Date of Award
January 2015
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Electrical Engineering
First Advisor
Hossein Salehfar
Abstract
The purpose of this thesis is to investigate the benefits of synchrophasor technology in bulk power system measurements. To accomplish this task, multiple methods of investigation and analysis have been conducted. First, a better understanding of the synchrophasor power measurement systems was achieved through a literature review. The review provided some perspective on the differences between these systems and the conventional systems of power measurements.
Then, some utility grade data was acquired and analyzed. In this process, there were some aspects of confidentiality, and that required an added layer of discretion. However, the process made it possible to analyze a variety of authentic measurements from the power system. This analysis provides novelty to the utility industry, but the experience of physical implementation wasn’t available through this process.
Finally, efforts were directed toward a physical demonstration of a synchrophasor measurement system. A test bed system was configured, and measurements were obtained from the system through phasor measurement units (PMUs). In an attempt to extent this demonstration effort, simulation options were investigated as well. Unfortunately, there are some limitations with the available equipment. Overall, this provided novelty to academia through a physical implementation of this technology. With changing demand, transmission, desires for efficiency, and an evolving generation fleet, extensive grid knowledge is important for maintaining a reliable power system.
Recommended Citation
Berg, Andrew Michael, "Synchrophasor Technology And Applications: Benefits Over Conventional Measurements" (2015). Theses and Dissertations. 1743.
https://commons.und.edu/theses/1743