre-flight and in-flight training programs, acknowledging existing knowledge gaps in NASA's methodologies. The research's objective is to optimize the cognitive workload of LDSF crew members, enhance their neurocognitive functionality, and provide more meaningful work experiences, particularly for Mars missions.The study addresses identified shortcomings in current training and learning strategies and simulation-based training systems, focusing on areas requiring quantitative measures for astronaut proficiency and training effectiveness assessment. The project centers on understanding cognitive decay and memory loss under LDSF-related stressors, seeking to establish when such cognitive decline exceeds acceptable performance levels throughout mission phases. The research acknowledges the limitations of creating a near-orbit environment due to resource constraints and the need to develop engaging tasks for test subjects. Nevertheless, it underscores the potential impact on future space mission training and other high-risk professions. The study further explores astronaut training complexities, the challenges encountered in LDSF missions, and the cognitive processes involved in such demanding environments. The research employs various cognitive and memory testing events, integrating neuroimaging techniques to understand cognition's neural mechanisms and memory. It also explores Rasmussen's S-R-K behaviors and Brain Network Theory’s (BNT) potential for measuring forgetting, cognition, and predicting training needs. The multidisciplinary approach of the study reinforces the importance of integrating insights from cognitive psychology, behavior analysis, and brain connectivity research. Research experiments were conducted at the University of North Dakota's Integrated Lunar Mars Analog Habitat (ILMAH), gathering data from selected subjects via cognitive neuroscience tools and Electroencephalography (EEG) recordings to evaluate neurocognitive performance. The data analysis aimed to assess brain network activations during mentally demanding activities and compare EEG power spectra across various frequencies, latencies, and scalp locations. Despite facing certain challenges, including inadequacies of the current adapter boards leading to analysis failure, the study provides crucial lessons for future research endeavors. It highlights the need for swift adaptation, continual process refinement, and innovative solutions, like the redesign of adapter boards for high radio frequency noise environments, for the collection of high-quality EEG data. In conclusion, while the research did not reveal statistically significant differences between the experimental and control groups, it furnished valuable insights and underscored the need to optimize astronaut performance, well-being, and mission success. The study contributes to the ongoing evolution of training methodologies, with implications for future space exploration endeavors.

Share

COinS