Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)


Mechanical Engineering

First Advisor

Matthew N. Cavalli


While in service, wind turbine blades experience various modes of loading. An example is impact loading in the form of hail or bird strikes, which might lead to localized damage or formation of cracks a few plies deep on the blade surface. One of the methods to conduct repairs on wind turbine blades that are damaged while in service is hand lay-up of the repair part after grinding out the damaged portion and some of its surrounding area. The resin used for such repairs usually differs from the parent plate resin in composition and properties such as gel time, viscosity, etc. As a result the properties of the repaired parts are not the same as that of the undamaged blades. Subsequent repetitive loading can be detrimental to weak repairs to such an extent so as to cause delamination at the parent-repair bondline causing the repairs to eventually fall off the blade. Thus the strength and toughness of the repair are of critical importance.

Initial part of this work consists of an effort to increase repair strength by identifying an optimum hand layup repair resin for fiberglass wind turbine blades currently being manufactured by a global company. As delamination of the repair from the parent blade is a major concern and unidirectional glass fibers along with a polymer resin are used to manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) was followed to determine propagation fracture toughness values of the prospective vinyl ester repair resin candidates. These values were compared to those for a base polyester repair resin used by the company.

Experimental procedure and results obtained from the above mentioned testing using double cantilever beam (DCB) specimens are detailed. Three new repair resins were shortlisted through mode I testing. It was also found that variation in the depth of the ground top ply of the parent part affects the propagation fracture toughness values of the repair. Repairs conducted on surfaces with partially ground top plies possess higher fracture toughness values than those conducted on surfaces with complete top plies ground off.

The three top repair resin candidates were then evaluated against the base repair resin under fatigue loading. The specimen configuration and testing method were chosen so as to be able to test hand layup repairs under tension - tension cyclic loading. It was observed that all three new repair resins perform better than the base repair resin. The selection of the optimum repair resin was based on results from mode I and fatigue testing. Global manufacturing regulations and standards were also of prime concern. The final new repair resin is being used by the company in all of its plants over the globe.

The balance of this work involves study of the effect of mixed mode I - mode II loading on the strength of repairs conducted on fiber reinforced composite parts using hand lay-up technique. The specimens for this part were similar to those manufactured for mode I testing but with different dimensions and layup. They were made and tested in accordance with ASTM D 6671 (Standard Test Method for Mixed Mode I - Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites). Comparison was made between the fracture toughness of the above chosen optimum repair resin and the base repair resin. At least two levels of mode mixture GII/G (Mode II fracture toughness / Mode I and II fracture toughness) were examined. Also, two levels of grinding were considered (complete ply vs. partial ply ground off) in order to establish the influence of varying top-ply grinding depths on the strength of hand layup repairs conducted on fiberglass composite structures.

The results of this work have the potential to improve the repair process for current fiberglass wind turbine blades.