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ABSTRACT 

 

Technology is rapidly improving and being incorporated into field biology, with survey methods 

such as machine learning and uncrewed aircraft systems (UAS) headlining efforts. UAS paired 

with machine learning algorithms have been used to detect caribou, nesting waterfowl and 

seabirds, marine mammals, white-tailed deer, and more in over 19 studies within the last decade 

alone. Simultaneously, UAS and machine learning have also been implemented for infrastructure 

monitoring at wind energy facilities as wind energy construction and use has skyrocketed 

globally. As part of both pre-construction and regulatory compliance of newly constructed wind 

energy facilities, monitoring of impacts to wildlife is assessed through ground surveys following 

the USFWS Land-based Wind Energy Guidelines. To streamline efforts at wind energy facilities 

and improve efficiency, safety, and accuracy in data collection, UAS platforms may be leveraged 

to not only monitor infrastructure, but also impacts to wildlife in the form of both pre- and post-

construction surveys.  

 

In this study, we train, validate, and test a machine learning approach, a convolutional neural 

network (CNN), in the detection and classification of bird and bat carcasses. Further, we 

compare the trained CNN to the currently accepted and widely used method of human ground 

surveyors in a simulated post-construction monitoring scenario. Last, we establish a baseline 

comparison of manual image review of waterfowl pair surveys with currently used ground 

surveyors that could inform both pre-construction efforts at energy facilities, along with long-

standing federal and state breeding waterfowl surveys. For the initial training of the CNN, we 

collected 1,807 images of bird and bat carcasses that were split into 80.0% training and 20.0% 

validation image sets. Overall detection was extremely high at 98.7%. We further explored the 

dataset by evaluating the trained CNN’s ability to identify species and the variables that impacted 

identification. Classification of species was successful in 90.5% of images and was associated 

with sun angle and wind speed. Next, we performed a proof of concept to determine the utility of 

the trained CNN against ground surveyors in ground covers and with species that were both used 

in the initial training of the model and novel. Ground surveyors performed similar to those 

surveying at wind energy facilities with 63.2% detection, while the trained CNN fell short at 

28.9%. Ground surveyor detection was weakly associated with carcass density within a plot and 

strongly with carcass size. Similarly, detection by the CNN was associated with carcass size, 

ground cover type, visual obstruction of vegetation, and weakly with carcass density within a 

plot. Finally, we examined differences in breeding waterfowl counts between ground surveyors 

and UAS image reviewers and found that manual review of UAS imagery yielded similar to 

slightly higher counts of waterfowl.  

 

Significant training, testing, and repeated validation of novel image data sets should be 

performed prior to implementing survey methods reliant upon machine learning algorithms. 

Additionally, further research is needed to determine potential biases of counting live waterfowl 

in aerial imagery, such as bird movement and double counting. While our initial results show that 

UAS imagery and machine learning can improve upon current techniques, extensive follow-up is 

strongly recommended in the form of proof-of-concept studies and additional validation to 

confirm the utility of the application in new environments with new species that allow models to 

be generalized. Remotely sensed imagery paired with machine learning algorithms have the 

potential to expedite and standardize monitoring of wildlife at wind energy facilities and beyond, 
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improving data streams and potentially reducing costs for the benefit of both conservation 

agencies and the energy industry. 
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CHAPTER I BACKGROUND AND LITERATURE REVIEW 

 

To the general public, awareness of birds and bats largely focuses on yard stewardship 

activities, nuisance interactions, and zoonotic diseases (Clergeau et al. 2001, Belaire et al. 2015, 

Hoffmaster et al. 2016). While not always held in high regard by the public, birds and bats offer 

a variety of goods and ecosystem services that aid in human and environmental welfare. Birds 

provide more obvious aesthetic, cultural, recreational, and economic services through hunting 

opportunities and bird watching (Grado et al. 2011, Belaire et al. 2015, Bagstad et al. 2019), but 

they also provide humans with a number of provisioning services, including meat for 

consumption and feathers for use in apparel, bedding, jewelry, and art (Whelan et al. 2008, Green 

and Elmberg 2014, Whelan et al. 2015). Birds offer scavenging services, working as 

decomposers aiding in nutrient cycling (Hiraldo et al. 1991, DeVault et al. 2003, Wenny et al. 

2011). Both birds and bats work to regulate pest arthropods, disperse seeds, and pollinate plants 

(Maas et al. 2016). This ultimately improves plant growth, increasing agricultural production of 

food and timber crops, and of non-cultivated plants and trees that improve air, soil, and water 

quality (De Deyn et al. 2008, Whelan et al. 2008, Barrios et al. 2018). Despite all the seen and 

unseen benefits birds and bats provide to both the natural and developed environment, the 

relationship between humans versus birds and bats is far from mutualistic and is teetering 

towards parasitic in the last century. 

A recent study exposed that North America has lost over 30% of its bird population in the 

last 50 years, with a large portion of them being native grassland birds (Rosenberg et al. 2019). 

The devastating loss of these ecosystem benefactors is further compounded by rapid declines in 

bat populations due to the spread of the fatal disease white-nose syndrome and wind turbine-

related mortalities (Frick et al. 2010, Frick et al. 2017, Rodhouse et al. 2019). Concerns for birds 
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and bats has increased in North America by creating alarm and a call to action to amend these 

losses. Such widespread concern has led to an influx in the need for wildlife monitoring to 

support processes of adaptive management, in which the efficacy of a wildlife management 

strategy is evaluated over a period of time and modified in response to results gleaned from 

monitoring efforts (Ringold et al. 1996, Gibbs et al. 1999).  

Standardized wintering and breeding ground and aerial surveys of bird population indices 

have long been instituted for informing regulations, including the Mid-Winter Waterfowl 

Inventory (MWI), the Waterfowl Breeding Population and Habitat Survey (BPOP), and the 

North American Breeding Bird Survey (NABBS). However, data quality can be negatively 

impacted due to inconsistent surveying strategies and survey areas, coverage restrictions due to 

time and money, observer bias and counting error, and the availability of a pilot and weather 

interfering with timing of surveys (Eggeman and Johnson 1989, Smith 1995, Heusmann 1999, 

Kingsford and Porter 2009). Traditional ground surveying methods can also be expensive, 

ultimately impeding the quality of the monitoring and research being performed through lower-

quality equipment, smaller sample sizes, and less experienced or fewer surveyors than needed, 

not to include any additional essential equipment such as transmitters (Jones et al. 2006, Koh and 

Wich 2012). To make traditional wildlife monitoring as efficient and effective as possible, 

surveyors that are experts in their field are necessary to obtain the best data possible. Yet 

unfortunately, even highly skilled biologists are not exempt from error and are prone to surveyor 

fatigue, which can cause data errors, especially when environmental and habitat conditions make 

monitoring efforts increasingly difficult (Cordts et al. 2002, Fleming and Tracey 2008, Habib et 

al. 2012, Ransom 2012, Ogden 2013, Chretien et al. 2015). As such, there is a need to re-

examine traditional monitoring methods, both ground and aerial, and harness the power of 
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emerging technologies to increase and improve wildlife population data feeds vital to producing 

high quality repeatable procedures and regulations. 

There has been an increasing need for the development of sustainable, environmentally 

friendly energy production with a growing global population and heightening concerns about 

climate change (Veers et al. 2019). While there has been a suite of energy solutions developed, 

including solar power, geothermal, wave power, and more, wind has become the frontrunner in 

the race for green energy. Within a short time, wind energy has been implemented at a broad-

scale and is expected to increase by ten times prior to the year 2050 (DNV GL 2018, Veers et al. 

2019). Current global annual investment in wind energy is $100 billion (US) and will soon 

become one of the world’s big energy sources (DNV GL 2018, Veers et al. 2019). It is with little 

surprise that the global energy push is towards wind. Not only is wind energy renewable, it is 

also broadly available, low cost, and has a minute pollutant footprint (Veers et al. 2019), 

ultimately offering both public and environmental health benefits by way of cleaner air 

(Campbell-Lendrum and Corvalan 2007, Chan 2009). The push for wind energy in the United 

States has largely stemmed from this global movement and increased technological 

developments (DNV GL 2018). The integration of energy, engineering, and science sectors is 

instrumental to the enhancement of wind power and technology (Veers et al. 2019). 

Like any large-scale anthropogenic structure, siting and impacts to the surrounding 

environment and community must be taken under consideration. This is particularly true for the 

potential impacts that wind energy infrastructure may have on surrounding wildlife communities, 

such as birds and bats, through direct collision-related mortalities, displacement, and habitat 

fragmentation (Kuvlesky et al. 2007, Kiesecker et al. 2011, Shaffer and Buhl 2015). As such, 

federal laws protecting wildlife and the environment, like the National Environmental Policy 
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Act, the Migratory Bird Treaty Act, the Endangered Species Act, and the Bald and Golden Eagle 

Protection Act, require industry to adhere to a set of compliance standards and perform both pre- 

and post-construction mortality monitoring (PCMM; USFWS 2012). This poses a challenge to 

energy companies, particularly in such sensitive and keystone environments found in North 

Dakota.  

A region integral to both migratory and breeding birds, North Dakota has subsequently 

been coined as part of “North America’s Duck Factory” (Johnson et al. 2005, Mahlum and Perez 

2012). But less obvious is the economic impact that bats can have on an area that is so heavily 

reliant on the agricultural economy. In North Dakota alone, there are 11 species of bats present 

(Nelson et al. 2015). Past research has shown that through ecosystem services such as the 

removal of pest arthropods, a single species of bat has saved rice crop losses in excess of $1.2 

million/year (Wanger et al. 2014, Maas et al. 2016). Even beyond pest reduction, bats have 

proven to stimulate pollination services comparable to $13 million/year (Bumrungsri et al. 2009, 

Maas et al. 2016). In a state where the wildlife, agricultural, and energy sectors are dominant 

economic powerhouses (Baltezore and Leitch 1992, Coon et al. 2014, Ndembe et al. 2019), it is 

vital to North Dakota’s economy and success in both the wildlife and energy industries to factor 

in wind farm placement and wildlife monitoring efforts to provide as much wind energy as 

possible while minimizing impacts to wildlife. On a national scale, large population declines in 

cave bat species caused by white-nose syndrome has resulted in the federal uplisting or proposed 

listing of several bat species. This further supports the need for refined and efficient species 

monitoring. 

Attempts to monitor and minimize wildlife impacts are usually accomplished through a 

variety of surveys. There are typically three tiers of pre-construction monitoring at land-based 
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wind energy centers: preliminary site evaluation (tier 1), site-specific evaluation (tier 2), and risk 

assessment (tier 3; Katzner et al. 2016). Tier 1 involves a review of existing habitat and species 

data for the region encompassing the potential siting area and follows with a decision on whether 

to proceed relative to a cost-benefit analysis. Tier 2 focuses more specifically on the siting area, 

determining where high and low value bird and bat species and habitats exist. Tier 3 includes 

more rigorous scientific studies to determine such variables as species abundance and 

distribution through methods like point count surveys, acoustic monitoring surveys, and 

subsequent risk modeling (Katzner et al. 2016). Despite this, there are no standardized methods 

for pre-construction surveys and most models are bald eagle (Haliaeetus leucocephalus) and 

golden eagle (Aquila chrysaetos) specific, neglecting the importance of other avian species and 

bats (Katzner et al. 2016).   

If findings from pre-construction surveys determine that a project should move forward, 

federally required post-construction surveys occur for at least one year following construction, 

and typically include standardized carcass searches, searcher efficiency trials (SEEFs), and 

carcass persistence trials (CPTs) (USFWS 2012). SEEFs and CPTs are both bias-correction trials. 

SEEFs are trials set up to determine the detection rate of ground surveyors, while CPTs involve 

the placement and regular checking of carcasses placed on the landscape to monitor rate of decay 

and removal by scavengers (USFWS 2012). The information gleaned from SEEFs and CPTs is 

used to inform the monitoring process and evaluate detection rates of carcasses by ground 

surveyors during actual standardized carcass searches, ultimately informing fatality estimates. 

While every effort is made to track wildlife collisions to the highest degree, biological 

monitoring at wind energy facilities is unfortunately not exempt from the same problems, such as 
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time, cost, and data quality, as other methods of traditional wildlife monitoring (Gardner et al. 

2008).  

Due to this conundrum, there has been an increase in the use of uncrewed aircraft systems 

(UAS) to complete monitoring and research objectives because of their efficiency in data 

collection (Wargo et al. 2014). Uncrewed aerial systems can accomplish monitoring goals more 

efficiently than human surveyors, as they can cover difficult terrain quickly and generate near-

real time data (Koh and Wich 2012). UAS have even been used to monitor recreational use of 

remote habitats and deploy park rangers to specific problem areas (Koh and Wich 2012). UAS 

also have successfully detected flora and fauna of all sizes, distinguished land use classifications, 

and estimated abundance, distribution, and habitat use (Chabot and Bird 2012, Koh and Wich 

2012, Hodgson et al. 2016, 2018, Poysa et al. 2018). Further advances in this technology, such as 

the use of coordinated UAS teams, may increase the amount of ground that can be covered in an 

efficient manner without creating spatial and temporal data gaps (Floreano and Wood 2015). 

Moreover, this technology has been shown to outperform expertly trained ground and aerial 

human surveyors, all while only requiring minimal training to operate the technology itself (Koh 

and Wich 2012). Lastly, there is the added benefit of expanding beyond the environmental 

monitoring sphere with UAS technology and applying it to the inspection and maintenance of 

energy infrastructure (Floreano and Wood 2015). Despite this, there is some regulatory tape that 

can hinder work with Uncrewed Aerial Vehicles (UAVs). Qualified UAS pilots are typically 

required to remain on-site and within line-of-sight when operating UAS, and past work has 

primarily only utilized one UAS at a time (FAA 2016). This still requires the use of expert staff 

power and time-consuming surveying.  
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To meet these challenges, the technology startup Thread is working towards the 

development of advanced technologies to meet energy needs (Reidy 2019). Rather than employ 

expensive external vendors for both turbine maintenance and wildlife monitoring, which requires 

numerous employees exposed to risky environments to complete time costly tasks, Thread is 

proposing bringing these tasks in-house, equipping wind energy companies with one package to 

meet multiple purposes in a time efficient, low-cost manner. Multiple tasks can be completed by 

one technician with the accrual of a Federal Aviation Administration (FAA) waiver in 2020 to fly 

multiple UAS by a single operator.  These UAS would be capable of doing multiple tasks (e.g., 

infrastructure and wildlife surveys) allowing companies to perform surveys remotely and with 

fewer staff, even alleviating safety concerns (e.g., technicians climbing wind turbines for 

inspections). Thread envisions the use of an onsite “nest” (i.e., housing that stores and charges 

UAS, as well as acts as the brain for uploading data and navigating survey schedules) at wind 

energy centers can allow UAS procedures to be implemented remotely and performed 

autonomously, saving environmental and energy companies both time and money when 

monitoring post-construction wind energy sites (Reidy 2019). 

Prior work must be done to train the system to learn what it is being used to search for 

before reaching the point where UAS are operating effectively and efficiently in either 

environmental or infrastructure aspects. In the past, experts and citizen scientists have been used 

to manually count focal objects in imagery taken from cameras attached to UAS, which can be a 

very time-laborious activity and introduces another source of potential error in detection (Poysa 

et al. 2018). To solve this conundrum, a convolutional neural network (hereafter, “CNN”) is 

employed. The CNN is the processing brain behind accurate detections from UAS field collected 

imagery. Developing a CNN requires both time and expert knowledge in the field of computer 
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science; however, the better prepared the CNN is, the more superior results that will be produced 

(Rosa et al. 2016). Many factors can play into the detection of a focal object, such as the 

surrounding land cover type, weather, sun angle, size, coloration, and the level of decay of a 

deceased animal (Linchant et al. 2015). As such, collecting UAS imagery in a variety of 

conditions can greatly improve the success of the CNN and resulting data (Linchant et al. 2015).  

Objectives 

In the following study, I aid in the development and evaluation of a multifaceted package 

to improve post-construction mortality monitoring of birds and bats, along with live breeding 

waterfowl monitoring that can be used in a variety of wildlife assessments and even basic 

research questions on mate choice and territoriality. To improve wildlife mortality monitoring at 

wind energy sites in both time, money, and data quality, I aim to develop and evaluate a CNN to 

ultimately pair with the Thread uncrewed aircraft system. In Chapter II, I develop and validate a 

convolutional neural network for the detection of bird and bat carcasses. In Chapter III, I explore 

the same dataset for its accuracy in species classification and factors impacting its success. In 

Chapter IV, I perform a proof-of-concept test, looking at a side-by-side comparison of the trained 

CNN against ground surveyors in a simulated post-construction monitoring scenario. In Chapter 

V, I compare counts of waterfowl on wetlands from manual review of RGB UAS imagery to 

current ground count approaches to support both pre-construction wind farm surveys and historic 

waterfowl surveys. In Chapter VI, I conclude with a summary of the previous chapters and 

recommendations for future research and applications. 
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CHAPTER II DEVELOPING AND EVALUATING A CONVOLUTIONAL NEURAL 

NETWORK TO ASSESS REMOTELY SENSED IMAGERY FOR BIRD AND BAT 

MORTALITY MONITORING AT WIND ENERGY FACILITIES 

Abstract 

1. Post-construction mortality monitoring of birds and bats at wind energy sites is vital to 

the sustainable future of renewable energy and conservation; however, traditional 

methods are prone to low detection rates and broad confidence intervals, leading to wide 

uncertainty in fatality estimates used for regulatory compliance, siting, and conservation 

efforts. 

2. Uncrewed aerial systems (UAS) and machine learning are increasingly incorporated in 

wildlife conservation work due to high precision, repeatability, low risk, and commercial 

availability. We developed two different convolutional neural networks (CNN) to detect 

avian and bat mortalities at wind energy sites from UAS imagery taken both on-site at a 

wind energy facility and off-site in changing seasonal background covers (i.e., brown, 

green) to aid in generalization. Secondly, we planned to use generalized linear models to 

relate binary detection to environmental and computational variables that best explain 

identification in the developed neural network model. 

3. Accuracy across all models was 98.7%. The algorithms performed so well there was 

virtually no variability in model detection, and as such, we were unable to model the 

predictors and present summary statistics instead.  

4. Synthesis and applications: In this paper, we showed that pairing a convolutional neural 

network with UAS led to high detection rates for birds and bats in a post-construction 

mortality monitoring scenario. The increased detection rates from reported detection rates 

of current methodology should lead to more precise fatality estimates to better inform 
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siting, mitigation, and conservation efforts. This technique may be applied to a variety of 

scenarios and sectors, including but not limited to transportation, energy, public health, 

defense, and conservation. Integrating technology with real-world problems has the 

potential to change multiple sectors actively working towards a more sustainable future.  

Keywords detection, machine learning, monitoring, mortality monitoring, neural network, 

searcher efficiency, uncrewed aerial system, wind energy 

Introduction 

Heightening concerns over anthropogenic-driven climate change have initiated an urgent 

worldwide call to lower global temperature (Horowitz, 2016; Hoegh-Guldberg et al., 2019; 

IPCC, 2021). This push towards reduced emissions has been particularly evident within the 

energy sector, where calls for fossil fuel reductions to minimize carbon dioxide emissions have 

spurred the renewable energy movement (Mathews, 2014). While there has been a suite of 

renewable energy solutions developed, including solar, geothermal, and wave power, wind 

energy has emerged as a leader. Within a short time, wind energy has been implemented at a 

broad-scale and is expected to increase by ten times prior to the year 2050 (DNV GL, 2018; 

Veers et al., 2019). Current global annual investment in wind energy is $100 billion (US), and it 

will soon become one of the world’s big energy sources (DNV GL, 2018; Veers et al., 2019). 

Wind energy is appealing due to it being broadly available, renewable, low cost, and having 

minimal pollution output (Veers et al., 2019), ultimately offering both public and environmental 

health benefits of cleaner air (Campbell-Lendrum & Corvalan, 2007; Chan, 2009).  

However, wind energy can also have negative impacts to the surrounding environment, 

particularly on wildlife such as birds and bats, through direct mortalities, habitat fragmentation, 

and displacement (Kuvlesky et al., 2007; Kiesecker et al., 2011; Shaffer & Buhl, 2015). 
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Monitoring of bird and bat populations is proving to be increasingly important as long-term 

drastic declines have been documented due to habitat loss and degradation, fragmentation, 

disease, environmental contaminants, and collisions with anthropogenic development like 

buildings and wind turbines (Rosenburg et al., 2019; USFWS, 2021). Since the 1950s, birds have 

experienced a 50% decline (Rosenburg et al., 2019), meanwhile regional estimates of bat 

populations have shown reductions of 75% within a two-year span due to white-nosed syndrome 

alone (Blehert et al., 2009). Specific to wind energy-related mortalities, an estimated 600,000 – 

888,000 bats and 234,000 – 573,000 birds were killed in 2012 (Hayes, 2013; Loss et al., 2013; 

Smallwood, 2013; Smallwood & Bell, 2020). With rapid expansions of wind energy within 

major flight corridors such as the Prairie Pothole Region of North Dakota, a vital area to 

breeding birds (Batt et al., 1989; USFWS, 2008), reliable, high-quality monitoring of bird and 

bat species is necessary for science-based decision-making conservation efforts (Nichols & 

Williams, 2006). 

 In the wind energy sector, bird and bat fatality impacts are estimated through post-

construction mortality monitoring (hereafter, PCMM) required by the Endangered Species Act, 

Migratory Bird Treaty Act, National Environmental Policy Act, and the Bald and Golden Eagle 

Act (USFWS, 2012). For at least one year following construction of newly erected wind farms, 

PCMM ground search surveys typically include standardized carcass searches, searcher 

efficiency trials (hereafter, SEEFs), and carcass persistence trials (hereafter, CPTs) (USFWS, 

2012). While standardized carcass searches throughout this time provide mortality data, SEEFs 

and CPTs are bias-correction trials. SEEFs are trials designed to determine the detection rate of 

ground surveyors, while CPTs involve the placement and regular checking of carcasses placed on 

the landscape to monitor rate of decay and removal by scavengers (USFWS, 2012). The 



22 

 

information gleaned from SEEFs and CPTs is then used to inform the monitoring process and 

evaluate detection rates of carcasses by ground surveyors during actual standardized carcass 

searches. While every effort is made to track wildlife collisions to the highest degree, biological 

monitoring at wind energy facilities is prone to the same issues as common traditional 

monitoring techniques, such as time, cost, staff power, and data quality (Gardner et al., 2008). 

Human surveyors have an average searcher efficiency rate of 65% but range as low as 5 – 23% 

depending on size and condition of carcass remains (Reyes et al., 2016; Barrientos et al., 2018). 

When paired with canine detection dogs, searcher efficiency increases to 87%, but ranges 69 – 

100% (Barrientos et al., 2018). Further, traditional ground searches can also lead to 44% 

misidentified species and error in time since death estimations (Smallwood, 2018). Imperfect 

detection rates can result in broad confidence intervals surrounding mortality estimates and 

subsequently impact population models on levels of impact and decision making (Guillera-

Arroita et al., 2014). Further, ground surveys conducted on foot by researchers can be negatively 

impacted due to inconsistent surveying strategies and survey areas, and coverage restrictions due 

to time and money (Eggeman & Johnson, 1989; Smith, 1995; Heusmann, 1999; Kingsford & 

Porter, 2009). When coupled with observer bias and counting error, there is a need for other 

methodological approaches that achieve improved estimation for extrapolating fatality estimates 

at wind energy sites. 

Many sectors are turning to uncrewed aerial systems (hereafter, UAS) to complete 

monitoring and research objectives due to their efficiency in data collection (Wargo et al., 2014). 

UAS can accomplish monitoring goals more effectively than human surveyors, as they can cover 

difficult terrain quickly and generate repeatable, near-real time data (Koh & Wich 2012). 

However, experts and citizen scientists have typically been used in post-processing to manually 
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count focal objects in the UAS imagery, which can be a very time-laborious activity and 

introduces another source of potential error in detection (Poysa et al., 2018). To solve this 

conundrum, a convolutional neural network (hereafter, CNN) is employed. The CNN is a deep 

machine learning classifier that can detect and localize targets in imagery. Developing a CNN 

requires both time and expert knowledge in the field of computer science; however, the better 

trained the CNN is, the better the results (Rosa et al., 2016). Many factors can play into the 

detection of a focal object, such as the surrounding land cover type, weather, sun angle, size, 

coloration, and the level of decay of a deceased animal (Linchant et al., 2015). As such, 

collecting UAS imagery in a variety of conditions can greatly improve the success of the CNN 

and resulting data (Linchant et al., 2015). Pairing a trained CNN with an UAS to detect and 

localize bird and bat mortalities during PCMM work at wind energy sites has the potential to 

lead to increased quality and quantity of data, ultimately increasing synergy between the wind 

energy and conservation sectors for scientifically sound sustainability measures. 

The objective of our work was to develop and evaluate a CNN that uses imagery 

collected from UAS to conduct mortality monitoring surveys for wind energy. We hypothesize 

that while we expect overall detection rates to be higher from the trained CNN than previously 

reported averages for humans and canines, we also anticipate that sun angle, wind, sky cover, 

ground cover, and size of target will negatively impact the detection of carcasses in a trained 

CNN. More specifically, we anticipate that a low sun angle will cause increased shadowing 

(Zhou et al. 2021), that a clear sky will increase reflectance and washout defining color 

characteristics on targets, and higher wind speeds will create more image blur, all likely causing 

reduced detection. Furthermore, we expect that vegetation will obscure carcasses, and that 

smaller carcasses such as songbirds and bats will be less likely to be detected than targets within 
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typically larger species groups (i.e., waterfowl, raptors, waterbirds, gulls/terns, and upland 

gamebirds). Additionally, we hypothesize that carcasses that fall on image edges will likely have 

reduced detection due to partial carcass availability and as such, limited degree of image context 

(Reina et al., 2020). From this, we hope to not only inform those planning to build a CNN for 

wildlife detection where potential weak spots may lie, but also explain PCMM detection 

probabilities for improved bird and bat fatality metrics. 

Materials and Methods 

Study Area 

We used two sites to collect imagery for training and testing our CNNs. The first site 

served as an actual wind site with current PCMM occurring, while the second provided 

opportunities for additional data collection in different background covers and establish 

simulated plots for image collection and testing.   

Wind Energy Center– The wind energy center (hereafter, WEC) is located in Dickey 

County, North Dakota on the Missouri Coteau (Fig. 1) placing it within the Prairie Pothole 

Region (hereafter PPR; USFWS, 2008). The PPR comprises a vast section of formerly glaciated 

terrain now covered in wetlands that produce most of North America’s waterfowl populations 

(Batt et al., 1989; USFWS, 2008). Within the PPR, the WEC covers 8,105.6 ha predominantly 

covered in grasslands (60.6%), pasture (12.1%), crops (8.9%), scrub-shrub (8.6%), and open 

water (6.6%), with developed open space, emergent herbaceous wetlands, deciduous forest, 

woody wetlands, and barren land totaling the remaining 3.2% (Homer et al., 2015). There are 75 

total turbines mounted on a tubular tower to minimize perching opportunities for raptors. The 

energy company randomly selected five of these turbines for an environmental consulting 

company (hereafter, ECC) to perform cleared plot surveys for post-construction mortality 
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monitoring efforts. Cleared plots are defined as landowner maintenance of no to minimal 

vegetation within a 14,400 m2 (120 m x 120 m) area around each of the five turbines to improve 

ground surveyor visibility (Peters & Farmer, 2018).   

Grand Forks County, ND– Grand Forks County is in the Red River Valley, a low-lying 

tallgrass prairie in the eastern part of the state (Fig. 1). Formerly part of the Glacial Lake 

Agassiz, the landscape is flat with rich, saline soils that mostly provide for highly productive 

crop farming (NDGF, 2020). Study area lands encompassed 436.88 ha with 409.77 ha (93.8%) 

covered in cropland including soybeans, wheat, corn, and tilled soil, and 27.11 ha (6.2%) 

covered in pasture. We chose properties based on access, similarity to ground cover types 

available in the region and diversity in land cover type to aid in generalizing the convolution 

neural network model.  

Field Methods 

Standardized Carcass Search Field Methods– ECC ground surveyors implemented 

standardized carcass searches on a weekly basis between 15 March – 15 November 2020 to 

collect wildlife mortality data at the WEC following USFWS (2012) guidelines. A single ECC 

ground surveyor performed 6 m linear transects in cleared plots and slowly drove roads and pads 

within 100 m of all remaining turbines scanning for bird and bat mortalities. Carcass locations 

and species were reported weekly to be paired with UAS surveys. 

We performed preprogrammed (DJI Ground Station Pro version 2.0) UAS lawnmower 

grid surveys at the cleared plots within 24–48 hours prior to ECC ground surveys to maximize 

opportunity for collecting imagery of detected mortalities within time constraints and prior to 

ECC removal. Surveys were performed weekly between 15 March – 15 November 2020. Using a 

quadcopter DJI Matrice 210 v2 RTK (color: black, weight: 4.8kg, operating temp: -20°C to 
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50°C) with a DJI Zenmuse X5S camera (RGB) sensor, we flew surveys at 9.14 m above ground 

at 1.8 m/s with 50% overlap. We chose the flight height to keep surveys in a safe flight zone 

below the rotor swept area of the moving wind turbine. We collected environmental data for each 

survey, including: time the survey started and stopped, temperature (℃), wind speed (mph) and 

direction, sky cover (NABBS, 2020), and turbine identification number, longitude and latitude at 

each captured image location, and flight height (m). 

Off-site Training Data Collection Field Methods– From 15 March – 08 December 2020, 

we flew preprogrammed (DJI Ground Station Pro version 2.0) UAS surveys in Grand Forks to 

collect species and landcover imagery approximately twice monthly using the DJI Matrice 210 

v2 RTK (color: black, weight: 4.8kg, operating temp: -20°C to 50°C). To mimic a standardized 

carcass search flight and maintain consistent imagery parameters, we flew surveys at 9.14 m 

above ground at 1.8 m/s with 50% overlap using a DJI Zenmuse X5S camera (RGB) to capture 

imagery in a lawnmower grid fashion.  

We flew UAS surveys in 120 x 120 m plots in a variety of cover types, including: pasture, 

gravel roads, plowed dirt fields, and crop fields (corn, wheat, and soy). We used donated bird and 

bat carcasses that encompassed 56 species (51 bird species and 5 bat species) local to North 

Dakota. We distributed approximately 10 – 30 carcasses out in each plot on the landscape. We 

attempted to routinely rotate flight times between each survey day when weather and other 

logistics allowed. We also performed targeted imagery flights in which we manually f lew the 

UAS over known-location bird and bat carcasses in a lawn-mower grid fashion to increase 

training data for CNN development. 

Convolutional Neural Network Development 
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 We created a labeled image library for building the neural network by pairing UAS 

imagery with environmental data collected at the WEC and Grand Forks. Biological experts from 

the University of North Dakota reviewed collected imagery and created boxes within a custom 

software application (Fig. 2) over known-location carcasses with associated labels related to 

species, sex, and carcass condition (i.e., intact, scavenged, dismembered, feather spot), and 

paired it with data including: season, time of day, latitude and longitude, derived sun angle 

(Cornwall et al., 2020), sky cover (NABBS, 2020), and surrounding ground cover within 5 m of 

the carcass. We then used this labeled image library to train the CNN.  

We used a RetinaNet (Lin et al., 2017) object detection CNN model for the detection task 

which utilizes a ResNet (He et al., 2016) CNN as a backbone structure. We trained two models, 

one for each background color: Brown (dirt/gravel, spring and fall vegetation) and Green 

(summer vegetation).  We used a roughly 80% training/20% validation image split. Splits were 

done by utilizing a randomized method which repeatedly attempted to assign images to the 

training and validation SEEFs such that the number of target examples for each class had an 

80%/20% split. We used this method as this task is not trivial when an image can have multiple 

bounding boxes of different types within them, and in many cases, it is not possible to get perfect 

training/validation splits across all classes. We split 1,634 source brown background images into 

1,312 training images and 322 validation images, and split 173 source green background images 

into 127 training images and 36 validation images.    

Training the RetinaNet used a custom training pipeline developed by Thread, which 

generates training samples for each epoch of training the CNN by randomly selecting windows 

around bounding boxes in the training imagery. After that, the training images are passed through 

a series of data augmentations from the open source Albumentations library (Buslaev et al., 
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2018). For this work, we used the window size 400 x 400, followed by the 

RandomBrightnessContrast (50% application, brightness and contrast limits of 0.2) and 

Perspective (100% application, scale minimum and maximum values of 0.05 and 1.0) 

transforms.  Because of these random data augmentations, images fed to the network during 

training were always different modified sub-windows of the training images. Validation and 

inference were performed by striding the trained RetinaNet over 400x400 windows (with a user-

specified overlap, in this case 20 pixels) in the target images and then merging the predicted 

bounding boxes if class types were the same and the bounding boxes overlapped by at least 50%. 

Environmental Factor Statistical Analysis 

We modeled the factors impacting the detection capabilities of the trained neural network 

from UAS imagery collected at the WEC and Grand Forks. We included classified imagery from 

each of the two models, with 302 images from the brown model and four from the green model. 

Due to brown vegetative cover persisting on the landscape much longer than green in North 

Dakota, the majority (73.4%) of images taken for the green model were held back as training 

material. Due to this limitation, we combined results from both models. We considered a carcass 

detected if the CNN’s confidence output was >80% and considered it not detected if it was < 

80%. We had originally planned to relate detection (1) and non-detection (0) to wind speed 

(mph), sky cover (NABBS, 2020), carcass size (i.e., large bird, small bird, bat), sun angle 

derived from location and time data (Cornwall et al., 2020), if a carcass fell on a tile line (1) or 

not (0), and if a carcass fell on the edge of an image (1) or not (0) using a generalized linear 

model with a binomial distribution; however, detection from the CNNs was so high we 

ultimately lacked enough variability to perform the model. As a result, we instead present 
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summary statistics. We did not incorporate accuracy of species assessment in this analysis, 

instead focusing solely on how well the model could find a carcass.  

Results 

We analyzed a total of 306 labeled carcasses in imagery to determine the variables that 

explain bird and bat mortality detection best using a convolutional neural network. Overall, the 

CNN had 302 carcass detections yielding an overall detection rate of 98.69%, with four missed 

detections. It should be noted that two of the four missed detections were detected, but the 

CNN’s confidence fell below the 80% threshold at 72.34% and 36.03%. As such, we were unable 

to model any of the predictors as planned due to a lack of variability in the response and present 

summary statistics.  

Despite the success in detection, the CNN counted a total of 536 false positives. The most 

common causes for false positives were humans (35.07%), shadows (13.06%), snow (12.5%), 

and vegetation (8.58%) (Appendix A). The average confidence output of false positives was 

90.13% (range: 78.21 – 99.99%). 

Discussion 

The pairing of commercially available UAS with a trained CNN to detect and ultimately 

estimate bird and bat fatalities at wind energy sites has the potential to be transformative for both 

industry and conservation sectors. Recent studies show that human ground surveyors have 

average detection rates of 21.5 – 65% and canine surveyors of 77.3 – 87% (Barrientos et al., 

2018; Domíniguez del Valle et al., 2020), with human surveyor searcher efficiency being 

negatively impacted by both carcass size and ground cover (Domíniguez del Valle et al. 2020).  

With drastic documented population declines in both bird and bat species (Rodhouse et 

al., 2019; Rosenberg et al., 2019), increased precision in fatality estimates alongside projected 
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wind energy growth may aid in future siting and mitigation efforts at renewable energy sites and 

help inform regional and national conservation efforts. Our research indicates that the pairing of 

UAS and a trained CNN have a higher average detection rate than other commonly used PCMM 

survey methods. For species that may be rare and small in size, the ability to increase confidence 

in fatality estimates may greatly impact mitigation needs at sites. For example, if a surveying 

method yields only a 10% detection rate, then it is difficult to discern if a species was present but 

went undetected compared to if the surveying method has an 80% detection rate where a non-

detection of the species would be more likely to be an absence than just a missed observation. 

Therefore, increased detection rates lead to narrower confidence intervals and higher precision in 

fatality estimation (Rabie et al., 2021), which could translate into less area or fewer turbines that 

need to be searched ultimately increasing efficiency, saving time, effort, and cost. It may also 

lead to reduced mitigation efforts overall for instances when species of concern may not actually 

be impacted by the wind turbines.  

However, using this approach requires an understanding of its applicability and efficacy 

in particular scenarios. While our dataset did not provide any variability specific to binary 

detection, more attention may be needed to predict and account for areas of weakness regarding 

false positives. Similar to the use of UAS, wind speed must be considered when applying this 

method, as image blur and aircraft unsteadiness coupled with vegetation movement may create 

more room for false positive errors. Further, increased variation and complexity in training 

datasets is likely to aid in generalization and further reduction of false positives of CNN models. 

Additionally, while we were unable to model detection relative to cover type, operators should 

consider the vegetation structure and growth stage being surveyed as certain crops may be better 

suited to this method than others. For example, cereal grains may obscure carcasses less than 
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mature soybeans and corn that have a wider, more complex canopy, but further research is 

required to explore this possibility and establish best practices.  

Our study presented several limitations, including an unbalanced dataset with samples 

from the brown model heavily outweighing samples from the green model. This was largely due 

to a limited growing season in North Dakota, coupled with a post-data collection decision to 

develop more than one CNN model to match cover background for improving detection. It is 

possible that we would see more variability in our binary detection results had we been able to 

test more samples from the green model, as vegetative cover during the growing season and 

reflectance may influence detection success. Future researchers should be careful when 

considering modeling approaches for neural networks prior to data collection, being more 

specific when considering study design and generalizing from there as needed, rather than the 

reverse. Further, we experienced almost twice as many false positives in our dataset than we did 

true positives due to non-target detections most commonly of humans, shadows, snow, and 

vegetation. The complexity in wildlife and environmental imagery can create a number of causes 

for false positives, which can be combatted in several ways.  Increasing the complexity of 

training datasets and annotating non-target objects may lead to a better-informed model with 

fewer false positives. However, we recognize this takes an extensive amount of time, and as such 

we recommend determining common false positives in the initial dataset prior to annotating non-

target objects to better allocate efforts. Additionally, particularly in datasets with high confidence 

in true positive detections, confidence thresholds can be fine-tuned to weed out the majority of 

false positives. While this would typically be performed using receiver operating characteristic 

(ROC) curves to visualize sensitivity versus specificity across confidence thresholds, our data 

does not specifically look at the occurrence of true negatives, which is integral to calculating 
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specificity. While there are large amounts of dead space in environmental imagery with the 

absence of targets, further exploration of this may be possible if an area within an image, or by 

individual image, is pre-defined as what can constitute a true negative. To attempt to address this, 

we viewed areas of non- or minimal amounts of overlap between confidence estimates and 

standard deviations associated with true positive and false positive detections. The average 

confidence estimate for a true positive was 99.4% +/- 2.2, whereas the average confidence 

estimate for a false positive was 90.2% +/- 5.7. Using the range of non-overlap, the ideal 

confidence threshold for this dataset to reduce the occurrence of false positives falls between 

95.9 and 97.2% (Figure 3). Last, the likelihood of humans being in imagery taken for post-

construction monitoring is low, and can be further reduced simply by ensuring that the UAS pilot 

and other technicians in the area are located outside of the search area while collecting imagery, 

which would have reduced the occurrence of false positives in our dataset greatly.  

While this integrated technology indicates large strides towards increasing precision in 

wildlife conservation and efficiency for industry compliance, further validation is needed to 

compare searcher method efficacy between traditional survey methods and this burgeoning 

technology incorporating indirectly accounted factors such as vegetation height and density. 

Further, given the number of potential images that could be collected at a single wind farm if 

surveying all turbines, biologists must consider the ability to process the imagery rapidly so that 

carcasses can be removed soon after discovery to prevent scavenger removal and attraction 

within the rotor-swept area. Current solutions are to have onboard processing, a series of local 

graphics processing units, or cloud-based options. However, cloud-based processing can have 

long upload times in rural locations where wind sites are often located, but quick image 

classification, and as such may require infrastructure upgrades at wind sites. Despite this, init ial 
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efforts with this integrated technology are promising and further collaboration among industry, 

conservation, and the software engineering sectors may hold the key to efficiency that will 

facilitate higher quality data for understanding wildlife impact studies. Such approaches could be 

applied to a variety of other complicated human-wildlife interfaces, including but not limited to 

solar facilities, wildlife-vehicle collisions, airport runway safety (Zhou et al. 2021), railroad 

mortalities (Dasoler et al. 2020), zoonotic disease outbreaks, or oil spill cleanup and monitoring 

efforts. 
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Figures  

Figure 1. Field locations used for collecting imagery of bird and bat carcasses in a variety of 

backgrounds and across seasons for the development of a convolutional neural network to detect 

bird and bat mortalities at wind energy sites. Field collection sites included a wind energy center 

in Dickey County, North Dakota and private lands in Grand Forks County, North Dakota 

between March – December 2020. 
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Figure 2. Software application created to label carcasses in unmanned aircraft system imagery 

for the development of a convolutional neural network to detect avian and bat mortality 

monitoring at wind energy centers in the midwestern United States. The application is able to 

create labels for the training of a neural network from user input data such as species, sex, and 

carcass condition. 
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Figure 3. Means and +/- standard deviations of confidence estimates for true positive and false 

positive detections from a convolutional neural network trained to detect bird and bat carcasses. 

The area of non-overlap (95.9 – 97.2%) may be used to set a confidence threshold in future 

research to reduce the occurrence of false positives in the detection data. 
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CHAPTER III EXAMINING THE ACCURACY OF A CONVOLUTIONAL NEURAL 

NETWORK’S ABILITY FOR SPECIES IDENTIFICATION 

 

Abstract 

1. Successful population modeling is vital to understanding impacts from anthropogenic sources 

and climate change on vulnerable species and successful wildlife management. This is largely 

dependent upon accuracy in species identification and repeatable data collection methods. With 

recent advances in wildlife monitoring exploring machine learning for detection and classifying 

target objects, best practices for image collection must be implemented to yield high species 

identification accuracy. 

2. Using a case study of convolutional neural networks trained for post-construction mortality 

monitoring of bird and bat carcasses at a wind energy center, we explored the relationships that 

accuracy in species identification have with environmental variables. Specifically, we coded 

different case scenarios of accuracy in species identification and used generalized linear models 

to relate this to sun angle, wind speed, sky cover, and species group.   

3. Trained convolutional neural networks accurately identified species in 90.5% of image 

examples. Using AICc model selection, we found that the probability of accurate species 

identification was best described by sun angle and wind speed. 

4. Probability of accurate species identification increased with increasing wind speed, as well as 

increasing sun angle. 

5. Synthesis and applications: With this study, we showed that implementing convolutional 

neural networks for automation of species identification in a field monitoring scenario led to 

overall high accuracy rates with both environmental and image quality factors explaining higher 
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probabilities of correctness. Equipped with variables that influence species identification success, 

best practices for data collection can be employed to obtain improved data feeds at broader 

scales. This ultimately has the potential to create comparable data sets, better informing 

population models for interpreting species movement and distribution, diversity, and response to 

impacts from anthropogenic sources and climate change. 

Keywords species identification, machine learning, classification, UAS, wildlife monitoring 

INTRODUCTION 

Species identification to understand distribution and population fluctuations is vital to 

informing proper wildlife and habitat management, particularly in the face of climate change 

where species are affected disproportionately and close monitoring may be necessary for 

responsive, accurate conservation decisions (Wilsey et al., 2019). Increasingly, wildlife 

biologists are turning to the use of remote sensing, camera trapping, and citizen science-captured 

imagery to explore the most efficient routes of monitoring wildlife for population surveys, 

regulatory compliance, behavior analysis, and beyond (Wargo et al., 2014, Pimm et al. 2015, 

Chabot et al., 2018, Poysa et al. 2018, Shah et al., 2021). Both remote sensing and citizen science 

platforms afford the opportunity to collect vast amounts of data in a repeatable, short period of 

time (Koh & Wich, 2012, Nguyen et al., 2017); however, great effort is dedicated on the backend 

to post-processing of imagery due to manual counting and identification of targets in thousands 

of images which can further delay responses to important conservation matters (Poysa et al. 

2018). As such, the union of biologists and computer scientists has led to the construction of 

computer vision systems for rapid image processing that can produce highly accurate detection 

data (Pimm et al., 2015, Ward et al., 2016, Nguyen et al., 2017, Seymour et al., 2017, Van Horn 

et al., 2018).  
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Researchers have begun working on accurate species identification using image-based 

classification systems, but more effort is needed to understand and implement automated species 

identification in true field settings for standardized, repeatable data collection that allow for 

comparison of impactful, unbiased results (Piorkowski et al., 2012, Gula & Theuerkauf, 2013). 

Current work largely focuses on imagery taken in a lab environment or by novice observers 

where imbalanced class sizes and lack of uniformity in image capture techniques can present 

problems in classification accuracy (Van Horn et al. 2018). Fewer algorithms, such as the use of 

the U.S. Fish & Wildlife Service Feather Atlas for automating airport runway avian collision 

species parts identification, have been developed for standardized methodology in field research 

applications (Wäldchen & Mäder, 2018, Shah et al., 2021). Image classification for field-based 

research has more commonly involved the automation of remotely sensed imagery for purposes 

of detection and counting of individual study species (Chabot et al. 2018), leaving the difficulties 

of species identification when studying multiple species left to navigate. This is particularly 

important in scenarios such as mortality monitoring of birds and bats at wind energy centers, 

airports, or in oil spills, where monitoring is widespread and many species may be observed with 

some protected by regulations such as the Endangered Species Act, Bald and Golden Eagle Act, 

or the Migratory Bird Treaty Act (Piorkoswki et al., 2012). Research has shown that factors such 

as sun angle, weather variables, size, coloration, and land cover type can all play a role in the 

detection of a target of interest in remotely sensed photographs (Linchant et al., 2015, Reina et 

al., 2020, Yannuzzi Chapter 2), but little has been done to explore how these variables play a role 

in the success and confidence of species identification. Examining these factors may aid in future 

standardization of image collection and automation to more accurately identify species  and 
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employ these survey techniques at a broad-scale to achieve rapid, repeatable, meaningful 

scientific query and monitoring.  

We investigated the variables that may play a role in the accuracy of a trained neural 

network’s species identification using a case study of a convolutional neural network trained for 

the detection of avian and bat mortalities at wind energy centers (Yannuzzi et al. in review). We 

hypothesized that larger species groups (i.e., raptors, waterfowl) would increase accuracy in 

species identification, while smaller birds and bats, higher wind speeds, low sun angle, and clear 

skies would likely decrease accuracy in species identification (Linchant et al., 2015, Reina et al., 

2020, Yannuzzi Chapter 2). With this knowledge, we provided recommendations for improving 

standardization of future image collection and deep learning techniques to improve species 

identification for wildlife monitoring and conservation priorities. 

METHODS 

Between March and mid-December 2020 in North Dakota, USA, we collected remotely 

sensed imagery of carcasses from 51 bird species and 5 bat species at a wind farm and similar 

habitat within a variety of ground cover types (i.e., snow, crop, dirt/gravel, pasture). We used a 

DJI Matrice 210 v2 RTK (color: black, weight: 4.8kg, operating temp: -20°C to 50°C) to fly 

lawnmower grid surveys at 9.14 m above ground at a speed of 1.8 m/s, capturing imagery with a 

DJI Zenmuse X5S camera (RGB) with a 50% overlap producing multiple images of some 

carcasses (Yannuzzi et al. in review). Biological experts labeled carcasses in imagery by drawing 

boxes over known-location carcasses and associating labels to species, sex, and carcass condition 

(i.e., intact, scavenged, dismembered, feather spot), along with flight survey-level variables 

including: season (i.e., spring, summer, fall), time of day, latitude and longitude, derived sun 

angle incorporating azimuth and elevation (Cornwall et al., 2020), sky cover (NABBS, 2021), 
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and surrounding ground cover within 5 m of the carcass. We also labeled non-target items that 

we expected might pose problems for detection and species identification such as landscaping 

cloth, categorizing them as “garbage”; however, we did not incorporate this category into the 

analysis of this study. We used a RetinaNet (Lin et al., 2017) object detection CNN model for the 

detection task which utilizes a ResNet (He et al., 2016) CNN as a backbone structure. We trained 

two models, one for each background color: Brown (dirt/gravel, spring and fall vegetation) and 

Green (summer vegetation).  We used a roughly 80% training/20% validation image split. Splits 

were done by utilizing a randomized method which repeatedly attempted to assign images to the 

training and validation sets such that the number of target examples for each class had an 

80%/20% split. We used this method as this task is not trivial when an image can have multiple 

bounding boxes of different types within them, and in many cases, it is not possible to get perfect 

training/validation splits across all classes. We split 1,634 source brown background images into 

1,312 training images and 322 validation images, and split 173 source green background images 

into 127 training images and 36 validation images. Appendix B shows the class types and 

numbers of example images of each class in each training set.    

Training the RetinaNet used a custom training pipeline developed by Thread, which 

generates training samples for each epoch of training the CNN by randomly selecting windows 

around bounding boxes in the training imagery. After that, the training images are passed through 

a series of data augmentations from the open source Albumentations library (Buslaev et al., 

2018). For this work, we used the window size 400 x 400, followed by the 

RandomBrightnessContrast (50% application, brightness and contrast limits of 0.2) and 

Perspective (100% application, scale minimum and maximum values of 0.05 and 1.0) 

transforms.  Because of these random data augmentations, images fed to the network during 
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training were always different modified sub-windows of the training images. Validation and 

inference were performed by striding the trained RetinaNet over 400x400 windows (with a user-

specified overlap, in this case 20 pixels) in the target images and then merging the predicted 

bounding boxes if class types were the same and the bounding boxes overlapped by at least 50%. 

Using a subsample of test results from the same data set (Brown = 302 carcasses, Green = 

4 carcasses; Yannuzzi et al. in review), we modeled how neural networks identified species in 

UAS imagery from a wind energy mortality monitoring case study to determine what variables 

impact accurate species identification. Therefore, we split the response variable of species 

identification into four case scenarios of best to worst case scenario, wherein true positives were 

the best-case scenario, followed by partial correctness, incorrectness, and false negative being 

the worst case scenario (Table 1) to group different levels of confidence. Using these scenarios, 

we implemented generalized linear models to relate species identification to derived sun angle 

(Cornwall et al. 2020), wind speed (mph), sky cover (NABBS, 2021), and species group (i.e., 

waterbird, cranes/rails, gulls/terns, pigeons/doves, raptor, songbird, shorebird, upland gamebird, 

waterfowl, woodpecker, and bat).  

Using program R version 4.0.1.0, we built three candidate generalized linear models with 

a gaussian distribution including fixed effects: a null model, a global model (i.e., sun angle 

[azimuth * elevation], wind speed, sky cover, species group), and a reduced model (i.e., sun 

angle [azimuth * elevation], wind speed) (Table 2). We then used the AICcmodavg package 

(Mazerolle, 2020) to perform Akaike’s Information Criterion model selection adjusted for small 

sample sizes (AICc) to select a top model from the candidate list. 

RESULTS 
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 Overall, accuracy in species identification was high with 90.52% true positives. False 

negatives accounted for 1.31%, with partially correct identification totaling 5.23% and incorrect 

identification totaling 2.94%. Using generalized linear models and AICc model selection, we 

determined that the reduced model, including wind speed (mph) and sun angle, best explained 

the accuracy in species identification. We detected no competing models (ΔAICc value <2).  

  The likelihood of achieving a best case scenario (i.e., true positive) of species 

identification increased with increasing windspeed (ß=0.1, SE = 0.04, p < 0.05), and also 

increased with increasing sun angle (ß=0.0003, SE = 0.0002, p < 0.05). 

DISCUSSION 

 We evaluated species identification accuracy and influencing environmental and image 

quality variables in a convolutional neural network developed for a post-construction mortality 

monitoring scenario. Accurate, real-time, automated species identification in remotely sensed 

imagery has enormous implications for conservation, particularly for at risk species where 

impacts on small, vulnerable populations need to be as precise as possible (Hunter et al., 2019). 

With this technology, previously daunting data collection scenarios can occur rapidly with high 

accuracy in areas that may be inaccessible by humans without risking human safety and 

minimizing disturbance on the land and wildlife (Brisson-Curadeau et al., 2017, Pirotta et al. 

2017, Duporge et al., 2021). Rapid response to estimate anthropogenic impacts to individual 

species, wildlife health surveying, behavioral analysis, or routine population monitoring 

(Brisson-Curadeau et al. 2017, Pirotta et al. 2017, Hunter et al. 2019) have the potential to help 

wildlife managers curtail negative impacts on vulnerable species.  



52 

 

 While automated detection and species identification are crucial to accurate and swift 

action when needed, it is vital to understand practices for image collection that achieve the best 

results. Data collection may require extended field seasons to capture adequate generalization of 

environmental variables in imagery. Our findings indicate that successful species identification 

depends on environmental situations surrounding imagery collection. Image collection should 

occur days with wind speeds between five and nine mph, ideally in the morning or afternoon. 

These environmental variables likely impact species identification due to their role in the amount 

of reflectance, shadowing, and image blur that is prone to occur when the sun and wind are most 

intense (Dare, 2005, Sayed & Brostow, 2021). While wind had a positive association with 

increasing accuracy in species identification, confidence in this accuracy begins to decrease 

around wind speeds of 10 mph, likely due to increased vegetation movement and decreased 

aircraft stabilization, resulting in more image blur. Wind speeds and time of day when collecting 

imagery should be considered when building convolutional neural networks for species 

identification needs to obtain the most exact data possible. 

 Accuracy in species identification directly translates to improved data feeds and well-

informed population models. This can help aid conservation biologists in understanding the 

effect of climate change on a species, species richness and diversity, status of endangered 

species, anthropogenic impacts on species, species distribution, and more (Wäldchen & Mäder, 

2018). Automation of species detection and identification from remotely sensed imagery allows 

for better access and results to previously difficult to obtain data whether that be due to 

impassable terrain, human safety, or disturbance. While this is exciting progress in the realm of 

wildlife monitoring, imagery used to train machine learning algorithms must be collected with 



53 

 

best, standardized practices in mind to allow for generalizing so that larger, regional datasets can 

be compared for meaningful results.  
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TABLES & FIGURES 

Table 1. Species identification case scenario codes and corresponding definitions to examine the 

way that trained machine learning models identified bird and bat species in a wind energy 

mortality monitoring case study.  

Species Identification Code Definition 

Best case scenario: true positive Only the correct species was identified  

Second best-case scenario: partially correct Two or more species were identified and one 

was the correct species 

Third best-case scenario: incorrect One or more species were identified and none 

were the correct species 

Worst case scenario: false negative No target was identified but was available for 

detection  
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Table 2. Candidate list of multinomial models to evaluate how environmental and image quality 

variables relate to accuracy in species identification ranked by lowest AIC. 

Model 

Name 

Model Parameters K AIC ΔAIC Model 

Weight 

Reduced Wind Speed + Sun Angle 6 447.08 

 

0.00 1.00 

Global Sky Cover1 + Species Group2 + Wind 

Speed + Sun Angle 

18 464.66 17.58 0.00 

Null Intercept-only 2 466.04 18.96 0.00 
1Sky cover categories: clear or few clouds, partly cloudy, overcast, fog or smoke, light rain, 

snow, showers 

2Species group categories: waterbird, cranes/rails, gulls/terns, pigeons/doves, raptor, songbird, 

shorebird, upland gamebird, waterfowl, woodpecker, and bat 
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Figure 1. Species identification accuracy with 95% confidence intervals presented as best (4) to 

worst (1) case scenario in relation to wind speed (mph) from convolutional neural network 

models built for bird and bat carcass detection during post-construction mortality monitoring at 

wind energy centers. Best case scenario (true positive; 4) = only the correct species was 

identified; Second best scenario (partial correctness; 3) = 2+ species were identified, and one was 

the correct species; third best scenario (incorrectness; 2) 1+ species were identified, and none 

were the correct species; worst case scenario (1; false negative) = no target was identified but 

was available for detection.  
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CHAPTER IV COMPARING DETECTION RATES OF BIRD AND BAT FATALITIES 

BETWEEN GROUND SURVEYORS AND A TRAINED CONVOLUTIONAL NEURAL 

NETWORK 

ABSTRACT 

Renewable energy is rapidly growing in the United States and beyond. With increasing energy 

construction leaves the potential for increased impacts on wildlife, particularly bird and bat 

species. For newly constructed energy facilities where uncommon species or rare events are of 

concern, a refined probability of detection is needed to increase confidence in fatality estimates. 

Human searchers are commonly used at these facilities to perform post-construction monitoring 

of bird and bat species, but are typically not as efficient as needed in detection and time for 

projects with higher targets of probability of detection. Aiming to improve efficiency, we 

previously developed machine learning algorithms through convolutional neural networks 

(CNN) to detect bird and bat fatalities from imagery taken by uncrewed aircraft systems 

equipped with a color sensor. Initially achieving an average detection rate of 98.7% during 

validation, we aimed to test detection rates of the CNN against ground searchers commonly used 

for post-construction monitoring. We performed side-by-side searches of 60 plots in spring, 

summer, and fall, and varying ground cover types (e.g., crop, dirt/gravel, and pasture). Ground 

surveyor detection was comparable to previously published rates at 63%, while the CNN’s 

detection was much lower than the initial validation phase at 29%. We also examined factors that 

were influential in the detection data using generalized linear mixed models, finding that ground 

surveyor detection was informed by carcass density within a plot and carcass size class. CNN 

detection was similarly informed by carcass density within a plot and carcass size class, in 

addition to vegetative visual obstruction and ground cover. While initial phases of development 

of this CNN show strong promise for highly refined results for probability of detection 



63 

 

estimation, further development of the model is needed by continued training with increased 

quantities of species and ground cover types. Additionally, future exploration of sensor 

combinations and generalization amongst sensors may allow for easier adaptation of the trained 

CNN as technology advances.  

INTRODUCTION 

Post-construction mortality monitoring (PCMM) is often required for at least one year 

following construction of a wind energy center by state and federal agencies in compliance with 

the Migratory Bird Treaty Act, the Bald and Golden Eagle Act, the Endangered Species Act, and 

the National Environmental Policy Act (USFWS 2012). Mortality information gleaned from 

PCMM work is used to inform future site-specific wildlife monitoring and mitigation efforts, 

along with siting of future renewable energy centers. Further, fatality estimates at local and 

regional scales of bird and bat species are incorporated into population management, regulations, 

and conservation initiatives. This work is outsourced by energy companies to environmental 

consulting groups that employ biologists to perform carcass searches for estimating fatality rates, 

searcher efficiency trials for evaluating surveyor detection rates and biases, and carcass 

persistence trials as an additional bias correction estimate determining how long carcasses 

remain on the landscape prior to scavenger removal or decay (USFWS 2012).  

Traditional survey methodology of carcass searches varies among consulting groups and 

wind facilities but is based on guidelines provided by the USFWS Land-Based Wind Energy 

Guidelines (USFWS 2012). Typically, carcass searches are performed more intensively at a 

subset of wind turbines, with biologists walking lawnmower grid transects within a designated 

radius of a tower cleared of vegetation (hereafter, “cleared plots”), and walking roads and pads 

within 100 m of a tower at all remaining turbines (USFWS 2012). Despite this, human detection 
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rates average 65% and vary greatly depending on carcass size, with bat detection estimates of 

14˗42% depending on the site conditions (Arnett 2006, Mathews et al. 2013, Barrientos et al. 

2018). Increasingly, canine detection teams have been incorporated into these search protocols to 

boost detection rates of survey teams. With the addition of canines, detection rates increase to an 

average of 87% (Barrientos et al. 2018) and decrease search time threefold (humans: 2 hr 46 min 

vs. dogs: 40 min; Mathews et al. 2013). Human detection rates are thought to be influenced by 

experience level, fatigue, visibility conditions within cover types, carcass type and size, season, 

and environmental conditions (Ransom et al. 2012, Mathews et al. 2013, Reyes et al. 2016, 

Barros et al. 2021). Dogs, too, show variability in their detection relative to environmental 

conditions, ground cover, topography, physical fitness, and handler error (Mathews et al. 2013, 

Barrientos et al. 2018). These varying detection rates, particularly where human searchers are 

involved, can result in uncertainty in fatality estimates, which can be problematic when fatality 

counts are close to or at zero (Mathews et al. 2013).  

Uncrewed aircraft systems (hereafter, UAS) are used for ecological research to improve 

efficiency in data collection (Wargo et al. 2014), covering difficult terrain quickly in a repeatable 

manner (Koh and Wich 2012, Floreano and Wood 2015). Despite this, there are still limitations 

associated with UAS platforms in ecological research. Humans are needed to review imagery 

taken by UAS and search for target objects within, which can be a time intensive and tedious 

task and introduces additional sources of error (Poysa et al. 2018). Further, visual obstructions 

from vegetation or shadows within imagery may reduce visibility and likelihood of detection in 

imagery within certain environments.  

Pairing UAS imagery with a trained convolutional neural network (CNN) may provide 

further efficiency in UAS-collected ecological research, particularly as it applies to post-
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construction mortality monitoring. CNNs are a type of machine learning that can be trained to 

perform object detection and classification within a dataset. They require training on datasets 

prior to implementation to learn what the target of interests are and reduce the occurrence of 

false positives. Many factors, such as cover type, weather, sun angle, size, coloration, can play a 

role in the accuracy of detections and classification of target objects (Linchant et al. 2015). As 

such, proper preparation of a CNN through exposure to increased and diverse training data sets is 

vital for better educating a CNN, which increases the likelihood of success (Linchant et al. 2015, 

Rosa et al. 2016). With adequate computational power, a well-trained CNN can provide near 

real-time data to users, which reduces manual image processing time. Recent research has 

employed this technology, using UAS paired with trained convolutional neural networks (CNN) 

to detect and classify bird and bat mortalities, leading to promising increases in detection rates as 

high as 98% (S. Yannuzzi unpublished data).  

However, to gain industry and regulatory acceptance, this technique must perform 

similarly or better than currently accepted ground survey methods. If successful, this technique 

has the potential to greatly increase the quality of important wildlife population data feeds 

alongside increased efficiency for industry. Higher detection rates create less uncertainty in 

fatality estimates and if adopted, consistency in survey methodology may allow for comparable 

datasets at widespread scales, producing more meaningful results and better-informed 

management. As such, we aim to provide proof of concept for a trained CNN to determine if 

adoption into industry and regulatory standards is feasible by estimating detection rates for this 

technique compared to traditional ground surveyors. We also aim to explore environmental and 

experience-based factors impacting detection of bird and bat carcasses by ground surveyors. 

Specifically, we want to know 1) how traditional ground surveyor methods compare to a trained 
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CNN in detecting bird and bat carcasses and 2) how detection by ground surveyors is influenced 

by environmental factors and experience level. We hypothesize that 1) the CNN will have a 

higher average detection rate of both bird and bat carcasses than the ground surveyor, but that 

ground surveyors will perform better in areas of heavy vegetation than the CNN due to 

obstructed visibility from the nadir position of image capture; and 2) the ground surveyor 

detection rates will decrease as wind speed, temperature, and vegetative cover increases, as 

experience level and sun angle decrease, on clear sky days, and in plots with fewer and smaller 

carcasses. With this, we hope to not only provide a feasibility study, but also better unpack 

situations in which certain methods may be more effective than others to provide biologists 

improved guidance in method selection. 

STUDY AREA 

We selected four locations within North Dakota to collect data. These sites were chosen 

to represent the variety of habitat, vegetation, soil, and cover types available within the state: 

McKenzie County, Grand Forks County, Pembina County, and Rolette County.  The study sites 

span the Northwestern Great Plains, Lake Agassiz Plain, and Northern Glaciated Plains 

Ecoregion Level III (USEPA 2013). The Northwestern Great Plains includes McKenzie County 

and is largely unglaciated plain of shale, siltstone, and sandstone with scattered buttes and 

badlands. Ground cover is predominantly rangeland and native grassland, with some wheat and 

alfalfa farming restricted by unpredictable precipitation and areas of steep topography. Grand 

Forks County and most of Pembina County lies within the Lake Agassiz Plain, a region of flat 

lake sediment atop glacial till, which consisted of tallgrass prairie pre-settlement, but was 

converted to row crop agriculture. Common crops are sugar beets, corn, soybeans, wheat, and 

potatoes. The Northern Glaciated Plains, where Rolette County lies, is glacial drift containing 
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transitional grassland between short and tallgrass prairie, with agricultural activities constrained 

by annual weather cycles (USEPA 2013). 

METHODS 

FIELD METHODS 

 Paired Surveys ˗ We performed paired surveys of preprogrammed UAS flights near 

simultaneous to ground searches at four sites within North Dakota in the spring (15 April  ˗ 31 

May 2021), summer (15 June ˗ 31 July 2021), and fall (1 September ˗ 15 October 2021). Within 

each season, we performed surveys in 60 plots divided into three cover types (20 pasture, 20 

dirt/gravel, and 20 crop). All plots were 120 x 120 m in size (hereafter, “full plots”) to simulate 

cleared plot searches at wind facilities, except for dirt/gravel plots wherein we further divided the 

20 plots into 10 full plots and 10 100 m x 15 m plots to simulate searches performed along roads 

within the vicinity of a turbine tower (hereafter, “road plots”). Of the 20 plots within each cover 

type, we defined half (10) as high-density plots with 10 ˗ 15 carcasses placed within them, and 

half (10) as low-density plots with 1 ˗ 5 carcasses placed within them. Dirt/gravel cover type 

plots were divided similarly with 5 high-density full plots, 5 low-density full plots, 5 high-

density road plots, and 5 low-density road plots.  

 We placed bird and bat carcasses with unique ID codes indicating taxa and individual on 

tags affixed to a leg in known locations within each plot (Table 1). Tags were obscured from 

aerial visibility to avoid detection of those by the CNN. We performed surveys between 0700 

and 1800 hrs. We equipped each observer with a handheld GPS preprogrammed with plot 

boundaries and 6 m wide lawnmower grid tracks to follow (Garmin BaseCamp version 4.7.4). 

Observers recorded location, time of day (morning = 0600 ˗ 1100 hrs, midday = 1101 ˗ 1600 hrs, 

evening = 1601 ˗ 2100 hrs), highest educational degree, whether or not they had relevant survey 
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experience and the number of months of experience, along with survey start and stop time, wind 

speed (mph) and direction, temperature (°C), sky cover (NABBS 2022), and the carcass unique 

ID code for each target found. 

 Near simultaneously (i.e., within the hour of the ground search start), we flew a DJI 

Matrice 210 v2 RTK (color: black, weight: 4.8kg, operating temp: -20°C to 50°C) with a DJI 

Zenmuse X5S 15 mm camera (RGB) sensor within the same plots at 9.14 m above ground level 

at 1.8 m/s with 70% overlap. We chose the flight height to simulate that of the safe flight zone 

below the rotor swept area of a moving wind turbine and to mirror the flight parameters under 

which the CNN was trained. We included a high overlap of images to allow for increased 

collection of data for use in any further CNN model training if deficiencies were detected post -

testing. With each UAS survey, we collected information including: date, pilot in command, time 

of day, flight number, altitude (ft), start and stop time, wind speed (mph) and direction, sky cover 

(NABBS 2022), and temperature (°C).  

 Vegetation Surveys ˗ We collected vegetation metrics once per every survey week within 

each plot per season. Using a Robel pole with alternating colors of decimeters marked, we took 

visual obstruction readings (VOR) in the four cardinal directions (Robel et al. 1970), and 

vegetation height at three points moving diagonally within the plot, the centroid and two 

opposing corners. VOR readings were made by reading the lowest visible decimeter from 1 m 

high and 4 m (Robel et al. 1970), whereas vegetation heights were read from the same position 

but recording the decimeter with the general height within the approximately 5 m around the 

sample point. 

ANALYSIS 
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Convolutional neural network ˗ Following methods used in Chapter II, we drew boxes around 

known-location carcasses and labeled each with corresponding species and species group. If a 

carcass was unavailable to be found in imagery for labeling due to vegetation obstruction or 

camouflage, it was removed from the dataset to be certain whether a carcass was detected or 

missed by the CNN. We then tested the CNN that was trained and validated in Chapter II on the 

new set of images. 

Statistical Analysis ˗  

Ground Surveyors – We treated ground surveyor data as binary detection, 0 (carcass was not 

detected) and 1 (carcass was detected). We implemented package lme4 (version 1.1-31) in 

program R version 4.2.2 to build five candidate binomial generalized linear mixed models with 

observer as a random effect including: an intercept-only model, a carcass characteristics model 

(carcass density, carcass size class), a plot characteristics model (ground cover, VOR, vegetation 

height), a seasonal characteristics model (wind speed, temperature, sky cover, season), and an 

observer experience model (months of experience, days spent surveying). We then used the 

AICcmodavg package (Mazerolle 2020) to perform Akaike’s Information Criterion model 

selection adjusted for small sample sizes (AICc) to select a top model from the candidate list. 

Convolutional Neural Network – Due to image overlap, carcasses appeared in an inconsistent 

number of images. As a result, we treated CNN data as the total number of successful detections 

out of the total number of possible detections. We implemented package lme4 (version 1.1-31) in 

program R version 4.2.2 to build four candidate binomial generalized linear mixed models with 

plot as a random effect, including: an intercept-only model, a carcass characteristics model 

(carcass density, carcass size class), a plot characteristics model (ground cover, VOR), and a 

global model. We then used the AICcmodavg package (Mazerolle 2020) to perform Akaike’s 
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Information Criterion model selection adjusted for small sample sizes (AICc) to select a top 

model from the candidate list. 

RESULTS 

In total, 951 carcasses were located during the image labeling process and incorporated into the 

dataset. Four-hundred thirty large birds were available to be found, 357 small birds, and 164 bats 

across 59 species, 55 unique plots, and nine ground surveyors. Individual carcasses were 

available to be found by the CNN in an average of four images (range: 1– 16). Seven-hundred 

forty-three carcasses were in high density plots and 208 were in low density plots. Average VOR 

within plots was 0.91 dm (range: 0 – 3.25 dm), with carcasses in 372 dirt/gravel plots, 254 plots 

in cropland plots, and 325 in pasture plots. Image reviewers were unable to locate 175 additional 

carcasses, largely small birds and bats, for labeling in imagery and as such, these carcasses were 

excluded from the analysis as we would be unable to confirm without a doubt that a detection by 

the CNN was one of these carcasses. 

The average detection rate of the trained CNN was 28.86%, while the average detection rate of 

the ground surveyors was 63.17%. Average detection rate for carcass species that were used in 

the initial training of the CNN was 26.89% (range: 0-100%, n = 684), and average detection rate 

for carcass species novel to the CNN was 33.92% (range: 0-100%, n = 267). Detection by 

ground surveyors was best explained by the carcass characteristics model variables, including 

carcass density and carcass size class. We detected no competing models (ΔAICc value <2). 

Detection rates by ground surveyors were lower in low carcass density plots than high density 

plots, but the relationship was weak (p = 0.7) (Figure 1A). Meanwhile, detection rates by ground 

surveyors were also lower for small birds (p < 0.0001) and bats (p <0.0001) than large birds 

(Figure 1B). 
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Detection by the CNN was best explained by the global model, including carcass density, size 

class, ground cover, and VOR. We detected no competing models (ΔAICc value <2). Similar to 

ground surveyors, CNN detection rates decreased in low carcass density plots, but the 

relationship was weak (p = 0.7) (Figure 2A). CNN detection rates had a strong negative 

association with both cropland (p < 0.05) and pasture (p < 0.0001) ground covers compared to 

dirt/gravel (Figure 2B). Additionally, detection rates were also lower for both small birds (p 

<0.0001) and bats (p < 0.0001) than large birds (Figure 2C). Finally, CNN detection rates 

decreased as VOR increased (p < 0.001) (Figure 2D). 

DISCUSSION 

We evaluated detection rates of a convolutional neural network trained to detect bird and bat 

fatalities with ground surveyors for implementation in post-construction mortality monitoring. 

While the initial testing performed on the trained CNN was highly successful both in detection 

and classification scenarios (Chapter II and Chapter III), when presented with a new set of 

imagery that varied in both species and ground cover, the CNN did not perform as well. The 

ground surveyors performed similarly to those engaged in actual PCM searches (Barrientos et al. 

2018), and as such, we believe their detection rates to have been representative of a realistic 

scenario.  

The degree to which the CNN failed to detect bird and bat carcasses was surprising, but leaves 

room for further development. The ground covers and carcasses selected for this study had 

twofold purposes: 1) to test the CNN on species and ground covers that were both familiar (i.e., 

some species and plots were what the CNN had previously been trained on in Chapter I), and 2) 

to provide additional novel data to continue training the CNN on for further generalization. 

While the CNN would be likely to encounter new species and ground covers in real-life 
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implementation, the novelty of some of these species and locations may have caused additional 

confusion for the CNN, leading to lower detection rates. The CNN was originally trained on 55 

species, and tested on 52 species in this study. Of these, 38 species overlapped and 30 did not. 

However, average detection rates comparing trained and novel species were not greatly different 

(26.89% versus 33.92%, respectively), but this study would benefit from future, more focused 

research on this topic. We recommend that future studies perform several iterations of validation 

and follow-up training until satisfactory detection rates have been achieved on novel image sets. 

While this study’s results have indicated that this method is not yet ready for implementation, the 

initial testing of both object detection and classification (Chapters 1and 2) show promise for this 

method with further training. Future studies examining the success of machine learning 

algorithms in place of alternative methods for ecological monitoring should not assume that 

initial validation can be considered applicable to new image sets with similar, but novel 

environments and objects. Furthermore, there is a need to expand sensor-platform combinations 

such that the CNN can handle different technological developments. 

Recent studies have found success detecting bird and bat collisions using stationary multi -

spectral visual-near infrared cameras mounted to the nacelle of wind turbines (Happ et al. 2021), 

which suggests that further exploration into alternative cameras or filter lenses may improve 

detection and additionally weed out high false positive rates displayed by the trained CNN in 

Chapter II.  While RGB cameras and fixed-wing platforms have been shown effective for larger 

wildlife in homogenous, minimally vegetated habitats, more complex scenarios including smaller 

wildlife, habitats with denser vegetation and more complex topography have required the use of 

multispectral sensors and multirotor platforms for success (Corcoran et al. 2021).  
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Ecological image datasets can be highly complex, particularly when concerning small, 

camouflaged targets, diverse carcass orientations, vegetative obstruction, vegetation colors and 

shapes, in addition to more common challenges of reflection and image blur. While the 

combination of a UAS and machine learning algorithm has strong potential for future successful 

deployment in post-construction monitoring, significant additional training is needed to meet or 

exceed other proven survey methods. Finally, while the combination of a UAS and machine 

learning does have the potential to standardize data collection methods further, this method is 

prone to similar downfalls that both ground surveyors and detection dogs experience, such as 

decreased detection rate with increasingly obstructive vegetation and smaller species. As such, 

care must be given when selecting an appropriate survey method for the proposed study as one 

size may not fit all.  
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FIGURES 

Figure 1. Detection rates with 95% confidence intervals of a ground surveyor searching for bird and bat 

carcasses. 
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Figure 2. Detection rates with 95% confidence intervals of a convolutional neural network 

trained to detect bird and bat carcasses from uncrewed aircraft system imagery. 
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CHAPTER V COMPARING UNCREWED AERIAL SYSTEM AND TRADITIONAL 

GROUND COUNTING METHODS OF BREEDING DUCK PAIRS 

 

ABSTRACT Waterfowl population management is largely influenced by data collected during 

the breeding season, including pair surveys performed in the spring when ducks arrive in the 

Prairie Pothole Region of North America. Traditionally, counts of these pairs are performed both 

on the ground and in crewed aircraft during the Waterfowl Breeding Population and Habitat 

Survey and the Four-Square Mile Survey. Detection biases from ground observers can lead to 

reduced data quality and resulting population estimates used to inform state and federal 

regulations. Uncrewed aerial systems (UAS) have been increasingly incorporated into wildlife 

surveys due to their quick, repeatable data collection and ability to access difficult environments. 

Recent research has found that manual image review of UAS collected data has led to similar or 

higher counts when compared to ground surveying methods, but most of this research has been 

focused on duck broods or waterbird colonies. We compared total counts of ducks in spring 

ponds in North Dakota, USA between manual UAS image review and traditional ground surveys. 

We conducted 47 flights with paired ground surveys at 45 ponds between 24 April and 27 May 

2020 and used a generalized linear mixed model to determine differences in count methods. 

Ultimately, we found that UAS image review yielded higher duck counts than ground surveys (p 

< 0.0001), but further research is needed to examine detection biases in manual image reviewers.  

KEY WORDS UAS, duck, pair survey, survey method, UAS, waterfowl 

INTRODUCTION 

Timely, accurate monitoring methods are instrumental to the management of wildlife across taxa 

for determining population status, range changes, behavior, and more, ultimately informing state, 

federal, and international regulations such as the Endangered Species Act, Migratory Bird Treaty 
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Act, and National Environmental Policy Act. Traditional monitoring methods typically rely on 

ground-based surveyors, such as distance sampling deer (LaRue et al. 2007), carnivore scat 

surveys and hair-snags (Phoebus et al. 2020), mark-recapture used widely for a variety of taxa, 

including marine mammals (Hammond et al. 2021), track surveys for otters and other wildlife 

(Evans 2006), and more. Despite the long-standing use of these methods and other wildlife 

surveying techniques, common challenges across all these surveys include cost, visibility, 

detection, observer biases, misidentification, and lack of standardization in protocols (Evans 

2006, Corace et al. 2018, Hammond et al. 2021).  

The management of duck populations requires precise breeding pair count data in the 

spring to predict reproductive potential for each species. These data, along with information 

about environmental conditions, are used to monitor population trends, inform annual harvest 

regulations, determine conservation priorities, and guide management, research, and funding 

decisions (Blohm et al. 2006). Within the Prairie Pothole Region (PPR), where over 50% of 

North America’s ducks are produced (Bellrose 1980, Batt et al. 1989), two main surveys have 

been used to supply breeding duck pair count information: the Waterfowl Breeding Population 

and Habitat Survey (WBPHS; Smith 1995) and the Four-Square Mile Survey (FSMS; Reynolds 

et al. 2006). During the WBPHS, biologists in crewed aircraft fly established transects within 50 

strata counting duck pairs and lone ducks within wetlands across Canada and the northern plains 

of the United States (Smith 1995, USFWS 2022). To account for visibility bias, observers on the 

ground count ducks in all ponds within each transect in a stratum. Similarly, the FSMS consists 

of point counts within a sample of wetlands throughout the United States portion of the PPR to 

be surveyed from the ground twice within May and early June. Unlike the WBPHS, the FSMS 
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does not account for visibility bias and assumes observers can detect all pairs present on survey 

wetlands (Dzubin 1969, Hammond 1969).   

Despite their longstanding use, similar to other traditional ground survey methods, the 

ground observer methods utilized by WBPHS and FSMS are not without weaknesses. 

Inconsistencies in field personnel experience, incomplete detection, double counting of birds, 

and disturbance have all been cited as tradeoffs with ground observers during these surveys 

(Dzubin 1969, Smith 1995) and during other surveys that have used similar methods (Götmark 

1992, Thompson 2002, Boback et al. 2020). Double counting and incomplete detection of birds 

could bias counts, inflating or underestimating true abundance, respectively, whereas varying 

field personnel experience and disturbance have additional data and ecological concerns, such as 

misidentifying species, miscounting individuals or introducing further bias to counts, and 

possibly impacting fitness. Further, environmental variables such as vegetative obstruction, 

wetland size, and inclement weather make detection even more challenging and increase 

detection bias (Dzubin 1969, Pagano et al. 2014).  

In response to the challenges presented by ground observer techniques for surveys like 

WBPHS and the FSMS, a growing number of studies have started to investigate the utility of 

uncrewed aerial systems (UAS) as a potential solution or improvement over ground surveys 

(Pöysä et al. 2018, Bushaw et al. 2020, Ryckman et al. 2022). UAS offer rapid data collection 

that is repeatable, high coverage, and likely offer fewer visibility challenges due to the nadir 

position (90° angle) of the sensor (Koh & Wich 2012, Wargo et al. 2014, Hodgson et al. 2016), 

making commonly used hemi-marsh environments by spring arriving ducks (Murkin et al. 1997) 

more accessible. Image counts from an UAS have been found to provide higher ground counts 

for common teal broods (Anas crecca: Poysa et al. 2018) and still other studies have indicated 
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substantially higher detection rates with the use of UAS in brood surveys (Bushaw et al. 2021). 

However, while initial research on pair avoidance behavior has shown mild behavior changes 

(Ryckman et al. 2022), we are not aware of empirical studies investigating UAS’s utility for 

supplementing or replacing ground observers in pair surveys.  

Given the current gap in empirical data regarding the use of UAS in waterfowl pair 

surveys, the importance of detection in these surveys, and the international significance of these 

surveys to waterfowl management, an investigation of possible improvements to methodology 

through the use of UAS for counting breeding duck pairs is merited. Before standardized 

implementation of UAS can occur, proof of concept studies should be performed to determine if 

the use of UAS for counting breeding duck pairs performs better, or at least the same, than 

currently utilized human ground observers. We hypothesized that total duck count from UAS and 

ground surveyors would be similar, and that wetland size might additionally explain variation in 

the data with counts performed by UAS increasing with increasing wetland size, while counts 

with ground surveyors would decrease due to likely inability to see into larger wetlands. As such, 

we aim to compare duck counts taken using traditional ground observer methods with those 

manually counted from UAS imagery. 

STUDY AREA 

We conducted breeding pair duck surveys in the Missouri Coteau region of North Dakota. The 

Missouri Coteau region totals 7.3 million ha of the greater Prairie Pothole Region and is defined 

by its hills and plentiful glacial basins that range from ephemeral to permanent status (Stewart 

and Kantrud 1973, Phillips et al. 2005). Within North Dakota, our study focused specifically on 

the two adjacent ranches - Ducks Unlimited Coteau Ranch (1,214 ha) and The Nature 
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Conservancy’s Davis Ranch (2,931 ha) within Sheridan County (centroid: 47.383336°N, 

100.278731°W; Figure 1).  

METHODS 

Field methods Between 24 April and 27 May 2020, we performed 47 paired UAS and 

ground observer counts of breeding duck pairs in 45 wetlands in North Dakota. An additional 

flight at two wetlands was performed within 24 hours of the first to collect additional imagery of 

ducks. We selected these 45 predominantly seasonal wetlands as they were consistently used by 

ducks throughout the study period. We collected survey data specifically on blue-winged teal 

(Spatula discors), mallards (Anas platyrhynchos), gadwall (Mareca strepera), northern pintails 

(Anas acuta), northern shovelers (Spatula clypeata), American wigeon (Mareca americana), 

American green-winged teal (Anas carolinensis), redheads (Aythya americana), lesser scaup 

(Aythya affinis), canvasback (Aythya valisineria), ruddy ducks (Oxyura jamaicensis), and 

buffleheads (Bucephala albeola) due to their prevalence in the immediate area. Single observers 

located the best vantage point for viewing the entire wetland and minimizing disturbance, setting 

up 30 minutes prior to the UAS flight. If the wetland was too large for both the observer and 

UAS to cover in a single flight, a portion of it was predetermined as the surveyed area, and the 

observer would count ducks only within that section where the UAS flew.  Ground observers 

synchronized their count survey with the UAS survey through text message communication with 

the flight operator, recording species and counting pairs and lone males and females with 

binoculars throughout the duration of the UAS flight. Ground observers documented if a duck 

flew or swam out of the survey area, noting species, sex, and count. Survey times were 

documented, along with a predetermined wetland identifier and wetland cover type following 

USFWS FSMS Protocols (USFWS 2010).  
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We conducted UAS flights with a DJI Matrice 200 V2 quadcopter (color: black, weight: 

4.53 kg, operating temp: -20°C to 40°C) with a Zenmuse X5S (RGB) sensor and attached 

Olympus 45 mm lens. We flew the UAS at 45 m above ground level, allowing for a ground 

sampling distance of approximately 0.44 cm per pixel. We performed preprogrammed lawn-

mower grid transects (DJI Pilot version 1.8.0) that ran parallel to the ducks on the wetland to 

minimize disturbance (McEvoy et al. 2016) at 5 m/s and 60% overlap. Additional 

methodological details can be found in Ryckman et al. (2022). We obtained permissions from the 

North Dakota Game and Fish Department (GNF04912726, GNF05182785), UND Institutional 

Animal Care Use Committee A3917-01, Protocol #1904–2, and the UND Unmanned Aircraft 

Systems Research Compliance Committee Approval (Approved April 12, 2019). 

Image review 

A biological technician from the University of North Dakota reviewed collected imagery 

within an in-house customed open-source annotation tool (Lin 2015). This tool allowed the 

reviewer to zoom as needed, draw bounding boxes, and make species or taxon-identifying 

annotations within the image (Figure 2). The technician scanned each image in a lawn-mower 

grid fashion, counting ducks and identifying them to species when possible. If the technician was 

not strongly confident in their species identification, they labeled the duck as “other duck”.  The 

technician attempted to keep track of birds as they moved across imagery, aided by the 60% 

overlap of imagery, to minimize the likelihood of double counting birds. A second reviewer, a 

trained biologist with a background in waterfowl, reviewed the annotations created by the first to 

confirm species identification. If the biologist disagreed with the technician’s assessment, the 

species identification was deferred to the biologists’ assessment.  

Data analysis 
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 We used a generalized linear mixed model with a Poisson distribution to test if there was 

a difference in counts performed by ground observers compared to those manually counted from 

UAS imagery. We implemented package lme4 (Bates et al. 2015) in R version 1.4.1106 to build 

three models, one relating total duck count to survey method interacting with wetland size (ha), 

assuming size may play a role in detection (Dzubin 1969, Pagano et al. 2014), a second solely 

relating total duck count to survey method, and a null model. We incorporated wetland identifier 

as a random effect in all models. We calculated wetland size (ha) from National Wetlands 

Inventory data (USFWS 2018) for each wetland. We used package AICcmodavg (Mazerolle, 

2020) to implement Akaike’s Information Criterion model selection adjusted for small sample 

sizes (AICc) to determine if wetland size helped describe total duck count.  

RESULTS 

 Our paired survey at 45 wetlands (mean = 1.17 ha, range = 0.02 – 16.16 ha) resulted in 

the ground observer counting a total of 581 ducks, while UAS image reviewing recorded 801 

ducks. Image review of 36,471 total images took approximately 326.25 hours (0.01 

hours/image). The technician reviewing imagery missed detecting all ducks in three wetlands, 

resulting in missed counts of 13 total ducks detected by ground surveyors. Mallards, gadwall, 

northern pintail, northern shoveler, American wigeon, American green-winged teal, lesser scaup, 

canvasback, redheads, and ruddy ducks were all detected in surveys, and no buffleheads were 

encountered. Ground observers were able to identify all ducks to species, while the technician 

reviewing imagery was unable to identify 381 (51%) of 749 ducks. The biologist reviewing 

imagery counted and identified additional birds but was still unable to identify 346 (43%) of 801 

ducks due to image blur, reflection/glare causing washout, and a general lack of context clues. 
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 Through AICc model selection, we determined that the top model was total count 

predicted by survey method (fixed effect) with wetland identifier (random effect) (Table 1). We 

detected no competing models (ΔAICc value <2). We found survey method had a strong 

association with total count (ß= 0.32, SE = 00.5, p < 0.0001) and that UAS image reviewers 

counted 10 ducks to every 7 that ground observers detected (Figure 3).   

DISCUSSION 

As it stands, manual UAS image review may provide similar or better counts to ground 

surveys, but detection biases and time considerations must be evaluated prior to implementation. 

While counts from imagery may reduce biases from observers such as some visibility issues, 

terrain, and more (Dulava et al. 2015), they may also introduce new bias that must be considered 

when interpreting data. While the image reviewer in our study was instructed to keep track of 

previously counted ducks when scanning imagery, it is possible that some ducks were still 

double counted. Barr et al. (2018) found that UAS image reviewers occasionally overcounted or 

falsely counted waterbirds. Use of video may allow reviewers to keep better track of ducks as the 

UAS moves over the wetland, and may also provide extra context, such as flushes, arrivals, and 

species identification clues, that may not be visible in still imagery (Dulava et al. 2015). Further, 

Ryckman et al. (2022) found that ducks often moved away from the sound of UAS, which may 

contribute to double counting of individuals. Despite this, the nadir position of the sensor (i.e., 

sensor pointed directly down at 90 degree position from ground) on the UAS also may allow 

better viewing of ducks in wetlands with extensive vegetative cover that may not be visible to 

ground observers (Pagano et al. 2014), which could also explain higher counts of ducks in 

imagery. However, the nadir position may create increased challenges with glare, resulting in 
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difficulty identifying to species, but this may be improved by adjusting the camera angle 

(Hodgson et al. 2013).  

We hypothesized that wetland size would play a role in counts; however, unlike previous 

studies (Pagano and Arnold 2009), wetland size did not influence total counts by either survey 

method. This lack of effect could have been due to the low variation in wetland size across our 

sample as only two wetlands were greater than 3.22 ha, which would have resulted in fewer 

issues for ground surveyors’ visibility across wetlands. Wetland size along with height and 

density of vegetative cover likely interact posing detection biases of varying degrees due to 

visibility; however, we were unable to incorporate vegetation characteristics into our study. 

Additional biases likely impacted both the counting and species identification in our 

study. While our study was not specifically looking at species identification, our image reviewer 

was unable to confidently identify approximately half of the observed ducks. The difficulties 

with species identification are likely a result of a variety of factors, including reviewer quantity 

and experience, overhead vegetative obstruction (Barr et al. 2018), image quality from blur or 

reflectance (Chabot et al. 2015), and a lack of species characteristic context, such as speculum 

visibility, that ground observers are likely to view from bird movement. Barr et al. (2018) found 

that overhead vegetation, lighting conditions, and species coloration may lead to biases in 

counting by image reviewers. As such, time of day should be considered when designing surveys 

as there may be optimal times to reduce glare, improving species identification conditions. 

Additionally, more research is needed to determine image reviewer detection biases as this is 

likely to impact not only detection, but successful species identification. Further, image 

reviewers are likely to have different biases than traditional ground observers where most 

previous research has focused.  
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Perhaps most importantly, it should be noted that post-survey image review was a time 

exhaustive practice and defeated any time saved through remote image collection. Time-saving 

automation efforts for avian studies are well underway and may reduce image review time to 5–

10% of that of manual review (Chabot and Francis 2016, Chabot et al. 2018). However, 

challenges still exist with automation, including environmental variables (weather conditions, 

reflectance, shadows), sensor resolution, target disposition and size, and false positives (Chabot 

et al. 2015, Chabot and Francis 2016, Zhou et al. 2021). Improving automation methods still rely 

substantially on manual review to identify ducks to be able to accurately train these classification 

methods and thus, it is important to understand bias and challenges in this manual review 

process. In addition to temporal efficiency, feasibility of flight operations needs to be weighed in 

large wetlands where battery life may not be sufficient and UAS may need to go beyond visual 

line of sight, which is currently prohibited in the United States under the Federal Aviation 

Administration’s Part 107 without a waiver (Floreano and Wood 2015). Exceptions to this rule 

may be provided with a waiver and may depend upon where operations occur. 

At this time, manual image review of UAS may not be the most efficient route for 

surveying breeding duck pairs. However, rapid research in automation may facilitate the 

practicality of implementing UAS in breeding duck pair surveys, but regulatory and operational 

hurdles must still be factored in. While further research is needed to determine image reviewer 

detection biases and challenges in species identification from remotely sensed imagery, increased 

counts from this method compared to traditional ground surveys shows promise in utilizing UAS 

for breeding duck pair surveys in the future.       
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TABLES & FIGURES 

Table 1. Candidate list of generalized linear mixed models to evaluate how survey method 

(ground observer vs. uncrewed aerial system with manual image review) and wetland size relate 

to total duck counts during spring breeding pair surveys in Sheridan County, North Dakota, 

USA.  

Model Name Model Parameters K AIC ΔAIC Model Weight 

Additive Method + (1|wetland ID) 3 649.11 

 

0.00 0.78 

Interaction Method * wetland size + (1|wetland ID) 5 651.58 2.47 0.22 

Null 1 + (1|wetland ID) 2 682.15 33.04 0 
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Figure 1. Study area map of wetlands used for a surveying methodology comparison in April – 

May 2020 at the Ducks Unlimited, Inc’s Coteau Ranch and The Nature Conservancy’s Davis 

Ranch in Sheridan County, North Dakota, USA. 
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Figure 2. Open-source annotation tool used to detect and label ducks with their associated 

species name for UAS image review of breeding duck pairs collected April – May 2020 at the 

Ducks Unlimited, Inc’s Coteau Ranch and The Nature Conservancy’s Davis Ranch in Sheridan 

County, North Dakota, USA.   
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Figure 3. Predicted total counts of breeding ducks relative to survey method in paired ground and 

UAS breeding duck pair surveys at 45 wetlands performed April – May 2020 at the Ducks 

Unlimited, Inc’s Coteau Ranch and The Nature Conservancy’s Davis Ranch in Sheridan County, 

North Dakota, USA. Solid lines indicate 95% confidence intervals. 
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CHAPTER VI CONCLUDING THOUGHTS 

 

Rapid advances in technology are driving the direction of most sectors, with the use of uncrewed 

aircraft systems (UAS) and machine learning becoming increasingly common for improving 

efficiency in all manners of the world. Within the field of wildlife biology, the two methods are 

being paired to bolster repeatability, amass large datasets at a fraction of the speed of normal 

techniques, improve accuracy, and navigate difficult to reach locations. Among the most 

common uses within wildlife are population surveys, whether that be long-standing methods 

such as the historic waterfowl breeding population survey or newer survey needs such as post -

construction monitoring at energy projects. In our research, we developed and evaluated a new 

approach for monitoring at wind facilities that is promising for both pre- and post-construction 

surveys and poses implications for additional ecological surveys, such as waterfowl breeding 

pair surveys occurring annually in the northern United States and Canada.  

 

In the first stage, we sought to amass an image library with labeled bird and bat carcasses to train 

and validate a convolutional neural network for post-construction monitoring at wind energy 

facilities. We collected imagery with a quadcopter flown below the rotor-swept area between the 

spring and fall of 2020 at both on-site wind energy facility locations and off-site areas that 

represented similar ground cover types that are common to wind energy facilities. We split the 

set of imagery into a training and validation set, and we trained two models using a RetinaNet 

that represented predominantly green and brown backgrounds. Due to extended spring and fall 

and drought conditions in North Dakota, the majority of the images were categorized within the 

brown model, and ultimately results from validation of the two models were combined. 

Detection of all carcasses was higher than currently used methods, including both human 



100 

 

surveyors and detection dogs, with an accuracy of 98.7%. Due to low variability in the data, we 

were unable to determine additional factors impacting object detection such as climatic 

variability, sun angle, and carcass size. Despite the model’s relative success in object detection of 

birds and bats, it output 536 false positives compared to the 302 true positive detections, which 

were primarily result of humans, shadows, snow, and vegetation within the imagery. Therefore, 

additional training imagery of potential false positives would enhance the use of the models in 

the future.  

 

Using the same data set, we explored the same model’s classification capabilities of bird and bat 

carcasses. Similar to its object detection, the model was highly successful at classifying the 

correct bird and bat species with overall 90.5% accuracy. To determine what best-informed 

species identification, we implemented generalized linear models and built three candidate 

models exploring sun angle, wind speed, sky cover, and species group. Through Akaike’s 

Information Criterion (AICc) model selection, we determined that wind speed and sun angle best 

explained species identification of 51 bird species and five bat species. Lower wind speeds were 

associated with increased species identification accuracy (10 mph), and increased sun angle 

(morning and afternoon hours) improved species identification as well.  

 

For the third stage of the process, we tested the trained CNN on a novel image data set and 

compared its object detection to currently accepted methods of ground surveyors in a simulated 

post-construction monitoring scenario. We performed near-simultaneous UAS and ground 

surveys with naive observers in plots with ground cover types commonly found on wind energy 

projects in spring through fall 2021. Bird and bat carcasses were placed in random locations 
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throughout the plot, with location and numbers unknown to the ground surveyors. After 

collection, carcasses were labeled in the imagery for later detection confirmation, and the trained 

CNN was tested on the new image data set. Ultimately, the trained CNN performed poorly 

compared to prior validation in Chapter II and did not compete with the detection rate of the 

ground surveyors. Across 951 bird and bat carcasses, nine ground surveyors detected an average 

of 63.2%, while the trained CNN detected 28.9%. We further assessed the roles that factors such 

as vegetation structure, carcass density within the plot, and carcass size played in successful 

detection of the trained CNN and ground surveyors. Further, we wanted to know if surveyor 

experience played a role in the detection bird and bat carcasses. Only carcass size and carcass 

density in a plot informed ground surveyor detection, with carcass size being the most impactful. 

Ground surveyor detection rates decreased by decreasing size class, similarly to what was found 

by Barrientos et al. (2018). For the CNN, we found that detection was best explained by carcass 

density within the plot, carcass size class, ground cover type, and the visual obstruction reading 

of the vegetation. Similar to ground surveyors, detection decreased with decreasing carcass size, 

was lower in cropland and pasture than in dirt/gravel ground covers, and similarly, decreased 

with increasing visual vegetative obstruction.  

 

Finally, we aimed to set the foundation for further exploration of the utility of UAS and manual 

detection of waterfowl compared to currently used ground surveyors. We conducted 47 flights 

with paired ground surveys at 45 ponds in the spring of 2020 and used generalized linear mixed 

models to assess differences in the two methods of counting. Image review yielded significantly 

higher duck counts than ground surveys, but biases such as overcounting, image blur, and bird 

movement may skew these results (Ryckman et al. 2022). Additionally, there is still additional 
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efforts needed for species identification and the ability to automate pair survey data. Last, 

reflectance is another issue when working in wetland systems that make it more difficult for both 

manual and automated reviewers to detect and identify individuals. 

 

While the CNN performed poorly in testing on the new data set, the initial stages of validation in 

object detection and classification hold great promise in the future of detecting and identifying 

bird and bat species in a post-construction monitoring scenario. Further training in new locations 

that present different vegetation structure and species, along with new sensor-platform 

combinations, is needed prior to implementing in actual post-construction monitoring, along with 

additional exploration into the causes and reduction of false positives. Some research has 

incorporated multi-spectral sensors with success at both detection and reduction of false positives 

in a post-construction monitoring scenario, and spectral research supports the idea that 

identification may be improved in imagery by means of either a near-infrared sensor or UV 

capable sensor (Happ et al. 2021, Helvey 2020). As such, future research should not only 

incorporate extensive model training, but explore the applications of multispectral sensors in the 

object detection and classification of both live and dead birds and bats in aerial imagery. 

Additionally, automation of waterfowl pair surveys has potential utility for both pre-construction 

monitoring at energy facilities, along with improving the efficiency and accuracy of historic 

surveys such as the Waterfowl Breeding Population Survey and Four-Square Mile Survey. 

Further exploration of image reviewer biases may help refine training datasets for improved 

validation results. 

 



103 

 

Many ecological surveys are rapidly transitioning from human observers to the automation of 

remotely captured imagery. While most efforts have focused on camera trapping or large 

mammals thus far (Lenzi et al. 2023, Vélez et al. 2023), our research has shown potential for its 

application on a multitude of bird and bat species ranging from small to large in a post-

construction monitoring scenario but leaves room for improvement. While object detection of 

wildlife is largely the most important element of pre- and post-construction monitoring at wind 

energy facilities, species identification may lead to early warning triggers of potentially sensitive 

and covered species such as the Indiana bat (Myotis sodalis), northern long-eared bat (Myotis 

septentrionalis), or bald eagle (Haliaeetus leucocephalus). As such, additional construction and 

fine tuning of a CNN, and further exploration of image enhancement, may prove to be a useful 

and reliable tool for monitoring wildlife at energy facilities, with applications to additional 

sectors such as transportation that have potentially deleterious impacts on wildlife. 
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APPENDIX A. Causes for false positives and corresponding classification and confidence levels 

outputs from a convolutional neural network trained to identify bird and bat carcasses for post -

construction monitoring in landscapes common to North Dakota (i.e., cropland, pasture, 

dirt/gravel). 

Cause of False Positive CNN Classification Output CNN Confidence Output 

Cooler Snowy Owl 90.75 

Cooler Snowy Owl 90.13 

Cooler Snowy Owl 84.23 

Dirt American Bittern 91.38 

Dirt American Bittern 88.03 

Dirt American Bittern 85.61 

Dirt American Bittern 82.51 

Dirt American Bittern 82.47 

Dirt American Bittern 81.27 

Dirt American Bittern 80.5 

Dirt Big Brown Bat 80.72 

Dirt Cedar Waxwing 92.27 

Dirt Cooper's Hawk 86.62 

Dirt European Starling 99.89 

Dirt European Starling 99.83 

Dirt European Starling 98.87 

Dirt European Starling 98.08 

Dirt European Starling 91.54 
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Dirt European Starling 90.76 

Dirt European Starling 88.93 

Dirt European Starling 83.4 

Dirt European Starling 83.32 

Dirt European Starling 82.39 

Dirt European Starling 82.13 

Dirt Hoary Bat 93.57 

Dirt Hoary Bat 80.63 

Dirt Hoary Bat 80.22 

Dirt Mallard 91.59 

Dirt Peregrine Falcon 86.85 

Dirt Red-winged Blackbird 98.68 

Dirt Red-winged Blackbird 95.91 

Dirt Rock Pigeon 87.97 

Dirt Rock Pigeon 86.55 

Dirt Silver-haired Bat 89.36 

Dirt Silver-haired Bat 83.36 

Dirt Yellow-bellied Sapsucker 97.75 

Dirt Yellow-bellied Sapsucker 94.9 

Dirt Yellow-bellied Sapsucker 86.22 

Dirt Yellow-headed Blackbird 93.38 

Fence Ferruginous Hawk 99.1 

Fence Ferruginous Hawk 93.12 
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Fence Ferruginous Hawk 83.11 

Fence Great Horned Owl 89.29 

Fence Great Horned Owl 82.94 

Garbage Black-crowned Night Heron 83.64 

Garbage Blue-winged Teal 80.68 

Garbage Gadwall 96.74 

Garbage Sharp-tailed Grouse 80.96 

Garbage Snowy Owl 98.94 

Garbage Snowy Owl 89.53 

Glare Pine Grosbeak 92.15 

GPS Garbage 95.98 

GPS Red-winged Blackbird 83.21 

Helipad European Starling 97.39 

Helipad Garbage 94.82 

Helipad Great Horned Owl 87.19 

Helipad Ring-necked Pheasant 92.93 

Helipad Ring-necked Pheasant 90.5 

Helipad Snowy Owl 98.25 

Helipad Snowy Owl 95.54 

Helipad Snowy Owl 89.81 

Helipad Snowy Owl 89.1 

Helipad Snowy Owl 87.58 

Human American Bittern 88.62 
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Human American Bittern 94.3 

Human American Bittern 86.67 

Human Black-crowned Night Heron 97.95 

Human Black-crowned Night Heron 94.39 

Human Black-crowned Night Heron 93.07 

Human Black-crowned Night Heron 92.81 

Human Black-crowned Night Heron 91.09 

Human Black-crowned Night Heron 87.36 

Human Black-crowned Night Heron 85.94 

Human Black-crowned Night Heron 85.92 

Human Black-crowned Night Heron 85.9 

Human Black-crowned Night Heron 82.68 

Human Black-crowned Night Heron 81.62 

Human Black-crowned Night Heron 81 

Human Blue-winged Teal 96.38 

Human Blue-winged Teal 83.32 

Human Blue-winged teal 83.3 

Human Bufflehead 94.97 

Human Bufflehead 83.65 

Human Bufflehead 80.02 

Human European Starling 95.25 

Human European Starling 85.72 

Human Ferruginous Hawk 97.31 
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Human Ferruginous Hawk 93.77 

Human Ferruginous Hawk 90.75 

Human Ferruginous Hawk 87.97 

Human Gadwall 98.88 

Human Gadwall 98.87 

Human Gadwall 97.99 

Human Gadwall 96.15 

Human Gadwall 96.11 

Human Gadwall 95.02 

Human Gadwall 94.91 

Human Gadwall 92.48 

Human Gadwall 92.12 

Human Gadwall 91.83 

Human Gadwall 91.48 

Human Gadwall 91.39 

Human Gadwall 90.05 

Human Gadwall 88.96 

Human Gadwall 88.41 

Human Gadwall 88.18 

Human Gadwall 88.05 

Human Gadwall 87.9 

Human Gadwall 87.56 

Human Gadwall 87.33 
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Human Gadwall 85.67 

Human Gadwall 85.09 

Human Gadwall 84.82 

Human Gadwall 84.53 

Human Gadwall 83.05 

Human Gadwall 82.47 

Human Gadwall 82.33 

Human Garbage 99.95 

Human Garbage 99.37 

Human Garbage 98.79 

Human Garbage 98.15 

Human Garbage 97.49 

Human Garbage 97.04 

Human Garbage 95.46 

Human Garbage 95.18 

Human Garbage 94.18 

Human Garbage 93.91 

Human Garbage 93.1 

Human Garbage 93.07 

Human Garbage 92.64 

Human Garbage 91.77 

Human Garbage 90.23 

Human Garbage 90.02 
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Human Garbage 89.68 

Human Garbage 89.04 

Human Garbage 87.14 

Human Garbage 86.49 

Human Garbage 84.93 

Human Garbage 84.88 

Human Garbage 83.22 

Human Garbage 83.07 

Human Garbage 82.55 

Human Garbage 82.38 

Human Garbage 82.25 

Human Garbage 80.52 

Human Garbage 78.21 

Human Herring Gull 95.85 

Human Mallard 99.94 

Human Mallard 99.7 

Human Mallard 99.46 

Human Mallard 99.01 

Human Mallard 99.01 

Human Mallard 98.98 

Human Mallard 98.86 

Human Mallard 98.83 

Human Mallard 97.9 
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Human Mallard 97.66 

Human Mallard 97.47 

Human Mallard 97.47 

Human Mallard 97.29 

Human Mallard 96.25 

Human Mallard 95.83 

Human Mallard 95.8 

Human Mallard 95.59 

Human Mallard 95.13 

Human Mallard 94.26 

Human Mallard 94.06 

Human Mallard 93.95 

Human Mallard 93.71 

Human Mallard 93.15 

Human Mallard 93.05 

Human Mallard 92.67 

Human Mallard 92.33 

Human Mallard 92.22 

Human Mallard 91.82 

Human Mallard 91.18 

Human Mallard 90.75 

Human Mallard 90.61 

Human Mallard 90.29 



113 

 

Human Mallard 90.13 

Human Mallard 90.11 

Human Mallard 89.96 

Human Mallard 89.84 

Human Mallard 89.75 

Human Mallard 89.58 

Human Mallard 89.08 

Human Mallard 88.91 

Human Mallard 88.75 

Human Mallard 88.4 

Human Mallard 86.67 

Human Mallard 86.33 

Human Mallard 86.21 

Human Mallard 86.07 

Human Mallard 85.77 

Human Mallard 85.56 

Human Mallard 85.01 

Human Mallard 85 

Human Mallard 84.86 

Human Mallard 84.22 

Human Mallard 83.94 

Human Mallard 83.41 

Human Mallard 83.28 
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Human Mallard 83.2 

Human Mallard 83.14 

Human Mallard 82.9 

Human Mallard 82.36 

Human Mallard 82.17 

Human Mallard 81.74 

Human Ring-necked Pheasant 95.34 

Human Ring-necked Pheasant 87.18 

Human Ring-necked Pheasant 80.71 

Human Rock Pigeon 87.56 

Human Rock Pigeon 85.52 

Human Snowy Owl 99.96 

Human Snowy Owl 99.94 

Human Snowy Owl 99.61 

Human Snowy Owl 99.24 

Human Snowy Owl 98.26 

Human Snowy Owl 97.42 

Human Snowy Owl 96.17 

Human Snowy Owl 95.82 

Human Snowy Owl 95.72 

Human Snowy Owl 95.53 

Human Snowy Owl 95.5 

Human Snowy Owl 95.36 
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Human Snowy Owl 95.17 

Human Snowy Owl 94.11 

Human Snowy Owl 93.76 

Human Snowy Owl 93.18 

Human Snowy Owl 92.63 

Human Snowy Owl 92.24 

Human Snowy Owl 91.74 

Human Snowy Owl 91.64 

Human Snowy Owl 91.16 

Human Snowy Owl 91.15 

Human Snowy Owl 89.32 

Human Snowy Owl 89.17 

Human Snowy Owl 89.14 

Human Snowy Owl 88.86 

Human Snowy Owl 87.48 

Human Snowy Owl 86.88 

Human Snowy Owl 86.51 

Human Snowy Owl 85.44 

Human Snowy Owl 84.74 

Human Snowy Owl 84.22 

Human Snowy Owl 83.39 

Human Snowy Owl 83.28 

Human Snowy Owl 82.37 
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Human Snowy Owl 81.83 

Human Snowy Owl 81.1 

Human Snowy Owl 80.03 

Ice Ferruginous Hawk 98.14 

Ice Ferruginous Hawk 92.51 

Ice Ferruginous Hawk 83.96 

Ice Hoary Bat 83.19 

Ice Hoary Bat 81.67 

Ice Snowy Owl 86.8 

Landscaping Cloth Great Horned Owl 99.22 

Landscaping Cloth Great Horned Owl 96.93 

Landscaping Cloth Great Horned Owl 92.5 

Landscaping Cloth Great Horned Owl 92.31 

Landscaping Cloth Great Horned Owl 84.71 

Landscaping Cloth Great Horned Owl 80.49 

Landscaping Cloth Harris's Sparrow 88.6 

Leaf Blue-winged Teal 98.03 

Leaf Brown-headed Cowbird 90.53 

Leaf Cedar Waxwing 92.02 

Leaf Common Yellowthroat 98.11 

Leaf Dark-eyed Junco 82.61 

Leaf Eastern Red Bat 87.65 

Leaf European Starling 84.91 
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Leaf Fox Sparrow 97.26 

Leaf Fox Sparrow 97.04 

Leaf Fox Sparrow 93.18 

Leaf Fox Sparrow 90.97 

Leaf Fox Sparrow 81.19 

Leaf Garbage 96.38 

Leaf Harris's Sparrow 96.83 

Leaf Hoary Bat 94.76 

Leaf Hoary Bat 89.7 

Leaf Hoary Bat 86.43 

Leaf Hoary Bat 83.59 

Leaf Hoary Bat 83.38 

Leaf House Sparrow 91.11 

Leaf Northern Flicker 87.06 

Leaf Pine Grosbeak 86.91 

Leaf Swainson's Thrush 89 

Leaf Yellow-bellied Sapsucker 85.66 

Leaf Yellow-bellied Sapsucker 83.76 

Plastic Bag Snowy Owl 98.17 

Puddle Mallard 91.39 

Rock American Redstart 92.33 

Rock American Redstart 90.15 

Rock Barn Swallow 97.69 
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Rock Barn Swallow 92.94 

Rock Barn Swallow 88.35 

Rock Barn Swallow 85.16 

Rock Barn Swallow 83 

Rock Barn Swallow 81.17 

Rock Barn Swallow 80.23 

Rock Black-crowned Night Heron 93.75 

Rock Blue-winged Teal 98.12 

Rock Blue-winged Teal 92.89 

Rock Blue-winged Teal 89.5 

Rock Bufflehead 98.21 

Rock Bufflehead 80.11 

Rock Dark-eyed Junco 81.09 

Rock Eastern Red Bat 99.4 

Rock Eastern Red Bat 95 

Rock Garbage 98.47 

Rock Garbage 95.11 

Rock Garbage 93.78 

Rock Garbage 85.03 

Rock Garbage 82.73 

Rock Hoary Bat 97 

Rock Mourning Dove 90 

Rock Ring-necked Pheasant 87.08 
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Rock Silver-haired Bat 90.46 

Rock Swainson's Thrush 98.66 

Rock Swainson's Thrush 87.07 

Sandbags Black-crowned Night Heron 95.24 

Sandbags Snowy Owl 99.99 

Sandbags Snowy Owl 99.98 

Sandbags Snowy Owl 99.98 

Sandbags Snowy Owl 99.77 

Sandbags Snowy Owl 99.74 

Sandbags Snowy Owl 99.3 

Sandbags Snowy Owl 99.27 

Sandbags Snowy Owl 99.14 

Sandbags Snowy Owl 98.66 

Sandbags Snowy Owl 98.55 

Sandbags Snowy Owl 98.47 

Sandbags Snowy Owl 98.24 

Sandbags Snowy Owl 88.91 

Sandbags Snowy Owl 86.82 

Shadow American Coot 95.54 

Shadow American Coot 92.47 

Shadow American Coot 92.03 

Shadow American Coot 91.91 

Shadow American Coot 90.46 
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Shadow American Coot 85.22 

Shadow American Redstart 94.06 

Shadow Brown-headed Cowbird 96.94 

Shadow Brown-headed Cowbird 80.92 

Shadow European Starling 95.77 

Shadow European Starling 94.65 

Shadow European Starling 94.59 

Shadow European Starling 91.13 

Shadow European Starling 88.86 

Shadow European Starling 88.76 

Shadow European Starling 86.9 

Shadow European Starling 86.42 

Shadow European Starling 84.38 

Shadow Ferruginous Hawk 97.36 

Shadow Gadwall 86.15 

Shadow Garbage 99 

Shadow Garbage 97.19 

Shadow Garbage 94.78 

Shadow Garbage 91.93 

Shadow Garbage 91.81 

Shadow Garbage 88.4 

Shadow Garbage 88.35 

Shadow Garbage 85.3 



121 

 

Shadow Garbage 81.57 

Shadow Garbage 80.12 

Shadow Great Horned Owl 92.82 

Shadow Great Horned Owl 91.81 

Shadow Harris's Sparrow 93.21 

Shadow Harris's Sparrow 89.92 

Shadow Hoary Bat 93.15 

Shadow Little Brown Bat 91.16 

Shadow Ovenbird 93.65 

Shadow Red-tailed Hawk 95.01 

Shadow Red-tailed Hawk 94.64 

Shadow Red-tailed Hawk 82.42 

Shadow Red-winged Blackbird 99.66 

Shadow Red-winged Blackbird 94.42 

Shadow Red-winged Blackbird 91.29 

Shadow Red-winged Blackbird 91.25 

Shadow Red-winged Blackbird 88.18 

Shadow Red-winged Blackbird 87.32 

Shadow Red-winged Blackbird 86.36 

Shadow Red-winged Blackbird 85.95 

Shadow Rock Pigeon 86.53 

Shadow Rock Pigeon 85.34 

Shadow Silver-haired Bat 98.64 
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Shadow Silver-haired Bat 93.54 

Shadow Silver-haired Bat 91.95 

Shadow Silver-haired Bat 84.32 

Shadow Snowy Owl 99.63 

Shadow Wood Duck 88.18 

Shadow Wood Duck 81.32 

Shadow Yellow Warbler 84.15 

Shadow Yellow-headed Blackbird 96.65 

Shadow Yellow-headed Blackbird 96.06 

Shadow Yellow-headed Blackbird 95.7 

Shadow Yellow-headed Blackbird 95.55 

Shadow Yellow-headed Blackbird 92.17 

Shadow Yellow-headed Blackbird 89.14 

Shadow Yellow-headed Blackbird 86.51 

Shadow Yellow-headed Blackbird 85.17 

Shadow Yellow-headed Blackbird 85.16 

Shadow Yellow-headed Blackbird 84.52 

Shadow Yellow-headed Blackbird 84.23 

Shadow Yellow-headed Blackbird 83.19 

Snow Black-crowned Night Heron 91.02 

Snow Black-crowned Night Heron 90.19 

Snow European Starling 86.31 

Snow Ferruginous Hawk 98.08 
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Snow Ferruginous Hawk 95.72 

Snow Ferruginous Hawk 91.61 

Snow Ferruginous Hawk 87.69 

Snow Ferruginous Hawk 85.74 

Snow Ferruginous Hawk 83.49 

Snow Ferruginous Hawk 83.46 

Snow Ferruginous Hawk 83.12 

Snow Ferruginous Hawk 82.75 

Snow Ferruginous Hawk 82.3 

Snow Franklins Gull 97.35 

Snow Franklins Gull 95 

Snow Franklins Gull 88.22 

Snow Gadwall 82.43 

Snow Garbage 98.34 

Snow Garbage 97.94 

Snow Garbage 95.08 

Snow Garbage 92.34 

Snow Garbage 90.2 

Snow Garbage 90.02 

Snow Garbage 87 

Snow Garbage 86.96 

Snow Garbage 84.81 

Snow Garbage 83.26 
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Snow Garbage 81.36 

Snow Garbage 80.57 

Snow Garbage 80.24 

Snow Great Horned Owl 89.23 

Snow Great Horned Owl 82.39 

Snow Great Horned Owl 81.14 

Snow Other Songbird 91.27 

Snow Other Songbird 87.02 

Snow Other Songbird 84.76 

Snow Other Songbird 80.7 

Snow Pine Grosbeak 99.29 

Snow Pine Grosbeak 98.87 

Snow Pine Grosbeak 95.59 

Snow Pine Grosbeak 90.55 

Snow Pine Grosbeak 88.6 

Snow Red-tailed Hawk 86.1 

Snow Sharp-tailed Grouse 85.32 

Snow Sharp-tailed Grouse 82.4 

Snow Snowy Owl 99.28 

Snow Snowy Owl 98.11 

Snow Snowy Owl 97.6 

Snow Snowy Owl 96.92 

Snow Snowy Owl 94.6 
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Snow Snowy Owl 92.78 

Snow Snowy Owl 92.49 

Snow Snowy Owl 92.48 

Snow Snowy Owl 91.54 

Snow Snowy Owl 91.03 

Snow Snowy Owl 87.99 

Snow Snowy Owl 86.25 

Snow Snowy Owl 85.91 

Snow Snowy Owl 85.78 

Snow Snowy Owl 85.16 

Snow Snowy Owl 84.65 

Snow Snowy Owl 83.6 

Snow Snowy Owl 83.35 

Snow Snowy Owl 83.18 

Snow Snowy Owl 81.54 

Snow Snowy Owl 80.05 

Snow Snowy Owl 80.05 

Stick Barn Swallow 99.57 

Stick Barn Swallow 93.85 

Stick Garbage 97.68 

Stick Swainson's Thrush 91.04 

Tarp Snowy Owl 96.07 

Tarp Snowy Owl 87.3 
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Tree Cooper's Hawk 83.31 

Tree Ferruginous Hawk 83.65 

Tree Harris's Sparrow 99.44 

Tree Harris's Sparrow 91.94 

Tree Red-tailed Hawk 93.07 

Tree Wood Duck 83.58 

Tree Wood Duck 82.72 

Vegetation American Redstart 86.03 

Vegetation American Redstart 86.02 

Vegetation Barn Swallow 92.41 

Vegetation Common Yellowthroat 93.16 

Vegetation Eastern Red Bat 94.6 

Vegetation Eastern Red Bat 93.73 

Vegetation Eastern Red Bat 86.22 

Vegetation Eastern Red Bat 81.18 

Vegetation Eastern Red Bat 80.73 

Vegetation Eastern Red Bat 80.63 

Vegetation European Starling 98.05 

Vegetation European Starling 95.11 

Vegetation European Starling 92.81 

Vegetation European Starling 86.08 

Vegetation Fox Sparrow 97.28 

Vegetation Fox Sparrow 96.02 



127 

 

Vegetation Fox Sparrow 80.8 

Vegetation Franklin's Gull 84.14 

Vegetation Garbage 94.16 

Vegetation Garbage 88.16 

Vegetation Great Horned Owl 86.42 

Vegetation Great Horned Owl 84.4 

Vegetation Hermit Thrush 94.63 

Vegetation Hermit Thrush 93.33 

Vegetation Hermit Thrush 89.99 

Vegetation Hoary Bat 96.15 

Vegetation Hoary Bat 95.16 

Vegetation Hoary Bat 89.43 

Vegetation Hoary Bat 87.38 

Vegetation Hoary Bat 82.2 

Vegetation Hoary Bat 81.47 

Vegetation House Sparrow 84.31 

Vegetation Little Brown Bat 93.83 

Vegetation Northern Flicker 84.8 

Vegetation Ovenbird 86.18 

Vegetation Peregrine Falcon 82.31 

Vegetation Ring-necked Pheasant 93.19 

Vegetation Ring-necked Pheasant 86.89 

Vegetation Tree Swallow 90.6 
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Vegetation White-throated Sparrow 86.79 

Vegetation Wood Duck 87.24 

Vegetation Yellow Warbler 92.8 

Vegetation Yellow Warbler 87.56 

Vegetation Yellow-headed Blackbird 95.7 

Vegetation Yellow-headed Blackbird 94.4 

Vegetation Yellow-headed Blackboard 94.78 

Vehicle Snowy Owl 96.01 

Vehicle Snowy Owl 82.39 

Wood Ferruginous Hawk 90.47 

Wood Red-tailed Hawk 94.58 

Wood Red-tailed Hawk 91.72 
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APPENDIX B. Species and total image counts used for the training and validation stages of 

building a convolutional neural network for post-construction mortality monitoring.  

Species Training Images Validation Images 

 Brown Model 

American bittern (Botaurus lentiginosus) 20 6 

American coot (Fulica americana) 17 3 

American redstart (Setophaga ruticilla) 23 4 

American woodcock (Scolopax minor) 13 3 

Barn swallow (Hirundo rustica) 5 1 

Big brown bat (Eptesicus fuscus) 17 1 

Black-crowned night-heron (Nycticorax nycticorax) 34 5 

Blue-winged teal (Spatula discors) 60 13 

Brown-headed cowbird (Molothrus ater) 22 3 

Bufflehead (Bucephala albeola) 29 8 

Cedar waxwing (Bombycilla cedrorum) 13 2 

Chestnut-collared longspur (Calcarius ornatus) 3 1 

Common redpoll (Acanthis flammea) 5 1 

Common yellowthroat (Geothlypis trichas) 7 1 

Cooper’s hawk (Accipiter cooperii) 28 8 

Dark-eyed junco (Junco hyemalis) 40 10 

Eastern red bat (Lasiurus borealis) 50 13 

European starling (Sturnus vulgaris) 21 5 

Ferruginous hawk (Buteo regalis) 25 7 
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Fox sparrow (Passerella iliaca) 25 2 

Franklin’s gull (Leucophaeus pipixcan) 42 12 

Gadwall (Mareca strepera) 26 7 

Garbage 667 161 

Great horned owl (Bubo virginianus) 41 9 

Harris’s sparrow (Zonotrichia querula) 5 2 

Hermit thrush (Catharus guttatus) 5 10 

Herring gull (Larus argentatus) 33 5 

Hoary bat (Lasiurus cinereus) 66 17 

House sparrow (Passer domesticus) 1 0 

Little brown bat (Myotis lucifugus) 4 1 

Mallard (Anas platyrhynchos) 87 19 

Mourning dove (Zenaida macroura) 37 10 

Northern flicker (Colaptes auratus) 43 13 

Northern shoveler (S. clypeata) 20 5 

Other songbird 2 0 

Ovenbird (Seiurus aurocapilla) 23 6 

Peregrine falcon (Falco peregrinus) 20 5 

Pine grosbeak (Pinicola enucleator) 4 1 

Red-headed woodpecker (Melanerpes 

erythrocephalus) 

18 6 

Red-tailed hawk (Buteo jamaicensis) 20 6 

Red-winged blackbird (Agelaius phoeniceus) 15 7 
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Ring-billed gull (Larus delawarensis) 20 5 

Ring-necked pheasant (Phasianus colchicus) 42 14 

Rock pigeon (Columba livia) 20 2 

Savannah sparrow (Passerculus sandwichensis) 3 1 

Sharp-tailed grouse (Tympanuchus phasianellus) 21 7 

Silver-haired bat (Lasionycteris noctivagans) 37 12 

Snowy owl (Bubo scandiacus) 35 10 

Swainson’s thrush (Catharus ustulatus) 11 3 

Tree swallow (Tachycineta bicolor) 1 0 

White-throated sparrow (Zonotrichia albicollis) 38 10 

Wood duck (Aix sponsa) 7 2 

Yellow-bellied sapsucker (Sphyrapicus varius) 9 1 

Yellow-headed blackbird (Xanthocephalus 

xanthocephalus) 

16 6 

Yellow warbler (Setophaga petechia) 19 6 

 Green Model 

American white pelican (Pelecanus 

erythrorhynchos) 

13 3 

Garbage 289 72 

Rock pigeon 6 2 
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