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ABSTRACT 
IARC classified arsenic (iAs) as “carcinogenic to humans”, but despite the health consequences, 

there is no molecular signature available yet to predict when exposure may lead to the disease 

development.  

In this study, a three-step analysis was employed: (1) the gene expression profiles obtained from 

diverse arsenic-exposed populations were utilized to identify differentially expressed genes 

associated with arsenic exposure in human subjects, (2) the gene expression profiles induced by 

arsenic exposure in different myeloma cancer cell lines were used to define common genes and 

pathways altered by arsenic exposure,(3) the genetic profiles of human bladder cancer studies were 

used to test the significance of the common association of genes, identified in step 1 and step 2, to 

develop and validate a predictive model of primary bladder cancer risk associated with arsenic 

exposure.  

The study identified a unique set of 147 genes associated with arsenic exposure and linked to 

molecular mechanisms of cancer. The risk prediction model shows the highest prediction ability 

for recurrent bladder tumors based on a very small subset (NKIRAS2, AKTIP, and HLA-DQA1) 

of the 147 genes resulting in AUC of 0.94 (95% CI: 0.744-0.995) and 0.75 (95% CI: 0.343-0.933) 

on training and validation data, respectively. 

In addition, high arsenic exposure has been associated with adverse kidney disease outcomes. 

Therefore, we performed a systematic analysis of the association between arsenic and various 

kidney disease outcomes. Because of the high prevalence of arsenic exposure worldwide, there is a 

need for additional well-designed epidemiologic and mechanistic studies of arsenic and kidney 

disease outcomes. 

The human kidney is known to possess renal progenitor cells (RPCs) that can assist in the repair of 

acute tubular injury. The RPCs are sparsely located as single cells throughout the kidney. We 

recently generated an immortalized human renal progenitor cell line (HRTPT) that co-expresses 

PROM1/CD24 and expresses features expected on a RPCs. This included the ability to form 

nephrospheres, differentiate on the surface of Matrigel, and to undergo adipogenic, neurogenic, and 

osteogenic differentiation. These cells were used in the present study to determine how the cells 



 xiii 

would respond when exposed to a nephrotoxin. Arsenite (iAs) was chosen as the nephrotoxin since 

the kidney is susceptible to this toxin and there is evidence for its involvement in renal disease. 

Gene expression profiles when the cells were exposed to iAs for 3, 8, 10 passages (subcultured at 

1:3 ratio) identified a shift in from the control unexposed cells. The cells exposed to iAs for 8 

passages were then referred with growth media containing no iAs and within 2 passages the cells 

returned to an epithelial morphology with strong agreement in differential gene expression between 

control and cells recovered from iAs exposure. Results show within 3 serial passages of the cells 

exposed to iAs there was a shift in morphology from an epithelial to a mesenchymal phenotype. 

EMT was suggested based on an increase in known mesenchymal markers. We found RPCs can 

undergo EMT when exposed to a nephrotoxin and undergo MET when the agent is removed from 

the growth media. 

  



 xiv 

MOTIVATION 
 
Environmental factors on human health are one of the greatest biological challenges because they 

deal with the precise foundations of mankind. And therefore, it is eventually connected with my 

ultimate research topic of bioinformatics. Addressing the current challenges is key to develop 

biomarkers to both prevent and cure diseases. Data mining, Statistical and Machine learning 

modeling are the tools, few among many, for addressing the challenges. A common focus of my 

projects has mainly been towards creating well defined biomarkers, which will help improving and 

optimizing diagnostics and treatment after heavy metal exposure. 

Personally, this thesis has given me the passion to explore and to expand in what ways, and 

possibly how well, machine learning could be used to answer current challenges or problems 

formulations by using available genomic data. 
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FOCUS AND CHALLENGES 
 
Challenges of developing human genomics disease risk predictors after exposure of heavy metals 

using machine learning application has been the following: 

• The collection, selection, transformation and representation of genome (genomic) data in a 

way which enables standard machine learning algorithms to work on it. 

• The adaptation of appropriate tools, implementation, within an already complex and 

existing framework. 

• The adversity of building a tool which bridges the fields of machine learning, heavy metal 

toxicity and human biology. 
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CHAPTER 1 
Data Mining, Machine Learning and Statistical 

Modeling 
 
In the last couple of decades, multi-omics (especially genomic and proteomic) databases have 

grown exponentially, and resulted in an explosion of information and knowledge. From the 

beginning of the Genome Project, the numbers of published research on multi-omics experiments 

have grown substantially, and to utilize this information, datasets and refined computational 

models have been created to solve critical biological problems. As a result of the significant drop 

in the sequencing price, the amount of genome data is significantly increasing, as shown in 

Figure 1, the progress of the cumulative number of human genomes throughout the years. This 

amount of available genomic data enabled the establishment of large-scale genomics projects 

including The Cancer Genome Atlas (TCGA) [1], The Encyclopedia of DNA Elements 

(ENCODE) [2], and the 1000 Genomes Project Consortium [3], projects aimed to collect and store 

genomics data at one platform and provide it to the research community. In order to make efficient 

use of the collected genomics data, big data analysis techniques are essential. 

 
Figure 1: The number of sequenced human genomes over the years 

Credit: Stephens, Z. D. et al. PLoS Biol. 13, e1002195 (2015)/CC by 4.0 http://creativecommons.org/licenses/by/4.0 
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Similar to any other research area, there are some challenges that arise in this field such as: 

integrate different data from various sources to a common schema (as witnessed in data 

warehousing system), computational power that suffer from the constantly evolving nature of the 

data and methods/algorithms to deal with different biological questions.  During my research, I 

tried to consider all possible challenges in this area and overcome certain limitations. For data 

collection and selection, extensive research has been done searching through online resources and 

departmental collaborative institutes. To deal with data mining, machine learning and statistical 

modeling, a significant number of courses such as Genomic Data Science Specialization, statistical 

courses, programming in R and digital pathology have been completed while writing the thesis. 

The application development has throughout the thesis been implemented in ‘RStudio’ 

https://posit.co/download/ 
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Figure 2: Flow chart of genome wide association studies  
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1.1 BIOLOGICAL DATA 

The human genome consists of DNA containing the instruction to build and maintain 

cells. To carry out these instructions, DNA must be read and transcribed or copied into 

ribonucleic acid (RNA). In a human body, normal cells form, grow, divide as expected. 

Cells are also replaced when they grow old or become damaged, but if they divide and 

grow uncontrollably, then they are considered as disease including tumors [4]. In my 

research, I have used microarray and RNA-sequencing (RNA-seq) data to capture the 

genomic changes. Nucleotide microarrays were the first high throughput method for 

genomics, introduced in 1995 [5]. RNA-Seq is revolutionizing the study of the 

transcriptome that represents all gene readouts present in a cell. 

1.2 GENE EXPRESSION OMNIBUS (GEO) DATABASE 

This is the most common data platform developed and maintained by NIH to deposit and 

extract the all-possible omics data. Initiated by the need of a public repository for high-

throughput data, the Gene Expression Omnibus (GEO) project [6] was designed to 

provide a flexible and open design to store, retrieve, and insert data from high-throughput 

experiments. It is intended to act as a central data distribution hub of gene expression data 

derived from coherent datasets. 

I have used this resource to collect large amount of data as well as information to complete 

my different projects. GEO database provides access to thousands of high-quality, curated 

disease datasets in multiple disease areas covering over 2000 clinical measures, including 

disease, tissue, treatment, survival and demographics. I would like to cover the important 

characteristics that gene expression databases possess. The consideration is given to the 

major components used for analyses and segregating the characteristics of data. 

Typically, all records in a database consist of five parts, raw data, process data, and 

annotation data (omics, sample and experimental).  
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1.2.1 Raw data 

Raw data is a scanned image generated through the machine such as CEL files 

(microarray chip). All databases come with the information of the platform used to 

generate that particular data. A unique GEO id and GSM number is allocated to each 

study and sample respectively. In addition, the complete contact information of the author 

is provided for any additional support, question, query.  

1.2.2 Process data 

There are two ways to collect the process data from GEO: 1) Collect the raw files and 

pre-process them with an appropriate tool/package suitable, 2) each GEO ID provides the 

processed data with the information of the method used by the author(s) for original 

publication. The data from each sample is also provided with the lab/experimental 

protocol used to generate that data. All that information is stored separately for each 

sample and together as well for all the samples provided by the study. The data used for 

my research here is extracted from raw CEL files using the different R packages such as 

“affy”, “rma”, “frma” and “oligo”. 

1.2.3 Gene annotation 

Gene annotation information provides detailed information about each and every 

microarray probe. It provides all position information about a particular segment of the 

genome such as gene name, alternative names (if any) functions, strand and location over 

the chromosome etc. These annotations are collected over time and are publicly accessed 

from different databases. We have used the most updated database to link the probes of 

microarray to gene annotation.  

1.2.4 Sample annotations 

Annotation of sample studies is discussed in this section. We collect all the possible 

information about the characteristics of the microarray sample. This information can be 
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found for each individual sample and/or combined in a matrix file. Information pertinent 

to the biological sample used to extract the targets, the corresponding information such 

as clinical/pathological descriptions pertaining to source and sample/patient 

characteristics, like information that describes whether the samples are normal or 

cancerous, and information that describes if there are any in vitro or in vivo treatments 

that have been applied in addition to clinical-pathological features. 

 

1.2.5 Experiment annotations  

It contains the information regarding the protocols followed during the experiment and 

parameter settings used by the associated tools and software during hybridization. This 

section provides all the necessary information about the generation of the sample.  

 

1.3 MICROARRAY 

A microarray is a genomic tool used to detect the expression of thousands microscopic DNA spots 

attached to a solid surface (called probes). DNA microarrays are microscope slides that are printed 

with thousands of tiny spots in defined positions, with each spot containing a known DNA 

sequence which represents a particular gene. In a laboratory setting, a microarray is a glass or 

plastic slide or a bead that has a piece of an oligonucleotide or oligo (DNA or cDNA) attached to 

it [7]. Specific sequences are immobilized to a surface and reacted with labeled cDNA targets. A 

signal resulting from hybridization of the labeled target with the specific immobilized probe 

identifies which RNAs are present in the unknown target sample. After hybridization the 

microarray is washed to get all the loose labelled nucleotides off and then we put the whole thing 

through a scanning microscope at each label wavelength. 

The primary data is a digital black and white photograph of the array. For two channel microarray 

arrays which have two differently labeled samples hybridized to the same probe, the data are often 

visualized by a picture like the one below. This is actually a composite of the black and white 
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photo for each label. One of the labels is represented by red and the other by green. The relative 

intensity of the two samples is represented by a color scale going from pure red (only the red 

sample has hybridized) to pure green (only the green sample has hybridized) with yellow meaning 

equal amounts of both samples. The intensity is represented by brightness, so that dark spots show 

little hybridization and bright spots have high hybridization. 

 

 

 
  

Figure 3: DNA microarray technology, Credit: DNA Microarray Technology Fact Sheet 

https://www.genome.gov/about-genomics/fact-sheets/DNA-Microarray-Technology 

Each probe of the microarray is a set of lots of identical strands of DNA that are supposed to be 

complementary to what is in the sample. The DNA is synthesized from known sequences. We may 

not know what features they represent, but we have the genomic sequence. To obtain a summary 

for the probe we need to identify 

·      The pixels in the probe foreground - i.e., the region which has the complementary strands. 

·      A probe summary such as the mean or median. 
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·       The pixels in the background. 

·       A probe summary for the background. 

The raw Affymetrix data is stored in a DAT file which is called a CEL file.  Each CEL file has the 

probe id, probe location and probe intensity, as well as information which identifies the type of 

array. The probe identifier is used to find the annotation which links the probes to the genes. 

 

1.3.1 Microarray Quality Control and Normalization and Summarization 

Numerous studies have identified sources of inter- and intra- laboratory error and variability in 

results and outcomes of microarray studies. Therefore, Microarray Quality Control and 

Normalization of Affymetrix microarrays is an essential step before applying any statistical test on 

the data. It provides a comprehensive resource for ensuring quality control in every step of this 

complex process. From concept building, experimental design, data processing, analysis, and 

interpretation, we emphasis on data check at each stage of design and analysis. 

Quality control of microarray data begins with the visual inspection of the scanned microarray 

images to make sure that there are no obvious splotches, scratches or blank areas. After feature 

extraction, the R packages were used to make diagnostic plots for background signal, average 

intensity values and percentage of genes above background to identify errors. 

Normalization of data was used to control for technical variation between samples, while 

preserving the biological variation [8]. There are few Bioconductor package such as Affy[9], 

fRMA[10] that can read the files in either format, which saves us the trouble of having to identify 

the file format. The selection of package depends on: 

· The type of array 

· The design of the study/experiment 

·Hypothesis of the study for example the majority of genes represented on the   microarray do not 

change between test group to controls 



 8 

· Platform used to generate the microarray data i.e., Affy, Agilent, etc. 

 

 
Figure 4: Visualization of sample statistics. 

  

 

The affy software includes several of these methods and also allows the user to "mix and match" 

picking different background correction, probe normalization and probe-set summary methods. 

However, for research, it is usually best to select one of the standard methods. Of these, the most 

used appears to be RMA or fRMA. For Expression Atlas, Affymetrix microarray data is 

normalized using the ‘Robust Multi-Array Average’ (RMA) method within the ‘oligo’ package. To 

set the same scale across the different samples, we used fRMA, where some samples are always 

used together with the new dataset to get the same expression scale at the end.  

Most of those packages cover all 3 steps - background correction, quantile normalization of the 

individual probes and then probe-set summary.   

After reading into the affy tool, we do background correction, probe normalization and finally 

summarization of the probes into probe-sets. Background correction is a complex statistical model 

which supposes both additive and multiplicative noise components. After background correction to 

the individual probes, quantile normalization is applied. In the third and final step, the probes are 

summarized into probe-sets using the median polish algorithm, which is a type of robust 2-way 

Box1: 1. Box plot represents the statistical summary of each sample including min, median, quartile, maximum 2. PCA 
component analysis showing the distribution of variation across sample groups, PC1 and PC2 explains the first two 
maximum variation in two-dimension space 3) Density distribution plot of gene expression value of each sample with 
color group corresponding  
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ANOVA, where one factor is the array and the other is the probe-set. The algorithm is robust to 

outlying data, so that single probes with large values are down-weighted. Because both quantile 

normalization and median polish use data from all the microarrays, using just a subset of the 

microarrays or removing a single bad array affects the normalization step for all the arrays. 

Finally, we extract the probe intensities, which can be treated as continuous data.  By using the 

log2 transformation, the data are suitable for analysis by versions of standard statistical methods. 

  

1.4 DATA ANALYSIS 

A major goal of genomics analysis is to identify genes of interest i.e., differentially expressed 

across the phenotypic conditions, and co-regulated genes to infer biological meaning for further 

studies. Source material is microarray gene expression data [11]. The significance of findings 

depends on appropriate study design, implementation of controls, and correct analysis. Every effort 

should be made to minimize data bias, because small and uncontrolled changes in an environment 

can result in identification of differentially expressed genes unrelated to the designed study. 

Sources of data bias can occur during the experiment, during the mRNA library preparation, or 

during the microarray run (but are not limited). Once a controlled study is designed with well-

defined biological questions, a structured analytical approach is required to start to test for quality 

control followed by unbiased analysis of the data. In current research, we use the following 

approaches that include. 

1.4.1 Determining Intra- and -Inter group Variability and Outliers 

The first and most important analytical questions are “what is our research question/hypothesis?” 

and “what kind of data do we have to test this hypothesis?” in terms of selecting a statistical test. 

Therefore, visualization of data distribution is one of the essential parts which help us to identify 

the most appropriate statistics approach suitable according to the biological question/hypothesis. 

There are two types of statistics: Parametric and Non-parametric [12]. Parametric statistics are 

based on assumptions about the distribution of population from which the sample was taken should 
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be normally distributed. Nonparametric statistics are free from this assumption, i.e., the data can be 

collected from a sample that does not follow a specific distribution. The most common example 

which explains the selection of statistical tests to identify the differentially expressed genes: 

Student's t-tests (when data is normally distributed) [13], Mann-Whitney-Wilcoxon (MWW) test 

[13] or the Wilcoxon test (when data does not follow a normal distribution) [13]. 

 

 

Figure 5: Density plots of normal distribution. 

  

 

One of the most popular methods that almost everyone knows is the histogram to see the data 

distribution. The histogram is a data visualization method that shows the distribution of a variable 

across samples. It provides the frequency of occurrence per value in the dataset, which is what 

shows normal vs non-normal distribution. 
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Box 2: The left-hand plot shows the normal distribution (also known as Gaussian or Bell shape curve). This data is 
suitable for parametric test. The right-hand plot is non-parametric (multi-model distribution) and non- parametric 
test works well on this kind of data. 
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Figure 6: Histogram with the frequency distribution (gray) and line of fit (black) to provides the shape of the 

distribution.  

Another popular method is box plot. It helps us to visualize uniformly and non-uniformly 

distributed samples with the help of basic statistics (including outliers) which summarizes the 

different variables across samples minimum. Those variables are: minimum, first quartile, median, 

third quartile and maximum. 

 

Figure 7: Different parts of a Boxplot and example of Boxplot  
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Box 3: Left figure shows the properties of the box plot. Right figure shows an example of box plat to see the 
variation of CD24 gene between two groups (AKI-0 (red) vs AKI-1 (green) in this case). Each black dot 
represents one sample, the black horizontal line represents the median and yellow dot represents the mean value 
of group.  

 



 12 

The next stage is to understand the underlying patterns of data using the principal component 

analysis (PCA). PCA is an unsupervised machine learning method that helps to understand patterns 

present in high-dimensional data beyond the descriptive statistics and reduce the complexity of the 

data while retaining most of the information[13]. The method as such captures the maximum 

possible variance across features and projects observations onto mutually uncorrelated vectors, 

called components. The PCA metrics show 1. how many components capture the largest share of 

variance (explained variance), and 2., which features correlate with the most important components 

(factor loading). 

 

 

  
Figure 8: Example of PCA plot between two different conditions 
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Box 4: Left-hand side figure represents the PCA between two groups (iAS positive (red) and iAS negative (green) in 
this case). The first two components PC1 and PC2 explains the 64.2 and 16.6 percent of variation among the 
samples. The right-hand side figure represents the PCA between multiple groups (six in this case). The PC1 and 
PC2 represents the first two maximum variations 66.1 and 13.4 respectively 
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1.4.2 Sample and Gene correlation 

 

This is an approach to determining within and in-between group variability is to calculate distance 

as represented by correlation between samples as well as genes. Depending upon the characteristic 

of data there are two commonly used tests of correlation are the Pearson’s coefficient and the 

Spearman’s rank correlation coefficient, which describe the directionality and strength of the 

relationship between selected variables. Pearson's correlation is a parametric test that reflects the 

linear relationship between two variables accounting for differences in their mean and SD, whereas 

the Spearman’s rank correlation is a nonparametric test using the rank values of the two variables. 

These correlation coefficients are calculated between samples or genes and can be visualized as 

either a table or a heat map, allowing us to assess whether replicates (technical or biological) group 

together. 

 

 

 

 

 

 

Figure 9: Example of Heatmap showing correlation among samples and differentially expressed genes. 
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1.4.3 Filtering Out Data Noise 

After outliers are excluded and variability is assessed using the above-mentioned process, the next 

step is to find the distribution of expressed genes that will be helpful to determine a threshold for 

low expression caused by technical factors (based on sample-to-sample variation), referred to as 

data noise. One approach to viewing variability between samples is to generate a scatterplot 

comparing the normalized log2 transformed gene expression values in two different phenotypes to 

visualize their similarity or correlation; this provides a more detailed view of genes driving the 

correlation. By comparing the similarity of housekeeping genes across different samples, the user 

can assess the level of noise. Another approach to determining a threshold for expression above 

noise is to compare the number of genes expressed (up and down regulated) at different cutoffs 

across all samples. This can be done by using MA.plot (Figure 10). 

 

 

Figure 10: Gene expression MA plot. 

 

 

Box 6: M is, therefore, the intensity ratio, and A is the average intensity. Each dot represents gene expression 
value of one probe in the plot. The three different colors represent the three ranges of gene expression intensity 
([−1, 1] black, [> 1, 2] and [< −1, −2] red, [> 2] and [< −2] blue).  
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1.4.4 Differently Express Genes 

After the quality control steps, outlier removal, and filtering, the data are ready for down stem 

analysis. Our next goal is to identify the differentially expressed genes (or significant genes) across 

different phenotypic conditions. This approach allows us to rank a long list of genes based upon 

the level of differentiation between the conditions. Two general approaches applied in this section: 

1) pairwise comparison and 2) variance across different groups. Various online resources and 

software are publicly available that allow for this type of analysis but we have used an R script 

pipeline to perform this kind of analysis. 

 

1.4.4.1Pairwise comparison 

There are two most popular methods that identify pairwise differently express genes, 1) t-test, 2) 

Wilcoxon test. 

The paired Student’s t-test is a parametric test comparing the means of paired quantitative 

measurements from two groups. The t-test requires that the sample means are normally distributed. 

The test relies on estimations that the true difference between two groups means using the ratio of 

the difference in group means over the pooled standard error of both groups. After testing the 

hypothesis, the outcome provides the t-statistic, the t-distribution values, P-value and the degrees 

of freedom to determine statistical significance as an outcome of measurements. Wilcoxon is a 

nonparametric alternative to the t-test. It tests whether the average sum of the ranks (and thus the 

medians) of the two samples differ significantly from each other.  This test determines if groups of 

comparison have the same mean on ranks. We don’t use actual data values themselves, instead, a 

rank is assigned to each data point and those ranks are used to determine if the data in each group 

originates from the same distribution. 
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Figure 11: MA and volcano plot to demonstrate the significant gene with direction (Up or down regulated).   

  

 

1.4.5 Modeling 

In addition to the above motion comparative test, machine learning (ML) and statistical modeling 

approaches were used in significance testing mainly for prediction problems. These algorithms are 

capable of identifying important patterns/markers in large genomic data. ML falls into two main 

classes: unsupervised and supervised learning algorithms. Both classes are best suited to 

addressing distinct biological questions, and both will be required to effectively focus on 

characteristics of the data as well the outcome. 

In a supervised learning model, the input consists of a set of training data with known labels (e.g., 

healthy vs patients). A supervised learning algorithm trains the system by analyzing a subset of 

data (called the training data) and produces an inferred function, which can be used for classifying 

unknown or new samples (called test/validation data). Some of the most common approaches we 

have used are random forest classification, linear and logistic regression. A linear regression model 

describes the relationship between a dependent variable, which is a continuous variable and one or 

more independent variables, which could be continuous and/or categorical. The dependent variable 
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is known as response variable and independent variables are known as explanatory or predictor 

variables. For example, we have developed a linear equation which explains the genomic changes 

with respect to patient age samples using the training dataset, based upon that linear equation we 

can predict the age of new samples or test samples using gene expression of genes included in that 

equation with degree of error. We could choose to perform univariate analysis on any of the 

individual variables in the dataset or multivariate analysis on a set of variables. 

In an unsupervised learning model system, the input data is a set of unlabeled examples without 

predefined classes for example. These approaches are applied in grouping the data depending upon 

similar attributes (or distance), most similar patterns, or relationships amongst the dataset points or 

values. Distinct approaches are employed on every other algorithm in splitting up data into 

clusters. Various clustering algorithms are deployed in microarray analysis which is useful in 

clinical research in keeping track of gene expression data. For example, there are certain patterns 

that exist in gene expression of different cancers in a mixed dataset. 

 

 
Figure 12: Example of AUROC plot with the equations for the 

logistic model.  

 

 

 

 

 

 

 
Box 8: The AUROC figure (left) shows the prediction ability (AUC=0.94 with Confidence Interval (CI) = 0.74 – 

0.96) of the logistic regressions model (Right). Three genes used are shown in red (left) and actual logistic 

regressions with weighted value of each gene in that model (right). 
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A principal component analysis (PCA) which is an unsupervised approach is used to identify 

hidden features in the data that provide the most correlated signal across the samples. The first 

principal component is the feature that explains most of the variability in the data. The objective of 

unsupervised learning is to discover hidden information within the data to detect the different 

groups or clusters. Some time we also used the semi-supervised algorithms which is the 

combination of both labeled and unlabeled data. 

1.4.6 Pathway Analysis 

Pathway analysis is the study of how genes and interlinkage systems of the genome contribute to 

different pathways. Pathway analysis uses gene lists generated from well-defined microarray study 

and searches for the strong association between this list and previously identified biological 

pathways using statistical measurements. The main objective of the pathway is to resolve how the 

individual segments of an organism work together to produce a particular phenotype. Pathway 

analysis is viewed as an intermediate step of translational research that brings biological research 

to be applied in clinical practice (from bench-side to bedside). Based on accomplishments of 

previous studies of genomics within organisms, it is inferred that the function of genes and other 

functional elements of the genome can be inferred more accurately only when the genome is 

studied in its entirety. 

Following are some tools that used for pathway analysis: 

1.4.6.1 Gene Set Enrichment Analysis (GSEA) 

Gene Set Enrichment Analysis (GSEA) is a computational tool developed by Broad institute [15]. 

The tool has an inbuilt pathway database known as MSigDB which contains collections of gene 

sets, including regulatory target, oncogenic signature, and immunologic signature gene sets, among 

others. There ways to use the GSEA to identify the associated pathways, 1) users input an 

expression data set, phenotype annotation, and system creates a list of significant gene and then 

search for the associated pathways 2) pre-ranked GSEA, where user provides a list of gene with the 
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level of significance (p-value or fold change) and then system finds the significant pathways based 

upon the cutoff value. The gene set can be from the user's choosing or MSigDB (complete or 

partial set). 

After running GSEA on a selected gene set and pathway database, we received two components as 

an outcome: GSEA statistics and GSEA reports. The GSEA statistics typically comprises 

enrichment score, normalized enrichment score, false discovery rate, and nominal p-value. GSEA 

Reports generate enrichment in phenotype, dataset details, gene set details, gene markers, and other 

helpful analyses to interpret gene signatures. 

 

 

 

 

 

 

 
 

Figure 13:Example of GSEA showing the plot and statistics 

 

 

 

1.4.6.2 Ingenuity Pathway Analysis (QIAGEN IPA) 

Ingenuity Pathway Analysis (IPA) is a commercially available pathway analysis tool that quickly 

visualizes and understands complicated genomics data 

Box 9: The green line shows the enrichment score across all the genes in our list (represents underneath bar lines) with 
the GO_Mitochondrial_protein_complex pathway from MSigDB database. Right side shows some important statistical 
parameter such as name of gene set, enrichment score value, Normalized enrichment score and nominal p-value. 
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(https://www.qiagenbioinformatics.com/products/ingenuity). It creates an interactive network to 

represent biological systems. Advanced analysis capabilities provide several options for gene 

selection, choice of analytical method and powerful algorithms combined with rich content to help 

us to identify the most critical pathways. IPA allows researchers to upload microarray data or 

subsets of significant genes with the platform information for pathway analysis. IPA allows an 

interactive network design to depict biological systems and offers a search feature for information 

on genes, proteins, chemicals, and medications. 

 

 

Figure 14:Example of Ingenuity Pathway Analysis and top hepatotoxicity and nephrotoxicity functions from analysis. 

1.4.6.3 DAVID 

A free online web-based Database for Annotation, Visualization, and Integrated Discovery 

(DAVID) is a significant source for functional annotation and performing gene-annotation 
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Box 10: The close (circular) network of all the significant pathways identified using our gene list and IPA tool.  All the 
pathways sharing some genes are connected through blue lines. 
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enrichment analysis[16]. All tools in the DAVID resources provide functional interpretation of 

significant lists of genes derived from genomic (microarray in our case) studies including pathway 

visualization, annotation clustering, and annotation classification. 
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CHAPTER 2 
Association between arsenic level, gene expression in 

Asian population and in vitro carcinogenic bladder 
tumor 

 

2.1 INTRODUCTION 
Arsenic (As) is a ubiquitous element in the environment, ranked the 20th most abundant element 

on earth. The toxic impact of arsenic on human health has been documented in numerous studies 

leading to arsenic identification as a known carcinogen by the International Agency Research on 

Carcinogens (IARC), the National Toxicity Program (NTP), and the United States Environmental 

Protection Agency (EPA) [1, 2]. In addition to cancer, long-term exposure to arsenic has been 

associated with developmental effects, cardiovascular disease, neurotoxicity, and diabetes (WHO, 

https://www.who.int/news-room/fact-sheets/detail/As). Typically, arsenic would only be found in 

background levels in soil and groundwater. However, high levels of arsenic accumulates in these 

medians from anthropogenic activities such as indiscriminate waste disposal from mining, milling, 

and smelting of ores [3], raw and spent oil shale [4], and coal fly ash amendments [5]. The usage 

pattern in the 1960s for arsenic compounds in the United States was 77% pesticides, 18% as glass, 

and 4% industrial chemicals. The past use of arsenic as a pesticide in agriculture is exemplified by 

New Jersey, where between 1900 and 1960, it is estimated that approximately 15 million pounds of 

arsenic were applied to New Jersey soils alone [6]. Leaching of arsenic from soils into the water 

supply has now resulted in the significant contamination of drinking water in many areas of the 

United States and the World. This past usage of arsenic in anthropogenic activities has now 

resulted in exposure to arsenic being a global public health problem [7-9]. This is illustrated by the 

fact that over 120 million people are affected by arsenic exposure, many of which reside in 

Bangladesh and India [8, 10]. A recent study has modeled the role of atmospheric exposure to 

arsenic as being additive to overall exposure levels [11]. Despite the health consequences of 

arsenic exposure, there is no molecular signature that might predict the risk of developing cancer or 

other diseases following exposure to arsenic. 
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On the other hand, the use of arsenicals as therapeutic agents in medicine is very well known 

dating back more than 2400 years to ancient Greece and Rome[12]. In the 19th century, potassium 

arsenite was used to treat different types of disease[13] including diabetes, psoriasis, syphilis, skin 

ulcers and joint diseases. More recently, phase I/II trials have been conducted in heavily pretreated 

patients with relapsed or refractory multiple myeloma shows Arsenic trioxide (ATO) is the most 

active, single agent in acute promyelocytic leukemia (multiple myeloma: types of blood 

cancers)[14]. Another study suggested that ATO can be used as an effective alternative therapeutic 

for the treatment of retinoblastoma which is the most common intraocular cancer in children[15]. 

The study shows an antitumor activity of arsenic which mainly targets multiple pathways in 

malignant cells, resulting in the promotion of differentiation or in the induction of apoptosis, which 

would be very helpful to understand the molecular mechanism of arsenic-exposed cancer biology 

as a reverse engineering approach. 

Biomarkers are classified based on exposure, effect, and susceptibility[16]. For arsenic, biomarkers 

of exposure have received the greatest attention and success in defining individual exposures[17]. 

Human susceptibility to arsenic, especially as it applies to predicting disease states, is probably the 

least studied area of biomarkers. A few biomarkers of interest attracting study include 

clastogenicity in peripheral lymphocytes, micronuclei in oral mucosa and bladder cells, and 

induction of heme oxygenase[16, 18, 19]. Though years of research have been done, clinical 

implementation remained unsuccessful due to lack of risk–assessment which should be based on 

mechanistic detailing of individual risk of toxicity and developing strategies to counter arsenic 

toxicity at the molecular, social-economical, geographical, and environmental perspectives. For 

example,  the total concentration of inorganic arsenic (iAs) and its metabolites, monomethylarsonic 

acid (MMA) and subsequently to dimethylarsinic acid (DMA) in humans urine has been 

recommended for the biological monitoring of occupational iAs exposure by the American 

Conference of Governmental Industrial Hygienists (ACGIH)[16] but as described by Buchet et 

al.[17], certain types of seafood can contain small quantities of DMA than the urine sample should 

abstain from eating seafood for 3–4 days prior to urine collection. In such cases where diet cannot 

be controlled, such biomarkers will not perform well. Additionally, the short half-life of inorganic 

and organic arsenic species in blood and invasive collection limits the utility of arsenic biomarkers 

in blood and urine. The goal of the present study was to identify differentially expressed genes in 

arsenic exposed humans and determine if a molecular signature could be developed that would 
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stratify and predict the risk of urothelial cancer for those with known exposure to arsenic. 

Urothelial cancer, which is the most common type of bladder cancer, was chosen as an initial proof 

of principle since epidemiological and other evidence is strong for the link between arsenic and the 

development of urothelial cancer, and there are publicly available databases for data mining [7, 20-

24]. A theme of such studies shows a strong association at more extreme levels (>150 µg/L) 

whereas there is uncertainty of health effects that may develop below this threshold. Suggested 

mechanisms for arsenic carcinogenesis include oxidative damage, epigenetic effects, and 

interference with DNA repair. In addition, the development of bladder cancer is known to have a 

strong association with environmental exposures from mentioned anthropogenic activities [25]. 

Overproduction of reactive oxygen species (ROS) due to arsenic exposure primarily follows direct 

toxicity or the metabolic processes of arsenic products. Inhibiting succinic dehydrogenase activity 

in mitochondrial complexes I and III in electron transport chain produces superoxide radical anion, 

while monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) will form radicals in the 

cell and specifically the enoplasmic reticulum [26] [27]. Since inorganic arsenic compounds tends 

to be more toxic than organic, ATO is of interest for its global concern along with its involvement 

in oxidative and nitrosative stress properties. Translational damage from reactive species can 

regulate MAPK family or induce extended states of inflammation, genetic and epigenetic 

mechanisms such as these are indicative of oxidative/nitrosative damage and well associated with 

the development of bladder cancer [28], [29], [30]. ILK signaling and Neuroinflammation 

Signaling Pathway were the most frequent pathways affected by the exposure of arsenic and both 

of them are highly associated with oxidative stress. Oxidative stress and neuroinflammation could 

potentiate each other to promote progression of mental disorders[31], whereas, ILK plays a 

complex roles in the modulation of oxidant species production[32] 

The strategy used in this study involved three steps. The first step was a blood cell gene expression 

analysis of two diverse human populations with known levels of exposure to arsenic. One 

population was stratified to low and high exposure, and the second population to low, medium, and 

high exposure with correlation to human global gene expression. After identifying statistically 

significant genes unique to the mentioned test conditions, we found cancer was the most significant 

disease and lipid metabolism (which is considered as a major metabolic pathway involved in the 

progression of cancer) were most significant molecular and cellular functions associated with 

genes differentially expressed due to different levels of arsenic. Therefore, the next stage was to 
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compare it with data from four independent myeloma cell lines that had been treated with iAs 

trioxide (ATO) to understand the molecular mechanism of cancer. Many of the genes that were up- 

and down-regulated due to arsenic-exposure are associated with cancer biology. There genes lists 

were then subjected to enrichment analysis to identify statistically significant pathways and further 

scrutinized for functional relevance. The third step was to develop a model by examining the 

ability of the most significant genes to predict the progression, and possible development of 

bladder cancer using publicly available patient biopsy samples. Using this approach, we developed 

a robust regression model of three significant probes and corresponding genes results with AUC of 

0.94 (95% CI: 0.744-0.995) and 0.75 AUC (95% CI: 0.343-0.933) on the training and validation 

data respectively. The most significant pathway identified is integrin-linked kinase (ILK) which 

plays a key role in eliciting a protective response to oxidative damage in epidermal cells.[32]. 

2.2 MATERIALS AND METHODS 

2.2.1 Data 

Two publicly available gene expression datasets of previously conducted experiments were 

accessed from two independent populations. The set from Bangladesh (Gene Expression Omnibus 

GEO ID: GSE57711) had 29 individuals, 16 were males and 13 females. The second dataset was 

from Pakistan (GSE110852 ID) had 57 individuals composed of 31 males and 26 females. In this 

report, the set from Bangladesh is denoted as Data1 and that from Pakistan is Data2 and remain 

unchanged from their original, respective studies. Data1 samples were part of a clinical trial in 

June 2011 [33]. For these samples, ‘low’ exposure levels correlate to a range of 50-200µg/L, 

whereas ‘high’ levels correlate to a range from 232-1000µg/L (there were no samples collected 

from patients exposed in the range of 201-231µg/L). Data2 samples were from two main districts 

of rural Pakistan, Lahore and Kasur. The study aimed to investigate the blood transcriptome profile 

among the exposed samples to correlated gene expression to exposure levels of iAs [34]. Urine 

sampling was used to define levels of arsenic exposure, with ‘low’ being 0-50 µg/g creatinine, 

‘medium’ as 51-100 µg/g creatinine, and ‘high’ as >101 µg/g creatinine. The general 

characteristics of both data sets are detailed in Table 1.  
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Table 1 Characteristics of arsenic exposed gene expression 

data. 

 

The results from 4 multiple myeloma cell lines treated with ATO was obtained from the GEO 

database, series GSE14519, [35]. These cell lines; U266, MM1S, KMS11, and 8226S were 

exposed to ATO for 6hr, 28hr, and 48hr before analysis. Gene expression profiling was used to 

determine differences in cell line response to ATO. This study was used as a reference point in the 

present study since it documents the effects of arsenic compounds on gene expression at different 

exposure levels. 

The two databases of previously conducted experiments containing biopsies of bladder cancer were 

obtained from GEO, GSE13507 [36, 37] and GSE3167[38].  The GSE13507 contained 165 

samples for primary bladder cancer, 23 recurrent non-muscle invasive tumor tissues, 58 normal-

looking bladder mucosa surrounding cancer, and 10 normal bladder mucosa. This dataset was 

originally used in microarray analysis for the identification of genes with prognostic significance. 

GSE3167 contained 28 samples of superficial bladder tumors, 13 samples of muscle-invasive 

carcinomas, and 9 normal samples. This dataset was previously used for gene expression 

signatures among various stages of carcinomas. These 2 datasets were used in the present study to 

obtain a prognostic gene-based prediction for bladder cancer. 

The QC report of the datasets was examined and only qualified samples were included. Since the 

data was generated using different platforms (such as Affymetrix, Agilent etc.), no single approach 

would work on those datasets. Therefore, the raw datasets were pre-processed to extract expression 

using the same approach provided within publication of study, for example the Affymetrix package 

in R used for GSE57711 while an in-house QC pipeline (github.com/BiGCAT-

 
 Total 

Samples 
Gender Low Exposure Medium 

Exposure 
High Exposure 

Data1    Water As 
50–200(μg/L) 

- Water As 
232–1000(μg/L) 

GSE57711 29 16 13 15 - 14 

Data2  Males Females Water As 
122.22 ± 86.13(µg/L) 

Water As 
130 ± 128.9(µg/L) 

Water As 
148 ± 105.01(µg/L) 

GSE110852 57 31 26 18 19 20 
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UM/arrayQC_Module) for data GSE110852. Before applying any statistical test, the distribution of 

each data tested and transformed into a normal distribution using logarithm and pareto scaling 

(mean-centered and divided by the square root of the standard deviation of each variable) 

transformation. Entire gene expression analyses were performed using R Bioconductor 

(https://www.r-project.org). The analysis was performed using Bioconductor packages such as 

Stat, Dplyr (https://cran.r-project.org/web/packages/dplyr/index.html), ggplot2 (https://cran.r-

project.org/web/packages/ggplot2/index.html), randomForest 

(https://cran.rproject.org/web/packages/randomForest/), e1071 

(https://cran.rproject.org/web/packages/e1071/index .html), and pvclust 

(https://cran.rproject.org/web/packages/pvclust/index.html).  

Sample Size calculation to find the power of detection with available number of samples. The 

number of samples with categories of arsenic exposure are 1) GSE57711 – (low, n= 15/high, n=14) 

2) GSE110852 – (low, n= 18/medium, n=19 /high, n=20). The power analysis of GSE57711 data 

shows that a minimum of 14 samples are required to achieve the 80% power with minimum genes 

11626 (per-sample), acceptable number of false positives is 5, fold change differences desired of 

2, standard deviation of 0.6, and alpha (per-gene) 0.00043. These sample size computations assume 

that the expression of each gene is normally distributed on the log scale and believe that gene 

expression measurements are independent[39]. 

2.2.2 Machine Learning (ML) methods 

The machine learning based classification approach was used to understand the population 

characteristics; partial least squares discriminant analysis (PLS-DA) was used in which the 

properties of PLS regression (PLS-R) is combined with the discrimination power of the classification 

technique [40]. The goal here is to determine the distribution of samples and visualize how the global 

gene expression profile scattered in different groups (sex and arsenic exposure) and which features 

best describe the differences between them. 

A Random Forest (RF) was implemented to understand further which genes correlate to 

classification between sex and categories of arsenic concentration [41], specifically, if the gene 

expressions of a combination of genes can correctly differentiate between categories. This 
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classification provides insight into which genes are expressed differentially depending on an 

individual’s condition, such as sex and/or exposure. 

The correlation between the samples was calculated using the Pearson’s coefficient [42, 43] and the 

heatmap method[44]. These were used to plot the correlation coefficient values to find the most 

correlated samples. Hierarchical clustering, an unsupervised learning approach, was then employed 

to calculate a dendrogram to determine the closest related samples. A hierarchical clustering an 

unsupervised learning approach was then employed to calculate a dendrogram to determine the 

closest related samples [45, 46]. 

2.2.3 Statistical methods 

The statistical significance of each gene within each dataset was calculated by running t-tests [47] 

between the categories for conditions (male/female, low/high, low/medium, medium/high As 

exposure levels). Along with t-tests for pairwise comparison, One-way ANOVA[48] (Analysis of 

Variance) with post-hoc Tukey HSD (Honestly Significant Difference) [49] tests were performed 

for comparing multiple groups, i.e., level of As together with sex effect. The gene is filtered based 

on p-value with threshold 0.05 without statistical methods that control the false discovery rate 

(fdr) to avoid the loss of a large number of genes at initial level without further evaluation. 

2.2.4 Pathway enrichment analysis  

The Ingenuity Pathway Analysis (IPA, version 2020; Ingenuity Systems; QIAGEN)[50] was used 

for pathway enrichment, and functional analysis of the significant genes among the Human arsenic 

exposed samples. The KEGG pathways[51], PFAM protein domains[52], Uniport keywords[53], 

biological processes, molecular functions, cellular components, and Reactome pathways[54] were 

used to find associated pathways with statistically significant genes. In addition, we further built a 

network of gene-gene associations using STRING[55] that leads us to the gene subsets 

corresponding to a part of a particular function or pathway. 
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2.2.5 Prediction model 

Classical univariate AUROC [56] analysis was performed to find out the prediction ability of each 

gene independently using logistic regression [57] method with 10-fold cross validation approach; 

next, all the genes were ranked according to this AUC value, and all possible combination of genes 

were tested by adding one gene at a time to the logistics model of top gene in a multivariate. The 

final model was selected based on the highest AUC (with 95% confidence intervals CI) among all 

possible combinations of the selected genes and performance was tested using the Monte 

Carlo cross-validation (MCCV). 

The flow of the study is demonstrated by two charts (Supplementary Figure 1A and 1B). The first 

chart shows the flow of the analytical approaches used in parallel to analyze the Data1 and Data2 

to find differently expressed genes, those specific to sex, those specific to arsenic exposure, and 

specific to both sex and arsenic exposure. It shows the differentially expressed genes and pathways 

with overlapping significance following statistical methods described and provided for clarity. The 

second supplementary flow chart describes and shows the flow of the next stage of this study in 

taking the statistically significant genes to find commonality with the four cancer cell lines and 

creating a bladder cancer risk predictor with high accuracy. 

2.3 RESULTS 

2.3.1 Global Gene Expression analysis of two As Exposed Sets of Human Data  

PLS-DA and Pearson correlation were performed together with patient sex and arsenic exposed 

level to determine the similarities and differences in global gene expression patterns between the 

arsenic exposed cohorts. 

For the Data1 samples, PLS-DA analysis demonstrated a clear separation between high arsenic 

exposed females compared to low arsenic exposed males (Figure 15A). The global gene expression 

profile distribution moves from low too high for samples of high exposure of arsenic in females 

(HF), low exposure of arsenic in females (LF), high exposure of iAs in males (HM), and low 

exposure of iAs in male (LM). The analysis did not demonstrate an explicit separation between low 
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exposure females and high exposed males. The heatmap of Pearson correlation coefficients and the 

dendrogram among the samples show variability within Data1 (Figure 15C) with correlation value 

0.92 to 1. There was no clear separation based solely upon arsenic exposure or sex.  

 
Figure 15: Sample distribution of gene expression profiles.  

 

 

 

Box 11: A) Data1 and B) Data2: The Partial least squares discriminant analysis (PLS-DA) plot showing clusters of 
samples based on similarity. The first two components of PLS-DA (PC1 and PC2) of gene expression profile and overall 
variance between the groups are displayed. Each dot represents a sample color coded by both gender and level of 
arsenic exposure level. Pearson correlations were calculated between each sample of total population and correlation 
coefficient values were shown by heatmap of Data1 (C) and Data2 (D). The color-coding bar proves the value of 
correlation-coefficient. The dendrogram represents the relation between the samples created by using hierarchical 
clustering approach. 
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This provides evidence that sex and arsenic exposure has no bias impact on gene expression profile 

of Data1. An identical analysis of the samples in Data2 demonstrates that the distribution of global 

gene expression is almost the same for high and low exposure between males and females, where 

females with high arsenic exposure have the lowest expression profile when compared to low iAs 

exposed males (Figure 15B). The global gene expression profile moves low to high starting lowest 

in high exposure of arsenic in female (HF), to high exposure of iAs in male (HM), then low 

exposure of iAs in female (LF), and low exposure of iAs in male (LM), however, the medium 

exposure of iAs is mixed with low iAs exposure. The heatmap of Pearson correlation coefficients 

and the dendrogram among the samples show variability within Data2 (Figure 15D) with 

correlation value 0.75 to 1, and there is no clear separation between either based upon arsenic 

exposure or sex. This indicates that this data has no bias impact for both the factors. 

As described in our methodology and shown via supplementary figures, the most significant, 

common genes were screened across the two datasets to distinguish difference among all four 

scenarios of sex and arsenic exposure in Data1 (Figure 16A) and all six scenarios in Data2 (Figure 

16B).  

This analysis showed several probes for the genes XIST (X inactive specific transcript), MALAT1 

(metastasis-associated lung adenocarcinoma transcript 1), XLOC_008276 (long intergenic non-

protein coding RNA 278), USP9Y (Ubiquitin Specific Peptidase 9 Y -Linked), SEPTIN6 (Septin 

6), DDX3X (DEAD-Box Helicase 3 X-Linked), KDM6A (Lysine Demethylase 6A) and 

ZFX (Zinc Finger Protein X-Linked) as most significant in the RF as well as in the hierarchical 

clustering approach (Figure 16 A-D). 

In addition to the advanced machine learning approach, the ANOVA test with post-hoc test was 

used to compare different arsenic exposure levels together with sex. This identified 476 probes 

(corresponding to 476 unique genes symbols) (Supp. Table 2) that were differently expressed in 

Data1 and 529 probes (corresponding to 439 unique genes symbols) (Supp. Table 2) that were 

differently expressed in Data2 (p-value < 0.05). 
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Figure 16: Global gene expression profile analysis.  

 

 

Box 12: A-B) A list of top 15 genes is displayed with Mean decrease in accuracy value (X-axis) calculated using Random 
Forest Approach for Data1 and Data2 respectively. The small box (right side) and color-coding bar represents the expression 
value (from low to high) of each gene in different conditions. C-D) Top 30 genes identified by robust hierarchical clustering 
approach for Data1 and Data2 respectively. The heatmap represents the gene expression value across different samples. The 
top line on the x-axis, each box represents one sample. Two color-bar codes provide the gene expression value and condition 
of the sample (ultra-right). E-F) Venn diagram, overlap of most significantly differentially expressed genes and significantly 
associated pathways (p-value≤ 0.05) between both cohorts Data1(blue) and Data2 (red) respectively. The complete lists of 
significant genes are provided in supplementary table -2 and significant pathways are in supplementary table-3. 
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An IPA analysis was performed to identify the functional relevance of these genes in terms of 

pathway association, resulting in identifying a total of 145 and 36 significant pathways for Data1 

and Data2, respectively (Supp. Table 3). A total of 7 common genes and 6 common pathways were 

found to overlap for the two populations (Figure 16 E, F). The common genes identified were; 

CNR2 (Cannabinoid Receptor 2), GPR34 (G Protein-Coupled Receptor 34), DDHD2 (DDHD 

Domain Containing 2), BACE2 (Beta-Secretase 2), PRKY (Protein Kinase Y-linked Pseudogene), 

CST2 (Cystatin SA), and PTGDR2 (Prostaglandin D2 Receptor 2) (Figure 16 E-F).  

Organismal Injury and Abnormalities was the only disease common between two datasets due to 

combined change of arsenic level and sex and Cell Morphology, Cell Death and Survival and Cell-

To-Cell Signaling and Interaction were common Molecular and Cellular Functions (Figure 16 G-

H, supplementary table: 1B). 

2.3.2 Sex-Specific Gene Expression 

PLS-DA analysis was performed on Data1 and Data2 to determine only sex-based changes in 

overall gene expression profiles. The PLS-DA plot for Data1 demonstrated a clear separation 

among the 17 male and 13 female samples, with females having an overall lower gene expression 

profile (Figure 17A). The analysis of Data2 showed the same pattern among the 31 males and 26 

females, with a relatively low separation because of the high variability of female gene expression 

profiles (Figure 17B). A t-test was used to identify the significant differentially expressed genes 

between the sexes (p < 0.05). This identified 532 and 373 genes for Data1 and Data2, respectively 

(Supp. Table 4). Volcano plots were generated for both data sets to demonstrate high statistical 

significance as determined by p-value together with a fold change difference of 2 (Figure 17 C, D). 

This analysis identified 3 biologically significant genes for Data1, and no significant genes for 

Data2. Of the 3 genes identified, two were down-regulated, PRKY (protein kinase Y-linked – 

pseudogene), and TMSB4Y (thymosin beta 4 Y-linked), while the one up-regulated gene was KI67 

(a marker of proliferation, Ki-67). 
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Figure 17: Sex-dependent genetic variations 

 

 

Box 13: A-B) PLS-DA plot showing the gene expression profile distribution of each sample between females (red) and males 
(green) for Data1 and Data2 respectively. The first two components of PLS-DA (PC1 and PC2) of gene expression profile and 
overall variance between the groups are displayed. Each dot represents a sample color coded by gender. C-D) Volcano plot 
displays the log2 fold change and -log10(p-value) of gene expression differentiating due to gender effect for Data1 and Data2 
respectively. Genes with higher than two-fold (p-value ≤ 0.05) are highlighted in red. E-F) Venn diagram, overlap of most 
significantly differentially expressed genes and significantly associated pathways (p-value≤ 0.05) between both cohorts 
Data1(blue) and Data2 (red) respectively. The names of common genes are provided in a table (underneath). The complete lists of 
significant genes are provided in supplementary table -4 and significant pathways are in supplementary table-5. 
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The determining overlapping significant genes (p-value<0.05) identified 9 genes that were 

common among the 532 differentially expressed genes of Data1 and the 373 genes of Data2 

(Figure 17E). These 9 genes were: FHL3 (Four and A Half LIM Domains 3); CD99L2 (CD99 

Molecule Like 2); CPA3 (Carboxypeptidase A3); PRKY (protein kinase Y-linked – pseudogene); 

JAK3 (Janus Kinase 3); ACRBP (Adrenoceptor Beta 3); SOCS3 (Suppressor of Cytokine 

Signaling 3); CCL2 (C-C Motif Chemokine Ligand 2); and PTGDR2 (prostaglandin D2 receptor 

2). The genes for PRKY and PTGDR2 also appeared in the comparisons for unique overlapping 

genes in the global population analysis performed in the previous section. An IPA pathways 

analysis demonstrated that 180 pathways were significantly associated in Data1 as compared to 50 

pathways in Data2 (Figure 17C-D, Supp. Table 5, Figure 17F). A comparison of these pathways 

demonstrated that there were 17 overlapping common pathways with respect to sex in the 2 

populations. 

Immunological Disease, Inflammatory Disease, Organismal Injury and Abnormalities were the 

common disease and Cellular Development, Cellular Movement, Cell-To-Cell Signaling and 

Interaction were the common Molecular and Cellular Functions (supplementary table: 1B) 

associated due the sex difference in both the datasets. 

2.3.3 As-Specific Human Gene Expression  

An identical analysis used above for sex was employed to compare the differences in gene 

expression due to arsenic exposure for Data1 and Data2. PLS-DA demonstrated a prominent 

division of high and low arsenic exposure for those in Data1, where high exposure showed an 

overall low gene expression profile (Figure 18A). The analysis of Data2 showed a substantial 

division between the high versus medium levels of arsenic exposure, but no separation between 

medium and low level of exposure (Figure 18B). The differentially expressed genes were identified 

for Data1 using the t-test with significance at p<0.05. For Data2, the differentially expressed genes 

were identified using paired t-test and ANOVA between all three groups with a threshold level of p 

< 0.05.  
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Figure 18: Arsenic-level dependent genetic variations. 

 

 

 

Box 14: A-B) PLS-DA plot showing the gene expression profile distribution of each sample between different levels of arsenic 
exposure (red: High, purple: Medium and green: Low) for Data1 and Data2 respectively. The first two components of PLS-DA (PC1 
and PC2) of gene expression profile and overall variance between the groups are displayed. Each dot represents a sample color 
coded by As-level. C) Venn diagram, overlap of most significantly differentially expressed genes when comparing the Low vs High for 
Data1 and Low-Medium-High (p-value≤ 0.05) for Data2 and represented by blue (Data1) and red (Data2) respectively. The names of 
common genes are provided in a table (underneath). D) Venn diagram, overlap of most significantly differentially expressed gene 
when compared the low vs High for Data1 and pairwise comparison between Low-Medium-High with (p-value≤ 0.05) and 
represented as Data1(yellow) and Data2 (blue: Low vs High, red: low vs Medium, green: medium vs High) respectively. E-F) Venn 
diagram, associated pathways for the genes identified in Figure C-D with same classification and color coding described.  
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This analysis identified 232 genes from Data1 and 424 genes from Data2 that were significant with 

6 genes being common between the datasets (Supp. Table 6, Figure 18C). These 6 genes were: 

ATP6V0D1 (ATPase H+ Transporting V0 Subunit D1); HS3ST1 (Heparan Sulfate-Glucosamine 

3-Sulfotransferase 1); DDHD2 (DDHD Domain Containing 2); ZDHHC23 (Zinc Finger DHHC-

Type Palmitoyltransferase 23); C9orf40 (chromosome 9 Open Reading Frame 4); and PSPH 

(Phosphoserine Phosphatase). All Common genes were between all possible pairwise combinations 

of different arsenic levels of Data2 together with those of Data1 (Supp. Table 8, Figure 18D). The 

total number of significant pathways were 180 and 50, for Data1 and Data2, with 15 pathways 

common between them (Supp. Table 7, Figure 18E). The interaction of significant pathways 

identified by the paired analysis was also determined (Supp. Table 9, Figure 18F). ILK signaling 

and Neuroinflammation Signaling Pathway are the most frequent pathways identified through the 

comparative analysis of pathways (Supp. Table 9). 

Cancer, Organismal Injury and Abnormalities and Gastrointestinal Disease were the common 

disease and Lipid Metabolism, Cell-To-Cell Signaling and Interaction were the common Molecular 

and Cellular Functions (Figure 18E-F, supplementary table: 1B) associated due the sex difference 

in both the datasets. 

2.3.4 Myeloma Cancer Cell Lines Exposed to As Trioxide (ATO) 

The “methods” section provided time course and ATO exposure details for the U266, MM.1s, 

KMS11, and 8226/S multiple myeloma cell lines used to generate genomic data obtained from 

GEO. The gene expression results from Data1 and Data2 were compared with the global gene 

expression results from the 4 myeloma cancer cell lines exposed to ATO. The results of this 

comparison demonstrated that 58, 78, 59, and 38 genes were found to be commonly expressed in 

the arsenic exposed population and the 4 cell lines (Figure 19 A-D). An examination of this data 

demonstrated that there was a total of 147 unique genes (Supp. Table 10) that appeared common in 

the 4 cell lines and the arsenic exposed populations (Data1 and Data2). This set of 147 unique 

genes was used to predict urothelial cancer development and progression in the next section of 

results. 
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Figure 19: Identification of previously known arsenic exposed genes association with cancer progression.  

 

 

Box 15: A-D) The common arsenic exposed gene-set from Data1 and Data2 compared with differentially expressed 
genes within four Arsenic trioxide (ATO) cell lines. Venn diagram, showing total number of common genes, (A) 
U266, (B) MM1S, (C) KMS11, and (D) 8226S. Interaction networks functional enrichment analysis plots using 
STRING were demonstrated (underneath). The plots were generated with common genes identified between each 
cell-line and arsenic exposed gene-list, the connected lines represent the degree of interconnectivity and 
enrichment in characteristic molecular functions. 
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The functional association of common genes and interaction networks were determined by 

functional enrichment analysis using the STRING for each cell line (Figure 19 A-D). The gene 

interaction networks for each myeloma cell line identified 6 genes that were central to the 

interaction of the networks. These 6 genes were important transcription factors or second 

messengers. The EGR1 gene encodes a zinc finger protein that is a transcriptional regulator that 

plays a major role in cell survival, proliferation, and cell death. Its activation of p53/TP53 and 

TGFB1 suppresses tumor formation. MAPK8 and 9 genes are integration points for multiple 

biochemical signals and can influence a wide variety of cellular processes such as proliferation, 

differentiation, transcription regulation, and development. The FOXO3 gene functions as a 

transcriptional activator that regulates apoptosis and autophagy. The MYC gene is a proto-

oncogene that plays a major role in cell cycle progression, apoptosis, and cellular transformation. 

The AKT1 gene is activated by platelet-derived growth factor and is looked upon as a survival 

factor that can inhibit apoptosis. The STK17B gene is a kinase involved in the regulation of 

apoptosis and autophagy.  

The gene set enrichment shows various functional aspects in all four cell lines (Figure 20). The 

gene functions significant for U266 were associated with cellular response to the metal ion 

cadmium, external stimulus, and cytokine. The gene sets were also a part of pathways related to 

colorectal cancer, choline metabolism in cancer, HTLV-1 infection, TNF (Tumor necrosis factor) 

signaling factor, and prolactin signaling pathway. The gene functions significant in MM1S were 

associated with mitotic/meiotic chromosome condensation, cellular response to Zn ion, nuclear-

transcribed mRNA catabolic process, and SRP-dependent co-translational protein targeting to the 

membrane. Among these genes, the pathways associated with this comparison are mineral 

absorption and the ribosome pathway. The biological functions related to KMS11 that are 

significant are a cellular response to Zn ion, mRNA polyadenylation, termination of RNA 

polymerase II transcription, positive regulation of viral life cycle, and viral release from the host 

cell. And the pathways related to these gene sets are a component of mineral absorption and 

mRNA surveillance. While looking at the gene sets from 8226S, the significant biological 

functions include TOR (target of rapamycin) signaling, response to amino acid starvation, and 

nutrient levels. The pathways that were related in these gene sets were mTOR signaling and 

autophagy pathways. 
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Figure 20: Functional analysis of arsenic exposed and cancer associated genes.  

 

 

 

 

A B
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Box 16: To visualize the enriched terms, dot plots are generated using significantly associated pathways with 
arsenic exposed and cancer progression. It depicts the enrichment scores (p values), gene ratio as bar height 
and color. The pathway databases used for significance are: A) Reactome, local STRING network clusters, B) 
KEGG pathways, PFAM protein domains, Uniprot keywords, C) Biological processes, Molecular functions, and 
cellular components.  
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When including sex factor to identify the arsenic exposed sex specific gene association with ATO, 

we find an overlap of total 18 genes (BTG2, CXCR4, BACE2, EGR1, PHACTR1, CRIM1, TRIB1, 

TNFRSF12A, TSPAN5, RGS1, CD24, DDIT4, OLFM4, DDX3Y, PMAIP1, SLC29A1, SMAD5 

and MYB) between the differentially expressed genes in arsenic exposed male/female (from Sex-

Specific Gene Expression section) and differently expressed genes within ATO (Supp. Table 11)  

2.3.5 Bladder Cancer Prediction Model 

The 147 genes generated from the previous results section (section: Myeloma Cancer Cell Lines 

Exposed to As Trioxide) were utilized to develop a bladder cancer prediction model for the purpose 

of early diagnosis and prevention. Two publicly available human datasets were used as a training 

and validation data to test the prediction ability of those genes using the prediction model approach 

described in method section. The first (GSE13507[36, 37]) was used as a training dataset. The 

logistic model shows that primary tumor with three genes NKIRAS2, AKTIP, and HLA-DQA1, out 

of 147 with AUC 0.96 (0.82-0.99), (Figure 21A). The equations for the logistic model are given 

below with probe id together with gene name in brackets.  

GSE13507 data modeling: 

A) Normal Vs Primary tumor (GSE13507): 

logit(P) = 12.664 + 9.057 * ILMN_1677481 (NKIRAS2 – 6.497 * ILMN_1665982 (AKTIP) – 2.201 

 * ILMN_1808405 (HLA-DQA1)  

Outcome Area under the curve (AUC) = 0.94(95% CI: 0.744-0.995) (Figure 21A) 

The same three genes were used with another set of bladder cancer data (GSE3167 [38]) to validate 

the primary bladder tumor predictor. It was seen that the genes (NKIRAS2, AKTIP, HLA-DQA1), 

shows the prediction ability of AUC: 0.75 (95% CI: 0.34-0.93) on this dataset (Figure 21B).  

GSE3167 data modeling:  

B) Normal Vs primary bladder tumor model: 
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logit(P) = 2.265 + 13.24 * 276 218240_at (NKIRAS2) – 4.20 * 218373_at (AKTIP) – 1.55 * 

203290_at (HLA-DQA1) 

Outcome Area under the curve (AUC) = 0.75 (95% CI: 0.343-0.933) (Figure 21B). 

 

Best expression cut off: Based on the FPKM value of each gene, patients were classified into two 

groups and association between prognosis (survival) and gene expression (FPKM) was examined. 

The best expression cut-off refers the FPKM value that yields maximal difference with regard to 

survival between the two groups at the lowest log-rank P-value. Best expression cut-off was 

selected based on survival analysis . 

To measure the effect of the sex on this model, we wanted to include this parameter to the model but 

the sex information of normal samples was not provided with data GSE13507 and therefore, we have 

used the intersection of arsenic exposed sex differentiated genes to find if any above gene is 

significantly different between male and female. We found none of those three gene were the part of 

18 gene common between the sex specific arsenic exposed cancer gene. The human protein atlas 

data[58] shows two out of three genes i.e., NKIRAS2 (unfavorable), and AKTIP (favorable), are 

prognostic marker in renal cancer (Figure 21C). 

Another study reported 19 ATO target genes associated with multiple cancer types (the most 

common association being pancreatic cancer)[60]. Six of these genes (AKT1, CCND1, CDKN2A, 

IKBKB, MAPK1, and MAPK3) were strongly associated and were used to find further mutation 

information. In addition, 20 ATO interacting genes were also related to other diseases such as 

hepatitis B, leukemia, and prostate cancer. And finally, CCND1 and MAPK1 were found to be 

prognostic factors in patients with pancreatic cancer. The genes responsible for metabolizing arsenic 

(AS3MT, GSTOs, and PNP) are of interest due to their variation in populations across different 

regions. More recently, phase I/II trials have been conducted in heavily pretreated patients with 

relapsed or refractory multiple myeloma shows Arsenic trioxide (ATO) is the most active, single 

agent in acute promyelocytic leukemia (multiple myeloma: types of blood cancers)[59]. 
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Figure 21: Bladder cancer prediction model.  

 
Box 17: A-B) Plot of the ROC curve as an outcome of logistic regression prediction model in multivariate fashion, by 
AUC ROCs. The 95% confidence intervals (CI) are shown. A) Prediction outcome of primary tumor on GSE13507 
dataset. B) Re-evaluation of prediction ability of 3 genes previously identified on GSE3167 dataset. C) Survival 
outcome of three genes using The Human Protein Atlas Data. 
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Another study suggested that ATO can be used as an effective alternative therapeutic for the 

treatment of retinoblastoma which is the most common intraocular cancer in children[60]. The study 

shows an antitumor activity of arsenic which mainly targets multiple pathways in malignant cells, 

resulting in the promotion of differentiation or in the induction of apoptosis, which would be very 

helpful to understand the molecular mechanism of arsenic-exposed cancer biology as a reverse 

engineering approach.  Another study targeted gene associated with lung cancer and found four key 

genes that may affect lung cancer prognosis: MTIF2, ACOX1, CAV1, and MRPL17 [61]. This study 

also predicted Quinostatin as a reversal to As-induced lung cell malignancy. For urothelial cancer, 

WNT7B, SFRP1, DNAJB2, and ATF3 were reported as target genes with cantharidin predicted as a 

reversal drug[62]. Some genes captured in this study have been previously identified for an 

association with cancer to include CNR2 that is associated with bladder cancer cell growth and 

motility which is linked to the cannabinoid 2 receptor-mediated modifications[63], GRR34 

knockdown was shown to impair proliferation and migration of HGC-27 gastric cancer cells [64], 

DDHD2 as a potential cancer marker in human urine [65], and BACE2 as a prognostic marker 

in cervical cancer [66]. The significance of MAPK signaling, Integrin-linked kinase, growth 

inhibitor family member 2, and NRF2-mediated oxidative stress response pathways provide an 

important linkage of involvement of oxidative stress and DNA damage after arsenic exposure in 

human which lead to carcinogenesis through dysregulation of these signaling pathway.  

The key difference between these closely related studies and the current study is the process followed 

for capturing significant genes, where independent population data was used to generate a gene set, 

which was then compared to a reference dataset. In the initial analysis, two Asian populations 

exposed to arsenite were used to determine the common genes and pathways between the two 

populations based on sex and level of arsenic exposure among the 1,183 As-exposed genes. The 

1,183 As-exposed genes were then correlated with the gene expression profiles of 4 multiple 

myeloma cell lines exposed over time to varying exposures of arsenic to generate common set of 

arsenic associated genes involved in cancer biology, which resulted in a set of overlapping genes and 

relevant pathways. These genes were then examined on the patients with bladder cancer to test the 

cancer association with the help of developing risk prediction model. For the first time, we developed 

a risk prediction model for bladder cancer using an innovative new method by combining genetic 

data of bladder cancer risk with genetic data of arsenic exposed cancer risk factors. Importantly, we 

validated our model in an independent group of patients to ensure the reliability of our risk 
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prediction, a vital step for clinical implementation. 

The above process resulted in identifying 3 genes: NKIRAS2 (NFKB Inhibitor Interacting Ras Like 

2); AKTIP (AKT-interacting protein); and HLA-DQA1 (Major histocompatibility complex, class II, 

DQ alpha 1), able to distinguish between normal urothelium and the primary urothelial carcinoma 

with a predictive ability of 94% using a pre-existing public patient dataset. The three genes have 

seen only limited study as regards arsenic exposure and urothelial cancer, with the majority of 

information available from literature searches with bladder cancer and urothelial cancer as key 

words, and from web-based resources such as the Human Protein Atlas (HPA), Gene Cards (GC), 

NCBI, and My Cancer Genome (MCG). In most cases, the Human Protein Atlas was an excellent 

source of information. None of the three genes were found to be prognostic for bladder cancer (HPA). 

The expression of the 3 genes in urothelial cancer range from moderate for NKIRAS2 (NCBI), 

variable for AKTIP (HPA), and variable for HLA-DQA1 as determined by an immune transcriptome 

analysis in bladder cancer[67]. Moreover, the same genes (NKIRAS2, AKTIP, and HLA-DQA1) 

were also found to make a prediction ability of 75% using a validation dataset. The predictive nature 

of these genes clearly supports additional study to define their roles in urothelial cancer independent 

of sex in general, and with exposure to arsenic in particular. 

The studies leading up to the above prediction model also identified several interesting genes and 

pathways in the two populations exposed to arsenic. Three genes were identified that distinguished 

differences among all four scenarios of sex and arsenic exposure for the Data1 population and all 

six scenarios for the Data2 population. Two of these genes were noteworthy due to reports of their 

involvement in important biological processes. The XIST gene (X inactive specific transcript) is a 

non-coding RNA on the X chromosome that transcriptionally silences one of the pairs of X 

chromosomes for dosage equivalence between sexes. This gene is reported to be associated with 

several cancer types[68, 69] and has potential prognosis capabilities[70]. The expression of 

MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) has also been associated with 

carcinogenesis and is a prognostic marker for lung cancer metastasis[71]. The XLOC_008276 

(long intergenic non-protein coding RNA 278) is not strongly linked to any biological process. 

Previous research has also found several of these genes to be significance genes in cancer 

progression, such as, the high expression of XIST association with tumor progression and poor 

prognosis in bladder cancer patients [72], and high expression of MALAT1 as a possible 
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independent prognostic factor for overall survival in patients with bladder cancer [73]. Seven 

common genes and six common pathways were found to overlap between the 2 populations. The 

CNR2 protein, while not prognostic for urothelial cancer (HPA), has been shown to modify growth 

and motility of human urothelial cancer cell lines[63]. The gene and protein are expressed in 

approximately 33% of urothelial tumors. Four of the genes, BACE2, PRKY, CST2, PTGDR2 were 

reported to have no expression in urothelial cancer (HPA, GC). The remaining 2 genes, GPR34 and 

DDHD2, were expressed in urothelial cancer at 50% and 15%, respectively (HPA). 

Nine genes were found to be overlapping when the two populations were assessed for sex-based 

changes. The data shows some cellular response patterns, such as cellular development, cellular 

movement, cell to cell signaling and interaction function significantly changed between male and 

female after arsenic exposure. Our interactive pathways show organismal injury, inflammatory and 

autoimmune diseases are significantly different between male and female. Several inflammatory 

diseases are associated with deregulated intracellular signal transduction pathways. This process 

results in pathogenic interactions between immune and stromal cells, which could induce a change 

in cell activation, proliferation, migratory capacity, and cell survival. Two genes, PRKY and 

PTGDR2, were also found overlap between the two populations where level of arsenic is also 

considered together with sex. PRKY biological functions are not yet well discovered although it is 

speculated to encode a ubiquitously expressed protein kinase that may have important signaling 

functions [74]. Whereas, PTGDR2, is upregulated in male lungs compared to females, is believed 

to be essential for the pro-inflammatory cytokines induction as well as asthma pathogenesis [75]. 

Two additional genes, JAK3 and ACRBP, were reported to have no expression in urothelial cancer 

(HPA, NCBI, MCC). The CPA3 gene is expressed in 90% of urothelial cancers (PHA) and can 

induce urothelial injury, but otherwise has not been studied in urothelial cancer. The remaining 

genes were of substantial interest for urothelial cancer and arsenic exposure. The FHL gene has 

been studied in a variety of cancers[74] and is prognostic for breast (favorable), renal (unfavorable) 

and liver (unfavorable) (HPA). The gene and protein have not been studied in urothelial cancer. 

The CD99L2 gene has been reported to be prognostic for urothelial cancer (unfavorable), 

pancreatic cancer (favorable) and lung cancer (favorable). The gene is expressed in 40% of 

urothelial cancers. The gene is reported to be active in a variety of tumors[75]. The SOCS3 gene is 

prognostic for renal cancer (unfavorable) and breast cancer (favorable) and reported to not be 
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expressed in urothelial cancer (HPA). However, studies have reported its expression in the T24 

urothelial cancer cell line[76]. The CCL2 gene is expressed in 50% of urothelial cancers and has 

been implicated in the growth and metastasis of urothelial cancer[77, 78]. Additionally, the 18 

genes are important sex dependent genomic markers which were differently express between male 

and female exposed to As and associated with likelihood of cancer. Most of the genes are 

prognostic marker of renal cancer, whereas some of them such as BTG2, CD24, OLFM4 and 

BACE2 are specific to females i.e., breast cancer, cervical cancer and MYB specific to males i.e., 

prostate cancer (Supp. Table 11). 

Six genes were found to be overlapping when the two populations were assessed for level of 

arsenic exposure. The DDHD2 gene was also present in the above analysis of common genes 

between the populations in Data1 and Data2. Searching the Human Protein Atlas, ATP6V0D1 

gene was prognostic for renal cancer (favorable) and pancreatic cancer (favorable), the PSPH gene 

was prognostic for liver cancer (unfavorable), breast cancer (unfavorable) and pancreatic cancer 

(favorable), and ZDHHC23 was prognostic for renal cancer (favorable), endometrial cancer 

(unfavorable) and thyroid cancer (unfavorable). Only the ZDHHC23 gene had confirmed 

expression in urothelial cancer (20%). Detailed studies in the literature for these genes in urothelial 

cancer were not found. The HS3ST1 gene was reported as a favorable prognostic marker for 

urothelial cancer, renal cancer, and endometrial cancer. Literature-based studies of these genes in 

urothelial cancer were not found. 

2.5 LIMITATION 

A major limitation in the current study was the lack of patient-level clinical-pathological 

information such as age, smoking status, disease history, etc. on the two populations exposed to 

As. Since datasets were developed on different platforms, not all the genes were present on 

different datasets. Therefore, to find the highest possible number of genes between those dataset, 

multiple testing correction was not performed which controls the Type I and Type II 

errors.  However, the robustness of outcome was tested using different machine learning 

approaches such as the bladder cancer model was tested using MCCV. We did not find any 

genomic dataset which could provide the direct relationship between arsenic exposure and cancer 
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in humans, therefore, we utilized the best possible option to combine the iAs exposed humans and 

cell-line to establish the relationship. 

2.6 CONCLUSION 

This study identified significant genes and pathways of interest associated with arsenic-exposure in 

humans as well as their linkage with Myeloma cancer cell lines. Oxidative stress in terms of 

identified genes and associated pathways shows as one of the major components associated with 

disease development after exposure of arsenic.  To test the prediction power of those genes, we 

developed a regression model for urothelial carcinoma that defined a set of 3 genes: NKIRAS2; 

AKTIP; and HLA-DQA1; which provides the likelihood of development of primary urothelial 

carcinoma with same estimation for male and female. 
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CHAPTER 3 
Arsenite Exposure to Human RPCs (HRTPT) Produces 
a Reversible Epithelial Mesenchymal Transition (EMT): 

In-vitro and In-silico study 
 

3.1 ABBREVIATIONS 
PCA  Principal Component Analysis 

DEG  Differentially Expressed Gene 

iAs  inorganic Arsenite 

P0  Passage Zero Control 

P3  Passage 3 Arsenic Exposed 

P8  Passage 8 Arsenic Exposed 

P10  Passage 10 Arsenic Exposed 

P3vsCtrl  Describes a statistical comparison of each gene tested between P3 and P0 conditions samples 

P3vsCtrl_Up Only up-regulated genes identified between P3 versus Control  

P3vsCtrl_Dn Only down-regulated genes identified between P3 versus Control  

P8vsCtrl Describes a statistical comparison of each gene tested between P8 and P0 conditions samples 

P8vsCtrl_Up Only up-regulated genes identified between P8 versus Control  

P8vsCtrl_Dn Only down-regulated genes identified between P8 versus Control 

P10vsCtrl Describes a statistical comparison of each gene tested between P10 and P0 conditions samples 

P10vsCtrl_Up Only up-regulated genes identified between P10 versus Control  

P10vsCtrl_Dn Only down-regulated genes identified between P10 versus Control 

P2  Passage 2 Arsenic Recovered 
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P11  Passage 11 Arsenic Recovered 

P2vsCtrl Describes a statistical comparison of each gene tested between P2 and P0 conditions samples 

P2vsCtrl_Up Only up-regulated genes identified between P2 versus Control  

P2vsCtrl_Dn Only down-regulated genes identified between P2 versus Control 

P11vsCtrl Describes a statistical comparison of each gene tested between P11 and P0 conditions samples 

P11vsCtrl_Up Only up-regulated genes identified between P11 versus Control  

P11vsCtrl_Dn Only down-regulated genes identified between P11 versus Control 

iAs+  Pooled samples of exposed to iAs (i.e., combination of P3, P8, P10) 

iAs-  Pooled samples of after recovery of iAs (i.e., combination of P2, P11) 

iAs+vs iAs-  Describes a statistical comparison of each gene tested between iAs+ and iAs- samples 

 

3.2 INTRODUCTION 

The tubular epithelium of the human kidney has the capacity to regenerate, repair, and re-

epithelialize in response to injury by various insults. In the human kidney, a population of resident 

cells with progenitor characteristics, identified by the PROM1 stem cell marker, were localized to 

the Bowman’s capsule, proximal tubules, and the inner medullary papilla.[1-3] The number of 

cortical PROM1-expressing tubular cells increased in patients with acute renal injury.[4] Further 

studies have shown renal epithelial cells co-expressing PROM1 and CD24 have the capacity to 

participate in the regeneration of renal tubule cells.[5-9] Cultures of human renal epithelial cells 

that co-express PROM1 and CD24 also display features expected of RPCs; such as, spheroid 

formation, ability to undergo adipogenic, neurogenic, osteogenic differentiation, and form tubule-

like structures on Matrigel. These cells provided a potential model to define the mechanisms 

underlying the progenitor cell’s ability to participate in renal epithelial cell regeneration. However, 

these cultures were shown to possess two cell types, one co-expressing PROM1 and CD24 and 

another expressing only CD24.[10] Subsequently, our laboratory identified an immortalized human 
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renal proximal tubule epithelial cell line, RPTEC/TERT1, that also display the two cell 

populations, one that cell sorting was used to isolate two new immortalized cell lines, one HRTPT 

that co-expresses PROM1 and CD24, and another, HRECT24T that expresses CD24 and no 

PROM1.[11] The HRTPT cells expressed the features defined for RPCs while the HRECT24T 

cells displayed no features of RPCs.[11-13] The HRTPT cells provide a human cell culture model 

to determine if PROM1/CD24 co-expressing RPCs are susceptible to nephrotoxic agents. To the 

author’s knowledge, this is an unexplored area as regards RPCs. 

Exposure of the HRTPR cells to inorganic arsenic (iAs) was chosen to test this hypothesis. 

Inorganic arsenic has an extensive distribution in the environment[14-16]. The kidney is the most 

susceptible of all organ systems to iAs exposure.[17, 18] There is evidence that exposure to iAs is 

associated with renal disease. A study of 6,093 participants from arseniasis-endemic areas in 

northeastern Taiwan showed a temporal relationship between arsenic concentrations ≥ 10 mg/L in 

drinking water and CKD (chronic kidney disease).[19] The study also demonstrated a dose-

dependent association between well-water arsenic concentration and kidney diseases. Other studies 

have also shown an association of iAs exposure with alterations of renal function and disease.[20-

22] Thus, there is evidence from population studies that exposure to iAs is association with renal 

disease, however studies defining the concentration of iAs within the human kidney and specific 

cells of the nephron are rare. Accumulation is possible due to the presence of metallothionein 

(MT), a small molecular weight protein that is known to bind and sequesters iAs within cells.[23-

25]  

 

3.3 MATERIALS AND METHODS 

3.3.1 Study Design 

A flowchart of study design is shown in visual abstract (Figure 22). 
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Figure 22  Flowchart of study design 
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3.3.2 Cell Culture 

The isolation and serum-free culture conditions for the HRTPT cells has been previously 

described.[10, 11] Confluent cultures of HRTPT cells were exposed to 4.5 µM iAs for 24 hrs and 

then sub-cultured at a 1:3 ratio in the continued presence of iAs until confluent. Following 

confluence, the cells were serially sub cultured again in the presence of iAs until confluent. This 

was repeated for 10 serial passages. Additional cultures of iAs exposed cells at passage 8 were sub-

cultured into iAs free growth media and continued in iAs free media for 11 additional passages.  

3.3.3 Microarray Gene Expression 

The gene expression profile was determined using the Clariom D Human Microarray (platform ID: 

GPL23126) on triplicate samples of control HRTPT cells (P0) and HRTPT cells exposed to 4.5 

µM iAs for 3, 8, and 10 serial passages (named as P3, P8, P10) and after recovery (named as P2, 

P11) (GSE215904). Each sample gone through the quality control processing before downstream 

analysis. The total 138745 probes were analyzed for each sample in different conditions.  

Confluent cultures were used for the isolation of RNA. 

3.3.4 Individual Gene mRNA and Protein Expression 

The mRNA and protein expression of individual genes was determined using RT qPCR, western 

blotting, and flow cytometry as described previously.[10, 11] 

3.3.5 Statistical Analysis 

Statistical significance of genes was calculated by running t-tests[26] between pair of groups such 

as  all subset of passages with respect to P0,  iAs+ (combination of P3, P8 and P10 passages) with 

respect to P0, iAs- (combination of P2, P11 passages) with respect to P0 and iAs+ versus iAs-. 

When compared more than two groups, one-way ANOVA (Analysis of Variance) was performed. 

Scattered volcano plots were used to show the statistically significance genes with p-value <0.05 

and fold-change (FC) greater than two in both direction (up or down regulation). The foldchange 

for each gene was calculated based upon antilog-expression value between two phenotypic 



 54 

conditions. Most of the genes provided in different tables were selected based upon p-value < 0.05 

with or without fold change (FC < 0.5 or FC > 2). A principal component analysis (PCA) were 

performed to test the distribution of replicates of passage samples and Pearson correlation were 

used to find the relationship between the different passage conditions as well as genes[27, 28]. The 

first two components of PCA i.e., PC1 and PC2 were used to explain the amount of the variance in 

the data according to phenotypic condition(s). Venn diagrams were used to demonstrate the union 

and intersection of genes in different conditions.  Entire analysis was performed using 

R/Bioconductor. 

3.3.6 Pathway Analysis 

Different significant gene list were examined using the commercially  available pathway tools such 

as QIAGEN Ingenuity Pathway Analysis (IPA),[29] as well as freely available Gene Set 

Enrichment Analysis (GSEA),[30] Reactome,[31] Panther,[32] and DAVID[33, 34] software 

databases. 

3.3.7 Gene Set Enrichment Analysis 

Gene set enrichment analysis was performed on different gene sets identified through t-tests or 

ANOVA using p < 0.05 +/- FC < 0.5 or > 2. In some cases, some genes with fold change > 4-fold 

were also included, regardless of p-value to sets the relevance at functional level. Probes were 

ranked according to their P-value and/or log2 fold change and all the probes without gene symbols 

were excluded as they cannot map with the different pathway databases. Ranked lists were used in 

the Gene Set Enrichment Analysis pre-ranked software for minimum gene size of 5 with a 

maximum gene set size of 500[30]. The MSigDB pathway database was used to identify enriched 

gene sets including Hallmark, C2, and C3[35]. 
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3.4 RESULTS 

3.4.1 EMT as a Function of Exposure of HRTPT Cells to iAs 

Examination of the HRTPT cells exposed to iAs by light microscopy demonstrated a change in cell 

morphology at passage 3 when compared to cells unexposed to iAs (Figure 23A, B). When 

compared to control, the iAs exposed cells were less closely packed, more disorganized, and had 

lost the ability to form “domes”. Domes are raised areas of the monolayer due to fluid 

accumulation and are a manifestation of vectorial active ion transport.[10] This change in 

morphology was evident for at least 7 more serial passages (Figure 23C).   

 

Figure 23: HRTPT cells exposed to iAs under light microscopy 

 Box 18: HRTPT cells exposed to iAs under light microscopy for A) P0 B) P3 C) P8. Expression of P8 for epithelial-
to-mesenchymal transition genes D) ACTA2 E) TAGLN F) VIM G) N-cdh H) E-cdh and expression of I) CD133 J) 
CD24. K) Western blot results confirmed protein level expression. Scale bar = 50 μm and Magnification x10 
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The change in morphology suggested that the cells could have undergone an epithelial-to-

mesenchymal transition (EMT).  Further evidence for the possibility of EMT was provided at 

passage 8 by increased expression of ACTA2, TAGLN, VIM, and CDH2 and a modest decrease in 

expression of CDH1, (Figure 23D, E, F, G, H). The co-expression of PROM1 and CD24 mRNA 

was retained by the cells exposed to iAs but the expression was clearly reduced (Figure 23I, J, K).   

 

Figure 24: HRTPT cells exposed to iAs in recovery under light microscopy 

 Box 19: HRTPT cells exposed to iAs in recovery under light microscopy including A) P0 B) P2 C) P11. Expression of 
D) ACTA2 E) TAGLN F) VIM G) N-cdh H) E-cdh for recovery P2 and recovery P11. I) Western blot showed protein 
levels in P2 and P11. Scale bar = 50 μm and Magnification x10 
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The change in morphology and gene expression by the iAs-exposed cells suggested global gene 

expression technology might assist in providing additional information if iAs was inducing EMT 

or a related mesenchymal alteration in the HRTPT cells.  Lower concentrations of iAs (1.0 and 2.0 

µM) elicited a similar shift in morphology and increased expression, but at an extended number of 

serial passages (Supplementary Figure S1).   

The HRTPT cells exposed to iAs were assessed for their morphology and expression of the above 

genes when iAs was removed from the growth media.  Light microscopic examination showed that 

by the 2nd passage the iAs- cells displayed a morphology similar to the HRTPT controls (Figure 

24A, B) and by the 11th passage they were indistinguishable from the control (Figure 24C).  The 

iAs- cells regained dome formation at both P2 and P11 following iAs removal from the growth 

media.  The expression of the ACTA2, TAGLN, VIM, N-cdh and E-cdh genes were also assessed 

and all except VIM, which was absent from the iAs-cells, showed a trend to return to control 

values (Figure 24D-H).  The change in morphology and gene expression after removal of iAs 

suggested that the cells might have undergone a mesenchymal-to-epithelial transition (MET).  

These results presented the opportunity to examine the global gene expression profile of a toxin 

exposed renal progenitor cell that shows evidence of undergoing EMT and, upon toxin removal, 

the ability to undergo MET and return to an epithelial morphology.  The ability of the iAs- HRTPT 

cells to dome is strong evidence of epithelial differentiation.   

3.4.2 Global gene expression and Impacted Pathway Analysis 

The above morphology and gene expression changes suggested that exposure of HRTPT cells to 

iAs induced EMT, and when iAs was removed, MET back to the morphology and gene expression 

of the control HRTPT cells.  Global gene expression was employed to further explore the ability of 

HRTPT cells to undergo EMT and MET as a function of exposure to iAs. In this section, triplicates 

of all the samples i.e., control cells (P0), iAs exposed cells at P3, P8 and P10 and P8 cells and iAs 

recovered P2, P11 included to determine the global distribution and to identify all possible relation 

among different conditions. The first two components of the PCA plot, PC1 and PC2, carry 66.1% 

and 13.4% of the variance of the data and the P0 is far removed from P10 and P8 as compared to 

P2 and P11 (Figure 25A).  Correlation analysis supported this relationship and demonstrated that 

P2 samples were most closely related to the P0 (Figure 25C).   
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Figure 25: Sample Comaprision and Pathway Analysis 

Box 20: A) Principal component analysis between the different passage conditions. B) Hierarchical cluster analysis and heatmap of 
correlation. C) Heatmap of gene expression averages for the top 100 differentially expressed genes identified through ANOVA 
analysis for the different passage conditions. D) Top hepatotoxicity and nephrotoxicity functions from Ingenuity Pathway Analysis. 
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Differential gene expression analysis using Post hoc test with ANOVA identified 2478 probes 

varieties across all possible conditions (Supplementary Table 1).  The hierarchical clustering of the 

top 100 differentially expressed genes was determined from these 2,478 probes (Figure 25B). IPA 

was performed using the 2478 probe varieties across all possible conditions which identified 

hepatocellular carcinoma as the top hepatotoxicity function and renal damage as the top 

nephrotoxicity function (Figure 25D).  GSEA analysis on 2478 probes identified thirty-six (36) 

upregulated pathways, and 368 downregulated pathways with nominalized p-value < 0.05 

(Supplementary Table 2). 

3.4.3 Gene Expression of HRTPT Cells Exposed to iAs. 

Global gene expression was performed between P0 versus P3, P8 and P10 (each group separately) 

cells and identified 247, 363, and 304 differentially expressed genes, respectively (Supplementary 

Table 3).  For the 3 sets of differentially expressed genes, 106/247 genes were down-regulated and 

141/247 up-regulated; 118/363 were down-regulated and 245/363 up-regulated; and 111/304 genes 

were down-regulated and 193/304 were up-regulated in expression (Supplementary Table 3).  An 

intersection analysis of the 3 gene sets for commonality, identified 167 common genes with 91 

genes being up- and 76 genes down-regulated (Supplementary Table 3, Figure 26A).  

When analyze all the exposed samples together i.e., iAs+ with respect to the P0, the first 2 

components of PCA shows 57.8% and 22.2% of the variance, respectively (Figure 26B) among the 

phenotypes. The variation between P8 and P10 is very narrow as compare to P3 samples. A total of 

280 probes (234 gene symbols) were found differentially expressed between these conditions 

(Supplementary Table 4) and a subset of the top 25 genes was determined from these differentially 

expressed genes (Figure 26C). A volcano plot shows the most significant upregulated and 

downregulated differentially expressed genes (Figure 26D) between iAs+ and P0. 
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Figure 26: Siginficant genes: iAs+ VS Ctrl 

 

 

Box 21: A) Common genes among the differentially expressed gene set for P3 (246 gene set), P8 (363 gene set), and 
P10 (304 gene set) when compared to the control. B) Common genes between the 167 gene set and the up-regulated 
genes from P3, P8, and P10 genes compared to the control. C) Common genes between the 167 gene set and the 
down-regulated genes from P3, P8, and P10. D) Principal component analysis of iAs+ cells with the control. E) 
Hierarchical clustering of the top 25 differentially expressed genes for iAs+ cells with the control. F) Significantly 
upregulated and downregulated differentially expressed genes based on the iAs+ cells with the control. 
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3.4.4 Pathway Analysis of HRTPT Cells Exposed to iAs.  

GSEA was performed on the 167 gene-set selected as an interaction of significant genes identified 

from P0 versus each of the iAs exposed cells passage (i.e., P3, P8, P10). We found 37 upregulated, 

and 129 downregulated pathways that had a nominalized p-value < 0.05 (Supplemental Table 5).  

Again, 167 common gene set was also analyzed using Reactome and we found the down-regulate 

pathways were associated with signaling pathways, especially those associated with FGF 

(Supplemental Table 6). Other associated pathways such as PI3K, the RAF/MAP kinase cascade, 

and ERBB were also identified using Reactome. The analysis of the 76 down-regulated gene set 

using Reactome also identified IGF signaling as a pathway. The prominent pathways association 

with 91 up-regulated gene sets was interleukin signaling (IL4, IL10, IL13, IL18) and chemokine 

receptors (Supplemental Table 6). An analysis of the 167 gene set by the Panther Classification 

System also identified signaling pathways as a prominent component (Supplemental Table 6).   

In addition, we performed pathway analysis on total of 280 probes (234 gene-symbols, 

Supplemental Table 4) were found differentially expressed between P0 and iAs+ conditions 

(p<0.05 and FC <0.5 0r >2) (Supplementary Table 4).  Of the 234 genes, we found 151 were 

upregulated pathways and 34 downregulated pathways with nominalized p-value < 0.05 

(Supplemental Table 7).  One of the upregulated pathways was the Hallmark Epithelial 

Mesenchymal Transition, a gene set with genes defining the epithelial-mesenchymal transition 

[36]. IPA analysis on above 234 genes identified other significant pathways associated with 

exposure to iAs (Supplemental Table 8). Total 533 pathways were demonstrated in this list out of 

which around 200 were under the p<0.05. EIF2, Ferroptosis and mTOR signaling were the top in 

the list.   

3.4.5. Progenitor Cell Properties of HRTPT Cells After Recovery from 

Exposure to iAs 

The HRTPT cells recovered from iAs exposure were shown to retain the ability to differentiate, 

form nephrospheres, and express PROM1 and CD24 in over 94% of the cells (Figure 27A-F).  One 

noteworthy alteration in tubular differentiation was that the recovered cells demonstrated no 

significant change in the expression of aquaporin from control cells, but did exhibit a large increase  
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Figure 27: Gene expression for iAs-  

 

 

 

Box 22: A) PROM1 B) CD24 expression for P0C and recovery passages P11AR. C) Western blot of PROM1, CD24, and b-actin 
for P0 and recovery passages P11. D & E) Flow cytometry expression of PROM1 and CD24. F) Nephrospheres in HRTPT 
cells. G) AQP-1 H) CAL I) RUNX2 J) ENO2 K) MAPT L) NES M) PPARG gene expression. N) AP O) AQP1 P) THP Q) FN1 R) 
CD10 S) NF T) b-tub U) GFAP V) PPARg W) ADIPOQ confocal microscopy, scale bar = 21.16 μm, magnification x400. ns 
indicates no significance, * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. 
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in the expression of calbindin (Figure 27G, H).  The osteogenic gene RUNX2, neurogenic gene 

ENO2 showed significant increase (Figure 27I, J); while neurogenic genes MAPT and NES 

showed no significant change in expression (Figure 27K, L) and adipogenic gene, PPARG showed 

a decrease in expression when compared to the control HRTPT cells (Figure 27M). The confocal 

images show expression of AP, AQP1 and THP as tubulogenic marker (Figure 27N-P); FN1 and 

CD10 as osteogenic markers (Figure 27Q, R); NF, β-tub and GFAP as neurogenic marker (Figure 

27S-U); and PPARγ and ADIPOQ as adipogenic markers (Figure 27V, W) expression in recovered 

cells. 

3.4.6 Gene Expression analysis of HRTPT Cells after Recovery from iAs 

Exposure 

The HRTPT cells were assessed for their gene expression at the P2 and P11 passage following 

removal of iAs.  A comparison between the control HRTPT (P0) cells and the P2 cells 

demonstrated that 166 genes were differentially expressed between the two groups, with 30 

upregulated and 136 down regulated genes (Supplemental Table 9).  A similar comparison between 

P0 and P11 cells demonstrated that 71 genes were differentially expressed with 39 up regulated 

and 32 down regulated (Supplemental Table 9).  The common genes between the two gene sets 

were determined and 36 genes were common (Supplemental Table 9, Figure 28A), with 22 up and 

11 down regulated genes (Figure 28B, C). Three genes were found to differ in directionality 

between the P2 and P11, IGFBP3, NMNAT2, and CYFIP2 (Figure 28D).  

PCA found significant separation between the two recovered samples with PC1-74.1%, as 

compared to control with PC2-18.9% (Figure 28E). Differential gene expression identified 77 

probes significantly different between the recovered cells versus control (Table-10). The heat map 

shows the top 25 differentially expressed genes along with a volcano plot of the results (Figure 

28F, G).  The gene expression analysis of control versus iAs recovered samples (iAs-) identified 

426 probes that were differently expressed with p<0.05 (Supplementary Table 11). 

 



 64 

 

Figure 28: Siginficant genes: iAs- VS Ctrl 

 Box 23: A) Common genes among the differentially expressed gene set for P11 and P2 when compared to the control. B) Common 
genes between the 36 gene set and the upregulated genes from P11 and P2. C) Common genes between the 36 gene set and the 
downregulated genes from P11 and P2. D) Log2 Foldchanges of genes with differing directions between P2 and the control, and P11 
and the control. E) Principal component analysis of iAs- cells with the control. F) Hierarchical clustering of the top 25 differentially 
expressed genes for iAs exposed cells in recovery with the control. G) Significantly upregulated and downregulated differentially 
expressed genes based on the iAs exposed cells in recovery with the control. 
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3.4.7 Pathway Analysis of HRTPT Cells Following Recovery from iAs 

Exposure 

36 common genes were examined using Reactome and Panther databases. The Reactome database 

identified elastic fibres and pathways involved in cell cycle and p53 interactions (Supplementary 

Table 12). The Panther database identified mostly signaling and regulatory processes. GSEA on 49 

genes identified as differentially expressed (Supplementary Table 10) between the control and iAs-

. Only two down-regulated pathways were identified at nominalized p-value < 0.05 

(Supplementary Table 13). IPA on differentially expressed genes between iAs- vs control 

(Supplementary Table 10), confirm p53 signaling as a canonical pathway (Figure 29, 

Supplementary Table 14).  
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Figure 29 : Ingenuity Pathway Analysis identified canonical pathways for Ctrl vs iAs- conditions. 

Figure 9



 67 

3.4.8 Comparison of iAs Exposed HRTPT Cells and HRTPT Cells Following 

Recovery from iAs Exposure 

An intersection of differentially expressed genes between iAs exposed HRTPT cells and HRTPT 

cells following recovery from iAs exposure found 9-genes of interest (Figure 30A). These genes 

included CLDN16, CTSE, PTH1R, CYFIP2, SCD5, LIX1, MFAP5, KCP, and SH2D1B. PC1 and 

PC2 were showing 51.8% and 27% variance of the data, respectively (Figure 30B). Total of 305 

differentially expressed probes (280 gene-symbols) were identified between P0, P3, P8, P10 and 

P0, P2, P11 with 41 down regulated and 264 up regulated genes (Figure 30D, Supplementary Table 

15). GSEA on the 280 genes (Supplementary Table 15) found 42 downregulated pathways, and 

157 upregulated pathways with nominal p-value < 0.05 (Supplementary Table 16). IPA identified 

FGFR as a significant upstream regulator (Figure 31, Supplementary Table 17). 

3.5 DISCUSSION 

The HRTPT cell line provides an opportunity to determine how a human renal progenitor cell 

responds to a nephrotoxic agent and its subsequent removal. The hypothesis being that a 

nephrotoxin might alter the regenerative capacity of the RPCs to repair tubular damage. The results 

demonstrated that the HRTPT cells exposed to 4.5 µM iAs displayed those characteristics of a cell 

undergoing EMT as noted by a change to a mesenchymal morphology and an increase in 

expression of mesenchymal markers such as ACTA2 and TAGLN.  It was also shown that the 

alteration in morphology and increased expression of smooth muscle actin alpha 2 and transgelin 

also occurred at lower levels of iAs exposure (1.0 and 2.0µM), albeit at much longer times of 

exposure, providing evidence that results found with 4.5 µM iAs would translate to lower levels of 

exposure.   Global gene expression was used to further analyze the EMT response when the 

HRTPT cells were exposed to iAs. GSEA of the common genes expressed from the comparison of 

P3, P8, and P10 compared to control identified the Hallmark Epithelial Mesenchymal Transition 

from the MSigDB as an upregulated pathway.[36] Global differently expressed gene set was 

examined to determine if the iAs treated cells were transitioned to myoepithelial (keratin 

expressing) or myofibroblast-like (vim expressing) cells. The common gene set did not show the 

differential expression of any keratin genes or the vimentin gene. To further explore this finding,  
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Figure 30: Siginficant genes: iAs+ VS iAs- 

 
Box 24: A) Common genes between P3, P8, P10, P2, and P11 when compared to the control. B) Principal 
component analysis of the two different conditions, iAs+ and iAs-. C) Hierarchical clustering of the top 25 
differentially expressed genes between the two conditions. D) Significant upregulated and downregulated 
differentially expressed genes based on the iAs+ and iAs- conditions.  
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Figure 31 : Ingenuity Pathway Analysis identified canonical pathways for iAs+ vs iAs- conditions. 

Figure 11
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the P3, P8, P10 were examined separately for keratin and vimentin expression. This confirmed that 

vimentin was not identified as differentially expressed for any of the 3 passages. In contrast, 

KRT18 was increased in expression when P3 and P8, but not P10, was compared to the control. 

This provides evidence that the transition favors the myoepithelial cell.  KRT18 has been noted to 

increase during tubular injury and approximately 20-fold in the early stage following human renal 

transplantation. [37, 38] To the authors’ knowledge this is the first observation that a human RPC 

can undergo EMT.  

Pathway analysis for the 167 gene set identified signaling pathways associated with FGFR2 and 

chemokine receptors and chemokines as those having strong significance. An analysis of the down-

regulated 76 gene set identified strongly with signaling related to the FGFR2 pathway, while the 91 

up-regulated gene set was more strongly related to chemokine receptors, chemokines, and related 

pathways. An interesting feature of the down-regulated 76 gene set is that it was identical for all 

three time points of iAs exposure. The 76 gene set included FGF 9 and FGF 13 in addition to the 

FGFR2 receptor. The FGFR2 receptor has been shown to protect against tubular cell death and 

acute kidney injury involving ERK1/2 signaling in models of renal ischemia and reperfusion.[39, 

40] The expression of FGF9 has been shown to maintain the stemness of renal progenitor/stem 

cells during renal development.[41] FGF9 also has an essential role in the development of 

mesenchymal components in cells and tissues.[9, 42, 43] The FGF13 is elevated in 

ischemia/reperfusion in concert with the FGFR2 receptor.[39] The FGF18 gene, the only up-

regulated FGF gene in the 167 gene set, has seen only limited study in the kidney, but has been 

shown to have increased expression in cisplatin-induced murine AKI36. In breast cancer, the 

FGF18 has been shown to be involved in both cell migration and the EMT [44]. Despite these 

findings, the individual components of the FGF pathway have seen limited study in renal disease as 

it relates to agent-induced changes in EMT and MET recovery from those changes. Arguing 

against any cause-and-effect relationship of the FGF pathway and iAs induced EMT is the 

observation that iAs increased the activation of ERK1/2 in the HRTPT cells that had been exposed 

to iAs and undergone EMT. This type of response suggests that the many other ligands that can 

influence the ERK pathways might be active in the iAs induced EMT. The important observation is 

that ERK was activated during the EMT process.  

The increase in chemokine receptors and their ligands might also play an important role during 
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iAs induced EMT. The increase in expression of IL4, 10, 13, and 14 and the pathway identification 

of chemokine receptors bind chemokines would appear to have consequences for renal diseases in 

the human setting due to their role in immune responses and inflammation. Most studies on EMT 

involve its involvement in cancer progression. However, a role in renal disease was established a 

decade ago, indicating that renal epithelial cells could switch to a mesenchymal phenotype. [45-47] 

The involvement of EMT in inflammation,[48] fibrosis, [49-51] and wound healing [52] suggest a 

link between chemokines and EMT. The pathway analysis was consistent for a role of FGF and 

chemokines in the EMT of the HRTPT cells. The only pathway presents in Panther, but not 

Reactome or David, was the WNT7a pathway. Wnt7a was increased in expression and provides 

some evidence for up regulation of the non-canonical Wnt-signaling pathway. [53, 54] Both the 

canonical and non-canonical Wnt pathways have been linked with diabetic nephropathy.[55] 

Overall, this aspect of the study provides the first demonstration that a renal progenitor cell can 

undergo EMT when exposed to an environmental toxin. The time course of exposure provides a 

167 gene set associated with the iAs induced development of EMT and corresponding 91 and 76 

gene sets representing genes up- and down-regulated within the 167 gene set. These 3 sets of genes 

will be valuable in determining the expression, druggable targets, and prediction value in a wide 

variety of human renal diseases and other diseases datasets associated with iAs exposure.  

The second aspect of this study was to determine, once iAs exposure was stopped, if the iAs 

treated HRTPT cells would retain their mesenchymal properties. The results showed that by the 

second passage following iAs removal the cells had regained an epithelial morphology 

indistinguishable from the control HRTPT cells. This represents the initial observation that RPCs 

that have undergone EMT due to toxin exposure, can undergo MET back to an epithelial 

morphology after toxin removal. This ability is consistent with the observation that renal epithelial 

cells arise during embryogenesis by mesenchymal-to-epithelial transition (MET). [56, 57] It was 

confirmed that the cells undergoing MET retained the co-expression of PROM1 and CD24 and the 

ability to form nephron spheres and to undergo osteogenic, neurogenic, lipogenic, and tubulogenic 

differentiation. A difference in tubulogenic differentiation was found for the recovered cells in that 

they expressed high levels of calbindin and low levels of aquaporin whereas the control unexposed 
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cells had the opposite expression levels. To further explore this finding, global gene expression 

was performed at 2 and 11 passages following iAs removal. Following the removal of iAs, the cells 

at both P2 and P11 showed a marked divergence from the iAs exposed HRTPT cells at P8 and a 

return to an expression profile more in line with the control HRTPT cells. This was especially 

noticeable at passage 11. The common genes between the control HRTPT cells compared to both 

the P2 and P11 cells was 36. Of these 36 genes, 3 had a reverse in expression between the control 

and recovered cells (CYFIP2, IGFBP3, and NMNAT2). To determine if iAs exposure might have a 

lasting, or potentially permanent, effect on gene expression, a common gene set was identified for 

iAs exposed cells at P3, P8, P10 with those unexposed through P11. One could speculate that 

epigenetic modification due to iAs exposure might produce long lasting alterations in the genome 

after iAs removal. The 33 gene set did identify interactions with p53 and the cell cycle. The 

possible interactions with p53 and the cell cycle would be consistent with the long-term 

carcinogenic effects of iAs.   

The obvious limitation of the study is that it is performed using cells in culture. The results will 

require validation in the human kidney. 

3.6 CONCLUSION 

This study shows that human renal progenitor cells, in vitro, undergo EMT when exposed to a 

nephrotoxin and undergo MET upon toxin removal. In addition, this study identified several 

significant genes and pathways of interest associated with inorganic arsenic exposure/removal and 

their linkage with renal disease. These genes provide robust sets of biological functions that can be 

further validated to predict their association in different diseases. In this study, a variety of 

machine learning and statistical analysis approaches have been taken to establish in-vitro to in-

silico concordance, including an unsupervised analysis of genes across different phenotypic 

conditions, which can be used as an analytical guideline for other researchers. 
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Supplementary 1.	Figure S1: study flow chart part. (A) As exposed significant gene selection. (B) 
Find association with multiple melanoma and predictive modeling of bladder cancer. 

https://downloads.hindawi.com/journals/omcl/2022/3459855.f1.pdf 
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Supplementary 2. Table S1: disease as well as molecular and cellular functions associated with 
statistically significant differentially expressed genes (p < 0:05) selected in different phenotypic 
conditions.  

https://downloads.hindawi.com/journals/omcl/2022/3459855.f2.pdf 

Supplementary 3. Table S2: significant pathways in Data1 and Data2 and the overlap between two 
(highlighted in green).  

https://downloads.hindawi.com/journals/omcl/2022/3459855.f3.pdf 

Supplementary 4. Table S3: significant pathways in Data1 and Data2 (male and female sex) and 
the overlap between two (highlighted in pink).  

https://downloads.hindawi.com/journals/omcl/2022/3459855.f4.pdf 

Supplementary 5. Table S4: significant pathways in Data1 and Data2 (low, medium, and high 
concentrations) and the overlap between various combinations (highlighted in green).  

https://downloads.hindawi.com/journals/omcl/2022/3459855.f5.pdf 

Supplementary 6. Table S5: significant pathways in Data1 (low, high concentration) and Data2 
(low, medium, and high concentrations) and the overlap between two (highlighted in pink).  

https://downloads.hindawi.com/journals/omcl/2022/3459855.f6.pdf 

Supplementary 7. Table S6: significant genes in Data1 (low and high concentrations) and Data2 
(low, medium, and high concentrations) and the overlap between two (highlighted in green).  

https://downloads.hindawi.com/journals/omcl/2022/3459855.f7.pdf 

Supplementary 8. Table S7: significant pathways in Data1 (low and high concentrations) and 
Data2 (low, medium, and high concentrations) and the overlap between two (highlighted in pink).  

https://downloads.hindawi.com/journals/omcl/2022/3459855.f8.pdf 

Supplementary 9. Table S8: significant genes in Data1 (low vs. high) and Data2 (low, medium, and 
high concentrations) and the overlap between various combinations.  

https://downloads.hindawi.com/journals/omcl/2022/3459855.f9.pdf 

Supplementary 10. Table S9: significant pathways in Data1 and Data2 (low, medium, and high 
concentrations) and the overlap between various combinations.  

https://downloads.hindawi.com/journals/omcl/2022/3459855.f10.pdf 
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Supplementary 11. Table S10: list of 147 unique genes.  

https://downloads.hindawi.com/journals/omcl/2022/3459855.f11.pdf 

Supplementary 12. Table S11: survival information of 18 genes differentially expressed between 
sex and common between ATO and arsenic exposed human.  

https://downloads.hindawi.com/journals/omcl/2022/3459855.f12.pdf 
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CHAPTER 3 

 

Supplementary 1. Figure S1: Light microscopy of lower iAs concentrations A) 0mM As3+ B) 1mM 
As3+ P9 C) 2mM As3+ P9 and fold change compared to the control of genes D) ACTA2 and E) 
TAGLN for P1 and P9. Scale bar = 50 μm and Magnification x10 

Supplementary 2. Table S1: The list of most significant genes (p<0.05) using ANOVA across all 
possible conditions (i.e., Control, P3, P8, P10, p2, P11) 

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 3. Table 2A: Upregulated Gene Set Enrichment Analysis for 2478 probes identified 
by ANOVA with nominal p-value < 0.05.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 4. Table 2B: Downregulated Gene Set Enrichment Analysis for 2478 probes 
identified by ANOVA with nominal p-value < 0.05.  
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https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 5. Table 3: An examination of the differential expression (p<0.05 and |FC| >2) 
between the control HRTPT cells and those exposed to 4.5μM iAs for 3, 8, and 10 passages 
identified 247, 363, and 304 genes, respectively.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 6. Table 4: Differential gene expression analysis between all HRTPT cells exposed 
to iAs passage (i.e., combined P3, P8, P10) and control.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 7. Table 5A: Upregulated Gene Set Enrichment Analysis for 167 gene set with 
nominal p-value < 0.05.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 8. Table 5B: Downregulated Gene Set Enrichment Analysis for 167 gene set with 
nominal p-value 
< 0.05.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 9. Table 6: Reactome pathway analysis of 167 Common HRTPT cells exposed to 
iAs passage P3, P8, P10 Genes * indicates p < 0.05, ** indicates p < 0.01. 

https://www.mdpi.com/article/10.3390/ijms24065092/s1  

Supplementary 10. Table 7A: Upregulated Gene Set Enrichment Analysis for significant genes 
between the control vs iAs+ with nominal p-value < 0.05.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 11. Table 7B: Downregulated Gene Set Enrichment Analysis for significant genes 
between the control vs iAs+ with nominal p-value < 0.05.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 12. Table 8: Ingenuity Pathway Analysis performed on 234 genes from 
Supplementary Table 4.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 13. Table 9: Common differentially expressed genes between P2, P11, and the 
control.  
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https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 14. Table 10: Differentially expressed genes between iAs- and the control.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 15. Table 11: Differentially expressed genes between HRTPT cells recovery to iAs 
passage (P2, P11) vs control.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 16. Table 12: Reactome and Panther pathway analysis of 36 Common gene HRTPT 
cells recovery to iAs passage P2, P11. 

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 17. Table 13: Downregulated Gene Set Enrichment Analysis for significant genes 
between the control and iAs with nominal p-value < 0.05.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 18. Table 14: Ingenuity Pathway Analysis of Supplementary Table 10.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 19. Table 15: Differentially expressed genes between iAs exposed HRTPT cells (P3, 
P8, P10) and HRTPT cells following recovery from iAs exposure (P2, P11).  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 20. Table 16A: Upregulated Gene Set Enrichment Analysis for significant genes 
between iAs+ and iAs- with nominal p-value < 0.05.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 21. Table 16B: Downregulated Gene Set Enrichment Analysis for significant genes 
between iAs+ and iAs- with nominal p-value < 0.05.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 

Supplementary 22. Table 17: Ingenuity Pathway Analysis of Supplementary Table 15.  

https://www.mdpi.com/article/10.3390/ijms24065092/s1 
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