Date of Award
January 2017
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Space Studies
First Advisor
James Casler
Abstract
Freshwater available for human consumption has declined in recent years due to many factors. Additionally, NASA has made it known that missions into deep space will require advances in water purification systems. Graphene oxide (GO) membranes have been demonstrated to be an effective purifier of water due to their unique architecture. Holey-graphene oxide (hGO), developed at NASA Langley Research Center, is similar to GO but hosts a more porous structure. Lignin-based membranes were also analyzed. This thesis investigates the membrane performances of these three membrane architectures to purify water. The membranes were prepared in varying thicknesses via vacuum filtration. Experiments were done in two phases. Phase I used a forward osmosis setup to examine membranes’ ion rejection. Phase II used dead-end filtration and examined ion rejection, organic molecule rejection and water flux. GO showed a significant increase in ion rejection for NaCl, but showed decreased water flux. hGO showed a significant increase in ion rejection for MgCl2. Organic molecule was increased by 15.8% for hGO over the control. Poor overall performance for ion rejection for both membranes is attributable to an increase in the intersheet distance inside the membranes due to hydration.
Recommended Citation
Buelke, Chris, "Enhancing Water Purification Via Graphene Oxide, Holey Graphene Oxide And Lignin Membrane Architectures" (2017). Theses and Dissertations. 2181.
https://commons.und.edu/theses/2181