Tahmid Rashid

Date of Award

January 2015

Document Type


Degree Name

Master of Science (MS)


Electrical Engineering

First Advisor

Sima Noghanian


Research and development of body-worn communication systems and electronics have become very prominent in recent years. Some applications include intelligent garments

equipped with wireless communication devices for sports, astronauts’ spacesuits [1], and fire fighters’ uniforms [2]. These systems are unthinkable without different kinds of body worn textile or flexible antennas. In this thesis, we will discuss the design and fabrication of a compact wearable textile antenna within the Industrial, Scientific and Medical (ISM)

band operating frequency, proposed for incorporation into a flight jacket of the astronaut inside the habitat. The antenna is integrated with artificial material known as Electromagnetic Band Gap (EBG) structures for performance enhancement. The purpose of the system is to constantly monitor vital signals of the astronauts.

In this thesis the design, simulation, prototype fabrication and antenna testing under different environmental condition, in a word the entire design cycle of wearable Co-Planar Waveguide (CPW) fed monopole antenna is discussed. As human body tissues are lossy in nature, the radiation efficiency of the antenna will be affected due to the absorption of the radiated energy. Therefore, alteration in the radiation characteristics of the wearable antenna like resonant frequency, realized gain and impedance bandwidth will take place. For overcoming these obstacles, addition of EBG layers are recommended to isolate the antenna from near body environments. The proposed wearable antenna was tested under real operating conditions such as pressure and stretching conditions.