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ABSTRA.c
r

r 

In this thesis the writer has considered types 

of conver5ence in an arbitrary topological space. 

Three types of convergence are considered, convergence 

of sequences in the real numbers with the usual topology, 

convergence of rioore-SJJi th se�uences in an arbitrary 

topological space, and convergence of filters in an 

arbitrary topological space. 

In Chapter II, we show that sequences are 

inadequate to describe limit points of sets ani hence 

the topology in an arbitrary topological space. rhe 

idea of a sequence is 0eneralized in this chapter to 

Ioore-Swith sequences and in Chapter III to filters. 

In Chapter II we prove that conver5ence of 

oore-S�ith sequences is sufficient to describe li�it 

points, closed sets, the closure of a set, open sets, 

and in fact the topology of an arbitrary space. 

Al thou5h the converssnce of filters 9.nd 1�oore-S:ii :.h 

sequences differ greatly, we prove these sa�e results 

using filters. However, in Chapter II we also prove 

an iterated limit theorem using 3eneralize� Cauchy 

sequences in a complete metrlc space 

Chapter IV is in many respects the �ost i�por­

tant, althou;h containing the fewest results. For 

V 



in Chapter IV we are able to relate conver�ence of 

filters to conver�ence of Yoore-S_ith sequences. 

In fact we prove that filters and Moore-S�ith sequences 

are equiv:--�lent convergence theorie, .• 
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CHAPTER I 

INTRODUCTION 

Throughout this paper we assume the reader is 

familiar with the fundamentals of set theory and its 

notation. 

In this paper we are concerned with types of con­

vergence· in an arbitrary topological space. The set of 

real numbers can be given a topology such that convergence 

of sequences is adequate to describe the topology. However, 

sequences contain only a countable number of points and are 

inadequate to describe the topology of an arbitrary 

topological space. 

In Chapter II we generalize the idea of a sequence 

allowing it to contain an uncountable number of points. 

This type of sequence is known as a Moore-Smith sequence. 

We also give some examples showing why we must generalize 

the idea of a sequence. Then, using the concept of a 

Moore-Smith sequence, we prove certain basic theorems 

relating to an arbitrary topological space. Although a 

Moore-Smith sequence is a generalized sequence, limits of 

Moore-Smith sequences are analogous to limits in calculus. 

In Chapter III we consider a type of convergence 

involving the concept of a filter. This type of convergence 

involves a collection of sets in a space instead of a 

1 



sequence of points. In Chapter IV we show that the concepts 

of Moore-Smith sequences and filters lead to equivalent 

convergence theories. 
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CHAPTER II 

GENERALIZED SEQUENCES 

To begin our discussion we give some basic 

definitions concerning a topological space. 

Definition 2.1. A topology is a family T of sets 

which satisfies the following conditions: 

(i) the intersection of any two members of T is a

member of 1, and 

(ii) the union of members of T is a member of 1.

Definition 2.2. The pair (X,1) is a topological 

space when Xis a set and 1 1s a class of subsets of X 

satisfying Definition 2.1. In this paper we use space as 

an abbreviation for topological space. 

Definition 2.3. A subset G of a space X 1s open if 

and only if G is a member of T. A set G is said to be a 

neighborhood of a point XEX if and only if G is an open set 

containing x. 

Definition 2.4. A subset H of a space X 1s said to 

be closed if and only if X-H is open. 

Definition 2.5. A point p of a space Xis a limit 

point of a subset A if and only if every neighborhood of p 

contains points of A-{p}. 

Using the above definitions it can be shown that a 

3 
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subset G of a space Sis open if and only if for each PEG 

there exists a neighborhood U of p contained in G. It can 

also be shown that a subset H of a space Sis closed if and 

only if H contains all its limit points. 

A special kind of topological space 1s a metric 

space. 

Definition 2.6. A set Sis said to be metric if 

and only if there is associated with S a mapping d:SxS �R 

having the following properties for every x,y,z in S: 

(i) d(x,y) > 0

(ii) d(x,y) = d(y,x)

(iii) d(x,y) = 0 if and only if x = y

(iv) triangle property: d(x,z) < d(x,y) + d(y,z).

The mapping d is called the metric for the set S. 

Definition 2.7. Let K be a metric set. Then with 

each point p of K and each real number T>O, we associate a 

subset Sr (p) of K called a spherical neighborhood of p A

point q of K lS 1n Sr(p) if and only if d(p,q) < r.

Definition 2. 8. A metric set s is said to be a 

metric space if and only if the topology of Sis that which 

is generated by the collection of subsets of S consisting of 

all spherical neighborhoods in S. The topology of Sis said 

to be induced by the metric d. 

At this point it may be helpful to consider some 

examples of a topological space. 

Example 2.1. Let X be the set consisting of the 

three elements a, b, and c. Let T consist of the sets X,{a}, 
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{a,b}, {b}, and 0, where 0 is used to designate the empty set. 

The pair (X,T) is a topological space. The union of members 

of T is a member of T and the intersection of any two me�bers 

of T is a member of T . Also, the sets are open, since they

are members of T .  In the example c is a limit point of 

{a,b} since every neighborhood of c, the space itself, con­

tains points of {a, b}. The closed sets in this space are 

{c}, {b,c}, {a,c}, X since it is the compliment 0, and 0 

since it is the compliment of X. 

Definition 2.9. The closure of a set A is the 

intersection of the family of closed sets containing A and 

is denoted by A. It can be shown that the closure of a set 

A is the union of the set A with the set of all its limit 

points. By its definition the closure of a set is closed. 

In our example the closure of the set {a,b} is X, 

while the closure of {c} is {c}, since {c} contains all its 

limit points. 

A more familiar topological space is the set of real 

numbers R with the topology described below. 

The usual topology of the real numbers is the 

collections of all sets G such that for each pEG there 

exists an open interval (a,b) such that pE(a,b)C:.G. It can 

be shown that this collection of sets will satisfy the 

conditions for a topology. The usual metric for R is 

d(x,y) = lx-yl, for x,yER, This metric induces the usual 

topology for R. 
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Using the concept of sequences we can describe limit 

points, closed sets, the closure of a set, and in fact the 

usual topology for R. 

Definition 2.10. A sequence is a set A indexed by 

the set of positive integers. The nth element of the 

sequence is the element a of A which is indexed by n,i.e.a .
n 

The sequence is denoted by {a}. 
n 

Definition 2.11. A sequence {an} of real numbers

converges to a real number A if and only if given any real 

number �>0 there exists an integer N such that for all n>N 

la -Al<E.n 

The following theorem is an immediate consequence 

of the definition of convergence of sequences and the 

structure of the usual topology. 

Theorem 2.1. The sequence {a} converges to A ifn 

and only if, for every neighborhood G of A, there exists an 

integer N such that a c: G for all n>N. 
n 

From the idea of limit point of a sequence we can 

proceed to the idea of limit point of a set. 

Definition 2.12. A point p is a limit point of a 

subset Hof R if and only if there exists a sequence {p
n}

of distinct points of H converging to p. 

Then: 

Theorem 2.2. Let R be the space of real numbers. 

(a) A point x belongs to the closure of a subset A

if and only if there is a sequence in A converging to x. 

(b) A set His closed if and only if no sequence of



distinct points 1n H converges to a point of R-H. 

(c) A set G is open if and only if, for every

sequence of distinct points converging to a point of XEG, 

there exists N such that for all n>N, x EG. 
n 

Proof: (a) Suppose x belongs to the closure of A. 

If xEA, let every element in the sequence be x, and if x is 

a limit point of A, by Definition 2.13 there is a sequence 

of distinct points of A converging to x. 

Now suppose there is a sequence in A converging to 

x. Then, by Theorem 2.1 every neighborhood G of x contains

points of A. Thus x is either a member of A or a limit 

point of A. 

7 

(b) Suppose H is closed and that there is a sequence

of distinct points in H converging to a point x of R-H. This 

implies by Definition 2.12 that x is a limit point of H. 

But, His closed and contains all its limit points. Thus a 

set His not closed if a sequence of distinct points in H 

converges to a point of R-H. 

On the other hand suppose no sequence of distinct 

points in H converges to a point of R-H and that H is not 

closed. Then there exists a point x of R-H that 1s a limit 

point of H. This implies there is a sequence of distinct 

points in H converging to x. Hence we have a contradiction 

and His closed. 

(c) If G 1s open, then it is a neighborhood of each

of its points and, if {x
n

} is any sequence of distinct points 

converging to xE G, by Theorem 2.1 there exists N such that 



for all n>N, x £G.n 

Suppose now that for every sequence of distinct 

8 

points {xn} converging to X£G there exists N such that for all

n>N, x e:G. n Suppose that G is not open. Then there is a

sequence of distinct points in R-G converging to some X£G.

Thus for this sequence there will not exist N such that for

all n>N, Xn£G. Hence G must be open.

Thus we see that using sequences of real numbers we 

can describe the closure of a set, limit points of a set, 

closed sets and the usual topology for R. 

Sequences in a topological space that is first 

countable behave the same way as sequence of real numbers. 

The space R is first countable. However, sequences in an 

arbitrary topological space will not behave the same way 

that they do in R. We now give an example to illustrate 

this. 

Example 2.2. Let S = {x: 0 < x < l}. Define a set 

U to be open if and only if U is empty, or S-U is countable. 

Then with this definition of open set S is a topological 

space. 

Proof: We have to show that the intersection of 

any two open sets is open and that the union of any 

collection of open sets is open. Let U, V be open sets in 

S. If one of these is empty then U()V is open. Now

suppose U, V are non-empty. unv 'f �' for if not an uncount­

able set would be a subset of a countable set, which is 

impossible. Now, S - (U()V) = (S - U)U(S - V) which is 



countable. Thus U n V is open . Let Uu be a union of 
a EA a 

open sets. Then S- lJu is countable, since for any open 
a£A a 

set U CU U implies S- U U CS-U . a ac.A a aEA a a 

1s countable since S-U is countable.a 
topological space. 

Thus s- Uu 
a EA a

Thus S is a 

9 

Consider the subset K of S where K = {x:0 < x < 1/2}. 

Let p be any point of S and U any open set containing p. 

Then U (1 K =/ 0, for if not K would be contained in S-U 

which is impossible since S-U is countable. 

K = (Ur1K)U((S-U)(}K) which implies U(\K is uncountable 

since (S-U)()K is countable. Thus, we see that every 

point of S is a limit point of K. 1/4 is a limit point of 

K, yet no sequence· {x } of distinct points of K can converge 

to 1/4, since s- lJ+xn is an open set containing 1/4 and no
n£I 

points of {x }. In this topological space the only 
n 

sequences which converge are constant sequences. Hence, 

using the concept of sequence we cannot describe limit 

points of sets, closed sets, or open sets. 

This example shows that if we want sequences in an 

arbitrary topological space to behave the way they do on the 

real line, we have to generalize the idea of a sequence, 

allowing it to contain an uncouRtable number of points. 

This leads us to the notion of a Moore-Smith sequence. 

Definition 2.13. A binary relation F from a set A 

to a set B assigns to each pair (a,b) in A x  B exactly one 



of the following statements: 

(i) a is related to b, written aFb

(ii) a is not related to b, written a}tb.

10 

Definition 2.14. Let Q be a non-empty set on which 

a binary relation F is defined. Then Q is said to be a 

Noore-Smith set with respect to F if and only if the follow­

ing conditions hold. 

(i) Transitivity: Given q
1

, q
2

, q
3
£Q such that 

q
1
Fq

2 and q
2 Fq

3
• Then q

1
Fq

3
.

(ii) Composition property: Given q
1

, q
2
£Q there

exists q 3 £Q such that q
3
Fq 1 and q 3 Fq 2 • The symbol qfp is 

usually read q follows p. 

Definition 2.15. A mapping f of a Moore-Smith set 

into a set S is known as a Moore-Smith sequence. Notation­

ally, this is written as { x} where f(q) = x .  
q q 

Definition 2.16. Let S be a space and x
0
£S. Then 

a Moore-Smith sequence {x} of points of S is said to con-
q 

verge to x
0 

if and only if given any neighborhood U of x
0

there exists an element q
0
£Q such that qFq

0 
implies X

q
£U. 

"qFq
0 

implies x
q

£U" can also be stated "qFq
0 

implies the

Moore-Smith sequence {x} is eventually in U. 11 In a metric 
q 

space S a  Moore-Smith sequence {x} is said to converge to 
q 

x
0
£S if and only if, given �>0 there exists a q,£Q such that 

qFa� implies d(x ,x) < E. This is written as lim x = x 
-� 

q q q 0 

or {xq 
}-+x

0
•

We now give some examples of Moore-Smith sequences 

from analysis. 



Example 2.3. lim 1/2n
= 0. 

n->-co 
In this case we may 

interpret the Moore-Smith set Q, to be the set of positive 

integers and the Moore-Smith sequence to be {1/2n}. 

11 

Example 2.4. �iW f(x) = L if and only if given E>O, 

there exists ci>O such that lf(x) - Ll<�whenever 

O<lx - al<o. For x,ye: (a-o, a+o), xFy if and only if 

Ix-al < ly-al. Then (a-o, a+o) is a Moore-Smith set. 

Proof: For x, y, ze:(a-8, a+o) such that xFy and 

yFz then clearly xFz. Let x, y e:(a-8, a+o) and x, y ! a. 

We want to show the existence of ze:(a-8, a+o) such 

h Ix-al Iv-al t at zFx and zFy. Choose z = a + minimum ( 2 , �),

then lz - al < Ix - al and lz - al < IY - al. Thus, 

(a-o, a+o) is a Moore Smith set. The Moore-Smith sequence 

would be {f(x)} for xe:(a-o, a+o). Note that in this example 

the Moore-Smith set and Moore-Smith sequences have an uncount­

able number of points. 

The next example is that of a Moore-Smith set from 

topology. 

Example 2.5. Let Q be the topology for a space S. 

Define a binary relation F on Q as follows: for U, Ve:Q, 

UFV if and only if UCV. Then with this binary relation

Q is a Moore-Smith set. 

Proof: If U, V, We:Q such that UFV and UFW then

UFW. For U, Ve: Q then UilVe:Q. Thus Uf')VFU and unVFV. 

In example 2.2 we showed that in general sequences 



are inadequate to describe the topology of a space. How­

ever, using the concept of a Moore-Smith sequence, we can 

characterize the topology of a space S. 

Theorem 2.3. Let S be a topological space. Then: 

(a) A point s is a limit point of a subset A of S

if and only if there is a Moore-Smith sequence in A-{s} 

converging to s. 

(b) A point s belongs to the closure of a subset A

of S if and only if there is a Moore-Smith sequence in A 

converging to s. 

(c) A subset H of S is closed if and only if no

Moore-Smith sequence 1n H converges to a point of S-H. 

12 

(d) A subset G of S is open if and only if for

every Moore-Smith sequence converging to a point of G, there 

Proof: (a) Suppose s is a limit point of A. Then 

every neighborhood U of s contains points of A-{s}. Let LJ

denote the neighborhood system of s. Define a binary 

relation F on U is follows: For U, VEU, UFV if and only if 

ucv. Clearly, U is a Moore-Smith set. Now from each 

neighborhood U of s choose a point x
u 

where x
u 

1s contained 

1 n ( A - { s }) n U • Then {x } converges to s. u 

To conclude the proof of (a) suppose there is a 

Moore-Smith sequence in A-{s} converging to s. Then every 

neighborhood U of s contains points of A-{s}. Thus s is a 

limit point of A. 
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(b) Suppose s belongs to A. If s is a member of A 

let each element of the Moore-Smith sequence be s. Then 

this Moore-Smith sequence will converge to s. Ifs is a 

limit point of A then by (a) there is a Moore-Smith sequence 

in A converging to s. 

Suppose on the other hand there is a Moore-Smith 

sequence in A converging to s. Then every neighborhood U of 

s intersects A. Thus, s 1s either a member of A or a limit 

point of A and hence s belongs to the closure of A. 

(c) Suppose a subset H of S is closed and suppose

there exists a Moore-Smith sequence in H converging to a 

point 

of H. 

x of S-H. This would imply that x is a limit point 

But, His closed and contains all its limit points, 

therefore no Moore-Smith sequence in H can converge to a 

point in S-H. 

Next, suppose no Moore-Smith sequence in H converges 

to a point of S-H and assume that H is not closed. Then 

there exists a point XES-H that is a limit point of H. Part 

(a) then, implies there 1s a Moore-Smith sequence in H

converging to x. Thus, if H is not closed there is a Moore­

Smith sequence in H converging to a point of S-H. 

(d) Suppose G is open and {xq} is any Moore-Smith

sequence converging to XEG. Then since G is open, G is a 

neighborhood of x and hence there exists q
0

£Q such that qFq
0

implies x EG. 

Next, suppose that the condition 1s satisfied and 

that G is not open. Then since G is not open, there is a 
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point XEG such that x is a limit point of S-G. Then, by 

(a), there exists a Moore-Smith sequence {xq } in S-Gsuch that

{xq} converges to x. Then for this Moore-Smith sequence

there does not exist q 0 £Q such that qFq 0 implies xq £G. Thus,

we have a contradiction and G is open. 

The results of this theorem show that given any 

topological space S, using the concept of a Moore-Smith 

sequence we can describe limit points, points of closure, 

closed sets, and the topology of the space. 

Definition 2. 17. A space s is Hausdorff if and only 

if given any two distinct points X and y of S there exist 

disjoint open sets u and V such that X£U and y£V. 

The concept of a generalized sequence also lends 

itself to theorems relating to Hausdorff spaces. It can be 

shown that if a space S is Hausdorff then every convergent 

sequence has a unique limit. (See [l] p. 100) However, 

if every convergent sequence has a unique limit, the space 

is not necessarily Hausdorff. 

Example 2.6. Consider the space S of Example 2.2. 

We showed that the intersection of any two open sets in S 

could not be empty, so given two distinct points x and yin 

S, every open set that contains x has a non-empty inter­

section with every open set containing y. The only sequences 

which converge in this space are constant sequences . Thus 

we have a space S such that every convergent sequence has 

a unique limit, but the space is not Hausdorff. 



Theorem 2.4. A space S is Hausdorff if and only if 

every convergent Moore-Smith sequence in S has a unique 

limit point in S. 

Proof: First suppose that S is Hausdorff and let 

{xq} be a convergent Moore-Smith sequence of S. Let

1�m xq = a and b£S where a f b. By Definition 2.17 there

exist disjoint open sets U and V such that a£U and 

b£V. Since 1�m xq = a there exists an element q 0 £Q such

that qFq0 implies Xq£U. Thus, since unv = � there does

not exist q 1 £Q such that qFq 1 implies Xq£V and hence {xq}

cannot converge to b. Therefore the limit of a convergent 

Moore-Smith sequence in a Hausdorff space is unique. 

15 

To conclude the proof we must show that if every 

convergent Moore-Smith sequence in S has a unique limit 

point, then the space S is Hausdorff. To do this we assume 

the space is not Hausdorff. Then there exist, x, y£S, x f y, 

such that every neighborhood U of x intersects every 

neighborhood V of y. Let U be the family of neighborhoods 
X 

for x and V be the family of neighborhoods for y. Define y 
a binary relation F on the family of neighborhoods as 

follows: For U, U'£Ll UFU' if and only if UC:U' and 
X 

similarly for V, V'£V . Now consider the cartesian product y 
U xV . For the product we define a binary relation R in the 

X y 
following manner: For (U,V) and (U',V'), let(U,V)R(U',V') 

if and only if UFU' and VFV'. It follows readily that the 

product, with the binary relation R, is a Moore-Smith set. 

Now for (U,V) in the product U()V 1 0, and from this 
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intersection choose a point x 
u,v There exists a pair 

(U' ,V') such that (U' ,V')R(U,V) and u 1nv 1 f 0. From this 

intersection choose a point x , ,. We also have 
u ,v 

U'(1V'CUnVCU and U'()V'CUnVC.V. By continuing this 

process we obtain a Moore-Smith sequence {x } that converges 
u,v 

to both x and y. For, given any neighborhood G of x and any 

neighborhood H of y there exists a pair (U,V) 1n U xv such 
X y 

that (U',V')R(U,V) imply x ,  ,e:G and x ,  ,e:H. Thus if S 
u ,v u ,v 

is not Hausdorff, not every convergent Moore-Smith sequence 

has a unique limit point. 

Let {x} be a Moore-Smith sequence of a space S. 
q 

Define a binary relation R on {x } as follows: x Rx if and 
q q p 

only if qFp where Fis the binary relation for the Moore-

Smith set Q. Clearly, with 

1s a Moore-Smith set. Thus 

the above binary relation, {x} 
q 

if {x} is a Moore-Smith sequence 
q 

of a space S and if f is a mapping of S into another space T, 

and {x } has the binary relation R defined on it {f(x )} is 
q q 

a Moore-Smith sequence of T. Using the fact that the image 

of a Moore-Smith sequence 1s a Moore-Smith sequence and that 

the limit point of a convergent Moore-Smith sequence in a 

Hausdorff space is unique we prove a theorem involving 

continuity of a mapping f:S�T, where S and T are Hausdorff 

spaces. 

Definition 2.18. Let S and T be spaces and f:S�T a 

mapping. Then f is said to be continuous at the point s of 

S if and only if given any open set G of T such that sef
- 1 (G), 

there exists an open set V of S such that seVCf
- 1 (G) . f is 

.i 
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continuous on S if and only if it is continuous at s for 

all s in S. 

Theorem 2.5. Let S and T be Hausdorff spaces and 

f:S+T a mapping. Then f is continuous on S if and only if 

given any X E S  and any Moore-Smith sequence {x } of S thatq 

converges to x, the Moore-Smith sequence {f(x )} convergesq 

to f (x) . 

Proof: Suppose first that f is continuous on S and 

{x } is a Moore-Smith sequence 1n S such that {x }+X£5. By 
q q 

the previous theorem we know x 1s unique. Since f 1s 

continuous on S it is continuous at every point of S. This 

implies given any open set G of T such that f(x)EG, there 

exists an open set V of S such that XEV<::f- 1(G). Since 

{xq }+x, there exists

this implies f(x )EGq 

q
0
EQ such that qFq

0 
implies x EV, butq 

and thus {f(xq) }  converges to f(x).

Since T is Hausdorff, f(x) is unique. 

Suppose now that the condition holds. We know that 

x and f(x) are unique. To prove that f is continuous we use 

the fact that if, for every subset A of S, f(A)C:f(A), then 

f is continuous (See [l] p. 72). Let A be any set in S and 

y Ef(A). Then there exists an XE A such that f(x) = y. By 

Theorem 2.3(b), there exists a Moore-Smith seauence of A 

converging to x. Now {f(xq)}-->f(x), and since f(xq) E f(A)

for all qEQ, then f(x)Ef(A), thus since y was any point of 

f(A), we have f(A)C:f(A) and f is continuous. 

Since the real numbers with the usual topology is a 

Hausdorff space and a sequence of real numbers is a 
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Moore-Smith sequence, this theorem is sometimes given as 

the definition of continuity of a mapping f:R�R, where 

Moore-Smith sequence is replaced by sequence. However, this 

condition with sequences does not hold in an arbitrary 

topological space. For an example of this the reader is 

referred to [l] p. 100. 

Since we have generalized the idea of a sequence in 

a space S, it would seem natural to generalize the concept 

of a Cauchy sequence in a metric space. 

Definition 2.19. A sequence {an} 1n a metric space

is said to be Cauchy if and only if given �>0 there exists 

N such that for n,m>N d(a ,a )<E.n m 

Definition 2.20. A metric space S is complete if 

and only if every Cauchy sequence in S converges to a point 

in S. 

Definition 2.21. A Moore-Smith sequence in a metric 

space is said to be a generalized Cauchy sequence if and 

only if, given E.>0 there is a q
�

EQ such that q 1 fq
• and q2 FqE:.

imply d(x ,x )< �-
q1 q2 

Theorem 2.6. Let S be a complete metric space and 

{x} a Moore-Smith sequence in S. Then {x} converges in S
q q 

if and only if {x} is a generalized Cauchy sequence. 
q 

Proof: 

and let E>O be 

First 

given. 

imp 1 i e s d ( x , x) < 6/ 2 . 
q 

suppose that {x} converges to XES 
q 

Then there exists q
,

EQ such that qF�

In particular there is a q1
£Q such 

that q
1 
F�. Now, by Definition 2.14(ii), � ,q

& 
imply there 

exists q 2 EQ such that q 2Fq
€ 

and q2 Fqi By the triangle 



inequality 

d ( xq , x ) < d ( x , x ) + d ( x , x ) < f./ 2 + €./ 2 = E.
1 q2 = ql q q q2 

thus {x } is a generalized Cauchy sequence.q 
Suppose that· {xq} is a generalized Cauchy sequence.

Let E
1 

= 1 / 2. Then the re exists q 1 e:Q such that qFq 
1 

and 

pFq1 imply d(xp,xq) < 1/2. Define Q
1

= {pe:Q:pFq
1 

}· Let 

E
2 

= 1/4. Then there exists q
0e:Q such that pFq

0 
and qFq

0

imply d(x ,x ) < 1/4. Now q
0, 

q
1 e:Q imply, by Definitionp q 

2.14(ii), that there exists an element q
2 e:Q such that q

2
Fq

0

and q
2

Fq1. Since q
2
Fq

0 
for any qe:Q such that qFq

2
,

d(x ,x ) < 1/4.q q
2 

we have Q
2

CQr 

Define Q
2

= {pe:Q:pFq
2

}. Now since q
2
Fq1 

Assume that E q and Q
n

-l have been
n -1' n-1
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defined and let En = 1/Z n. Then there exists q 0 e:Q such that

npFq 0 and qFq0 imply d(xq,xp) < 1/2 . Now q0, q
n

_1 e:Q imply,

by Definition 2.14(ii), that there exists q e:Q such that 
n 

q
n

Fq
n -l and q

n
Fq0. Since q

n
Fq 0, for any pe:Q such that

pFq d(x ,x ) < l/2n. Define Q
n 

= {pe:Q:pFq
n

}· Sincen p qn 

q Fq we have Q C.:Q continuing this process inductively, 
n n -1 n n -1

we will obtain a sequence {x } which is a subset of {Xql·qn 

is a Cauchy sequence. 

The sequence {X }qn 

I n order to prove this we must show that given ,>o 

there exists N such that for all n,m>N,d(x , xq ) < £.qn m 

: '
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Let E>O be given. Then there exists N such 

that 1;2N < E/2. By the construction, for n,m N, qnFqN and

N qmFqN. Now qnFqN implies d(x ,x ) < 1/2 and qmFqN implies
qN 

qn 

de ) < 1/Z N.X ,X qm qN
Using the triangle inequality, 

< d(x ,x ) + d(x ,x )qn q
N

q
N 

qm

< 1 / 2 N 
+ 1 / 2 N < €/ 2 + �/ 2 = E.. 

Thus {x } is a Cauchy sequence. Since S is a complete qn

metric space {x } converges to XES, We want to show that qn

{xq} converges to x.

Let E>O be given. Since {x } converges to x there qn

exists N 1 such that d(x ,x) < E/2. There exists N such qN

that 1;z
N

2 < €/2. Choose N = maximum (N
1 

,N
2

). For qe:QN'

q F q N imp 1 i es d ( x , x ) < 1 / 2 N < €/ 2 • By the tr i an g 1 e
q q

N 

inequality, 

d ( X , X) < d ( X , X ) + d ( X , X) < f/ 2 + f../ 2 = e. 
q = q qN qN

thus {x } converges to x. 

Note that in the first part of the proof we did not 

use the fact that S is a complete metric space. Thus, we 

have the following corollary. 

Corollarv 2.1. Let S be a metric space and {xq} a

convergent Moore-Smith sequence 1n S. Then {xq} is a

generalized Cauchy sequence. 

The concept of a generalized Cauchy sequence in a 

complete metric space lends itself to a theorem relating to 
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iterated limits. Before we can state and prove this theorem 

we need the following definition and lemma. 

In the proof of Theorem 2.4, we showed that if P and 

Q are Moore-Smith sets, then PxQ can be made into a Moore­

Smith set in a natural manner using the ordering on P and Q. 

Definition 2.22. Let P, Q be Moore-Smith sets, S a  

metric space f:PxQ+S,g:Q+S mapping, and suppose that the 

limf(p,q) = g(q). Then limf(p,q) is said to be uniform in 
p p 

q if and only if given any real number E>O there exists an 

element P
E. 

of p such that pe:P and pFpE implies

d(f(p,q) ,g(q)) < E. (That is, 
PE 

does not depend on q).

Lemma 2. 1. Let P, Q be Moore-Smith sets, s a complete 

metric space, f:PxQ+S, g:Q+S, and h:P+S mappings, and suppose 

that l�mf(p,q) = g(q) uniformly in q and 1amf(p,q) = h(p) for

each p e: p. Then, 

( a) 

(b) 

(c) 

lim(limf(p,q))q p 

lim(limf(p,q))p q 

exists; 

exists; 

limf(p,q) exists. p,q 

and 

Proof: (a) Since l�mf(p,q) = g(q) uniformly in q,

we must show that the lim g(q) exists. To do this we show 
q 

that {g(q)} is a generalized Cauchy sequence. Let (>0 be 

given. By the uniformity of limf(p,q) there exists p e:P, 
p E 

depending only on 

(i) 

such that pFp implies 
E: 

d ( f ( p , q) , g ( q) ) < E/ 3 • 

Since limf(p,q) is uniform in q, pFp implies 
p f 
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arbitrary q 1 ' q
2

e:Q. To conclude the proof we are concerned 

only with those pe:P such that pFp . Since limf(p,q) = h (p), 
€ q 

there exists q€ 'p e:Q such that qFq
€,P 

implies

d ( f ( p , q) , h ( p) ) < E/ 6 . There is a q3e:Q such that q Fq 3 E, p
,

and this implies d(f(p,q) ,h(p) < E/6. q3,q e:Q imply,
E,P 

by Definition 2.14(ii), that there exists q
4

e:Q such that 

q
4
Fq3 and q

4
Fq q 4Fq implies d(f(p,q

4
) ,g(q

4
)) < E/6. 

E,P E,P 

Now by the triangle inequality 

d(f(p,q3) ,f(p,q4)) < d(f(p,q3),h(p)) + d(f(p,q
4
) ,h(p)) 

< E/ 6 + E/ 6 = �/ 3 .

By (i) we know that d(f(p,q3) ,g(q3)) < �/3 and 

d(f(p,q
4
) ,g(q

4
)) < �/3. Using the triangle inequality again 

we have 

d(g(q3) ,g(q
4
)) < d(g(q3) ,f(p,q3)) + d(f(p,q3) ,g(q

4
)) 

< d(g(q3) ,f(p,q3)) + d(f(p,q3) ,f(p,q4)) 

+ d(f(p,q
4
) ,g(q4))

< f=./ 3 + €/ 3 + €./ 3 = E . 

Thus {g(q)} 1s a generalized Cauchy sequence, and by Theorem 

2.6, {g(q) } converges to a point x0 e:S. 

(b) To show that lim(limf(p,q)) exists, we must
p q 

show that limh(p) exists by again applying Theorem 2.6. 
p 

Let E>O be given. Since l�mf(p,q) = g(q) uniformly

1n q, there exists p e:P such that pFp implies 
E. E 

d ( f ( p , q) , g ( q) ) < E/ 6 for a 11 q e: Q . In part i cu 1 a r , there 

exists p
1

e:P such that p
1
Fp ,  which implies 

Ci i) d Cf C p 1 , q) , g C q) ) < E/ 6 .



Now, by Definition 2.14(ii), there exists p
2
£P such that 

p
2
Fp

E
, which implies 

( i ii) d ( f ( p 2 , q) , g ( q) ) < E/ 6 . 

Then, using the triangle inequality, we have 

d(f(p1,q),f(p
2
,q)) < d(f(p1,q),g(q)) + d(f(p

2
,q),g(q))

< E/ 6 + €./ 6 = E/ 3 . 

Since limf(p1 ,q) = h(p1) there exists q £Q such thatq E,P1 
q F q . p imp 1 i es d ( f ( p 1 , q) , h ( p 1 ) ) < lE/ 3 . Simi 1 a r 1 y there 

\'::.' 

exists 
qE,P2E

Q such that qFqf,P2 
implies

d ( f ( p 2 , q) , h ( p 
2 

) ) < E/ 3 . Now q ,q £Q imply, by 
E,P1 E,P2
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Definition 2.14(ii), that there exists qEQ such that qFq
E,Pi

Then for those qEQ that follow q and
E,P1 

q 
P 

, d ( f ( p 1 , q) , g ( q) ) < E/ 3 and d ( f ( p 
2 
, q) , g ( q) ) < �/ 3 . Now , E, 

2 

since li mf(p,q) is uniform in q, the inequalities (ii) and 
p 

(iii) are true for those q E Q such that qFq and oFq . 
E,P1 . €,P 2

Then using the same type of inequality that we used in the 

final part of the proof of (a), we have d(h(p1),h(p
2

)) < E.

Hence, {h (p) } is a generalized Cauchy sequence and by 

Theorem 2.6 converges to a point x1£S. 

(c) Recall that 1n PxQ,(p
2
,q

2
)F(p1,q1) if, and

only if, p
2
Fp1 and q

2
Fq1.

Let E >0 be given. Then since {g(q)} is a 

generalized Cauchy sequence there is a q EQ such that q
1
Fq 

E E 

Since limf(p,q) = g(q) p 

uniformly in q there exists an element p EP such that pFp 
� � 

implies d(f(p,q1)g(q1)) < E/3 and d(f(p,q
2) ,g(q

2)) < E/3.



24 

There is a p
1
EP such that p

1
Fp . Then p

1
,p EP imply, by 

E E 

Definition 2.14(ii), that there exists p2EP such that p2Fp
1

and p
2

Fp,.. It then follows that d(f(p
1
,q

1
),g(q

1
)) < E/3 and 

t:. 

d(f(p
2

,q
2 ) ,g(q 2 )) < E/3. Thus, 

d(f(pl ,ql) ,f(p2,q2))

< d(f(pl ,ql) ,g(ql)) + d(f(p
2

,q2) ,g(ql)) 

< d(f(pl ,ql) ,g(ql)) + d.(f(p
2
,q

2) ,g(q2)) + d(g(ql) ,g(q
2)) 

< 1:/ 3 + E/ 3 + E/ 3 = E.. 

and we have found a pair (p ,q )EPxQ such that if 
€ E. 

(p 1 ,q 1 )F(p ,q )  and (p
2 ,q2)F(p ,q )  then d(f(p

1
,q

1 ),f(p2,q2)) 
E € � e 

< E. Hence {f(p,q)} is a generalized Cauchy sequence and 

by Theorem 2.6 converges to a point x
2

ES. 

We are now ready to state and prove a theorem 

relating to iterated limits 1n a complete metric space. 

Theorem 2.7. Let P, Q be Moore-Smith sets, S a  

complete metric space and f:PxQ+S,g:Q+S, and h:P+S mappings, 

and suppose that limf(p,q) = g(q) uniformly in q and q 

lamf(p,q) = h(p) for every p£P. Then lim(limf(p,q)), q p 

lim(limf(p,q)), and limf(p,q) each exist and are all equal. 
p q p,q 

Proof: By Lemma 2.1 we know that l�m(limf(p,q),

lim(limf(p,q)), and limf(p,q) each exist. Let x
0 

=

q p p,q 

1amc1imf(p,q)), xl = 1im(l�mf(p,q) and x2 = �!�f(p,q).

Assume that Xo f,: xl F X
2 

F Xo· Let d(xo,X1) = r1, 

d(x
1
,x

2 ) = r
2 

and d(x
0
,x

2 ) = r
3

• Choose E to be the minimum 

of r
1

/2, r
2

/2, and r
3

/z. Then the spherical neighborhoods 
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Se(xi) and SE(xj) are disjoint for i,j = 0, 1, 2 and i # j.

We list the following statements since we need to refer to 

them later on in the proof. 

(i) 1�m g(q) = x0• Then there exists q0£Q such 

that qFq0 implies g(q)£SE(x
0

).

(ii) 1�m h(p) = x 1• There exists p0£ P such that 

pFp0 implies h(p)£ SE(x 1).

( i i i) 1 i m f ( p , q) = x
2 
. There ex is ts ( p ' , q ' ) £ P x Q p,q 

such that (p,q)F(p',q') imply f(p,q)£S
E.

(x
2
). 

(iv) 1�m f(p,q) = g(q). There exists p
1
£ P such 

that pFp
1 

implies f(p,q)£ SE(x
0

) where also qFq
0

•

(v) 1�m f(p,q) = h(p). There exists q
1£Q such that 

qFq 1 implies f(p,q)£ SE(x 1) where also pFp
0

•

Now, by Definition 2.14(ii), for q 0, q 1£Q there 1s 

a q 2 £ Q such that q
2
Fq0and q

2
Fq 1 • Similarly, there is a 

p
2

£ P such that p
2
Fp0 and p

2
Fp 1. Now q

2
Fq 0, by (i), implies 

that g(q
2
)£ S�(x0) and p

2
Fp 0, by (ii), implies that 

h(pz)Es,cxl). By (iv) we have f(p
2
,q

2
)£S,Cxo), since P2FP1

and q
2

Fq0. (v) yields f(p
2
,q

2
)£ S�(x 1), since q

2
Fq1 and

P
2
FP0. Thus S�Cxo)ns

E 
(xl) f 0 and Xo = xl. Now (p' ,q ')

and (p
2

,q
2
)£ PxQ imply, by Definition 2.14(ii), that there 

is a pair (p 3 ,q 3 )£ PxQ such that (p 3,q 3)F(p' ,q') and 

(p 3 ,q 3 )F(p
2
,q

2
). By (iii) (p 3 ,q

3
)F(p' ,q') yields 

f(p3 ,q 3 )£ Se(x
2

). From (p3 ,q 3 )F(p
2
,q

2
), we have p3F� and 

q 3 Fq
2 • Then since p

2
F� and q

2
Fq 1, q3 F� and p3 Fp0, by 

Definition 2.14(i). By (v) we have f(p 3 ,q3)£ S,(x 1), since

q 3 Fq1 and p
3
Fp0. Thus, SE(x 1 )(1S�(x2

) 1 � and x
1 

must equal
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x
2

. Hence x
0

= x
1

= x
2

. This completes the proof. 



CHAPTER I I I 

FILTERS 

In this chapter we shall consider a type of con­

vergence involving the concept of a filter. A filter 1s 

a more general form of convergence than a Moore-Smith 

sequence. A Moore-Smith sequence involves points in a 

space indexed by a set Q, whereas a filter involves a 

collection of sets 1n a space satisfying certain conditions. 

Definition 3.1. A filter F in a set Xis a collec­

tion of non-empty subsets of X satisfying the conditions: 

(i) The intersection of any two members of F

1s a member of F, and 

(ii) if A£F and ACB CX, then B£F.

Suppose we consider the neighborhood system of a 

point x in a space. Although this system satisfies the 

first condition of Definition 3.1, the second condition is 

not satisfied since any set containing a neighborhood of a 

point is not necessarily a neighborhood of the point. How­

ever, this difficulty is easily overcome by the introduction 

of a K-neighborhood of a point. 

Definition 3.2. A subset U of a space S is called 

a K-neighborhood of a point x if and only if U contains an 

open set containing x. 

27 
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From this definition it follows readily that the 

K-neighborhood system of a point satisfies the condition for

a filter. 

Definition 3.3. A filter F converges to a point x 

in a space S if and only if F contains the K-neighborhood 

system of x. (That is, the K-neighborhood system of x is 

a subfamily of F). 

From the preceding definition and discussion the 

following theorem is immediate and we state it without proof. 

Theorem 3.1. Let U denote the K-neighborhood system 

of a point x in a space S. Then U is a filter converging to 

X .  

Theorem 3.2. Let S be a topological space.Then, 

(a) if F is a filter converging to x and G is a

filter which contains F then G converges to x. 

(b) If Fx is the collection of all filters which

converge to a point x, then n{F: F £ F 
X

} is the K-neighborhood

system of x. 

Proof: (a) Since F converges to x, F contains 

every K-neighborhood of x. Then since G contains F, G 

contains every K-neighborhood of x and hence by Definition 

3.3 converges to x. 

(b) Let {Ga}a£A denote the K-neighborhood system of

x and let G be any set in {Ga}a£A. Then Ga £ n{F:F£Fx}
al 1 

since G belongs to every filter converging to x. Let G 
al 

be any set 111 (\{F:F£Fx}. Then G£{G } A' for ina a£ 



particular, the neighborhood system of xis a member of F .  
X 

Thus if Ge: n{F:Fe:F } then G must belong to {G } A .x a ae: 
In Chapter Two we showed that using Moore-Smith 

sequences we are able to describe limit points, closure of 
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a set , closed sets and open sets in a topological space . We 

can also do the same thing with filters. 

Theorem 3.3. A point xis a limit point of a set A 

if and only if A-{x} belongs to some filter which converges 

to x. 

Proof: First suppose that A-{x} belongs to some 

filter F which converges to x. Since F converges to x each 

K-neighborhood of xis a member of F. Then since every 

neighborhood of x is a K-neighborhood of x, every neighbor­

hood of x is a member of F. Let G be any neighborhood of x. 

Then since A-{x} , Ge:F, (A-{x})nG r 0 .  This implies G con­

tains points of A-{x} and hence xis a limit point of A. 

Next suppose that xis a limit point of A. We wish 

to show that A-{x} belongs to some filter which converges to 

x. 

Let {G } C be the K-neighborhood system of x. Since
C Ce: 

x is a limit point of A, (A- {x}) n Ge 'f 0, for every ce:C . Let 

{B } Q denote the collection consisting of all subsets B
q qe: q 

of s such that (A-{x})nG CB for some qe:Q and some Ce;C.
C q 

Let F be the collection of sets consisting of {Gc }ce:C'

{(A-{x})nG } 
C

' and {B } Q.
C Ce; q qe; 

Now we wish to show that the 

collection is a filter. Clearly all the sets are non­

empty . Now we show that the intersection of any two members 
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of F is a member of F.

Since the K-neighborhood system satisfies the 

conditions for a filter, the intersection of any two K­

neighborhoods is a member of the K-neighborhood system and 

hence a member of F. The intersection of any two members of 

{ (A-{x})1)G } C is a member of F, since 
C CE: 

C CA -{ x } ) ,1 G ) n CA -{ x }) n G = CG n G ) n CA -{ x l ) and c l c2 c l C2 

GcnGc E{Gc} C' hence (G (lG )n(A-{x }) f (/J and belongs to
1 2 

CE C l C2 
{A-{x}() G } C and also F. The intersection of two members C CE 
of {B

q
}

qEQ 
is also a member of F. For if B

q1
and B

q2
belong 

to {B } 
Q 

then there exist sets (A-{x})nG and (A-{x})nGc2q qE c l 

such that (A-{x})nG CB and (A-{x})nG CB . Then C l q l 
C2 q2 

since ((A-{x})nG )n((A-{x})nG ) is non-empty and is 1n C l C2 

{ (A-{x })n G } C' B n B f 0 and belongs to {B
q

} 
Q 

andC Ce: q l q2 qe: 

hence to F. Now ((A-{x})()G )nB is a member of F since 
C q l 

B
ql

:J(A-{x})nGc l
and ((A-{x})nG

C
)nCcA-{x})nGc l

) I 0 and

is con tained in B and (A-{x} )(1 Ge. Thus 
q l

C (A- {x nn G )nB I 0 and contains a member of 
C q l

{(A-{x})(JG } C' so it belongs to {B } Q 
and to F.

C C e: q qe: 
Clearly the intersection of any K-neighborhood with a

member of {(A-{x})nGc}ce:C is a member of {(A-{x})nGc }ce:C

and of F. Finally, we show that the intersection of a 

member of {B } Q 
and a member of {G } C is non-empty and

q qe: C Ce: 

a member of F. Let B
q1 

be an arbitrary member of {B
q

}q
e:

Q



and G be any member of {G} c· Then there exists a set
Cl C C£ 

(A-{x})nG such that (A-{x})nG CB and we know that 
C2 C2 ql 

Ge .n ((A-{x})nGc )£{(A-{x})nG } c· Thus B nG f V, and 
1 2 C C£ ql Cl

contains a member of { (A - { x}) n G } C and hence B n GC C£ q 1 Cl 

belongs to {B } Q and F. By the way the filter was con-
q q£ 

31 

structed, the collection of sets will satisfy condition (ii) 

of Definition 3.1. This collection of sets, F, is then a 

filter converging to X. Then since (A-{x})nGC£F and

(A-{x})()GcC:A-{x}CS, A-{x}£F, and we have shown the

existence of a filter F converging to x such that A-{x}£F. 

Theorem 3.4. Let S be a space. Then a subset U of 

S is open if and only if U belongs to every filter converging 

to a point of U. 

Proof: Suppose U is open. Let F be any filter 

which converges to x£U. Since U 1s an open set containing 

x it is a K-neighbo�hood of each of its points, hence U£F, 

since F contains every K-neighborhood of x. Then since F 

is any filter converging to X£U, U belongs to every filter 

converging to a point of U. 

Suppose now that U belongs to every filter converging 

to X£U. Then, since the K-neighborhood system of x is a 

filter converging to x, U is a K-neighborhood of x. Hence 

for each X£U, U contains an open set containing x. Thus, U 

can be written as the union of open sets and U is open. 



Theorem 3.5. Let S be a space. Then 
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(a ) A point x belongs to the closure of a subset A 

of S if and only if A belongs to some filter converging to x. 

(b) A set H is closed if and only if H belongs to

no filter converging to a point of S-H. 

Proof: (a) If x is a limit point of A, then by 

Theorem 3.3, A-{x} belongs to some filter F converging to x. 

Then since A-{x}C:A, A belongs to F. If x is a member of A 

and not a limit point of A, then the collection of all sets 

U such that XEU clearly form a filter converging to x, and 

A is a member of this filter. 

Next, suppose that A belongs to some filter con­

verging to x. Then since every neighborhood of x is a 

K-neighborhood of x, every neighborhood of x intersected

with A is non-empty and hence x is either a point of A or a 

limit point of A. 

(b) Suppose H is closed. Then S-H is open and,

by Theorem 3.4, belongs to every: ftlter converging to a 

point of S-H. Since (S-H)nH = 0, H cannot belong to any 

filter converging to a point of S-H. 

On the other hand, suppose H belongs to no filter 

converging to a point of S-H and assume that H is not closed. 

Then there exists a point XES-H that is a limit point of H. 

But this implies, by Theorem 3.3, that H-{x} belongs to some 

filter F converging to x. Then H-{x}C:.H, implies H£f. Thus, 

if His not closed, H belongs to some filter converging to 

a point of S-H. Therefore His closed. 



A filter converging to a limit point of a set A 1s 

analogous to a Moore-Smith sequence, or a sequence of 

distinct points of the set A converging to the limit point. 

Also, in the proof of Theorem 3.S(a), the collection of all 

sets containing a point is similar to the notion of a 

constant sequence or a constant Moore-Smith sequence. 
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Using the concept of a filter we are able to prove 

Theorems 2.4 and 2.5. We will replace Moore-Smith sequences 

with filters. 

Theorem 3.6. A space Sis Hausdorff if and only if 

every convergent filter has a unique limit. 

Proof: Suppose first that Sis Hausdorff, Fis a 

filter converging to x, and YES with yr x. Then since F 

converges to x, F contains every K-neighborhood of x. But 

Sis Hausdorff, which implies that given any two distinct 

points x, yES then are disjoint open sets U, V such that 

XEU and yEV. Now UEF and UltV = 0 so V{F. Therefore F 

cannot converge to y and so F converges to a unique limit. 

Suppose now that every convergent filter of S has 

a unique limit, then we must show that Sis Hausdorff. To 

do this we assume that Sis not Hausdorff. This implies 

that there are two distinct points x, yES such that every 

K-neighborhood Ux of x intersects every K-neighborhood Vy of

y. Let Ux denote the K-neighborhood system of x and Vy

denote the K-neighborhood system of y. Since Sis not

Hausdorff ux"V
Y 

r 0 for any UXEUX
and any V

Y
EV

Y
. 

Let G = {U nv :U EU and V EV } and let {W }a A be the
X y X X  y y a E 



collection of all sets w cs such that u nv cw for a x y a

some a£A and for some U r)v E.G. The collection of sets F, 
X y

consisting of U , V , G and {W } A is a filter converging
x y a ae: 

to x and y. We must show that F satisfies Definitions 3.1 

and 3. 3. Clearly all the sets in F are non-empty. Next we 

show that F satisfies condition (i) of Definition 3.1. 

Since the K-neighborhood sy stem of a point satisfies the 

conditions for a filter the intersection of any two members 

of U is a member of U and the intersection of any two 
X X 

members of Vy 1s a member of V
y 

From this it follows that 

the intersection of any two members of G is a member of G. 

The intersection of any U e:U and any U'nV'e:G since
X X X y 

u (1 ( u I r-i V I ) = ( u n u I ) n V I and u I n u e: u . s i mi 1 a r 1 y 
X X y X X  y X X  X 
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the intersection of an arbitrary V e:V with a member of G is 
y y 

a member of G. The intersection of a member of U and a mem­
x 

ber of {W } A is a member of {W } A since for W e:{W } Aa ae: a ae: a
1 

a ae: 

there exists U'(tV'e:G such that u 1 nV 1 CW and for 
X y X y a

1

U e:U , U () (U' nv') f (/J and a member of G so U nw f {l) 
X X X X y X a

1

and a member of {W } A' In the same manner we can show the
a ae: 

same thing true for V e:V and W e:{W } A' Now we show thaty y a
1 

a ae: 

the intersection of two members of {Wa}ae:A is a member of

{W } A' a ae: For W , W e:{W } A there exist sets U 1 nv 1 and
a 

1 
a

2 
a ae: x y 

U n V . n G such that U 
I n V'CW and u

x
nv

y
cw

a
2 •

X y l X y al 

cu () V ) n (U In Vy') lS a member of G and hence 
X y X 

Then 

W n W e: { W } A' By the way we have defined the collection 
a 

1 
a

2 
a ae: 
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F, given any set A in S such that A contains a member of F, 

A E F. Now since F contains the K-neighborhood system of both 

x and y, F is a filter which converges to x and y. But x 

is different from y, so if S is not Hausdorff, not every 

convergent filter has a unique limit. Thus, by the condition 

given, S must be Hausdorff. 

Before we can prove the theorem pertaining to the 

continuity of a mapping f from a space S into a space T, 

where S and T are Hausdorff spaces we need the following 

lemma. 

Lemma 3.1. Let S and T be spaces and f a  mapping 

of S onto T. If F 1s a filter in S, then f(F) is a filter 

1n T. 

Proof: Clearly every set in f ( F) is non-empty.

Let U,V E f(F). Then f-l(U), f-1(V)£F and f- 1 (U)nf- 1 (V) f 0 

and f- 1 (U)('\f- 1 (V) is a member of F. Then, since 

f- 1 (u)nf- 1 (V) = f- 1 (UnV), ur,v is non-empty and a member

of f(F). Now let AEf(F) and B any set in T such that 

ACBCT. f- 1 (A)E F and since f- 1 (A)Cf- 1 (B), f- 1 (B)£F and 

hence B 1s a member of f(F). Thus f(F) is a filter. 

By using this lemma and the fact that the limit of a 

convergent filter in a Hausdorff space is unique, we can 

prove the following theorem. 

Theorem 3.7. Let S, T be Hausdorff spaces and f a  

mapping of S onto T. Then f is continuous on S if and only 

if given any X E S and any filter F which converges to x, 

then the filter f(F) converges to f(x). 
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Proof: Let x£S be arbitrary and F the K-neighborhood

system of x and suppose the condition is satisfied. Then we 

wish to show f is continuous . Let G be any open set in T 

containing f(x). Then G£f(F) and hence f- 1 (G)£F. This 

implies f- 1 (G) is a member of the K-neighborhood system of

x and that f- 1
(G) contains an open set V such that

xsVCf- 1
(G). Thus , by Definition 2.18, f is continuous at 

x, but since xsS is arbitrary f is continuous on S. 

Suppose on the other hand that f is continuous and 

Fis any filter converging to XES. We must show that f(F) 

contains the K-neighborhood system of f(x). Let V be any

member of the K-neighborhood system of f(x). Then V

contains an open set G such that f (x) sG CV. Now since f is 

continuous f-
1
(G) contains an open set W such that

xsW Cf- 1 (G), and W is a member of the K-neighborhood system 

of x, so WsF. Now WCf- 1 (G)Cf- 1 (V) and hence 

f- 1 (G), f- 1 (V)sF. Thus f(F) contains the K-neighborhood

system of f(x) and since f(F) is a filter, f(F) converges 

to f(x). 



CHAPTER IV 

EQUIVALENCE OF MOORE-SMITH SEQUENCES AND FILTERS 

In this chapter we show that filters and Moore-Smith 

sequences lead to equivalent convergence theories. 

Theorem 4.1. If {xq} is a Moore-Smith sequence in 

S, then the family of all sets A, such that for each A 

there is a qAEQ such that qFqA implies XqEA, 1s a filter in 

s. 

Proof: Let A denote the family of sets A such that 

for e ach AEA there is a qAEQ such that qFqA implies XqEA.

We must show that A satisfies Definition 3.1. Clearly all 

members of A are non-empty. If B is any set in S such that 

B contains A, where AEA, then BEA since there exists qAEQ

such that qFqA implies x EA and x EB if ACB. Let A
1

, A
2
EA.

q q 

Then there exists qA 1
EQ such that qFqA

1 

implies XqEA
1 

and

there is a qA2 
EQ such that qFqA2 

implies XqEA
2
. qA1

, qA
2 

EQ

imply, by Definition 2.14(ii), that there is a q'EQ such 

that q'FqA and q'FqA . 
1 2 

Hence for qEQ such that 

This implies xq,E A
1

qFq 1, xq EAln A
2

. Thus

and xq, £A
2

•

A
1
n A

2 
r � 

and is a member of A. Thus A is a filter in S. 

Lemma 4.1. Let F be a filter in S and define Q to 

be the set of all pairs (x,F) such that XEF and FEF. Define 

a binary relation R on Q as follows: For (y,G),(x,F)EQ 
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(y,G)F(x,F) if and only if GC:F. 

set. 

Then Q 1s a Moore-Smith 

Proof: Let (y,G), (x,F), (h,H)EQ such that 

(y,G)R(x,F) and (x,F)R(h,H). Then since GCF and FCH, 

GCH and (y,G)R(h,H). Let (y,G) and (x,F) be members of Q. 

Then, since G, F£F, G ()p is a member of F, and G nFcG and 

GnFcF. Thus (g,GnF)R(y,G) and (g,G(\F)R(x,F), and 

we have shown that Q is a Moore-Smith set. 

Theorem 4.2. Let F be a filter in S and let Q be 

the set of all pairs (x,F) such that X £F and F£F, Let 

f(x,F) = x for all X£F. Then Fis precisely the family of 

all sets A such that for each A there is a pair (x,F)£Q 

such that (y,G)R(x,F) implies f(y,G) £A, 

Proof: First, we show that the conclusion is true 

for every set in F. Let K£F be arbitrary. Since Fis a 

filter any set in F intersected with K is non-empty and a 

member of F. So we can find a pair (y,H) £Q such that 

(y,H)R(x,K). f(y,H) = y £HCK which implies the conclusion 
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is true for K, and hence every set in F since K is arbitrary. 

Let A be any set in S such that there exists a pair 

(y,G)£Q such that (x,H)R(y,G) implies f(x,H)£A , But 

f(x,H) = x for all X£H, so HCA which implie.s A£F since HE:F, 

This then completes the proof. 

It follows then from these two theorems and the 

lemma that for each Moore-Smith sequence in a space S which 

converges to a point of S, we can always obtain a filter 

converging to that point. Conversely, given any filter in 



a space which converges to a point, we can construct a 

Moore-Smith sequence converging to the point. 
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