Author

Qiang Zhou

Date of Award

January 2015

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Earth System Science & Policy

First Advisor

Michael J. Hill

Abstract

Savannas are mixed tree-grass systems and as one of the world’s largest biomes represent an important component of the Earth system affecting water and energy balances, carbon sequestration and biodiversity as well as supporting large human populations. Savanna vegetation structure and its distribution, however, may change because of major anthropogenic disturbances from climate change, wildfire, agriculture, and livestock production. The overstory and understory may have different water use strategies, different nutrient requirements and have different responses to fire and climate variation. The accurate measurement of the spatial distribution and structure of the overstory and understory are essential for understanding the savanna ecosystem.

This project developed a workflow for separating the dynamics of the overstory and understory fractional cover in savannas at the continental scale (Australia, South America, and Africa). Previous studies have successfully separated the phenology of Australian savanna vegetation into persistent and seasonal greenness using time series decomposition, and into fractions of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (BS) using linear unmixing. This study combined these methods to separate the understory and overstory signal in both the green and senescent phenological stages using remotely sensed imagery from the MODIS (MODerate resolution Imaging Spectroradiometer) sensor. The methods and parameters were adjusted based on the vegetation variation.

The workflow was first tested at the Australian site. Here the PV estimates for overstory and understory showed best performance, however NPV estimates exhibited spatial variation in validation relationships. At the South American site (Cerrado), an additional method based on frequency unmixing was developed to separate green vegetation components with similar phenology. When the decomposition and frequency methods were compared, the frequency method was better for extracting the green tree phenology, but the original decomposition method was better for retrieval of understory grass phenology. Both methods, however, were less accurate than in the Cerrado than in Australia due to intermingling and intergrading of grass and small woody components.

Since African savanna trees are predominantly deciduous, the frequency method was combined with the linear unmixing of fractional cover to attempt to separate the relatively similar phenology of deciduous trees and seasonal grasses. The results for Africa revealed limitations associated with both methods. There was spatial and seasonal variation in the spectral indices used to unmix fractional cover resulting in poor validation for NPV in particular. The frequency analysis revealed significant phase variation indicative of different phenology, but these could not be clearly ascribed to separate grass and tree components.

Overall findings indicate that site-specific variation and vegetation structure and composition, along with MODIS pixel resolution, and the simple vegetation index approach used was not robust across the different savanna biomes. The approach showed generally better performance for estimating PV fraction, and separating green phenology, but there were major inconsistencies, errors and biases in estimation of NPV and BS outside of the Australian savanna environment.

Share

COinS