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ABSTRACT

In this thesls the writer has consldered types
of convergence 1ln an arbltrary topological space.
Three types of convergence are consldered, convergence
of sequences 1in the real nuabers with the usual topology,
convergence of Moore-Saith sejuences in an ardbitrary
topological space, and convergence of filters in an
arbitrary tovological spzace.

In Chapter II, we show that sequences are
inadequate to describe limit points of sets z2n? hence
the topology in an arbltrary tovological space. The
idea of a seguence is generalized in this chapter to
Moore-Smitn seqguences and in Chapter III to filters.

In Chapter II we prove that convergence of
Moore-Siith sequences 1s sufficlent to describe limit
voints, closed sets, the closure of a set, open sets,
and in fact the tovology of an arbitrary space.
Althougn the convergence of filters and M¥oore-Sziin
sequences differ greatly, we prove these same results
using filters. However, in Chapter II we also prove
an lterated limit theorem using zeneralized Cauchy
sequences 1in a complete metrlc space

Chapter IV is 1in many respects the most impor-

tant, altnough containing the fewest results. For
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CHAPTER 1
INTRODUCTION

Throughout this paper we assume the reader 1is
familiar with the fundamentals of set theory and 1its
notation.

In this paper we are concerned with types of con-
vergence 1in an arbitrary topological space. The set of
real numbers can be given a topology such that convergence
of sequences is adequate to describe the topology. However,
sequences contain only a countable number of points and are
inadequate to describe the topology of an arbitrary
topological space.

In Chapter II we generalize the idea of a sequence
allowing 1t to contain an uncountable number of points.
This type of sequence 1s known as a Moore-Smith sequence.
We also give some examples showing why we must generalize
the idea of a sequence. Then, using the concept of a
Moore-Smith sequence, we prove certain basic theorems
relating to an arbitrary topological space. Although a
Moore-Smith sequence 1s a generalized sequence, limits of
Moore-Smith sequences are analogous to limits in calculus.

In Chapter III we consider a type of convergence
involving the concept of a filter. This type of convergence

involves a collection of sets in a space instead of a
1
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CHAPTER II

GENERALIZED SEQUENCES

To begin our discussion we give some basic
definitions concerning a topological space.

Definition 2.1. A topology 1s a family t of sets

which satisfies the following conditions:
(i) the intersection of any two members of T is a
member of T, and
(ii) the union of members of 1 is a member of .

Definition 2.2. The pair (X,t) is a topological

space when X is a set and t 1s a class of subsets of X
satisfying Definition 2.1. In this paper we use space as
an abbreviation for topological space.

Definition 2.3. A subset G of a space X 1s open if

and only if G 1s a member of 1. A set G is said to be a
neighborhood of a point xeX if and only if G 1s an open set
containing X.

Definition 2.4. A subset H of a space X 1s said to

be closed 1f and only if X-H is open.

Definition 2.5. A point p of a space X is a limit

point of a subset A if and only if every neighborhood of p
contains points of A-{p}.

Using the above definitions 1t can be shown that a

3
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subset G of a space S is open if and only if for each peG
there exists a neighborhood U of p contained in G. It can
also be shown that a subset H of a space S is closed if and
only if H contains all its limit points.

A special kind of topological space is a metric

space.

G oam b

Definition 2.6. A set S is said to be metric if

and only if there is associated with S a mapping d:SxS *R
having the following properties for every x,y,z 1in S:
(i) d(x,y) > 0
(i1) d(x,y) = d(y,x)
(iii) d(x,y) 0 i1f and only if x =y

(iv) triangle property: d(x,z) < d(x,y) + d(y,z).

The mapping d is called the metric for the set S.

Definition 2.7. Let K be a metric set. Then with

each point p of K and each real number r>o, we associate a
subset Sr(p) of K called a spherical neighborhood of p. A
point q of K is in Sr(p) if and only if d(p,q) < r.

Definition 2.8. A metric set S is said to be a

metric space 1f and only if the topology of S is that which
is generated by the collection of subsets of S consisting of
all spherical neighborhoods in S. The topologv of S is said
to be induced by the metric d.

At this point it may be helpful to consider some

examples of a topological space.

Example 2.1. Let X be the set consisting of the

three elements a, b, and c. Let t consist of the sets X,{al,
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{a,b}, {b}, and @, where P is used to designate the empty set.
The pair (X,t) 1s a topological space. The union of members
of 1 1s a member of 1t and the intersection of any two mertkters
of t 1s a member of 1. Also, the sets are open, since they
are members of t. In the example c is a limit point of

{a,b} since every neighborhood of c, the space itself, con-
tains points of {a,b}. The closed sets in this space are
{c}, {b,c}, {a,c}, X since it is the compliment @, and @
since 1t 1s the compliment of X.

Definition 2.9. The closure of a set A is the

intersection of the family of closed sets containing A and
is denoted by A. It can be shown that the closure of a set
A is the union of the set A with the set of all its limit
points. By its definition the closure of a set is closed.

In our example the closure of the set {a,b} is X,
while the closure of {c} is {c}, since {c} contains all its
limit points.

A more familiar topological space is the set of real
numbers R with the topology described below.

The usual topology of the real numbers is the
collections of all sets G such that for each peG there
exists an open interval (a,b) such that pe(a,b)CG. It can
be shown that this collection of sets will satisfy the
conditions for a topology. The usual metric for R is
d(x,y) = |x-y|, for x,yeR. This metric induces the usual

topology for R.



Using the concept of sequences we can describe limit
points, closed sets, the closure of a set, and in fact the
usual topology for R.

Definition 2.10. A sequence 1s a set A indexed by

the set of positive integers. The nth element of the
sequence is the element a of A which is indexed by n,i.e.an.
The sequence is denoted by {an}.

Definition 2.11. A sequence {an} of real numbers

converges to a real number A if and only if given any real
number €>0 there exists an integer N such that for all n>N
|an-A|<e.

The following theorem is an immediate consequence
of the definition of convergence of sequences and the
structure of the usual topology.

Theoremu2 1<% ThelSsequiencge {an} converges to A if

and only if, for every neighborhood G of A, there exists an
integer N such that a, e G for all n>N.

From the idea of 1imit point of a sequence we can
proceed to the idea of 1limit point of a set.

Definition 2.12. A polint p 1s a limit point of a

subset H of R if and only if there exists a sequence {pn}
of distinct points of H converging to p.

Theorem 2.2. Let R be the space of real numbers.

Then:
(a) A point x belongs to the closure of a subset A
if and only if there is a sequence in A converging to Xx.

(b) A set H is closed if and only if no sequence of




distinct points 1in H converges to a point of R-H.

(c) A set G is open if and only if, for every
sequence of distinct points converging to a point of xeG,
there exists N such that for all n>N, xneG.

Proof: (a) Suppose x belongs to the closure of A.
If xeA, let every element in the sequence be x, and i1f x 1is
a limit point of A, by Definition 2.13 there is a sequence
of distinct points of A converging to X.

Now suppose there 1s a sequence in A converging to
X. Then, by Theorem 2.1 every neighborhood G of x contains
points of A. Thus x is either a member of A or a limit
point of A.

(b) Suppose H is closed and that there is a sequence
of distinct points in H converging to a point x of R-H. This
implies by Definition 2.12 that x i1s a limit point of H.

But, H is closed and contains all its 1limit points. Thus a
set H 1s not closed if a sequence of distinct points in H
converges to a point of R-H.

On the other hand suppose no sequence of distinct
points in H converges to a point of R-H and that H is not
closed. Then there exists a point x of R-H that i1s a limit
point of H. This implies there is a sequence of distinct
points in H converging to x. Hence we have a contradiction
and H is closed.

(c) If G is open, then it is a neighborhood of each
of 1ts points and, if {x,} is any sequence of distinct points

converging to xeG, by Theorem 2.1 there exists N such that

T N gt gy Sy e



for all n>N, xneG.

Suppose now that for every sequence of distinct

points {x } converging to xeG there exists N such that for all

n>N, xnsG. Suppose that G is not open. Then there 1is a
sequence of distinct points in R-G converging to some XeG.
Thus for this sequence there will not exist N such that for
all n>N, xnsG. Hence G must be open.

Thus we see that using sequences of real numbers we
can describe the closure of a set, limit points of a set,
closed sets and the usual topology for R.

Sequences 1n a topological space that 1is first
countable behave the same way as sequence of real numbers.
The space R 1s first countable. However, sequences 1n an
arbitrary topological space will not behave the same way
that they do in R. We now give an example to illustrate
this.

Example 2.12. #iLeit iS={xpidiic SxiEcl] [FASSHSHE el aNSierE

U to be open if and only if U is empty, or S-U is countable.

Then with this definition of open set S 1s a topological
space.

Proof: We have to show that the intersection of
any two open sets is open and that the union of any
collection of open sets is open. Let U, V be open sets 1n

S. If one of these is empty then U(\V is open. Now

suppose U, V are non-empty. UMV # @, for if not an uncount-

able set would be a subset of a countable set, which is

impossible. Now, S - (UAV) = (S - WU(S - V) which is

oF St gy SR




countable. Thus UMV is open. Let ija be a union of
aeA

open sets. Then S- LJUa 1s countable, since for any open
acA

set U C{J U, implies S- UJU CS-U_. Thus s- Uu
ad d
achA acA acA

a
1s countable since S—Ua is countable. Thus S is a
topological space.

Consider the subset K of S where K = {x:0 <x < 1/2}.

_ OB _ma __ERER. R eadit e

Let p be any point of S and U any open set containing p.
Then UMK # @, for if not K would be contained in S-U :
which 1is 1impossible since S-U 1s countable.

K = (UAK)UJ((S-U)MK) which implies UMK is uncountable

- T — - Ll

since (S-U)(M) K is countable. Thus, we see that every
point of S is a limit point of K. 1/4 is a limit point of :
K, yet no sequence {x_} of distinct points of K can converge

to 1/4, since S- LJ+x 1s an open set Containing 1/4 and no

nel O
points of {xn}. In this topological space the only
sequences which converge are constant sequences. Hence,
using the concept of sequence we cannot describe limit
points of sets, closed sets, or open sets.

This example shows that i1f we want sequences in an
arbitrary topological space to behave the way they do on the
real line, we have to generalize the idea of a sequence,
allowing it to contain an uncountable number of points.

This leads us to the notion of a Moore-Smith sequence.

Definition 2.13. A binary relation F from a set A

to a set B assigns to each pair (a,b) in A X B exactly one
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of the following statements:
(i) a is related to b, written aFb
(ii) a 1s not related to b, written aFb.

Definition 2.14. Let Q be a non-empty set on which

a binary relation F is defined. Then Q is said to be a
Moore-Smith set with respect to F 1f and only i1f the follow-
ing conditions hold.
(1) Transitivity: Given q;, q,, q;eQ such that

q,Fq, and q,Fq;. Then q,Fq,.

(ii) Composition property: Given q,, q,eQ there
exists q4eQ such that q;Fq, and q3Fq,. The symbol qfp 1is
usually read q follows p.

Definition 2.15. A mapping f of a Moore-Smith set

into a set S 1s known as a Moore-Smith sequence. Notation-

ally, this is written as {xq} where f(q) = Xq'
Definition 2.16. Let S be a space and x,eS. Then

a Moore-Smith sequence {xq} of points of S is said to con-
verge to x, if and only if given any neighborhood U of X,
there exists an element q,eQ such that qFq, implies xqu.
"qFq, implies xqu” can also be stated ”quO implies the
Moore-Smith sequence {xq} 1s eventually in U." 1In a metric
space S a Moore-Smith sequence {xq} is said to converge to
X,eS if and only if, given €>0 there exists a qgeQ such that

qFqe implies d(xq,x)<e. This is written as lam xq =y

or{xq}+x0.
We now give some examples of Moore-Smith sequences

from analysis.
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Example 2.3. %3@ 1/2" = 0. 1In this case we may

interpret the Moore-Smith set Q, to be the set of positive
integers and the Moore-Smith sequence to be {l/Zn}.

Example 2.4. %3@ f(x) = L if and only if given €>0,

there exists 6>0 such that |f(x) - L|<ewhenever
O<|x - a|<§. For x,ye(a-6, a+s), xFy if and only if

|x-a| < |y-a|. Then (a-§, a+s) is a Moore-Smith set.

P e e e T T

Proof: For x, y, ze(a-é8, a+§) such that xFy and
yFz then clearly xFz. Let x, ye(a-§, a+§) and x, y # a.

We want to show the existence of ze(a-§, a+§) such
-l X-a -a
that zFx and zFy. Choose z = a + minimum (l—j—l, i3

then |z - a| < |x - a|] and |z - a| <|y - a|. Thus,
(a-§, a+s§) 1is a Moore Smith set. The Moore-Smith sequence
would be {f(x)} for xe(a-§, a+s§). Note that in this example
the Moore-Smith set and Moore-Smith sequences have an uncount-
able number of points.

The next example is that of a Moore-Smith set from
topology.

Example 2.5. Let Q be the topology for a space S.

Define a binary relation F on Q as follows: for U, VeQ,
UFV if and only if UCV. Then with this binary relation
Q is a Moore-Smith set.

Proof: If U, V, WeQ such that UFV and UFW then
UFW. For U, VeQ then UMVeQ. Thus UMNVFU and UM VFV.

In example 2.2 we showed that in general sequences
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are inadequate to describe the topology of a space. How-
ever, using the concept of a Moore-Smith sequence, we can

characterize the topology of a space S.

Theorem 2.3. Let S be a topological space. Then:

(a) A point s is a limit point of a subset A of S
if and only 1if there is a Moore-Smith sequence in A-{s}
converging to s.

(b) A point s belongs to the closure of a subset A
of S if and only if there is a Moore-Smith sequence in A
converging to s.

(c) A subset H of S is closed if and only if no
Moore-Smith sequence in H converges to a point of S-H.

(d) A subset G of S is open if and only if for
every Moore-Smith sequence converging to a point of G, there
exists a queQ such that quo implies xqsG.

Proof: (a) Suppose s is a limit point of A. Then
every neighborhood U of s contains points of A-{s}. Let U
denote the neighborhood system of s. Define a binary
relation F on U as follows: For U, VeU, UFV if and only if
ucCVv. Clearly, U 1s a Moore-Smith set. Now from each
neighborhood U of s choose a point X, where X4 1s contained
in (A-{s)OU. Then {x } converges to s.

To conclude the proof of (a) suppose there is a
Moore-Smith sequence in A-{s} converging to s. Then every
neighborhood U of s contains points of A-{s}. Thus s is a

limit point of A.

B s W S MUIF A W



e

13

(b) Suppose s belongs to A. If s is a member of A
let each element of the Moore-Smith sequence be s. Then
this Moore-Smith sequence will converge to s. If s is a
limit point of A then by (a) there is a Moore-Smith sequence
in A converging to s.

Suppose on the other hand there is a Moore-Smith
sequence in A converging to s. Then every neighborhood U of
s intersects A. Thus, s is either a member of A or a limit
point of A and hence s belongs to the closure of A.

(c) Suppose a subset H of S is closed and suppose
there exists a Moore-Smith sequence in H converging to a
point x of S-H. This would imply that x i1s a limit point
of H. But, H is closed and contains all its limit points,
therefore no Moore-Smith sequence in H can converge to a
point in S-H.

Next, suppose no Moore-Smith sequence in H converges
to a point of S-H and assume that H is not closed. Then
there exists a point xeS-H that i1s a limit point of H. Part
(a) then, implies there is a Moore-Smith sequence in H
converging to x. Thus, if H is not closed there is a Moore-
Smith sequence in H converging to a point of S-H.

(d) Suppose G is open and {xq} is any Moore-Smith
sequence converging to xeG. Then since G is open, G 1s a
neighborhood of x and hence there exists qgeQ such that qFq,
implies xqeG.

Next, suppose that the condition 1s satisfied and

that G 1s not open. Then since G 1s not open, there 1is a

Y |

aNE
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point xeG such that x 1s a limit poiﬁt of S-G. Then, by
(a), there exists a Moore-Smith sequence {x_} in SGsuch that

q
{x _}converges to x. Then for this Moore-Smith sequence

q
there does not exist q,eQ such that qFq, implies quG. Thus,
we have a contradiction and G 1s open.

The results of this theorem show that given any %
topological space S, using the concept of a Moore-Smith
sequence we can describe limit points, points of closure, 1

closed sets, and the topology of the space.

Definition 2.17. A space S is Hausdorff if and only

if given any two distinct points x and y of S there exist
disjoint open sets U and V such that xeU and yeV.

The concept of a generalized sequence also lends
itself to theorems relating to Hausdorff spaces. It can be
shown that if a space S is Hausdorff then every convergent
sequence has a unique limit. (See [1] p. 100) However,
if every convergent sequence has a unique limit, the space
i1s not necessarily Hausdorff.

Example 2.6. Consider the space S of Example 2.2.

We showed that the intersection of any two open sets in S
could not be empty, so given two distinct points x and y in
S, every open set that contains x has a non-empty inter-
section with every open set containing y. The only sequences
which converge in this space are constant sequences. Thus

we have a space S such that every convergent sequence has

a unique limit, but the space is not Hausdorff.
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Theorem 2.4. A space S is Hausdorff if and only if

every convergent Moore-Smith sequence in S has a unique
1dmi t*pointaimsss

Proof: First suppose that S is Hausdorff and let
{x_ } be a convergent Moore-Smith sequence of S. Let
1%m xq = a and beS where a # b. By Definition 2.17 there
exist disjoint open sets U and V such that aeU and
beV. Since l%m xq = a there exists an element q,eQ such
that qQFq, implies xqu. Thus, since Uf1V = @ there does
not exist q,eQ such that qFq, implies xqu and hence {xq}
cannot converge to b. Therefore the limit of a convergent
Moore-Smith sequence in a Hausdorff space is unique.

To conclude the proof we must show that if every
convergent Moore-Smith sequence in S has a unique limit
point, then the space S is Hausdorff. To do this we assume
the space is not Hausdorff. Then there exist, x, yeS, x # vy,
such that every neighborhood U of x intersects every
neighborhood V of y. Letuxbe the family of neighborhoods
for x and Vy be the family of neighborhoods for y. Define
a binary relation F on the family of neighborhoods as
follows: For U, U'eUX UFU' if and only if UCU' and
similarly for V, V'eUy. Now consider the cartesian product
UXny. For the product we define a binary relation R in the
following manner: For (U,V) and (U',V'), let (U,V)R(U',V')
if and only if UFU' and VFV'. It follows readily that the
product, with the binary relation R, is a Moore-Smith set.

Now for (U,V) in the product UNV # @, and from this
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intersection choose a point x There exists a pair

u,v:
(U',V') such that (U',V')R(U,V) and U'()V' # @. From this

intersection choose a point XLt oyt We also have
)

U'MV'CUNVCU and U'MV'CUNVCV. By continuing this

process we obtain a Moore-Smith sequence {x } that converges

u,v

to both x and y. For, given any neighborhood G of x and any

& &

o e N e

neighborhood H of y there exists a pair (U,V) in UXny such

V,sG and X, V,eH. Thus if S
) b

o .l

that (U',VL5)R(U, VidiyimpLy: X,
is not Hausdorff, not every convergent Moore-Smith sequence
has a unique 1limit point.

Let {xq} be a Moore-Smith sequence of a space S.

S 4

Define a binary relation R on {xq} as follows: quxp if and
only 1f qFp where F is the binary relation for the Moore-
Smith set Q. Clearly, with the above binary relation, {xq}

1s a Moore-Smith set. Thus 1f {xq} is a Moore-Smith sequence

— e A . o

of a space S and if f is a mapping of S into another space T,
and {xq} has the binary relation R defined on it {f(xq)} is
a Moore-Smith sequence of T. Using the fact that the image
of a Moore-Smith sequence is a Moore-Smith sequence and that
the 1imit point of a convergent Moore-Smith sequence in a
Hausdorff space is unique we prove a theorem involving
continuity of a mapping f:S-T, where S and T are Hausdorff
spaces.

Definition 2.18. Let S and T be spaces and f:S-T a
mapping. Then f is said to be continuous at the point s of
S if and only if given any open set G of T such that sef !(G),

there exists an open set V of S such that seV&f '(G). £ is
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continuous on S if and only if 1t 1s continuous at s for

AN} s inRS 't

Theorem 2.5. Let S and T be Hausdorff spaces and

f:5>T a mapping. Then f is continuous on S 1f and only if
given any xeS and any Moore-Smith sequence {xq} of S that
converges to x, the Moore-Smith sequence {f(xq)} converges
o i (o] L

Proof: Suppose first that f is continuous on S and
{xq} i1s a Moore-Smith sequence in S such that {xq}+m5. By
the previous theorem we know x is unique. Since f is
continuous on S 1t 1s continuous at every point of S. This
implies given any open set G of T such that f(x)eG, there
exists an open set V of S such that xeV&f !(G). Since
{xq}+x, there exists q,eQ such that qFq, implies xqu, but
this implies f(xq)eG and thus {f(xq)} converges to f(x).
Since T is Hausdorff, f(x) is unique.

Suppose now that the condition holds. We know that
x and f(x) are unique. To prove that f is continuous we use
the fact that if, for every subset A of S, f(A)C¥f(A), then
f is continuous (See [1] p. 72). Let A be any set in S and
y ef (A). Then there exists an xeA such that f(x) = y. By
Theorem 2.3(b), there exists a Moore-Smith seauence of A
converging to x. Now {f(xq)}i(x), and since f(xq)ef(A)
for all qeQ, then f(x)ef(A), thus since y was any point of
f(K), we have f(A)CCf(A) and f is continuous.

Since the real numbers with the usual topology 1s a

Hausdorff space and a sequence of real numbers 1is a

[—————a

¥ -4
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Moore-Smith sequence, this theorem is sometimes given as
the definition of continuity of a mapping f:R+R, where
Moore-Smith sequence is replaced by sequence. However, this
condition with sequences does not hold in an arbitrary
topological space. For an example of this the reader 1is
referred to [ L] "plgioioe

Since we have generalized the idea of a sequence in
a space S, it would seem natural to generalize the concept
of a Cauchy sequence in a metric space.

Definition 2.19. A sequence {an} in a metric space

1s said to be Cauchy if and only if given €>0 there exists
N such that for n,m>N d(an,am)<€.

Definition 2.20. A metric space S is complete 1if

and only 1f every Cauchy sequence in S converges to a point
BNaS .

Definition 2.21. A Moore-Smith sequence in a metric

space 1s said to be a generalized Cauchy sequence if and
only if, given €>0 there 1is a qeeQ such that quqG and quq&
imply d(x_ ,x :

ply d( - )< €

q2
Theorem 2.6. Let S be a complete metric space and

{xq} a Moore-Smith sequence in S. Then {xq} converges in S
if and only 1if {xq} is a generalized Cauchy sequence.

Proof: First suppose that {xq} converges to XeS
and let €>0 be given. Then there exists quQ such that que
implies d(xq, x)< €/2. In particular there is a q;€Q such

that quqs. Now, by Definition 2.14(ii), q »a imply there

exists qp eQ such that quqeand quqf By the triangle

pr oy A A e

ol s e i SRl A
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inequality

d(xq 130 =) < d(xq

: L ; xq) + d(xq, xq ) < €2 + €2 = €,

1 2

thus {xq}is a generalized Cauchy sequence.

Suppose that {xq} is a generalized Cauchy sequence.

Let € = 1/2. Then there exists q,¢Q such that qFq, and

w &

e e e W R E & &N

pFq, imply d(xp,xq) < 1/2. Define Q; = {peQ:pFq,}. Let

€ = 1/4. Then there exists q,eQ such that pFq, and qFq,

imply d(xp,xq) < 1/4. Now qu, q;eQ imply, by Definition
2.14(11), that there exists an element q,eQ such that q,Fq,
and q,Fq,. Since q,Fq, for any qeQ such that qFq,,

d(xq, ) < 1/4. Define Q, = (peQ:pFq,}. Now since q,Fq,

%
a2

—
we have Q,CZQ. Assume that € S

~ o 6 A aeces

and Q,., have been

defined and let (e 1/2". Then there exists qpeQ such that

pFqy and qFqy imply d(xq,xp) < 172", Now ags qn_ng imply,

e

by Definition 2.14(ii), that there exists q,eQ such that

q,Fq and q,Fqg. Since q Fqg, for any peQ such that W

oL = L

n g 0
pFq_ d(xp,an) < 1/2°. Define Q, = {peQ:pFq_ }. Since

anqn_1 we have an_'_Qn_1 continuing this process inductively,

we will obtain a sequence {xq } which is a subset of {xq}.
n

We will also have ....an:Qn_lc;...c:Ql. The sequence {an}

is a Cauchy sequence.
In order to prove this we must show that given €>0

D ot s, (2

there exists N such that for all n,m>N,d(x q
m

In
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Let €>0 be given. Then there exists N such
that 1/2N < &/2. By the construction, for n,m N, anqN and

. . N : :
qnFay- Now anqN implies d(qu,an) < 1/2 and q Fay implies

d(x_ ,x_ ) ° l/ZN. Using the triangle inequality,

dix ;i d - + d ;
( 9n qm) = (an XqN) (XqN qu)

cyyN v 1N g2 g2 = e
Thus {xq } 1s a Cauchy sequence. Since S 1s a complete
n

metric space {xq } converges to xeS. We want to show that
n

{xq} converges Lonxs

Let €>0 be given. Since {xq } converges to x there
n

exists N, such that d(xq ,X) < €/2. There exists N such
N

that 1/2N2 < €/2. Choose N = maximum (NI,NQ. For QeQN,

qFay implies d(xq,xq N« 1/2N < €&2. By the triangle
N

inequality,

d(xq,x) ;:d(xq,qu) + d(qu,x) < €/2 + €/2 = €&,

thus {xq} converges to X.
Note that in the first part of the proof we did not
use the fact that S 1s a complete metric space. Thus, we

have the following corollary.

Corollarv 2.1. Let S be a metric space and {xq} a
convergent Moore-Smith sequence in S. Then {xq} is a
generalized Cauchy sequence.

The concept of a generalized Cauchy sequence in a

complete metric space lends itself to a theorem relating to

it e WA AN
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iterated limits. Before we can state and prove this theorem
we need the following definition and lemma.

In the proof of Theorem 2.4, we showed that if P and
Q are Moore-Smith sets, then PxQ can be made into a Moore-
Smith set in a natural manner using the ordering on P and Q.

Definition 2.22.  Let P, QibeSMoome= S iciCrtc e

metric space f:PxQ-+»S,g:Q»S mapping, and suppose that the

lgmf(p,q) = g(q). Then lgmf(p,q) is said to be uniform in

q if and only if given any real number €>0 there exists an
element p of P such that peP and ph% implies
d(£f(p,q),g(q)) <&, (Thait is,;% does not depend on q).

Lemma 2.1. Let P, Q be Moore-Smith sets, S a complete

metric space, f:PxQ+S, g:Q»S, and h:P+S mappings, and suppose

tlnat 1émf(p,q) = g(q) uniformly in q and lamf(p,q) = h(p) for

€ acChy ¥p SRt IRt

(a) lam(l%mf(p,q)) exists;

(b) 1%m(1%mf(p,q)) exists; and

() %%gf(p,q) exists.

Proof: (a) Since lémf(p,q) = g(q) uniformly in q,
we must show that the lam g(q) exists. To do this we show

that {g(q)} is a generalized Cauchy sequence. Let €>0 be
given. By the uniformity of I%mf(p,q) there exists peeP,
depending only on such that;ﬂﬁk implies

(i) d(£(p,a),gla)) < €/3.

Since 1%mf(p,q) is uniform in q, pFRe implies

< .
B o A G W MW
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d(£(p,a;),g(q;)) < &/3 and d(£(p,q;),8(q;)) < €/3 for
arbitrary q,, q,eQ. To conclude the proof we are concerned
only with those peP such that pFRE. Since lamf(p,q) = h(p),

there exists qé’pEQ such that que,p implies

d(£(p,a),h(p)) < €6. There is a q,eQ such that q3qu B
b

and this implies d(£(p,q;),h(p) < €/6. q3,qe peQ imply,

by Definition 2.14(ii), that there exists q,€Q such that

F and F ‘
q,rq;, qy qg,p

Now by the triangle inequality
d(f(p,as),£f(p,a,)) < d(f(p,adh(p)) + d(f(p,q,),h(p))
< €/6 + €/6 = €/3.

unqE,p implies d(f(p,q,),g(q,)) < €&/6.

By (i) we know that d(£f(p,q3),g(q3)) < €/3 and
d(f(p,qq),g(qu)) < €/3. Using the triangle inequality again
we have
d(g(as),g(q,)) < d(gla;),f(p,a;)) + d(£(p,qa;),g(q,))
< d(glay),f(p,a;)) + d(£(p,a3),£(p,qa,))
+ d(f(p,a,),g(qy))
< LE/SE BE/ ST €/.31 =M.
Thus {g(q)} is a generalized Cauchy sequence, and by Theorem
2.6, {g(q)} converges to a point XxjeS.
(b) To show that I%m(lamf(p,q)) exists, we must
show that I%mh(p) exists by again applying Theorem 2.6.
Let €>0 be given. Since 1%mf(p,q) = g(q) uniformly
in q, there exists REeP such that pré implies
d(f(p,q),g(q)) < €6 for all qeQ. In particular, there

exists p,eP such that ple&’ which implies

(ii) d(f(p,,a),glq)) < €/6.

e L S 3
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Now, by Definition 2.14(ii), there exists p,eP such that
p,Fp , which implies

<
(i11) d(£(p,,q),g(a)) < €/6.

Then, using the triangle inequality, we have

d(f(p,,q),£(p,,q)) < d(£(p,,a),gla)) + d(£(p,,q),g(a))

< €/6 + €/6 = E/3.
Since lamf(pl,q) = h(p,) there exists q3us eQ such that
» P1

qFq D implies d(f(p,,q),h(p;)) < €3. Similarly there
<
exists q eQ such that qFq implies
€, 2 G’pz

d(f 4! €/3. Now ] imply, b
(£(p,,q),h(p,)) < € U s> g Do e RIS

Definition 2.14(ii), that there exists qeQ such that qué D
» Py

and qFq . Then for those qeQ that follow q and
E:pz e’pl

q » d(f(p,,a),g(qa)) < €3 and d(£f(p,,q),g(q)) < €3. Now,

€2P2
stimice I%nﬁ(p,q) is uniform in q, the inequalities (ii) and

(iii) are true for those q ¢€Q such that qFq and aFq ;
€>P €,P,

Then using the same type of inequality that we used in the
final part of the proof of (a), we have d(h(p1)’h(p2)) < €.
Hence, {h(p)} is a generalized Cauchy sequence and by
Theorem 2.6 converges to a point x,eS.

(c) Recall that in PxQ, (p,,q,)F(p,,q;) if, and
only if, p,Fp, and q,Fq,.

Let €>0 be given. Then since {g(q)} is a
generalized Cauchy sequence there is a qEEQ such that quqe
and quqE imply d(g(q,),g(q,)) < &3. Since 1gmf(P,Q) = g(q)
uniformly in q there exists an element REeP such that pFRE

implies d(£(p,q,)g(a;)) < &3 and d(£(p,a,),8(a,)) < €/53.

Ll T A

PRI T -

S | Vet ol

e




24
There is a p,eP such that plﬁz. Then pldzep imply, by
Definition 2.14(ii), that there exists p,eP such that p,Fp,
and pzfﬁg . It then follows that d(f(pl,ql),g(ql)) < €/3 and
d(f(pz,qz),g(qz)) <a%/ 3. %, Thuss

d(f(p,,a,),f(p,,q,))

d(f(py,a,),g(q;)) + d(f(p,,9,),8(q;))
< d(f(p,,q,),e(q;)) + d(£(p,,q,),8(q,)) + d(gla,),gla,))
< &/ 3 LtpEfIeta S BN=uen

A

Gt W N

and we have found a pair Qk,qe)erQ such that if ‘

———

(pl,ql)F(pe ,q, ) and (pz,qz)‘F(pé ,qe) then d(£(p,,q,),f(p,,q9,))

< &. Hence {f(p,q)} 1s a generalized Cauchy sequence and

A S e

by Theorem 2.6 converges to a point Xx,eS.

P

We are now ready to state and prove a theorem
relating to iterated limits i1n a complete metric space.

Theorem 2.7. Let P, Q be Moore-Smith sets, S a

T e o

complete metric space and f:PxQ-+S,g:Q+S, and h:P+S mappings,

and suppose that l&mf(p,q) = g(q) uniformly in q and
l%mf(p,q) = h(p) for every peP. Then lam(l%mf(p,q)),
lgm(l%mf(p,q)), and %igf(p,q) each exist and are all equal.
Proof: By Lemma 2.1 we know that l&m(l%mf(p,q),
lam(lgmf(p,q)), and %?Ef(p’q) each exist. Let x, =

1&m(l%mf(p,q)), X, = lgm(lamf(p,q) and x, = %%}glif(p,q).
Assume that X # X 7 X, # Xp. Let d(xgy,x;) = 14,
HOSRRID = zmd d(x,,x,) = ry. Choose g to be the minimum

OES s /el r,/2, and r /2. Then the spherical neighborhoods




25
Se(xi) and SG(Xj) are disjoint for i,j = 0, 1, 2 and i # j.
We list the following statements since we need to refer to
them later on in the proof.
(1) 1%m g(q) = x,. Then there exists qQ0€Q such
that qFq, implies g(q)sSe(xo).
(hLps)! 1%m h(p) = x;. There exists p,eP such that
pFp, implies h(p)eSE(xl).
ErE) %%g f(p,q) = x,. There exists (p',q')ePxQ
such that (p,q)F(p',q') imply f(p,a)eS.(x,).
(iv) I%m f(p,q) = g(q). There exists p,eP such
that pFp, implies f(p,q)sSE(xo) wvhere also qFq.
(7% 1am f(p,q) = h(p). There exists qlsQ such that
qFq, implies f(p,q)aSE(xl) where also pFp,.
Now, by Definition 2.14(ii), for q,, q,eQ there 1is
a q,¢eQ such that q,Fq;and q,Fq,. Similarly, there is a
p,eP such that p,Fp, and p,Fp,. Now q,Fq,, by (i), implies
that g(qz)esé(xo) and p,Fp,, by (ii), implies that
h(pz)eSe(xl). By (iv) we have f(pz,qz)esé(xo), since p,Fp,
and q,Faq, - (v) yields f(pz,qz)ese(xl), since quqland
P,Fp,. Thus Se(xo)(]Se(xl) # @ and x, = x;. Now (p',q')
and (pz,qz)erQ imply, by Definition 2.14(ii), that there
is a pair (p,,q,)ePxQ such that (py,a5)F(p',q") and
(py,a;)F(p,,q,). By (iii) (p;,q;)F(p',q') yields
f(p3,q3)sSe(x2). From (p3,q3)F(p2,q2), we have pangand
Q3Fq,. Then since p,Fp and q,Fq,, q3Fq and p,Fp,, by
Definition 2.14(i). By (v) we have f(p3,q3)eSe(x1), since

q;Fq, and 2 J5er Thus, Se(xl)(]se(xz) # @ and x, must equal

| ol
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A
x,. This completes the proof.
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CHAPTER III

FILTERS

In this chapter we shall consider a type of con-
vergence involving the concept of a filter. A filter is
a more general form of convergence than a Moore-Smith
sequence. A Moore-Smith sequence involves points in a

space indexed by a set Q, whereas a filter involves a

collection of sets 1n a space satisfying certain conditions.

Definition 3.1. A filter F in a set X is a collec-

tion of non-empty subsets of X satisfying the conditions:

(i) The intersection of any two members of F
is a member of F, and

(i1) if AeF and ACBCX, then BeF.

Suppose we consider the neighborhood system of a
point x in a space. Although this system satisfies the
first condition of Definition 3.1, the second condition 1is
not satisfied since any set containing a neighborhood of a

point is not necessarily a neighborhood of the point. How-

ever, this difficulty is easily overcome by the introduction

of a K-neighborhood of a point.

Definition 3.2. A subset U of a space S is called

a K-neighborhood of a point x if and only if U contains an

open set contailning X.
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From this definition it follows readily that the
K-neighborhood system of a point satisfies the condition for

a filter.

Definition 3.3. A filter F converges to a point X

in a space S 1f and only if F contains the K-neighborhood
system of x. (That is, the K-neighborhood system of x is
a subfamily of F).

From the preceding definition and discussion the
following theorem 1is immediate and we state it without proof.

Theorem 3.1. Let U denote the K-neighborhood system

of a point x in a space S. Then U is a filter converging to

X.

Theorem 3.2. Let S be a topological space. Then,

(a) 1if F is a filter converging to x and G is a
filter which contains F then G converges to x.

(bpin S FX 1s the collection of all filters which
converge to a point x, then [J{F:F ¢ e X} ls the K-neighborhood
system of x.

Proof: (a) Since F converges to x, F contains
every K-neighborhood of x. Then since G contains F, G
contains every K-neighborhood of x and hence by Definition
5.3 converges to X.

(b) Let {Ga}aeA denote the K-neighborhood system of

x and let G, be any set in {Ga}aeA' Then G, elﬁ{F:FeFX}

1 1

since Ga belongs to every filter converging to x. Let G
1

be any set in (T1{F:FeF }. Then Ge{G,}, ,, for in

e

-
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particular, the neighborhood system of x is a member of Fx.
Thus if Ge (1{F:FeF } then G must belong to (G

In Chapter Two we showed that using Moore-Smith
sequences we are able to describe limit points, closure of
a set, closed sets and open sets in a topological space. We
can also do the same thing with filters.

Theorem 3. 3. A point x 1s a limit point of a set A

ot di i

if and only if A-{x} belongs to some filter which converges
to Xx. :

Proof: First suppose that A-{x} belongs to some |
filter F which converges to x. Since F converges to x each
K-neighborhood of x is a member of F. Then since every :
neighborhood of x is a K-neighborhood of x, every neighbor-
hood of x is a member of F. Let G be any neighborhood of x.
Then since A-{x}, GeF, (A-{x})(\G # @. This implies G con-

tains points of A-{x} and hence x is a limit point of A.

S — e R aa— -~

Next suppose that x is a limit point of A. We wish
to show that A-{x} belongs to some filter which converges to

X.

Let {GC} be the K-neighborhood system of x. Since

ceC
x 1s a limit point of A, (A—{x})r\GC # @, for every ceC. Let

{B 1} denote the collection consisting of all subsets B
q-qeQ q
of S such that (A—{x})rﬁGcc:Bq for some qeQ and some ceC.

Let F be the collection of sets consisting of {GC}CEC’

{(A-{x})f}GC}CEC, and {Bq}QEQ' Now we wish to show that the

collection 1s a filter. Clearly all the sets are non-

empty. Now we show that the intersection of any two members

C—-: - ——
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eficFiils asmembendofieh.

Since the K-neighborhood system satisfies the
conditions for a filter, the intersection of any two K-
neighborhoods 1s a member of the K-neighborhood system and
hence a member of F. The intersection of any two members of

{(A-{x})F]GC}CEC is a member of F, since
((A-{x})(‘]Gcl)f)(A-{x})f')GC2 E (Gclﬂ Gcz)ﬂ(A-{x}) and

GC?GCZE{GC}CEC, hence (Gclﬂccz)ﬂ(A-{x}) # @ and belongs to

{A-{x}) GC} and also F. The intersection of two members

cee

off {B } is also a member of F. For if B and B belong
q°qeQ q, q;

B
Tor q}qu

such that (A-{x})/1G. CB_ and (A-{x})G.CB. . Then
c, q G, =aad

1 2

since ((A-{x})ﬂGC )ﬂ((A-{x})flGC ) is non-empty and is in
1 2

{(A-{x})] G.} Bqlﬂ Bq # @ and belongs to {Bq}qu and

hence to F. Now ((A—{x})ﬂGC)ﬂBq is a member of F since
1

)
ceC 5

Bql“’j(A-{x})(TGC1 and ((A—{x})ﬂGc)ﬂ((A-{x})ﬂGcl) # @ and

is contained in Bq and (A-{x})ﬂGC. Thus
1

((A-{x})N GC)ﬂBq # @ and contains a member of
1
= ] d FL
{(A {x})f’)GC}CEC, so it belongs to {Bq}qEQ and to
Clearly the intersection of any K-neighborhood with a

member of {(A-{x})ﬂGC}CEC is a member of {(A-{x})ﬂGC}CEC

and of F. Finally, we show that the intersection of a

member of {Bq} and a member of {GC}CEC is non-empty and

qeQ

a member of F. Let Bql be an arbitrary member of {Bq}qu

then there exist sets (A-{x})ﬂGC and (A-{x})N) GC2
1

e b e

e ———
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and G. be any member of {Gc}ceC' Then there exists a set

1

(A—{x})fﬁGC such that (A-{X})()GC C:Bq and we know that
2

2 1

ccl.ﬂ ((A-{x})MG_ Jel(A-1x})NG) Thus BqlﬂGC # @ and

GEel® 1

2

contains a member of {(A -{x})fﬁGC}CEC and hence BqlﬂGc1

belongs to {Bq}qEQ and F. By the way the filter was con-
structed, the collection of sets will satisfy condition (ii)
of Definition 3.1. This collection of " SctsENESEESEREICnEe
filter converging to x. Then since (A-{x})f]GCeF and
(A—{x})f\GCc:A-{x}c:S, A-{x}eF, and we have shown the
existence of a filter F converging to x such that A-{x}eF.

Theorem 3.4. Let S be a space. Then a subset U of

S is open if and only if U belongs to every filter converging
to a point of U.

Proof: Suppose U is open. Let F be any filter
which converges to xeU. Since U is an open set containing
X 1t 1s a K-neighborhood of each of its points, hence UeF,
since F contains every K-neighborhood of x. Then since F
is any filter converging to XxeU, U belongs to every filter
converging to a point of U.

Suppose now that U belongs to every filter converging
to xeU. Then, since the K-neighborhood system of x is a
filter converging to x, U is a K-neighborhood of x. Hence
for each xeU, U contains an open set containing x. Thus, U

can be written as the union of open sets and U is open.

e A

e

 — A — -

=a—

—

I
I
!
1



Theorem 3.5. Let S be a space. Then

(a) A point x belongs to the closure of a subset A

of S if and only if A belongs to some filter converging to X.

(b) A set H is closed if and only if H belongs to
no filter converging to a point of S-H.

Proof: (a) If x is a limit point of A, then by

Theorem 3.3, A-{x} belongs to some filter F converging to Xx.

Then since A-{x}CA, A belongs to F. If x is a member of A
and not a limit point of A, then the collection of all sets
U such that xeU clearly form a filter converging to x, and
Avisva membercof thisefiiiters

Next, suppose that A belongs to some filter con-
verging to x. Then since every neighborhood of x is a
K-neighborhood of x, every neighborhood of x intersected
with A is non-empty and hence x is either a point of A or a
limit point of A.

(b) Suppose H is closed. Then S-H is open and,
by Theorem 3.4, belongs to every: filter converging to a
point of S-H. Since (S-H)()H = @, H cannot belong to any
filter converging to a point of S-H.

On the other hand, suppose H belongs to no filter

converging to a point of S-H and assume that H is not closed.

Then there exists a point xeS-H that is a limit point of H.

But this implies, by Theorem 3.3, that H-{x} belongs to some

filter F converging to x. Then H-{x}CH, implies HeF. Thus,

if H is not closed, H belongs to some filter converging to

a point of S-H. Therefore H is closed.

—— - ep—— =
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A filter converging to a limit point of a set A is
analogous to a Moore-Smith sequence, or a sequence of
distinct points of the set A converging to the limit point.
Also, in the proof of Theorem 3.5(a), the collection of all
sets containing a polnt is similar to the notion of a
constant sequence or a constant Moore-Smith sequence.

Using the concept of a filter we are able to prove
Theorems 2.4 and 2.5. We will replace Moore-Smith sequences
®ith filterse

Theorem 3.6. A space S is Hausdorff if and only if

every convergent filter has a unique limit.
Proof: Suppose first that S is Hausdorff, F is a
filter converging to x, and yeS with y # x. Then since F

converges to x, F contains every K-neighborhood of x. But

- T .

S is Hausdorff, which implies that given any two distinct
points x, yeS then are disjoint open sets U, V such that
xeU and yeV. Now UeF and UNV = @ so V¢F. Therefore F piael
cannot converge to y and so F converges to a unique limit.

Suppose now that every convergent filter of S has
a unique limit, then we must show that S is Hausdorff. To
do this we assume that S 1s not Hausdorff. This implies
that there are two distinct points x, yeS such that every
K-neighborhood Uy of x intersects every K-neighborhood Vy of
YA N T o UX denote the K-neighborhood system of x and Vy
denote the K-neighborhood system of y. Since S is not
Hausdorff Uxf\Vy # @ for any Ucell and any V_el

¥ iXe

be the

Let G = {erwvy:uxeux and vyevy} and let {Wa}aEA

il
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collection of all sets WaC,S such that anVyC_Wa for
some agA and for some UX(']VyeG. The collection of sets F,
consisting of UX, Uy’ G and {wa}agA is a filter converging
to x and y. We must show that F satisfies Definitions 3.1
and 3.3. Clearly all the sets in F are non-empty. Next we
show that F satisfies condition (i) of Definition 3.1.
Since the K-neighborhood system of a point satisfies the
conditions for a filter the intersection of any two members
of UX 1s a member of UX and the intersection of any two
members of Uy 1s a member of Uy' From this it follows that
the intersection of any two members of G is a member of G.
The intersection of any UxeuX and any U)'(ﬂV;,aG since
Ux{")(U)'({"}V}',) = (UXQU)'()OV)', and U)'(ﬂUxaux. Similarly
the intersection of an arbitrary vygvy with a member of G 1is |
a member of G. The intersection of a member of ty and a mem-

ber of {wa}aeA is a member of {wa}aeA s ge fHom Walg{wa}aEA

3 1 1 1] 1 T {
there exists UxﬁVng such that Uxf')\/ij'.h‘,i1 and for

Uxeux, UX()(U)'(HV;) # @ and a member of G so anwal 0

and a member of {Wa}ae In the same manner we can show the

A

same thing true for Vysl/y and wals{wa}aeA' Now we show that

the intersection of two members of {Wa}aeA is a member of

. X1i urAVv! d
Bot wal, WaZE{wa}aeA there exist sets U:f) y an

3 1 !
Uxf‘)\/y in G such that UxﬂVyCWa

{wa}aeA'

and UX('\V},C_Wa . Then

1 2

(U, N Vy)ﬂ (U)’(n\/}',) is a member of G and hence

' ' ined th llection
Walr) Wazg{wa}aEA. By the way we have define e collecti
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F, given any set A in S such that A contains a member of F,
AeF. Now since F contains the K-neighborhood system of both
x and y, F 1s a filter which converges to x and y. But X
is different from y, so if S is not Hausdorff, not every
convergent filter has a unique limit. Thus, by the condition
given, S must be Hausdorff.

Before we can prove the theorem pertaining to the
continuity of a mapping f from a space S into a space T,
where S and T are Hausdorff spaces we need the followilng
lemma.

Lemma 3.1. Let S and T be spaces and f a mapping

of S onto T. If F is atfilterrin®sS,Sthen*f @F)iCHsNIteEn:
LT

Proof: Clearly every set in f(F) is non-empty.
Let U,Vef(F). Then £ 1(U), £ V)eF and £ L(U)ANEf L (V) # 0
and £ (UM £ (V) is a member of F. Then, since
£ LM £ (v) = £1UNV), UNV is non-empty and a member
of f(F). Now let Aef(F) and B any set in T such that
ACBCT. £ '(A)eF and since £ '(A)CEf '(B), £ !(B)eF and
hence B is a member of f(F). Thus f(F) is a filter.

By using this lemma and the fact that the limit of a
convergent filter in a Hausdorff space is unique, we can
prove the following theorem.

Theorem 3.7. Let S, T be Hausdorff spaces and f a

mapping of S onto T. Then f is continuous on S if and only
if given any xeS and any filter F which converges to X,

then the filter f(F) converges to f(x).
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Proof: Let xeS be arbitrary -"17,‘:';:“5:..7!5 )0
'.'|.‘-I_|

system of x and suppose the condition 1is sétms—fﬁ! Then

wish to show f is continuous. Let G be any cée §(,,U in T

containing f(x). Then Gef(F) and hence f_ l(G)gFﬂ.ﬂ‘ 1§
| '}
implies f '(6) is a member of the K- nelghbqﬁ}hc‘)‘% 'e

W,
ot

xiiand that £ 1(G) contains an open set V such thnat“, ~4 4
!

xeVCf ' (G). Thus, by Definition 2.18, f is éaﬂt uu~ at
| »

X, but since xeS is arbitrary f is contlnuoﬁs on‘S F

L= =

Suppose on the other hand that f i"s'"‘éonfi ‘uo""" and
F is any filter converging to xeS. We must s}?oxx"?h'?ts&_ﬂ’ﬂf"

contains the K-neighborhood system of f(x) ’ I‘:etv“\/f@. ' :

member of the K-neighborhood system of f£(x). Then V .r;'i i
contains an open set G such that f(x) saicvit Now §1n'ae~ d*g?

continuous f-l(G) contains an open set W’§uchnt}1‘3'?-'

r-
xeWC£f *(G), and W is a member of the K- nelghborhq'o'ﬁ S i

A
m
of x, so WeF. Now WCE 1(G)Cf (V) and hemé‘l! '
L(6), £ 1 (V)eF. Thus f(F) contains the K-ne &‘maom
system of f(x) and since f(F) is a fllter%(’;ﬁ_ ab;"—_!lq'g’EH
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CHAPTER IV
EQUIVALENCE OF MOORE-SMITH SEQUENCES AND FILTERS

In this chapter we show that filters and Moore-Smith
sequences lead to equivalent convergence theories.

Liteorem 4. 1. = Y34 {xq} is a Moore-Smith sequence in

S, then the family of all sets A, such that for each A
there is a quQ such that quA implies xqu, is a filter in
Sk

Proof: Let A denote the family of sets A such that
for each AceA there is a quQ such that quA implies xqu.
We must show that A satisfies Definition 3.1. Clearly all
members of A are non-empty. If B is any set in S such that
B contains A, where AeA, then BeA since there exists q,eQ
such that qFq, implies xqu and xqu if ACEB. pliet CAS SNEEE

Then there exists queQ such that quA implies xqul and
1

there is a queQ such that quAz implies xquz. Qpy queQ
imply, by Definition 2.14(ii), that there is a q'eQ such
that q'Fqu and q'Fqu- This implies xq.e A, and _Xq'EAZ'
Hence for qeQ such that qu',xquln A,. Thus Alﬂ A, 0
and is a member of A. Thus A is a filter in S.

Lemma 4.1. Let:F be'a filteruin Suandsdefine Q=te

be the set of all pairs (x,F) such that xeF and FeF. Define
a binary relation R on Q as follows: For (y,G),(x,F)eQ

37
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(y,G)F(x,F) if and only if GCF. Then Q is a Moore-Smith
Sieit

Proof: Let (y,G), (x,F), (h,H)eQ such that
(y,G)R(x,F) and (x,F)R(h,H). Then since GCE and FGCH;
GCH and (y,G)R(h,H). Let (y,G) and (x,F) be members of Q.
Then, since G, FeF, G/)F is a member of F, and GMNFCG and
GMNFcCF. Thus (g,GAF)R(y,G) and (g,GMF)R(x,F), and
we have shown that Q 1s a Moore-Smith set.

Theorem 4.2. Let F be a filter in S and let Q be

the set of all pairs (x,F) such that xeF and FeF. Let
f(x,F) = x for all xeF. Then F is precisely the family of
all sets A such that for each A there is a pair (x,F)eQ
such that (y,G)R(x,F) implies f(y,G)e€A.

Proof: First, we show that the conclusion is true
for every set in F. Let KeF be arbitrary. Since F 1s a
filter any set in F intersected with K is non-empty and a
member of F. So we can find a pair (y,H)eQ such that
(y,H)R(x,K). f(y,H) = yeHCXK which implies the conclusion
is true for K, and hence every set in F since K 1s arbitrary.

Let A be any set in S such that there exists a pair
(y,G)eQ such that (x,H)R(y,G) implies f(x,H)eA. But
f(x,H) = x for all xeH, so HCA which implies AeF since HeF.
This then completes the proof.

It follows then from these two theorems and the
lemma that for each Moore-Smith sequence in a space S which
converges to a point of S, we can always obtain a filter

converging to that point. Conversely, given any filter in



A - L
a space which converges to a point, we u‘?‘{g@ms.@@gr_@
q--

Moore-Smith sequence converging to the -p‘o{i';'rj—;
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