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ABSTRACT 

Blowing snow is common in polar regions. Blowing snow and associated sublimation 

influence the surface energy budget and surface mass balance. For example, it is believed to play 

a critical role in the evolution of Arctic sea-thickness by reducing the amount of snow accumulated 

on the sea-ice surface, which is a pressing issue with the Arctic Amplification. Currently, most 

models do not include blowing snow as there has not been widespread validation of blowing snow 

parameterizations. Fortunately, the Atmospheric Radiation Measurements (ARM) North Slope 

Alaska (NSA) site located in Utqiaġvik, Alaska contains instrumentation that allows for the 

detection of this process. There are two objectives for this study. The first goal is to use particle 

size distribution (PSD) data from the Precipitation Imaging Package (PIP) and the Laser 

Precipitation Monitor (LPM) to identify periods of blowing snow at ARM NSA. This information 

is coupled to surface meteorological data to understand when blowing snow occurs. From this 

initial study, a long-term record of blowing snow frequency will be developed for the history of 

the NSA site. The second objective will identify meteorological regimes associated with blowing 

snow events. Synoptic patterns will be classified with Self Organizing Maps (SOMs). Collectively, 

this will give a climatology of blowing snow from January 1979 to February of 2022 for NSA. 

This study will determine the ability of the SOMs to classify weather patterns of specific 

atmospheric processes. Determining the weather patterns associated with blowing snow will allow 

for thorough validation of other modeling efforts. Eventually, this will lead to ample knowledge 

to confidently incorporate these schemes into weather and climate models. This will allow for 

better forecasting of reduced visibility conditions and allow for the inclusion of blowing snow in 

models that evaluate sea-ice evolution. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1.Department of Energy Atmospheric Radiation Measurement Sites: North Slope of Alaska 

Climate change is unequivocal and at the forefront of climate research. Physical changes 

in Earth’s climate and atmosphere influence global economics, policy, and societal health (Hunt 

and Watkiss 2011). Understanding the physical processes that drive climate and climate change 

are critical for developing mitigation strategies. The Arctic is experiencing the brunt of climate 

change with warming rates exceeding the average global warming rate (Stamnes et al. 1999). The 

Arctic influences the thermohaline circulation (Broecker et al. 1988), ocean currents (Manabe et 

al. 1991), snow-ice albedo feedbacks (Budyko 1969), cloud-radiation feedbacks (Cury and 

Schramm 1993), and global radiative budgets (Stamnes et al. 1999). Large uncertainties exist in 

cloud-radiation, ocean-ice, and sea-ice albedo feedbacks and how such processes play into the 

global radiation budget in an evolving climate. In response to global climate change, the United 

States Department of Energy (DOE) has developed a network of atmospheric radiation 

measurement (ARM) sites to better observe the energy budget and related forcings including 

clouds and aerosols. Overall, the mission of ARM is to improve energy sustainability through 

global climate change research (Tobin et al. 2006). 

ARM locations were selected to encompass a broad range of climates observed on Earth 

(Tobin et al. 2006). There are currently three fixed ARM locations including the Southern Great 

Plains (SGP) site in Lamont, Oklahoma, United States; the North Slope of Alaska (NSA) site in 
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Utqiaġvik, Alaska, United States; and the Eastern North Atlantic (ENA) site in Azores, Portugal. 

Each ARM site contains ground-based in-situ and remote sensing instruments. The ARM site in 

inquiry is NSA located within the Arctic Circle along the Beaufort and Chukchi Sea in Utqiaġvik, 

Alaska (Fig.1). NSA has been operational since 1997 (Zhang 2022).  

NSA is one of the longest-term research facilities providing data and observations on Arctic 

and high-latitude processes (Berendes et al. 2004). Observations from NSA have been used in a 

wide variety of Arctic literature including the generation of aerosol vertical profiles (Zhang et al. 

2022), satellite-to-surface-observation comparisons (Berendes et al. 2004), validation of 

radiosondes in the detection of cloud layers (Zhang et al. 2013), detecting ice production in 

supercooled Arctic Stratiform clouds (Zhang et al. 2017), theoretical derivation of cloud physical 

properties (Daniel et al. 2006), vertical motion within Arctic mixed-phase clouds and 

compounding relations with cloud physical properties (Shupe et al. 2008), and the generation of a 

10-year record of seasonal variability in cloud fraction, radiative flux, and cloud radiative forcing 

(Dong et al. 2010). Like other high-latitude locations, NSA is prone to blowing snow due to the 

frequency of snowfall events, cold temperatures, and high winds. The diverse range of 

instrumentation and the high occurrence of blowing snow conditions makes NSA an ideal location 

for the analysis of blowing snow and associated processes.   

NSA is composed of multiple instrumented locations including the NSA Central Facility 

(NSA C1), NSA E10, and Oliktok Point (Fig. 1). The NSA C1 site contains 43 instruments 

including radars, remote sensing instruments, and in-situ instruments (Zhang et al. 2022). NSA 

E10 is located north of NSA C1 and contains an on-site camera, an Eddy Correlation Flux 

Measurement System (ECOR; Cook and Sullivan 2020), a Surface Energy Balance System (SEBS; 

Sullivan et al. 2019), and a Laser Disdrometer (LDIS; Bartholomew 2020). Oliktok Point is located 
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between NSA and Prudhoe Bay along the Arctic coastline. The ARM Mobile Facility 3, AMF3, 

was placed in Oliktok Point from September 2013 to August 2021 and contained 50 instruments. 

Oliktok Point also offered special-use airspace for aircraft observations (de Boer et al. 2018).  

NSA provides various instrumentation capable of detecting blowing snow. In-situ 

instrumentation includes optical laser distrometers as well as a digital video distrometer that 

provides particle concentrations for a range of particle diameters (Meshesha et al. 2016; Pickering 

et al. 2019). Traditional meteorological data, including temperature, relative humidity, wind speed, 

atmospheric pressure, and visibility, are also available. Finally, multiple radars and lidars are 

available. For example, ceilometers, which have been used to detect blowing snow (Gossart et al. 

2017; Loeb and Kennedy 2021; Loeb and Kennedy 2023), are located at NSA C1, the 

supplementary Atqasuk site, and Oliktok Point. At NSA, Chen et al. (2022) used multiple methods 

to detect blowing snow including the use of a ceilometer and meteorological thresholds based on 

wind speed and temperature. A key issue with these earlier papers was lack of analyzed particle 

data to confirm the presence of blowing snow.  

1.2 Blowing Snow  

Within high-latitude and polar regions, snow particles are transported by the wind. Snow 

mass transport describes the process of snow particles at the surface being dislodged by the wind. 

Lofted snow particles are then redistributed through blowing and/or drifting snow. Blowing snow, 

as defined by the American Meteorological Society Glossary of Meteorology, is the lofting of snow 

particles from the surface into the atmosphere at a minimum height of 2-m with a reduction in 

horizontal visibility to less than 11-km. Similarly, Mahesh et al. (2003) defined blowing snow as 

“masses of fine snow particles carried by the wind to fill the near-surface atmospheric layer and to 
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limit the horizontal visibility.” Drifting snow, as defined by the American Meteorological Society 

Glossary of Meteorology, is the lofting of snow particles 6-ft or less within the atmosphere.  

1.2.1 Blowing Snow Mechanisms  

Blowing snow is initiated by the dislodging of snow/ice particles at the surface into the 

near-surface layer by the wind. Specific wind speed thresholds must be met to generate a strong 

enough shear stress to counter particle bonding and resistance (Shulski and Seeley 2004). Wind 

thresholds, or the wind speed at which snow/ice particles are lofted from the surface, are largely a 

function of the snowpack conditions. Relatively weak wind speeds (3 – 8 m s-1) are necessary to 

loft snow particles that are loose from the surface (Mellor 1965; Li and Pomeroy 1997a). As the 

density of the snowpack increases, the wind speed threshold to initiate blowing snow increases 

(Mellor 1965). Li and Pomeroy (1997a) reported that the wind threshold for blowing dry snow 

conditions was ~7.7 m s-1 while blowing wet snow conditions required a wind threshold of ~9.9 m 

s-1. Palm et al. (2011) stated that blowing snow conditions required wind speeds to be > 9 m s-1 

and minimal-to-no blowing snow occurred at times where wind speeds fell below ~5 – 6 m s-1. 

Wind speed thresholds for blowing snow are also influenced by the ambient temperature (Li and 

Pomeroy 1997a).  

Temperature influences the amount of cohesion present in the snowpack and consequently 

the wind speed thresholds necessary for blowing snow formation. Li and Pomeroy (1997a) found 

a relationship between dry snow wind speed thresholds and the ambient temperature. Dry snow 

conditions were defined as those where temperatures remained < 0˚C with no additional 

precipitation topping the snowpack. The relationship between dry snow wind speed thresholds and 

temperature showed that for temperatures between 0 ˚C and -25 ˚C, wind speed thresholds for 
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blowing snow increased as temperature increased and in conditions where temperatures are < -25 

˚C, wind speed thresholds for blowing snow also increased with decreasing temperature. 

Li and Pomeroy (1997a) found using statistical analysis that the relationship between the 

ambient temperature and the wind speed threshold for blowing dry snow can be represented as 

follows: 

 𝑈𝑡𝑎𝑏𝑇𝑐𝑇
2 (1) 

where  𝑈𝑡 is the 10-m wind speed threshold applied (m s-1), 𝑇 is the temperature observed at a 

height of 2-m (˚C), and a = 9.43 m s−1, b = 0.18 m °C−1 s−1, and c = 0.0033 m °C−2 s−1. 

Generally, as the temperature increases, the wind speed thresholds for blowing snow 

increases due to the increased cohesion occurring, and as temperature drops to below -25 ˚C, wind 

speed thresholds for blowing snow also increase (Li and Pomeroy 1997a). Wind speed thresholds 

increase for temperature below -25 ˚C, due to the increased elastic and kinetic frictional forces. 

1.3 Blowing Snow Impacts 

Blowing snow within the Arctic impacts a diverse range of processes that influence global 

climate change. Such processes include sea-ice deterioration and modification, aerosol and cloud 

feedbacks, and way of life for local indigenous tribes.  Each process is now discussed in detail.  

1.3.1 Blowing Snow and Snow Depth  

Blowing snow sublimation is a critical process for evolution of Arctic ice sheets and snow 

depth as blowing snow sublimation alters the surface heat and mass budget. The redistribution of 

snow particles increases the direct exposure of ice sheets to solar radiation (Déry and Tremblay 

2004). A fresh thin layer of snow on the ice sheet acts to reflect most of the shortwave radiation 
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back into the atmosphere due to the high albedo of snow (Déry and Tremblay 2004). Thin snow 

layers also act to insulate the surface by trapping ocean heat in the lowest layers (Déry and 

Tremblay 2004). The removal of the thin snow layers increases the conductive heat flux from the 

ocean to the ice to the atmosphere (Landrum and Holland 2022). The heat loss results in cooler 

temperatures observed at the surface and an increased relative humidity throughout the boundary 

layer during the presence of blowing snow. The Arctic Coast snowfall experiences a 32% reduction 

due to blowing snow sublimation (Benson 1982). Chung et al. (2011) found that for the Surface 

Heat Budget of the Arctic Ocean (SHEBA), blowing snow sublimation reduced snow depth an 

average of 9-cm during the months of February through June (1997 – 1998).  

Blowing snow and associated processes (e.g. sublimation) result in variable snow depth 

atop Arctic sea-ice. Spatial variability of snow depth and the processes that influence snow depth 

have become a key variable in the analysis of sea-ice evolution. The Intergovernmental Panel on 

Climate Change (IPCC) placed variable snow depth impacts on Artic sea-ice processes on a list of 

“Key Knowledge Gaps and Uncertainties” (Meredith et al. 2019). Current literature has focused 

on including variable snow depth on sea-ice throughout the winter season to evaluate the evolution 

of Arctic sea-ice thickness. Understanding this relationship between sea-ice thickness and snow 

depth presents challenges due to the lack of observational data on sea-ice thickness and sea-ice 

snow depth. Access to such data have increased, allowing studies to come out focusing on the 

inclusion of snow-depth variability. Mallett et al. (2021) performed a comparative study that 

looked at two Arctic sea-ice models. The first model, assembled from the Warren Climatology 

(hereafter “W99”) (Warren et al. 1999), did not account for interannual variability of the snow 

present on sea-ice sheets. W99 is a 37-year climatology of snow depth and density measurements 

for Artic Ocean snow cover from Soviet drifting stations (Warren et al. 1990). The second model, 
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SnowModel-LG, derived snow depth from blowing snow sublimation, blowing snow 

redistribution, depth-hoar formation, and wind packing (Mallet et al. 2011 and Liston et al. 2020). 

The SnowModel-LG demonstrated that snow accumulations decreased throughout the Arctic study 

region from 2002 – 2018. W99 showed no statistical significance in the sea-ice thickness within 

the Chukchi Sea for the month of October, whereas the SnowModel-LG showed a statistically 

significant decline in sea-ice thickness for the month of October from 2002 - 2018. Further studies 

have demonstrated similar findings. Landrum and Holland (2022) found that atmosphere-only 

simulations that analyzed Arctic Amplification and sea-ice thickness in conditions with large 

concentrations of sea-ice, demonstrated decreasing conductive heat fluxes. However, when using 

models that account for changing sea-ice thickness and snow depth, the conductive heat fluxes 

increased. Thus, as demonstrated here, blowing snow plays an integral role in Arctic sea-ice 

processes.  

1.3.2 Blowing Snow and Aerosols 

The presence of aerosols influence the Arctic climate through modifications to the cloud 

microphysics and the scattering and absorption of solar radiation (Huang and Jaeglé 2017). Sea-

salt aerosols (SSA) represent a large concentration of naturally occurring aerosols in the Arctic 

(Wang et al. 2019). Traditionally, SSAs were thought to be generated from breaking ocean waves, 

however, recent studies have hypothesized blowing snow as a source of SSAs. Huang and Jaeglé 

(2017) implemented a blowing snow emissions scheme within the GEO-Chem global chemical 

transport model to reproduce Arctic and Antarctic wintertime SSA concentrations. The inclusion 

of blowing snow within the model reduced open ocean model bias from 80 – 34% to 2 – 9% and 

accounted for daily variability better than simulations without the inclusion of blowing snow 

(Huang and Jaeglé 2017). Gong et al. (2023) found cloud condensation nuclei concentrations 
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increased up to ten times the mean amount due to SSAs generated from blowing snow sublimation. 

Furthermore, Choi et al. (2018) linked blowing snow generated SSAs to Arctic springtime bromine 

explosions resulting in the depletion of ozone.  

Due to the lack of concrete blowing snow parameters, the inclusion of blowing snow within 

SSA simulations poses the potential of generating a positive bias in the concentrations of SSAs 

depending on the selected parameters used to determine blowing snow periods. Chen et al. (2022) 

conducted a study that analyzed Arctic springtime aerosols and atmospheric particles, focusing on 

the influence of blowing snow and leads on those concentrations. Blowing snow occurrences were 

determined using the methodology outlined in Li and Pomeroy (1997a) and Loeb and Kennedy 

(2021). This included detecting blowing snow based on wind speed and temperature. Blowing 

snow occurrences were compared to ceilometer data and it was found that blowing snow 

occurrences were overestimated from meteorological data alone (Chen et al. 2022). If blowing 

snow occurrences were overestimated, and such data were used to calculate SSAs from blowing 

snow sublimation, SSA values would also be overestimated. 

1.3.3 Blowing Snow Impacts on Indigenous Tribes 

The impacts of blowing snow and climate change have been observed and discussed among 

the local indigenous tribes. The Alaska Native Tribal Health Consortium reports climate change 

within the region, potential health and safety risks, and adaptive measures being taken by 

communities to account for the evolving climate (Brubaker et al. 2011). The depletion and early 

melting of sea-ice and near-zero visibility generated from blowing snow are concerns brought forth 

by the Native Village of Point Hope (Brubaker et al. 2011).  Point Hope has implemented the use 

of rescue locator beacons. Beacons are loaned to individuals by the local fire department to enable 

tracking in case of an emergency (Brubaker et al. 2011). Willard Hunnicutt, a local Fire Chief, 
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stated “The storms have been very bad. Lots of wind and blowing snow. Hunters are using locator 

beacons that are tracked by Search and Rescue in Barrow. These result in rescues and saved lives” 

(Brubaker et al. 2011).  

1.4 The Changing North Slope of Alaska Climate 

The winter climatology of NSA is defined by high frequencies of strong wind events, 

falling precipitation, and blowing snow (Shulski and Wendler 2007). Atmospheric circulations and 

teleconnection phases drive synoptic-scale weather patterns and variability in the region (Cox et 

al. 2017; Cox et al. 2019). The most prevalent teleconnections in the region are the Pacific Decadal 

Oscillation (PDO) and the El Niño-Southern Oscillation (ENSO). Teleconnections influence the 

observed temperatures, accounting for some of the interannual temperature variability (Hartmann 

and Wendler 2005; McAfee 2014; Walsh and Brettschneider 2018). The strength and location of 

the Aleutian Low and the Beaufort Sea Anticyclone drive cold air advection (CAA) or warm air 

advection (WAA) within the Bering Strait, helping to determine the onset of spring snowmelt 

within northern Alaska (Cassano et al. 2016; Cox et al. 2017; Cox et al. 2019). The Aleutian Low 

is typically observed within the North Pacific off the Gulf of Alaska near the Aleutian Islands. 

WAA toward NSA occurs when southerly flow originates from the Gulf of Alaska and North 

Pacific Ocean. Cassano et al. (2011) found that Utqiaġvik positive temperature anomalies are 

associated with southerly flow or WAA; conversely, negative temperature anomalies or CAA are 

associated with northerly or easterly flow. When strong WAA does not occur and/or the Beaufort 

Sea Anticyclone blocks the advected warm air, the snowpack deteriorates slower (Cox et al. 2019). 

The relationship between the Aleutian Low strength and location and the Beaufort Sea Anticyclone 

has been formulated into a climate index for the determination of spring snowmelt by Cox et al. 

(2017) and has been investigated using an analog methodology by Walsh and Brettschneider 
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(2018). The Aleutian Low and the Beaufort Sea Anticyclone are prevailing climatological features 

driving climate within the Alaskan winter season (Shulski and Wendler 2007; Cassano et al. 2015; 

Cox et al. 2017; Cox et al. 2019). 

NSA is a region strongly impacted by climate change and compounding Arctic 

Amplification (Cox et al. 2017). Evidence of an evolving climate within the region is seen in the 

melting of sea-ice, the earlier onset of spring snowmelt, the degradation of permafrost, etc. 

(Cassano et al. 2016; Cox et al. 2017). Within the Northern Hemisphere, Alaska has experienced 

an enhanced severity in climate change (Walsh and Brettschneider 2018). In comparison to the 

United States “lower-48”, Alaska has experienced ~50% more warming (Ballinger et al. 2023). 

Ballinger et al. (2023) compromised a comprehensive climate trend analysis for Alaska (1957 to 

2021) that revealed overall precipitation amounts within NSA have shown a significant increasing 

trend; conversely, spring and fall precipitation has shown decreasing trends. Sea-ice coverage 

within Alaska typically peaks in the month of March. Sea-ice coverage within March has steadily 

declined each decade shortening the continuous sea-ice coverage season and altering the surface 

radiation budget (Cox et al. 2017; Ballinger et al. 2023). The sea-ice melting season has increased 

by ~3 weeks due to the earlier onset of melting and the later date of continuous freezing (Ballinger 

et al. 2023). Arctic Amplification is enhanced by Arctic sea-ice coverage reductions and the 

increased exposure of open ocean, generating a positive feedback loop. Open ocean has a 

significantly lower albedo than sea-ice and snow, resulting in the increased absorption of radiation 

at the surface. Vertical temperature structures within the polar regions under the influence of Arctic 

Amplification are projected to display substantial warming confined to the surface that decreases 

with height (Kay et al. 2012; Gervais et al. 2016). The full impacts of climate change on the 

climatology and teleconnections observed within NSA is not yet fully understood, however, it is 
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apparent the climate is evolving. Blowing snow directly influences the Arctic climate and is, 

therefore, critical to research to help understand how and what the climatology of NSA will look 

like in the coming decades.  

PURPOSE OF THIS STUDY 

Blowing snow in the Arctic influences the surface heat/energy budget (Landrum and 

Holland 2022), surface mass budget (Chung et al. 2011), hydrological cycle (Benson 1982), 

indigenous people safety (Brubaker 2011), and is a major source of uncertainty in sea-ice evolution 

(Meredith et al. 2019). Currently, most models do not include blowing snow as there has not been 

widespread validation of blowing snow parameterizations. Fortunately, NSA contains 

instrumentation from 31 October 2003 to present day that offers an unprecedented opportunity to 

analyze and detect blowing snow and understand how blowing snow may be changing in time. 

The purpose of this study is to identify periods and frequency of blowing snow at the ARM NSA 

site and identify the local and synoptic forcing mechanisms for this process. Blowing snow is 

identified using in-situ instrumentation located at NSA including a laser disdrometer, digital video 

disdrometer, and various surface-based sensors. Blowing snow is segregated as a function of 

various meteorological variables and observed particle counts. Such data will allow for the 

verification of meteorological parameters used to classify blowing snow conditions within models. 

Furthermore, this allows for the understanding of the strengths and weaknesses of ARM 

instrumentation in the observation and detection of blowing snow events.  

The classification of blowing snow on the synoptic scale is accomplished using Self-

Organizing Maps (SOMs). SOMs were initialized and trained using ERA5 Reanalysis mean sea-

level pressure (MSLP) data. This allows for an even longer record of historical blowing snow 

events prior to the existence of in-situ instrumentation. The meteorological thresholds found prior 
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can be applied to the SOM data to calculate the expected blowing snow frequency for historical 

periods. Collectively, this allows for trends in blowing snow to be identified. Furthermore, this 

enables future researchers to develop and test hypotheses and new parameters regarding blowing 

snow impacts in an evolving climate. 

IMPACTS AND LIMITATIONS OF THIS STUDY  

Determining the weather patterns associated with blowing snow will allow for thorough 

validation of other modeling efforts, and eventually, this will lead to ample knowledge to 

confidently incorporate these schemes into weather and climate models. The incorporation of 

blowing snow into weather and climate models will allow for better forecasting of reduced 

visibility conditions and consequently blizzard forecasting, improving overall human safety. 

Furthermore, the ability of a SOM to classify specific weather patterns conducive to blowing snow 

will be determined. This study heavily investigates the use of ARM NSA in-situ instrumentation 

for the detection of blowing snow. Thus, this study will highlight the strengths and weaknesses of 

in-situ instrumentation for blowing snow detection. Highlighting the weaknesses in such 

instrumentation will allow future scientists to improve such weaknesses. Improved 

instrumentation will benefit a wide range of individuals within the weather and climate 

community. As mentioned in Chapter 1, the Arctic climate is undergoing a large shift due to Arctic 

Amplification and a warming planet. Current literature suggests that snow redistribution and the 

removal of thin snow layers by processes such as blowing snow and resulting sublimation play a 

critical role in the evolution of Arctic sea-ice thickness. The enhanced understanding of blowing 

snow conditions, specifically in the Arctic, can potentially allow for blowing snow and sublimation 

processes to be more readily represented in current sea-ice models.  
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Figure 1. Location of the ARM NSA sites. The C1 main site is marked by the blue pin. The 

Atqasuk facility (no longer in operation) is marked by the red pin. The ARM Mobile Facility 3, 

AMF3, is located at Oliktok Point and marked by the green pin.  
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CHAPTER 2 

DATA AND METHODS 

This chapter begins with a description of instrumentation used in this study. Background 

material for each instrument is provided along with an explanation of the data streams and data 

processing performed. The following instruments are discussed: Surface Meteorological 

Instrumentation (MET), the Precipitation Imaging Package (PIP), and the Laser Precipitation 

Monitor (LPM). The methods used to assess the ability of the LPM and PIP to detect blowing snow 

periods are then described. This section is then followed by a discussion of datasets and tools used 

to classify synoptic patterns including the ERA5 Reanalysis and Self Organizing Maps (SOMs). 

The chapter concludes with the methods used to calculate the historical frequency of blowing 

snow. 

 

2.1 SURFACE INSTRUMENTATION 

2.1.1 Surface Meteorological Instrumentation  

Standard meteorological variables are provided by the MET data stream at NSA. MET data 

reports 1-minute average measurements for pressure, precipitation, relative humidity, temperature, 

and horizontal wind (Ritsche et al. 2011). Measurements are taken by a variety of Vaisala in situ 

instruments on 10 m towers (Ritsche et al. 2011). MET has used two different sensors to report 

present weather data and visibility data. Prior to 2010, the Present Weather Sensor (PWS) was 

used. In 2010, NSA transitioned to the Present Weather Detector (PWD). The PWS and PWD 
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measurements are identical, meaning that PWS and PWD variables were merged with PWS data 

making up 2003 – the end of 2009 data, and PWD data making up 2010 – 2022 data.  Wind speed 

is reported at a height of 10 m while temperature and relative humidity (RH) are measured at a 

height of 2 m. These measurements are made with a Vaisala HMT330 RH and temperature 

transmitter (Andreas et al. 2002; Gong et al. 2023). Reported RH is made with respect to water 

(Gong et al. 2023). As this study is confined to the Arctic winter months, RH was calculated with 

respect to ice using the method of Andreas et al. (2002). For  

 - 40˚C ≤ Ta ≤ 0˚C (Buck 1989) the equation is:  

𝑒𝑠𝑎𝑡,𝑤(𝑇𝑎) = (1.0007 + 3.46 × 10−6)6.1121exp⁡(
17.966𝑇𝑎

247.15+⁡𝑇𝑎
), 

 

(1) 

while for - 50˚C ≤ Ta ≤ 0˚C: 

𝑒𝑠𝑎𝑡,𝑖(𝑇𝑎) = (1.0003 + 4.18 × 10−6)6.1115exp⁡(
25.452𝑇𝑎

272.55+⁡𝑇𝑎
), (2) 

where, Ta is the ambient temperature (˚C), P is the pressure in hPa, esat,w is the saturation vapor 

pressure over water (hPa), and  esat,i is the saturation vapor pressure over ice (hPa). 

NSA MET data (DOI: 10.5439/1786358) are available from 31 October 2003 to present 

day. Data were retrieved from the ARM Data Discovery (https://adc.arm.gov/discovery/#/) 

between 2003-2022.  October through April were selected for analysis as prior work done by 

Liston and Sturm (2002) focused on 1 September through 30 April. September was not included 

due to the lack of time blowing snow conditions were observed as defined by the AMS and Mellor 

(1965). Wind speeds must be ≥ 3 m s-1, 2 m air temperatures ≤ 0 ˚C, and visibility ≤ 11-km. These 
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conditions were only met ~2.7 % of the time in September. Provided the higher frequencies of 

blowing snow in other months, September was omitted to prevent potentially skewing other results 

of this study such as the SOM classification of synoptic-scale patterns.   

The MET data stream was quality controlled according to the Data Quality Reports 

(DQRs), provided by the ARM data archive. Individual write-ups for flagged data were 

investigated to understand how they related to variables of interest: 2 m temperature, 2 m pressure, 

2 m RH, 10 m wind speed, precipitation rate, visibility, and cumulative snowfall. Embedded DQR 

flags were referenced for each variable to ensure bad data were masked.  

The MET data were resampled from 1-minute averages to 5-minute averages. MET data 

were also obtained from the ARM Mobile Facility located in Oliktok Point between 30 April 2017 

– 31 December 2021. All variables mentioned above were selected for Oliktok Point and quality 

controlled following the same procedures. Oliktok Point MET data were included to generate a 

particle size distribution (PSD) plot segregated by wind speed for the Oliktok Point LPM. The 

methodology used to generate the PSD plots are discussed in Section 2.2.1. 

2.1.2 Precipitation Imaging Package  

The PIP is a digital video disdrometer developed by Larry Bliven of the National 

Aeronautics and Space Administration (NASA). The PIP has two main components: 1) a high-

speed camera that captures 380 frames per second and 2) a halogen lamp located 2 m away to 

allow for hydrometeor backlight (Pettersen et al. 2021; Helms et al. 2022). Hydrometeors are 

captured in an open sampling volume of 64 mm × 48 mm between the halogen lamp and the 

backlight with a resolution of 0.1 mm × 0.1 mm (Pettersen et al. 2021; Helms et al. 2022).  Images 

undergo processing that determines individual particle properties, including PSDs, liquid-water-
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equivalent (LWE) snowfall rate, and bulk particle density (Kulie et al. 2021; Pettersen et al. 2021). 

The PIP has 131 unique particle diameter bins ranging from ≤ 0.1 mm to 26 mm.  

PIP data have been used in a diverse range of studies focusing on wintertime precipitation. 

Pettersen et al. (2020) compared microphysical properties directly measured or derived from the 

PIP to surface observations from the National Weather Service (NWS) forecast office located in 

Marquette, Michigan (MQT). Accumulations of LWE snowfall derived from the PIP for high and 

low snow-liquid-ratios (SLRs) matched the measurements reported by the office. The PIP has been 

shown to accurately represent precipitation phase changes. Pettersen et al. (2021) compared rain-

to-snow and snow-to-rain onsets and end times of 13 events between January 2017 – January 2020 

in Marquette, MI, with a denoted phase change reported by the NWS MQT office. PIP onset times 

of snow-to-rain events were within 15-minutes of the NWS MQT times and end times were within 

20-minutes of each other (Pettersen et al. 2021). PIP onset times of rain-to-snow events were within 

15-minutes of each other, and end times were within 25-minutes of each other (Pettersen et al. 

2021). Kulie et al. (2021) conducted a multi-sensor observational study to analyze the various 

snowfall regimes within the northern Great Lakes. The sensors used included a Micro Rain Radar 

(MRR), PIP, and ground-based surface observations. The PIP and MRR effectively captured the 

microphysical characteristics of shallow lake-effect, lake-orographic, and transition snowfall 

events. Furthermore, the PIP has been used in comparative studies looking at the performance of 

in situ snowfall sensors (Maahn et al. 2023). Minimal research has focused on the performance of 

the PIP in cases of blowing snow conditions.  

NSA contains one PIP located at the Central Facility. The PIP stand is 7 ft 10 in tall and 

with the additional height added by the case and the video camera itself, the PIP’s approximate 

height is ~8 ft, or 2.44 m, off the snow-free surface. PIP data are available from 23 October 2018 
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to present day (DOI: 10.5439/1489525). PIP data for this study were taken from 23 October 2018 

to December 2021. Data were quality controlled with DQRs supplied by the ARM data archive. 

PIP PSD data were resampled from 1-minute data to 5-minute summed bins. Smaller-sized 

particles were investigated due to the typical blowing snow size distribution (e.g., particle 

diameters ≤ 1.125 mm). 

2.1.3. Laser Precipitation Monitor 

The Laser Precipitation Monitor (LPM) is a type of optical laser disdrometer designed and 

engineered by the German company Adolf Thies GmbH & Co KG. The LPM has a 46 cm2 

horizontal sampling volume for hydrometeors. As hydrometeors enter the sampling volume, 

particles pass through an infrared laser beam. The signal is measured by a photodiode across from 

the laser and processed to characterize particle diameter, precipitation type, and fall velocity 

(Meshesha et al. 2016; Pckering et al. 2019). Precipitation intensity and type is derived using 

optical principles and reported by the LPM (Fehlmann et al. 2020). The LPM has 22 unique particle 

bins ranging from ≤ 1.125 mm to > 8 mm.  

The LPM has mainly been used for mixed-phased precipitation and hydrology-based 

studies. Meshesha et al. (2016) used the LPM to determine drop-size distributions for simulated 

rainfall and used those data to develop a relationship between rainfall kinetic energy and intensity 

to investigate soil erosion due to rain splash. Pickering et al. (2019) constructed a network of Thies 

LPMs throughout the United Kingdom (UK) to monitor extreme precipitation events and verify 

the ability of the LPM to classify phase-transitions. Pickering et al. (2019) investigated three case 

studies that covered rain-snow, intense convective rainfall, and graupel shower events. The LPM 

properly diagnosed the onset of rain-snow transitions observed by the varying particle diameters 

and fall velocities, during the 23 February 2017 winter storm. Fehlmann et al. (2020) determined 
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instrument bias for the LPM by measuring various precipitation events using two Thies LPMs 

located in Innereriz, Switzerland. Over the two-year study period, Fehlmann et al. (2020) found 

that the LPM systematically underestimated snowfall for particles > 0.75 mm in diameter. Fargey 

et al. (2014) used LPM PSDs and particle concentration data to help characterize features of a 

unique snowfall event occurring in Iqaluit, Nunavut. The LPM supplemented weighing gauge 

measurements (Fehlmann et al. 2020). Gultepe et al. (2017) denoted the importance of using 

optical disdrometers such as the LPM to optimize snowfall measurements as traditional weighing 

gauges are subject to large degrees of uncertainty and to aid in general Arctic related 

measurements. Like the PIP, there is little information about instrument performance for blowing 

snow. Loeb and Kennedy (2021), however, documented erroneous PSDs with the OTT 

Hydrometer Parsivel2 which is a competing laser disdrometer.  

Three NSA LPM instruments were used including sensors at the main site, co-located E10, 

and Oliktok Point. The fourth LPM available at NSA was excluded as it became operational after 

this research was started. Each LPM stands at a height of 2 m above the snow-free surface. LPM 

data for the main site are available from 27 April 2017 to the present day (DOI: 10.5439/1390571). 

LPM data for the E10 location is available from 30 September 2018 to the present day (DOI: 

10.5439/1390571). LPM data from Oliktok Point is available from 30 April 2017 to 14 June 2021 

(DOI: 10.5439/1390571). Data from each LPM was analyzed between October 2018 to December 

2021 for the cold season months of October to April. LPM particle spectrum data were summed 

along the dimension of particle fall velocity and then resampled from 1-minute data to 5-minute 

summed bins. Smaller-sized particles were investigated due to the typical blowing snow size 

distribution (e.g., particle diameters ≤ 1.125 mm). All LPM data were QC’ed in the same manner 

as the PIP.  
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2.2. METHODS 

To determine the meteorological variables associated with blowing snow, conditions must 

be identified and then analyzed as a function meteorological regime. Ground truth is considered 

as microphysical imager data, but the LPM and PIP must be compared to determine the strengths 

and limitations of each instrument to detect blowing snow. Contingency tables were created to 

determine the performance of various meteorological thresholds in forecasting blowing snow 

conditions to ultimately pick a set of parameters that optimized the selection of blowing snow 

conditions from meteorological data alone. 

2.2.1. LPM and PIP Comparison  

Mean logarithmic PSDs were created for the NSA main site (C1) PIP and C1, E10, and 

Oliktok Point LPMs and segregated by MET 10 m wind speed as with the investigation of the 

Parsivel2 in Loeb and Kennedy (2021). PSDs for all instruments were restricted to ≤ 8 mm for 

particle counts > 0. The large particle diameter restriction was selected to encompass the full PSD. 

Times that reported no particles, i.e., clear sky conditions, were omitted as the point of the analysis 

was to focus on performance during falling and blowing snow conditions. A 3 m s-1 minimum 10 

m wind speed threshold was also applied as a lower limit for blowing snow (Mellor 1965; Li and 

Pomeroy 1997a). To avoid sampling related bias, data were binned into increments of 2 m s-1 for 

wind speed and 5 ˚C for temperature. Several variations of the 2-D histograms were generated. 

The first series included particle counts > 0 for particle diameters ≤ 1.125 mm to emphasize the 

occurrence of blowing snow. Remaining experiments focused on changing the minimum particle 

count threshold to understand the sensitivity to meteorological variables. 2-D histograms were 

created for minimum 5-minute particle count thresholds of 200, 300, 500, and 1000.  

2.2.2 Assessment of Meteorological Conditions  
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Forecasters’ 2×2 contingency tables were used to derive the Critical Skill Index (CSI), 

False Alarm Ration (FAR), Probability of Detection (POD), Heidke Skill Score (HSS), and 

frequency of various meteorological thresholds with respect to blowing snow. A sample 

contingency table modeled off Gold et al. (2020) and Schaefer (1990) is displayed in Fig. 2 and is 

referenced as an example for calculations of CSI, FAR, POD, and HSS.  

In this study, particle imagers reaching a threshold particle count represent ground truth 

while meteorological thresholds (e.g., wind speed exceeding a value) represent the forecast. A 

positive hit means both conditions are met. The overall frequency is the ratio of times blowing 

snow occurred given a set of meteorological thresholds to the number of times the meteorological 

threshold occurred. Frequency values < 1 represent under-forecasting of blowing snow conditions, 

whereas frequency values > 1 represent over-forecasting. A frequency value = 1 represents perfect 

forecasting of blowing snow given the meteorological thresholds.  

The CSI (Fig. 2) is defined as the ratio of correctly forecasted events to the total number 

of forecasted events (Schaefer 1990; Wilks  2019). CSI values range from 0 to 1, with 1 

representing a perfect forecast and is given by:  

 𝑪𝑺𝑰 =
𝑎

𝑎+𝑏+𝑐
. (3) 

 

 

Schaefer (1990) defines FAR (Fig. 2) as “the ratio of unsuccessful positive forecasts to the 

total number of positive forecasts.”  FAR values range from 0 to 1, with 0 representing no false 

positives in the forecast and is given by (Wilks  2019): 

 𝑭𝑨𝑹 =
𝑏

𝑎+𝑏
. (4) 
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The POD (Fig. 2) is the ratio of successfully forecasted events to the total number of events 

(Schaefer 1990). POD values range from 0 to 1, with 1 representing all positive forecasted events 

being properly forecasted and is given by (Wilks  2019).  

 𝑷𝑶𝑫 =⁡
𝑎

𝑎+𝑐
. (5) 

The HSS (Fig. 2) is a score used as verification for categorical forecasting (Barnston 1992). 

The HSS is derived by scaling the proportion of correct forecasts by the number of correct forecasts 

expected by chance. A perfect forecast will have a HSS of 1 (Barnston 1992). Equations 6 and 7 

adapted from Barnston (1992) were used to calculate the HSS and are given by:  

            

            (6)  

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅⁡𝑪𝒐𝒓𝒓𝒆𝒄𝒕⁡(𝑬𝑪) = (
1

𝑇𝑜𝑡𝑎𝑙⁡𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠
) ∗ [((𝑎 + 𝑐) ∗ (𝑎 + 𝑏)) + ((𝑑 + 𝑐) ∗ (𝑑 + 𝑏))], 

 

 

𝑯𝑺𝑺 =
((𝑎+𝑑)−𝐸𝐶)

𝑇𝑜𝑡𝑎𝑙⁡𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠−𝐸𝐶
. 

(7) 

 
 

The maximum visibility and minimum wind speed thresholds determined for each method 

were applied to the MET data stream. The frequency of blowing snow detected by the particle 

imager using the definition of blowing snow was calculated for each particle count threshold and 

denoted as the “Particle Imager Frequency.” The frequency of blowing snow detected by just the 

meteorological thresholds was calculated and denoted as “MET”. The two values were compared 

to see how well the MET method was at detecting blowing snow compared to particle imagers. In 

addition to the frequency comparisons, regression analysis was done. R-squared values were 

calculated for each MET method. The “best” set of meteorological thresholds possessed a balance 

of a high HSS and R-squared values and MET frequencies without substantial bias compared to 

particle imagers.  

 



23 

 

2.3.  SELF-ORGANIZING MAPS AND REANALYSIS DATA 

Self-Organizing Maps (SOMs) (Kohonen 1990) were made to objectively classify the synoptic-

scale patterns associated with blowing snow events. ERA5 Reanalysis data were used to initialize, 

train, and generate the SOMs. A description of the ERA5 Reanalysis will be provided followed by 

a brief background on SOMs, and the methodology used to make the SOMs. This section 

concludes with a description of how SOMs are used to derive a historical record of blowing snow 

at NSA. 

2.3.1 ERA5 Reanalysis  

The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 Reanalysis 

is a fifth-generation global climate and weather reanalysis product (Hersbach et al. 2020). ERA5 

combines model data output and observational data to create a globally gridded representation of 

the Earth’s surface and atmosphere. ERA5 was engineered to replace its predecessor, ERA-Interim 

(Hersbach et al. 2020). ERA5 provides hourly data with 31 km horizontal grid spacing and 137 

vertical levels from the surface to a height of 80 km (Albergel 2018). ERA5 single-level data are 

available from 1959 to present day (Albergel 2018). 

ERA5 sea-level pressure, 10 m zonal horizontal wind component, and 10 m meridional 

horizontal wind component were used in this study to generate SOMs for NSA. ERA5 data from 

1 January 1979 to 28 February 2022 for the winter months of October – April were used. ERA5 

data were re-gridded to the CESM LENS2 grid decreasing the horizontal grid spacing from 0.25˚ 

x 0.25˚to 1˚ x 1˚ and thus, decreasing the computational time.  These data were supplied by Taylor 

Dolan (University of North Dakota); the original code was written and processed by Dr. Maria 

Molina (University of Maryland). The ERA5 re-gridded data were spatial interpolated to a grid 

centered at the NSA site at 71.99˚ N and 156.36˚ W (Fig. 3). The resulting grid was 20˚ x 60˚ with 
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1˚ latitude and longitude spacing to ensure synoptic-scale features would be preserved while also 

decreasing the computing time to create the SOMs.   

2.3.2 SOM background  

 SOMs are a form of unsupervised learning that uses a competitive neural network to 

cluster alike data. While similar to K-means clustering, SOM classes (or nodes) are related to one 

another through a neighborhood function (Sheridan and Lee 2011). SOM clustering techniques 

have been found to be more representative of datasets in comparison to traditional clustering 

methods that organize data based on a set distribution or model type. Michaelides and Tymvios 

(2009) analyzed long-term rainfall variability in Cyprus using traditional clustering methods and 

SOMs. They determined that the SOM output classified synoptic-scale patterns better than 

traditional clustering methods. Statistical-based clustering methods tend to map a few prevailing 

patterns and the remainder represent outliers within the dataset (Michaelides and Tymvios 2009). 

SOMs produced patterns that represented the data as a whole and transitions between patterns were 

more gradual. SOMs can represent non-linear characteristics in data and treat datasets as a 

continuum with is more representative of atmospheric patterns (Cassano et al. 2006; Kennedy et 

al. 2016, 2019).  

2.3.3 SOM methods  

 SOMs were created to capture the prevailing wintertime synoptic-scale atmospheric 

patterns at NSA. SOMs were generated using the Python-based MiniSom package 

(https://github.com/JustGlowing/minisom). Slight discrepancies exist in the terminology of 

MiniSom vs. SOM literature. The neighborhood radius parameter, for example, is denoted as 

“sigma”.  

https://github.com/JustGlowing/minisom
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 Two types of SOMs were generated using one-step training. The first iteration of SOMs 

were trained using the spatially averaged 20˚ x 60˚ (every 1˚ longitude; every 1˚ latitude) ERA5 

Reanalysis mean sea-level pressure (MSLP) data re-gridded to the CESM LENS2 grid. Prior to 

being input into the SOM, data were resampled every 6-hours. The traditional boreal winter was 

extended (October – April) to account for the elongated winter season observed in the North Slope 

region (Liston and Strum 2002). Data were reshaped into a 2-D array of shape (nhours, nlat*nlon), 

with nhours representing each 6-hour MSLP value and the nlat*nlon representing the stacked 

latitude and longitude fields. MSLP means were removed from each sample to calculate MSLP 

anomalies. Data were normalized by determining the maximum and minimum MSLP anomalies 

for the dataset, subtracting the minimum from the maximum, and dividing 100 by that value to 

calculate a normalization factor. The normalization factor was multiplied to the entire 2-D array 

and input into the SOM.  

 The second iteration of SOMs were trained using the spatially averaged 20˚ x 60˚ (every 

1˚ longitude; every 1˚ latitude) ERA5 Reanalysis MSLP, 10 m zonal horizontal wind component, 

and 10 m meridional horizontal wind component, re-gridded to the CESM LENS2 grid. Wind was 

included in the generation of SOMs due to the critical relationship between wind speed thresholds 

and blowing snow processes (Li and Pomeroy 1997; Mellor 1965; Palm et al. 2011). The 10 m 

zonal and meridional components of the wind were normalized using the same method as with the 

MSLP field. Several variations of training were used to create the SOMs.  

 A two-step training process, following Kennedy et al. (2019), Kim et al. (2022), and 

Lennard and Hegerl (2015), was initially used. This process involved using MiniSom in two 

consecutive phases with different values for the learning rate and neighborhood properties. SOMs 

of size 8 × 7, 10 × 7, 7 × 5, and 5 × 4 were created. For all SOM trials made using the two-step 
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training process, the neighborhood function was set to “Bubble” and the topology of the SOM was 

rectangular to model the work of Kennedy et al. (2019). The sigma for the first phase of training, 

sigma1, was (y-1), i.e., if the SOM was a 10 × 7, then sigma1 was 6 (7-1). For the second phase of 

training, the sigma, sigma2, was reduced to < sigma1. Generally, sigma2 was set to 1, however, this 

value changed for several SOM iterations to understand the influence of the reduced sigma2 and 

see if there was potential improvement in the output with varying sigma2 values. The learning rate 

was largely manipulated between SOM trials. The learning rate for phase #1 (denoted herein as 

LR1) was always > the learning rate for phase #2 (denoted herein as LR2). The reduction in the 

learning rates between phases ranged from 0.02 – 0.04. The two-step training method was only 

performed using MSLP data, as this method was not the primary SOM training technique. All 

remaining training iterations followed a one-step process.  

 One-step training using MSLP data only involved the changing of each individual SOM 

parameter, the number of nodes, and the shape of the SOM grid per SOM trial. SOMs of size 10 × 

7, 9 × 6, 8 × 5, 4 × 2, and 5 × 4 were generated with sigma values set to one minus the number of 

rows (y-1) and learning rate values ranging from 0.05 to 0.0005. Similar to the two-step training, 

the neighborhood function was set to “Bubble” for all iterations to model the work of Kennedy et 

al. (2019). A decay function was applied in the one-step training. Asymptotic decay was used for 

all SOM iterations. Weights were trained 100,000 iterations to achieve the lowest quantization 

error (q-error). For each set of parameters, 10 total SOMs were created. One-step training using 

MSLP and wind data followed the same procedures for the MSLP only SOMs; however, SOMs of 

size 9 × 7 and 8 × 5 were only used. No larger and/or smaller SOMs were created for the MSLP 

and wind SOMs. This was done as increasing the size of the SOM reduced the number of samples 
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in each node and when using multiple variables as input into the SOM, the SOM must be larger to 

account for the increased complexity.   

 To determine a ‘winning’ SOM, three different plots were created to visualize the output. 

Frequency plots were made to visualize the spatial distribution of nodes. A “good” frequency plot 

displayed evenly distributed data among nodes, whereas a “bad” frequency plot showed data 

concentrated within a few nodes (Fig. 4). Sammon plots were created to determine the level of 

distortion of the SOM (Fig. 5). Sammon mapping is the process of comparing individual nodes to 

its’ adjacent neighbors (Cassano et al. 2006). As mentioned prior, SOM clustering nodes are not 

treated independently, meaning that winning nodes influence and modify the surrounding nodes. 

This process is governed by the neighborhood radius (Sheridan and Lee 2011). Due to this, nodes 

adjacent to one another should resemble similar patterns with small Euclidean distances. Sammon 

plots represent each node as a dot and the Euclidean distance between neighboring nodes as a solid 

black line connecting the nodes. The most accurate Sammon plot is one in which the average 

Euclidean distance is minimized (Lennard and Hegerl 2015). Sammon plots with large Euclidean 

distances display heavy distortion and twisting (Lennard and Hegerl 2015). For SOMs trained 

exclusively with MSLP data, MSLP anomalies were plotted by node to display the SOM derived 

patterns. For SOMs trained using MSLP and wind data, MSLP anomalies and wind barbs were 

plotted according to node to display the SOM derived patterns. For the purposes of this study, a 

“winning SOM” is one in which 1) spatial distribution of node frequency is present with 2) 

connectiveness between nodes with minimal distortion, and 3) high-pressure systems and low-

pressure systems are plotted on opposing sides of the SOM matrix with similar patterns being 

plotted adjacent to one another. 

2.3.4 Identifying the historic frequency of blowing snow  
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To determine the historic frequency of blowing snow at NSA, a climatological frequency 

was derived from the contingency table analysis mentioned in Section 2.2.2 and applied to the 

SOM.  In this study, the climatological frequency represented the frequency of blowing snow per 

SOM node. To calculate this, the meteorological thresholds found in Section 2.2.2 were applied to 

the entire MET data stream to achieve a time series of blowing snow occurrence. Any months 

within the MET data stream that contained > 75% missing times were omitted from the analysis 

to prevent potential bias in the frequencies. Smaller missing data thresholds (e.g. > 50%), were 

applied. Table 4 displays the monthly percentages of missing 5-minute intervals. The winning 

SOM was subset to match the times MET data were available (e.g. October 2003 – December 

2021). The blowing snow time series was separated by SOM nodes. For each node, the 

climatological frequency of blowing snow was calculated as the number of times blowing snow 

occurred divided by the total number of times the node occurred. Using the climatological 

frequency, a SOM-only derived blowing snow frequency was calculated for the subset SOM data. 

For each time within the SOM subset, the associated node was found. Using the node information, 

the expected blowing snow frequency for that time was found by looking up the node within the 

climatological frequency. The expected blowing snow frequency was calculated for each 

timestamp. To derive the SOM-only blowing snow frequency per node, the expected blowing snow 

frequencies for each node were summed and divided by the total amount of times within the node. 

This method will be referred to as “SOM.” 

Blowing snow frequencies were calculated for each year and individual months from 

October 2003 – December 2021 using the MET and SOM methods. The MET and SOM derived 

frequencies were plotted as a scatter plot and the corresponding R-squared value was calculated. 
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The R-squared value was calculated to prove that the SOM could reasonably calculate blowing 

snow frequencies in the absence of available MET data.  
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Figure 2: A forecaster’s 2 × 2 contingency table adapted from Wilks (2019). 
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Figure 3: Domain used for this study. The grey area represents the geographic region ERA5 data 

were obtained for. NSA is denoted by the cyan dot. 
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Figure 4: Sample SOM frequency plots for a  (a) “bad” and (b) “good” SOM. 
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Figure 5: Sample SOM Sammon frequency plots for a  (a) “bad” and (b) “good” SOM. 
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Table 1: Two-step SOM training parameter experiments. This is a sub-sample of parameters used 

for the two-step training method. 

SOM Size Sigma1 Sigma2 LR1 LR2 Neighborhood 

Function 

8 × 7 6 1 1 0.05 Bubble 

10 × 7 6 1 1 0.005 Bubble 

7 × 5 4 1 1 0.04 Bubble 

5 × 4 3 1 0.5 0.05 Bubble 
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Table 2: One-step MSLP only SOM training experiments.  

SOM Size Sigma LR Decay Function Neighborhood 

Function 

5 × 4 3 0.005 Asymptotic Bubble 

8 ×5 4 0.05 Asymptotic Bubble 

4 ×2 1 0.005 Asymptotic Bubble 

4 ×3 2 0.005 Asymptotic Bubble 

8 ×5 4 0.0005 Asymptotic Bubble 

8 ×5 4 0.005 Asymptotic Bubble 

9 ×7 6 0.0005 Asymptotic Bubble 

9 ×5 4 0.0005 Asymptotic Bubble 

4 ×3 2 0.0005 Asymptotic Bubble 
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Table 3: Winning one-step MSLP and wind SOM training parameters.  

SOM Size Sigma LR Decay Function Neighborhood 

Function 

8 ×5 4 0.0005 Asymptotic Bubble 

9 ×7 6 0.0005 Asymptotic Bubble 
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Table 4: Monthly percentage of missing 5-minute MET data. A value of 100% represents an 

entire month of missing data. 

Year Jan. Feb. March April Oct. Nov. Dec. 

2003 100 100 100 100 96.8 2.2 0.7 

2004 0.7 6.1 5.5 0.1 40.0 7.1 60.0 

2005 100 100 100 86.0 1.1 7.6 0.8 

2006 56.5 8.3 3.0 0.0 16.6 10.2 3.7 

2007 16.1 1.3 3.2 70.6 29.7 4.9 4.8 

2008 20.6 0.1 5.2 0.6 1.8 100 57.9 

2009 2.0 18.5 16.7 9.8 6.7 3.3 0.1 

2010 100 100 100 100 20.4 4.1 29.4 

2011 15.6 0.5 1.2 14.2 6.4 76.7 100 

2012 14 11.2 7.5 2.6 9.7 6.5 24.6 

2013 100 100 100 100 5.6 0 0.0 

2014 7.9 6.7 0.1 0 7.3 2.2 12.2 

2015 0.2 0.2 0.3 0.2 0.2 0 3.1 

2016 0 0.0 0.2 0.0 1.9 0.1 3.2 

2017 19.5 95.4 4.3 0.2 3.8 0.0 0.1 

2018 2.6 3.6 0.6 0.0 0.1 0.0 0.0 

2019 0.1 0.0 0.4 0.9 0.1 1.0 0.0 

2020 1.2 43.7 0.0 0.1 100 100 31.7 

2021 11.3 4.2 2.6 0.0 2.1 73.5 48.4 
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CHAPTER 3 

RESULTS – HYDROMETEOR IMAGERS  

When developing a method to identify periods of blowing snow based on meteorological 

observations, it was critical to have separate ‘ground truth’ measurements. Serving this role were 

multiple, ground-based hydrometeor imagers including the three LPMs and PIP at NSA. PSDs for 

each instrument were calculated to determine how they represented periods of blowing snow. The 

results of this analysis are presented in this chapter. This includes a discussion of the strengths and 

limitations of each hydrometeor imager and relationships of observed blowing snow periods to 

meteorological observations.   

3.1 PSDs 

3.1.1. Characteristics associated with instrument type and location 

Mean PSD plots segregated by wind speed are displayed in Fig. 6. A relationship exists 

between the observed 10 m wind speeds and the PSDs for all LPM instruments. As wind speeds 

increase, the concentrations of smaller-sized particles increases. The 10 m wind speed threshold 

for increased concentrations of smaller particles, i.e., particle diameters ≤ 1.125 mm, occurs at 

approximately 7 – 9 m s-1 for each of the LPM instrument locations (Fig. 6a,c,d). Across all LPMs, 

counts of smaller particle sizes are similar, although a reduced number of larger particles (> 1 mm) 

is seen at Oliktok Point (Fig. 6c). As the particle diameter increases, the number of particles 

decreases for all LPM instrument locations resulting in a tapering, right-hand tail. Each LPM 
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displays a gamma-like distribution owing to the smaller sized particles. The PIP displays minimal 

increases in the number of smaller sized particles with increasing 10 m wind speed (Fig. 6b). The 

gamma-like PSD associated with the LPMs is not observed with the PIP.  

To demonstrate the broad changes in PSDs across conditions to ensure either only falling 

or blowing snow, select PSDs are shown for 10 m winds > 5 m s-1 and between 15-20 m s-1 (Fig. 

7). At wind speeds < 5 m s-1, all instruments display low concentrations of particles with diameters 

≤ 1.125 mm (Fig. 7a). At sizes > 1 mm, the PIP observes more particles, but the slope of the 

distributions is similar to the LPM. These characteristics are not seen for wind speeds between 15 

– 20 ms-1 (Fig. 7b). The largest increases occur with particles having diameters ≤ 1.125 mm which 

is expected for periods of blowing snow. Conversely, the PIP displays little to no change in particle 

concentrations given the increasing wind speeds. Rather, particle counts increase for the largest 

size bins (> 5 mm), which is physically unrealistic. 

The large discrepancies in the overall concentrations between the PIP and LPM are further 

investigated. Figure 8 shows a time series of the total particle concentrations ≤ 3 mm for the C1 

PIP and C1 LPM for 1 November 2019. The LPM reports higher particle concentrations ≤ 3 mm.  

LPM counts exceed 25,000, whereas the PIP only detects particle counts < 15,000. The PIP 

struggles with the detection of smaller sized particles. Figure 9 shows a time series of the total 

particle concentrations > 3 mm for the same event. The overall detection of particles between the 

two instruments is more similar than shown in Fig.8. Overall, this case study demonstrates the 

largest differences between the PIP and LPM were observed for smaller sized particles. 

 

3.1.2 Discussion of Hydrometeor Imager performance  
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A typical blowing snow PSD displays a gamma distribution (Gordon and Taylor 2009; 

Naaim-Bouvet et al. 2012; Pomeroy and Male 1988; Yu et al. 2020) skewed toward smaller sized 

particles (Pomeroy and Male 1988). Furthermore, blowing snow is largely a function of wind speed 

(Li and Pomeroy 1997a,b). As wind speeds increase, more particles are likely to be lofted from the 

surface into the atmosphere above resulting in blowing snow. With this knowledge in mind, Figs. 

6-8 demonstrate that the LPM displays gamma-like distribution PSDs, with higher concentrations 

of smaller sized particles associated with higher wind speeds (Fig. 6). The PIP on the other hand, 

only displays gamma-like distribution PSDs for calm wind speeds when falling snow is occurring. 

No instrument properly represents the small end (i.e., particle sizes < 1 mm) of the blowing snow 

PSD, which relates to the resolution limits for both instruments (Fig. 6). The negative bias in small 

particle counts for the PIP cannot be completely attributed to the varying sampling volumes 

between the two instruments. For example, the LPM has a measuring area of 46 cm2 (23.0 cm × 

2.0 cm) (Pickering et al. 2019) while the PIP has a field of view of 6.4 cm × 4.8 cm for a total area 

of 30.72 cm2 (Pettersen et al. 2020).  

The performance of the PIP for categorizing small-sized particles (e.g., ≤ 1.125 mm) is 

poor and suggests this would not be the ideal instrument to identify blowing snow periods. The 

underestimation of smaller particles by the PIP was also noted in Maahn et al. (2023) when 

compared to the Video In Situ Snowfall Sensor (VISSS) stationed at the Hyytiälä Forestry Field 

Station in Helsinki, Finland, for the winter of 2021 – 2022. Maahn et al. (2023) hypothesized that 

PIP image processing was the source of error. Images captured by the PIP are dilated twice using 

a 3 × 3-pixel kernel. This process results in particles with a width of 0.4 mm being omitted by the 

PIP. It’s possible that raw images could be re-processed to improve small diameter particle counts, 

but this is beyond the scope of this study.  
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The lack of increase for small particles and increase at large particle sizes is in some ways 

similar to results for the Parsivel2 found in Loeb and Kennedy (2021). The limitation of the 

Parsivel2 was hypothesized to be caused by large concentrations of blowing snow generating 

voltage signals that were similar to larger diameter particles. Although the Parsivel2 hypothesized 

source of error is likely not the error observed in the PIP due to different instrument design (optical 

versus laser), the Parsivel2 does operate similarly to the LPM.  This suggests that processing 

routines may also be the culprit for Parsivel2 errors.  

 Due to the performance of PIP for small particles, and physically realistic PSDs for the 

LPM, the NSA C1 Site LPM was selected for the detection of blowing snow for the remainder of 

this study. While the LPM is not perfect, known issues should not influence this study. For 

example, a major issue with the LPM in past hydrological studies was the reporting of excessively 

high concentrations of smaller-sized particles during rain events, due to rain drop breakup 

(Meshesha et al. 2016). Pickering et al. (2019) also found the LPM struggled to capture graupel in 

mixed-phase precipitation events along with issues associated with particle velocity. Considering 

the study herein was restricted to the Arctic winter (the temperature regime was limited to 

temperatures ≤ 0 ˚C) and particle velocities were not used due to the turbulent nature of blowing 

snow events, these issues are not expected.  

 

3.2 RELATIONSHIP OF BLOWING SNOW TO METEOROLOGICAL VARIABLES 

To develop a method of blowing snow detection based purely on meteorological variables, 

a variety of analyses were created to determine the best set of meteorological thresholds that 

predict blowing snow occurrence. First, this section presents 2-D histograms segregated by wind 

speed and temperature for various particle count thresholds. Second, this section discusses the 
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results of a forecaster’s 2 × 2 contingency table analysis on a variety of meteorological variables. 

Finally, this section concludes with a discussion of the meteorological thresholds selected to 

identify blowing snow periods. 

3.2.1. 2-D Histograms 

The large change in particle counts at small particle sizes suggested particle count 

thresholds could be used to ensure blowing snow occurrence. An initial particle count threshold 

was selected as shown in Fig. 6. At approximately 200 particles per sampling period, counts rapidly 

increased owing to increased 10 m wind speeds. Higher particle count thresholds of 300, 500, 

1000, 2000, and 5000 were tested with increased confidence that blowing snow was occurring for 

larger particle counts. Tests were performed to understand the lowest particle count threshold that 

could be used to guarantee blowing snow without accidently including pure falling snow cases. 

Similar to Loeb and Kennedy (2021), 2-D histograms segregated by wind speed and 

temperature were made for each particle count threshold (Fig. 10) as well as a 2-D histogram 

showing the total number of times different meteorological conditions were observed (Fig. 11). 

For all thresholds, the largest concentration of events occurred at temperatures -10 -  -25 ˚C with 

at winds between 7 –13 ms-1. The results of this analysis demonstrate that particle thresholds of ≥ 

200 and ≥ 300 particles include many events at wind speeds < 5 ms-1. Further, as the particle count 

threshold increases toward and past ≥ 1000, the number of events observed at wind speeds < 7 m 

s-1 steadily drops off.  For example, the number of 5-min periods with particle counts ≥ 5000 was 

754 versus 4341 for counts ≥ 1000.  

The relationship of blowing snow with respect to temperature is more difficult to discern. 

The bimodal nature of blowing snow occurrence (local maxima near -5 - 0 ˚C and -10 - -25 ˚C) 
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appears to be a function of the frequency of different meteorological conditions. This is confirmed 

when the frequency of blowing per meteorological bin is calculated (Fig. 12) which is simply a 

result of taking the data displayed in Fig. 10 divided by Fig. 11. Although noise is present along 

the upper tier of bins due to the rarity of these conditions, a broad increase in frequency is seen 

with increasing wind speed. At temperatures < -10 ˚C there is a general increase in blowing snow 

frequency that is more prevalent at lower wind speeds. For example, blowing snow frequency 

increases from 0.45 at wind speeds of 5 – 7 m s-1 to .9 for particle counts ≥ 1000 for the 7 – 9 m s-

1 bin (Figure 12d).  

3.2.2. Meteorological Thresholds 

A forecaster’s 2 × 2 contingency table analysis was used to analyze optimum thresholds 

for wind speed, mean visibility, temperature, and relative humidity to successfully detect blowing 

snow occurrence. The results of this analysis are provided in Tables 5-8 and Figs. 13-18.  Figures 

13-17 display 2-D histograms of the CSI, POD, FAR, HSS, and frequency for each particle count 

threshold. Figure 18 displays 2-D histograms of the HSS for each temperature bin for a particle 

count threshold of ≥ 1000. Table 5 displays the wind speed thresholds for each temperature bin 

and particle count threshold. Table 6 displays the calculated R-squared, particle imager frequency, 

MET frequency, and the associated HSS values for each temperature bin. The wind speed 

thresholds for the ≥ 500 particle count threshold are all ≤ 5.5 m s-1, which is on the lower end of 

blowing snow wind speed thresholds (Mellor 1965). Further, the largest FAR values are observed 

in the regions of best reported frequencies (e.g. frequency = 1). The ≥ 500 particle count threshold 

displays the highest R-squared value of all thresholds, however, the bias is the highest out of the 

thresholds at 5.71%. The wind speed thresholds found using a particle count threshold of ≥ 1000 

display a marginal increase in wind speed with cooling temperatures. At a temperature range of 0 
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- -5 ˚C, the wind speed threshold is 3.5 m s-1, whereas at a temperature range of -25 - -30 ˚C, the 

threshold is 7 m s-1. The overall change in wind speed thresholds with respect to temperature are 

quite small. The regions of optimized frequency coincide with the regions of lowest FAR values. 

The overall blowing snow frequency calculated for the temperature dependency method with a 

threshold of ≥ 1000 particle count is within +1.6% of truth. The temperature dependency method 

with a threshold of ≥ 1000 particle count has an R-squared value of 0.85. The temperature 

dependency method with a threshold of ≥ 1000 particle count performs the best in comparison. 

Wind speed thresholds found using the particle count threshold of ≥ 2000 closely resemble the 

pattern in wind speed seen in the values using the particle count threshold of ≥ 1000. The frequency 

bias is + 3.01% with an R-squared value of 0.83. The largest wind speed thresholds are observed 

using a particle count threshold of ≥ 5000. Additionally, the lowest R-squared value is found using 

this threshold. Due to the minimal cases meeting this threshold in colder temperatures, sampling 

errors arose impacting the FAR and CSI values reported for temperatures < 20˚C. 

The results of the particle count threshold analysis omitting temperature dependency are 

now discussed. Figures 13-15 and Fig. 17 display the 2-D histograms of the FAR, POD, CSI, and 

frequency for each particle count threshold. Figures 16 displays the HSS for each particle count 

threshold. Table 7 displays the wind speed thresholds calculated for each particle count threshold 

while Table 8 displays the calculated R-squared, particle imager frequency, MET frequency, and 

the associated HSS values for each threshold. The wind speed thresholds for each particle count 

threshold without the inclusion of temperature are all equal to the average of the wind speed 

thresholds for each temperature bin and particle count threshold. The HSS values are all less than 

the values observed including temperature dependency. The bias values for each particle count 
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threshold are higher than that of the values in Table 6. In terms of overall frequency performance, 

the particle count threshold of ≥ 2000 results in only a + 1.78% bias.  

Relative humidity taken at 2 m with respect to ice was included in the analysis to 

understand how it was related to blowing snow conditions (Fig. 19). In the past, this variable was 

used to help remove fog cases (Loeb and Kennedy 2021). Relative humidity has also been shown 

to play a role in the thermodynamic profile of blowing snow (Taylor 1998). The inclusion of a 

relative humidity threshold did not result in any improvement regardless of the methodology used. 

In fact, HSS and R-squared values calculated using wind speed, visibility, and relative humidity 

thresholds were substantially reduced (e.g., HSS values all < 0.3) and thus, no further insight was 

gained. Due to the lack of improvement in HSS and R-squared values, relative humidity was not 

included in the calculations of MET frequency.  

3.2.3. Meteorological Threshold Performance Discussion 

As the temperature decreased from 0 - -25 ˚C, the wind speed threshold showed no 

significant change (Table 5). Wind speed magnitudes increased on the order of 2 – 2.5 ms-1. The 

increase in wind speeds, however, was not consistently observed. For example, for particle count 

thresholds ≥1000, the wind speed decreased as the temperature went from -15 - -20 ˚C to -20 - -

25 ˚C. Furthermore, the decrease in winds for that temperature bin was observed on all remaining 

particle count thresholds (Table 5). An increase in wind speed for all particle count thresholds was 

observed in the -25 - -30 ˚C temperature bin. Wind speed magnitudes increased on the order of 0.5 

– 2 ms-1. Minimal blowing snow cases existed at temperatures < -35 ˚C and, therefore, no 

comparison was made. The lack of a clear observed relationship between wind speed, temperature, 

and blowing snow occurrence has also been seen in the work of Loeb and Kennedy (2021), 

although prior studies have suggested the initiation of blowing snow is dependent on temperature 



46 

 

(Li and Pomeroy 1997a). Li and Pomeroy (1997a) stated that there is an observed relationship 

between the wind speed threshold and temperature. From 0 - -25 ˚C, Li and Pomeroy (1997a) 

found that wind speed thresholds increase with increasing temperature and for temperatures < -25 

˚C, wind speed thresholds marginally increase. Discrepancies between the results here and Li and 

Pomeroy (1997a) are hypothesized to be due to several factors. The first factor is Li and Pomeroy 

(1997a) focused on the wind speed thresholds for blowing snow initiation, whereas this study 

analyzed the duration of blowing snow events. Furthermore, this study was not strictly confined 

to pure blowing snow periods. Blowing snow conditions can be observed in conjunction with 

active precipitation. The current analysis did not segregate purely blowing snow events. The results 

found in this study suggest that there might be some pure falling precipitation events being filtered 

into the blowing snow analysis. Another key difference between the current work and Li and 

Pomeroy (1997a) is the geographic locations. Li and Pomeroy (1997a) focused on the Canadian 

prairies. The Canadian prairies contain more vegetation than NSA (Fang and Pomeroy 2009). 

Lastly, NSA is located at a higher latitude meaning that the thawing and refreezing of the snowpack 

is less likely than in the Canadian prairies.  

Blowing snow frequencies derived using the wind speed and visibility values resulted in a 

slight overestimation of blowing snow conditions for each particle count threshold on the order of 

1 – 6%. An overestimation of blowing snow frequency was also observed for MET frequencies 

derived without the inclusion of temperature. Similar findings were found in Gossart et al. (2017) 

and Chen et al. (2022). This overestimation in thresholds of particle counts of ≥ 500 and ≥1000 

may be due to the inclusion of falling snow periods. The removal of falling snow periods to isolate 

pure blowing snow is a challenge in blowing snow research. For particle counts of ≥ 500 and 

≥1000, the lowest temperature bins showed a wind speed threshold on the order of 3 m s-1. Despite 
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3 m s-1 being denoted as a potential blowing snow threshold by Mellor (1965), the likelihood of 

observing ≥ 1000 particles with winds at 3 m s-1 without the presence of falling precipitation is 

negligible. Wind speeds associated with particle count thresholds ≥ 2000 and ≥ 5000 were more 

conducive to pure blowing snow conditions. These wind speeds were between 5.5 – 8.5 m s-

1.Although these wind speeds were more conducive to blowing snow, the R-squared values 

decreased, and frequency biases increased from the values observed for the particle count threshold 

of ≥ 1000. This suggests that despite having a wind speed threshold of 3 m s-1, the temperature 

dependent MET method with a ≥1000 particle count threshold still optimizes the detection of 

blowing snow. 

The wind speed thresholds found without the dependency of temperature were all greater 

than 4 m s-1 and increased with the increasing particle count threshold. The wind speed thresholds 

found omitting temperature dependency were equal to the average of each temperature bin in Table 

5. Larger biases were found when temperature was omitted (Table 8). R-squared values were like 

those found using temperature.  

Synthesizing Tables 5-8 and Figure 18, the temperature dependent MET method with a ≥ 

1000 particle count threshold optimized the detection of blowing snow periods. This method had 

the lowest bias at +1.6% and an R-squared value of 0.85. Furthermore, the regions of lowest FAR 

coincided with the regions of best calculated frequency. Periods of maximum particle 

concentrations and lower visibilities aligned with observed temperature and wind speeds. For these 

reasons, the temperature dependent MET method with a ≥ 1000 particle count threshold was 

selected as the parameters used to identify blowing snow periods. The visibility threshold used 

was 9 km and the wind speed values used for each temperature bin are found in Table 5.  

3.2.4. Other Factors Influencing Blowing Snow  
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Once the ≥ 1000 particle count threshold was chosen, blowing snow intensity and 

occurrence was explored as a function of snow age, visibility, wind speed, and temperature. The 

intent of this analysis was to distinguish how each factor influenced blowing snow. Figure 20 

displays a scatter plot of particle count and visibility colored by temperature. The lowest visibilities 

are associated with the largest particle counts and temperatures ranging from 0 ˚C to -10 ˚C. The 

large concentration of particles observed for these temperatures is likely due to the combination of 

falling precipitation and blowing snow. This is expected as warmer temperatures are more 

conducive to falling precipitation. Few cases of blowing snow are observed for temperatures < -

25˚C. This could be due to the increased cohesion and kinetic resistance of the aged snowpack (Li 

and Pomeroy 1997a). If the snowpack is compacted, there are minimal particles available to be 

lofted and/or the wind speed required to dislodge particles is substantially higher than if there was 

fresh snow on the surface (Li and Pomeroy 1997a). 

The region of lowest visibility and highest particle concentrations is observed when prior 

precipitation has occurred < 12 h from the observation (Fig. 21). This supports the idea that during 

this timeframe, there is active precipitation occurring, or had just occurred. There are several cases 

of large particle concentrations associated with low visibility for times precipitation had not 

occurred recently (> 72 h). These times are likely periods of blowing and/or drifting snow with no 

falling precipitation. The median days since last precipitation for each 1000 m visibility bin and 

the associated median wind speed are displayed in Fig. 22. There is a balance between fresh snow 

and older snow. In the lowest visibility bins, regardless of the snow age, the fastest winds are 

observed. The median wind speeds decrease with increasing visibility. In other words, strong winds 

are needed to reduce the visibility. 
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A roughly logarithmic relationship is seen between particle count and visibility with the 

most intense periods associated with the strongest wind speeds (Fig. 23). There is a significant 

reduction in visibility as particle concentrations increases. For example, the 0 – 1000 m visibility 

bin shows ~30,000 particles whereas, the 1000 – 2000 m visibility bin shows ~15,000 particles 

(Fig. 24). Particle concentrations are increasing owing to the increase in small sized particles. In 

Fig. 24, the largest concentrations are in particle diameters ≤ 1.125 mm.  

 Blowing snow has been demonstrated to be dependent on snow age, wind speed, and 

temperature (Li and Pomeroy 1997a). Such variables were analyzed in this study, however, in 

practice such variables provided no additional insight on the intensity and occurrence of blowing 

snow. Figures 20-24 demonstrated that the identified blowing snow periods occurred in situations 

during or immediately following precipitation and during periods where precipitation had not 

occurred in > 2 days. Overall, the lowest visibilities were associated with the highest particle 

concentrations and the fastest wind speeds.  
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Figure 6: PSDs by wind speed for (A) NSA C1 LPM, (B) NSA C1 PIP, (C) Oliktok Point LPM, 

and (D) NSA E10 LPM. The particle count threshold was set to > 0 and the particle diameter 

threshold was set to ≤ 8 mm. All counts are for 5-min bins.  
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Figure 7: Mean PSDs segregated by instrument for wind speeds between (A) 0-5 m s-1 (falling 

snow) and (B) 15-20 m s-1 (blowing snow). 
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Figure 8: Time series of small particle counts (diameters ≤ 3 mm) on 1 November 2019 for (A) 

NSA C1 LPM and (B) NSA C1 PIP. 
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Figure 9: As in Figure 8 except for large diameter (diameters > 3 mm) particles. 
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Figure 10: 2-D histograms segregated by wind speed (m s-1) and temperature (˚C) for particle 

count thresholds of (A) ≥ 200, (B) ≥ 300, (C) ≥ 500, (D) ≥ 1000, (E) ≥ 2000, and (F) ≥ 5000
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Figure 11: 2-D histogram showing the total number of times that the set of different meteorological 

conditions were observed. 
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Figure 12: 2-D histograms showing the frequency of each set of different meteorological 

conditions for particle count thresholds of (A) ≥ 200, (B) ≥ 300, (C) ≥ 500, (D) ≥ 1000, (E) ≥ 2000, 

and (F) ≥ 5000. The white slashes represent bins that contained > 20 times. 
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Figure 13: POD values calculated for each wind speed and visibility bin for particle count 

thresholds of A) ≥ 500, B) ≥ 1000, C) ≥ 2000, and D) ≥ 5000. The black line indicates the 

highest POD value for each row of wind speed. 
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Figure 14: As in Figure 13 except for FAR. The black line indicates the lowest FAR value for 

each row of wind speed. 
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Figure 15: As in Figure 13 except for CSI.  The black line indicates the highest CSI value for 

each row of wind speed. 
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Figure 16: As in Figure 13 except for HSS. The black line indicates the highest HSS value for 

each row of wind speed. 
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Figure 17: As in Figure 13 except for frequency.  A value of one represents no bias compared to 

the particle count.  
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Figure 18: HSS values calculated for each temperature bin and a particle count threshold of ≥ 

1000. The black line indicates the highest HSS value for each row of wind speed. 
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Figure 19: HSS as a function of wind speed and relative humidity (with respect to ice). A visibility 

threshold of ≤ 9 km was applied. 
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Figure 20: LPM particle count plotted against visibility. Individual observations are colored by 

temperature.  

 

 

 



65 

 

 

Figure 21: LPM particle count plotted against visibility. Each data point is colored according to 

the hours since last precipitation.  
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Figure 22: Line plot displaying the median visibility and wind speed for every 1000 m visibility 

bin segregated by days since last precipitation. 
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Figure 23: LPM particle count plotted against visibility. Each data point is colored according to 

wind speed. 
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Figure 24: PSD plot segregated by visibility for periods of blowing snow. 
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Table 5: Wind speed thresholds for each temperature bin using the MET method.   

Temperature 

Range 

≥ 500 

(m s-1) 

≥ 1000 

(m s-1) 

≥ 2000 

(m s-1) 

≥ 5000 

(m s-1) 

0 ˚C to -5 ˚C 3 3.5 5.5 6 

-5 ˚C to -10 ˚C 5.5 6 6 6.5 

-10 ˚C to -15 ˚C 5 6 7 7 

-15 ˚C to -20 ˚C 4.5 7 7.5 7.5 

-20 ˚C to -25 ˚C 3.5 6.5 7 7 

-25 ˚C to -30 ˚C 5.5 7 8 8.5 

-30 ˚C to -35˚C 5 6.5 7.5 8.5 

< -35˚C 4 6.5 7 8.5 
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Table 6: Temperature dependent MET method calculation results. 

Particle 

Count 

Threshold 

Temperature Dependent HSS R-Squared Particle 

Imager 

Frequency 

MET 

Frequency 

Bias 

500 0.8,0.8,0.76,0.79,0.58,0.7,0.71 0.90 37.07% 42.78% 5.71% 

1000 0.81,0.76,0.8,0.61,0.75,0.78,0.

78 

0.85 33.96% 35.56% 1.6% 

2000 0.76,0.75,0.79,0.59,0.67,0.72,0

.72 

0.83 28.28% 31.29% 3.01% 

5000 0.76,0.74,0.74,0.6,0.6,0.6,0.6 0.72 18.73% 20.98% 2.25% 
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Table 7: MET method wind speed thresholds without the inclusion of temperature.  

Particle 

Count 

Threshold: 

≥ 500 

 

≥ 1000 ≥ 2000 ≥ 5000 

Wind Speed 

(m s-1) 

4.5 6 7 7.5 
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Table 8: MET method calculation results derived without the inclusion of temperature. 

Particle Count 

Threshold 

HSS R-Squared Particle 

Imager 

Frequency 

MET 

Method 

Bias 

500 0.74 0.88 36.19% 43.12% 6.93% 

1000 0.71 0.86 33.08% 37.67% 4.59% 

2000 0.69 0.80 27.4% 29.18% 1.78% 

5000 0.69 0.71 17.85% 21.67% 5.82% 
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CHAPTER 4 

RESULTS – HISTORICAL BLOWING SNOW RECORD 

To develop a historic record of blowing snow, the meteorological thresholds determined in 

Chapter 3 were applied to all meteorological data to derive a climatological frequency of blowing 

snow for SOM nodes. These frequencies were then applied to the historical record of atmospheric 

states to retrieve a historic record of blowing snow from 1979 to 2022. Blowing snow trends were 

assessed from the SOM-only blowing snow frequency. This chapter will discuss the results of this 

analysis. First, the winning SOM will be introduced. Second, the results of the climatological 

frequency of blowing snow will be discussed. Third, the historic blowing snow frequencies will 

be covered. Lastly, the blowing snow trends will be discussed.  

4.1 SOMs 

4.1.1 Winning SOM 

The first step to derive the climatological frequency of blowing snow was to establish a 

winning SOM. As mentioned prior, a winning SOM is defined as a SOM in which 1) spatial 

distribution of node frequency is present, 2) connectiveness between nodes exists with minimal 

distortion, and 3) surface high- and low-pressure systems are plotted on opposing sides of the SOM 

feature map. An 8 × 5 MSLP-only trained SOM was selected (Fig. 25). This SOM was trained 

using a learning rate of 0.0005 and a sigma of 4. The selected values for sigma and the learning 

rate were based on several sensitivity tests conducted. The sensitivity tests involved the changing 
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of the learning rate and sigma values to understand how each parameter altered the SOM output. 

Generally, as the learning rate increased the SOM system became increasingly unstable. The 

maximum learning rate tested was 1 while the best SOM outputs were observed with rates  < 0.005. 

As mentioned in Chapter 2 section 2.3.3., the sigma values were set to 1-y, however, sigma values 

< 1-y were also tested. Similar to the learning rates, the reduction in the sigma value resulted in 

the SOM system becoming unstable.   

The winning SOM displays low-pressure systems located in the lower lefthand corner of 

the SOM (Fig. 25). Furthermore, a clear gradient in patterns is seen from high-pressure to low-

pressure systems. Minimal distortion is present in the SOM and data is equally distributed among 

nodes (Figs. 26 and 27).  

The composite 2 m temperature (˚C) and 10 m wind barb (knots) plot for each SOM node 

is shown in Fig. 28. A strong geographic signal is seen in the composite temperature. Northern 

Alaska observes substantially colder temperatures than southern Alaska as to be expected. For all 

low-pressure system nodes, the prevailing wind direction is a north-northeasterly wind. The mean 

wind speed for each SOM node for grid point closest to NSA is displayed in Fig. 29. As expected, 

the strongest winds are associated with the low-pressure systems with a corresponding stronger 

horizontal surface pressure gradient (Fig. 25). Wind speeds in the low-pressure nodes range from 

12.32 – 20.67 m s-1 while high-pressure systems have winds ~7.7 m s-1 slower. One high-pressure 

system node (node 7) had a local maxima in wind speeds with a mean wind speed of 13.13 m s-1, 

whereas the remaining high-pressure nodes have wind speeds between 7 – 11 m s-1. A strong 

gradient in wind speed was present across the SOM.  

4.1.2. SOM Discussion  
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Overall, the SOM is properly categorizing synoptic-scale patterns. The regions of low-

pressure systems correspond to the regions of maximum wind speed (associated with a stronger 

horizontal surface pressure gradient). Additionally, no high-pressure systems are plotted near a 

low-pressure system within the SOM space. Independent variables such as wind speed/direction 

and temperature are physically consistent with what is expected. This provides confidence that the 

SOM can be used to understand patterns associated with blowing snow.  

4.2 BLOWING SNOW FREQUENCY 

4.2.1. Climatological Frequency  

The climatological frequency is defined as the frequency of blowing snow per SOM node 

for the duration MET data were available at NSA. The meteorological thresholds determined in 

Chapter 3 are applied to the MET data and segregated according to the SOM nodes. The number 

of times blowing snow occurred within the node is divided by the total amount of times within the 

node. This process was done using two methods. The first method derived the frequencies 

excluding timeframes that the MET reported > 50% missing 5-min time intervals per month and 

year. The second method used the same methodology; however, the missing data threshold was 

increased to > 75%. The results of both methods resulted in minor differences (on the order of 

0.02% between the 50% and 75% thresholds), therefore the 75% missing data threshold was 

applied. The climatological frequency for each SOM node from 2003 – 2022 is shown in Fig. 30. 

The largest blowing snow frequencies are associated with the low-pressure systems. Lower 

frequencies of blowing snow are seen in the central region of the SOM. High-pressure systems are 

accompanied by fewer blowing snow cases.  
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Blowing snow frequency follows a seasonal cycle. The peak winter months show (i.e., 

December, January, and February) the highest average monthly MET blowing snow frequencies 

ranging from 20 - 22.7% (Fig. 31). January shows the largest maxima (22.7%). As the winter 

season progresses, the frequency of blowing snow decreases (Fig. 31). For example, the average 

blowing snow frequency for March is 18.1% and April is 17.1%. October shows the lowest 

blowing snow frequency (16.2%). The SOM-only derived blowing snow frequency shows a 

similar seasonal cycle. November, December, and January have the highest frequencies ranging 

from 19.5 - 21.6%. October and April show the lowest frequencies (16 - 18%). To quantitatively 

compare the SOM-only and MET methods, linear regression is performed (Fig. 32). The R-squared 

value is 0.436. 

4.2.2. Climatological Frequency Discussion 

The derived climatological frequency of blowing snow aligns with the synoptic-scale 

patterns depicted in the SOM. The highest blowing snow frequencies occur in the low-pressure 

nodes with the highest wind speeds and strongest horizontal surface pressure gradient. As the SOM 

nodes gradually transition to high-pressure systems, the blowing snow frequency gradually 

decreases (Fig. 30). The LPM-detected mean wind direction for blowing snow was 58˚ while the 

SOM mean wind direction was 45˚. The nodes associated with the highest blowing snow 

frequencies align with synoptic-scale patterns favorable for blowing snow. This further proves that 

the SOM is correctly segregating synoptic-scale patterns and foreshadows the ability of the SOM 

to classify specific atmospheric processes.  

The MET and SOM-only methods show minor differences in the monthly blowing snow 

frequencies. Both datasets were hypothesized to have minor discrepancies. The discrepancies are 

likely because the climatological frequency, used to derive the SOM-only values, is based solely 
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on synoptic scale patterns. The climatological frequency was derived with a temperature 

parameter; however, when applied to the SOM data, temperature is not directly accounted for. No 

method will perform perfectly. The climatological frequency (i.e., the SOM-only based method) 

performed reasonably well, and thus, the climatological frequency of blowing snow can be used 

to detect blowing snow conditions in the absence of hydrometeor imager data and meteorological 

data. 

4.2.3. Historic Blowing Snow Frequency 

A historic record of blowing snow at NSA was calculated from 1979 –2022. The average 

monthly blowing snow frequencies are shown in Fig. 33. October shows the lowest frequency of 

blowing snow (16.8%). December, January, and February show the highest frequencies of blowing 

snow with frequencies ranging from 20 – 22%. The results of this analysis closely resemble the 

monthly blowing snow frequencies observed using the MET-based method (Fig. 31). The monthly 

average blowing snow differences for each month are as follows: October (± 2%), November (± 

1.9%), December (± 0.06%), January (± 1%), February (± 0.07%), March (± 3.4%), and April (± 

3.7%) The saddle seasons display the least amount of blowing snow. October shows a blowing 

snow frequency of 16.8%, March shows a frequency of 18.6%, and April shows a frequency of 

18.4% (Fig. 33). 

Summarizing this section, the SOM can be used to objectively classify periods of blowing 

snow in the absence of ground-based observations. The meteorological thresholds can be used to 

identify periods of blowing snow when in-situ observations are available. In the absence of in-situ 

observations, the climatological frequencies of blowing snow can be used in tandem with the SOM 

to derive blowing snow frequencies. The results of this analysis are a blowing snow “look-up 

table.”  
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4.3 BLOWING SNOW TRENDS 

Blowing snow trends were investigated through linear regression and p-value significance 

testing with an alpha of 0.05 (95% confidence) using a one-tail test. The goal was to determine if 

there was an observed change in blowing snow over time and if so, was the trend statistically 

significant. The linear regression performed on the average annual blowing snow frequency 

derived from the SOM is displayed in Fig. 34. The calculated percentage of change in blowing 

snow frequency per decade was -0.49%; however, the statistical significance was weak with a p-

value of 0.15. The same analysis used to generate Fig. 34 was used to calculate the slope, 

percentage of change per decade, and significance for each month within the SOM. The results of 

this analysis are displayed in Table 9. December observed a percentage of change per decade of -

0.09% with a p-value of 0.32. January observed a percentage of change per decade of -0.13% and 

a p-value of 0.12. March observed a percentage of change per decade of -0.05% and a p-value of 

0.51. April observed a percentage of change per decade of -0.07% and a p-value of 0.36. The 

months of December, January, March, and April displayed a negative slope with weak statistical 

significance. October observed a percentage of change per decade of 0.11% with a p-value of 0.08. 

February observed a percentage of change per decade of 0.1% and a p-value of 0.26. The months 

of February and October displayed a positive slope with weak statistical significance. November 

observed a percentage of change per decade of -0.17% with a p-value of 0.02. The month of 

November was the only month that showed a statistically significant. 

4.3.1 Blowing Snow Trends Discussion 

Annual blowing snow frequencies did not show a significant change due to changing 

atmospheric patterns. A similar result was found for monthly blowing snow frequencies for all 

months excluding November. Though no significant changes were observed in blowing snow 
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frequencies, that does not mean blowing snow frequency is not changing. Temperature within the 

Arctic has been increasing over the decades. For example, a quick analysis of temperature was 

performed using the 2 m ERA5 Reanalysis data to compare the percentage of times temperatures 

≥ 0˚C for the first decade of data (i.e., 1979 – 1989) and the last decade of data (i.e., 2010 – 2020). 

From 1979 – 1989 the percentage of times with temperatures ≥ 0˚C was 0.5%, whereas, from 2010 

– 2020 that percentage was closer to 2.5%. With a warming climate, patterns that have historically 

supported blowing snow are no longer supporting blowing snow due to the increasing temperatures 

and the strength and intensity of these events may be evolving. This notion poses a potential source 

of error in the derived blowing snow frequencies as the SOM-only method does not directly 

include temperature.   
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Figure 25: MSLP-only 8 × 5 SOM. Each node is contoured according to MSLP anomalies (hPa). 

The yellow dot represents the location of NSA. 
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Figure 26: MSLP-only 8 × 5 SOM frequency plot. The values on the x-axis and y-axis represent 

the node number.  
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Figure 27: MSLP-only 8 × 5 SOM Sammon plot. Each black dot represents a node. 
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Figure 28: Composite 2 m temperature and 10 m wind barbs for the 8 × 5 SOM. The yellow dot 

represents the location of NSA. A half barb represents wind speeds of 5 knots or ~ 2.57 m s-1, 

whereas a full wind barb represents wind speeds of 10 knots or ~ 5.14 m s-1. 
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Figure 29: Average 10 m wind speed for NSA for each SOM node.  
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Figure 30: Climatological frequency of blowing snow derived for the MSLP-only 8 × 5 SOM.  

 

 



86 

 

 
Figure 31: Box and whiskers plot displaying the average blowing snow (BLSN) frequency for 

each month using the MET method. The green dashed line represents the mean, and the orange 

solid line represents the median. The 25th, 50th, and 75th percentiles are displayed in addition to the 

minimum and maximum. The outliers are represented by circles. The red stars represent the SOM-

only derived mean monthly blowing snow frequencies for each month from 2003 – 2021. 
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Figure 32: Linear regression analysis performed on the MET and SOM monthly blowing snow 

frequencies from 2003 – 2021. The black solid line represents the 1-to-1 line. 
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Figure 33: Box and whiskers plot displaying the average blowing snow (BLSN) frequency for 

each month calculated by applying the climatological frequencies of blowing snow to the SOM. 

The green dashed line represents the mean, and the orange solid line represents the median. The 

25th, 50th, and 75th percentiles are displayed in addition to the minimum and maximum. The outliers 

are represented by circles. The red stars represent the SOM-only derived mean monthly blowing 

snow frequencies for each month from 2003 – 2021. 
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Figure 34: Annual blowing snow frequencies from 1979 to 2022 with an applied linear regression 

analysis. The annual blowing snow frequency is represented by the blue dots. The linear regression 

is represented by the red line. Additionally, the slope for the trendline is included within the plot.  
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Table 9: Monthly slope and significance values for the SOM-derived blowing snow frequencies. 

Month Slope Significance (p-value) 

10 0.0011 0.08 

11 -0.0017 0.02 

12 -0.0009 0.32 

1 -0.0013 0.12 

2 0.0010 0.26 

3 -0.0005 0.51 

4 -0.0007 0.36 

 

 

 

 

 

 

 

 

 

 

 



91 

 

 

 

CHAPTER 5 

CONCLUSIONS AND LIMITATIONS 

This thesis had two main objectives. The first was to develop a method to identify blowing 

snow periods using in situ instrumentation at NSA. The second was to create a long-term record 

of blowing snow at NSA and analyze if there had been changes in blowing snow cover. Blowing 

snow is not included in numerical models due to the lack of verification in blowing snow 

parameters; furthermore, there are limited studies that have focused on the use of in situ 

instrumentation in the detection of blowing snow at ARM sites. NSA offered an unprecedented 

opportunity to study blowing snow over a long period of time. The PIP, LPM, and MET 

datastreams were used to develop a mechanism for blowing snow identification using just 

meteorological variables. SOMs were used to generate a long-term record and to observe trends in 

blowing snow. The results of this work will be summarized here.  

HYDROMETEOR IMAGER COMPARISON 

The two disdrometers selected to represent “ground truth” were the LPM and PIP. To 

determine the strengths and weaknesses of each instrument in the detection of blowing snow, PSDs 

segregated by wind speed were made for each. From this analysis, it was found that the PIP 

struggled with the detection of small diameter particles. The overall concentrations for particles 

with diameters ≤ 3 mm reported by the PIP were substantially lower than that of the LPM. For 

example, the 1 Nov. 2019 case study had LPM counts for 5-minute summed time intervals that 

exceeded 25,000, whereas the PIP only detected counts less than 15,000. The discrepancies in the 
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overall concentrations of particles reported by the PIP were hypothesized to be due to the imaging 

process (Maahn et al. 2023). The PIP (as deployed at NSA) was not useful for detecting blowing 

snow. The LPM can be and was used to represent ground truth at NSA. 

METEOROLOGICAL VARIABLES 

To develop a method of blowing snow detection based purely on meteorological variables, 

a variety of analyses were performed to determine the best set of meteorological thresholds in the 

prediction of blowing snow.  2 m temperature, 2 m relative humidity, 10 m wind speed, and 2 m 

visibility were investigated using forecaster’s 2 × 2 contingency table analysis.  

Through this analysis, the selected parameters for the detection of blowing snow were the 

temperature dependency ≥ 1000 particle count method. This method resulted in the best blend of 

(1) high HSS, (2) low frequency bias, and an (3) R-squared value closest to 1. For the selected 

method, the HSS values were all > 60% and the R-squared value was 0.85. Additionally, the bias 

observed was +1.6% which was the closest to truth.  

The wind speed and temperature relationship observed in Li and Pomeroy (1997a) was not 

found in this work. As the temperature decreased from 0 ˚C to -25 ˚C, the wind speed threshold 

showed no significant change; wind speed magnitudes increased on the order of 2 – 2.5 ms-1. The 

differences between this study and Li and Pomeroy (1997a) are likely due to several factors. First, 

this study was not confined to strictly blowing snow events. Second, the vegetation and terrain at 

NSA varied greatly from the study region in Li and Pomeroy (1997a). Lastly, this study did not 

exclusively look at wind speed thresholds for blowing snow initialization. Despite this 

discrepancy, blowing snow periods can be identified with strong confidence using meteorological 

observations.  
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CLIMATOLOGICAL FREQUENCY  

The meteorological thresholds were applied to the entirety of the MET datastream and then 

segregated according to the corresponding SOM nodes to derive the climatological frequency. The 

climatological frequency represented the frequency of blowing snow per SOM node.  

The “winning” SOM was an 8 × 5 SOM trained using a learning rate of 0.0005 and a sigma 

of 4. A composite temperature and wind barb plot was made for the SOM. Furthermore, an average 

wind speed plot for the center point (i.e., NSA) within the SOM was made. Collectively, these 

plots displayed the ability of the SOM to properly categorize patterns. The regions of low-pressure 

systems corresponded to the highest wind speeds. The prevailing wind direction for the low-

pressure nodes was a north – north-east.  

The nodes associated with the most blowing snow aligned with synoptic scale patterns. 

The highest blowing snow frequencies were observed in the low-pressure nodes with the highest 

wind speeds. Additionally, the prevailing wind direction for identified periods of blowing snow by 

the LPM was a north-north-east direction. Linear regression was performed on the monthly 

blowing snow frequency identified by the SOM-only method and the MET based method. The 

linear regression concluded in an R-squared value of 0.436. The SOM was able to discriminate 

between patterns with and without significant blowing snow conditions. The climatological 

frequency performed reasonably well and could be used to detect blowing snow in the absence of 

LPM and MET data.  

HISTORIC BLOWING SNOW RECORD AND BLOWING SNOW TRENDS 

The climatological frequency represented the expected value of blowing snow for each 

specific SOM node. The values were applied to the entirety of the SOM to derive a historic record 
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of blowing snow at NSA from 1979 – 2022. October had the lowest frequency of blowing snow. 

December and January had the highest frequencies of blowing snow.  

Linear regression was performed on the annual mean blowing snow frequencies to analyze 

trends. There was an observed negative slope, however, there were no statistically significant 

changes in blowing snow frequency over time due to purely atmospheric patterns. The percentage 

of change in blowing snow frequencies over the 44-year period was 2.16%. A similar analysis was 

conducted on the monthly mean blowing snow averages. October and February observed a positive 

slope; however, the statistical significance was weak. December, January, March, and April 

observed a negative slope with weak statistical significance. November was the only month that 

displayed a significant change in blowing snow frequencies solely from changing atmospheric 

patterns.  

LIMITATIONS 

Research conducted in the Arctic and Antarctic pose unique challenges. First and foremost, 

the Arctic climate is rapidly evolving. The direct impacts of climate change on various atmospheric 

phenomena are unknown. The temperatures within the Arctic are warming 50% faster than US-

lower forty-eight (Ballinger et al. 2023). With that being said, the methodology used to derive the 

climatological frequency and the historic blowing snow record did not directly account for 

temperature. Patterns that have historically observed blowing snow are no longer observing 

blowing snow due to increased temperatures. The lack of temperature being accounted for in the 

climatological frequency and the historic blowing snow record may induce errors within the 

analysis. Additionally, the meteorological thresholds selected were based on performance against 

ground truth. Ground truth data (i.e., LPM data) was only available for a ~ 3-year period. The 

selected meteorological thresholds may not be completely representative due to the relatively short 
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ground truth dataset. Human-based observations were not available for this site. Furthermore, no 

cross checking was done for the LPM as the PIP could not be used in the detection of blowing 

snow conditions.  

The second major limitation of Arctic research is sea ice. Sea ice was excluded from this 

analysis due to the lack of data availability and the complex nature of sea ice. For this study, the 

main impact sea ice posed was in the form of leeds. A leed is a region of exposed ocean among 

forming ice sheets. Leeds are most common during the transitional seasons. The presence or lack 

thereof of leeds is hypothesized to increase and/or decrease blowing snow frequencies. During 

onshore flow events, the presence of leeds can act to reduce blowing snow frequencies. The impact 

of leeds becomes minuscule during peak winter. The challenge in accounting for leeds is the region 

of study is highly localized to the immediate offshore region. Generally, sea ice research is 

conducted using remote sensing methods that cover a very large geographic region. Focusing the 

data onto the immediate offshore region would be difficult.  The role and extent that ice conditions 

influence blowing snow occurrences and variability is unknown. 

 FUTURE WORK 

This study was one of few that incorporated in situ instrumentation into the detection of 

blowing snow periods. Though the yielded results performed reasonably well, the meteorological 

thresholds applied were derived using a time-limited dataset. The LPM dataset covered ~ 3 years. 

To optimize the performance of the meteorological thresholds a longer hydrometeor imager dataset 

is needed. The methodology would be identical; however, more years of data (i.e., > 5-8 years) 

will ensure that the meteorological thresholds selected truly represent blowing snow conditions 

and are not biased toward one particular year. Additionally, the data range should be extended to 

include the entirety of the transitional seasons (i.e., September and May) to fully capture the 
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seasonal cycle of blowing snow. As mentioned above, the current study omitted the influence of 

sea-ice. This research should be performed with the inclusion of sea ice data to determine the 

influence of sea ice. 

Future research should focus on applying this methodology to other geographic areas. The 

results of this study found that the wind speed thresholds increase with increasing temperature for 

temperatures < - 25˚C. This varied from the results of Li and Pomeroy (1997a). The discrepancies 

between this study and Li and Pomeroy may be linked to the differences in terrain and geographic 

location. Applying the methodology in this study to various regions can provide insight on the 

differences observed between the studies and highlight potential errors in the Li and Pomeroy 

(1997a) parameters. Understanding the limitations and errors in the Li and Pomeroy (1997a) 

parameter is critical as most numerical models and blowing snow studies use those blowing snow 

parameters (Chen et al. 2022). One example location to apply this methodology is North Dakota. 

North Dakota is highly susceptible to blowing snow and blizzard conditions making it a prime 

region for blowing snow analysis.  

Further investigation is needed to understand how the inclusion of temperature would 

influence the SOM-only derived blowing snow frequencies. The Arctic is warming and that 

warming influences the patterns associated with blowing snow. In addition, the occurrence and 

intensity of blowing snow should be further investigated. The impacts of climate change may be 

evident in the changing of blowing snow intensity and occurrence. Regardless of geographic 

location, the intensity of blowing snow and the parameterization of blowing snow intensity is 

critical to improve blowing snow and blizzard forecasting. 

Collectively, these measures would further verify the blowing snow parameters and work 

toward the inclusion of blowing snow parameters into numerical models. 
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