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ABSTRACT 

 

Automatic Dependent Surveillance-Broadcast (ADS-B) is an alternative technology 

adopted by the FAA instead of ground radar to enhance accurate navigation by relying on 

GPS satellites for precise aircraft position information. Factors such as jamming, multipath 

fading, and solar activities influence GPS data integrity issues, causing dropouts or missing 

data, thus affecting flight safety and navigational accuracy. To mitigate such potential GPS 

dropout-related incidents, there is a need for robust data-driven models. This thesis focuses 

on multiple studies: (1) investigate five distinct machine learning (ML) models to impute 

missing data on ADS-B/GPS information; (2) design a federated learning (FL) framework 

for aviation network data; and (3) conduct a benchmarking study to validate multiple 

quality attributes for the proposed aviation Fed-CPS framework. Preliminary results 

indicate (a) k-NN yields better accuracy over other ML models (Bayesian Ridge, Random 

Forest, AdaBoost, Extra Tree, and k-NN) even at the highest missing rate of 30%; (b) 

deployment of LSTM and k-Means in a federated setting indicate that LSTM results in 

both MAPE and computation run-time savings. Specifically, LSTM shows (i) 

performance-per-dollar of 1.5 times (client) and 0.5 times (server) than k-Means and (ii) 

energy-efficiency-per-watt of 1.5 times (client) and 0.5 times (server) than k-Means. 
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CHAPTER I  

INTRODUCTION 

1.1. Motivation and Problem Statement  

Cyber-Physical Systems (CPS) are intelligent systems integrating physical devices with 

computational components to enable real-time monitoring and control, which provides more 

scalable, safe, secure, and robust systems. Before CPS, these systems used to run independently 

with little or no connectivity, making it challenging to make decisions and carry out tasks 

efficiently [1]. The main characteristic of CPS is the seamless exchange of data between multiple 

systems that need to detect and act upon environmental changes quickly and accurately in real time 

to achieve a particular goal. 

 

CPS requires complex design, testing, and monitoring while managing complexity to deliver 

effective performance with redundancy, fault tolerance, and reliable communication. Moreover, 

CPS should use standardized protocols and interfaces created with interoperability to exchange 

information with other systems or devices [2], [3]. CPS is used in several domains, including 

manufacturing, healthcare, transportation, and energy. 

 

Figure 1 shows the components associated with CPS for aviation. These components are 

interconnected to enhance routine maintenance, reduce maintenance expenses, decrease fuel costs, 

and increase flight safety. One of the key avionics systems important for flight safety and 

navigational accuracy is the Global Positioning System (GPS). 
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Figure 1. Components of aviation network-related Cyber-Physical Systems. 

 

GPS is a navigational system that uses satellites to help find the device location. It operates based 

on the principle of trilateration, where GPS receivers measure its distance from multiple satellites 

to determine its location accurately [4]. Figure 2 highlights some applications that use GPS in 

aviation, including Flight Management Systems, Weather and Environment Monitoring, Auto-Pilot 

and Flight Control Systems, Search and Rescue, and Collision Avoidance (ADS-B) [5]. As the 

number of commercial and private airlines increased, the Federal Aviation Administration (FAA) 

introduced a new technology called Automatic Dependent Surveillance-Broadcast (ADS-B). This 

technology uses GPS and onboard sensors to accurately determine the location of aircraft to 

enhance the flight safety. However, despite these advancements, there are various reasons that can 

cause data integrity issues. Addressing these challenges is essential for maintaining the 

effectiveness of ADS-B and, in turn, enhancing flight safety and navigational accuracy. 
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Figure 2. Importance of GPS in aviation. 

 

1.2. Research Questions 

The aviation industry heavily relies on the GPS and several factors contribute to data integrity 

issues, disrupting flight safety. Thus, this thesis focuses on hypothesis (H0) aimed to investigate 

whether machine learning-based imputation and Federated Learning framework aids in solving 

GPS/ADS-B integrity issues. The research will primarily address two problem statements: 

1. How can advanced ML-based techniques be effectively utilized to impute the missing data 

in GPS/ADS-B system?  

2. In what ways can the Federated Learning framework enhance the privacy and improve the 

flight safety and navigational accuracy? 
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1.3. Organization of the Thesis 

The outline of this thesis is as follows: 

Chapter II provides an overview of the ADS-B, including the ADS-B data format and associated 

vulnerabilities. A broad review is conducted to assess the vulnerabilities present in the ADS-B. 

 

Chapter III investigates the reasons for GPS integrity and the importance of imputation to avoid 

potential collision incidents. This chapter also highlights the importance of imputation by 

demonstrating the use of ML algorithms to predict the missing data at different missing rates 

ranging from 10% to 30% on the ADS-B/GPS dataset. 

 

Chapter IV overviews how the aviation landscape continues to evolve and the significance of 

simulation in this modern air traffic system. Thus, this chapter discusses the state-of-the art review 

on existing architecture frameworks used in aviation and different domains. Finally introduces the 

design of a Federated Learning framework for aviation network data.  

 

Chapter V provides the practical implementation of the architecture mentioned above in a 

simulation environment and conduct a benchmark to validate multiple quality attributes for the 

proposed aviation Fed-CPS framework. 

 

Chapter VI concludes by providing future work and open research directions. 
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CHAPTER II  

BACKGROUND AND OVERVIEW OF ADS-B 

2.1. Background of ADS-B 

Before ADS-B was rolled out, the aircraft depended on the Primary Surveillance Radar (PSR), 

which uses radio waves sent out in a specific direction. When encountering an aircraft, it bounces 

back if it is in operating range. The time difference between transmission and reception is 

considered to determine the distance. Furthermore, Secondary Surveillance Radar (SSR) is an 

advanced RADAR system used to collect additional information, such as the identification code 

of aircraft (transponder code) and altitude. This information is then sent to the Air Traffic System 

(ATS) to identify aircraft and manage air traffic more effectively. The transition from Radio 

Detection and Ranging (RADAR) to ADS-B as a primary source for surveillance has significantly 

improved aviation safety, real-time tracking, and effective ground operations [6]–[8]. 

 

ADS-B largely depends on the Global Navigation Satellite System (GNSS) and other sensors to 

determine the aircraft location. Unique aircraft id, altitude, and additional critical information are 

transmitted at 1Hz [9] to nearby planes and ground air traffic control (ATC). Therefore, it improves 

air-traffic surveillance by providing higher accuracy, enhancing the situational awareness, and 

decreasing the risk of mid-air collisions compared to PSR and SSR. It also aids in preventing 

runway incursions and enables more precision of ATC management, especially in remote regions 

lacking radar coverage. Consequently, the ATC system can now effectively handle large volumes 

of aircraft, facilitating the implementation of optimized departures and arrival procedures. The 

rapid advancements in artificial intelligence (AI) have led to the utilization of ML models in 

forecasting flight trajectories [10]–[16], and fuel and emissions evaluation [17]–[19]. 
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2.2. ADS-B Categories 

ADS-B is categorized as ADS-B Out and In, as shown in Figure 3. The Extended Squitter (ES) 

and the Universal Access Transceiver (UAT) are the two ways that ADS-B Out transmits data. 

The purpose of it is to broadcast aircraft metadata, including flight unique identification number, 

position information (latitude, longitude, altitude), and velocity. All the aircraft must mandatorily 

have ADS-B Out and transmit data either through the 1090MHz frequency spectrum for aircraft 

operating in Class A airspace anywhere in the world or the 978MHz frequency when aircraft 

operating below Class A airspace within the United States only. Meanwhile, the aircraft having 

optional ADS-B In, will obtain information from nearby operating aircraft in that region. 

 

2.3. Understanding of ADS-B Message Structure 

The structure of the ADS-B 1090ES message is shown in Figure 4. It consists of five fields, with 

a length of 112 bits, described below:  

• Downlink format (DF) – This determines the type of message. All the ADS-B 

transponders will use the download format beginning with a decimal value of 17 (i.e., 

10001 in binary). In contrast, the non-transponder-based ADS-B starts with a decimal value 

of 18 (i.e., 10010 in binary). 

• Transponder Capability (CA) – This indicates the capabilities of the transponder level, 

either airborne or on-ground status. 

• International Civil Aviation Organization (ICAO) – a distinct aircraft identification 

code (hex code) given to each aircraft.  

• Message Extended Squitter (ME) – The field contains data about the aircraft, including 

its surface position, altitude, velocity, and status.  
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• Parity Field (PE) – It holds 24-bit cyclic redundancy check (CRC) information to identify 

whether messages are corrupted. 

 

 

Figure 3. An Overview of the ADS-B and GPS communication between aircraft, ATC, and 

UAV. 

 

 

Figure 4. ADS-B data packet layout. 
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2.4. Vulnerabilities in ADS-B 

ADS-B data packets are intended to be transmitted at 1Hz, but "dropouts" or incomplete 

transmissions might occur occasionally [9]. Several potential causes exist for these problems, 

including GPS receiver issues, faulty ADS-B transceivers, or other issues [20]. Another possible 

factor is the security risks associated with its open and unencrypted broadcasting within a known 

frequency range, exposing well-known data formats. This could potentially lead to passive or 

active attacks, originating from within and outside the ATC system. Active attacks include 

intentional or unintentional interference [21]–[23] as well as jamming, spoofing, or message 

deletion or modification [24]–[29]. Passive attacks, such as eavesdropping, involve attempts to 

listen to the ADS-B messages of an individual aircraft without disrupting the system. This Table 

1 indicates how ADS-B messages can be attacked and the consequences of doing so. 

 

Table 1. Different Attacks in the ADS-B Data Packets 

Attack Types Impacts References 

Spoofing 

• Broadcasting falsified ADS-B information that can result in 

mid-air collision or other dangerous situations. 

• Impersonating the identity of a genuine aircraft. 

• Capturing the ADS-B data and then replaying it. 

[30]–[32] 

Jamming • Disrupting the broadcasting of ADS-B data within a 

designated airspace. 
[33] 

Message 

Manipulation 

(or) Deletion 

• Manipulate the ADS-B data for a single or multiple aircraft. 

• Removal of specific or entire ADS-B data for certain 

regions. 

[34], [35] 

Eavesdropping 
• Listening to the ADS-B data on aircraft or airspace, 

specifically military aircraft. 
[36] 
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Wireless technologies are heavily used in modern aviation for communication. And the fact that 

ADS-B communicates with ATC in an unencrypted way makes the ADS-B protocol vulnerable. 

Software Defined Radio (SDR) is widely adopted method for transmission and reception of RF 

signals. Some of the popular SDRs include the HackRF One, USRP, and BladeRF. It is critical to 

identify any ADS-B flaws that might lead to GPS data integrity tampering. This information is 

critical for developing effective countermeasures and guaranteeing flight safety. The chapters that 

follow will go over the importance of machine learning (ML) and federated learning (FL) 

approaches in ensuring the safety and precision of GPS and ADS-B technologies. 
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CHAPTER III  

IMPUTING ADS-B/GPS DROPOUT USING MACHINE LEARNING 

3.1. Introduction 

The integrity of GPS signals can be susceptible to various factors, such as natural events, satellite-

related issues, environmental factors, defects, regulation challenges, and cyber threats, as 

illustrated in Figure 5. An example of such an incident happened with Cirrus Jet (ICAO - ad564c) 

near Savannah, Georgia, on February 26, 2022, where geo-altitude was not transmitting for about 

20 minutes, as shown in Figure 6 (highlighted in yellow). On October 18, 2022, a similar incident 

occurred with aircraft DAL 2439, which was en-route from Oklahoma to Austin, USA. During the 

flight, the barometric pressure data did not transmit for a duration of 15 minutes [37]. The ADS-

B/GPS messages should broadcast at 1Hz, but if there is a discontinuation, it is called an ‘ADS-B 

Dropout’ [9]. 

 

Figure 5. Categories of GPS Integrity challenges. 
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(a) Trajectory of the flight ICAO – ad564c 

 
(b) Missing data packets for geo-altitude for the flight ICAO – ad564c 

Figure 6. Data discrepancies captured in OpenSky Network on February 26, 2022. 
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The GPS positioning errors can vary significantly across different locations, resulting in 

incomplete or inaccurate information. To avoid potential collision incidents, it is necessary to 

implement robust Machine Learning (ML) algorithms that use patterns and impute trajectory 

points to maintain GPS integrity. 

 

In this chapter, we will discuss the importance of imputation and how to handle missing data. 

Additionally, we will analyze the dataset and the various ML algorithms used for imputing 

GPS/ADS-B parameters. Finally, the last section will focus on the results and conclusions from 

the imputation. 

 

3.2. Related Work 

Every real-world application has certain incompleteness in its data points, often known as ‘missing 

data’. Developing robust decision-making systems and providing accurate results in many study 

domains, such as medicine [38], engineering, and finance [39] is difficult when missing data exists. 

These frequently occur due to (i) measurement errors, (ii) inaccurate data entry, (iii) purposefully 

masking, (iv) equipment failure, or (v) cyberattacks. A thorough investigation of the patterns and 

characteristics is required to address these, which consumes time. Rubin [40] categorized the 

occurrence of missing data into (i) Missing Completely at Random (MCAR), (ii) Missing at 

Random (MAR), and (iii) Missing Not at Random (MNAR). The two common strategies for 

tackling missing information are deletion or imputation (filling in the gaps). Listwise or pairwise 

deletion strategies are mostly adopted, which involve the removal of the entire value or only a pair 

of columns that contain missing values [41]. However, these methods are feasible only when the 

proportion of missing entries is small [41]. Unfortunately, considering the importance of feature 
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columns, these approaches would limit the available data, resulting in inaccurate classification or 

prediction [41], [42]. Alternatively, statistical, ML-based, or DL-based approaches can be used to 

substitute the null records through imputation. Figure 7 summarizes the potential approaches to 

dealing with the missing data. 

 

3.2.1.  Statistical-based Imputation 

Single Imputation (SI) and Multiple Imputation (MI) are two types of imputation that fall in this 

Statistical-based Imputation. SI involves substituting the missing values using statistical 

approaches using mode [43], mean [44], median [45] or last observed carried forward (LOCF). In 

many studies, that is adopted only when the ratio of missing data is small numbers [46]. These 

methods frequently result in inaccurate distribution of the data points, which lowers the output 

quality. In MI, regression models are used to predict and impute missing values by considering all 

 

Figure 7. An Overview of handling missing data. 
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other variables. Multiple Imputation by Chained Equations (MICE) is an example of this category 

that uses this approach [47]. Expectation-Maximization (EM), an iterative two-step imputation 

procedure. In the first stage, the missing data is estimated by using the available information. Then, 

the model attempts to utilize maximum likelihood estimates on those values in the subsequent 

phase, and this procedure is continued until convergence is attained [48]. In the GNSS interference 

classification study to impute the multivariate time-series data, a combination of Autoregressive 

Integrated Moving Average (ARIMA) and EM was used to better estimate the missing values [49]. 

Most researchers initially adopted this method to do imputation [50], [51]. This imputation strategy 

has been observed to perform well with a smaller sample size [51]. 

 

3.2.2.  Machine Learning-based Imputation 

As ML gained attention, researchers started to apply iterative and regression-based approaches to 

impute the missing data [52], [53]. Some of the popular ML algorithms in imputation include 

Linear Regression (LR), Random Forest (RF), k-Nearest Neighbor (k-NN), and Support Vector 

(SV). RF is a well-known and popular supervised ML algorithm that aggregates the prediction 

results from various decision trees rather than using a single decision tree to produce accurate 

results [54]. A grid search was used in a study to determine the optimal combination of parameters 

in the RF for effectively handling missing values to achieve maximum accuracy [55]. In science 

and medicine, imputation techniques are applied to the liquid chromatography-mass spectrometry 

(LC-MS) dataset with varying percentages from 5% to 30% missing rates consisting of different 

imputation techniques - zero, minimum value, half of the minimum value, and mean imputation, 

and dimensionality reduction based-imputation - Singular Value Decomposition (SVD), 

Probabilistic Principal Component Analysis (PPCA), Bayesian Principal Component Analysis 

(BPCA), as well as supervised ML algorithms - RF and k-NN [56]. Because k-NN has a faster 
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computation time than tree-based methods, several researchers explored the modified k-NN 

algorithm. For instance, Grey-Based kNN Iteration Imputation (GBKII), a modified variant of k-

NN, was utilized as an alternative to the traditional Euclidean distance-based k-NN [57]. For the 

time-series dataset, gap-sensitive windowed kNN (GSW-kNN) was proposed for imputing on a 

traffic dataset [58]. On the contrary, Poulos and Valle [59] conducted a comparative analysis of 

LR and SV with k-NN and RF at different levels of MCAR and showcased that k-NN performed 

better. Additionally, Jadhav et al. carried out with only 10% to 50% missing rates, and their results 

demonstrated that k-NN outperforms all other ML models [60]. 

 

3.2.3.  Deep Learning-based Imputation 

Although ML algorithms have shown promising results, in recent years, Deep Learning (DL), a 

subfield of ML, has demonstrated significant promise in dealing with missing data across various 

fields. A Multi-Layer Perceptron (MLP) network is an example used in the energy management 

system and assessed with other machine learning models, showing that k-NN performed better 

during the peak hours and Linear Interpolation (LI) at off- and semi-peak hours [61], [62]. A Deep 

Neural Network (DNN) with the EM algorithm was utilized, and Root Mean Squared Error 

(RMSE) results showed different missing rates of 25%, 50%, and 75% [63]. Recurrent neural 

networks (RNNs) are also used in research when dealing with sequential time series [64], [65]. 

Due to challenges in the vanishing gradient points, a modified version called gated recurrent unit 

(GRU) was developed, which correlates well with target variables [64]. A modified version of this 

model, GRU-D, also demonstrated improved results but ended up with space and time complexity 

[64]. As a result, this algorithm works only on specific datasets based on the recent data point and 

the global average. To overcome this problem, Bidirectional Recurrent Imputation for Time Series 

(BRITS) is based on taking insights from forward and backward values was considered [66]. A 



30 

modified version of Bidirectional RNN was proposed, generating synthetic data using temporal 

and non-temporal information. Results showed a score above 50%, even with 90% missing rates, 

compared to other DL models as per reference [67]. 

 

In this chapter, we will gather the dataset of different flights of ADS-B/GPS data and introduce 

missing data at varying rates of 10%, 20%, and 30% through random sampling and use various 

ML algorithms, including Bayesian Ridge (BRR), Random Forest (RFR), AdaBoost (ABR), Extra 

Tree (ETR), and k-Nearest Neighbors (kNNR) for imputation. Our goal is to determine the most 

effective algorithm, even in situations involving significant amounts of missing data. 

 

3.3. Dataset Description 

In this section, we will discuss the details of the dataset, highlighting its key features. Additionally, 

the necessary steps required to improve the quality and relevance of the dataset through 

preprocessing will be addressed. 

 

3.3.1. Dataset Collection 

Data from the OpenSky Network was downloaded using a Python script [68]. This information 

was arranged by day and hour in each parquet file, a columnar storage file format optimized for 

big-data processing. The downloaded data was then organized daily and hourly in individual 

parquet files from February 19 to 27, 2022, containing six flights that resulted in approximately 

60,100 data points. Table 2 illustrates the features column used for this study and the corresponding 

sample data recorded for an aircraft in the OpenSky database. 
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Table 2. Dataset description of the OpenSky dataset 

Field Name Field Purpose 
Sample Data 

Format View 

time 
The Unix (epoch) timestamp that OpenSky ADS-B Receivers 

recorded when an aircraft was nearby. 
1479957078 

icao24 The 24-bit ICAO transponder ID to track aircraft. 780db8 

lat Last known latitude of the aircraft in decimal degrees. 118.59931 

lon Last known longitude of the aircraft in decimal degrees. 22.916793 

geo-altitude The actual height of aircraft above sea level in meters. 8839.2 

 

 

3.3.2. Dataset Preprocessing 

Pre-processing the data involves transforming the raw data into a more usable and effective format 

suitable for further processing steps. In this scenario, each flight is divided into individual trips as 

a part of the pre-processing step. A threshold limit of 15 minutes was chosen to define the trips, as 

the data obtained had challenges in accurately distinguishing between dropouts due to ADS-B 

receivers being turned off for shorter durations. The segmented trips of each flight were then saved 

as a separate parquet data file. These parquet data files containing each flight's trips were utilized 

to train the models. Figure 8 provides an overview of the ML framework for imputing ADS-B/GPS 

dropout data.  The initial phase is to import all the parquet files segmented based on trip intervals 

using pySpark. Pandas [69] is a popular Python data analysis and manipulation library. However, 

due to its single-threaded nature it faces performance-related issues, which constrain its ability to 

leverage multi-core processing for parallel task execution. As a result, pySpark [70] was chosen 

over other libraries [71]. Next, the data is cleaned to create a clean flight trip by eliminating 

duplicate entries. Then the missing values are introduced randomly from 10% to 30%. 
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Figure 8. Overview of ML framework. 

 

3.4. Machine Learning Models and Evaluation 

In this study, imputation is performed using scikit-learn [72], a well-known ML library. Five 

different regression machine learning models—BRR, RFR, ABR, ETR, and kNNR — are utilized 

for imputation, which uses Iterative Imputer [73] and kNNImputer [74] functionality. 

 

3.4.1. Bayesian Ridge Regression Imputation 

The Ordinary Least Squares (OLS) strategy is used to fit the model, and the error is minimized by 

adjusting the 𝑤 coefficients. 

𝑚𝑖𝑛 ∑ (𝑦𝑖 − 𝑤𝑇𝑥𝑖)
𝑀
𝑖=1   .… Equation 1 

 

Equation 2 shows the dependent variable (y), the coefficients (w) and M instances (xi). However, 

there are instances when this method overfits, thus overcoming this regularization (L2 

regularization) using a Gaussian distribution to lower the least-squares integrating regularization 

element [75]. Equation 3 represents the formulae for Bayesian Ridge Regression, where the X is 

the matrix of all instances. 
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𝑦 ∼ 𝒩(𝑤𝑇𝑋, 𝜎2) ….  Equation 3 

 

3.4.2. Random Forest Regression Imputation 

Random Forest for imputing missing information has gained attention in several disciplines. 

Several decision trees are created during training, based on the bootstrapping of the observed data 

samples. A random subset of features is selected during each split of individual decision tree. This 

is repeated until all the decision trees are generated with only observed data. These trees 

constructed from observed data are then used to replace these missing values [55].  

 

3.4.3. AdaBoost Regression Imputation 

AdaBoost (Adaptive Boosting) is another ensemble-based model that uses boosting to strengthen 

weak learners and produce more accurate regression results. Freund and Schapire introduced this 

first boosting ensemble model [76]. AdaBoost is sensitive to noise, but with repeated iterations, it 

may still strengthen poor learners. Similar to this, the performance of these weak learners is 

estimated after they are imputed iteratively. The final imputation stage is achieved through a 

weighted combination of the outputs from each weak model. 

 

3.4.4. Extremely Randomized Trees Regression Imputation 

 

Extremely Randomized Trees or Extra-Trees Regressor (ETR) is an ensemble approach and 

performs like a RF algorithm in which the trees are created based on random subsets of features 

that use a random threshold for each node split and finally combine to generate the output [77].  Its 

primary advantage over random forest is the reduction of bias and variance. 
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3.4.5. k-Nearest Neighbors Regression Imputation 

It is often called as “lazy learner” because it does not have any function to learn from training 

datasets but memorizes them instead. Using distance-based approaches, it estimates the empty 

records based on the difference between the target and the other values [57]. Below is the pseudo-

code for the k-NN imputation implementation. In our scenario, k-neighbors from are varied from 

1, 2, 3, 4, 5, 10, 20, 30, and 50 with weights as uniform and distance. 

 

3.5. Results 

To estimate the missing values for the three feature columns—latitude, longitude, and geo-altitude; 

the RFR, ABR, ETR with ‘n_estimators’ set to 10, 50, and 100. Additionally, the kNNR was 

applied with k values ranging from 1 to 50, using both uniform and distance weights. The 

imputation process was conducted for different ranges of missing rates from 10% to 30%. 

Evaluation metrics such as the mean absolute error (MAE) and root mean square error (RMSE) 

were used, defined in Equations 4 and 5 respectively. 

MAE =
1

n
∑ |xi − xî|
n
i=1      … Equation 4 

RMSE = √
1

n
∑ |xi − xî|
n
i=1    … Equation 5 
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(a) For Latitude – BRR, ABR, RFR, ETR (b) For Latitude – kNNR 

  

(c) For Longitude – BRR, ABR, RFR, ETR (d) For Longitude – kNNR 

  
(e) For Geo-altitude – BRR, ABR, RFR, ETR (f) For Geo-altitude – kNNR 

Figure 9. Comparison of MAE Score for Latitude, Longitude, and Geo-altitude at 10% missing 

ratio. 



36 

  

(a) For Latitude – BRR, ABR, RFR, ETR (b) For Latitude – kNNR 

  

(c) For Longitude – BRR, ABR, RFR, ETR (d) For Longitude – kNNR 

 

  

(e) For Geo-altitude – BRR, ABR, RFR, ETR (f) For Geo-altitude – kNNR 

Figure 10. Comparison of MAE Score for Latitude, Longitude, and Geo-altitude at 20% missing 

ratio. 
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(a) For Latitude – BRR, ABR, RFR, ETR (b) For Latitude – kNNR 

 
 

(c) For Longitude – BRR, ABR, RFR, ETR (d) For Longitude – kNNR 

 
 

(e) For Geo-altitude – BRR, ABR, RFR, ETR (f) For Geo-altitude – kNNR 

 

Figure 11. Comparison of MAE Score for Latitude, Longitude, and Geo-altitude at 30% missing 

ratio. 
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Figure 9, Figure 10 and Figure 11 shows the comparison chart of MAE scores vs. number of 

iterators or nearest neighbors, varying the imputation rates from 10% to 30% for latitude, 

longitude, and geo-altitude. When the dataset is randomly imputed for 10%, the MAE score of 

Bayesian Ridge Regressor remains consistent across the iterations. On the other hand, the Extra 

Tree Regressor performs better at a lower number of estimators at 10 and 50 in contrast to other 

tree-based models - Adaboost and Random Forest. However, increase in the number of estimators 

in-turn increases the MAE Score. On the contrary, k-NN consistently yielded better results 

irrespective of the number of k neighbors. When increasing the imputation rate to 20% and 30%, 

no improvement is observed in the Bayesian Ridge Regressor. The Extra Tree Regressor performs 

well compared to other tree-based models, requiring an average of 300 iterations to achieve lower 

MAE scores. However, it does not surpass the performance of k-NN imputation, where a higher 

number of k-nearest neighbors provides better MAE scores demonstrating effectiveness even with 

30% missing data. 
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CHAPTER IV 

FEDERATED LEARNING ENVIRONMENT FOR AVIATION NETWORK DATA 

4.1. Introduction 

The aviation industry is undergoing a significant technological transformation as it introduces new 

aircraft into the existing operational airspace through the Advanced Air Mobility (AAM) concept. 

This innovative approach aims to enhance the efficient movement of people and cargo between 

locations, particularly in underserved areas. Aircraft like Electric-Vehicle Take-Off and Landing 

(eVTOL), Electric Conventional Take-Off and Landing (eCTOL), and small Unmanned Aerial 

System (sUAS) fall within the scope of AAM. According to research conducted in 2023, the U.S. 

market is expected to grow by 82,000 passengers daily, with an estimated market evaluation of 

USD 2.5 billion yearly [78]. However, very few companies are participating and building 

prototypes in this complex environment. These modern avionics also rely on GPS and ADS-B to 

assist pilots in identifying nearby air traffic. The sharing of aircraft information through ADS-

B/GPS transparently can potentially lead to various attack possibilities, including jamming and 

spoofing [79]–[81], false data injection [82] attacks. An example of such an incident occurred 

when a new 5G telecommunications system interfered with GPS signals, causing the airport to 

stop and halt [83], [84]. Therefore, it is crucial to effectively share the information to provide safety 

of aircraft [85]. 

 

Federated Learning (FL) is an active research field that maintains privacy without compromising 

accuracy. Unlike traditional cloud-based ML approaches, the new FL provides a better alternative 

to addressing the issues, enabling decentralized learning approaches on the edge and achieving 

privacy. Most applications have started to adopt this approach [86]–[90]. In the following sections 
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we will discuss the existing state-of-the-art (SOTA) software architecture simulation frameworks 

in aviation and other domains and the current software architecture trends. Furthermore, extending 

this to the field of FL, the goal is to enhance privacy-preserving decentralized ML. Finally, to 

design a hybrid simulation framework architecture that can be easily customized and supported at 

a large scale, thus allowing to experimentation with various applications. 

 

4.2. Background And Related Work 

 

The following part outlines some of the popular software architecture styles, highlighting some of 

the SOTA reviews in aviation and other domains, and proposes a hybrid federated learning 

approach and the current trends in software architecture. 

 

4.2.1.  Software Architecture Paradigms 

Software architecture refers to a conceptual framework that offers an overview of a software system 

design from a high level. According to ISO/IEC/IEEE 42010:2011: “the fundamental concepts or 

properties of a system in its environment embodied in its elements, relationships, and in the 

principles of its design and evolution” [91]. It consists of an abstract representation of software 

components (processing and computation), connectors (interaction), and their relationship to 

environmental conditions. Following are a few of the popularly used architectural design patterns: 

• Client-Server Architecture [92] – This is the fundamental architecture style in the software 

paradigm, which is divided into four groups: one-tier, two-tier, three-tier, and N-tier 

architecture. In one-tier architecture, the business logic and data access logic are combined. In 

contrast, a two-tier architecture consists of two main components: the client, the graphical user 

interface in charge of direct user interaction and communication with the server tier to request 

data, and the server, which manages application data, processes client requests, and controls 
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business logic. The three-tier architecture provides more layers of separation – presentation 

(interacts directly with users), application logic (applications’ business logic, processing, and 

functionality), and data (stores and manages application data). 

 

• Layered Architecture [93] – The majority of applications use this type of architecture, 

sometimes it is referred as N-tiered architecture. Components associated in each layer in this 

architecture are connected but function independently. As this architecture uses a top-down 

approach to interact from one layer to another, they cannot bypass intermediary layers but must 

pass through all sequentially. Although this architecture is inexpensive and straightforward, it 

is not scalable or modularized. 

 

• Pipe-and-Filter  [94] – In this, the data processing is broken into multiple stages and filters. 

These data will flow sequentially through several phases, each of which has filters. It is 

responsible for transforming data and passing it on from one filter to another in a unidirectional 

flow. Though they are all simple to set up and can be readily modularized and changed, they 

are not scalable. 

 

• Event-Driven Architecture [95] – This is a widely used distributed asynchronous architecture, 

with each component separated and executing a particular process asynchronously. It comprises 

of two elements – the broker and the mediator. Once an event is started in the broker, it is routed 

to the relevant event's channel for processing, with all these operations performed 

asynchronously. A mediator will coordinate several event processors to control and manage the 
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events. Although implementing this into practice can be difficult, the performance and 

scalability are advantages over other architecture. 

 

• Microservice Architecture [96] – This architecture pattern rapidly captured industries 

attention, as the individual components of a single application are broken into smaller services. 

Each of these services operates independently and communicates with others. In addition, each 

of these microservices has its presentation, application, and database service, which may be 

shared with other microservices. 

 

• Microkernel Architecture [97], [98] – This architecture, sometimes called plug-in 

architecture, enables adding new functionality on top of the core modules. In other words, it 

divides the application logic between standalone plug-in parts and the core system. Similar to 

layered design, this architecture is easy to implement, but scalability and modularity are not 

very advantageous. 

 

Recently, modern software architecture involving a combination of High-Level Architecture (HLA) 

and Data Distributed Services (DDS) [99] to connect different components of the system. These 

connectors act as a facilitators to exchange information between these components. This type of 

architecture was designed to support various applications, including FAA Simulator aircraft, and 

Urban Air Mobility (UAM). The existing simulation tools for Air Traffic Monitoring (ATM) 

concepts did not incorporate the cyber element, essential for effectively addressing cyber threats 

and mitigating potentially catastrophic consequences. Some of the architectures tested for their 

performance in terms of latency, update rate, throughput, and probability density [100] in the Air 
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Traffic Generator (ATG) and Multi Aircraft Control System (MACS). The results indicated that 

MACS performance degraded when handling 200-300 aircraft with a throughput of 37.5 KB/s, in 

contrast with 225 KB/s in the ATG and can handle 1200 aircraft. However, the known fact is that 

as the number of aircraft increases, the latency and update rate also increase, which can impact the 

effectiveness of the simulation. As a part of this architecture, an additional centralized message-

oriented middleware was added to the ATM simulation of NASA for communication among 

different components [101]. Performance was evaluated to determine the effectiveness of this 

intermediate broker, since it reduces the need to develop separate simulator functionality. Results 

show that throughput and duration can further be improvised with the help of compression settings. 

Many applications have adopted a microservices-based architecture to improve their scalability. An 

example was the Space Traffic Management System, based on a NASA low-altitude UAS traffic 

management system [102]. In this architecture, each service communicates via Application 

Programming Interface (API) on a containerized platform, providing significant benefits in 

scalability, resiliency, and flexibility. However, the designs fail to incorporate the trade-off between 

maintaining resiliency and efficiency. 

 

Utilizing the layered architecture, simulation experiments were conducted by the Aviation Security 

Lab [103] focusing on Avionics Full Switched Duplex Ethernet (AFDX), a high-speed data 

communication system used in aircraft for flight control, navigation, and communication. This 

testbed was built with Graphical Network Simulator-3 (GNS-3) to simulate network topologies and 

tested on different attack vectors, including sniffing, MITM, DoS, and message replay. This setup 

has limitations, as it cannot be used with HITL and does not incorporate lightweight Intrusion 

Detection and Prevention (IDPS) technology. Another study focused on GPS attacks [104] on 



44 

NASA's ATM testbed, which utilizes service-oriented architecture with components that 

communicate through message-oriented middleware. However, this testbed simulation did not 

assess in a multi-aircraft environment nor explore the detection and mitigation of attack models 

beyond false data injection. Furthermore, these simulations did not evaluate the performance under 

varying environmental conditions. 

 

Developing a testbed architecture involves integrating Artificial Intelligence (AI) components, 

requiring a flexible, scalable, and portable solution. A reinforcement learning-based testbed 

architecture is a good example used in the Advanced Air Mobility (AAM) [105], to predict live 

traffic predictions designed using layered architecture to maximize throughput and minimize delay. 

This architecture allows for scalable solutions and is also suitable for different use cases but lacks 

standardization, which can create interoperability issues with no common framework. Another 

study [106] proposed a microkernel with microservice architecture on the UAV to address the lost-

link problem where the microkernel architecture can extend plug-in operation on top of the core 

modules. Using this, the sensor data were extracted, and through message middleware, these were 

pushed to microservice-based applications such as Mission Planning Services. The findings show 

this architecture style can provide robustness, quality, and performance but lacks scalability to 

support multiple use cases or seamless communication and collaboration between systems. 

 

Table 3 and Table 4 shows some existing simulation architecture in aviation and other domains. 

Some of them have used layered architecture system testbed with attacks includes DoS, MITM, 

Sniffing, and Replay attacks on the Aviation Full-Duplex Ethernet protocol [30], on the contrary, 

others have adopted the combination of microservices and microkernel architecture to improve the 
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performance and re-usability [33] [34].  In some research, there were limited API-based approaches 

for designing aircraft operations and suggested using bidirectional state services like publish-

subscribe communication patterns [40] and lightweight detection systems [29]. 

Table 3. Taxonomy of existing simulation architecture in aviation 

Year 

Reference 

(HITL/SITL) 

Study Highlights 
Architectural 

Styles 
QA 

2023 [107] 

(HITL + SITL) 

Explore decentralized architecture 

showcasing AAM's full potential, 

encompassing advanced U-space 

services, platforms for future scenarios 

(e.g., air cargo delivery, air taxi 

operations), in a co-simulation setting 

and study in complex traffic scenarios, 

examining interactions among the 

operator, U-space service provider 

(USSP), and ATC 

Centralized - 

Decentralized 

 

- 

2023 [108] 

(SITL) 

A simulation environment to replicate 

aircraft operations and test autonomous 

vehicles on a larger scale of hundreds of 

flights over areas like San Francisco-

Oakland Bay. 

- Cost 

2022 [109] 

(HITL) 

Enablement of robust, flexible 

monitoring framework that can easily 

integrate with the legacy system using a 

distributed self-adaptive system 

MAPE-K 

Feasibility, 

Efficiency, 

Scalability 

2022 [103] 

(SITL) 

Conducted attacks on the AFDX 

protocol, which is primarily used for 

communicating between systems 

Layered - 

2022 [110] 

(HITL) 

demonstrating an autonomous UAV 

system for emergency rescue operations 

that identified gaps in Human and 

Autonomous system factors and 

incorporated in the existing MAPE-K 

MAPE-K 

Observability, 

Adaptability, 

Detectability, 

Trust  
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Table 3. Taxonomy of existing simulation architecture in aviation (Contd.) 

Year 

Reference 

(HITL/SITL) 

Study Highlights 

Archite

ctural 

Styles 

QA 

2022 [101] 

(SITL) 

Addition of Message Oriented 

Middleware would help to address 

eliminating the reconstruction the 

simulation for each use case 

MOM 

(or) PF 

Latencies, Run-time 

Durations, 

Throughputs 

2022 [111] 

(HITL + SITL) 

To address unreliability in 

communication and the need for cost-

effective solutions in swarm 

L Cost-effective 

2021 [112] 

(SITL) 

To perform false data injection (FDI) on 

communication sensor data and develop 

a rule-based machine learning system to 

detect and mitigate 

CS Performance 

2021 [106] 

(SITL) 

Solves the problem of lost-link 

communication between UAV and 

remote control 

MS + 

MK 

Fault Tolerance, 

Availability, 

Performance and 

Safety  

2021 [113] 

(SITL) 

To simulate Unmanned Traffic 

Management (UTM) systems for flight 

planning and tracking 

MS 
Reusable, 

Extensibility 

2021 [114]  

(HITL + SITL) 

A multi-drone surveillance coordination 

system to overcome ineffective 

coordination and redundant searching 

H 
Redundancy, 

Scalability 

2020 [115] 

(SITL) 

To develop an application via API with 

external factors (wind and pressure) and 

mimic the obstacles 

L 
Lightweight, 

Performance 

Note: MOM–Message Oriented Middleware, PF–Pipe and Filter, L–Layered, CS–Client-Server, 

MS – Microservice, MK–Microkernel, H–Hierarchical 
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Table 3. Taxonomy of existing simulation architecture in aviation (Contd.) 

Year 

Reference 

(HITL/SITL) 

Study Highlights 

Architect

ural 

Styles 

QA 

2020 [116] 

(SITL) 

The containerized approach of designing 

UAV fleet systems and orchestration to 

analyze the network functions and the 

potential impact on wireless 

communication networks 

SO 

Scalability, Low 

Latency, High 

Reliability 

2020 [117] 

(SITL) 

To design for monitoring mission 

operation 
SO 

Low Latency, 

Scalability 

2019 [118] 

(SITL) 

Federated testing of aircraft electronic 

systems for spoofing of ACARS 

messages and evaluating software 

patches electronics 

POM Flexibility 

2019 [119] 

(HITL + SITL)  

To perform autonomous decision-

making of fixed-wing UAV in a 

distributed fashion 

L Scalability 

2019 [120] 

(SITL) 

Visualization of robotic and drone 

swarms and CPS systems to better 

understand decision-making, and control 

L - 

2019 [121] 

(SITL) 

Simulation of FDI to detect and alert in 

distributed systems to reduce the 

simulation time 

H Fidelity / Accuracy 

Note: POM–Process Oriented Model, SO–Service Oriented, L–Layered, H–Hierarchical 

 

As part of a broader research initiative, this study also involved collecting and analyzing additional 

research articles from different domains beyond aviation. The aim was to expand the scope of the 

investigation, incorporating diverse areas that have focused on expandability [122] and 

performance [123] quality attributes for simulation purposes. Table 4 provides a detailed summary 
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of the study highlights and features architectural designs incorporating the quality attributes (QA) 

adopted in each research work. 

Table 4. Taxonomy of existing simulation architecture in different domains 

Dom

ain 

Year Reference 

(HITL/SITL) 
Study Highlights 

Archite

ctural 

Styles 

QA 

E
n
er

g
y

 

2022  [123] 

(HITL) 

substation simulation to perform various 

cyberattacks (at the device, firmware, 

and software levels) 

H 

Maintainabili

ty, 

Scalability 

2022  [124] 

(HITL + SITL) 

To test cyberattacks on individual DER 

and combined with the grid 

PP + H 

+ C 
- 

2022  [125] 

(HITL + SITL) 

Simulating the communication networks 

of the power systems in the IoT devices 
L 

Flexibility, 

Scalability 

2021  [126] 

(HITL + SITL) 

To test and defend against FDI, 

Command Injection, MITM, and DoS 

multi-stage cyberattacks 

- 

Scalability, 

Automation, 

Maintenance 

2020  [127] 

(HITL) 

Distributed Intrusion Detection System 

for the DERs built to detect attacks - 

DoS, ARP spoofing, and TCP SYN flood 

- 

Less 

Computation

al Time, Less 

Latency 

2019  [122] 

(HITL) 

To simulate the power system application 

on Federated Environment and perform 

load-tripping and voltage sag attacks 

H 
Secure, 

Reliability 

O
th

er
 

2022  [128] 

(HITL) 

A semi-realistic testbed of miniature 

vehicles enabling from designing to 

testing of autonomous vehicles (AVs) 

L 

Low Cost, 

Usability, 

Safety, 

Flexibility 

2022  [129] 

(HITL) 

Digital Twin of Palfinger Crane was 

designed to track the Automatic 

Adaptation System  

SO 
Interoperabili

ty 

2022  [130] 

(HITL + SITL) 

Prototype of developing and evaluating 

internet-enabled CPS applications 
M Extensible 

Note: SO–Service Oriented, M–Modular, L–Layered, H–Hierarchical, PP–Peer to Peer, C–

Centralized 
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4.2.2.  Implementation of Federated Learning Framework 

As the airspace activities and technologies continue to grow, it is important to efficiently share 

sensitive information, such as flight ICAO Id, latitudes, and longitudes. When such detailed 

information is transmitted over a network, malicious individuals may intercept and exploit it. To 

deal with this data confidentiality [131], [132], a new edge-based distributed learning solution 

known as Federated Learning (FL) [133] has started to gain attention. Each device (client) 

exchanges its trained model parameters without sharing the source information with the central 

server. Note that the main server may or may not initiate the model. All the devices participating in 

this will send updates of their trained parameters to the central server to perform computations and 

send back the updated attributes to clients. This procedure will be repeated until the model becomes 

stable. Figure 12 shows the diagrammatic representation of FL. 

 

 

Figure 12. Diagrammatic representation of FL. 
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This decentralized approach runs directly on edge devices, allowing for real-time anomaly detection 

and forecasting with reduced latency while enhancing data security. To achieve this, creating a 

hybrid simulation environment that enables researchers to design and assess multiple scenarios is 

essential. 

4.2.3.  Recent Trends in Software Architecture 

It is essential also to consider recent trends in software architecture that aimed to enhance the 

software application design, development, and deployment. Figure 13 shows the categories of 

individuals and organizations interested in adapting these frameworks [134].  The categories are 

as follows [135][136]: 

• Innovators: This group are the first willing to take risks and implement new innovative 

solutions. 

• Early Adopters: This group are willing to take the risks and experiment the solutions 

before others by exploring the benefits and values of the solutions provided by the 

Innovators. 

• Early Majority: This group is more cautious while adopting new technological solutions. 

They will adopt only if these are widely adopted.  

• Late Majority: They are reluctant to adopt innovations unless the proposed solution is 

well-established and widely accepted by the broader community. 

 
Figure 13. Recent trends in Software Architecture.
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4.3. Proposed Architecture 

The goal is to design a decentralized privacy-preserved approach of running the ML models with 

reduced latency, adaptable to different use cases (e.g. anomaly detection, forecasting) in the 

aviation field. Furthermore, considering the diverse airspace operational environment, a hybrid 

architecture referred to as Federated Cyber Physical System (Fed-CPS) is proposed that leverages 

the advantages of multiple architectural patterns, including microkernel, pipe-and-filter, event-

based, and micro-frontends as illustrated in Figure 14. 

 

4.3.1. Client-Side Simulation Module 

The first step in client-side simulation, is the use of software like AirSim [137], customized based 

on each preference. AirSim is commonly used in Software-in-the-Loop (SITL) or Hardware-in-

the-Loop (HITL) to simulate real-world scenarios and generate data. This data is accessed through 

core sensing modules, which allow the software to function and interact with various plug-in 

functionalities such as GPS data, altimeter, pressure, and gyroscope readings. This module utilizes 

a microkernel-based pattern [138] to create key functionalities as a common core; other features 

are developed as plug-ins to allow for modularity. Furthermore, it enhances the efficiency and 

performance of the system by parallel processing of core sensing modules. For our specific use-

case, each client acts as individual flight, including the ADS-B data obtained such as icao24, 

latitude, longitude, and altitude obtained from OpenSky Network [139]. This data is temporarily 

stored as a file for further processing. Each of the data parameters can be broken to perform 

filtering operations depending on the use-case, making the ‘pipe and filter’ pattern [140], [141], 

particularly useful. In this scenario, the raw data are transformed using multiple filtering criteria, 

including removal of missing data, outlier handling, and scaling. 



52 

 

Figure 14. Proposed Fed-CPS framework for aviation networks. 
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After this stage, it will push the model parameters to server-side model aggregation through the 

communication module and train on the masked data, subsequently returning the updated model 

to the client-side. This iterative process continues until convergence of these models. Numerous 

applications in aviation, including optimization of path planning [142], [143], forecasting [144], 

anomaly detection [145], [146] and image-based power-line inspection [147]. In a real-world 

scenario, this process will run on various on-board computers, such as Raspberry Pi or NVIDIA 

Jetson Nano. However, for simulation purpose, Docker [148], a containerized platform, will be 

used to carry out these activities. 

 

4.3.2. Communication Module 

Each client is individually trained on its own data and shares only the model weights on which 

data was trained instead of sharing the raw information. This information can be exchanged 

between the clients and server using various protocols such as (i) Hypertext Transfer Protocol 

(HTTP) or (ii) Remote Procedure Call (RPC). 

 

4.3.2.1. Understanding of HTTP and RESTful Architecture 

The Hypertext Transfer Protocol (HTTP) is the fundamental building block of the World Wide 

Web. It is an application layer protocol designed to transfer all the contents. The version 1.1 was 

introduced in 1997 [149], was superseded by HTTP/2.0 in 2015 [150]. HTTP is generally 

implemented in a server, where the clients communicate with server through HTTP messages. It 

uses a request–response model (Figure 15) approach. To illustrate, when a web browser functions 

as a client and carries out various activities such as fetching data, by sending an HTTP request to 

a server that runs any application. The server then consolidates all relevant resources in formats - 

HTML, JSON, or XML, along with status information related to the requested URI. This compiled 
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information is then transmitted to the client as a response message. For instance, assume that the 

client here would be the web browser which performs tasks such as fetching data by sending an 

HTTP request to the application server. Followed by that the server encapsulates the resources in 

HTML, JSON, or XML, along with status information for the requested URI, forming a response 

message sent back to the client. 

 

Application Programming Interface (API) is set of definitions that adhere when interacting with 

other systems. Representational State Transfer (REST) commonly referred to as RESTful API is 

an architectural constraint on the functionality of the API. The server uses a Uniform Resource 

Locator (URL) to identify each resource. This URL (or request endpoint) is the path the client 

needs to access. Developers commonly implement RESTful APIs via HTTP to manage resources. 

There are five popular HTTP methods: GET, POST, PUT, DELETE, and UPDATE. 

 

 

Figure 15. Representation of request-response model with REST. 
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4.3.2.2. RPC and gRPC 

Remote procedure call (RPC) is a protocol for effective communication in early distributed 

applications. The fundamental idea is to separate functions within distributed systems in a server 

and allow other services to invoke them directly. Figure 16 illustrates the RPC functionality, 

comprising five components - Client, Client stub, Network, Server stub, and Server. This process 

begins with the client sending a request to the server with the converting messages; on the other 

end, the server decodes this received data and performs the corresponding operation. 

 

gRPC is a RPC framework designed to exchange messages seamlessly, which utilizes protocol 

buffers (or protobuf) for serializing and deserializing messages. Messages in the protobuf format 

are encoded in binary, ensuring efficiency. gRPC uses HTTP/2 faster than HTTP/1.1 because of 

its streamlined message definitions. While traditional RPC involves a single request and response, 

gRPC extends the capabilities by providing three additional modes for data exchange: response-

streaming, request-streaming, and bidirectional streaming RPC [151]. Therefore, gRPC based Pub-

Sub [152] based pattern would be the best approach as it provides a sophisticated way to transmit 

and receive messages from multiple clients and to different sources. 
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Figure 16. Representation of bi-directional communication gRPC. 

 

4.3.3. Server-Side Computational Module 

In the FL server, the model parameters were obtained through zero trust components [153], [154]: 

policy enforcement point (PEP), policy administrator (PA), and policy engine (PE). These 

components enforce security policies and access controls and act as a gatekeeper to allow or deny 

the requests depending on the policies defined. The PEP ensures that all access requests are 

authenticated, authorized, and validated before granting access to the requested resources. 

Observing and monitoring various aspects of the network, applications, and user behavior are 

collected and analyzed data to detect anomalies, potential security threats, or policy violations. 

 

After validating and approving requests, the model aggregator (central server) collects weights 

from decentralized devices, ensuring user privacy and aggregating the weights to generate a new 

model, which in turn is sent back to corresponding participants for training. This iterative process 

ensures that clients learn patterns from different participating clients, and the model converges 

across all participants. FL is a promising paradigm for developing robust and privacy-preserving 
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ML models in distributed environments. Simultaneously, the model is saved to persistent storage, 

allowing researchers to utilize it for hyperparameter tuning [155]–[157].  

 

4.3.4. Monitoring Application Task 

To accomplish specific tasks with FL, each application team adopts a micro-frontend architectural 

pattern [158], [159]. This pattern divides the components into smaller, self-contained, and 

independent frontend modules. Each module represents a distinct User Interface (UI) section that 

is capable of independently developed, deployed, and scaled. This configuration reduces costs and 

allows teams to focus on specific tasks effectively.  

 

The Unified Modeling Language (UML) sequence diagram in Figure 17 illustrates the interactions 

between components in this FL application. All the CPS core sensing modules will stream real-

time data from AirSim or other simulators, and this data will be stored in the database. In this 

scenario, these data are already stored in the form of files, each holding individual GPS data. Each 

of these data will then be sent to the preprocessing stage, undergo data wrangling, and, depending 

on the use case, ML algorithms will be trained on this data to generate model weights. These 

locally trained models are sent to the centralized server, which acts as the model aggregator. This 

is done through a Publish-Subscribe (pub-sub) mechanism and passes through a PEP gateway for 

validation, verification, and authorization. Once authorized, the model aggregator collects and 

combines these weights to produce new weights. Then these weights are subsequently sent back 

to clients for local training. 
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Figure 17. UML sequence diagram (from simulator to storing model). 
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Figure 18 illustrates a UML sequence diagram depicting how end-user can develop and access 

applications tailored to their specific use cases. The process begins with the user the application 

front-end dashboard UI through the browser. Behind the scenes, the UI application interacts with 

the database to retrieve additional GPS data required for running and testing the models. 

 

 
Figure 18. UML sequence diagram (User pulls the model information). 

 

4.4. Results 

This study investigated the SOTA review of Software Frameworks in aviation and other domains, 

each of which primarily focuses on the quality attributes such as reusability, flexibility, and 

maintainability. The insights gained from these domain-specific lays the ground for our proposed 

approach, named ‘Fed-CPS’, a hybrid architecture. Fed-CPS integrates the four architectural styles 
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- microkernel, pipe-and-filter, event-based, and a micro front-end-based architecture style. This 

style will leverage FL to address privacy concerns and enable de-centralized distributed learning. 

 

Within this proposed architecture, the microkernel plays an important role. It is designed for its 

modularity and extensibility, making it well-suited for smaller-scale applications. This architecture 

style aligned with our use case, where clients can implement their personalized modular design. 

Each microkernel-based client will perform data wrangling through pipe-and-filter, making it self-

contained, and the processed data will be trained locally with ML algorithms. These trained ML 

parameters will then stream in an event-based fashion, enhancing performance and scalability 

while maintaining a modular structure. The micro front-end-based style further adds strengths on 

reusability and adaptability by allowing end-user applications to be designed with flexible 

development, and scalable and resilient making it well-suited for a wide array of use-cases. 

 

Implementing privacy settings and adherence to Zero Trust policies provides the FL architecture 

with resilience against potential security threats. Furthermore, containerizing all applications 

within this architecture enhances portability, concurrently reducing costs and minimizing 

maintenance requirements, promoting a more sustainable and economical computing environment. 

In summary, the proposed Fed-CPS approach strategically integrating microkernel, event-based 

systems, and micro front-end-based structures and leveraging FL not only addresses key quality 

attributes but also sets the stage for a modular, scalable, and privacy-conscious framework. 
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CHAPTER V 

VALIDATION OF FEDERATED LEARNING FRAMEWORK 

5.1. Introduction 

Federated Learning (FL) represents a novel distributed approach to ML, redefining the 

conventional methods of ML application. Instead of training in a centralized location, FL enables 

models to undergo training on individual edge devices, achieving the privacy of sensitive data. In 

this procedure, the decentralized training of models on these edge devices aggregates their updates 

on a central server. This central server performs computations and returns the updated weights to 

the edge devices, this process will be iteratively performed until convergence is achieved on the 

edge devices. 

 

This chapter will provide an overview of FL and its implementation for predicting the geo-altitude 

of the aircraft. Furthermore, the study will assess the accuracy of predictions and quality attributes 

such as cost, performance, and energy efficiency that are yet to be explored. Simulation and 

monitoring tools, including Docker (simulating client), Flower (developing FL), and Grafana and 

Prometheus (system monitoring), are utilized for implementing the testbed environment. These 

tools improve the visibility and management of FL systems, providing a robust foundation for real-

world applications. 

 

5.2. Essentials of Federated Learning 

As the demand for computational power rises the data storage capacity also increases. In the past, 

ML and DL applications were typically done centrally by training the data, with some popular use 

cases including fuel efficiency and trajectory prediction. As the aviation industry expands, the 

demand for substantial data to improve performance increases, leading to a greater need for 
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investment in server infrastructure. FL is a promising approach to tackle the issues with fragmented 

data stored in silos for training diverse applications and customizing learning models for specific 

user groups. FL also facilitates modular approaches to demand prediction, allowing for the 

evaluation of these models across a broad airspace environment. 

 

FL was initially introduced by Google in 2016 [160]. ML models run on each mobile client in this 

framework, resembling distributed learning. The key feature is the ability to facilitate collaborative 

learning by sharing only the prediction model weights among devices while retaining all the 

training data locally. This eliminates the need to store data in the cloud for performing ML. While 

this distributed processing primarily aims at speeding up the processing stage, FL also focuses on 

constructing a collaborative model without compromising privacy.   

 

As illustrated in Figure 19, FL can be categorized into two types: horizontal FL and vertical FL. 

In a horizontal FL, there exists a slight overlap in the characteristics of data across various clients.  

In a specific situation where the number of feature columns was limited, research was conducted, 

introducing hierarchical heterogeneous horizontal Federated Learning (HHHFL) as one of the 

approaches and this was applied it in the classification of Electroencephalography (EEG). In this 

approach each client was iteratively swapping repeatedly as the targeted feature to generate 

additional data [161]. In vertical FL, data may or may not have partial overlap in features (e.g., 

reference ID) but differ in data samples. For example, collaboration among different entities allows 

them to work together and learn, providing a better understanding of the model. 
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(a) Horizontal (or Homogeneous) FL with 

same features across clients 

(b) Vertical (or Heterogeneous) FL with 

diverse features across clients (features may 

or may not be shared between clients) 

 

Figure 19. Categories of FL. 

 

One of the primary issues in FL is with inconsistent data distribution. It is assumed that the data is 

independently and identically distributed (IID) across all participating devices in an ideal scenario. 

However, real-world situations the data is always in Non-Independently and Identically 

Distributed (Non-IID) format. This non-IID characteristic is attributed to various factors, including 

configuration and shifts in user preferences. In practical settings, data distribution across devices 

frequently impacts the degradation of performance and generalization capabilities of machine 

learning models, as observed in studies documented in sources such as [162], [163]. 

 

5.3. Dataset Description 

In this section, information about the origin of the collected dataset will be provided. Additionally, 

the dataset was separated into distinct batches, with preprocessing steps focusing only on the geo-

altitude feature. 
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5.3.1. Dataset Collection and Preprocessing 

The dataset is collected from the OpenSky Network [68] in a series of parquet files organized by 

day and hour from February 18 to 27, 2022, which captured a diverse range of aviation events 

during this timeframe. To ensure the quality dataset, datasets were preprocessed using pySpark.  

The primary focus of this chapter is to predict geo-altitude. For each dataset, data wrangling 

(including removing duplicate entries and addressing missing values) will be performed for every 

flight record. Subsequently, only the geo-altitude information is extracted, creating a new dataset 

with a time window of size 4. This focus is directed on Horizontal FL, utilizing the same feature 

column with varying data samples. Different batches of datasets are generated; their categorization 

is detailed in Table 5 provides a comprehensive overview of how the data is segmented, providing 

valuable insights into the distribution strategy across different clients in the FL framework. 

 

Table 5. Batch data details 

Batch Name Train-Test Sample Size Comments / Categories 

Dataset-1 
C1: ~4900 / ~11000 

C2: ~7300/ ~4600 

Considered each client as each flight 

with multiple trips 

Dataset-2 
C1: ~62000/~29000 

C2: ~57000 / ~33000 

Combined multiple flights and grouped 

into two clients 

Dataset-3 C1-C4: ~20000/~7000-10000 
Combined multiple flights and grouped 

into four clients 

Dataset-4 C1-C8: ~2000-7000 / 1000-7000 
Considered each flight as each flight 

with multiple trips 

 

 

5.4. Implementation of Federated Learning Framework 

Many FL libraries are available on the Internet, but they are still in the developmental stage and 

not yet suitable for production use. Flower [164] stands out as a user-friendly FL framework in 
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our specific scenario. Its intuitive design enables easy implementation and deployment on any 

infrastructure, particularly useful for large-scale testing. 

 

On the client side, the architecture is responsible for training the dataset associated with that client, 

utilizing different ML or DL models. The server consists of the - FL loop, RPC server, and a 

customizable strategy chosen by the user. Various strategies are available for aggregating the 

model weights from each client. Clients connect to the RPC server, which monitors the connection 

requests of clients. The FL loop is the central component of the federated learning process, 

orchestrating continuous learning. 

 

Two ML algorithms: LSTM and k-Means were considered both running on the clients trained with 

different batches of dataset, while the central server will perform Federated Average Aggregation 

on the global model. The source code for this project is available on GitHub [165]. 

 

5.4.1. Long Short-Term Memory (LSTM) 

LSTM is an enhancement of traditional recurrent neural network (RNN), proposed by Hochreiter 

and Schmidhuber [166] uses temporal correlations between past and the current data points. As a 

result, LSTM addresses the common issues of vanishing gradient in RNNs. This algorithm is 

generally applied to time-series data, in which each sequence of data points reflects the 

interdependence between current and historical data. Our focus is on predicting geo-altitude, and 

Figure 20 illustrates the code snippet of this algorithm on the client side. Utilizing the LSTM model 

from the Keras library [167] configured with 10 layers and the ‘ReLu’ activation function, the 

output is the predicted geo-altitude. To optimize the model, Adam optimization algorithm with a 
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low learning rate of 0.2 is configured. Each client uses the abstract base class implemented using 

NumPy, and the predefined functions for fitting and evaluation facilitate the exchange of model 

weights. This process, illustrated in Figure 20 is iteratively performed to make the model better by 

retraining it. 

 

 

Figure 20. Implementation of LSTM model in the Federated Client. 
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Figure 21. Implementation of LSTM-based Abstract Class in the Federated Client. 

 

5.4.2. k-Means Clustering 

It is an unsupervised clustering-based algorithm uses grouping technique to form clusters of similar 

points. The objective of this algorithm is to find the ‘k’ cluster centroids by comparing the features 

of each data point, the algorithm assigns them to a cluster to reduce the overall distance between 

the data points and their respective cluster centroid. The algorithm aims to ensure that each data 

point is correctly assigned to its corresponding group [168]. Generally, the Euclidean distance 

determines the features' similarity and forms clusters with data points. Figure 22 illustrates the 

code snippet of this algorithm and assigned with number of clusters ranging from 1 to 3 

implemented using tslearn library [169].  Like LSTM, each client on k-Means also uses the abstract 

base class implemented via NumPy, and the predefined functions for fitting and evaluation 
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facilitate the exchange of cluster centroids. This process, illustrated in Figure 23 is iteratively 

performed. 

 

Figure 22. Implementation of k-Means model in the Federated Client. 

 

 

Figure 23. Implementation of k-Means based Abstract Class in the Federated Client. 
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5.4.3. Federated Averaging (FedAvg) 

Gradient descent is an optimization algorithm used in ML to minimize the cost function associated 

with each data point. Models learn over time by iteratively adjusting their parameters. Stochastic 

gradient descent (SGD) is another optimization algorithm that refines the objective function by 

computing the gradient for each data point. However, for large datasets, the computation burden 

of calculating the gradient across the entire dataset becomes unsuitable.  The Federated Stochastic 

Gradient Descent (FedSGD) algorithm works similarly but addresses the dataset size by selecting 

only a fraction (C) of clients from the entire set (K). Each participating client computes and shares 

the gradient with the centralized server. The Federated Averaging (FedAvg) algorithm involves 

sending weights to the server, which then aggregates and averages them. Each client then performs 

iterations of updates on these updated weights. The pseudocode for the FedAvg algorithm is shown 

below [160]. 
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This strategy is executed with multiple clients ranging from 2 to 8 in different batches ( 

Table 5). The code snippet for this algorithm is depicted in Figure 24. FedAvg involves three key 

parameters: min_available_clients, min_fit_clients, and min_evaluate_clients. These parameters 

set the minimum number of clients required to start the training and evaluation process. Table 6 

displays the overall parameter settings applied across various dataset batches. 

 

Figure 24. Implementation of FedAvg in Federated Server. 

 

Table 6. Parameter Settings for Federated Learning 

Algorithms / 

Strategy 
Hyperparameter Settings Comments 

LSTM Epochs: 100, 200 

Client-Side 

k-Means Clusters: 1, 2, 3 

FedAvg Rounds: 1, 2, 3 Server-Side Aggregator 

 

This FL Framework is containerized using Docker, as shown in Figure 25 offering several 

advantages beyond deployment and scalability. This containerization ensures a standardized and 
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isolated environment, simplifying the management of dependencies and configurations. With 

Docker, the framework becomes highly portable, allowing seamless execution across diverse 

computing environments. 

 

Grafana [170] and Prometheus [171] are used for monitoring, as a powerful combination that 

provides real-time insights into the performance of containers. Grafana's intuitive dashboard 

interface makes visualizing and interpreting metrics easy, enhancing the ability to detect and 

promptly address potential bottlenecks or issues. The integration of Cadvisor [172], a popular 

plugin from Google, further refines our monitoring strategy by capturing essential Docker health 

metrics at a granularity of 5 seconds. Prometheus plays a pivotal role in extracting and storing 

these metrics, exposing them through the PromQL API for easy retrieval and analysis. This 

streamlines the monitoring process and enables users to query specific performance parameters 

dynamically. Grafana, in turn, leverages the data provided by Prometheus to create intuitive 

dashboard. This visualization layer enhances our ability to gain insights into the dynamic behavior 

of the FL Framework. 
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Figure 25. Architecture of Federated framework. 

 

5.5. Results 

Mean Absolute Percentage Error (MAPE) is used to evaluate prediction accuracy, along with 

additional metrics such as CPU, memory, and network usage. This evaluation aims to understand 

performance in terms of cost (Performance-per-Dollar) and energy efficiency (Energy- Efficiency-
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per-Watt) to assess how well the FL framework predicts the geo-altitude under different settings 

with respect to Table 5 and Table 6. 

 

5.5.1. Mean Absolute Percentage Error (MAPE) 

It is widely used metrics for evaluating the accuracy of the prediction or forecasting model. It 

measures the percentage difference between predicted and observed values, as shown in Equation 

6. 

MAPE =
100%

𝑁
∑

𝑦𝑖−𝑦𝑖̂

𝑦𝑖

𝑁−1
𝑖=0     … Equation 6 

 

Figure 26 (a) compares MAPE against the number of epochs for various batches of datasets 

without utilizing FL. Regardless of the dataset, the MAPE score remains consistently below 60. 

Additionally, the convergence of the model is achieved within 200 epochs. Contrastingly, when 

the same performed in FL (Figure 26 (b), (c), (d)), each of the clients participating in the FL 

undergoes multiple epochs and multiple rounds of FedAvg. The overall average MAPE score is 

significantly reduced below 10% showing good prediction accuracy. Moreover, convergence of 

this FL model after multiple rounds, showcases the effectiveness of collaborative learning across 

clients in refining the predictive model. 
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(a) Comparison of MAPE vs Epochs (without FL) 

 

 
(b) Comparison of Average MAPE vs Rounds (with Epochs) for Two Clients on Dataset-1, 

and 2 (with FL) 
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(c) Comparison of Average MAPE vs Rounds (with Epochs) for Four Clients on Dataset-3 

(with FL) 

 

 

 
(d) Comparison of Average MAPE vs Rounds (with Epochs) for Eight Clients on Dataset-4 

(with FL) 

 

Figure 26. Comparison of MAPE Score with and without FL for LSTM. 
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Similarly, the same approach was applied in the k-Means algorithm across various batch datasets, 

without utilizing FL, to compare MAPE against the number of clusters (refer to Figure 27 (a)). 

The MAPE score remains consistent at 50 for the datasets 1 and 2. However, for larger datasets, 

the MAPE score increases, showing a higher level of error. Additionally, the MAPE score tends 

to decrease as the cluster increases. 

 

In contrast, the same were assessed with the FL (refer to the Figure 27 (b), (c), (d)), the overall 

average MAPE score for each client results in a reasonable reduction, mainly when there are 

additional rounds of FedAvg compared to the LSTM. A minimum of four rounds of computation 

is required to yield improved average MAPE results. 

 

 
(a) Comparison of MAPE vs Clusters (without FL) 
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(b) Comparison of Average MAPE vs Rounds (with Clusters) for Two Clients on Dataset-1, and 

2 (with FL) 

 

 

 
(c) Comparison of Average MAPE vs Rounds (with Clusters) for Four Clients on Dataset-3 (with 

FL) 
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(d) Comparison of Average MAPE vs Rounds (with Clusters) for Eight Clients on Dataset-4 

(with FL) 

 

Figure 27. Comparison of MAPE Score with and without FL for k-Means. 

 

5.5.2. Performance-per-dollar (PD) and Energy Efficiency-per-Watt (EEW) 

Two key metrics were used to evaluate the FL's cost-effectiveness and energy efficiency, based on 

the [173]: Performance-per-dollar and Energy Efficiency-per-Watt. These algorithms ran on Intel 

Xeon Processor with eight cores and 16GB of memory. It is estimated that this processor costs 

$8000 and is designed with a Thermal Design Power of 165 watts. The formulas used to calculate 

these metrics are listed below: 

PPD = CPU performance (in percentage) / Cost of CPU   …Equation 7 

EEW = CPU performance (in percentage) / Thermal Density Power … Equation 8 

 

Developed a Grafana visualization dashboard to analyze and display peak CPU usage as shown in 

Figure 28 and Figure 29. The CPU usage reaches 200%, implying each core is operating at 

maximum capacity (100%). Specifically, during the computation of LSTM, the CPU usage 
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remains at 200% with relatively low memory usage. In the case of k-Means, the CPU usage is 

100% but utilizes more than 10GB of memory. When translating these values into metrics, it 

becomes apparent that LSTM yields a PD ratio 0.2 times better than k-Means (without FL). In the 

FL, LSTM utilizes only 150% of the CPU, whereas k-Means operates at 100%. Interestingly, 

during LSTM computations, the server demonstrates a CPU usage of only 5%, contrasting with 

the 10% observed during k-Means computations. This results in LSTM exhibiting a 1.5x better 

PD ratio on the client side and a 0.5x improvement on the server side compared to k-Means. 

 

Furthermore, to estimate Energy Efficiency, thermal density power is considered, which refers to 

the power consumed when the system operates at its maximum capacity. For the CPU, the power 

consumption is measured at 165 W. Based on the observations, LSTM consumes more than twice 

the power compared to k-Means (without FL). In Federated Learning, LSTM consumes 1.5 times 

more power per client ratio than k-Means. However, when considering power consumption on the 

server side, LSTM yields less than 0.5 times the power consumption ratio compared to k-Means. 
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Figure 28. Dashboard metrics for non-Federated Setting (LSTM). 
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Figure 29. Dashboard metrics for non-Federated Setting (k-Means). 
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Figure 30. Dashboard metrics for Federated Setting (LSTM). 
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Figure 31. Dashboard metrics for Federated Setting (k-Means). 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

 

As part of the NextGen initiative, several efforts are being taken to modernize the National 

Airspace System (NAS) to increase the safety and resiliency of current airspace operations and 

reach urban and rural areas. The GPS data integrity and accuracy are important in determining the 

location of the aircraft. Any compromise in the integrity of GPS data can lead to disruption in 

flight safety and navigational accuracy.  To mitigate potential GPS dropout-related incidents, there 

is a need for robust data-driven models. Below are the main contributions of this thesis study:  

1. Selection of Robust Imputation Method under uncertain GPS Integrity Scenarios: The 

first study explored applying ML algorithms for imputing missing data points in ADS-B / GPS 

data obtained from the OpenSky Network using five different ML models: Bayesian Ridge, 

Random Forest, AdaBoost, Extra Tree Regressor, and k-Nearest Neighbor. These models were 

experimented with various missing ratios, ranging from 10% to 30%, for the parameters—

latitude, longitude, and geo-altitude. The results were assessed using MAE and RMSE, 

showing k-NN as a robust imputation method demonstrating effectiveness even when dealing 

with a high rate of missing data (30%). This significantly contributes to the identification of 

an optimal imputation approach for datasets with substantial missing values. 

2. Conceptualized a Hybrid Framework to benchmark performance with and without FL 

for the GPS network: The ADS-B/GPS exchange information between aircraft transparently, 

which opens to various attack vectors such as spoofing, jamming, MITM. Thus, this study 

explored the possibility of privacy-preserving solutions through a decentralized learning 

approach using FL, proposing a conceptualized hybrid framework named ‘Fed-CPS,’ which 

combines the advantages of a microkernel, event-driven, pipe and filter, and micro-frontend 
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design paradigms. Specifically designed for CPS in aviation networks, ‘Fed-CPS’ incorporates 

both SITL and HITL testing approaches. 

3. Validated the Hybrid Framework to quantify quality attributes: Cost, Performance, and 

Efficiency - Additionally, the study identifies three quality attributes—cost, performance, and 

efficiency that have not been explored in existing research papers for benchmarking in an FL 

setting for GPS data. Utilizing the Flower, and Docker software frameworks, the FL was 

implemented to predict the geo-altitude. The results demonstrate that LSTM outperforms k-

Means in the FL regarding MAPE and PD but consumes more EEW.  

 

There are certain limitations that exist in this study one of them is limited number of clients (i.e., 

8 clients) were considered to evaluate the quality attributes. Furthermore, there is a need to 

consider features other than geo-altitude. Additionally, when new clients attempt to join an 

ongoing learning process, they must wait until the current learning process is completed. Currently, 

there are no tools available to support concurrent operations. Moreover, if a client leaves the 

ongoing operation, the entire process comes to a halt, and as of now, there is no existing solution 

to address this interruption issue. Nevertheless, there are several unanswered questions that still 

need further research. This involves implementing and testing it extensively using various 

combinations of data sources through Vertical FL and selecting customized ML models [174] to 

improve the performance of the participating clients. However, this also raises questions about the 

fairness and bias of these models. This also brings up the need for an appropriate selection of 

participating clients to address the stragglers [175], [176], as each participant runs at different 

computing speeds. Finally, this FL setting needs to be incorporated in the real-time continuous 

streaming data. 



86 

PUBLICATIONS 

• B. S. Chandar, P. Ranganathan and W. Semke, “Imputing ADS-B/GPS Dropouts Using 

Machine Learning”, 2024 IEEE Computing and Communication Workshop and Conference 

(CCWC), Las Vegas, NV, USA, 2024. 

• B. S. Chandar, P. Ranganathan and H. Reza, “Benchmarking Federated Learning Framework 

for Aviation Network Data”, 2023 White Paper, Center for Cyber Security Research 

[Submitted for Review]. 

 

FUNDING ACKNOWLEDGMENT 

Funding: The FAA has sponsored this project through the Center of Excellence for Unmanned 

Aircraft Systems. However, the agency neither endorses nor rejects the findings of this research. 

The presentation of this information is in the interest of invoking technical community comment 

on the results and conclusions of the research. 

Award: 15-C-UAS-UND-030 

Award Name: Mitigating GPS and ADS-B Risks for UAS 267 

Program: ASSURE UAS COE 

Data Availability Statement: Data is available upon request. 

Conflicts of Interest: The authors declare no conflict of interest. 

 

 

 

 

 



87 

REFERENCES 

[1] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control technology, vol. 12, 

no. 1, pp. 161–166, 2011. 

[2] R. S. Nandhini and R. Lakshmanan, “A Review of the Integration of Cyber-Physical System 

and Internet of Things A Cyber-Physical Systems Perception of Internet of Things,” 

IJACSA) International Journal of Advanced Computer Science and Applications, vol. 13, 

no. 4, p. 2022, Accessed: Mar. 24, 2023. [Online]. Available: www.ijacsa.thesai.org 

[3] A. Napoleone, M. Macchi, and A. Pozzetti, “A review on the characteristics of cyber-

physical systems for the future smart factories,” J Manuf Syst, vol. 54, pp. 305–335, Jan. 

2020, doi: 10.1016/J.JMSY.2020.01.007. 

[4] “Satellite Navigation - GPS - How It Works | Federal Aviation Administration.” Accessed: 

Nov. 17, 2023. [Online]. Available: 

https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navs

ervices/gnss/gps/howitworks 

[5] “Technology - AOPA.” Accessed: Nov. 17, 2023. [Online]. Available: 

https://www.aopa.org/training-and-safety/online-learning/safety-spotlights/collision-

avoidance/technology 

[6] “ADS-B FAQ | Federal Aviation Administration.” Accessed: Apr. 21, 2023. [Online]. 

Available: https://www.faa.gov/air_traffic/technology/adsb/faq#g1 

[7] “AERO - New Air Traffic Surveillance Technology.” Accessed: Apr. 21, 2023. [Online]. 

Available: https://www.boeing.com/commercial/aeromagazine/articles/qtr_02_10/2/ 

[8] “SESAR Joint Undertaking | ADS-B surveillance of aircraft in flight and on the surface.” 

Accessed: Apr. 21, 2023. [Online]. Available: https://www.sesarju.eu/sesar-solutions/ads-

b-surveillance-aircraft-flight-and-surface 

[9] A. Tabassum and W. Semke, “UAT ADS-B data anomalies and the effect of flight 

parameters on dropout occurrences,” Data (Basel), vol. 3, no. 2, 2018, doi: 

10.3390/data3020019. 

[10] Y. Lin, L. Deng, Z. Chen, X. Wu, J. Zhang, and B. Yang, “A Real-Time ATC Safety 

Monitoring Framework Using a Deep Learning Approach,” IEEE Transactions on 

Intelligent Transportation Systems, vol. 21, no. 11, pp. 4572–4581, Nov. 2020, doi: 

10.1109/TITS.2019.2940992. 

[11] D. Wesely, A. Churchill, J. Slough, and W. J. Coupe, “A Machine Learning Approach to 

Predict Aircraft Landing Times using Mediated Predictions from Existing Systems.” 

[12] R. Perrichon, X. Gendre, and T. Klein, “A Geometric Approach to Study Aircraft 

Trajectories: The Benefits of OpenSky Network ADS-B Data,” Engineering Proceedings 

2022, Vol. 28, Page 6, vol. 28, no. 1, p. 6, Dec. 2022, doi: 10.3390/ENGPROC2022028006. 

[13] H. Shafienya and A. C. Regan, “4D flight trajectory prediction using a hybrid Deep 

Learning prediction method based on ADS-B technology: A case study of Hartsfield-

Jackson Atlanta International Airport (ATL),” 2022, doi: 10.1016/j.trc.2022.103878. 

[14] R. Perrichon, X. Gendre, and T. Klein, “A Geometric Approach to Study Aircraft 

Trajectories: The Benefits of OpenSky Network ADS-B Data,” Engineering Proceedings 

2022, Vol. 28, Page 6, vol. 28, no. 1, p. 6, Dec. 2022, doi: 10.3390/ENGPROC2022028006. 

[15] P. N. Tran, H. Q. V. Nguyen, D. T. Pham, and S. Alam, “Aircraft Trajectory Prediction with 

Enriched Intent Using Encoder-Decoder Architecture,” IEEE Access, vol. 10, pp. 17881–

17896, 2022, doi: 10.1109/ACCESS.2022.3149231. 



88 

[16] Y. Wu, H. Yu, J. Du, B. Liu, and W. Yu, “An Aircraft Trajectory Prediction Method Based 

on Trajectory Clustering and a Spatiotemporal Feature Network,” Electronics 2022, Vol. 

11, Page 3453, vol. 11, no. 21, p. 3453, Oct. 2022, doi: 10.3390/ELECTRONICS11213453. 

[17] C. Huang and X. Cheng, “Estimation of aircraft fuel consumption by modeling flight data 

from avionics systems,” J Air Transp Manag, vol. 99, p. 102181, 2022, doi: 

10.1016/j.jairtraman.2022.102181. 

[18] A. Filippone, N. Bojdo, S. Mehta, and B. Parkes, “Using the OpenSky ADS-B Data to 

Estimate Aircraft Emissions,” Engineering Proceedings 2021, Vol. 13, Page 11, vol. 13, 

no. 1, p. 11, Jan. 2022, doi: 10.3390/ENGPROC2021013011. 

[19] F. D. A. Quadros, M. Snellen, J. Sun, and I. C. Dedoussi, “Global Civil Aviation Emissions 

Estimates for 2017–2020 Using ADS-B Data,” J Aircr, vol. 59, no. 6, pp. 1394–1405, Nov. 

2022, doi: 10.2514/1.C036763/ASSET/IMAGES/LARGE/FIGURE6.JPEG. 

[20] B. S. Ali, W. Ochieng, A. Majumdar, W. Schuster, and T. Kian Chiew, “ADS-B system 

failure modes and models,” Journal of Navigation, vol. 67, no. 6, pp. 995–1017, Nov. 2014, 

doi: 10.1017/S037346331400037X. 

[21] “Mysterious interference causes planes to reroute in Texas | The Independent.” Accessed: 

Apr. 21, 2023. [Online]. Available: https://www.independent.co.uk/tech/gps-interference-

plane-airport-texas-b2207806.html 

[22] “FAA Files Reveal a Surprising Threat to Airline Safety: the U.S. Military’s GPS Tests - 

IEEE Spectrum.” Accessed: Apr. 21, 2023. [Online]. Available: 

https://spectrum.ieee.org/faa-files-reveal-a-surprising-threat-to-airline-safety-the-us-

militarys-gps-tests 

[23] “N.J. Man In A Jam, After Illegal GPS Device Interferes With Newark Liberty Operations 

- CBS New York.” Accessed: Apr. 21, 2023. [Online]. Available: 

https://www.cbsnews.com/newyork/news/n-j-man-in-a-jam-after-illegal-gps-device-

interferes-with-newark-liberty-operations/ 

[24] C. Clay, M. Khan, and B. Bajracharya, “A Look into the Vulnerabilities of Automatic 

Dependent Surveillance-Broadcast,” in 2023 IEEE 13th Annual Computing and 

Communication Workshop and Conference (CCWC), IEEE, Mar. 2023, pp. 0933–0938. doi: 

10.1109/CCWC57344.2023.10099369. 

[25] S. Khandker, H. Turtiainen, A. Costin, and T. Hamalainen, “Cybersecurity Attacks on 

Software Logic and Error Handling Within ADS-B Implementations: Systematic Testing of 

Resilience and Countermeasures,” IEEE Trans Aerosp Electron Syst, vol. 58, no. 4, pp. 

2702–2719, Aug. 2022, doi: 10.1109/TAES.2021.3139559. 

[26] H. Yang, Q. Zhou, M. Yao, R. Lu, H. Li, and X. Zhang, “A practical and compatible 

cryptographic solution to ADS-B security,” IEEE Internet Things J, vol. 6, no. 2, pp. 3322–

3334, Apr. 2019, doi: 10.1109/JIOT.2018.2882633. 

[27] M. Yue, H. Zheng, H. Cui, and Z. Wu, “GAN-LSTM-Based ADS-B Attack Detection in 

the Context of Air Traffic Control,” IEEE Internet Things J, 2023, doi: 

10.1109/JIOT.2023.3252809. 

[28] P. Mykytyn, M. Brzozowski, Z. Dyka, and P. Langendoerfer, “GPS-Spoofing Attack 

Detection Mechanism for UAV Swarms”. 

[29] M. TajDini, V. Sokolov, and P. Skladannyi, “Performing Sniffing and Spoofing Attack 

Against ADS-B and Mode S using Software Define Radio,” UkrMiCo 2021 - 2021 IEEE 

International Conference on Information and Telecommunication Technologies and Radio 

Electronics, Proceedings, pp. 7–11, 2021, doi: 10.1109/UKRMICO52950.2021.9716665. 



89 

[30] J. Wang, Y. Zou, and J. Ding, “ADS-B spoofing attack detection method based on LSTM,” 

EURASIP J Wirel Commun Netw, vol. 2020, no. 1, pp. 1–12, Dec. 2020, doi: 

10.1186/S13638-020-01756-8/FIGURES/11. 

[31] X. Ying, J. Mazer, G. Bernieri, M. Conti, L. Bushnell, and R. Poovendran, “Detecting ADS-

B Spoofing Attacks Using Deep Neural Networks,” 2019 IEEE Conference on 

Communications and Network Security, CNS 2019, pp. 187–195, Jun. 2019, doi: 

10.1109/CNS.2019.8802732. 

[32] T. Kacem, A. Kaya, A. Seydi Keceli, C. Catal, D. Wijsekera, and P. Costa, “ADS-B Attack 

Classification using Machine Learning Techniques,” IEEE Intelligent Vehicles Symposium, 

Proceedings, pp. 7–12, 2021, doi: 10.1109/IVWORKSHOPS54471.2021.9669212. 

[33] D. Zuo, C. Shi, K. Jin, P. Zhao, W. Zou, and K. Cai, “A Machine Learning GNSS 

Interference Detection Method based on ADS-B Multi-index Features,” Integrated 

Communications, Navigation and Surveillance Conference, ICNS, vol. 2023-April, 2023, 

doi: 10.1109/ICNS58246.2023.10124266. 

[34] “ADS-B Reception Error Correction Based on the LSTM Neural-Network Model | 

Enhanced Reader.” 

[35] J. Price, H. O. Slimane, K. Al Shamaileh, V. Devabhaktuni, and N. Kaabouch, “A Machine 

Learning Approach for the Detection of Injection Attacks on ADS-B Messaging Systems,” 

2023 International Conference on Computing, Networking and Communications, ICNC 

2023, pp. 293–297, 2023, doi: 10.1109/ICNC57223.2023.10074232. 

[36] D. McCallie, J. Butts, and R. Mills, “Security analysis of the ADS-B implementation in the 

next generation air transportation system,” International Journal of Critical Infrastructure 

Protection, vol. 4, no. 2, pp. 78–87, Aug. 2011, doi: 10.1016/j.ijcip.2011.06.001. 

[37] “The Unsolved Mystery of the 2022 Texas Interference - Inside GNSS - Global Navigation 

Satellite Systems Engineering, Policy, and Design.” Accessed: Oct. 31, 2023. [Online]. 

Available: https://insidegnss.com/the-unsolved-mystery-of-the-2022-texas-interference/ 

[38] A. R. Ismail, N. Z. Abidin, and M. K. Maen, “Systematic Review on Missing Data 

Imputation Techniques with Machine Learning Algorithms for Healthcare,” Journal of 

Robotics and Control (JRC), vol. 3, no. 2, pp. 143–152, Feb. 2022, doi: 

10.18196/JRC.V3I2.13133. 

[39] T. De Wolff, A. Cuevas, and F. Tobar, “Gaussian Process Imputation of Multiple Financial 

Series,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal 

Processing - Proceedings, vol. 2020-May, pp. 8444–8448, May 2020, doi: 

10.1109/ICASSP40776.2020.9054102. 

[40] D. B. Rubin, “Biometrika Trust Inference and Missing Data,” Source: Biometrika, vol. 63, 

no. 3, pp. 581–592, 1976, Accessed: Dec. 17, 2022. [Online]. Available: 

https://about.jstor.org/terms 

[41] S. van Buuren, “Flexible imputation of missing data,” p. 415. 

[42] J. R. van Ginkel, M. Linting, R. C. A. Rippe, and A. van der Voort, “Rebutting Existing 

Misconceptions About Multiple Imputation as a Method for Handling Missing Data,” J Pers 

Assess, vol. 102, no. 3, pp. 297–308, May 2020, doi: 10.1080/00223891.2018.1530680. 

[43] R. J. A. Little and D. B. Rubin, “Statistical analysis with missing data”. 

[44] G. F. N. Berkelmans et al., “Population median imputation was noninferior to complex 

approaches for imputing missing values in cardiovascular prediction models in clinical 

practice,” J Clin Epidemiol, vol. 145, pp. 70–80, 2022, doi: 10.1016/j.jclinepi.2022.01.011. 



90 

[45] A. Skoglund and A. Westergren, “Intrusion Detection For The Con-troller Pilot Data Link 

Communi-cation-Detecting CPDLC attacks using machine learning Intrångsdetektering för 

CPDLC”, Accessed: Nov. 19, 2023. [Online]. Available: www.liu.se 

[46] Q. Lan, X. Xu, H. Ma, and G. Li, “Multivariable data imputation for the analysis of 

incomplete credit data,” Expert Syst Appl, vol. 141, Mar. 2020, doi: 

10.1016/j.eswa.2019.112926. 

[47] S. van Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate Imputation by Chained 

Equations in R,” J Stat Softw, vol. 45, no. 3, pp. 1–67, Dec. 2011, doi: 

10.18637/JSS.V045.I03. 

[48] A. P. Dempster, N. M. Laird, and D. B. Rubin, “ Maximum Likelihood from Incomplete 

Data Via the EM Algorithm ,” Journal of the Royal Statistical Society: Series B 

(Methodological), vol. 39, no. 1, pp. 1–22, Sep. 1977, doi: 10.1111/J.2517-

6161.1977.TB01600.X. 

[49] D. Zuo, C. Shi, K. Jin, P. Zhao, W. Zou, and K. Cai, “A Machine Learning GNSS 

Interference Detection Method based on ADS-B Multi-index Features,” Integrated 

Communications, Navigation and Surveillance Conference, ICNS, vol. 2023-April, 2023, 

doi: 10.1109/ICNS58246.2023.10124266. 

[50] F. Fazzer SUKATIS, N. Mohamed NOOR, N. Afiqah ZAKARIA, A. Zia UL-SAUFIE, and 

A. Suwardi, “INTERNATIONAL JOURNAL OF CONSERVATION SCIENCE 

ESTIMATION OF MISSING VALUES IN AIR POLLUTION DATASET BY USING 

VARIOUS IMPUTATION METHODS”, Accessed: Apr. 22, 2023. [Online]. Available: 

www.ijcs.uaic.ro 

[51] L. Malan, C. M. Smuts, J. Baumgartner, and C. Ricci, “Missing data imputation via the 

expectation-maximization algorithm can improve principal component analysis aimed at 

deriving biomarker profiles and dietary patterns,” Nutrition Research, vol. 75, pp. 67–76, 

Mar. 2020, doi: 10.1016/j.nutres.2020.01.001. 

[52] C. Velasco-Gallego and I. Lazakis, “Real-time data-driven missing data imputation for 

short-term sensor data of marine systems. A comparative study,” Ocean Engineering, vol. 

218, Dec. 2020, doi: 10.1016/j.oceaneng.2020.108261. 

[53] M. T. Sattari, K. Falsafian, A. Irvem, S. S, and S. N. Qasem, “Potential of kernel and tree-

based machine-learning models for estimating missing data of rainfall,” Engineering 

Applications of Computational Fluid Mechanics, vol. 14, no. 1, pp. 1078–1094, Jan. 2020, 

doi: 10.1080/19942060.2020.1803971. 

[54] L. Breiman, “Random Forests,” vol. 45, pp. 5–32, 2001. 

[55] R. Feng, D. Grana, and N. Balling, “Imputation of missing well log data by random forest 

and its uncertainty analysis,” Comput Geosci, vol. 152, Jul. 2021, doi: 

10.1016/j.cageo.2021.104763. 

[56] M. Kokla, J. Virtanen, M. Kolehmainen, J. Paananen, and K. Hanhineva, “Random forest-

based imputation outperforms other methods for imputing LC-MS metabolomics data: A 

comparative study,” BMC Bioinformatics, vol. 20, no. 1, Oct. 2019, doi: 10.1186/s12859-

019-3110-0. 

[57] S. Zhang, D. Cheng, Z. Deng, M. Zong, and X. Deng, “A novel k NN algorithm with data-

driven k parameter computation,” Pattern Recognit Lett, vol. 109, pp. 44–54, 2018, doi: 

10.1016/j.patrec.2017.09.036. 

[58] B. Sun, L. Ma, W. Cheng, W. Wen, P. Goswami, and G. Bai, “An improved k-nearest 

neighbours method for traffic time series imputation,” in Proceedings - 2017 Chinese 



91 

Automation Congress, CAC 2017, Institute of Electrical and Electronics Engineers Inc., 

Dec. 2017, pp. 7346–7351. doi: 10.1109/CAC.2017.8244105. 

[59] J. Poulos and R. Valle, “Missing Data Imputation for Supervised Learning,” Oct. 2016, doi: 

10.1080/08839514.2018.1448143. 

[60] A. Jadhav, D. Pramod, and K. Ramanathan, “Comparison of Performance of Data 

Imputation Methods for Numeric Dataset,” Applied Artificial Intelligence, vol. 33, no. 10, 

pp. 913–933, Aug. 2019, doi: 10.1080/08839514.2019.1637138. 

[61] M. C. Wang, C. F. Tsai, and W. C. Lin, “Towards missing electric power data imputation 

for energy management systems,” Expert Syst Appl, vol. 174, Jul. 2021, doi: 

10.1016/j.eswa.2021.114743. 

[62] C. Yan, J. Yuan, Z. Ye, and Z. Yang, “A Discrete Missing Data Imputation Method Based 

on Improved Multi-layer Perceptron,” Proceedings of the 11th IEEE International 

Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology 

and Applications, IDAACS 2021, vol. 1, pp. 480–484, 2021, doi: 

10.1109/IDAACS53288.2021.9661028. 

[63] H. Zhang, P. Xie, and E. Xing, “Missing Value Imputation Based on Deep Generative 

Models,” Aug. 2018, [Online]. Available: http://arxiv.org/abs/1808.01684 

[64] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent Neural Networks for 

Multivariate Time Series with Missing Values,” Sci Rep, vol. 8, no. 1, Dec. 2018, doi: 

10.1038/s41598-018-24271-9. 

[65] Z. C. Lipton, D. C. Kale, R. Wetzel, and L. K. Whittier, “Modeling Missing Data in Clinical 

Time Series with RNNs,” Jun. 2016, doi: 10.48550/arxiv.1606.04130. 

[66] W. Cao et al., “BRITS: Bidirectional Recurrent Imputation for Time Series.” 

[67] S. Yang, M. Dong, Y. Wang, and C. Xu, “Adversarial Recurrent Time Series Imputation,” 

IEEE Trans Neural Netw Learn Syst, pp. 1–12, Aug. 2020, doi: 

10.1109/tnnls.2020.3010524. 

[68] “The OpenSky Network - Free ADS-B and Mode S data for Research.” Accessed: Dec. 17, 

2022. [Online]. Available: https://opensky-network.org/ 

[69] “pandas - Python Data Analysis Library.” Accessed: Nov. 07, 2023. [Online]. Available: 

https://pandas.pydata.org/ 

[70] “PySpark Overview — PySpark 3.5.0 documentation.” Accessed: Nov. 07, 2023. [Online]. 

Available: https://spark.apache.org/docs/latest/api/python/index.html 

[71] V. Abeykoon et al., “Data Engineering for HPC with Python,” Proceedings of PYHPC 

2020: 9th Workshop on Python for High-Performance and Scientific Computing, Held in 

conjunction with SC 2020: The International Conference for High Performance Computing, 

Networking, Storage and Analysis, pp. 13–21, Nov. 2020, doi: 

10.1109/PYHPC51966.2020.00007. 

[72] “scikit-learn: machine learning in Python — scikit-learn 1.3.2 documentation.” Accessed: 

Nov. 01, 2023. [Online]. Available: https://scikit-learn.org/stable/index.html 

[73] “sklearn.impute.IterativeImputer — scikit-learn 1.3.2 documentation.” Accessed: Nov. 01, 

2023. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.It

erativeImputer 

[74] “sklearn.impute.KNNImputer — scikit-learn 1.3.2 documentation.” Accessed: Nov. 01, 

2023. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html 



92 

[75] X. Liu, B. Children’, W. Li, W. Xu, and F. Leng, “Blood-based multi-tissue gene expression 

inference with Bayesian ridge regression”, doi: 10.1093/bioinformatics/btaa239/5819142. 

[76] Y. Freund and R. E. Schapire, “A Short Introduction to Boosting,” Journal of Japanese 

Society for Artificial Intelligence, vol. 14, no. 5, pp. 771–780, 1999, Accessed: Nov. 01, 

2023. [Online]. Available: www.research.att.com/ 

[77] D. H. Lee, S. E. Woo, M. W. Jung, and T. Y. Heo, “Evaluation of Odor Prediction Model 

Performance and Variable Importance according to Various Missing Imputation Methods,” 

Applied Sciences (Switzerland), vol. 12, no. 6, Mar. 2022, doi: 10.3390/app12062826. 

[78] “FAA Aerospace Forecast”. 

[79] M. R. Manesh, J. Kenney, W. C. Hu, V. K. Devabhaktuni, and N. Kaabouch, “Detection of 

GPS Spoofing Attacks on Unmanned Aerial Systems,” 2019 16th IEEE Annual Consumer 

Communications and Networking Conference, CCNC 2019, Feb. 2019, doi: 

10.1109/CCNC.2019.8651804. 

[80] M. P. Arthur, “Detecting signal spoofing and jamming attacks in UAV networks using a 

lightweight IDS,” CITS 2019 - Proceeding of the 2019 International Conference on 

Computer, Information and Telecommunication Systems, Aug. 2019, doi: 

10.1109/CITS.2019.8862148. 

[81] G. Aissou, H. O. Slimane, S. Benouadah, and N. Kaabouch, “Tree-based Supervised 

Machine Learning Models for Detecting GPS Spoofing Attacks on UAS,” 2021 IEEE 12th 

Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, 

UEMCON 2021, pp. 649–653, 2021, doi: 10.1109/UEMCON53757.2021.9666744. 

[82] Y. Haddad, E. Orye, and O. Maennel, “Ghost Injection Attack on Automatic Dependent 

Surveillance-Broadcast Equipped Drones Impact on Human Behaviour,” Proceedings - 

2021 IEEE International Conference on Cognitive and Computational Aspects of Situation 

Management, CogSIMA 2021, pp. 161–166, May 2021, doi: 

10.1109/COGSIMA51574.2021.9475928. 

[83] “What happened to GPS in Denver? - GPS World : GPS World.” Accessed: Mar. 24, 2023. 

[Online]. Available: https://www.gpsworld.com/what-happened-to-gps-in-denver/ 

[84] “CISA Insights GPS Interference Event | Enhanced Reader.” 

[85] W. N. Chan et al., “Overview of NASA’s Air Traffic Management-eXploration (ATM-X) 

Project”, Accessed: May 09, 2023. [Online]. Available: 

https://ntrs.nasa.gov/search.jsp?R=20180005224 

[86] Y. Zhu, S. Zhang, Y. Liu, D. Niyato, and J. J. Q. Yu, “Robust federated learning approach 

for travel mode identification from non-IID GPS trajectories,” Proceedings of the 

International Conference on Parallel and Distributed Systems - ICPADS, vol. 2020-

December, pp. 585–592, Dec. 2020, doi: 10.1109/ICPADS51040.2020.00081. 

[87] K. Guo, T. Chen, S. Ren, N. Li, M. Hu, and J. Kang, “Federated Learning Empowered Real-

Time Medical Data Processing Method for Smart Healthcare,” IEEE/ACM Trans Comput 

Biol Bioinform, 2022, doi: 10.1109/TCBB.2022.3185395. 

[88] L. Sun and J. Wu, “A Scalable and Transferable Federated Learning System for Classifying 

Healthcare Sensor Data,” IEEE J Biomed Health Inform, vol. 27, no. 2, pp. 866–877, Feb. 

2023, doi: 10.1109/JBHI.2022.3171402. 

[89] X. Hou, J. Wang, C. Jiang, X. Zhang, Y. Ren, and M. Debbah, “UAV-Enabled Covert 

Federated Learning,” IEEE Trans Wirel Commun, Oct. 2023, doi: 

10.1109/TWC.2023.3245621. 



93 

[90] J. Tursunboev, Y. S. Kang, S. B. Huh, D. W. Lim, J. M. Kang, and H. Jung, “Hierarchical 

Federated Learning for Edge-Aided Unmanned Aerial Vehicle Networks,” Applied 

Sciences 2022, Vol. 12, Page 670, vol. 12, no. 2, p. 670, Jan. 2022, doi: 

10.3390/APP12020670. 

[91] “ISO/IEC/IEEE 42010:2011(en), Systems and software engineering — Architecture 

description.” Accessed: Nov. 28, 2023. [Online]. Available: 

https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-1:v1:en 

[92] M. Amini Valashani and A. M. Abukari, “ERP Systems Architecture For The Modern Age: 

A Review of The State of The Art Technologies,” Journal of Applied Intelligent Systems 

and Information Sciences, vol. 1, no. 2, pp. 70–90, Jul. 2020, doi: 

10.22034/JAISIS.2020.232506.1009. 

[93] G. Merugu and A. Akepogu, “Four Layered Approach to Non-Functional Requirements 

Analysis,” Jan. 2012, Accessed: Nov. 05, 2023. [Online]. Available: 

https://arxiv.org/abs/1201.6141v2 

[94] H. Jin, G. Liu, D. Hwang, S. Kumar, Y. Agarwal, and J. I. Hong, “Peekaboo: A Hub-Based 

Approach to Enable Transparency in Data Processing within Smart Homes,” Proc IEEE 

Symp Secur Priv, vol. 2022-May, pp. 303–320, 2022, doi: 10.1109/SP46214.2022.9833629. 

[95] R. Laigner et al., “From a Monolithic Big Data System to a Microservices Event-Driven 

Architecture,” Proceedings - 46th Euromicro Conference on Software Engineering and 

Advanced Applications, SEAA 2020, pp. 213–220, Aug. 2020, doi: 

10.1109/SEAA51224.2020.00045. 

[96] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi, “Microservice 

Architecture Reconstruction and Visualization Techniques: A Review,” Proceedings - 16th 

IEEE International Conference on Service-Oriented System Engineering, SOSE 2022, pp. 

39–48, 2022, doi: 10.1109/SOSE55356.2022.00011. 

[97] R. Xu, L. Zhang, and N. Ge, “Modeling and Timing Analysis for Microkernel-Based Real-

Time Embedded System,” IEEE Access, vol. 7, pp. 39547–39563, 2019, doi: 

10.1109/ACCESS.2019.2906011. 

[98] D. Ji, Q. Zhang, S. Zhao, Z. Shi, and Y. Guan, “MicroTEE: Designing TEE OS based on 

the microkernel architecture,” Proceedings - 2019 18th IEEE International Conference on 

Trust, Security and Privacy in Computing and Communications/13th IEEE International 

Conference on Big Data Science and Engineering, TrustCom/BigDataSE 2019, pp. 26–33, 

Aug. 2019, doi: 10.1109/TRUSTCOM/BIGDATASE.2019.00014. 

[99] E. M. Blount, R. Maddox, N. O’connor, and D. Wood, “Distributed Simulation 

Infrastructure for Researching Implementation of Evolving Concepts in the NAS”, 

Accessed: May 03, 2023. [Online]. Available: http://www.sti.nasa.gov 

[100] S. Jovic and W. Harper, “UAS in the NAS Characterization Study of TestBed Infrastructure 

Performance in a Distributed Simulation Environment: Baseline Analysis,” 2020. [Online]. 

Available: http://www.sti.nasa.gov 

[101] C. Fung Lai and P. V Huynh, “Air Traffic Management TestBed: Messaging Performance,” 

2022, Accessed: Mar. 12, 2023. [Online]. Available: http://www.sti.nasa.gov 

[102] S. Nag, D. D. Murakami, N. A. Marker, M. T. Lifson, and P. H. Kopardekar, “Prototyping 

operational autonomy for Space Traffic Management,” Acta Astronaut, vol. 180, pp. 489–

506, Mar. 2021, doi: 10.1016/J.ACTAASTRO.2020.11.056. 



94 

[103] A.-V. Predescu and T. H. Stelkens-Kobsch, “Aviation Security Lab: A testbed for security 

testing of current and future aviation technologies,” Institute of Electrical and Electronics 

Engineers (IEEE), Nov. 2022, pp. 1–5. doi: 10.1109/dasc55683.2022.9925750. 

[104] D. Zeng, A. Mahmud, and N. Wendt, “Cyber Physical Security (CPS) Extension to Air 

Traffic Management (ATM) Testbed”. 

[105] M. Brittain, L. E. Alvarez, K. Breeden, and I. Jessen, “AAM-Gym: Artificial Intelligence 

Testbed for Advanced Air Mobility,” AIAA/IEEE Digital Avionics Systems Conference - 

Proceedings, vol. 2022-September, 2022, doi: 10.1109/DASC55683.2022.9925762. 

[106] G. Airlangga and A. Liu, “A Novel Architectural Design for Solving Lost-Link Problems 

in UAV Collaboration,” Proceedings - Asia-Pacific Software Engineering Conference, 

APSEC, vol. 2021-December, pp. 380–389, 2021, doi: 10.1109/APSEC53868.2021.00045. 

[107] A. T. Altun et al., “The Development of an Advanced Air Mobility Flight Testing and 

Simulation Infrastructure,” Aerospace 2023, Vol. 10, Page 712, vol. 10, no. 8, p. 712, Aug. 

2023, doi: 10.3390/AEROSPACE10080712. 

[108] K. Kannan et al., “A Simulation Architecture for Air Traffic Over Urban Environments 

Supporting Autonomy Research in Advanced Air Mobility.” 2023. 

[109] M. Vierhauser, R. Wohlrab, M. Stadler, and J. Cleland-Huang, “AMon: A domain-specific 

language and framework for adaptive monitoring of Cyber-Physical Systems ✩,” J Syst 

Softw, vol. 195, p. 111507, 2023, doi: 10.1016/j.jss.2022.111507. 

[110] J. Cleland-Huang, A. Agrawal, M. Vierhauser, M. Murphy, and M. Prieto, “Extending 

MAPE-K to support Human-Machine Teaming,” Proceedings - 17th Symposium on 

Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2022, pp. 120–131, 

2022, doi: 10.1145/3524844.3528054. 

[111] Z. Cai, X. Chang, and M. Li, “A Cost-Efficient Platform Design for Distributed UAV 

Swarm Research,” ACM International Conference Proceeding Series, Nov. 2021, doi: 

10.1145/3503047.3503070. 

[112] A. A. Alsulami and S. Zein-Sabatto, “Resilient Cyber-Security Approach for Aviation 

Cyber-Physical Systems Protection against Sensor Spoofing Attacks,” in 2021 IEEE 11th 

Annual Computing and Communication Workshop and Conference, CCWC 2021, Institute 

of Electrical and Electronics Engineers Inc., Jan. 2021, pp. 565–571. doi: 

10.1109/CCWC51732.2021.9376158. 

[113] D. Carramiñana, I. Campaña, L. Bergesio, A. M. Bernardos, and J. A. Besada, “Sensors and 

communication simulation for unmanned traffic management,” Sensors (Switzerland), vol. 

21, no. 3, pp. 1–29, Feb. 2021, doi: 10.3390/s21030927. 

[114] S. M. Yusuf, I. Abdullahi, A. Bappi, A. Aliyu, B. Modi, and U. Y. Ibrahim, “Towards 

Autonomous Multi-UAVs Surveillance Mission: A Study of Nigerian Telecommunication 

Masts Surveillance,” 2021 1st International Conference on Multidisciplinary Engineering 

and Applied Science, ICMEAS 2021, 2021, doi: 10.1109/ICMEAS52683.2021.9692377. 

[115] M. Afanasov Politecnico di Milano, I. Luca Mottola Politecnico di Milano, R. Sweden 

Editor, and S. Ko, “THE FlyZone TESTBED ARCHITECTURE FOR AERIAL DRONE 

APPLICATIONS [EXPERIMENTAL METHODS],” vol. 24, no. 1, 2020. 

[116] O. Bekkouche, K. Samdanis, M. Bagaa, and T. Taleb, “A service-based architecture for 

enabling UAV enhanced network services,” IEEE Netw, vol. 34, no. 4, pp. 328–335, Jul. 

2020, doi: 10.1109/MNET.001.1900556. 

[117] P. T. Grogan and J. L. Stern, “Coordinating Observation at Global and Local Scales: 

Service-Oriented Platform to Evaluate Mission Architectures,” International Geoscience 



95 

and Remote Sensing Symposium (IGARSS), pp. 3837–3840, Sep. 2020, doi: 

10.1109/IGARSS39084.2020.9323712. 

[118] S. Crow et al., “Triton: A Software-Reconfigurable Federated Avionics Testbed”. 

[119] Z. Liu et al., “Mission Oriented Miniature Fixed-wing UAV Swarms: A Multi-layered and 

Distributed Architecture,” IEEE Trans Syst Man Cybern Syst, vol. 52, no. 3, pp. 1588–1602, 

Dec. 2019, doi: 10.1109/TSMC.2020.3033935. 

[120] X. Zhang, H. Wang, J. Liu, and H. Li, “CyberEarth: A virtual simulation platform for 

robotics and cyber-physical systems,” IEEE International Conference on Robotics and 

Biomimetics, ROBIO 2019, pp. 858–863, Dec. 2019, doi: 

10.1109/ROBIO49542.2019.8961433. 

[121] J. Wen, H. Ji, H. Wang, M. Zhang, D. Li, and J. Wu, “Design of a Real-Time UAV Fault 

Injection Simulation System,” Proceedings of the 2019 IEEE International Conference on 

Unmanned Systems, ICUS 2019, pp. 767–772, Oct. 2019, doi: 

10.1109/ICUS48101.2019.8995942. 

[122] V. K. Singh, M. Govindarasu, D. Porschet, E. Shaffer, and M. Berman, “Distributed Power 

System Simulation using Cyber-Physical Testbed Federation: Architecture, Modeling, and 

Evaluation,” Proceedings - 2019 Resilience Week, RWS 2019, pp. 26–32, Nov. 2019, doi: 

10.1109/RWS47064.2019.8971970. 

[123] P. A. Jorgensen, A. Waltoft-Olsen, S. H. Houmb, A. L. Toppe, T. G. Soltvedt, and H. K. 

Muggerud, “Building a Hardware-in-the-Loop (HiL) Digital Energy Station Infrastructure 

for Cyber Operation Resiliency Testing,” Proceedings - 3rd International Workshop on 

Engineering and Cybersecurity of Critical Systems, EnCyCriS 2022, pp. 9–16, 2022, doi: 

10.1145/3524489.3527299. 

[124] J. Kleissl et al., “DERConnect-A Distributed Energy Resources Testbed for Solar Power 

Integration,” e-Energy 2022 - Proceedings of the 2022 13th ACM International Conference 

on Future Energy Systems, pp. 587–589, Jun. 2022, doi: 10.1145/3538637.3539633. 

[125] G. Chen, Y. Qu, and D. Jin, “Cyber-Physical Simulation Testbed for MadIoT Attack 

Detection and Mitigation”, doi: 10.1145/3518997.3534995. 

[126] A. Sahu et al., “Design and evaluation of a cyber-physical testbed for improving attack 

resilience of power systems,” IET Cyber-Physical Systems: Theory and Applications, vol. 

6, no. 4, pp. 208–227, Dec. 2021, doi: 10.1049/cps2.12018. 

[127] G. Ravikumar, A. Singh, J. R. Babu, A. Moataz A, and M. Govindarasu, “D-IDS for cyber-

physical der modbus system - Architecture, modeling, testbed-based evaluation,” in 2020 

Resilience Week, RWS 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 

2020, pp. 153–159. doi: 10.1109/RWS50334.2020.9241259. 

[128] J. Tabor, S. Dai, V. Sreenivasan, and S. Banerjee, “μCity: A Miniatured Autonomous 

Vehicle Testbed,” Proceedings of the 17th ACM Workshop on Mobility in the Evolving 

Internet Architecture, MobiArch 2022, pp. 25–30, Oct. 2022, doi: 

10.1145/3556548.3559631. 

[129] H. T. Nguyen and O. Haugen, “Building Experimental Laboratory for Digital Twin in 

Service Oriented Architecture,” Proceedings - 2022 IEEE 5th International Conference on 

Industrial Cyber-Physical Systems, ICPS 2022, 2022, doi: 

10.1109/ICPS51978.2022.9816926. 

[130] K. Polachan, J. Pal, C. Singh, T. V. Prabhakar, and F. A. Kuipers, “TCPSbed: A Modular 

Testbed for Tactile Internet-Based Cyber-Physical Systems,” IEEE/ACM Transactions on 

Networking, vol. 30, no. 2, pp. 796–811, Apr. 2022, doi: 10.1109/TNET.2021.3124767. 



96 

[131] Y. Ye, S. Li, F. Liu, Y. Tang, and W. Hu, “EdgeFed: Optimized Federated Learning Based 

on Edge Computing,” IEEE Access, vol. 8, pp. 209191–209198, 2020, doi: 

10.1109/ACCESS.2020.3038287. 

[132] S. Wang et al., “Adaptive Federated Learning in Resource Constrained Edge Computing 

Systems,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1205–

1221, Jun. 2019, doi: 10.1109/JSAC.2019.2904348. 

[133] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning: Challenges, Methods, 

and Future Directions,” IEEE Signal Process Mag, vol. 37, no. 3, pp. 50–60, May 2020, 

doi: 10.1109/MSP.2020.2975749. 

[134] “Software Architecture and Design InfoQ Trends Report - April 2023.” Accessed: May 04, 

2023. [Online]. Available: https://www.infoq.com/articles/architecture-trends-2023/ 

[135] “Diffusion of Innovation Theory.” Accessed: May 10, 2023. [Online]. Available: 

https://www.ou.edu/deptcomm/dodjcc/groups/99A2/theories.htm 

[136] S. L. P¯eeger, “Understanding and improving technology transfer in software engineering”, 

Accessed: May 10, 2023. [Online]. Available: www.elsevier.com/locate/jss 

[137] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity Visual and Physical 

Simulation for Autonomous Vehicles,” Springer Proceedings in Advanced Robotics, vol. 5, 

pp. 621–635, 2018, doi: 10.1007/978-3-319-67361-5_40. 

[138] A. Konttinen, “Architecture of Industrial Device Interfaces,” Nov. 2021, Accessed: May 

11, 2023. [Online]. Available: https://trepo.tuni.fi/handle/10024/134839 

[139] “OpenSky Network - Dataset.” Accessed: Nov. 07, 2023. [Online]. Available: 

https://opensky-network.org/datasets/ 

[140] I. Mathieson, S. Dance, L. Padgham, M. Gorman, and M. Winikoff, “An open 

meteorological alerting system: Issues and solutions,” Computer Science 2004 - 

Proceedings of the 27th Australasian Computer Science Conference, vol. 26, no. December, 

pp. 287–294, 2004, Accessed: May 11, 2023. [Online]. Available: 

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/An-open-

meteorological-alerting-system-Issues-and-solutions/9921863652601341 

[141] R. Kazman, P. Bianco, J. Ivers, and J. Klein, “Maintainability Software Solutions Division,” 

2020, doi: 10.1184/R1/12954908. 

[142] X. Hou, J. Wang, C. Jiang, X. Zhang, Y. Ren, and M. Debbah, “UAV-Enabled Covert 

Federated Learning,” IEEE Trans Wirel Commun, 2023, doi: 10.1109/TWC.2023.3245621. 

[143] M. Fu, Y. Shi, S. Member, and Y. Zhou, “Federated Learning via Unmanned Aerial 

Vehicle,” Oct. 2022, Accessed: May 11, 2023. [Online]. Available: 

https://arxiv.org/abs/2210.10970v1 

[144] A. Taik and S. Cherkaoui, “Electrical Load Forecasting Using Edge Computing and 

Federated Learning,” IEEE International Conference on Communications, vol. 2020-June, 

Jun. 2020, doi: 10.1109/ICC40277.2020.9148937. 

[145] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha, and G. Srivastava, 

“Federated-Learning-Based Anomaly Detection for IoT Security Attacks,” IEEE Internet 

Things J, vol. 9, no. 4, pp. 2545–2554, Feb. 2022, doi: 10.1109/JIOT.2021.3077803. 

[146] S. Khan, G. Singh Gaba, and A. Gurtov, “A Federated Learning Based Security for 

Controller Pilot Data Link Communication,” 2022, Accessed: Oct. 18, 2023. [Online]. 

Available: https://www.researchgate.net/publication/366683346 

[147] M. Wang, Y. Lei, Y. Liang, X. Lv, and W. Mo, “AGI-FEDAVG: A UAV Power Line 

Inspection Algorithm Based on Federated Learning,” Proceedings of 2021 IEEE 3rd 



97 

International Conference on Civil Aviation Safety and Information Technology, ICCASIT 

2021, pp. 1030–1034, 2021, doi: 10.1109/ICCASIT53235.2021.9633432. 

[148] “Docker: Accelerated Container Application Development.” Accessed: Nov. 07, 2023. 

[Online]. Available: https://www.docker.com/ 

[149] R. Fielding et al., “Hypertext Transfer Protocol -- HTTP/1.1,” Jun. 1999, doi: 

10.17487/RFC2616. 

[150] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol Version 2 (HTTP/2),” 

May 2015, doi: 10.17487/RFC7540. 

[151] I. Olivos and M. Johansson, “Comparative Study of REST and gRPC for Microservices in 

Estab-lished Software Architectures”, Accessed: Nov. 12, 2023. [Online]. Available: 

www.liu.se 

[152] Y. Fu and C. Soman, “Real-time Data Infrastructure at Uber,” Proceedings of the ACM 

SIGMOD International Conference on Management of Data, pp. 2503–2516, 2021, doi: 

10.1145/3448016.3457552. 

[153] Z. Niu, L. Dong, and Y. Zhu, “The Runtime model checking Method for Zero Trust Security 

Policy,” p. 2022, doi: 10.1145/3558819.3558821. 

[154] Z. Adahman, W. Malik, and Z. Anwar, “An analysis of zero-trust architecture and its cost-

effectiveness for organizational security,” Comput Secur, vol. 122, p. 102911, 2022, doi: 

10.1016/j.cose.2022.102911. 

[155] D. C. Nguyen et al., “Federated Learning for Smart Healthcare: A Survey,” ACM 

Computing Surveys (CSUR), vol. 55, no. 3, p. 60, Feb. 2022, doi: 10.1145/3501296. 

[156] B. Ghimire and D. B. Rawat, “Recent Advances on Federated Learning for Cybersecurity 

and Cybersecurity for Federated Learning for Internet of Things,” IEEE Internet Things J, 

vol. 9, no. 11, pp. 8229–8249, Jun. 2022, doi: 10.1109/JIOT.2022.3150363. 

[157] M. Driss, I. Almomani, · Zil E Huma, and J. Ahmad, “A federated learning framework for 

cyberattack detection in vehicular sensor networks,” Complex & Intelligent Systems, vol. 8, 

pp. 4221–4235, 2022, doi: 10.1007/s40747-022-00705-w. 

[158] TaibiDavide and MezzaliraLuca, “Micro-Frontends,” ACM SIGSOFT Software 

Engineering Notes, vol. 47, no. 4, pp. 25–29, Sep. 2022, doi: 10.1145/3561846.3561853. 

[159] J. Männistö, A.-P. Tuovinen, and M. Raatikainen, “Experiences on a Frameworkless Micro-

Frontend Architecture in a Small Organization,” 2023 IEEE 20th International Conference 

on Software Architecture Companion (ICSA-C), pp. 61–67, Mar. 2023, doi: 10.1109/ICSA-

C57050.2023.00025. 

[160] H. Brendan McMahan Eider Moore Daniel Ramage Seth Hampson Blaise AgüeraAg and 

A. Arcas, “Communication-Efficient Learning of Deep Networks from Decentralized 

Data,” 2017. 

[161] D. Gao, C. Ju, X. Wei, Y. Liu, T. Chen, and Q. Yang, “HHHFL: Hierarchical Heterogeneous 

Horizontal Federated Learning for Electroencephalography,” Sep. 2019, Accessed: Nov. 

11, 2023. [Online]. Available: https://arxiv.org/abs/1909.05784v3 

[162] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the Convergence of FedAvg on 

Non-IID Data.” Sep. 23, 2019. 

[163] T.-M. H. Hsu, H. Qi, G. Research, and M. Brown, “Measuring the Effects of Non-Identical 

Data Distribution for Federated Visual Classification,” Sep. 2019, Accessed: Nov. 11, 2023. 

[Online]. Available: https://arxiv.org/abs/1909.06335v1 

[164] “Flower: A Friendly Federated Learning Framework.” Accessed: Nov. 11, 2023. [Online]. 

Available: https://flower.dev/ 



98 

[165] “Barathwaja/federated-learning: This will consists of all the Federated Learning codes.” 

Accessed: Nov. 21, 2023. [Online]. Available: https://github.com/Barathwaja/federated-

learning 

[166] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput, vol. 9, no. 

8, pp. 1735–1780, Nov. 1997, doi: 10.1162/NECO.1997.9.8.1735. 

[167] “Getting started.” Accessed: Nov. 11, 2023. [Online]. Available: 

https://keras.io/getting_started/ 

[168] A. Mirzal, “Statistical Analysis of Microarray Data Clustering using NMF, Spectral 

Clustering, Kmeans, and GMM,” IEEE/ACM Trans Comput Biol Bioinform, vol. 19, no. 2, 

pp. 1173–1192, 2022, doi: 10.1109/TCBB.2020.3025486. 

[169] “tslearn’s documentation — tslearn 0.6.2 documentation.” Accessed: Nov. 11, 2023. 

[Online]. Available: https://tslearn.readthedocs.io/en/stable/# 

[170] “Grafana: The open observability platform | Grafana Labs.” Accessed: Nov. 11, 2023. 

[Online]. Available: https://grafana.com/ 

[171] “Prometheus - Monitoring system & time series database.” Accessed: Nov. 11, 2023. 

[Online]. Available: https://prometheus.io/ 

[172] “google/cadvisor: Analyzes resource usage and performance characteristics of running 

containers.” Accessed: Nov. 11, 2023. [Online]. Available: 

https://github.com/google/cadvisor 

[173] C. Zhang, F. Zhang, X. Guo, B. He, X. Zhang, and X. Du, “IMLBench: A Machine Learning 

Benchmark Suite for CPU-GPU Integrated Architectures,” IEEE Transactions on Parallel 

and Distributed Systems, vol. 32, no. 7, pp. 1740–1752, Jul. 2021, doi: 

10.1109/TPDS.2020.3046870. 

[174] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Toward Personalized Federated Learning,” IEEE 

Trans Neural Netw Learn Syst, 2022, doi: 10.1109/TNNLS.2022.3160699. 

[175] T. Zang, C. Zheng, S. Ma, C. Sun, and W. Chen, “A General Solution for Straggler Effect 

and Unreliable Communication in Federated Learning,” ICC 2023 - IEEE International 

Conference on Communications, pp. 1194–1199, May 2023, doi: 

10.1109/ICC45041.2023.10279635. 

[176] H. Wu, P. Wang, and C. V. A. Narayana, “Straggler-resilient Federated Learning: Tackling 

Computation Heterogeneity with Layer-wise Partial Model Training in Mobile Edge 

Network,” Nov. 2023, Accessed: Nov. 21, 2023. [Online]. Available: 

https://arxiv.org/abs/2311.10002v1 

 



 

 

 


		2023-12-05T12:05:58-0800
	Digitally verifiable PDF exported from www.docusign.com




