Document Type


Publication Date



Non-destructive evaluation (NDE), Infrared thermography (IRT), Impact echo (IE), Ground penetrating radar (GPR), Unmanned aerial systems (UAS), Artificial intelligence (AI), machine learning (ML), Deep convolutional neural network (DCNN), Bridge deck evaluation, delamination, defects


SDNET2021 is a uniquely validated annotated dataset for evaluating the condition of concrete bridge decks and benchmarking advanced deep learning models for defects (delamination, cracks, rebar corrosion) detection and bridge deck evaluation. Common structural defects, such as cracks, delamination, spalling, rebar corrosion, etc. are commonly detected using traditional hands-on inspections (visual, destructive, chain dragging, and sounding). These methods are accompanied with limitations such as disruption and closure of traffic, laborious, costly, time consuming and possible inconsistencies and likelihood of errors in field data collection and interpretation. Usually there exists dataset for surface defects from laboratory specimens, but rare validated datasets for sub-surface defects of several NDE techniques exists. SDNET2021 contains 1,936 annotated IE signals, over 663,102 annotated GPR signals and five (5) mosaic annotated IRT images containing about 4,580,680 annotated pixels collected during 2020 summer from five (5) in-service bridge decks in Grand forks, ND, USA. These datasets were annotated with a set of ground truth maps representing the class of delamination at each point of the decks after defected concrete was removed based on chain-dragging, i.e. ground truth data. They were also validated with conventional image processing, Fast Fourier Transform (FFT) maximum frequency, B-scan techniques, and locations of exposed corroded rebar. The ground truth maps also show the GPS coordinates and size of each class of removal for the delaminated portions of the bridge decks under investigation. This ground truth was developed on site prior to commencement of repair to show sound concrete Class 1 (No Delamination); Class 2 Delamination (delamination above top bar mat), and Class 3 Delamination (delamination below top bar mat). The IRT, GPR and IE data has been annotated and validated with the ground truth data collected during the investigation. SDNET2021 will be highly significant in further studies related to the development of algorithms based on AI models for classification and delamination/defects detection, which is a major frontline subject for continued research in the field of advanced NDE and structural health monitoring. SDNET2021 is freely available at

This version has been revised and updated with further data validation and stands to be the current and most up-to-date dataset.


Civil Engineering


Advanced Evaluation Methods for Concrete Bridge Decks: Data Acquisition, Validation, and Annotation (ND DOT)

File Types

DWG, LVM (a text file), DOCX, CSV, PDF, JPEG, PNG



Associated Publications

Ichi, Eberichi and Darafshan Sattar. Advanced Evaluation Methods for Concrete Bridge Decks, Phase I: Data Collection and Validation. October 2020. Report submitted to North Dakota Department of Transportation (ND DOT).

Ichi, Eberichi, and Darafshan Sattar. "An Annotated Dataset for Evaluation of Existing Bridge Decks for Development of Deep Learning Models". Society for Experimental Mechanics 2020 Virtual Conference. February 8, 2021.

Ichi, Eberichi, and Darafshan Sattar. "Non-Destructive Evaluation of Reinforced Concrete Bridge Decks: Challenges and Lesson Learnt." ACI Virtual Concrete Convention, ACI 123 Student Poster Session. American Concrete Institute. March 2021. Poster presentation.

Ichi, Eberichi, Amrita Das, and Darafshan Sattar. Advanced Evaluation Methods for Concrete Bridge Decks: Data Acquisition, Validation and Annotation. April 2021. Report submitted to North Dakota Department of Transportation (ND DOT).

Ichi, E.; Jafari, F.; Dorafshan, S. SDNET2021: Annotated NDE Dataset for Subsurface Structural Defects Detection in Concrete Bridge Decks. Infrastructures 2022, 7, 107.


In order to open the DWG files a CAD program such as AutoCAD is required. The primary file for this record is a readme document describing the dataset, which is available under additional files.


This dataset was first uploaded on June 4, 2021. It has been updated with minor revisions on January 28, 2022 and the prior dataset is available for referral in the additional files.

ReadMe-SDNet2021.pdf (286 kB)
1. GROUND (575 kB)
2. IE AND GPR TEST (6853 kB)
3. IMPACT ECHO (1811828 kB)
4. GPR (1941395 kB)
SDNET2021 - June 2021 (2161396 kB)
June 2021 Dataset -- now superseded