Document Type
Article
Publication Date
11-2017
Publication Title
Journal of Geophysical Research: Oceans
Volume
122
Abstract
The subsurface remote sensing reflectance (rrs, sr−1), particularly its bidirectional reflectance distribution function (BRDF), depends fundamentally on the angular shape of the volume scattering functions (VSFs, m−1 sr−1). Recent technological advancement has greatly expanded the collection, and the knowledge of natural variability, of the VSFs of oceanic particles. This allows us to test the Zaneveld's theoretical rrs model that explicitly accounts for particle VSF shapes. We parameterized the rrs model based on HydroLight simulations using 114 VSFs measured in three coastal waters around the United States and in oceanic waters of North Atlantic Ocean. With the absorption coefficient (a), backscattering coefficient (bb), and VSF shape as inputs, the parameterized model is able to predict rrs with a root mean square relative error of ∼4% for solar zenith angles from 0 to 75°, viewing zenith angles from 0 to 60°, and viewing azimuth angles from 0 to 180°. A test with the field data indicates the performance of our model, when using only a and bb as inputs and selecting the VSF shape using bb, is comparable to or slightly better than the currently used models by Morel et al. and Lee et al. Explicitly expressing VSF shapes in rrs modeling has great potential to further constrain the uncertainty in the ocean color studies as our knowledge on the VSFs of natural particles continues to improve. Our study represents a first effort in this direction.
Issue
11
First Page
8614
Last Page
8626
DOI
10.1002/2017JC013313
ISSN
2169-9291
Recommended Citation
Shuangyan He, Xiaodong Zhang, Yuanheng Xiong, et al.. "A Bidirectional Subsurface Remote Sensing Reflectance Model Explicitly Accounting for Particle Backscattering Shapes" (2017). Earth System Science and Policy Faculty Publications. 16.
https://commons.und.edu/essp-fac/16