Document Type
Article
Publication Date
1-24-2018
Publication Title
Atmospheric Measurement Techniques
Volume
11
Abstract
Due to instrument sensitivities and algorithm detection limits, level 2 (L2) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 532 nm aerosol extinction profile retrievals are often populated with retrieval fill values (RFVs), which indicate the absence of detectable levels of aerosol within the profile. In this study, using 4 years (2007– 2008 and 2010–2011) of CALIOP version 3 L2 aerosol data, the occurrence frequency of daytime CALIOP profiles containing all RFVs (all-RFV profiles) is studied. In the CALIOP data products, the aerosol optical thickness (AOT) of any all-RFV profile is reported as being zero, which may introduce a bias in CALIOP-based AOT climatologies. For this study, we derive revised estimates of AOT for all-RFV profiles using collocated Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target (DT) and, where available, AErosol RObotic NEtwork (AERONET) data. Globally, all-RFV profiles comprise roughly 71 % of all daytime CALIOP L2 aerosol profiles (i.e., including completely attenuated profiles), accounting for nearly half (45 %) of all daytime cloud-free L2 aerosol profiles. The mean collocated MODIS DT (AERONET) 550 nm AOT is found to be near 0.06 (0.08) for CALIOP all-RFV profiles. We further estimate a global mean aerosol extinction profile, a so-called “noise floor”, for CALIOP all-RFV profiles. The global mean CALIOP AOT is then recomputed by replacing RFV values with the derived noise-floor values for both all-RFV and nonall-RFV profiles. This process yields an improvement in the agreement of CALIOP and MODIS over-ocean AOT.
Issue
1
First Page
499
Last Page
514
DOI
10.5194/amt-11-499-2018
ISSN
18671381
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Travis D. Toth, James R. Campbell, Jeffrey S. Reid, et al.. "Minimum Aerosol Layer Detection Sensitivities and Their Subsequent Impacts on Aerosol Optical Thickness Retrievals in CALIPSO Level 2 Data Products" (2018). Atmospheric Sciences Faculty Publications. 10.
https://commons.und.edu/as-fac/10