
University of North Dakota University of North Dakota

UND Scholarly Commons UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2023

A Hybrid Deep Neural Network Model To Forecast Day-Ahead A Hybrid Deep Neural Network Model To Forecast Day-Ahead

Electricity Prices In The USA Energy Market Electricity Prices In The USA Energy Market

Md. Saifur Rahman

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation Recommended Citation
Rahman, Md. Saifur, "A Hybrid Deep Neural Network Model To Forecast Day-Ahead Electricity Prices In
The USA Energy Market" (2023). Theses and Dissertations. 5330.
https://commons.und.edu/theses/5330

This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at
UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized
administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/5330
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F5330&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/5330?utm_source=commons.und.edu%2Ftheses%2F5330&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu

A Hybrid Deep Neural Network Model To

Forecast Day-Ahead Electricity Prices In

The USA Energy Market

By

Md. Saifur Rahman

Bachelor of Engineering, Noakhali Science and Technology University, 2012

Master of Science, University of North Dakota, 2022

A Dissertation

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the Degree of

Doctor of Philosophy

Grand Forks, North Dakota

August
2023

ii

Copyright 2023 Md. Saifur Rahman

iii

This document, submitted in partial fulfillment of the requirements for the degree from

the University of North Dakota, has been read by the Faculty Advisory Committee under whom

the work has been done and is hereby approved.

This document is being submitted by the appointed advisory committee as having met all

the requirements of the School of Graduate Studies at the University of North Dakota and is

hereby approved.

Chris Nelson

Dean of the School of Graduate Studies

Date

Name:

Degree:

DocuSign Envelope ID: C7608F8C-8FA5-4DAC-9D50-912F8C06E50D

Md. Saifur Rahman

Doctor of Philosophy

Hassan Reza

Hossein Salehfar

Eunjin Kim

Wen-Chen Hu

Md Mukhlesur Rahman

7/27/2023

iv

PERMISSION

Title A Hybrid Deep Neural Network Model to Forecast Day-Ahead
Electricity Prices in the USA Energy Market

Department School of Electrical Engineering and Computer Science

Degree Doctor of Philosophy

In presenting this dissertation in partial fulfillment of the requirements for a
graduate degree from the University of North Dakota, I agree that the library of this
University shall make it freely available for inspection. I further agree that permission

for extensive copying for scholarly purposes may be granted by the professor who
supervised my dissertation work or, in his absence, by the Chairperson of the

department or the dean of the School of Graduate Studies. It is understood that any
copying or publication or other use of this dissertation or part thereof for financial gain
shall not be allowed without my written permission. It is also understood that due

recognition shall be given to me and to the University of North Dakota in any scholarly
use which may be made of any material in my dissertation.

Md. Saifur Rahman
July 20, 2023

v

Table of Content

Content Page

LIST OF FIGURES viii
LIST OF TABLES x

ACKNOWLEDGEMENT xi
ABSTRACT xiii

Chapter 1: Introduction 1
1.1 Introduction 2

1.2 Problem Statement, and Motivation 4
1.3 Our Research Contribution 7

1.4 Organization of this Dissertation 8

Chapter 2: Big Data System 10

2.1 Chapter Two in Short 11
2.2 What is Big Data? 11

2.3 Software Architecture of Big Data System (BDS) 16
2.4 Non-Functional Requirements 17
2.5 Chapter Two Discussion and Analysis 17

2.5.1 Overview of Primary Study 17
2.5.2 Implementation of ISO/IEC 25010:2011 Quality Models 18

2.5.3 Most important NFRs for Big Data Systems 19
2.5.4 Discuss Scalability 21
2.5.5 Non-Functional Requirements in Big Data System 22

2.6 Chapter Conclusion and Future Direction 23

Chapter 3: Big Data Analytics 25

3.1 Chapter Three in Short 26
3.2 What is Big Data Analytics (BDA)? 26

3.3 The Top Ten Analytics to Big Data Analysis 28
3.4 Taxonomy of Analytics 29
3.5 Machine Learning Techniques in BDAs 31

3.6 Challenges and Limitations 34
3.7 Chapter Conclusion and Future Direction 35

Chapter 4: Literature Study 37
4.1 Chapter Four in Short 38

4.2 Electricity Market in the United States 39
4.3 A Day-Ahead Electricity Market 40

4.4 Related Literature Research 41
4.4.1 Statistical Models 42
4.4.2 Deep Neural Network Models 43

4.4.3 Hybrid Models 45

vi

4.5 Significance of Hybrid Models in Electricity Price Forecasting 46
4.6 Chapter Conclusion 47

Chapter 5: Research Methodology 48

5.1 Chapter Five in Short 49
5.2 Research Methodology 49
 5.2.1 Variational Mode Decomposition (VMD) 49

5.2.2 Dense Neural Network (DNN) 51
5.2.3 Convolutional Neural Network (CNN) 52

5.2.4 Long - Short Term Memory (LSTM) 53
5.2.5 Bi-directional Long - Short Term Memory (Bi-LSTM) 54
5.2.6 Proposed System Model 56

5.3 Data Windowing Technique 58
5.4 Chapter Conclusion 59

Chapter 6: Data Description and Preprocessing 61
6.1 Chapter Six in Short 62

6.2 Data Description and Input Features 62
6.2.1 MISO Market Data 63

6.2.2 Features Selection 64
6.2.3 Data Interpolation 65
6.2.4 Data Normalization 66

6.2.5 Data Preparation 67
6.3 Data Flow Diagram 68

6.4 Technology and Processing Unit 68
6.5 Chapter Conclusion 70

Chapter 7: Result Analysis and Validation 71
7.1 Chapter Seven in Short 72

7.2 Experimental Setup 72
7.3 Model Validation Matrices 74

7.3.1 MSE 74

7.3.2 MAE 74
7.4 Result Analysis and Discussion 75

7.4.1 Model Validation 75
7.4.2 Model Performance 77
7.4.3 Electricity Price Forecasting using Hybrid Models 79

7.4.4 Comparative Analysis with Other State-of-art Models 87
7.5 Resolution of Technical Issues 89

7.6 Challenges, Assumptions, and Constraints 90
7.7 Chapter Conclusion 90

Chapter 8: Conclusion and Future Direction 91
7.1 Best Practices in Electricity Price Forecasting 92

7.1 Conclusion and Future Direction 93

vii

95

107

109
120
131

References

Appendix A, Code: Variational Mode Decomposition (VMD)
Appendix B, Code: Dense Neural Network (DNN)

Appendix C, Code: Convolutional Neural Network (CNN)

Appendix D, Code: Long - Short Term Memory (LSTM)

Appendix E, Code: Bi-directional Long - Short Term Memory

(Bi-LSTM)

142

viii

List of Figures

Title Page

Figure 2.1: 5 V’s in Big Data 13
Figure 2.2: Sunflower Model to Define Big Data. 14

Figure 2.3: Percentage of NFRs in BDS 21
Figure 2.4: Research Flow to Find Top Six NFRs in Big Data System 23

Figure 3.1: Taxonomy in Big Data Analytics 31
Figure 3.2. Use of Big Data Analytics in Percentage 34

Figure 4.1: Wholesale Electricity Markets in the USA 40

Figure 4.2: A Day-ahead Market Diagram 41
Figure 4.3: Basic Structure of a Neural Network Model 44
Figure 4.4: Block Diagram of Hybrid Models 46

Figure 5.1: Decomposed Price Signal (12 IMFs) 50

Figure 5.2: An LSTM Cell 54
Figure 5.3: Simple Architecture of Our BiLSTM Network 55
Figure 5.4: System Model Architecture 57

Figure 6.1: A Day-ahead Electricity Price Time Series Data of the MISO

Market

63

Figure 6.2: Steps in Feature Selection Process 64
Figure 6.3: Data Flow Diagram of our Proposed Model 69

Figure 7.1: Training-Validation Data Loss by VMD-DNN Model 76
Figure 7.2: Training-Validation Data Loss by VMD-CNN Model 76

Figure 7.3: Training-Validation Data Loss by VMD-LSTM Model 76
Figure 7.4: Training-Validation Data Loss by VMD-BiLSTM Model 76

Figure 7.5: Model Performance by VMD – DNN 78
Figure 7.6: Model Performance by VMD - CNN 78
Figure 7.7: Model Performance by VMD – LSTM 78

Figure 7.8: Model Performance by VMD - BiLSTM 78
Figure 7.9: A Day-ahead Electricity Price Forecasting using VMD-DNN

Hybrid Model, (a)Window 1 (14 + 1 days), (b) Window 2 (7 + 1 days),
and (c) Window 3 (1+1 days)

81

Figure 7.10: A Day-ahead Electricity Price Forecasting using VMD-CNN

Hybrid Model, (a) Window 1 (14 + 1 days), (b) Window 2 (7 + 1 days),
and (c) Window 3 (1+1 days)

83

Figure 7.11: A Day-ahead Electricity Price Forecasting using VMD-
LSTM Hybrid Model, (a) Window 1 (14 + 1 days), (b) Window 2 (7 + 1
days), and (c) Window 3 (1+1 days)

85

ix

Figure 7.12: A Day-ahead Electricity Price Forecasting using VMD-
BiLSTM Hybrid Model, (a) Window 1 (14 + 1 days), (b) Window 2 (7 + 1

days), and (c) Window 3 (1+1 days)

87

x

List of Tables

Title Page

Table 2.1: 10 Bigs including 5 V’s in Big Data 15
Table 2.2: List of NFRs in BDS with ISO/IEC 25010:2011 Implementation 20
Table 2.3: Paper ID vs. QAs Mapping Table 21

Table 3.1: The Most Used Big Data Analytics 28

Table 3.2: Techniques Used in Each of Big Data Analytics 32

Table 5.1: Data Windowing Technique 59

Table 6.1: Data Splitting on MISO Market Data 67

Table 7.1: Model Loss by Different Windowing Techniques and Hybrid
Models

77

Table 7.2: Model Performance by Different Windowing Techniques and
Hybrid Models

78

Table 7.3: A Comparative Analysis with Other State-of-art Hybrid Models 88

xi

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Dr. Hassan Reza,
for his invaluable guidance, unwavering support, and immense patience throughout the
entire journey of this doctoral research. His expertise, insightful feedback, and

dedication to my academic and personal growth have been instrumental in shaping this
dissertation. I am also thankful to the members of my graduate committee, Dr. Hossein

Salehfar, Dr. Eunjin Kim, Dr. Wen-Chen Hu, and Dr. Md Mukhlesur Rahman, for their
valuable insights, constructive criticism, and valuable suggestions that have enhanced
the quality of this work. Their expertise and commitment to excellence have been truly

inspiring.

I extend my heartfelt appreciation to the University of North Dakota for
providing me with the necessary resources, facilities, and a stimulating intellec tua l
environment that has fostered my academic growth. My gratitude extends to my fellow

researchers Dr. Srivats Srinivasachar, Aaron, and Sid who have contributed to fruitful
discussions and shared their thoughts throughout this journey. Their insights, support,

and camaraderie have made the process more enriching and enjoyable.

I am deeply grateful to all those who have played a role, big or small, in the

completion of this Ph.D. dissertation. Your support, encouragement, and contributions
have left an indelible mark on this work and have shaped me both personally and

professionally. Thank you for being part of this remarkable journey.

This dissertation was built upon and drew on previous work of the author. A

non-exhaustive list of these works is given below.

 Rahman, Md Saifur, and Hassan Reza. "Systematic mapping study of
non-functional requirements in big data system." 2020 IEEE
International Conference on Electro Information Technology (EIT).

IEEE, 2020.
 Rahman, Md Saifur, and Hassan Reza. "Big data analytics in social

media: A triple T (types, techniques, and taxonomy) study." ITNG 2021
18th International Conference on Information Technology-New
Generations. Cham: Springer International Publishing, 2021.

 Rahman, Md Saifur, and Hassan Reza. "A Systematic Review Towards
Big Data Analytics in Social Media." Big Data Mining and Analytics 5.3

(2022): 228-244.
 Rahman, Md Saifur, Hassan Reza and Eunjin Kim. "A Hybrid Deep

Neural Network Model to Forecast Day-Ahead Electricity Prices in the

USA Energy Market" – AIIoT 2023.

xii

DEDICATION

To my father Amin Ullah and my mother Rehana Afroj, whose consistent
encouragement and confidence in my capabilities have helped me advance in my

academic journey.
The world’s best parents!

To my wife Sharmin Akter and my son Zavian Rahman,

Your support and affection have served as my guiding light, and I will always be
appreciative of your sacrifices and tolerance. Your unwavering affection and

encouragement keep me striving to fulfill my ambitions and reach my full potential.

This would not have been possible without you.

xiii

ABSTRACT

Day-ahead electricity price forecasting is a critical research area that revolves

around predicting prices in wholesale electricity markets. While significant progress

has been made in energy price forecasting, the existence of a state-of-the-art method

for accurately predicting prices in the USA energy market remains a topic of debate.

The wholesale and retail markets in the USA greatly value improvements in the

accuracy of electricity price forecasts. It is evident that renewable energy sources have

become increasingly influential in the US power market, enhancing their effectiveness.

However, existing forecasting models exhibit limitations, such as inadequate

consideration of the impact of renewable energy and insufficient feature selection.

Furthermore, the reproducibility of research, transparent depiction of input features,

and the inclusion of renewable resources in electricity price forecasting are either

lacking or loosely attempted.

In this research, we tackle these issues by providing a wide range of input

features, including historical price data, weather conditions, and renewable energy

generation. These features are carefully engineered to capture the complex dynamics

and dependencies within the electricity market. The inclusion of renewable input

features like temperature data to catch solar energy effect, and wind speed data to

capture wind energy effects in electricity prices in the USA market make our model

unique. Additionally, data preprocessing techniques, such as data windowing, data

cleaning, normalization, and feature scaling, are employed to ensure the quality and

relevance of the input data. We developed four high-performing hybrid deep learning

models to enhance the accuracy and reliability of electricity price predictions. Our

xiv

proposed model integrates the Variational Mode Decomposition (VMD) technique with

the strengths of four deep learning (DL) architectures, including dense neural networks

(DNN), convolutional neural networks (CNN), long short-term memory (LSTM)

networks, and bidirectional LSTM (BiLSTM) networks, to capture the intricate patterns

and temporal dependencies present in electricity price time series data. To deploy the

VMD-DL hybrid model, we created four different combinations, namely: (i) VMD-

DNN, (ii) VMD-CNN, (iii) VMD-LSTM, and (iv) VMD-BiLSTM. However, in our

study, the VMD-BiLSTM model demonstrates superior performance compared to the

other models in all window implementations. The VMD-BiLSTM hybrid model with

24 input features shows only 0.2733 mean absolute error with the MISO market data to

forecast prices. The findings of this research contribute to the field of electricity price

forecasting by providing an advanced and comprehensive solution tailored to the USA

energy market. The proposed hybrid deep neural network models offer valuable insights

and practical tools for market participants, energy traders, and policymakers, enabling

them to make informed decisions, optimize energy efficiency, and navigate the volatile

energy market landscape.

Keywords – Electricity price forecasting, Renewable energy, A Day-ahead market,

USA energy market, Neural network, Deep learning, MISO, VMD, LSTM, CNN, Bi-

LSTM, DNN.

1

Chapter 1: Introduction

This chapter at a glance:

1.1 Introduction

1.2 Problem Statement, and Motivation

1.3 Our Research Contribution

1.4 Organization of this Dissertation

2

1.1 Introduction

 We find ourselves in an era driven by digital advancements, where data holds immense

value, especially the vast quantities found in big data. Unfortunately, traditional tools are ill-

equipped to handle such extensive databases' storage, processing, and analysis [1]. Prominent

companies have recognized big data technologies’ significance and invested in complex

distributed networks to maintain their competitive edge. Leveraging the potential of these

massive datasets has become crucial for making informed decisions, ranging from forecasting

to business intelligence and ensuring customer satisfaction [2]. However, managing such

colossal databases poses significant challenges, necessitating a focus on the fundamenta l

building blocks of big data software architecture [1]. Therefore, to achieve success in big data

systems, it is paramount to ensure the adoption of optimal software architecture that aligns with

the most suitable non-functional requirements (NFRs).

 Big data utilization is pervasive across various sectors, encompassing social networks,

energy forecasting, academia, healthcare, aerospace, transport planning, oil and gas

development, telecoms, e-commerce, finance and insurance, military and surveillance, and

many other domains [3]. Yet, the true value of this vast volume of data lies in our ability to

uncover the concealed patterns it holds. Data analytics serves as the tool that unveils these

patterns, enabling data to convey meaningful insights in a comprehensible manner. The

capability of big data analytics to analyze, correlate, and extract knowledge from enormous

datasets is increasingly crucial in numerous fields, empowering informed decision-mak ing

through predictive analytics.

 In the realm of big data analytics, NFRs are particularly significant due to the unique

challenges and complexities associated with processing and analyzing large volumes of data.

One area where NFRs are of paramount importance is in the domain of electricity price

3

forecasting. Accurate and reliable price predictions are essential for market operators, energy

traders, and policymakers to make informed decisions and effectively manage energy

resources.

Forecasting electricity prices is a pivotal aspect of optimizing energy efficiency within the

electricity market. Specifically, day-ahead electricity price forecasting plays a crucial role in

optimizing the efficiency of power plants, maximizing financial gains, and mitigat ing

unnecessary energy waste. Accurate predictions of day-ahead prices offer valuable insights for

the economic operation of power plants, aiding in effectively predicting future electricity load

and preventing unexpected power outages within a short time frame. Anticipating short-term

electricity prices has proven to be of utmost importance for utilities and generation firms,

enabling them to make informed decisions and maintain economic viability. Moreover, for

emerging market participants like retailers and aggregators, their ability to thrive in the

competitive energy market and sustain profitability relies heavily on their understanding of spot

market pricing trends. In this particular context, the application of forecasting involves the

process of making predictions based on historical time series data. Time series data often exhibit

complex non-linear relationships, prompting the application of various functions to explore the

data with the specific objectives of modeling, extracting knowledge, and understanding the

intricate dynamics between independent features and labels [4]. In real-world scenarios, short-

term forecasting, which entails predicting outcomes within seconds, hours, days, weeks, or

months, holds the most practical value [5]. The time series model, recognized as one of the most

effective methods, is frequently employed to capture the linear characteristics of electricity

pricing [6]. However, forecasting in this domain presents significant challenges due to the

intricate nature of power pricing, characterized by periodicity and substantial volatility [7]. To

better grasp the characteristics of day-ahead electricity prices, a novel integrated machine

learning model or a combination of models that encompasses data cleaning, data preparation,

4

data engineering, data normalization, and artificial neural networks can emerge as a promising

solution in electricity price forecasting endeavors.

1.2 Problem Statement, and Motivation

In recent years, the electricity market has witnessed a significant transformation due to the

integration of renewable energy sources, advancements in smart grid technologies, and the

increasing complexity of demand patterns. As a result, accurate and reliable forecasting of day-

ahead electricity prices has become a crucial task for market participants, energy traders, and

policymakers. The ability to anticipate price fluctuations allows stakeholders to make informed

decisions regarding electricity generation, consumption, and trading strategies.

The renewable energy market, including sources like solar and wind power, has a significant

impact on the American energy market. Electricity generation occurs in both central and

peripheral power plants, and it is transmitted through a network of substations, transformers,

transmission lines, and distribution lines before reaching the end customers. Since electric ity

cannot be easily stored in large quantities, it must be generated in real-time to meet demand.

The U.S. power grid, which connects approximately 145 million customers nationwide,

comprises over 7,300 power plants, nearly 160,000 miles of high-voltage power lines, and

millions of miles of low-voltage power lines and distribution transformers, as reported by the

U.S. Energy Information Administration (EIA, 2016) [8,9]. As of the year 2022, renewable

energy sources accounted for around 24% of the nation's electricity production due to the

increasing demand for cleaner energy options [10]. The integration of renewable energy into

the electrical network has made electricity price forecasting more challenging than ever before

[11-13]. Traditional forecasting methods, such as statistical models and time series analysis,

have provided valuable insights in the past. However, they often struggle to capture the intricate

nonlinear relationships and dynamic patterns present in electricity price data. In response to

5

this challenge, the field of machine learning has emerged as a powerful tool for electricity price

forecasting, leveraging its ability to model complex relationships and handle vast amounts of

data.

Continuous advancements are being made in energy price forecasting (EPF) techniques with

the aim of minimizing the disparity between forecasted and actual prices. However, many

previous studies have overlooked the influence of renewable energy sources, such as wind

speed and weather temperature, as important features in their state-of-the-art forecasting

models. Another significant issue in the electricity price forecasting market is the lack of

sufficient information provided in research papers to ensure reproducibility. Common issues

include the absence of details regarding the dataset used, lack of clarity on data preparation

techniques (e.g., training-validation-test dataset splitting) [14-21], absence of input parameters

used in the prediction models, and even the absence of data normalization, a critical

preprocessing step prior to model training [22-24]. Some common issues at hand revolve

around electricity price forecasting in the context of the energy market are given in the

following.

(i) Machine learning (ML) models necessitate substantial quantities of high-qua lity

data for effective training. However, obtaining such data is often a challenge due to

its limited availability. Many prior studies have faced difficulties in addressing this

issue by relying on a relatively small dataset, typically spanning only one or two

years!

(ii) Deep learning (DL) models can be sensitive to data quality issues, which can impact

their performance and reliability. Historical energy data may have noise, missing

data points, or inconsistencies that can affect the accuracy of the predictions.

Ensuring data quality is critical for ML model performance.

6

(iii) Due to the rapid integration of renewable energy in power generation, electric ity

price forecasting became vulnerable and volatile.

(iv) Understanding the underlying factors that influence electricity production is

important. So, the identification of influential input features other than price has a

lot of potential in energy price prediction. Several previous studies have been

deemed unprofessional as they rely on a limited number of input features, typically

ranging from 2 to 5, for electricity price forecasting.

(v) Sequential data often has variable- length sequences, which can be challenging to

handle using machine learning methods.

(vi) Existing forecasting models, including those based on neural networks, often lack

the ability to effectively capture both short-term and long-term dependencies in

electricity price data. This limitation hampers the accuracy and reliability of their

predictions.

(vii) Sometimes a model learns to memorize the training data instead of learning the

underlying patterns or relationships. In such cases, the model may perform well on

the training data but may not generalize well to new data. Validating a model, and

handling under fitting or overfitting issues, involves assessing its performance and

generalization ability using a separate dataset.

(viii) Reproduction of existing research is important in machine learning to validate

results, provide benchmarks for new approaches, educate researchers, and improve

efficiency. Reproducibility in deep learning (DL) models can pose certain

challenges. Some common issues are the lack of standardized frameworks, code

libraries, computational resources, specialized hardware, and publicly availab le

dataset hindering the reproducibility of model training and evaluation.

7

1.3 Our Research Contribution

 Our research makes several contributions to the field of electricity price forecasting. We aim

to advance the field of electricity price forecasting, providing valuable insights for market

participants, policymakers, and stakeholders in the energy sector. In order to address the

research gap and tackle the aforementioned challenges, our work aims to make the following

contributions.

i. We propose, design, and develop four state-of-art hybrid deep-learning models to

forecast electricity prices in the US energy market, namely, (a) VMD-DNN, (b)

VMD-CNN, (d) VMD-LSTM, and (d) VMD-BiLSTM

ii. Our dataset is long enough (5 years) so that the deep learning model can train with

enough information. We also include decomposed data of historical prices that

generate more data to capture additional information.

iii. To ensure data quality, we use VMD to de-noise the data, implement interpola t ion

(Spline) to handle missing data points, and normalize the dataset using Z – score

normalization techniques to reduce inconsistency and standardize the data.

iv. To reduce volatility and uncertainty in price forecasting, we include weather

temperature data to catch the influence of solar energy and wind speed data to catch

the influence of wind energy in the electricity market.

v. We also ensure the dataset is recent enough to include the effects of integrat ing

renewable energy (2018 to 2022) sources on wholesale electricity prices.

vi. We consider 24 time-sensitive input features that can capture underlying patterns in

data to improve electricity price forecasting.

vii. Handling variable-length sequences and capturing temporal dependencies, we

design a Sliding Window technique to train, validate, and test the VMD-DL hybrid

model with data. Sliding window techniques are significant in machine learning

8

model training because they enable the model to handle variable- length sequences,

capture temporal dependencies, increase the amount of training data, and improve

batch processing.

viii. To work on the validation of our proposed hybrid model, we separately use a

validation dataset during the training of the model. MSE was used to balance the

overfitting-under fitting issue and ensure validation of the model.

ix. We provide a clear view of input features for our VMD-DL forecasting model.

Provide a clear indication of data splitting with our dataset and also share our

dataset, and state of art model publicly to ensure the reproduction of this research.

x. We deliver a set of best practice guidelines in the field of electricity price

forecasting.

 This research endeavors to contribute to the advancement of electricity price forecasting

methodologies by considering NFRs, harnessing the power of big data analytics, and

harnessing the potential of hybrid DL models. By combining these elements, we strive to

enhance the accuracy, reliability, and efficiency of electricity price forecasting, ultima te ly

benefiting market participants, policymakers, and the overall energy sector.

1.4 Organization of this Dissertation

 The rest of this dissertation is organized as follows: Chapter 2 provides a comprehens ive

study related to big data definition, big data system, and important non-functional requirements

to work with the framework of big data forecasting analysis. Chapter 3 presents the top ten big

data analytics and machine learning algorithms, and also the challenges to work with data

analytics in the domain of forecasting activities. The literature research of related works

discussed in chapter 4. Chapter 5 presents the state-of-art research methodology in detail,

including the architecture of the hybrid deep neural network models and the integration of

9

external features. The data description, preprocessing, data engineering, and input features are

described in Chapter 6. Chapter 7 presents the validation of the models, comprehensive results

and analysis, comparing the results of proposed four hybrid models. Finally, Chapter 8

concludes the chapter, by summarizing the key findings, discussing the guidelines in electric ity

price forecasting, and outlining potential future research directions.

10

Chapter 2: Big Data System

This chapter at a glance:

2.1 Chapter Two in Short

2.2 What is Big Data?

2.3 Software Architecture of Big Data System (BDS)

2.4 Non-Functional Requirements

2.5 Chapter Two Discussion and Analysis

2.5.1 Overview of Primary Study

2.5.2 Implementation of ISO/IEC 25010:2011 Quality Models

2.5.3 Most important NFRs for Big Data Systems

2.5.4 Discuss Scalability

2.5.5 Non-functional Requirements in Big Data System

2.6 Chapter Conclusion and Future Direction

11

2.1 Chapter Two in Short

 Chapter two introduces the definition of big data, and the concept of big data systems,

emphasizing their significance in handling large volumes of data. It explains that big data

systems are designed to process, store, and analyze massive datasets that exceed the capabilit ies

of traditional data processing tools. The chapter highlights the challenges posed by big data,

such as velocity, variety, and volume, and the need for scalable and distributed big data system

architectures to effectively manage and extract insights from these datasets. It discusses key

non-functional requirements in big data systems. Big data has become the most popular and

influential to exist in this competitive digital world. In this regard, the selection of suitable

quality attributes or non-functional requirements in big data software architecture can play a

million-dollar solution. In this chapter, we work on gathering and understanding key non-

functional requirements in the domain of big data systems. Using Systematic Mapping Study

(SMS) on scientific articles, we find more than 40 different quality attributes related to big data

systems. Then, we implement the ISO/IEC 25010:2011 quality model to map all these arbitrary

NFRs into 8 characteristics of the ISO/IEC 25010:2011 model. Finally, we get that

performance efficiency, functional suitability, reliability, security, usability, and scalability

should be a data-intensive system's most important quality attributes.

Chapter One sets the stage for exploring the intricacies of big data systems and their

applications in subsequent chapters.

2.2 What is Big Data?

 Technological advancements produce numerous sorts of structured data, but the majority is

semi-structured or unstructured data, which is mostly big data. Big data refers to large, complex

data collections that necessitate sophisticated and cost-effective data administration and

analysis tools to extract insights and make decisions [25]. Structured data, such as that found

12

in spreadsheets or relational databases, accounts for only 5% of total data [26]. Unstructured

data includes online text, photographs, audio, and video, all of which lack structural

organization and need special analytics/tools for data analysis [26]. A notable example of semi-

structured data is the Extensible Markup Language (XML), which has an informal tag-type

structure for sharing data on the Web [27-28]. Because big data is massive in quantity, too

speedy, has a diverse structure, and is often sophisticated for traditional technology to acquire,

preserve, maintain, and assess, it poses a significant challenge for conventional technology.

The nature of large data, as well as the concerns and challenges that arise with it, hinders current

data science techniques and approaches from resolving those challenges [29-30].

 Douglas Laney is regarded as a forerunner in the fields of data warehousing and information

economics (infonimics). Data strategy, big data, data analytics, infonomics, data science

solutions, and so on are among his specialties. In 2001 Laney first defined big data in terms of

Volume, Velocity, and Variety [31-32]. This became the most logical and popular definition of

big data (3V definition). Mr. Laney is working as a VP and Chief data officer in Gartner’s

research team [33]. Mark A. Beyer, a data scientist who specializes in data architecture, data

integration, data management, and data governance, has joined Laney in this research and the

two are working together on big data development [34]. As a result, in 2012, Laney and Beyer

increased the scope of the big data definition by adding two more V’s; Veracity and Value

[31,35-37]. These two new V’s are required to satisfy business objectives and goals. Without

veracity and value in data, i.e. any fake or meaningless data may lead to damage in revenue

and hence degrade the decision-making process. Until today, 5Vs’ is the most widely accepted

definition of big data. Figure 2.1 graphically represents 5 V’s, where each circle contains the

most appropriate keywords for describing that particular V.

13

Figure 2.1: 5 V’s in Big Data

 Recently, another group of researchers used the term "Bigs" rather than "V’s" to define big

data [38]. They expand the 5Vs’ by adding five more characteristics in the big data system.

The big volume, big velocity, big variety, and big veracity are grouped as fundamental features

to define big data. The technological perspective of big data refers to big intelligence, big

analytics, big infrastructure. The big service, big value, and big market cover big data

socioeconomically. A brief description of all bigs used in the sunflower model is written in

table 2.1. To reflect the combination of 5 V’s and 10 Bigs in big data, we develop and propose

the "Sunflower Model of Big Data." The Sunflower Model is depicted visually in Figure 2.2.

Each leaf of the sunflower model represents a characteristic of big data technology. We propose

this as a flexible and dynamic model. This model's dynamic quality is that the leaf (new

features) can be added to the sunflower to bring it up to date. However, the new feature must

have a clear and logical relationship with the 10 Bigs and big data systems.

Variety

Diversity of data

type & source

Volume

Big in size

Veracity

Authenticity and

Credibility of data

Velocity

Speed with which

data is Generated,

Analyzed, Processed

Value

Meaningful and

Beneficiary

Big data

(5 V’s)

14

Figure 2.2: Sunflower Model to Define Big Data.

 It was projected that the total volume of big data is going to be 44 Zettabytes by 2020 [39].

However, this was more than that in reality. According to statista.com, the volume of big data

reached 64.2 zettabytes in 2020, and this will become 181 Zettabytes by 2025 [40]. The fact is

that data sharing on social media-based platforms is continuously increasing. Every day,

billions of people on social media update their statuses and post pictures and videos with their

networks, revealing vital information about their interests, views, ideas, beliefs, movements,

demographics, and much more [39]. The increase in data volume is also due to the pandemic's

increased desire for distance learning, employment, and recreation. Furthermore, data from

Sunflower Model

of Big Data

Big Velocity

Speed with which

data is generated,

analyzed, and

reprocessed.

Big Veracity

Authenticity, accuracy, and

truthfulness of data

Big Intelligence

A set of ideas, technologies,

and tools able to work with

big data management and

processing.

Big Analytics

Algorithms to discover

hidden pattern and

analyze data.

Big Infrastructure

System, framework,

platforms, and

facilities

Big Services

Cloud services,

AWS, social

network services

Big Volume

Big in size (TB, PB,

etc.)

Big Variety

Diversity of data

type, data structure &

data source

Big Value

The importance and

context of big data

Big Market

Government, education,

manufacturing, business,

healthcare, etc.

15

Table 2.1: 10 Bigs including 5 V’s in Big Data

Bigs/V’s in Big

Data

Meaning Remarks

Big Volume This indicates the data set's size, which is commonly measured in

terabytes (TB), petabytes (PB), and other units [30]. Data volume is

relative in this case, and it varies depending on a lot of things. Because

storage capabilities are rising, even larger data sets will be gathered in

the near future; what is described as big data now may not fulfill the

barrier tomorrow [27].

1st V

Big Velocity Data processing speed is data velocity. The rate at which data is

produced and assessed referred to as velocity [42]. It has to do with data

latency and throughput [30].

2nd V

Big Variety This refers to the wide range of data kinds, formats, and sources

available. Big data can be s tructured, semi-structured, or unstructured,

but it is mostly unstructured in practice. According to statistics, 80

percent of today's data is unstructured [30, 42]. Because social media big

data is a mix of nationalities in a culturally diverse, multi-language

setting, it is not structured data [30].

3rd V

Big Veracity It must be accurate and genuine to be deemed big data. This relates to

the data's trustworthiness [42]. When working with huge data, there is

confusion, imperfection, and inconsistency. However, data analytics

must be used to extract meaningful insight from ambiguous, partial, and

unclear big data sets [30].

4th V

Big Intelligence A collection of concepts, methods, and tools for managing and

processing large amounts of data automatically and artificially is known

as big intelligence [30]. This is a part of big computing and combined

computer science, electrical engineering, mechanical engineering, data

science, statistics, and so on.

Big Analytics This is a combination of algorithms/techniques that support data

management, gathering, and data analysis. Analytics uses artificial

intelligence, and machine learning to extract meaningful patterns which

is automatic and reliable [30]. Big analytics can discover hidden patterns

from unreadable raw data. Most of the time, big analytics strongly

related and used big intelligence for implementation.

Big

Infrastructure

The architecture, tools, methods, platforms, and services that provide big

data processing are referred to as big data infrastructure. The Apache

Hadoop ecosystem, distributed data center, supercomputing machine,

etc., are critical components of large-scale infrastructure [30].

Big Service A comprehensive platform capable of serving millions of individuals.

Amazon web services, Google cloud services, mobile services, social

networking services are big services [30]. Often these services provide

their own API to get public access.

Big Value The aim of a data set necessitates its relevance and aspect. This implies

that big data brings big social value. Big data has revolutionized society

in terms of socializing and perceiving, according to its high social worth

[30].

5th V

Big Market A data-driven market is required. The big market operates at a

socioeconomic level [30]. This includes government, defense,

education, manufacturing, business, healthcare, finance and insurance,

social networking, and more.

several other sources in the digital economy, such as smart sensors, machine logs,

communications technology, geospatial data, and consumer data, is increasing rapidly [41].

fu
n

d
a
m

e
n

ta
l c

h
a
ra

c
te

ris
tic

s
te

c
h

n
ic

a
l c

h
a
ra

c
te

ris
tic

s

s
o

c
io

-e
c
o

n
o

m
ic

 c
h

a
ra

c
te

ris
tic

s

16

Big data analytics assists scholars in evaluating structured, semi-structured, and unstructured

data so that it may become useful for various companies to make important decisions.

Personalization is made possible by big data analytics, helping businesses to reach out to clients

in a more tailored manner based on their preferences and likes. It provides in-depth knowledge

and a thorough picture of the customer, allowing organizations to personalize messages to them

to increase engagement and acceptance.

2.3 Software Architecture of Big Data System

 A big data system (BDS) refers to a complex infrastructure designed to handle and process

vast amounts of data that traditional data processing methods cannot efficiently handle. Big

data systems employ various technologies, tools, and architectures to collect, store, manage,

process, and analyze massive datasets. These systems enable organizations to derive valuable

insights, make data-driven decisions, and gain a competitive advantage.

 Software architecture plays a crucial role in designing and implementing big data systems.

Day by day the architecture of the big data software becomes more complicated. That’s why

non-functional requirements and architectural design of big data systems with proper

communication between structural components become a concerning issue [43-44]. Software

architecture design is a step-by-step procedure for implementing all functional and non-

functional requirement decisions [45]. Finally, software architecture can be defined as a set of

principal design decisions in building software which ensures communication and coordination

using connectors and establish configuration among components, connectors, and constraints.

In the context of big data, software architecture refers to the high-level structure, components,

and interactions of the software system that enable efficient processing, storage, and analysis

of large and complex datasets. Software architecture plays a significant role in the activities of

data intensive systems.

17

2.4. Non-Functional Requirements

 Non-Functional Requirements (NFRs) in big data systems encompass a range of crucial

aspects beyond the core functionality. These requirements focus on qualities such as

performance. NFRs affect software architecture [46] and they are important metric in software

design because NFRs define syntax, semantics, constraints, and protocols for software’s each

non-behavioral activity [47]. If the software is too large or too complex (like big data software)

then domain specific and architecturally significant NFRs should be identified before designing

the actual product [48]. Moreover, we must do more research on defining and validating quality

attributes [49], when we are designing software architecture for big and complex products like

big data systems. Big data systems must exhibit high performance, ensuring effic ient

processing and response times, as well as scalability to handle increasing data volumes and

processing demands.

2.5. Chapter Two Discussion and Analysis

2.5.1 Overview of Primary Study

 The NFRs collectively ensure that big data systems are robust, efficient, secure, and user-

friendly, enabling organizations to derive maximum value from their vast data resources. This

section represents an overview and our findings from our primary study. The result starts with

table 2.2 which presents paper ID, year of publication for that paper and a list of quality

attributes collected from that paper. The first column of this table presents paper ID and

publication year with reference number. From this column, we can see all the scientific papers

used for this survey are the most recent. The oldest one is from 2012 and the newest one from

2019. Then, the second column presents a list of QAs discussed in that specific paper. In the

last column we implement ISO/IEC 25010:2011 [50-51]; system and software quality model

to each QA which we get from scientific papers in this survey. We list only those

18

characteristics (ISO/IEC model) which are discussed in that paper by mapping them with sub-

characteristics from column two of this table. So, a complete list of non-functiona l

requirements related to the big data system is presented in table 2.2.

2.5.1. Implementation of ISO/IEC 25010:2011 Quality Models

 Surveying these papers, we list more than 40 different NFRs related and necessary to

different big data systems. During the study, we found some NFRs are listed only for

maintaining relevance with big data systems; there is no detailed understanding or

implementation of those NFRs in that paper. To shorten this NFRs list, we decide to implement

ISO/IEC 25010:2011; system and software quality model to this NFRs list. ISO/IEC

25010:2011 defines a comprehensive set of quality models for software products, providing a

structured approach to assessing and evaluating software quality. The standard presents a

framework known as the SQuaRE (Software Product Quality Requirements and Evaluat ion)

model, which encompasses eight primary quality characteristics: functional suitability,

performance efficiency, compatibility, usability, reliability, security, maintainability, and

portability [50-51]. Each of these characteristics is further detailed with sub characteristics and

associated metrics, enabling objective measurement and comparison of software products. By

adhering to ISO/IEC 25010:2011, organizations can ensure that their software meets the

desired quality standards, facilitating effective decision-making and enhancing overall user

satisfaction. The standard serves as a valuable reference for software developers, evaluators,

and stakeholders, promoting the delivery of high-quality software products that align with user

needs and requirements.

 According to iso.org this model is the latest model [52]. This model has eight characterist ics

of NFRs with other NFRs as sub characteristics. We consider all NFRs getting from this survey

as sub-characteristics and then map those with eight main characteristics of ISO/IEC

25010:2011. Second column of the table 2.2, we group and list all NFRs as sub-characterist ics

19

and then in the third column we write only those characteristics for which at least one sub-

characteristics can be found in the second column. Beside the listed sub-characteristics in

ISO/IEC 25010:2011, we consider (i) ‘accuracy’ as ‘functional correctness’ [50-51, 53-55], (ii)

‘timeliness’ and ‘real-time processing’ as ‘time behavior’ [50-51, 55-57], (iii)

‘understandability’ and ‘readability’ as ‘learnability’ [50-51, 55, 58], (iv) ‘dependability’ and

‘believability’ as ‘reliability’ [50-51, 54], (v) ‘efficiency’ and ‘effectiveness’ as ‘performance

efficiency’ [50-51, 59-60], (vi) ‘authorization’ and ‘privacy’ as ‘security’ [50-51, 53, 55], (vii)

‘survivability’, ‘credibility’ and ‘safety’ as ‘recoverability/reliability’ [50-51, 55, 61-62].

That’s how we map all these NFRs into eight characteristics of ISO/IEC model.

2.5.3 Most important NFRs for BDS

After mapping all sub-characteristics into their relevant characteristics, we get numeric

statistics that are presented in table 2.3. The percentage amount of these statistics is presented

in figure 2.3. We see, 100% of this study discusses ‘performance efficiency’; which is the most

important QA for data intensive systems. Then, 79% discuss ‘functional suitability’,

‘reliability’ and ‘security’ as QAs for data intensive systems. ‘Usability’ is also a good QA for

big data systems, 71% discuss ‘usability’. Only 36% of them are talking about ‘compatibility’,

while 43% of them present ‘maintainability’ and ‘portability’ as QAs in their study. From

figure 2.3, we see more than 70% of the research work from this survey discuss performance

efficiency, functional suitability, reliability, security and usability. According to this survey,

these five QAs should be the most important quality attributes for data intensive systems where

performance efficiently is must with 100%.

20

Table 2.2: List of NFRs in BDS with ISO/IEC 25010:2011 Implementation

Paper ID

(publication

year)/

Reference

List of QAs After mapping with ISO/IEC

25010:2011

P1 (2015) [27] {accuracy, completeness,} {timeliness}, {accessibility},

{integrity}, consistency

Functional suitability, Performance

efficiency, Usability, Security

P2 (2017) [28] {accuracy, correctness}, {performance, efficiency, real-

time }, {reliability, safety, dependability}, {security,

integrity}, consistency, scalability

Functional suitability, Performance

efficiency, Reliability, Security

P3 (2017) [29] {performance}, {security}, {maintainability}, scalability Performance efficiency, Security,

Maintainability

P4 (2016) [30] {performance}, {reliability, availability}, {security} Performance efficiency, Reliability ,

Security

P5 (2013) [31] {performance, real-time processing}, {reliability ,

availability}, {security}, parallelism, scalability

Performance efficiency, Reliability ,

Security

P6 (2015) [32] {accuracy, completeness}, {timeliness}, {believability},

consistency, coverage/amount of data

Functional suitability, Performance

efficiency, Reliability

P7 (2015) [33] {accuracy}, {mission effectiveness, resource utilization ,

time duration}, {interoperability}, {usability}, {safety,

reliability, availability, survivability, dependability},

{security}, {modifiability, maintainability},

{adaptability}, flexibility, scalability

Functional suitability, Performance

efficiency, Compatibility ,

Usability, Reliability, Security,

Maintainability, Portability

P8 (2014) [34] {accuracy}, { performance}, {interoperability},

{accessibility, usability}, { reliability}, {security},

{maintainability}, {portability}, scalability, data retention,

Functional suitability, Performance

efficiency, Compatibility ,

Usability, Reliability, Security,

Maintainability, Portability

P9 (2012) [35] {accuracy, completeness}, {performance},

{interoperability, compatibility}, {usability}, {reliability ,

availability, safety, dependability}, {confidentiality ,

security, privacy, integrity,}, {reusability,

maintainability}, { installability , portability}, scalability

Functional suitability, Performance

efficiency, Compatibility ,

Usability, Reliability, Security,

Maintainability, Portability

P10 (2015)

[36]

{accuracy, completeness}, {timeliness}, {accessibility,

usability, readability} {availability, credibility ,

reliability}, {authorization, integrity}, consistency

Functional suitability, Performance

efficiency, Usability, Reliability ,

Security

P11 (2017)

[37]

{accuracy, completeness}, {timeliness}, {believability},

consistency

Functional suitability, Performance

efficiency, Reliability

P12 (2019)

[40]

{accuracy}, {performance}, {interoperability},

{usability}, {reliability}, {privacy, security},

{modifiability}, {adaptability}, scalability

Functional suitability, Performance

efficiency, Compatibility ,

Usability, Reliability, Security,

Maintainability, Portability

P13 (2018)

[41]

{completeness, correctness, appropriateness}, {time

behavior, resource utilization, capacity}, {co-existence,

interoperability}, {recognizability, learnability ,

operability, error protection, accessibility}, {maturity ,

availability, fault tolerance, recoverability}, {modularity ,

reusability, analyzability, modifiability, testability},

{confidentiality, integrity, non-reputation, accountability,

authenticity}, {adaptability, installability, replaceability}

Functional suitability, Performance

efficiency, Compatibility ,

Usability, Reliability, Security,

Maintainability, Portability

P14 (2016)

[42]

{Accuracy, completeness, precision}, {efficiency},

{accessibility, understandability},{ availability ,

recoverability, credibility }, {confidentiality}, {

portability, }, consistency

Functional suitability, Performance

efficiency, Usability, Reliability ,

Security, Portability

21

Table 2.3: Paper ID vs. QAs Mapping Table

NFRs/QA

characteristics

Papers writing about this NFR Tot

al

Functional suitability P1,P2,P6,P7,P8,P9,P10,P11,P12,P13,P14 11

Performance efficiency P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12

,P13, P14
14

Compatibility P7,P8,P9,P12,P13 5

Usability P1,P2,P3,P7,P8,P9,P10, P12,P13,P14 10

Reliability P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14 11

Security P1,P2,P4,P5,P7,P8,P9,P10,P12,P13,P14 11

Maintainability P3,P7,P8,P9,P12,P13 6

Portability P7,P8,P9,P12,P13,P14 6

Figure 2.3: Percentage of NFRs in BDS.

2.5.3. Discuss Scalability

 Big data systems must support ‘scalability’. These days, increased volume of data with

different data types makes storage and computing difficult. This problem can be solved by

keeping data in a distributed system and applying parallel computing on those big data [63].

This means we should consider increasing the amount of workload by extending resources to

79%

100%

36%
71%

79%

79%

43%
43%

Pecentage of NFRs in BDS

Functional suitability

Performance efficiency

Compatibility

Usability

Reliability

Security

Maintainability

Portability

22

the big data system [59]. This also refers to how easily a system can manage a growing amount

of user requests, transactions using distributed servers [53]. For supporting internet scale large

complex datasets storage and for ensuring real-time processing on distributed system manner;

scalability is the unavoidable characteristic to big data systems development [64-66].

Considering these, we want to add ‘scalability’ as an independent characteristic out of ISO/IEC

25010:2011 quality model. By studying references [50-51, 53-55, 59, 63], we are considering

flexibility, data retention, parallelism, coverage of data and consistency as sub-characterist ics

for scalability. Besides, most of our survey papers list ‘scalability’ as quality attribute. Mapping

these sub-characteristics with scalability, 12 (P1, P2, P3, P5, P6, P7, P8, P9, P10, P11, P12,

P14) out of 14 papers (85.7%) discuss scalability as quality attribute of data intensive systems.

2.5.5 Non-functional Requirements in Big Data System

 Critical elements that go beyond the essential functionality are known as non-functiona l

needs in a big data system. The top five NFRs required for any big data system are provided

by our method of systematic mapping study on NFRs in big data systems. Simultaneously, we

suggest adding scalability as another important NFR to the workings of big data systems.

Performance becomes a crucial factor because of the enormous amounts of data involved; the

system must be able to handle big datasets effectively and provide real-time or almost real- time

processing capabilities. The system must be able to expand effortlessly to handle expanding

data quantities and user demands, therefore scalability is crucial. Because reliability is so

important, fault tolerance methods are required to guarantee ongoing operation even in the case

of failures. To safeguard sensitive data, ensure secure data transmission, and guard against

unauthorized access or data breaches, security measures are of the utmost significance.

Additionally, functional appropriateness considerations guarantee that the system will continue

to be simple to upgrade, modify, and debug as required. Last but not least, usability concerns

center on offering user-friendly tools and interfaces to support efficient data exploration and

23

analysis. To ensure a reliable, effective, safe, and user-friendly Big Data system that can

provide valuable insights and assist data-driven decision-making, it is essential to address these

non-functional needs. The research process that led to the acquisition of six significant NFRs

for the creation of a cutting-edge big data system is shown in figure 2.4 below.

Figure 2.4: Research Flow to Find Top Six NFRs in Big Data System

2.6 Chapter Conclusion and Future Directions

 Complexity in big data is increasing rapidly which directly affects the software architecture

of big data systems. From this chapter, we find that non-functional requirements play a vital

role in software architecture in big data systems. After implementing ISO/IEC 25010:2011

quality model to our surveyed NFRs we find performance efficiency, functional suitability,

reliability, security, and usability should be the most important quality when building data

intensive systems. Besides, out of ISO/IEC 25010:2011 model; scalability should be added as

another significant attribute for big data systems. Our findings show that these six

characteristics should be mandatory QAs related to data intensive systems. We believe this will

be useful and contribute to developing big data systems in future.

24

 In this chapter we learn about big data, big data system and identify general NFRs for big

data systems. We will continue the study to work on big data analytics and algorithms to study

the analysis of big data and machine learning implementation of big data analysis through

subsequent chapters.

25

Chapter 3: Big Data Analytics

This chapter at a glance:

3.1 Chapter Three in Short

3.2 What is Big Data Analytics (BDA)?

3.3 The Top Ten Analytics to Big Data Analysis

3.4 Taxonomy of Analytics

3.5 Machine Learning Techniques in BDAs

3.6 Challenges and Limitations

3.7 Chapter Conclusion and Future Direction

26

3.1 Chapter Three in Short

In recent years, the proliferation of digital technologies and the exponential growth of data have

transformed the way we live, work, and make decisions. The recent advancement in Internet

2.0 creates a scope to connect people worldwide using society 2.0 and web 2.0 technologies.

This new era allows the consumer to directly connect with other individuals, business

corporations, and the government. People are open to sharing opinions, views, and ideas on

any topic in different formats out loud. The availability of vast amounts of data, commonly

referred to as big data, presents both opportunities and challenges. This creates the opportunity

to make ‘Big Data’ handy by implementing machine learning approaches and data analyt ics.

Big data analytics has emerged as a powerful approach to extracting valuable insights and

knowledge from these massive and complex datasets, driving innovation and transforming

industries across the globe.

This chapter introduces the field of big data analytics, exploring its fundamental concepts,

methodologies, and applications. We will shed light on the wide-ranging applications of big

data analytics in various sectors, including social media, energy, healthcare, finance,

marketing, and transportation. In this chapter, we provide the top ten big data analytics with

their working data types. A comprehensive list of relevant statistical/machine learning methods

to implement each of these big data analytics is discussed in this chapter. We create and propose

a taxonomy of data analytics based on the need, behavior, and working domain. As a result,

researchers will have an easier time deciding which data analytics would best suit their needs.

3.2 What is Big Data Analytics?

 Every day, an enormous number of people all over the world generate massive amounts of

data, which can be of any type, including text, photographs, audio, video, web transactions,

gifs, blogs, and other formats [67-69]. Some sort of special technique is required for the process

27

of examining and extracting valuable insights and knowledge from large and complex datasets

like those above. It involves applying advanced analytical techniques, such as data mining,

machine learning, statistical analysis, and predictive modeling, to uncover patterns, trends, and

correlations within big data. The systematic computing and interpretation of data using

statistical methods is known as analytics. Analytics uses mathematics, statistics, and artific ia l

intelligence to help with data analysis in difficult-to-understand formats so that better decisions

may be made. At the same time, big data analytics assist data analysis by revealing trends,

patterns, and other insights from messy social data [69-70]. Text mining, predictive analys is,

sentiment analysis, statistical analysis, cyber risk analysis, and others are some of the diverse

approaches to big data analytics [71]. Furthermore, by merging, modifying, and extending

ways to handle massive data, these analytics contribute to the development and assessment of

systems and informatics tools [71].

 Different firms might use the results of big data analytics to improve their production or

marketing strategies to stay competitive in the digital business world. For example, data

analytics in digital marketing may help businesses get user input on their products, which can

be used to make changes and get more value out of their brand [72-73]. Leading companies

such as Apple, Microsoft, Google, Honda, Facebook, NVidia, Amazon, Samsung, and others

employ big data analytics regularly to improve their corporate strategies and customer relations

practices [74]. Research, civil defense, healthcare, banking, telecommunication, public

transport system, insurance, and a variety of other industries can gain benefits from BDAs to

prepare for the future and make better data-driven recommendations while remaining flexib le

and agile [74]. Sensitive events like elections frequently use sentiment and opinion mining in

local and national elections processes [67]. The federal or state government uses data analyt ics

to develop a predictive decision.

28

3.3 The Top Ten Analytics to Big Data Analysis

 The primary goal of this chapter is to identify and collect notable big data analytics (BDA).

We have identified 10 mostly analytics so far. The details list is presented in the following table

3.1. The serial numbers of source papers were mentioned in the leftmost column. The second

column lists the titles of the final 20 articles in this study, along with their reference numbers.

The authors of those publications, as well as the year of publication, are included in the third

column for clarification. Finally, the right-hand column displays the name of BDAs, as

discovered in those twenty articles. Different analytics are used for different purposes and in

diverse domains. For example, text analytics for text analysis, video for video data analys is,

and image data are analyzed by using image data analytics. To date, "Text Analytic" has been

the most widely used analytic method for large-scale data analysis. In addition, predictive

analytics is the most potential BDA in time-series data analysis.

Table 3.1: The Most Used Big Data Analytics

Study

source

Title of the paper Authors (Publication

year)

Discussed BDAs

S1 Beyond the hype: Big data concepts,

methods, and analytics [70]

Amir Gandomi and

Murtaza Haider (2015)

i. Text Analytics (Text

Mining)

ii. Audio Analytics (Speech

Analytics)
iii. Video Analytics (Video

Content Analysis - VCA)

iv. Predictive Analytics

S2 Social media big data analytics: A survey
[75]

Norjihan Abdul Ghani
et al. (2018)

i. Descriptive Analytics (Post-
mortem Analysis)

ii. Diagnostic Analytics

iii. Predictive Analytics

iv. Prescriptive Analytics

S3 Big data and social media analytics [76] Vikas Dhawan and
Nadir Zanini (2014)

i. Text Analytics
ii. Web Analytics

S4 Big Data and the brave new world of social
media research [77]

Ralph Schroeder
(2014)

i. Text Analytics

S5 Web-based Collaborative Big Data

Analytics on Big Data as a Service Platform
[78]

Kyounghyun Park,

Minh Chau Nguyen,
Heesun Won (2015)

i. Video Analytics

S6 Social Set Visualizer: A Set Theoretical

Approach to Big Social Data Analytics of
Real-World Events [79]

Benjamin Flesch et al.

(2015)

i. Text Analytics

ii. Visual Analytics

S7 Social Set Analysis: A Set Theoretical

Approach to Big Data Analytics [80]

Ravi Vatrapu et al.

(2016)

i. Visual Analytics

ii. Predictive Analytics

iii. Prescriptive Analytics
iv. Descriptive Analytics

29

v. Text Analytics

S8 Social Media Analytics based Product

Improvement Framework [81]

Chuan-Jun Su and Yin-

An Chen (2016)

i. Social Media Analytics

(Social Media Product

Improvement Framework

(SM-PIF))
ii. Text Analytics (Social

Media Product

Improvement Framework

(SM-PIF))

S9 Evolving Analytics for E-commerce

Applications: Utilizing Big Data and Social

Media Extensions [82]

Constantine J. Aivalis

et al. (2016)

i. Text Analytics (Log File

Analyzer)

S10 Big Social Data Analytics of Changes in

Consumer Behaviour and Opinion of a TV

Broadcaster [83]

Anna Hennig et al.

(2016)

i. Text Analytics (Text

Classification)

ii. Visual Analytics

S11 Social Media Analytics Based on Big Data

[84]

Farzana Shaikh et al.

(2018)

i. Text Analytics (Sentiment

Analytics)

S12 The Role of Artificial Intelligence in Social
Media Big data Analytics for Disaster

Management -Initial Results of a

Systematic Literature Review [85]

Vimala Nunavath and
Morten Goodwin

(2019)

i. Text Analytics (Text
Classification)

ii. Image Analytics (Image

Classification)

S13 The Impact of Sentiment Analysis on Social

Media to Assess Customer Satisfaction:

Case of Rwanda [86]

Marius

Ngaboyamahina and

Sun Yi (2019)

i. Text Analytics (Sentiment

Analysis)

S14 A glimpse on big data analytics in the
framework of marketing strategies [87]

Pietro Ducange et al.
(2018)

i. Text Analytics
ii. Web Analytics

S15 Social Set Analysis: Four Demonstrative

Case Studies [88]

Ravi Vatrapu et al.

(2015)

i. Predictive Analytics

ii. Descriptive Analytics
iii. Perspective Analytics

iv. Visual Analytics

S16 Social Media Analytics and Internet of
Things: Survey [89]

Workneh Yilma Ayele
and Gustaf Juell-

Skielse (2018)

i. Text Analytics

S17 Understanding Customer Experience
Diffusion on Social Networking Services by

Big Data Analytics [90]

Francesco Piccialli, Jai
E. Jung (2017)

i. Text Analytics
ii. (Content Analysis)

S18 Cyber risk prediction through social media

big data analytics and statistical machine
learning [91]

Athor Subroto and

Andri Apriyana (2019)

i. Text Analytics

ii. Predictive Analytics

S19 Social media, big data, and mental

health: current advances and ethical
implications [92]

Mike Conway and

Daniel O’Connor
(2016)

i. Text Analytics

S20 Social media analytics for enterprises:

Typology, methods, and processes [93]

In Lee (2018) i. Text Analytics

ii. Image Analytics
iii. Video Analytics

3.4 Taxonomy of Analytics

 We discussed the ten big data analytics which are the most potential so far. These data

analytics are divided into three groups. These are (i) based on data types, (ii) based on purpose,

and (iii) based on the nature of the task. The taxonomy is shown in the following figure 3.1.

 There are four analytics based on the data type. These are primitive data types like text,

image, audio, and video. (a) Text Analytics work with string/text data. For example, review on

30

a consumer product, comment on a topic, views on an issue, and other text data from social

media. (b) Image Analytics supports images, pictures, scenario, or photographs of any object.

Social media users enormously share a picture of a business product, a beautiful moment of a

trip, photographs of events, or a social gathering. (c) Audio Analytics uses machine learning to

extract meaningful information from audio, speech, or music. Several kinds of research are

going on to convert speech into text, analyze audio of social media users to extract insights,

and others. (d) Video Analytics shows the recent advancement of technology in social data

analysis. Making video data talk for us is a new era in digital communication and data

assessment.

 Based on the purpose of data analysis, there are another four types of data analytics. (a)

Predictive Analytics uses a machine- learning algorithm to develop a forecasting model. This

model gives data prediction based on historical data analysis. (b) Descriptive Analyt ics

identifies flaws by analyzing data from the present or past. This analysis assists in monitor ing

events and generates results in the form of a report. (c) Prescriptive Analytics examine several

situations and offer the most optimal solution. This emphasizes conditions and critica lly

chooses the best outcome based on the historical condition-result relationship. (d) Diagnost ic

Analytics works continuously to develop better results. Data mining and data correlation assist

in each round of diagnostic improvement in the data analysis process.

 To do other specific tasks in various platforms, there is two more big data analytics. (a)

Visual Analytics expands the concept of video analytics. This works with video, image,

animation, gif, and other forms of visual data. Social Set Visualizer (SoSeVi) is a good example

of visual analytics [83, 88]. (b) Web Analytics are some analytic tools provided for free and

public use. The data from WWW that are automatically generated or indirectly connected with

users like metadata, log file analyzer, transaction on web, bookmarks data, etc. are an example

of data used in web analytics. Web analytics works with other sources of data too.

31

Figure 3.1: Taxonomy in Big Data Analytics.

3.5 Machine Learning Techniques in BDAs

 Different algorithms are used in association with distinct types of data analytics. Table 3.2

shows all of the techniques employed with each of the 10 big data analytics (BDA) classes

revealed in this chapter. The serial number of the BDA and the name of the BDA is stated in

the leftmost column of Table 3.2. The middle column listed associated statistical or machine

learning methods/techniques with the relevant big data analytics. The scope of machine

learning algorithms definition is loosely considered rather extended for the sake of the articles

found in this study. Machine learning algorithms, to broaden the scope of work, includes not

only mostly used algorithms but also a technique, or an approach, or a procedure that may

employ an algorithm in the background to evaluate any kind of data. For example, there are

some similarities among sentiment analysis, sentiment classification, social network analys is

but they all differ by approach, purpose, and procedural way behind them. Sentiment analys is

can be done by both supervised and unsupervised learning methods, while the sentiment

classification must follow a supervised learning method, on the other hand, social network

Social Media

Analytics

1. Text Analytics

2. Image Analytics

3. Audio Analytics

4. Video Analytics

1. Predictive Analytics

2. Descriptive Analytics

3. Prescriptive Analytics

4. Diagnostic Analytics

1. Visual Analytics

2. Web Analytics

based on purpose

32

Table 3.2: Techniques used in each of Big Data Analytics

BDA Types Techniques or Algorithms Working

Data Type

BDA 1: Text

Analytics (Text

Mining) / Text
Classification

[70, 75-77, 79-

82, 84-87, 89-93]

Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), Gibbs

Sampling Approach, Latent Dirichlet Allocation Algorithm, Random Forests (RF),

Decision Tree (DT), Information Extraction (Entity Recognition, Relation Extraction),
Sentiment Analysis/Opinion Mining (Document Level, Sentence Level, Aspect Based,

Location (Country) Based, Timestamp Based, Followers Count Based), Lexical

Resource Approach , Probabilistic Neural Network, , Unstructured Data Normalizer

(UDN), Text Summarization (Extractive Approach, Abstractive Approach), Social

Influence Analysis, Natural Language Processing (Information Retrieval based
Approach, Knowledge based Approach, Hybrid Approach, Social Data Analytics Tool

(SODATO), Support Vector Machine (SVM), Nave Bayesian classifiers (NB),

Logistic Regression (LR), Multinomial Logistic Regression, Restricted Boltzmann

Machine, Message Content Analysis, Non-parametric ANOVA Analysis, Cluster

Analysis, Cluster Dendrogram Analysis, Histogram Analysis, Word Cloud and
Commonality analysis, Pyramid Analysis, Cyber Risk Analysis, Social Network

Analysis, Statistical Analysis(Markov chain Monte Carlo methods, regression

models, factor analysis), Trend Analysis, Extended Log File Analyzer (cross

correlation, self-updating system, customize the configuration, Near Real Time

Extensions (NRTE), Social Media Product Improvement Framework - SM-PIF
(Contextual Information Retrieval (Feature Based Ontology (FBO), Extraction and

Storage (ES)), Feature Improvement Recommendation (Product Recommendation

Service (PRS)}, Artificial Neural Networks (ANN), Swarm Intelligence, Evolutionary

Computation, Deep Learning, Formal Model, Fuzzy Logic

Structured

and

Unstructured

BDA 2: Image

Analytics (Image

Classification)

[85, 93]

Convolutional Neural Networks (CNN), Support Vector Machine (SVM), Linear

SVM, Statistical Analysis of tag data, demographic data, download frequency, etc.

Unstructured

BDA 3: Audio

Analytics

(Speech

Analytics) [70]

Transcript-based Approach (large-vocabulary continuous speech recognition,

LVCSR) and Phonetic-based Approach

Unstructured

BDA 4: Video

Analytics (video

content analysis -
VCA) [70, 78,

93]

CCTV metadata analytic, Modified CCTV VMS (Video Management System),

Server-based Approach and Edge-based Approach, Statistical Analysis by number of

users, response rate, subject, and location

Unstructured

BDA 5:
Predictive

Analytics [70, 75,

80, 91, 99]

Naive Bayes, K-nearest Neighbors, Support Vector Machines, Decision Trees,
Artificial Neural Networks, Statistical Method, Modeling Machine Learning, Game

Theory, Google Prediction API, Social Set Analysis, Linear Regression, Social Graph

Theory (actors, actions, activities, and artifacts), Social Text Theory (topics,

keywords, pronouns, and sentiments)

Structured
and

Unstructured

BDA 6:

Descriptive

analytics (Post-

mortem

Analysis) [75, 80,
88]

Social Graph Analysis, Social Text Analysis, Social Set Analysis, Statistical Analysis

based on historical/past data

Unstructured

and

Structured

BDA 7:

Diagnostic
Analytics [75]

Data Discovery, Drill-down, Data Mining, Data Correlations, Data Comprehension,

Data Visualization, Search and Filter

Unstructured

BDA 8:

Prescriptive
Analytics [75, 80,

88]

Social Set Analysis, Intensive Approach, Optimization Theory, Game Theory,

Simulation and Decision techniques,

Unstructured

BDA 9: Web

Analytics [74,
76]

Google Analytics, AWStats, Amung.us, WebSTAT, Radian6, Atlas.ti and T-LAB Structured

and
Unstructured

BDA 10: Visual

Analytics [79-
80, 83, 88]

Social Set Visualizer (SoSeVi), visual analytics tool Tableau, SSA approach using

D3.js libraries, Social Data Analytics Tool (SODATO)

Unstructured

33

analysis follows a graph theory to analyze social data [94-97]. The goal and data analys is

techniques are different in each of these three methods. Similarly, Google Analytics is a web

analytics technique to track and report website traffic [98-99]. Many businesses organizat ions

frequently use google analytics for online business and marketing purposes. AWStats,

Amung.us, and WebSTAT are other similar tools where machine learning algorithms are

working from behind. Most of the researchers use these tools and techniques as the brand name

rather than the behind algorithms or combination of algorithms. To increase clarification, we

listed the name of techniques and the machine learning algorithms in a broad sense. Popular

machine learning algorithms are included as well like Recurrent Neural Networks (RNN),

Convolutional Neural Networks (CNN), Support Vector Machine (SVM), Naive Bayesian

classifiers (NB), Random Forests (RF), Decision Tree (DT) and many more.

 Big data analytics support structured, semi-structured, and unstructured data types. The

rightmost column of the following table 3.2 presents which BDA support whatever data type

for social data analysis. Text analytics supports both structured and unstructured formats of

data. Derived numbers from social text data are in structured data format, while text data itself

is unstructured. Image analytics, audio analytics, and video analytics mostly work with

complex, unstructured, and messy data. In this study, we find that predictive analytic and

descriptive-analytic support both structured and unstructured data types while diagnostic and

prescriptive mostly work with only unstructured data. Visual analytics always works with

unstructured data types. Web analytics can work with structured, semi-structured, and

unstructured data. These strategies are crucial for enhancing decision-making by analyzing a

large amount of potential social data. As a result, these methodologies represent a useful subset

of the big data analytics technologies accessible to the researchers.

34

Figure 3.2. Use of Big Data Analytics in Percentage

3.6 Challenges and Limitations

Many disciplines and sectors have advanced as a result of the widespread use of social media

data and big data analytics. There are numerous hurdles and limitations to working in this

domain.

 With the increasing abundance of data, files are now being distributed over multip le

physical sites. Public access is becoming difficult and technical skills are needed to

access these data.

 The maintenance of large social datasets is challenging and expensive.

 Integrating and combining social data from many platforms is a difficult task.

 Consumes continuously sharing status updates, photos, videos, etc., are not always

useful for analysis. Data cleaning and filtering are required to extract necessary data

from this complex dataset that is costly and time-consuming.

 Social media data may suffer from issues related to data quality and representativeness.

The data collected from social media platforms may be biased or skewed, as it primarily

represents the subset of the population actively using these platforms. This can lead to

limited generalizability and may not accurately reflect the broader population or

specific demographics.

35

 Privacy concerns are significant when dealing with social media data. While user-

generated content is publicly available, ethical considerations must be taken into

account when using social media data, especially when it involves personal or sensitive

information. Respecting privacy rights, ensuring data anonymization, and obtaining

necessary consent are essential aspects to address.

 Cyber-attacks have a severe impact on social data during sensitive events such as

elections, which could result in a faulty conclusion.

 Validating and verifying the accuracy of social media data can be challenging. It is

crucial to assess the credibility and authenticity of the information shared on social

media platforms to ensure the reliability of the insights derived from the data.

 Social media platforms frequently update their APIs (Application Programming

Interfaces), which can impact data collection and analysis processes. Changes in

platform policies or access restrictions can pose challenges in retrieving and analyzing

historical or real-time data.

 Social media data and the algorithms used to analyze them can exhibit biases due to

various factors, including user biases, algorithmic biases, or echo chamber effects.

These biases can affect the accuracy, fairness, and inclusivity of the insights derived

from social media data.

3.7 Chapter Conclusion and Future Direction

 Big data, along with advances in computing tools, has evolved as significant data analyt ics

for understanding human behavior by analyzing data. All types of organizations, from industry

to government, can benefit by using social data, and data analytics. This chapter fills in the

research gap by identifying the ten most widely accepted and used big data analytics for

analyzing big data and making decisions. Considering the overlap among the approaches of

data analytics, we design a taxonomy of big data analytics depending on the purpose, nature of

36

usage, and working area. Data analysis is aided by machine learning techniques. Each of these

data analytics has a long list of machine learning or statistical methodologies associated with

it.

 This chapter looks at big data analytics in social media in a broad, generic way. A specific

field of interest, for example, business analytics in social media, geospatial/location-based

analytics, social media data analysis for political science research, etc can be explored to serve

the same purpose. Considering the challenges and potential risk, we decide not to explore social

media for data analysis due to concerns related to data cost, availability, data quality, privacy,

ethical considerations, representativeness, algorithmic biases, technical challenges, or legal

constraints. Instead, we will continue our investigation by focusing on the USA energy market.

We also want to figure out and decide a few common attributes/characteristics of big data

analytics by which we can tune up one analytics and perform comparative performance

analysis.

37

Chapter 4: Literature Study

This chapter at a glance:

4.1 Chapter Four in Short

4.2 Electricity Market in the United States

4.3 A Day-Ahead Electricity Market

4.4 Related Literature Research

4.4.1 Statistical Models

4.4.2 Deep Neural Network Models

4.4.3 Hybrid Models

4.5 Significance of Hybrid Models in Electricity Price Forecasting

4.6 Chapter Conclusion

38

4.1 Chapter Four in Short

 Chapter two provides insights into the big data domain, emphasizing that performance is the

most crucial non-functional requirement (NFR) in this context. In chapter three, predictive

analytics is one of the identified potential big data analytics (BDA). Based on the information

presented in these two chapters, we make the decision to integrate the scientific findings and

outcomes to explore the combination of performance-focused approaches and predictive

analytics in the big data domain. Finally, our research culminates in the development of a

hybrid deep neural network model specifically tailored to predict day-ahead electricity prices

within the energy market of the United States. We feel that a thorough literature evaluation is

essential for guaranteeing the validity and applicability of a research endeavor and for

enhancing the academic conversation on the subject of choice.

 Researchers and practitioners alike have shown a keen interest in research on day-ahead

electricity price forecasting in the US energy market. To better understand and develop

forecasting models and methods for reliably predicting power costs, numerous studies have

been carried out. According to the literature, several different methodologies have been used,

including neural networks, statistical time series models, machine learning algorithms, and

hybrid strategies. Researchers have also looked at a number of variables that affect energy

prices, including weather, demand patterns, costs, and regulatory policies. The accuracy and

usefulness of day-ahead power price forecasting in the dynamic and developing US energy

market can be improved by carefully studying related literature. In this chapter, we address the

aforementioned challenges by presenting a comprehensive literature research that encompasses

various aspects.

39

4.2 Electricity Markets in the United States

 The electricity market in the United States is a complex and dynamic system that plays a

critical role in powering the nation's economy and meeting the energy needs of its population.

It operates on a regional basis, with various organizations, regulatory bodies, and market

participants working together to ensure a reliable and affordable electricity supply. According

to EIA (U.S. Energy Information Administration), the power grid in the United States connects

145 million customers nationwide. It comprises over 7300 power plants, nearly 160,000 miles

of high-voltage power lines, millions of miles of low-voltage power lines, and distribution

transformers. The electricity markets in the United States are primarily organized into two main

types: regulated markets and competitive markets. In regulated markets, utilities have vertically

integrated operations and are subject to state or federal regulation, which determines the rates

they can charge and the investments they can make. On the other hand, competitive markets

promote competition among generation companies, allowing consumers to choose their

electricity supplier and enabling market-driven pricing.

 In the United States, a range of materials and tools are used to produce electricity, like natural

gas, oil, coal, renewables, and some others. The wholesale electricity market is a crucial

component of the overall electricity system. It facilitates the buying and selling of electricity

among generators, traders, and utilities. Market participants engage in various market

mechanisms, such as day-ahead and real-time energy markets, capacity markets, and ancillary

services markets, to ensure a reliable supply of electricity and maintain system balance. The

American power markets encompass both the wholesale and retail sectors, representing distinct

segments within the industry. Before being supplied to customers, power is first sold in

wholesale markets to electric utilities and electricity merchants. Electricity is sold to consumers

in retail markets. Both the wholesale and retail markets might be very open to competing or

historically governed. The following figure 4.1 is collected from the eia.gov website which

40

represents the USA energy market [100]. The grey area of the diagram represents regulated

markets, a section of the US wholesale electricity market that is in charge of its generation,

transmission, and distribution of power to the area's residents. Thus, there is no competition in

this market. On the other side, there is competition in the markets of the Northeast, Midwest,

Texas, and California. These markets are controlled and managed by independent system

operators (ISOs) named CAISO, MISO, SPP, ISO-NE, NYISO, ERCOT, and PJM [100-102].

The exchange of power between independent power producers and non-utility generators is

made possible by ISOs using competitive market procedures.

Figure 4.1: Wholesale Electricity Markets in the USA [100]

4.3 A Day-Ahead Electricity Market

 A financial market called the Day-Ahead Energy Market allows market players to buy and

sell electricity through bidding for day-ahead prices for the next day. A day-ahead electric ity

prices market is a specific segment within the electricity market where participants trade

electricity for delivery on the following day. It is a forward market where buyers and sellers,

such as generators, utilities, and energy traders, come together to determine and agree upon the

price of electricity for the upcoming day.

41

 In the day-ahead market, participants submit bids and offers based on their anticipated supply

and demand for electricity. These bids and offers take into account factors such as generation

costs, expected demand patterns, availability of resources, and market conditions. The market

operator then matches the bids and offers to determine the clearing price, which represents the

price at which electricity will be traded for the next day. The day-ahead market provides a

valuable opportunity for market participants to manage their risks, hedge against price

fluctuations, and make informed decisions regarding electricity generation, consumption, and

trading strategies. The following figure 4.2 illustrate a day-ahead electricity market in the USA.

Wholesale market sellers and buyers participate in an auction event, submitting their bids for

the delivery of electricity during day 𝑑. The bidding process takes place before the gate closure

on day 𝑑 - 1, and it involves pricing for 24 hourly intervals of electricity. Notably, the auction

event commences at midday.

Figure 4.2: A Day-ahead Market Diagram [149]

4.4 Related Literature Research

A crucial part of research is the literature review, which comprises a thorough evaluation and

analysis of the current scholarly publications, academic articles, books, and other pertinent

materials on a given subject or research issue. It acts as the starting point for comprehending the

present level of knowledge and research gaps in a specific field of study. An effective literature

42

review highlights the techniques and results of earlier studies while assisting researchers in

identifying major topics, trends, and disputes. We did our literature study to expand on existing

knowledge, set the stage for our own research, and suggest fresh contributions to the area by

synthesizing and evaluating the literature.

The large volume of related studies attests to the significance of electricity price forecasting

for the functioning of power systems. There have been numerous approaches published that vary

in the steps of data preparation, model evaluation, and assessment. Price forecasting is becoming

a more active area of research as electricity markets become more competitive. Volatility is a

feature of the hourly electricity price, which is established in a dynamic and aggressive

marketplace [103]. Recent advancements in renewable energy and other factors have an impact

on the logical evolution of market price [104]. Therefore, careful attention should be paid to the

choice of input variables and configuration of the model, the inspection of the model, and the

experimental setup to produce credible forecasting in the energy market. For projecting

electricity prices, numerous models have been put forth recently. The most widely used models

can often be divided into three groups.

(i) Statistical Models

(ii) Deep Neural Network Models

(iii) Hybrid Models

4.4.1 Statistical Models

A methodical approach where variation in a regressor variable is extracted using a variable

that is orthogonal to the unseen components of the target result is known as a statistical method

[104]. A statistical machine learning model follows statistical principles and techniques. There

have been many significant advancements in the area of statistical approaches for electricity

price forecasting over the past several years. Most models in this category rely on simple linear

regression methods, logistic regression or clustering methods, and related tree-based techniques,

43

etc. [105]. Most of the cases a linear combination of multiple independent variables (e.g.

regressors, or features) is used to represent the dependent/output variable (e.g. electricity price)

by using these statistical models. For example, let’s assume an hourly time series dataset, the

regression model follows equation 4.1 given below.

 𝑃ℎ = 𝐶ℎ𝑋ℎ + 𝐸 (4.1)

Where 𝐶ℎ = [C0, C1,….. Cn] represents a row vector containing hourly coefficients, 𝑋ℎ = [X0,

X1,….. Xn]T is a column vector of input features, and E is an error/bias term to calculate hourly

electricity price 𝑃ℎ.

The use of the least absolute shrinkage and selection operator (LASSO) as a feature selection

method in cases when the model contains a big number of inputs or regressors is one of the

recent developments in the field of forecasting energy prices using linear regression techniques

[106-112]. Although LASSO can be considered a machine learning approach because the

underlying model is autoregressive [113], it is considered a statistical method in this study.

Several studies also used (the autoregressive integrated moving average) ARIMA/GRAPH

(generalized autoregressive conditional heteroskedastic) model to predict electricity prices like

references [107, 114] that belong to a statistical model.

4.4.2 Deep Neural Network Models

The idea of replicating the human brain led directly to the artificial neural network (ANN),

sometimes known as the dense neural network model. The Neural Network model is efficient,

scalable, and has exceptional fault tolerance and parallel processing capability. Artific ia l

neurons, a group of interconnected units or nodes, make up a neural network model. Like the

synapses in a human brain, each connection (e.g. edges) has the ability to send communicat ion

to neighboring neurons. Each connection works with a weight that often changes as learning

progresses throughout the model training. The weight alters a connection's signal intensity by

44

increasing or decreasing it. Usually, each neuron has a threshold (e.g. activation function) that

allows a signal to cross connection to the next level. The basic neural network has three layers,

(i) Input layer – the first layer that accepts inputs into the model. The input layer consists of one

to a very large number of neurons to collect input features; (ii) hidden layer – an intermed iate

layer that helps in complex calculation and learning processes; (iii) the Output layer – to produce

the expected results depending on how many neurons are desired to present the output. The

ability of ANNs to produce more accurate results from complicated natural systems with large

inputs is a strong benefit [115]. The unique and advanced ability of the artificial brain network

that supports back-and-forth information processing within multiple layers makes the neural

network model an ideal solution in the field of forecasting results. The following figure 4.3

represents the basic building blocks of most of the neural network models. The accuracy of the

prediction of the price of electricity in the day-ahead market has been improved significantly by

employing several deep-learning neural network models.

Figure 4.3: Basic Structure of a Neural Network Model.

In the realm of forecasting short-term electricity prices, the stacked denoising auto-encoder

(SDA) model, a subclass of deep neural networks, attracted interest in 2016 [116]. In the context

of forecasting the short-term energy market, Long Short Term Memory (LSTM) is currently the

most widely used neural network model [117-122]. In addition to RNN, several researchers use

a straightforward, multi-layer Dense Neural Network (DNN) to serve the purpose of hourly

45

electricity price prediction [120, 123-126]. In several research projects in this field, the

convolutional neural network (CNN in one dimension) model was also utilized [120]. Due to

their ability to handle massive and complicated datasets, these models have become a crucial

component of contemporary data-driven decision-making processes.

4.4.3 Hybrid Models

Over the past few years, the scientific community has paid close attention to hybrid and

ensemble machine learning algorithms. Conceptually and practically, it has been demonstrated

that hybrid models perform much better than single models, particularly when dealing

with complex regression [128]. In order to solve complex, advanced, and sophisticated

challenges, the integration of fundamental technologies into hybrid machine-learning solutions

facilitates more intellectual approaches that combined diverse domain knowledge with scientific

evidence. Hybrid models are extremely intricate frameworks for predicting made up of two or

more algorithms. They typically include at least two of each of the three modules listed below

[129-143].

(i) An algorithm for decomposing data,

(ii) An algorithm for feature selection

(iii)One or more statistical/neural network models whose predictions are combined.

Yet another sort of hybrid mode is the stacked/ensemble model, which is occasionally

produced by combining two neural network models [127]. The Wavelet Transform(W T),

Empirical Mode Decomposition (EMD), and Variational Mode Decomposition are the most

used decomposition techniques in the energy forecast domain so far. The mutual information

technique and correlation analysis are the two most often used techniques for selecting features.

LSTM and CNN have historically been the most often used deep learning models for training

46

with time series data. The following figure 4.4 depicts the basic structure of a hybrid model in

the domain of electricity price forecasting.

Figure 4.4: Block Diagram of Hybrid Models

4.5 Significance of Hybrid Models in Electricity Price Forecasting

 The value of a hybrid model in predicting energy prices rests in its capacity to combine the

advantages of many forecasting methodologies to provide predictions that are more reliable and

accurate. Due to the complicated and dynamic structure of the energy market, which is

influenced by a variety of factors including weather conditions, demand changes, and regulatory

laws, projecting electricity prices is a difficult process. In order to overcome the shortcomings

of individual models and enhance overall forecasting performance, hybrid models incorporate

many forecasting methodologies, such as statistical time series models, machine learning

algorithms, and artificial intelligence techniques. Some major benefits and the significance of

employing a hybrid model in predicting electricity prices are given in the following.

 A hybrid model can capture diverse parts of the price dynamics by combining mult ip le

forecasting techniques, producing forecasts that are more accurate and trustworthy.

Combining the forecasts of different models, each of which may be particularly good at

catching certain patterns or trends, can produce a forecast that is more thorough and

precise.

47

 Various unforeseen circumstances and uncertainties can affect the energy market.

Because a hybrid model can combine many methodologies, it is more resistant to

unforeseen changes or data outliers. It can adjust to various market circumstances and

offer more reliable projections.

 Hybrid models provide the freedom to change the importance or contribution of each

component model in accordance with past results or subject-matter expertise.

Researchers and practitioners can adjust the model for certain market circumstances or

time periods thanks to its versatility.

 The performance of specific forecasting models may be impacted in some circumstances

by the availability of past data. By using a hybrid approach, we can expand the data

coverage and predictive power of the model by incorporating data from additional

sources or historical periods.

 We opted to create a hybrid model for our research project, focusing on its design,

development, and implementation. Our aim was to strike a balance, ensuring that the model's

structure remained understandable, allowing other researchers to reproduce our work with ease.

4.6 Chapter Conclusion

In conclusion, the literature review has offered insightful knowledge and a thorough

comprehension of the state of the art in the subject of forecasting energy prices. We have

uncovered important themes, trends, approaches, and discoveries relevant to this topic by a

thorough review of several scholarly works, academic articles, and research publications. We

have seen the important contributions made by earlier scholars, and their work has helped to set

the stage for our investigation. We intend to expand on the current body of knowledge and fill

in the known research gaps as we continue our investigation on electricity price forecasting by

developing a state-of-art hybrid model.

48

Chapter 5: Research Methodology

This chapter at a glance:

5.1 Chapter Five in Short

5.2 Research Methodology

5.2.1 Variational Mode Decomposition (VMD)

5.2.2 Dense Neural Network (DNN)

5.2.3 Convolutional Neural Network (CNN)

5.2.4 Long - Short Term Memory (LSTM)

5.2.5 Bi-directional Long - Short Term Memory (Bi-LSTM)

5.2.6 Proposed System Model

5.3 Data Windowing Technique

5.4 Chapter Conclusion

49

4.1 Chapter Five in Short

 A day-ahead electricity price forecasting is a very crucial area of research that focuses on

predicting prices in wholesale electricity markets. Although many contributions have been

made to the subject of energy price forecasting in the last few years, it is debatable if there is a

state-of-the-art method for assessing prediction in the USA energy market. The USA wholesale

and retail markets highly appreciate any improvements in accurate forecasts with electric ity

prices. At the moment, it is clearly noticeable how much more effective renewable energy

sources are having at the US power market. In addition, the reproducibility of research, clear

view of input features, and inclusion of renewable resources in electricity price forecasting are

missing or loosely attempted. In this chapter, we address the aforementioned challenges by

presenting a comprehensive research methodology of our hybrid models approach that

encompasses various aspects. By doing so, we aim to offer a thorough understanding of our

methods and highlight the strengths of these models in relation to our research objectives.

5.2 Research Methodology

It is exceedingly difficult to determine which techniques are the state-of-the-art ones because

of the issues that have been mentioned when comparing electricity price forecasting models.

After careful investigation, we came up with a state-of-the-art approach to employ hybrid deep

neural network model building with a combination of Variational Mode Decomposition(VMD)

and a Deep Neural Network (DNN, CNN, LSTM, Bi-LSTM).

5.2.1 VMD

Variational Mode Decomposition (VMD) is a data-driven signal processing technique that

has gained significant attention in recent years. The VMD method was proposed by

Dragomiretskiy and Zosso in 2014 [144-145]. It is a novel method of non-recursive signal

processing designed to decompose a dimensional signal into independent modes. The goal of

50

VMD is to decompose a real-valued (electricity price) input signal, into a discrete number of

sub-signals (modes). VMD provides an effective method for decomposing complex signals into

a set of intrinsic mode functions (IMFs) with varying temporal and spectral characteristics. Each

IMF represents a distinct temporal oscillatory component, allowing for the separation of

different frequency components within the signal. The effectiveness and versatility of VMD

have been demonstrated in several studies, highlighting its ability to handle nonlinear and

nonstationary signals, like electricity prices, while preserving their inherent features [146-147].

In our study, we decomposed the original electricity price signal into 12 distinct sub-signals,

treating each sub-signal as an independent subseries and referring to them as Intrinsic Mode

Functions (IMF, IMF2,…, IMF12). The following figure 5.1 represents decomposed signals in

one graph. Each mode is compacting around a center pulsation; it is to be determined with

decomposition.

Figure 5.1: Decomposed Price Signal (12 IMFs)

There are three steps to make it work given in the following.

(i) Obtaining the unilateral frequency spectrum of every subseries, through Hilbert

transform computing analytic signal

51

(ii) Gaining the corresponding estimated center frequency through modifying the mode

frequency spectrum

(iii)Assessing each mode bandwidth through the H Gaussian smoothness of the

decomposed signal.

Each IMF series is considered as an input feature which is later combined with others to feed

into the deep neural network model.

5.2.2 DNN

 Dense Neural Networks (DNNs) have emerged as a powerful approach for time series data

analysis, enabling effective modeling and prediction of temporal patterns. DNNs, also known

as feedforward neural networks or multi- layer perceptrons(MLP), consist of multiple fully

connected layers where each neuron is connected to every neuron in the subsequent layer [148-

149]. In the context of time series analysis, DNNs can effectively capture complex nonlinear

relationships and dependencies within the temporal data. DNNs offer several advantages for

time series analysis. They can handle high-dimensional input data with varying temporal

resolutions and effectively learn complex temporal patterns, even in the presence of noise or

missing values. Additionally, their ability to automatically extract features and hierarchica l

representations from the data makes them suitable for capturing both short-term and long- term

dependencies in time series.

 DNNs for time series analysis typically involve an input layer that takes in the sequentia l

data, one or more hidden layers consisting of densely connected neurons, and an output layer

that provides the predicted values or classifications. The activation functions applied to the

neurons, such as the rectified linear unit (ReLU) or sigmoid, introduce non-linearity into the

network and enable it to learn and represent intricate temporal patterns. For this research, we

design a DNN starting with (i) a Flatten layer to reshape the multidimensional feature maps

52

into a linear format, (ii) three hidden dense layers with 32 neurons, and ReLU activation

function, and Finally (iii) an output layer (reshape) to generate 24 forecasts.

5.2.3 CNN

 A Convolutional Neural Network (CNN) is a type of artificial neural network that is widely

used for image and video processing tasks, and natural language processing. While traditiona lly

used for two-dimensional data, such as images, CNNs can also be applied to analyze one-

dimensional time series data [150-151]. The key feature of CNNs is the use of convolutiona l

layers. These layers consist of small filters or kernels that slide over the input data, performing

element-wise multiplications and aggregating the results[150]. The convolution operation

allows the network to capture spatial patterns and local dependencies in the input. CNNs applied

to one-dimensional time series data analysis have demonstrated impressive performance in

various domains, including financial forecasting, sensor data analysis, and biomedical signal

processing.

 In the context of one-dimensional time series data analysis, CNNs offer a powerful approach

for capturing local patterns and dependencies within the temporal domain [152-153]. The key

idea is to utilize one-dimensional convolutional layers to extract meaningful features from the

input time series. These convolutional layers employ filters to perform local convolutions across

the temporal dimension, effectively capturing relevant patterns at different scales. Their ability

to automatically learn relevant temporal features and capture dependencies within the data

makes them a valuable tool for extracting meaningful insights and making accurate predictions

in time series analysis tasks. In this research, we used a 1D convolutional layer with 256

neurons, and ReLU as an activation function. We also use dense, and reshape layers to handle

the format of input data and output forcasts.

53

5.2.4 LSTM

Long Short-Term Memory (LSTM) networks have gained significant popularity in time series

forecasting tasks due to their ability to capture long-term dependencies and handle sequential

data effectively. LSTM is a deep-learning neural network with backpropagation support. This

is a special kind of Recurrent Neural Network (RNN) that works as a composition of long-term

and short-term memory. LSTM overcomes the vanishing gradient issue of RNN during the

training of a neural network [154 - 157]. LSTM efficiently identifies hidden patterns and the

potential of the data through a continuous self-learning process with the help of gates and

activation functions. One of the distinguishable factors in the LSTM network is the memory

cell, also known as the LSTM cell. The usually hidden layers of a deep neural network are

replaced by memory cells in LSTM architecture [157]. LSTM cell includes an input gate, a

forget gate, and an output gate in the memory block [155, 157]. This network works through a

sigmoid layer, a tanh layer, pointwise multiplication, and pointwise addition operations. LSTM

knows how to maintain cell state and can control input flow from one cell to another. LSTM

networks make use of their memory cells to store and update information over time, enabling

them to capture long-term dependencies in the time series. The gates within the LSTM

architecture control the flow of information, determining which information to retain and which

to discard.

 Each LSTM cell contains 5 layers. Three of them are sigmoid and two are tanh layers. In

this research, we used (i) an input layer for inserting data by following the setup of the sliding

window method; (ii) an LSTM layer that has 50 neurons to work repeatedly until getting the

best result; (iii) a dropout layer with 30% dropout to overcome the issue of overfitting by the

model; (iv) a dense layer to get output from the previous layer which piped through one-

dimensional tensor; and (v) output (reshape) layer to generate the output of 24 forecasts. The

54

following figure 5.2 shows a basic structure of a single LSTM cell. The details of an LSTM cell

can be found in reference [157].

Figure 5.2: An LSTM Cell [157]

5.2.5 Bi-LSTM

 Bidirectional Long Short-Term Memory (Bi-LSTM) is a recurrent neural network (RNN)

architecture that has been widely used in various applications involving sequential data analysis.

Bi-LSTM overcomes the limitations of traditional LSTM models by processing the input

sequence in both forward and backward directions, capturing past and future contextual

information simultaneously. The Bi-LSTM architecture consists of two LSTM layers: one that

processes the input sequence from the beginning to the end (forward LSTM) and another that

processes the sequence in reverse (backward LSTM) [158-160]. This incorporation of

information from both past and future contexts empowers Bi-LSTM models to effective ly

capture extended dependencies and temporal patterns in the data. The combination of the

forward and backward LSTM layers can be achieved through concatenation of their hidden

states or element-wise addition [159-160]. The model improves its ability to capture complex

55

Figure 5.3: Simple Architecture of Our BiLSTM Network

. . .

Forward Layer

Input Layer

Backward Layer

Dropout Layer

Dense Layer

Output Layer

56

relationships and improves its efficiency in sequence modeling by utilizing information from

both directions.

 The above figure 5.3 illustrate a architecture network of the BiLSTM model. In this research,

we used (i) an input layer for inserting data by following the setup of the sliding window

method; (ii) a Bi-LSTM layer that has 50 neurons to work repeatedly until getting the best

result; (iii) a dropout layer with 30% dropout to overcome the issue of overfitting by the model;

(iv) a dense layer with 64 neurons and ReLU activation function; (v) a dense layer to get output

from the previous layer which piped through one-dimensional tensor; and (vi) output (reshape)

layer to generate the output of 24 forecasts.

5.2.6 Proposed System Model

The system model for electricity price forecasting using a deep learning hybrid approach

consists of multiple interconnected components that work together to capture and analyze the

complex dynamics of electricity prices. At the core of our system model is the deep learning

hybrid model, which incorporates four combinations of VMD and neural network architectures

to capture temporal and non-linear relationships in the data.

To deploy a hybrid deep neural model to forecast electricity price, we choose VMD as an

algorithm for decomposing data, and one of the deep learning neural network models (DNN,

CNN, LSTM, Bi-LSTM) to perform training with the MISO dataset. Hence, our designed

system model includes VMD for filtering, denoising, and generating the features of the origina l

electricity price data, and a deep learning (DL) model for training, validating, and testing the

time series data and thus generating electricity price forecasting. To organize the training with

data, we designed a sliding window method that considers 336/168/24 hours of prior time steps

57

to predict the next 24 hours of time steps in the future. The same sliding window technique is

followed to train the DL model, perform validation to reduce loss by the VMD-DL model, and

also forecast electricity price on test data. The following figure 5.4 shows our VMD-DL system

model architecture to perform electricity price forecasting in the USA energy market. The

Figure 5.4: System Model Architecture

proposed hybrid model has shown promising results in day-ahead time electricity price

forecasting. Some notes on our system model architecture are given in the following.

 Each box represents a major component of the system. The component has a name

on it like data sources, machine learning etc.

58

 Each component (box) has its subcomponents in it. The arrow represents the

connection between subcomponents.

 Each component must have a receiveData sub-component and a sendData sub-

component to make an interaction with other components. Except for the last

'Forecast' component because it shows the final forecasts and visualization.

 The image/name representing a subcomponent is designed by maintaining the

relevancy of that subcomponent. If there is an image of subcomponents, then it also

has a name with it.

 Subcomponents are interacting with each other by connecting lines (unidirectiona l

single arrow). The red box represents the get-out connection, and the green box

represents the get-in connection.

 The system model is dependent on various input variables, encompassing historical prices,

demand levels, weather conditions, time-related aspects (such as time of day and day of the

week), and other market indicators. These inputs undergo meticulous processing and are

employed during both the training and forecasting phases of the model. Training is

accomplished using the Adam optimization algorithm, and the model's performance is evaluated

using appropriate metrics. The system model facilitates the generation of real-time electricity

price predictions, providing valuable insights to guide decision-making within the energy

industry.

5.3 Data Windowing Techniques

 The data windowing method is a widely used strategy when deep learning models are being

trained for time series analysis. In order to train, validate, and test the model, this technique

entails segmenting the time series data into smaller windows or subsequences. A set number of

consecutive data points make up each window, and this segmentation allows the model to

59

identify regional patterns and temporal connections in the data [161]. Utilizing the temporal

ordering of the data and enhancing the model's capacity to detect localized patterns, data

windowing allows the deep learning model to process and learn from the segmented windows.

Several time series analytic tasks, including energy forecasting, stock market forecasting, and

activity recognition, have shown this method to be successful. In this research, we design three

separate windows to explore different possibilities to capture the underlying trends in time-series

data. We design and implement the training, validation, and testing by our hybrid model using

(i) a 15(14+1) days window, (ii) an 8 (7+1) days window, and (iii) a 2 (1+1) days window. The

details data points considered for each windowing technique are given in the following table

5.1.

Table 5.1: Data Windowing Technique

Techniques Previous hours Forecasting hours Total Window Size

Window 1 336 (14 days/ 2 weeks) 24 (1 day) 360 hours (14 + 1 days)

Window 2 168 (7 days/ 1 week) 24 (1 day) 192 hours (7 + 1 days)

Window 3 24 (1 day) 24 (1 day) 48 ours (1 + 1 days)

5.4 Chapter Conclusion

 The research technique has given our study a strong base on which to operate. The validity

of our research is ensured by the careful selection of techniques and models. The research

methodology employed in this study for DL hybrid methods has proven to be effective in

achieving our research objectives and generating valuable insights. The utilization of hybrid

approaches, combining VMD with different deep learning architectures such as DNNs, CNNs,

LSTMs, and BiLSTMs, has allowed us to leverage the strengths of each model and enhance the

60

accuracy and robustness of our predictions. Despite certain limitations, our research

methodology has provided a strong foundation for developing and evaluating DL hybrid

methods for electricity price forecasting, contributing to the advancement of the field and

providing valuable insights for stakeholders in the energy market.

61

Chapter 6: Data Description and Preprocessing

This chapter at a glance:

6.1 Chapter Six in Short

6.2 Data Description and Input Features

6.2.1 MISO market

6.2.2 Features Selection

6.2.3 Data Interpolation

6.2.4 Data Normalization

6.2.5 Data Preparation

6.3 The Data Flow Diagram

6.4 Technology and Processing Unit

6.5 Chapter Conclusion

62

6.1 Chapter Six in Short

 Data plays a crucial role in developing accurate and reliable forecasting models, as it forms

the foundation for training, validating, and evaluating the performance of these models. By

understanding the characteristics and composition of the dataset, we can gain insights into the

underlying patterns, trends, and complexities of electricity prices.

 In this chapter, we provide an overview and description of the dataset, and input features

used in our research for electricity price forecasting. This chapter serves as a comprehens ive

guide to the dataset used in our research, offering a detailed description of its characterist ics,

quality, and potential implications for electricity price forecasting. By establishing a solid

understanding of the data, we can proceed with confidence in developing accurate and robust

forecasting models that contribute to the optimization and efficiency of the energy market.

6.2 Data Description and Input Features

This section describes the dataset and its features. To ensure reproducible research we

consider the following conditions.

(i) Dataset is publicly available

(ii) Dataset is long enough so that the deep learning model can train with enough

information

(iii)Dataset is recent enough to include the effects of integrating renewable

energy sources on wholesale prices

We select the MISO market dataset that satisfies the above conditions. This section also

includes input features, data preprocessing steps, data flow, data preparation, and data

engineering.

63

6.2.1 MISO Market Data

The MISO (Midcontinent Independent System Operator) market is a regional energy market

in the United States that operates in the Midwest and parts of the South and Gulf Coast. This

market structure enables market participants, including generators, utilities, and wholesale

customers, to engage in the buying and selling of electricity through various market mechanisms

such as the day-ahead market. The MISO market plays a crucial role in promoting competition,

optimizing grid operations, and facilitating the integration of renewable energy resources. We

considered MISO historical time series data to evaluate our hybrid neural network model in the

training, validation, and test phases. This is an hourly historical time series dataset that is

available on misoenergy.org and also energyonline.com [162-163]. This time series contained

5 years of hourly electricity prices from January 1, 2018, to December 5, 2022. MISO is a big

wholesale market in the US that consist of 8 regional HUB to operate the whole MISO market.

For the sake of simplicity, only Minnesota HUB (MINN.HUB) is considered for this research.

Figure 6.1 shows the day-ahead electricity price time series data of the MISO dataset. Figure

6.1 shows that prices are always positive, and zero prices are uncommon, however, spikes are

common in the MISO market. To capture the influence of wind and solar

Figure 6.1: A Day-ahead Electricity Price Time Series Data of the MISO Market

64

energy contribution, hourly temperature data and hourly wind speed data are also included in

this dataset. These two weather data are available publicly by the ASOS Network of Iowa State

University [164]. We collect Minnesota State temperature data and wind speed data for the same

time period as MISO day-ahead price data.

6.2.2 Features Selection

In the context of time series analysis, input features for a deep learning (DL) model play a crucial

role in extracting pertinent information and patterns from the data. These characteristics serve

as the model's input variables and aid in its capacity to learn and forecast. When dealing with

time series data, the input features are frequently obtained from previous observations or outside

variables that affect the target variable. The proper selection of input features plays an important

role in a neural network model. The subsequent figure 6.2 illustrates the process of feature

generation and selection for the electricity price forecasting project.

Figure 6.2: Steps in Feature Selection Process

To forecast 24 hours of day-ahead prices the following input features are employed in this

research project.

65

(i) Historical day-ahead electricity prices time series

(ii) Historical temperature (F) time series

(iii)Historical wind speed (mph) time series

(iv) Historical day-ahead electricity prices as a decomposed signal, we use 12

decomposed signal

(v) Boolean identification of weekdays/weekends from time series, i.e. weekdays = 0 and

weekend = 1

(vi) Indication of the hour from a day, i.e. hour = [0,1,2….,23]

(vii) Indication of day from a week, i.e. dayofweek = [0,2,3,….6 (based on week)]

(viii) Indication of day from a month, i.e. day = [1,2,3,….28/30/31 (based on month)]

(ix) Indication of month from a year i.e. month = [1, 2,….,12]

(x) Indication of midweek/non-midweek, i.e. Tue/Wed/Thu =mid-week =1, and

Fri/Sat/Sun/Mon = non mid-week = 0

(xi) The complete time series as a day sine signal and a day cosine signal

(xii) The complete time series as a year sine signal and a year cosine signal

Overall, we consider a total of 24 above input features for our hybrid deep neural network model.

6.2.3 Data Interpolation

 Data interpolation is a technique used in preparing time series data for deep learning (DL)

models. It involves filling in missing or incomplete data points within the time series to create

a continuous and complete dataset. Interpolation methods are employed to estimate the values

of missing data based on the available information. The purpose of data interpolation is to

maintain the temporal integrity of the time series and ensure that the DL model has a consistent

66

and uninterrupted sequence of data points for training or analysis [165]. We used spline

interpolation to deal with missing data points in this research work. By breaking up the data into

smaller pieces, spline interpolation fits a piecewise continuous curve to each section. These

smooth connections between polynomial equations at particular data points, or knots, are what

characterize these curves, which are known as splines. Splines are a good option for

interpolating data with noise or abnormalities since their smoothness attribute guarantees that

the generated curve does not show sudden changes between consecutive data points. Spline

interpolation has the ability to handle irregular data distributions, it ensures de-noising by

providing a reliable estimate between data points.

6.2.4 Data Normalization

It is important to scale features before training a neural network. Normalization is a common

way of doing this scaling. Data normalization, also known as feature scaling or standardization,

is a preprocessing technique used in deep learning (DL) models to transform input data into a

common scale or range. It involves adjusting the values of the input features to ensure that they

have similar magnitudes and distributions. Data normalization is important for DL models

because it helps in improving convergence, stability, and performance during training. It is a

necessary process required to normalize heterogeneous data. The Z- score normalization to

handle outliers in our train dataset. It is measured by subtracting the mean from the original data

points and dividing it by the standard deviation. The following equation 6.1 is used in the case

of z-score normalization on every single value of the dataset [166].

Z-score=(x–μ)/σ (6.1)

Where, x = Original value, μ = Mean of the dataset, σ = Standard deviation of the dataset

The mean and standard deviation should only be computed using the training data so that the

models have no access to the values in the validation and test sets. This is for the sake of

67

achieving the highest accuracy from the trained model. Following are some advantages of Z-

score data normalization.

 It reduces the correlation between features, hence improves the stability and

interpretability of the model coefficients.

 It accelerates convergence in optimization algorithms, leading to faster model

training and better performance.

 Z-score normalization is less sensitive to outliers, resulting in more robust models.

 Following Z-score normalization, features with larger absolute z-scores exhibit

higher variability in the data, facilitating a clearer interpretation of their relative

significance within the model.

6.2.5 Data Preparation

Machine learning models usually required three types of datasets to perform any

experimental analysis, (i) ‘train dataset’ to train the model, (ii) ‘validation dataset’ for evaluating

the quality of the model, (iii) ‘test dataset’ to test the model after the model has gone through

the validation process. In this research, the training dataset comprises the first 34920 hours, i.e.,

from 1/1/2018 until 12/25/2021, the validation starts 12/26/2021 and goes until 9/20/2022, i.e.,

6456 hours of data, finally, the test dataset spans from 9/21/2022 to 12.04/2022. We did not

randomly shuffle the data during splitting to reserve the sequence in the dataset. The following

table 6.1 shows the data splitting description on our MISO dataset.

Table 6.1: Data Splitting on MISO Market Data

Dataset Name Start Date End Date Hours

Training 1/1/2018 12/25/2021 34920

Validation 12/26/2021 9/20/2022 6456

Test 9/21/2022 12/04/2022 1800

68

6.3 The Data Flow Diagram

 The data flow diagram for the electricity price forecasting model shows how information

flows through the model and into the forecasting process. With the help of the data flow diagram,

a trustworthy and knowledgeable projection of electricity prices is made visible. Initia lly,

historical information on electricity costs, weather, and other time-related aspects is gathered

from reputable sources and stored in a central data frame. The forecasting model's main inputs

are these data frames. The obtained data is transformed in the data preprocessing stage in order

to get it ready for model training. These transformations include Z-score normalization, feature

engineering, and data interpolation. To aid in the evaluation and generalization of the model,

the preprocessed data is then divided into training, validation, and test sets. To capture short-

term dependencies in price forecasting, the data was preprocessed through a data windowing

technique before training. The hybrid deep learning model, which incorporates elements of our

VMD-DL model, is trained using the training data. After being trained, the model is utilized to

forecast power prices in real time using the test dataset. The accuracy and efficiency of the

model are then evaluated using the relevant performance criteria on the anticipated pricing. The

following figure 6.3 shows the data flow diagram of our proposed hybrid model. In order to

maximize energy efficiency and provide strategic planning with relevant data, the forecasting

results are finally shared with key players and decision-makers in the energy industry.

6.4 Technology and Processing Unit

 Deep learning models using neural networks have a big problem with computational time.

Using conventional CPUs to train a model can be a laborious operation that frequently takes

many hours. But by utilizing GPU power, we can complete the same operation much more

quickly—typically in a matter of minutes. GPUs are excellent at performing these tasks in

parallel, which leads to considerable speed increases and shorter training times. We used Google

CoLab notebooks to write the Python scripts for each of our machine- learning model

69

Figure 6.3: Data Flow Diagram of our Proposed Model

70

implementations. We run our DL models on TensorFlow 2 by using NVIDIA T4 Tensor Core

GPUs to increase the training speed and reduce computational costs [167].

6.5 Chapter Conclusion

 The data description and selection of input features in DL hybrid methods play a crucial role

in the accuracy and effectiveness of electricity price forecasting. A thorough description of the

data, including its sources, characteristics, and limitations, provides a comprehensive

understanding of the dataset used in the research. The identification and selection of appropriate

input features, particularly those capturing the impact of renewable energy and other relevant

factors, are essential for capturing the complex dynamics of electricity prices. Careful

consideration is given to feature engineering, normalization, and preprocessing techniques to

ensure the quality, relevance, and compatibility of the input data with the DL hybrid models.

Overall, the comprehensive data description and thoughtful selection of input features in DL

hybrid methods provide a solid foundation for accurate and insightful electricity price

forecasting, facilitating informed decision-making in the energy market.

71

Chapter 7: Result Analysis and Validation

This chapter at a glance:

7.1 Chapter Seven in Short

7.2 Experimental Setup

7.3 Model Validation Matrices

7.3.1 MSE

7.3.2 MAE

7.4 Result Analysis and Discussion

7.4.1 Model Loss

7.4.2 Model Performance

7.4.3 Electricity Price Forecasting

7.4.4 Comparative Analysis with Other State-of-art Hybrid Models

7.5 Resolution of Technical Issues

7.6 Challenges, Assumptions and Constraints

7.7 Chapter Conclusion

72

7.1 Chapter Seven in Short

 In this chapter, we present the analysis of results obtained from our electricity price

forecasting models and discuss the process of model validation. After developing and training

our forecasting models, it is essential to assess their performance, evaluate their predictive

accuracy, and validate their ability to generalize to unseen data.

 In parallel to the result analysis, we emphasize the importance of model validation. Model

validation is crucial in assessing the models' generalization capabilities and their ability to

perform well on unseen data. We discuss the methodologies employed for validation. By using

separate validation datasets or splitting the data into training and validation sets, we evaluate

the models' performance in terms of accuracy, robustness, and stability. This chapter provides

a comprehensive examination of the outcomes, allowing us to draw meaningful insights and

conclusions.

7.2 Experimental Setup

 The experimental setup for electricity price forecasting using our proposed four state-of-art

hybrid deep learning hybrid models begins with obtaining a comprehensive and reliable dataset

of historical electricity prices, including 24 relevant input factors. The historical price data is

de-noise and decomposed using the potential VMD method. The dataset is then preprocessed

by cleaning the data, normalizing the features, and splitting it into training, validation, and

testing subsets. Relevant input features are selected, considering factors such as historica l

prices, weather conditions, time of day, day of the week, holidays, and other market indicators.

Later, four deep learning hybrid models are designed, incorporating neural network

architectures namely dense neural networks (DNN), convolutional neural networks (CNNs),

Long Short-Term Memory (LSTM), and Bidirectional Long Short-Term Memory (BiLSTM)

to capture temporal and spatial dependencies in the data. The model is trained using the training

73

dataset, optimizing it with the Adam optimization algorithm and other adjusting

hyperparameters. The trained model is then evaluated using the validation dataset to assess its

performance and fine-tune hyperparameters if necessary. Finally, the model is tested using the

testing dataset for an unbiased evaluation and deployed for day-ahead electricity price

forecasting. The complete experimental setup requires the following technology and

algorithms.

 Machine Learning Framework: TensorFlow 2.0

 Programming Language: Python 3, Pandas, NumPy, Matplotlib, Seaborn

 Processing Unit: GPU (NVIDIA T4 Tensor Core)

 Notebook: Google CoLab

 Dataset Market: MISO

 Dataset Length: 5 years

 Total Inputs: 24 input features

 Data Interpolation Method: Spline

 Data Normalization Method: Z-score

 Data Splitting: Training, Validation and Test

 Window Sliding Method: (i) Window 1 (14+1 days), (ii) Window 2 (7+1 days), and

(iii) Window 3 (1+1 days)

 Deep Learning Neural Network: VMD, DNN, CNN, LSTM, and BiLSTM

 Optimization Algorithms: Adam

 Model Validation and Performance Matrices: MSE, MAE

 Forecasting Timeframe: 24 hours

74

7.3 Model Validation Matrices

In the field of electricity price forecasting, the most widely used metrics to measure the accuracy

of forecasts are mean absolute error (MAE) and mean squared error (MSE). We have used MSE

as a loss function to measure the loss during the training of the DL model and MAE to calculate

the error during the forecasts by the model.

7.3.1 MSE

Mean Squared Error(MSE) is a very popular metric to measure the loss function of a deep

learning model. MSE is utilized to investigate the model loss on training and validation datasets.

To compute the MSE, the differences between the predicted and actual values are squared and

then averaged across the dataset [168]. The squared differences emphasize larger errors, making

it particularly useful for capturing the magnitude of errors in regression tasks. The equation 7.1

to measure MSE is given in below.

 (7.1)

Where n = total data points, Y = original electricity price, and Y-hat = forecasted price by VMD-

DL hybrid model.

7.3.2 MAE

The Mean Absolute Error(MAE) is one of the most frequently employed metrics in the field

of electricity price forecasting to assess the precision of price forecasts. To compute the MAE,

the absolute differences between the predicted and actual values are calculated, and then

averaged across the dataset [169]. The absolute differences provide a measure of the average

magnitude of errors in the predictions. Unlike the squared differences used in Mean Squared

Error (MSE), MAE does not amplify the impact of outliers or large errors. This makes MAE

more robust to extreme values and outliers, making it suitable for situations where the presence

75

of such data points is expected. The error calculation was measured by the following equation

7.2 [169].

 (7.2)

Here, N = total of hours, Xreal = Original price, Xforecasted = forecasted price by VMD-DL

hybrid model.

7.4 Result Analysis and Discussion

Electricity price forecasting is one of the most critical issues in the economic operation of

the power system. High accuracy in the day-ahead price prediction can increase the profitability

of the wholesale electricity market. Our hybrid models on MISO market data shows ignorable

error and impressive performance on electricity price forecasts. In this section, we present the

results of the stare of art VMD-DL hybrid deep learning model on the MISO dataset. To deploy

the VMD-DL hybrid model, we created four different combinations, namely: (i) VMD-DNN,

(ii) VMD-CNN, (iii) VMD-LSTM, and (iv) VMD-BiLSTM.

7.4.1 Model Loss

Loss functions quantify the discrepancy between predicted and actual values and serve as

optimization objectives during model training and validation of the model. We chose MSE as a

measure of the quality of the model. The values are always non-negative, and the ones closer to

zero are always better for MSE. The following figure 7.1, figure 7.2, figure 7.3, and figure 7.4

show the model loss during the training and validation process by each of four hybrid model

combinations. The x-axis represents 50 epochs of training and validation by the hybrid model

and the y-axis represents the loss on each epoch. The loss figure shows that the training loss and

validation loss of each of these model are closer to zero. This ensured that this model was neither

76

under fitting nor overfitting, rather the fitting with the given dataset is within an acceptable

range.

The overall loss during the training and validation period by our three different windowing

techniques and four different combinations of hybrid models are presented in the following table

7.1. We have found that, (Window 1) when we consider 14 previous days to forecast 1 day

ahead electricity prices the model’s overall loss by VMD – DNN is 0.3312, loss by VMD –

CNN is 0.2637, loss by VMD – LSTM is 0.1796, and the loss by VMD – BiLSTM is only

0.1517. All of these loss values are ignorable and significantly indicate a good result by each of

these hybrid models. However, in our study, the VMD-BiLSTM model demonstrates superior

performance compared to the other three models in all window implementations.

Figure 7.1: Training-Validation Data Loss by VMD-DNN Model Figure 7.2: Training-Validation Data Loss by VMD-CNN Model

Figure 7.3: Training-Validation Data Loss by VMD-LSTM Model Figure 7.4: Training-Validation Data Loss by VMD-BiLSTM Model

77

Table 7.1: Model Loss by Different Windowing Techniques and Hybrid Models.

Window Techniques Hybrid Model Model Loss (MSE)

Window 1 (14+1 days) VMD – DNN 0.3312

VMD – CNN 0.2637

VMD – LSTM 0.1796

VMD – BiLSTM 0.1517

Window 2 (7+1 days) VMD – DNN 0.2824

VMD – CNN 0.1956

VMD – LSTM 0.1730

VMD – BiLSTM 0.1318

Window 3 (1+1 days) VMD – DNN 0.1229

VMD – CNN 0.1418

VMD – LSTM 0.1590

VMD – BiLSTM 0.1236

7.4.2 Model Performance

 Machine learning model performance refers to the evaluation and measurement of how well

a deep learning model performs in achieving its intended task or objective. It is important to

note that DL model performance is not solely determined by the model architecture but also

influenced by factors such as the quality and representativeness of the training data, the

availability of labeled or ground truth data for evaluation, and the choice of appropriate hyper

parameters and optimization algorithms during model training. The Mean Absolute Error(MAE)

is one of the most frequently employed metrics in the field of electricity price forecasting to

assess the precision of price forecasts. A lower error means high accuracy in price prediction.

The following figure 7.5, figure 7.6, figure 7.7, and figure 7.8 show the model performance on

the validation and test datasets by each of four hybrid model combinations. The MAE for each

of these hybrid models are almost equal and very close to each other on validation dataset and

testing dataset.

78

Figure 7.5: Model Performance by VMD – DNN Figure 7.6: Model Performance by VMD - CNN

Figure 7.7: Model Performance by VMD – LSTM Figure 7.8: Model Performance by VMD - BiLSTM

The MAE on the test dataset by the three different windowing techniques and four different

combinations of hybrid models are presented in the following table 7.2. We have found that,

(Window 1) when we consider 14 previous days to forecast 1 day ahead electricity prices the

model’s MAE by VMD – DNN is 0.4623, MAE by VMD – CNN is 0.4083, MAE by VMD –

LSTM is 0.3312, and the MAE by VMD – BiLSTM is only 0.3014. All of these MAE values

are ignorable errors and significantly indicate a high accuracy in price forecasting by each of

these hybrid models. However, in our study, the VMD-BiLSTM model demonstrates superior

performance compared to the other three models in all window implementations.

79

Table 7.2: Model Performance by Different Windowing Techniques and Hybrid Models.

Window Techniques Hybrid Model Model Loss (MSE)

Window 1 (14+1 days) VMD - DNN 0.4623

VMD - CNN 0.4083

VMD - LSTM 0.3312

VMD - BiLSTM 0.3014

Window 2 (7+1 days) VMD - DNN 0.4161

VMD - CNN 0.3472

VMD - LSTM 0.3238

VMD - BiLSTM 0.2782

Window 3 (1+1 days) VMD - DNN 0.2710

VMD - CNN 0.2930

VMD - LSTM 0.3077

VMD - BiLSTM 0.2733

7.4.3 Electricity Price Forecasting Using Hybrid Models

In this section, we delve into the electricity price predictions made by the VMD-DL models

on our designated test dataset. As previously mentioned, we have formulated four hybrid model

combinations like the following: (i) VMD-DNN, (ii) VMD-CNN, (iii) VMD-LSTM, and (iv)

VMD-BiLSTM. Within each hybrid model we present three figures, each with five subplots

representing five random windows.

In each of the following figures, the blue portion has different length depending on the

window size. This can be of three kinds, (a) the length of window 1 is the previous 336 hours

(14 days) of price, (b) the length of window 2 is the previous 168 hours (7 days) of price, and

(c) the length of window 3 is the previous 24 hours (1 day) of price. The green circles are 24

hours (1 day) of original data labels, and the orange cross is 24 hours of forecasted price by the

four hybrid models. The green circles and orange forecasts have the same length, i.e., 24 hours

for all three windowing techniques.

80

(i) VMD - DNN

The following figure 7.9, (a) window 1, (b) window 2, and (c) window 3; displays the

predicted outcomes for hourly electricity prices by the VMD – DNN hybrid model on five

randomly selected days from the test dataset. These visual representations demonstrate the

remarkable adherence of the price prediction to the underlying trend, indicating strong

forecasting capabilities of this hybrid model within the MISO energy market.

(a)

(b)

81

(c)

Figure 7.9: A Day-ahead Electricity Price Forecasting using VMD-DNN Hybrid Model, (a)

Window 1 (14 + 1 days), (b) Window 2 (7 + 1 days), and (c) Window 3 (1+1 days)

(ii) VMD - CNN

The following figure 7.10, (a) window 1, (b) window 2, and (c) window 3; displays the

predicted outcomes for hourly electricity prices by the VMD – CNN hybrid model on five

randomly selected days from the test dataset. These visual representations demonstrate the

remarkable adherence of the price prediction to the underlying trend, indicating strong

forecasting capabilities of this hybrid model within the MISO energy market.

82

(a)

(b)

83

(c)

Figure 7.10: A Day-ahead Electricity Price Forecasting using VMD-CNN Hybrid Model, (a)

Window 1 (14 + 1 days), (b) Window 2 (7 + 1 days), and (c) Window 3 (1+1 days)

(iii) VMD - LSTM

The following figure 7.11, (a) window 1, (b) window 2, and (c) window 3; displays the

predicted outcomes for hourly electricity prices by the VMD – LSTM hybrid model on five

randomly selected days from the test dataset. These visual representations demonstrate the

remarkable adherence of the price prediction to the underlying trend, indicating strong

forecasting capabilities of this hybrid model within the MISO energy market.

84

(a)

(b)

85

(c)

Figure 7.11: A Day-ahead Electricity Price Forecasting using VMD-LSTM Hybrid Model, (a)

Window 1 (14 + 1 days), (b) Window 2 (7 + 1 days), and (c) Window 3 (1+1 days)

(iv) VMD - BiLSTM

The following figure 7.12, (a) window 1, (b) window 2, and (c) window 3; displays the

predicted outcomes for hourly electricity prices by the VMD – BiLSTM hybrid model on five

randomly selected days from the test dataset. These visual representations demonstrate the

remarkable adherence of the price prediction to the underlying trend, indicating the strong

forecasting capabilities of this hybrid model within the MISO energy market.

86

(a)

(b)

87

(c)

Figure 7.12: A Day-ahead Electricity Price Forecasting using VMD-BiLSTM Hybrid Model,

(a) Window 1 (14 + 1 days), (b) Window 2 (7 + 1 days), and (c) Window 3 (1+1 days)

 Through this comprehensive result analysis and model validation process, we aim to provide

a thorough evaluation of our electricity price forecasting models. The insights gained from this

analysis enable us to assess the practicality and reliability of the models in real-world scenarios,

offering valuable guidance for decision-makers in the energy market.

7.4.4 Comparative Analysis with Other State-of-art Hybrid Models

 In order to assess the efficiency and performance of various strategies in the field of energy

price forecasting, a comparison with other cutting-edge models is essential. By contrasting our

suggested model with current similar state-of-the-art models in terms of forecast accuracy

(errors) and robustness, our study seeks to add to this analysis. We can discover areas where

our model excels or fails in comparison by doing a thorough analysis that reveals the

88

advantages and drawbacks of other approaches. The following table 7.3 provide a comparative

analysis to other similar model with electricity price forecasting. These are not same model but

similar model with electricity price forecasting hybrid models. The table is delivering a feel of

how good our approaches are comparing with others. In 2022, a team of researchers led by

Anbo Meng utilized a hybrid model called Empirical Wavelet Transform - Attention

Mechanism- Long Short Term Memory - Crisscross Optimization Algorithm (EWT-AM-

LSTM-CSO) to forecast electricity prices in a different market, achieving a Mean Absolute

Error (MAE) of 1.24 [169]. Additionally, they demonstrated an MAE of 3.39 with the VMD-

LSTM hybrid model. Similarly, Xiaoping Xiong and colleagues (2023) achieved an MAE of

1.075 using the ACBFS -VMD-BOHB-LSTM model (Adaptive Copula-Based Feature

Selection – Variational Mode Decomposition - Bayesian Optimization and Hyperband - Long

Short Term Memory) [170]. In the same year (2023), Keke Wang and team achieved an

impressive MAE of 0.506 by employing a combination of five models named RF-IMD-

Table 7.3: A Comparative Analysis with Other State-of-art Hybrid Models

ICEEMD-VMD-BiLSTM (Random Forests - Improved Mahalanobis Distance - Improved

Comprehensive Ensemble Empirical Mode Decomposition - Variational Mode Decomposit ion

 EWT-

AM-

LSTM-

CSO

ACBFS-

VMD-

BOHB-

LSTM

RF-IMD-

ICEEMD

-VMD-

Bi-LSTM

VMD -
DNN

VMD -
CNN

VMD -
LSTM

VMD -
BiLSTM

Anbo Meng et. al (2022) 1.24 3.39

Xiaoping Xiong et. al.
(2023)

 1.075

Keke Wang et. al.
(2023)

 0.506

Our
Approach

Window 1 0.462 0.408 0.331 0.301

Window 2 0.416 0.347 0.324 0.278

Window 3 0.271 0.293 0.308 0.273

89

– Bi Long Short Term Memory) [171]. Comparing our model to these state-of-the-art

approaches, our VMD-BiLSTM model surpasses all others, yielding an outstanding MAE of

0.273.

7.5 Resolution of Technical Issues

 To reduce downtime, avoid disruptions, and maintain peak performance, technical issues

must be fixed quickly and effectively. Technical problems are resolved by locating their

underlying causes, precisely diagnosing the problem, and putting the right fixes in place. We

can reduce possible risks, improve system dependability, and guarantee the ongoing operation

of their technological infrastructure by quickly resolving technical issues. Following are some

resolution of handling technical issues arose with our system.

 Data Integration - After collecting data from different sources putting them all together

in a suitable format for our hybrid model is a very challenging task. We use the Pandas

data frame module to resolve it.

 Machine Learning Framework - We design and develop our hybrid models in

TensorFlow 2 by writing Python scripts in Google CoLab notebooks.

 Scalability - To resolve the scalability issue to work with our big dataset and model

operation we use the Google Cloud platform.

 Processing Speed - Training with a big amount of data is a time-consuming task. We

utilize the power of GPU to resolve it.

 Hyperparameter Tuning – We use dynamic learning rate for our machine learning

model and Adam optimizer to achieve the best performance

 We tackle and resolve the underfitting-overfitting of the model issue by using a totally

separate validation dataset during the training of the model and utilizing MSE as an

evaluation matric.

90

7.6 Challenges, Assumptions and Constraints

 Challenges, assumptions, and constraints are integral elements that influence the planning

and execution of any project or endeavor. Below are some challenges and limitations

encountered in our project.

 Publicly available data is very limited and challenging to collect.

 A large number of data points should not be Missing in the dataset. In our case, it’s only

180 values.

 This hybrid model Forecasts only 24 hours in the future.

 The Test Dataset should be long enough. In our case, it’s around four months but the

longer test dataset is better.

 Computationally advanced GPU must be utilized to reproduce the same results by our

models.

7.7 Chapter Conclusion

 The model validation and result analysis phase in DL hybrid methods for electricity price

forecasting is a critical step in evaluating the performance and reliability of the models.

Through rigorous validation techniques, we can quantify the accuracy, precision, and

robustness of the model’s predictions. Furthermore, result analysis allows for the identifica t ion

of strengths and weaknesses in the DL hybrid models. By analyzing the patterns and trends in

the predicted prices, we can gain a deeper understanding of the underlying factors influenc ing

electricity price dynamics. This analysis enables us to make informed decisions on model

selection, feature engineering, and potential improvements for future research. However, it is

important to acknowledge the limitations and uncertainties associated with the result analysis.

91

Chapter 8: Conclusion and Future Direction

This chapter at a glance:

8.1 Best Practices in Electricity Price Forecasting

8.2 Conclusion and Future Direction

92

8.1 The Best Practices in Electricity Price Forecasting

 The USA electricity markets are evolving to accommodate changing energy landscapes,

emerging technologies, and environmental considerations. The pursuit of a reliable, affordable,

and sustainable electricity supply remains a top priority, driven by market forces, regulatory

policies, and the collective goal of achieving a clean energy future. This research aims to

explore the intersection of NFRs, big data analytics, and electricity price forecasting using a

hybrid model. By addressing critical NFRs such as performance, scalability, and reliability, we

seek to develop a robust and efficient solution that can handle the challenges posed by

analyzing vast amounts of data in real-time. Additionally, we aim to investigate the impact of

incorporating different DL architectures, such as DNNs, CNNs, LSTMs, and BiLSTMs, in

hybrid models for electricity price forecasting.

 Based on the extensive comparison of chapter 4, chapter 5, and chapter 6, it can be concluded

that the VMD – BiLSTM hybrid model outperform all other hybrid models. Through extensive

research on electricity price forecasting (EPF) we outlined some best prictices in the EPF

domain.

(i) Integration of the data from renewable energy sources, like solar, wind, etc., has a great

influence to achieve a notable accuracy on electricity price forecasting.

(ii) Dataset must be long enough, e.g. five years and also recent enough to capture the

impact of the renewable energy sources in the electricity grid market.

(iii)The test dataset comprises at least a year of data.

(iv) We propose, design, and develop four state-of-art hybrid deep-learning models to

forecast electricity prices in the US energy market, namely, (a) VMD-DNN, (b) VMD-

CNN, (d) VMD-LSTM, and (d) VMD-BiLSTM. The VMD – BiLSTM hybrid model

outperform all other hybrid models

93

(v) To ensure data quality, a data de-noising technique like VMD is appreciable to achieve

high accuracy.

(vi) Data interpolation to handle missing data points, and data normalization techniques to

standardize the data is very helpful in price forecasting.

(vii) Increasing amount of time sensitive features have the potential to improve the

accuracy in forecasting approach. We consider 24 time-sensitive input features that can

capture underlying patterns in data to improve electricity price forecasting.

(viii) Sliding Window techniques are significant in machine learning model training

because they enable the model to handle variable- length sequences, capture temporal

dependencies, increase the amount of training data, and improve batch processing.

(ix) A validation dataset is very appreciable to balance the overfitting-underfitting issues of

the model.

8.2 Conclusion and Future Work

Our research on electricity price forecasting using hybrid deep learning (DL) models has

demonstrated promising results in the USA energy market. We have formulated a

comprehensive set of best practices within the domain of electricity price forecasting. Our

analysis encompasses various factors that influence the accuracy of electricity price predictions,

including data windowing techniques and the incorporation of input features that capture the

impact of renewable energy on electricity prices. To ensure the adequacy, reproducibility, and

practicality of our research in the USA energy market, we have developed four advanced hybrid

deep learning models. By combining the strengths of the Variational Mode Decomposition

(VMD) technique with DL architectures such as DNN, CNN, LSTM, and BiLSTM, we have

achieved accurate and reliable price predictions. The VMD-BiLSTM hybrid model has proven

to be particularly effective, surpassing other model combinations in terms of accuracy. Its

94

performance, as measured by the Mean Absolute Error (MAE) metric, stands at 0.2733,

underscoring its proficiency as a price forecaster within the US energy market.

However, there is scope for enhancing the model performance by exploring additional input

features, experimenting with different optimization algorithms, and employing other techniques.

Our current hybrid models do not incorporate any feature optimization or selection methods,

and incorporating such techniques may further improve the model's performance. We remain

committed to advancing our research in the field of electricity price forecasting within the USA

energy market, and we plan to explore datasets from other Independent System Operator (ISO)

markets to broaden our investigation.

95

References

[1] B. Sena, A.P. Allian, & , E.Y. Nakagawa, “Characterizing big data software architectures :

a systematic mapping study”, Brazilian Symposium on Software Components,

Architectures and Reuse, 2017.

[2] I. Gorton, I., & J. Klein, "Distribution, Data, Deployment: Software Architecture

Convergence in Big Data Systems," in IEEE Software, vol. 32, no. 3, pp. 78-85, May-June

2015, doi: 10.1109/MS.2014.51.

[3] V. Dhawan and N. Zanini, “Big data and social media analytics”, Res. Matters A Cambridge

Assess. Publ., no. 18, pp. 36–41, 2014.

[4] A. Heydari, M. Majidi Nezhad, E. Pirshayan, D. Astiaso Garcia, F. Keynia, & L. de Santoli,
“Short-term electricity price and load forecasting in isolated power grids based on

composite neural network and gravitational search optimization algorithm”. Applied
Energy, 2020, 277, 115503. https://doi.org/10.1016/j.apenergy.2020.115503

[5] K. Dragomiretskiy, & D. Zosso, “Variational Mode Decomposition”. IEEE Transactions

on Signal Processing, 2014, 62(3), 531–544. https://doi.org/10.1109/TSP.2013.2288675
[6] J. Chai, Z.-Y. Zhang, S.-Y. Wang, K. K. Lai, & J. Liu, “Aviation fuel demand development

in China.” Energy Economics, 2014, 46, 224–235.
https://doi.org/10.1016/j.eneco.2014.09.007

[7] J. Lago, F. de Ridder, P. Vrancx, & B. de Schutter, “Forecasting day-ahead electricity prices

in Europe: The importance of considering market integration”. Applied Energy, 2018, 211,
890–903. https://doi.org/10.1016/j.apenergy.2017.11.09

[8] U.S. Electricity Grid & Markets. (2022, May 5). Https://Www.Epa.Gov/.Link :
https://www.epa.gov/green-power-markets/us-electricity-grid-markets

[9] S. Hoff (2016, July 20). U.S. electric system is made up of interconnections and balancing

authorities. Https://Www.Eia.Gov/Todayinenergy/Detail.Php?Id=27152.
[10] E. Fasching (2022, September 9). In the first half of 2022, 24% of U.S. electric ity

generation came from renewable sources.
Https://Www.Eia.Gov/Todayinenergy/Detail.Php?Id=53779#:~:Text=In%20the%20first
%20half%20of,Generation%20came%20from%20renewable%20sources&text=In%20the

%20first%20six%20months,From%20our%20Electric%20Power%20Monthly.
[11] C. Brancucci Martinez-Anido, G. Brinkman, B-M. Hodge, “The impact of wind power on

electricity prices.” Renew Energy 2016; 2016, 94:474–87. http://dx.doi.org/
10.1016/j.renene.2016.03.053.

[12] L. Grossi, F. Nan, “Robust forecasting of electricity prices: Simulations, models and the

impact of renewable sources”. Technol Forecast Soc Change 2019; 2019, 141:305–18.
http://dx.doi.org/10.1016/j.techfore.2019.01.006.

[13] K. Maciejowska, “Assessing the impact of renewable energy sources on the electric ity
price level and variability – A quantile regression approach”. Energy
Econ 2020; 2020, 85:104532. http://dx.doi.org/10.1016/j.eneco.2019.104532.

[14] N. Singh, S. Hussain, S. Tiwari, “A PSO-based ANN model for short-term electricity price
forecasting”. In: Advances in Intelligent Systems and Computing, 2018, p. 553–63.

http://dx.doi.org/10.1007/978-981-10-7386-1_47
[15] A. Aggarwal, MM Tripathi, “A novel hybrid approach using wavelet transform, time series

time delay neural network, and error predicting algorithm for

https://doi.org/10.1016/j.apenergy.2017.11.09
https://www.epa.gov/.Link
https://www.epa.gov/green-power-markets/us-electricity-grid-markets
https://www.eia.gov/Todayinenergy/Detail.Php?Id=27152
https://www.eia.gov/Todayinenergy/Detail.Php?Id=53779#:~:Text=In%20the%20first%20half%20of,Generation%20came%20from%20renewable%20sources&text=In%20the%20first%20six%20months,From%20our%20Electric%20Power%20Monthly
https://www.eia.gov/Todayinenergy/Detail.Php?Id=53779#:~:Text=In%20the%20first%20half%20of,Generation%20came%20from%20renewable%20sources&text=In%20the%20first%20six%20months,From%20our%20Electric%20Power%20Monthly
https://www.eia.gov/Todayinenergy/Detail.Php?Id=53779#:~:Text=In%20the%20first%20half%20of,Generation%20came%20from%20renewable%20sources&text=In%20the%20first%20six%20months,From%20our%20Electric%20Power%20Monthly
http://dx.doi.org/
http://dx.doi.org/10.1016/j.techfore.2019.01.006
http://dx.doi.org/10.1016/j.eneco.2019.104532
http://dx.doi.org/10.1007/978-981-10-7386-1_47

96

day-ahead electricity price forecasting”. In: Proceedings of the International Conference
on Computer Applications in Electrical Engineering-Recent Advances, 2017, p. 199–204.

http://dx.doi.org/10.1109/cera.2017.8343326.
[16] Y-Y Hong, C-Y Liu, S-J Chen, W-C Huang, T-H Yu, “Short-term LMP forecasting using

an artificial neural network incorporating empirical mode decomposition”. Int Trans Electr
Energy Syst, 2014;25(9):1952–64. http://dx.doi.org/10.1002/etep.1949.

[17] S. Talari, M. Shafie-khah, G. Osório, F. Wang, A. Heidari, J. Catalão, “Price forecasting of

electricity markets in the presence of high penetration of wind
power generators”. Sustainability 2017; 2017, 9(11):2065.

http://dx.doi.org/10.3390/su9112065
[18] N. Singh, S.R. Mohanty, R.D. Shukla, “Short-term electricity price forecast based on an

environmentally adapted generalized neuron”. Energy, 2017, 125:127–39.

http://dx.doi.org/10.1016/j.energy.2017.02.094.
[19] Y. Zhu, R. Dai, G. Liu, Z. Wang, S. Lu, “Power market price forecasting via deep learning”.

In: Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society,
2018, http://dx.doi.org/10.1109/iecon.2018.8591581.

[20] P. Bento, J. Pombo, M. Calado, S. Mariano, “A bat-optimized neural network and wavelet

transform approach for short-term price forecasting”. Appl Energy,
2018;210:88–97. http://dx.doi.org/10.1016/j.apenergy.2017.10.058.

[21] M.G. Khajeh, A. Maleki, M.A. Rosen, M.H. Ahmadi, “Electricity price forecasting using
neural networks with an improved iterative training algorithm”. Int
J Ambient Energy, 2017; 39(2):147–58.http://dx.doi.org/10.1080/01430750.2016.1269674

[22] M. Afrasiabi, M. Mohammadi, M. Rastegar, A. Kargarian, “Multi-agent microgrid energy
management based on deep learning forecaster”. Energy,

2019;186:115873. http://dx.doi.org/10.1016/j.energy.2019.115873.
[23] D. Wang, H. Luo, O. Grunder, Y. Lin, H. Guo, “Multi-step ahead electricity price

forecasting using a hybrid model based on two-layer decomposition

technique and BP neural network optimized by the firefly algorithm”. Appl Energy,
2017;190:390–407. http://dx.doi.org/10.1016/j.apenergy.2016.12.134

[24] P. Jiang, X. Ma, F. Liu, “A new hybrid model based on data preprocessing and an intelligent
optimization algorithm for electrical power system forecasting”. Math Probl Eng
2015;2015,1–17. http://dx.doi.org/10.1155/2015/815253

[25] M. Gupta and J. F. George, “Toward the development of a big data analytics capability”,

Inf. Manag., 2016, vol. 53, no. 8, pp. 1049–1064.

[26] J. Amudhavel, V. Padmapriya, V. Gowri, K. Lakshmipriya, K. P. Kumar, and B.

Thiyagarajan, “Perspectives, motivations, and implications of big data analytics”, in Proc.

2015 International Conference on Advanced Research in Computer Science Enginee r ing

& Technology (ICARCSET), Unnao, India, 2015, pp. 1–5.

[27] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and analytics ”,

Int. J. Inf. Manage., 2015, vol. 35, no. 2, pp. 137–144.

[28] N. A. Ghani, S. Hamid, I. A. Targio Hashem, and E. Ahmed, “Social media big data

analytics: A survey”, Comput. Human Behav., 2019, vol. 101, pp. 417–428.

[29] L. Cao, “Data science: Challenges and directions”, Communication of the ACM, 2017, vol.

60, no. 8, pp. 59–68.

http://dx.doi.org/10.1109/cera.2017.8343326
http://dx.doi.org/10.1109/iecon.2018.8591581
http://dx.doi.org/10.1016/j.apenergy.2017.10.058
http://dx.doi.org/10.1016/j.energy.2019.115873
http://dx.doi.org/10.1016/j.apenergy.2016.12.134
http://dx.doi.org/10.1155/2015/815253

97

[30] Z. Sun, K. Strang, and R. Li, “Big data with ten big characteristics”, doi:

10.13140/RG.2.2.21798.98886.

[31] B. Sena, A. P. Allian, and E. Y. Nakagawa, “Characterizing big data software architectures :

A systematic mapping study”, in Proc. 11th Brazilian Symposium on Software

Components, Architectures, and Reuse, New York, NY, USA, 2017, pp. 1–10.

[32] D. Laney, “3D data management: Controlling data volume, velocity and variety”, META

Group Research Note, 2001, https://studylib.net/doc/8647594/3d-data-management–

controlling-data-volume–velocity–an....

[33] Gartner, D. Laney, 2022, https://www.gartner.com/en/ experts/douglas- laney.

[34] Gartner, M. A. Beyer, 2022, https://www.gartner.com/en/ experts/mark-beyer.

[35] M. S. Rahman and H. Reza, “Systematic mapping study of non-functional requirements in

big data system”, in Proc. 2020 IEEE International Conference on Electro Information

Technology (EIT), Chicago, IL, USA, 2020, pp. 25–31

[36] M. S. Rahman and H. Reza, “Big data analytics in social media: A triple T (types,

techniques, and taxonomy) study”, in Proc. ITNG 2021 18th International Conference on

Information Technology-New Generations, Las Vegas, NV, USA, 2021, pp 479–487

[37] M. A. Beyer and D. Laney, “The importance of “big data”: A definition”, 2012,

https://www.gartner.com/doc/2057415.

[38] Z. Sun, K. Strang, and R. Li, “Big data with ten big characteristics”, doi:

10.13140/RG.2.2.21798.98886.

[39] N. Dave, “4 major ways in which big data is impacting social media marketing”, 2018,

https://insidebigdata.com/2018/10/06/4- major-ways-big-data- impacting-social-med ia-

marketing/.

[40] S. Liu, “Big data-statistics & facts”, 2022, https://www.statista. com/topics/1464/b ig-

data/#dossier Summary chapter1.

[41] P. Ducange, R. Pecori, and P. Mezzina, “A glimpse on big data analytics in the framework

of marketing strategies”, Soft Comput., 2018, vol. 22, no. 1, pp. 325–342.

[42] “What is big data?–A definition with five Vs”, 2018, https:// blog.unbelievab le-

machine.com/en/what- is-big-datadefinition-five-vs.

[43] D. Garlan, “Software Architecture: A Roadmap”, In the 22nd International Conference on

Software Engineering, Future of Software Engineering Track, (ICSE). ACM, Limerick,

Ireland, 2000, 91–101.

[44] M. Shaw, “The coming-of-age of software architecture research”. Proceedings of the 23rd

International Conference on Software Engineering, 2001, p.656, Toronto, Ontario, Canada.

[45] J. Bosch, “Software Architecture: The Next Step”. In: F. Oquendo, B.C. Warboys, R.

Morrison (eds) Software Architecture. EWSA. Lecture Notes in Computer Science, vol

3047. Springer, Berlin, Heidelberg, 2004.

[46] L. Chung & J. C. Leite Prado, “Conceptual Modeling: Foundations and Applications”.

Berlin, Heidelberg: Springer-Verlag, 2009, 363–379.

[47] M. A. Mabrok, M. Efatmaneshnik & M. J. Ryan, “Integrating nonfunctional requirements

into axiomatic design methodology”. IEEE Systems Journal, 2017, 11(4), 2204 - 2214.

[48] B. Boehm, “Architecture-Based Quality Attribute Synergies and Conflicts.”, IEEE/ACM

2nd International Workshop on Software Architecture and Metrics, 2015, 29-34.

98

[49] I. Noorwali, D. Arruda, N. H. Madhavji, “Understanding Quality Requirements in the

Context of Big Data Systems”. 2nd International Workshop on BIG Data Software

Engineering, 2016, 76-79; ACM New York, USA.

[50] The British Standards Institution (2013), “Systems and software engineering — Systems

and Software Quality Requirements and Evaluation (SQuaRE) — System and software

quality models”, BSI Standards Publications, ISBN 978 0 580 70223 5

[51] J. Estdale & E. Georgiadou, “Applying the ISO/IEC 25010 Quality Models to Software

Product”. EuroSPI 2018. Communications in Computer and Information Science, 2018,

vol 896. Springer

[52] ISO/IEC 25010:2011. (2011). “Systems and software engineering — Systems and

Software Quality Requirements and Evaluation (SQuaRE) — System and software quality

models”. Retrieved from https://www.iso.org/standard/35733.html

[53] F. Ullah, & M. Ali Babar, “Architectural Tactics for BigData Cybersecurity Analyt ics

Systems: A Review.”, Journal of Systems and Software, 2019, 151, 81-118.

[54] S. Haribhau Pawar & Prof. Dr. Devendrasingh Thakore, “An Assessment Model to

Evaluate Quality Attributes in Big Data Quality”, International Journal of Computer

Science Trends and Technology (IJCST), 2017, 5(2).

[55] L Cai & Y Zhu, “The Challenges of Data Quality and Data Quality Assessment in the Big

Data Era.”, Data Science Journal, 2015, 14(2),1-10.

[56] A. Immonen, P. Pääkkönen, E. Ovaska, “Evaluating the Quality of Social Media Data in

Big Data Architecture”; IEEE Access (Volume: 3), 2015, 2028 – 2043.

[57] L. Shiff (2018, April 17). Real-Time vs Batch Processing Vs Stream Processing: What's

The Difference? Retrieved from https://www.bmc.com/blogs/batch-processing-stream-

processing-realtime/

[58] B. Gezeci, A. Tarhan, O. Chouseinoglou, “Internal and external quality in the evolution of

mobile software: an exploratory study in open-source market”. Information and Software

Technology, 2019, DOI: https://doi.org/10.1016/j.infsof.2019.04.002

[59] W. contributors, “Non-functional requirement”. In Wikipedia, The Free Encycloped ia.

Retrieved 08:06, April 23, 2019, from

https://en.wikipedia.org/w/index.php?title=Nonfunctional_requirement&oldid=88929137

0

[60] A. Rashwan, O. Ormandjieva, R. Witte, “Ontology Based Classification of Non-Functiona l

Requirements in Software Specifications: A New Corpus and SVM-Based Classifier”.

IEEE 37th Annual Computer Software and Applications Conference, IEEE Publisher,

Kyoto, Japan, 2013.

[61] W. contributors. “Survivability”. In Wikipedia, The Free Encyclopedia. Retrieved 06:39,

April 26, 2019, from

https://en.wikipedia.org/w/index.php?title=Survivability&oldid=8275468 92

[62] Y. Huang, “Safety-Oriented Software Architecture Design Approach”, Internationa l

Conference on Information Science and Computer Applications (ISCA), 2013.

[63] B. Sena, A. Paula Allian & E. Yumi Nakagawa, “Characterizing Big Data Software

Architectures: A Systematic Mapping Study.”, SBCARS ’17 Proceedings of 11th Brazilian

Symposium on Software Components, Architectures and Reuse, Article 9, 2017.

https://www.iso.org/standard/35733.html
https://www.bmc.com/blogs/batch-processing-stream-processing-realtime/
https://www.bmc.com/blogs/batch-processing-stream-processing-realtime/
https://doi.org/10.1016/j.infsof.2019.04.002
https://en.wikipedia.org/w/index.php?title=Nonfunctional_requirement&oldid=889291370
https://en.wikipedia.org/w/index.php?title=Nonfunctional_requirement&oldid=889291370

99

[64] A. Karen Garateescamilla, A. Hajjam El Hassani, E. Andres, “Big data scalability based on

Spark Machine Learning Libraries”, ICBDR 2019: Proceedings of the 2019 3rd

International Conference on Big Data Research, 2019.

https://doi.org/10.1145/3372454.3372469

[65] D. Sun, S. Gao, “Scalable-DSP: a High Scalable Distributed Storage and Processing

System for Unstructured Data in Big Data Environments”, ACSW '17: Proceedings of the

Australasian Computer Science Week Multiconference, Geelong, Australia, 2017, 41, 1-5.

http://dx.doi.org/10.1145/3014812.3014855

[66] H. Hu, Y. Wen, T. Chua, and X. Li, "Toward Scalable Systems for Big Data Analytics: A

Technology Tutorial," in IEEE Access, 2014, vol. 2, pp. 652- 687, DOI:

10.1109/ACCESS.2014.2332453.

[67] P. V. Paul, K. Monica, and M. Trishanka, “A survey on big data analytics using social media

data”, in Proc. 2017 Innov. Power Adv. Comput. Technol. (i-PACT), Vellore, India, 2017,

pp. 1–4.

[68] P. Grover and A. K. Kar, “Big data analytics: A review on theoretical contributions and

tools used in literature”, Glob. J. Flex. Syst. Manag., 2017, vol. 18, no. 3, pp. 203–229.

[69] J. Amudhavel, V. Padmapriya, V. Gowri, K. Lakshmipriya, K. P. Kumar, and B.

Thiyagarajan, “Perspectives, motivations, and implications of big data analytics”, in Proc.

2015 International Conference on Advanced Research in Computer Science Enginee r ing

& Technology (ICARCSET), Unnao, India, 2015, pp. 1–5

[70] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and analytics ”,

Int. J. Inf. Manage., 2015, vol. 35, no. 2, pp. 137–144.

[71] W. Y. Ayele and G. Juell-Skielse, “Social media analytics and internet of things: Survey”,

in Proc. 1st International Conference on Internet of Things and Machine Learning,

Liverpool, UK, 2017, pp. 1–11

[72] N. A. Ghani, S. Hamid, I. A. Targio Hashem, and E. Ahmed, “Social media big data

analytics: A survey”, Comput. Human Behav., 2019, vol. 101, pp. 417–428.

[73] A. Katal, M. Wazid, and R. H. Goudar, “Big data: Issues, challenges, tools, and good

practices”, in Proc. 2013 6th Int. Conf. Contemp. Comput. (IC3), Noida, India, 2013, pp.

404–409.

[74] P. Ducange, R. Pecori, and P. Mezzina, “A glimpse on big data analytics in the framework

of marketing strategies”, Soft Comput., 2018, vol. 22, no. 1, pp. 325–342.

[75] N. A. Ghani, S. Hamid, I. A. Targio Hashem, and E. Ahmed, “Social media big data

analytics: A survey”, Comput. Human Behav., vol. 101, pp. 417–428, 2019.

[76] V. Dhawan and N. Zanini, “Big data and social media analytics”, Res. Matters A Cambridge

Assess. Publ., no. 18, pp. 36–41, 2014

[77] R. Schroeder, “Big data and the brave new world of social media research”, Big Data Soc.,

vol. 1, no. 2, pp. 1–11, 2014

[78] K. Park, M. C. Nguyen, and H. Won, “Web-based collaborative big data analytics on big

data as a service platform”, in Proc. 2015 7th Int. Conf. Adv. Commun. Technol. (ICACT),

PyeongChang, Republic of Korea, 2015, pp. 564–567

https://doi.org/10.1145/3372454.3372469
http://dx.doi.org/10.1145/3014812.3014855

100

[79] B. Flesch, R. Vatrapu, R. R. Mukkamala, and A. Hussain, “Social set visualizer: A set

theoretical approach to big social data analytics of real-world events”, in Proc. 2015 IEEE

Int. Conf. Big Data, Santa Clara, CA, USA, 2015, pp. 2418–2427, 2015.

[80] R. Vatrapu, R. R. Mukkamala, A. Hussain, and B. Flesch, “Social set analysis: A set

theoretical approach to big data analytics”, IEEE Access, vol. 4, pp. 2542–2571, 2016

[81] C. J. Su and Y. A. Chen, “Social media analytics based product improvement framework”,

in Proc. 2016 IEEE Int. Symp. Comput. Consum. Control. (IS3C), Xi’an, China, 2016, pp.

393–396.

[82] C. J. Aivalis, K. Gatziolis, and A. C. Boucouvalas, “Evolving analytics for e-commerce

applications: Utilizing big data and social media extensions”, in Proc. 2016 Int. Conf.

Telecommun. Multimedia (TEMU), Heraklion, Greece, 2016, pp. 1–6

[83] A. Hennig, A. -S. Amodt, H. Hernes, H. M. Nyg ˚ ardsmoen, ˚ P. A. Larsen, R. R.

Mukkamala, B. Flesch, A. Hussain, and R. K. Vatrapu, “Big social data analytics of

changes in consumer behaviour and opinion of a TV broadcaster”, in Proc. 2016 IEEE Int.

Conf. Big Data, Washington, DC, USA, 2016, pp. 3839–3848.

[84] F. Shaikh, F. Rangrez, A. Khan, and U. Shaikh, “Social media analytics based on big data”,

in Proc. 2017 Int. Conf. Intell. Comput. Control. (I2C2), Coimbatore, India, 2017, pp. 1–

6.

[85] V. Nunavath and M. Goodwin, “The role of artificial intelligence in social media big data

analytics for disaster management - initial results of a systematic literature review”, in Proc.

2018 5th Int. Conf. Inf. Commun. Technol. Disaster Manag. (ICT-DM), Sendai, Japan,

2018, pp. 1–4

[86] M. Ngaboyamahina and S. Yi, “The impact of sentiment analysis on social media to assess

customer satisfaction: Case of Rwanda”, in Proc. 2019 IEEE 4th Int. Conf. Big Data Anal.,

Suzhou, China, 2019, pp. 356–359

[87] P. Ducange, R. Pecori, and P. Mezzina, “A glimpse on big data analytics in the framework

of marketing strategies”, Soft Comput., 2018, vol. 22, no. 1, pp. 325–342.

[88] R. Vatrapu, A. Hussain, N. B. Lassen, R. R. Mukkamala, B. Flesch, and R. Madsen, “Social

set analysis: Four demonstrative case studies”, in Proc. 2015 International Conference on

Social Media & Society, Toronto, Canada, 2015, pp. 1–9

[89] W. Y. Ayele and G. Juell-Skielse, “Social media analytics and internet of things: Survey”,

in Proc. 1st International Conference on Internet of Things and Machine Learning,

Liverpool, UK, 2017, pp. 1–11.

[90] F. Piccialli and J. E. Jung, “Understanding customer experience diffusion on social

networking services by big data analytics”, Mob. Networks Appl., vol. 22, no. 4, pp. 605–

612, 2017

[91] A. Subroto and A. Apriyana, “Cyber risk prediction through social media big data analyt ics

and statistical machine learning”, J. Big Data, 2019, vol. 6, no. 1, p. 50.

[92] M. Conway and D. O’Connor, “Social media, big data, and mental health: Current

advances and ethical implications”, Curr. Opin. Psychol., vol. 9, pp. 77–82, 2016.

[93] I. Lee, “Social media analytics for enterprises: Typology, methods, and processes”, Bus.

Horiz., vol. 61, no. 2, pp. 199–210, 2018.

101

[94] M. Thangaraj and S. Amutha, “Similarity between sentiment analysis and social network

analysis”, Int. J. Sci. Eng. Res., 2017, vol. 8, no. 4, pp. 1526–1532.

[95] R. Toujani and J. Akaichi, “Fuzzy sentiment classification in social network Facebook’

statuses mining”, in Proc. 2016 7th International Conference on Sciences of Electronics,

Technologies of Information and Telecommunications (SETIT), Hammamet, Tunis ia,

2016, pp. 393–397

[96] J. Barnes, L. Øvrelid, and E. Velldal, “Sentiment analysis is not solved! Assessing and

probing sentiment classification”, arXiv preprint arXiv: 1906.05887, 2019.

[97] R. Obiedat, R. Qaddoura, A. M. Al-Zoubi, L. Al-Qaisi, O. Harfoushi, M. Alrefai, and H.

Faris, “Sentiment analysis of customers’ reviews using a hybrid evolutionary SVM-based

approach in an imbalanced data distribution”, IEEE Access, doi:

10.1109/ACCESS.2022.3149482

[98] W. contributors, “Google analytics”, Wikipedia, The free encyclopedia,

https://en.wikipedia.org/w/ index.php?title=Google Analytics&oldid=1071228134, 2022.

[99] Analytics.Google.Com, https://analytics.google.com/analytics/web/provision/#/provis ion,

2022.

[100] U.S. Electricity Grid & Markets. (2022, May 5). Https://Www.Epa.Gov/.Link :

https://www.epa.gov/green-power-markets/us-electricity-grid-markets

[101] S. Hoff (2016, July 20). U.S. electric system is made up of interconnections and balancing

authorities. Https://Www.Eia.Gov/Todayinenergy/Detail.Php?Id=27152.

[102] E. Fasching (2022, September 9). In the first half of 2022, 24% of U.S. electric ity

generation came from renewable sources.

Https://Www.Eia.Gov/Todayinenergy/Detail.Php?Id=53779#:~:Text=In%20the%20first

%20half%20of,Generation%20came%20from%20renewable%20sources&text=In%20the

%20first%20six%20months,From%20our%20Electric%20Power%20Monthly.

[103] J. L. Zhang, Y. J. Zhang, D. Z. Li, Z. F. Tan, & J. F. Ji, “Forecasting day-ahead electric ity

prices using a new integrated model”, International Journal of Electrical Power and Energy

Systems, 2019, 105, 541–548. https://doi.org/10.1016/j.ijepes.2018.08.025

[104] X. Dastile, T. Celik, & M. Potsane, “Statistical and machine learning models in credit

scoring: A systematic literature survey”. Applied Soft Computing Journal, 2020, 91.

https://doi.org/10.1016/j.asoc.2020.106263

[105] S. Pati, “TOP 5 STATISTICAL DATA ANALYSIS TECHNIQUES A DATA SCIENTIST

SHOULD KNOW”, Available at: https://www.analyticsinsight.net/top-5-statistical-data-

analysis-techniques-a-data-scientist-should-know/ (Accessed: November 2, 2022).

[106] B. Uniejewski, J. Nowotarski, R. Weron, “Automated variable selection and shrinkage for

day-ahead electricity price forecasting”. Energies, 2016;9(8):621.

http://dx.doi.org/10.3390/en9080621.

[107] J. Lago, F. De Ridder, B. De Schutter, “Forecasting spot electricity prices: deep learning

approaches and empirical comparison of traditional algorithms” Appl Energy,

2018;221:386–405. http://dx.doi.org/10.1016/j.apenergy.2018.02.069.

[108] F. Ziel, R. Weron, “Day-ahead electricity price forecasting with high-dimensiona l

structures: Univariate vs. multivariate modeling frameworks”, Energy Econ,

2018;70:396–420. http://dx.doi.org/10.1016/j.eneco.2017.12.016.

https://www.epa.gov/.Link
https://www.epa.gov/green-power-markets/us-electricity-grid-markets
https://www.eia.gov/Todayinenergy/Detail.Php?Id=27152
https://www.eia.gov/Todayinenergy/Detail.Php?Id=53779#:~:Text=In%20the%20first%20half%20of,Generation%20came%20from%20renewable%20sources&text=In%20the%20first%20six%20months,From%20our%20Electric%20Power%20Monthly
https://www.eia.gov/Todayinenergy/Detail.Php?Id=53779#:~:Text=In%20the%20first%20half%20of,Generation%20came%20from%20renewable%20sources&text=In%20the%20first%20six%20months,From%20our%20Electric%20Power%20Monthly
https://www.eia.gov/Todayinenergy/Detail.Php?Id=53779#:~:Text=In%20the%20first%20half%20of,Generation%20came%20from%20renewable%20sources&text=In%20the%20first%20six%20months,From%20our%20Electric%20Power%20Monthly
https://doi.org/10.1016/j.ijepes.2018.08.025
https://doi.org/10.1016/j.asoc.2020.106263
http://dx.doi.org/10.3390/en9080621
http://dx.doi.org/10.1016/j.apenergy.2018.02.069
http://dx.doi.org/10.1016/j.eneco.2017.12.016

102

[109] F. Ziel, R. Steinert, S. Husmann, “Forecasting day ahead electricity spot prices: The impact

of the EXAA to other European electricity markets”. Energy Econ, 2015; 51:430–44.

http://dx.doi.org/10.1016/j.eneco.2015.08.005.

[110] F. Ziel, “Forecasting electricity spot prices using lasso: On capturing the autoregressive

intraday structure”, IEEE Trans Power Syst, 2016;31(6):4977–87.

http://dx.doi.org/10.1109/tpwrs.2016.2521545.

[111] B. Uniejewski, R. Weron, “Efficient forecasting of electricity spot prices with expert and

LASSO models”. Energies, 2018;11(8):2039. http://dx.doi.org/10.3390/en11082039.

[112] B. Uniejewski, G. Marcjasz, R. Weron, “Understanding intraday electricity markets:

Variable selection and very short-term price forecasting using LASSO”. Int J Forecast,

2019;35(4):1533–47.

[113] R. Tibshirani, “Regression shrinkage and selection via the lasso”, J R Stat Soc Ser B Stat

Methodol, 1996;267–88. http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x

[114] N. Karakatsani, D. Bunn, “Fundamental and behavioural drivers of electricity price

volatility”, Stud Nonlinear Dyn Econom, 2010;14(4):4.

[115] O. Isaac Abiodun, A. Jantan, A. Esther Omolara, K. Victoria Dada, N. Abd Elatif

Mohamed, & H. Arshad, “State-of-the-art in artificial neural network applications: A
survey”. Heliyon, 2018, 4, 938. Doi: https://doi.org/10.1016/j.heliyon.2018

[116] L. Wang, Z. Zhang and J. Chen, "Short-Term Electricity Price Forecasting With Stacked
Denoising Autoencoders," in IEEE Transactions on Power Systems, 2017, vol. 32, no. 4,

pp. 2673-2681, doi: 10.1109/TPWRS.2016.2628873.

[117] Y. Chen, Y. Wang, J. Ma, Q. Jin, “BRIM: An accurate electricity spot price prediction
scheme-based bidirectional recurrent neural network and integrated market”, Energies,
2019;12(12):2241. http://dx.doi.org/10.3390/en12122241.

[118] S. Zhou, L. Zhou, M. Mao, H. Tai, Y. Wan, “An optimized heterogeneous structure LSTM
network for electricity price forecasting”. IEEE Access, 2019; 7:108161–73.

http://dx.doi.org/10.1109/ACCESS.2019.2932999.

[119] S. Mujeeb, N. Javaid, M. Ilahi, Z. Wadud, F. Ishmanov, M. Afzal, “Deep long short term
memory: A new price and load forecasting scheme for big data in smart cities”,
Sustainability, 2019;11(4):987. http://dx.doi.org/10.3390/su11040987.

[120] J. Xu, R. Baldick, “Day-ahead price forecasting in ERCOT market using neural network

approaches”, In: Proceedings of the tenth ACM International Conference on Future Energy
Systems, 2019, p. 486–91. http://dx.doi.org/10.1145/3307772.3331024.

[121] J-H Meier, S. Schneider, I. Schmidt, P. Schüller, T. Schönfeldt, B. Wanke, “ANN-based
electricity price forecasting under special consideration of time series properties”, In:
Information and Communication Technologies in Education, Research, and Industria l

Applications. Springer International Publishing; 2019, p. 262–75.
http://dx.doi.org/10.1007/978-3-030-13929-2_13.

[122] Z. Chang, Y. Zhang, W. Chen, “Effective Adam-optimized LSTM neural network for
electricity price forecasting”, In Proceedings of the 2018 IEEE International Conference

on Software Engineering and Service Science. 2018, p. 245–8.
http://dx.doi.org/10.1109/icsess.2018.8663710.

http://dx.doi.org/10.1016/j.eneco.2015.08.005
http://dx.doi.org/10.1109/tpwrs.2016.2521545
http://dx.doi.org/10.3390/en11082039
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.3390/en12122241
http://dx.doi.org/10.1109/ACCESS.2019.2932999
http://dx.doi.org/10.3390/su11040987
http://dx.doi.org/10.1145/3307772.3331024
http://dx.doi.org/10.1007/978-3-030-13929-2_13
http://dx.doi.org/10.1109/icsess.2018.8663710

103

[123] R.A. Chinnathambi, S. J. Plathottam, T. Hossen, A. S. Nair, P. Ranganathan, “Deep neural
networks (DNN) for day-ahead electricity price markets”. In: Proceedings of the 2018

IEEE Electrical Power and Energy Conference, 2018, p. 1–6.
http://dx.doi.org/10.1109/epec.2018.8598327.

[124] S. Luo, Y. Weng, “A two-stage supervised learning approach for electricity price
forecasting by leveraging different data sources”, Appl Energy,

2019;242:1497–512. http://dx.doi.org/10.1016/j.apenergy.2019.03.129.

[125] S. Atef, A. B. Eltawil, “A comparative study using deep learning and support vector

regression for electricity price forecasting in smart grids”, In: Proceedings of the 2019
IEEE International Conference on Industrial Engineering and Applications, 2019, p. 603–

7. http://dx.doi.org/10.1109/IEA.2019.8715213.

[126] J. Lago, F. de Ridder, P. Vrancx, & B. de Schutter, “Forecasting day-ahead electric ity

prices in Europe: The importance of considering market integration”, Applied Energy,
2018, 211, 890–903. https://doi.org/10.1016/j.apenergy.2017.11.09

[127] J. L. Zhang, Y. J. Zhang,D. Z. Li, Z.F. Tan, & J.F. Ji, “Forecasting day-ahead electric ity
prices using a new integrated model”, International Journal of Electrical Power and Energy

Systems, 2019, 105, 541–548. https://doi.org/10.1016/j.ijepes.2018.08.025

[128] P. Kazienko, E. Lughofer, & B. Trawiński, “Hybrid and Ensemble Methods in Machine

Learning”, J.UCS Special Issue. In Journal of Universal Computer Science, 2013, Vol. 19,
Issue 4.

[129] Z. Chang, Y. Zhang, W. Chen, “Electricity price prediction based on a hybrid model of
Adam optimized LSTM neural network and wavelet transform”, Energy,

2019;187:115804. http://dx.doi.org/10.1016/j.energy.2019.07.134.

[130] M. Zahid, F. Ahmed, N. Javaid, R. Abbasi, H. Zainab Kazmi, A. Javaid, et al. “Electric ity

price and load forecasting using enhanced convolutional neural network and enhanced
support vector regression in smart grids”, Electronics, 2019; 8(2):122.

http://dx.doi.org/10.3390/electronics8020122.

[131] J. Xu, R. Baldick, “Day-ahead price forecasting in ERCOT market using neural network

approaches”, In: Proceedings of the tenth ACM International Conference on Future Energy
Systems, 2019, p. 486–91. http://dx.doi.org/10.1145/ 3307772.3331024

[132] H. Jahangir, H. Tayarani, S. Baghali, A. Ahmadian, A. Elkamel, M. Aliakbar Golkar, et al.
“A novel electricity price forecasting approach based on dimension reduction strategy and

rough artificial neural networks”, IEEE Trans Ind Inf, 2019; 16(4):2369–81.
http://dx.doi.org/10.1109/TII.2019.2933009.

[133] W. Ahmad, N. Javaid, A. Chand, S.Y.R. Shah, U. Yasin, M. Khan, et al. “Electricity price
forecasting in smart grid: A novel E-CNN model”, In: Web, Artificial Intelligence and

Network Applications. Springer International Publishing; 2019, p. 1132–44.
http://dx.doi.org/10.1007/978-3-030-15035-8_109

[134] D. Aineto, J. Iranzo-Sánchez, L.G. Lemus-Zúñiga, E. Onaindia, J.F. Urchueguía, “On the
influence of renewable energy sources in electricity price forecasting in the Iberian

market”, Energies, 2019;12(11):2082. http://dx.doi.org/10.3390/ en12112082

[135] M. S. Nazar, A. E. Fard, A. Heidari, M. Shafie-khah, J. P. Catalão, “Hybrid model using a

three-stage algorithm for simultaneous load and price forecasting”, Electr Power Syst Res
2018;165:214–28. http://dx.doi.org/10.1016/j.epsr.2018.09.004

http://dx.doi.org/10.1109/epec.2018.8598327
http://dx.doi.org/10.1016/j.apenergy.2019.03.129
http://dx.doi.org/10.1109/IEA.2019.8715213
https://doi.org/10.1016/j.apenergy.2017.11.09
https://doi.org/10.1016/j.ijepes.2018.08.025
http://dx.doi.org/10.1016/j.energy.2019.07.134
http://dx.doi.org/10.3390/electronics8020122
http://dx.doi.org/10.1109/TII.2019.2933009
http://dx.doi.org/10.1007/978-3-030-15035-8_109
http://dx.doi.org/10.1016/j.epsr.2018.09.004

104

[136] Z. Yang, L. Ce, L. Lian, “Electricity price forecasting by a hybrid model, combining
wavelet transform, ARMA, and kernel-based extreme learning machine methods”, Appl

Energy, 2017;190:291–305. http://dx.doi.org/10.1016/j.apenergy.2016.12.

[137] Y-Y Hong, C-Y Liu, S-J Chen, W-C Huang, T-H Yu, “Short-term LMP forecasting using
an artificial neural network incorporating empirical mode decomposition”, Int Trans Electr
Energy Syst, 2014; 25(9):1952–64. http://dx.doi.org/10.1002/ etep.1949.

[138] J-L. Zhang, Y-J. Zhang, D-Z. Li, Z-F. Tan, J-F. Ji, “Forecasting day-ahead electric ity
prices using a new integrated model”. Int J Electr Power Energy Syst, 2019;105:541–8.

http://dx.doi.org/10.1016/j.ijepes.2018.08.025

[139] A.A. Victoire, B. Gobu, S. Jaikumar, N. Arulmozhi, P. Kanimozhi, A. Victoire, “Two-
stage machine learning framework for simultaneous forecasting of price-load in the smart
grid”, In: Proceedings of the 2018 IEEE International Conference on Machine Learning

and Applications, 2018, p. 1081–6. http://dx.doi.org/10. 1109/icmla.2018.00176

[140] S. Lahmiri, “Comparing variational and empirical mode decomposition in forecasting day-
ahead energy prices”, IEEE Syst J, 2017;11(3):1907–10.
http://dx.doi.org/10.1109/jsyst.2015.2487339

[141] A. Pourdaryaei, H. Mokhlis, H. A. Illias, S.H.A. Kaboli, S. Ahmad, “Short-term electric ity
price forecasting via hybrid backtracking search algorithm and ANFIS approach”, IEEE

Access, 2019;7:77674–91. http://dx.doi.org/10.1109/ access.2019.2922420

[142] O. Abedinia, N. Amjady, M. Shafie-khah, J. Catalão, “Electricity price forecast using
Combinatorial Neural Network trained by a new stochastic search method”, Energy
Convers Manage, 2015;105:642–54. http://dx.doi.org/10.1016/j.enconman.2015.08.025

[143] R. Bisoi, P. K. Dash, P. P. Das, “Short-term electricity price forecasting and classifica t ion
in smart grids using optimized multi kernel extreme learning machine”, Neural Comput

Appl, 2018;32:1457–80. http://dx.doi.org/10.1007/s00521-018-3652-5

[144] A. Heydari, M. Majidi Nezhad, E. Pirshayan, D. Astiaso Garcia, F. Keynia, L. De Santoli,
“Short-term electricity price and load forecasting in isolated power grids based on
composite neural network and gravitational search optimization algorithm”, Applied

Energy, Volume 277, 2020. https://doi.org/10.1016/j.apenergy.2020.115503.

[145] G. Memarzadeh, & F. Keynia, “Short-term electricity load and price forecasting by a new
optimal LSTM-NN based prediction algorithm”, Electric Power Systems Research,
Volume 192, 2021. https://doi.org/10.1016/j.epsr.2020.106995.

[146] K. Dragomiretskiy and D. Zosso, "Variational Mode Decomposition," in IEEE
Transactions on Signal Processing, vol. 62, no. 3, pp. 531-544, Feb.1, 2014, doi:

10.1109/TSP.2013.2288675.

[147] Z. Wu, & N. E. Huang, “Ensemble Empirical Mode Decomposition: a Noise-Assisted Data
Analysis Method”, Adv. Data Sci. Adapt. Anal., 2009, 1, 1-41.

[148] O. B. Sezer, M. U. Gudelek, & A. M. Ozbayoglu, “Financial Time Series Forecasting with
Deep Learning: A Systematic Literature Review”, 2019, 2005-2019. ArXiv,

abs/1911.13288.

[149] J. Lago, G. Marcjasz, B. De Schutter, & R. Weron, “Forecasting day-ahead electric ity

prices: A review of state-of-the-art algorithms, best practices, and an open-access
benchmark”, 2020, arXiv. https://doi.org/10.1016/j.apenergy.2021.116983

http://dx.doi.org/10.1016/j.apenergy.2016.12
http://dx.doi.org/10.1016/j.ijepes.2018.08.025
http://dx.doi.org/10
http://dx.doi.org/10.1016/j.enconman.2015.08.025
http://dx.doi.org/10.1007/s00521-018-3652-5
https://doi.org/10.1016/j.apenergy.2020.115503
https://doi.org/10.1016/j.epsr.2020.106995
https://doi.org/10.1016/j.apenergy.2021.116983

105

[150] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to
document recognition," in Proceedings of the IEEE, 1998, vol. 86, no. 11, pp. 2278-2324,

doi: 10.1109/5.726791.

[151] C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 1-9, doi:
10.1109/CVPR.2015.7298594.

[152] S. A. Dwivedi, A. Attry, D. Parekh and K. Singla, "Analysis and forecasting of Time-Series
data using S-ARIMA, CNN and LSTM," 2021 International Conference on Computing,

Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 2021, pp. 131-
136, doi: 10.1109/ICCCIS51004.2021.9397134.

[153] M. Z. Bahri and S. Vahidnia, "Time Series Forecasting Using Smoothing Ensemble
Empirical Mode Decomposition and Machine Learning Techniques," 2022 Internationa l

Conference on Electrical, Computer, Communications and Mechatronics Enginee r ing
(ICECCME), Maldives, Maldives, 2022, pp. 1-6, doi:

10.1109/ICECCME55909.2022.9988336.

[154] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, and K. P. Soman, “Stock

price prediction using LSTM, RNN and CNN-sliding window model,” 2017 Int. Conf.
Adv. Comput. Commun. Informatics, ICACCI 2017, vol. 2017-January, pp. 1643–1647,

2017, doi: 10.1109/ICACCI.2017.8126078.

[155] G. Memarzadeh and F. Keynia, “Short-term electricity load and price forecasting by a new

optimal LSTM-NN based prediction algorithm,” Electr. Power Syst. Res., vol. 192, p.
106995, 2021, doi: 10.1016/j.epsr.2020.106995.

[156] W. Contributors, “Long short-term memory,” en.wikipedia.org, 2021.
https://en.wikipedia.org/w/index.php?title=Long_short-

term_memory&oldid=1005032489 (accessed December 11, 2022).

[157] M. Phi, “Illustrated Guide to LSTM’s and GRU’s: A step by-step explanation, ”

towardsdatascience.com, 2018. https://towardsdatascience.com/illustrated-guide-to- lstms-
and-gru-s-a-step-by-step-explanation-44e9eb85bf21 (accessed December 10, 2022).

[158] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," in IEEE
Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997, doi:

10.1109/78.650093.

[159] G. Chen, D. Zhang, W. Xiang, Z. Guan and J. Huang, "Power Load Forecasting Based on

COA-Bi-LSTM Method," 2022 2nd International Conference on Electrical Enginee r ing
and Control Science (IC2ECS), Nanjing, China, 2022, pp. 842-845, doi:

10.1109/IC2ECS57645.2022.10088113.

[160] U. Sharma and C. Sharma, "Deep Learning Based Prediction Of Weather Using

Hybrid_stacked Bi-Long Short Term Memory," 2022 12th International Conference on
Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 2022, pp. 422-
427, doi: 10.1109/Confluence52989.2022.9734133.

[161] F. Al Machot, H. C. Mayr and S. Ranasinghe, "A windowing approach for activity

recognition in sensor data streams," 2016 Eighth International Conference on Ubiquitous
and Future Networks (ICUFN), Vienna, Austria, 2016, pp. 951-953, doi:
10.1109/ICUFN.2016.7536937.

106

[162] Midcontinent Independent System Operator, Inc. (2022, December 11). Historical Annual
Day-Ahead LMPs (zip). Https://Www.Misoenergy.Org/Markets-and-Operations/Rea l-

Time--Market-Data/Market-
Reports/#nt=%2FMarketReportType%3AHistorical%20LMP%2FMarketReportName%3

AHistorical%20Annual%20Day-
Ahead%20LMPs%20(Zip)&t=10&p=0&s=MarketReportPublished&sd=desc.

[163] LCG Consulting. (2022). MISO (Midwest Independent Transmission System Operator)
Day-Ahead Energy Price.

Http://Energyonline.Com/Data/GenericData.Aspx?DataId=9&MISO___Day-
Ahead_Energy_Price.

[164] Iowa AWOS. (2022). Automated airport weather observations from around the world.
Http://Mesonet.Agron.Iastate.Edu/Request/Download.Phtml?Network=MN_ASOS#.

[165] Wikipedia.org. (2023, July 6). Spline interpolation. Wikipedia.Org. Link:
https://en.wikipedia.org/wiki/Spline_interpolation

[166] S. G. Patro, & K. K. Sahu, “Normalization: A Preprocessing Stage”, 2015, arXiv.
https://doi.org/10.48550/arXiv.1503.06462

[167] tensorflow.org. (2022, September 29). Colab’s ‘Pay As You Go’ Offers More Access to
Powerful NVIDIA Compute for Machine Learning. Tensorflow.Org. Link:

https://blog.tensorflow.org/2022/09/colabs-pay-as-you-go-offers-more-access-to-
powerful-nvidia-compute-for-machine- learning.html

[168] W. contributors, “Mean squared error”. In Wikipedia, The Free Encyclopedia. Retrieved
December 10, 2022, from

https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=1020706752

[169] A. Meng, P. Wang, G. Zhai, C. Zeng, S. Chen, X. Yang, & H. Yin, “Electricity price

forecasting with high penetration of renewable energy using attention-based LSTM
network trained by crisscross optimization. Energy”, 2022, 254, 124212.

https://doi.org/https://doi.org/10.1016/j.energy.2022.124212

[170] X. Xiong, & G. Qing, “A hybrid day-ahead electricity price forecasting framework based

on time series”, Energy, 2023, 264, 126099.
https://doi.org/https://doi.org/10.1016/j.energy.2022.126099

[171] K. Wang, M. Yu, D. Niu, Y. Liang, S. Peng, & X. Xu, “Short-term electricity price
forecasting based on similarity day screening, two-layer decomposition technique and Bi-

LSTM neural network”, Applied Soft Computing, 2023, 136, 110018.
https://doi.org/https://doi.org/10.1016/j.asoc.2023.110018

https://www.misoenergy.org/Markets-and-Operations/Real-Time--Market-Data/Market-Reports/#nt=%2FMarketReportType%3AHistorical%20LMP%2FMarketReportName%3AHistorical%20Annual%20Day-Ahead%20LMPs%20(Zip)&t=10&p=0&s=MarketReportPublished&sd=desc
https://www.misoenergy.org/Markets-and-Operations/Real-Time--Market-Data/Market-Reports/#nt=%2FMarketReportType%3AHistorical%20LMP%2FMarketReportName%3AHistorical%20Annual%20Day-Ahead%20LMPs%20(Zip)&t=10&p=0&s=MarketReportPublished&sd=desc
https://www.misoenergy.org/Markets-and-Operations/Real-Time--Market-Data/Market-Reports/#nt=%2FMarketReportType%3AHistorical%20LMP%2FMarketReportName%3AHistorical%20Annual%20Day-Ahead%20LMPs%20(Zip)&t=10&p=0&s=MarketReportPublished&sd=desc
https://www.misoenergy.org/Markets-and-Operations/Real-Time--Market-Data/Market-Reports/#nt=%2FMarketReportType%3AHistorical%20LMP%2FMarketReportName%3AHistorical%20Annual%20Day-Ahead%20LMPs%20(Zip)&t=10&p=0&s=MarketReportPublished&sd=desc
https://www.misoenergy.org/Markets-and-Operations/Real-Time--Market-Data/Market-Reports/#nt=%2FMarketReportType%3AHistorical%20LMP%2FMarketReportName%3AHistorical%20Annual%20Day-Ahead%20LMPs%20(Zip)&t=10&p=0&s=MarketReportPublished&sd=desc
http://energyonline.com/Data/GenericData.Aspx?DataId=9&MISO___Day-Ahead_Energy_Price
http://energyonline.com/Data/GenericData.Aspx?DataId=9&MISO___Day-Ahead_Energy_Price
http://mesonet.agron.iastate.edu/Request/Download.Phtml?Network=MN_ASOS
https://en.wikipedia.org/wiki/Spline_interpolation
https://doi.org/10.48550/arXiv.1503.06462
https://blog.tensorflow.org/2022/09/colabs-pay-as-you-go-offers-more-access-to-powerful-nvidia-compute-for-machine-learning.html
https://blog.tensorflow.org/2022/09/colabs-pay-as-you-go-offers-more-access-to-powerful-nvidia-compute-for-machine-learning.html
https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=1020706752
https://doi.org/https:/doi.org/10.1016/j.energy.2022.124212
https://doi.org/https:/doi.org/10.1016/j.energy.2022.126099
https://doi.org/https:/doi.org/10.1016/j.asoc.2023.110018

107

Appendix A

Code: Variational Mode Decomposition (VMD)

-*- coding: utf-8 -*-
"""VMD_2023.ipynb
Author : Md. Saifur Rahman

Email: mdsaifur.rahman.1@und.edu
"""

!pip install vmdpy

from vmdpy import VMD #make sure if it imported the package with no problems - if there's
an error, try from vmdpy import VMD
import numpy as np

import pandas as pd
import math

import matplotlib.pyplot as plt

import datetime as dt

#file location path

data = pd.read_csv('./MISO2018.csv')
price_data = data['LMP']

price_data

#Whole year data
#S1 = np.array(price_data[:43176])
S1 = np.array(price_data[:43176])

assign here which timeseries you want to decompose

signal = S1

#+ S2 + S3 + S4 #price_data? temp_data? etc

signal_hat = np.fft.fftshift((np.fft.fft(signal)))

#set VMD parameters
alpha = 20000.0
tau = 0

K = 16
DC = 0

init = 1
tol = 1e-7

signal - the time domain signal(1D vector) to be decomposed

108

alpha - the balancing parameter of the data - fidelity constraint
tau - time - step of the dual ascent(pick 0 for noise - slack)

K - the number of modes to be recovered
DC - true if the first mode is putand kept at DC(0 - freq)

init - 0 = all omegas start at 0 1 = all omegas start uniformly distributed 2 = all omegas
initialized randomly
tol - tolerance of convergence criterion; typically around 1e-6

(u,u_hat,omega)=VMD(signal, alpha, tau, K, DC, init, tol)

plt.figure()

plt.plot(u.T)
plt.title('Decomposed modes')

print(u.T)
print(len(u.T))
plt.show()

type(u.T)

DF = pd.DataFrame(u.T)
DF

DF.to_csv('DecompP.csv')

109

Appendix B

Code: Dense Neural Network (DNN)

-*- coding: utf-8 -*-
"""DNN ElectricityPriceForecasting.ipynb
Author : Md. Saifur Rahman

Email : mdsaifur.rahman.1@und.edu
"""

I use google colab and GPU to run this model
import necessary libraries

import os
import datetime as dt

import IPython
import IPython.display
import matplotlib as mpl

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd
import seaborn as sns
import tensorflow as tf

mpl.rcParams['figure.figsize'] = (8, 6)
mpl.rcParams['axes.grid'] = False

Upload data in co-lab
from google.colab import files

uploaded = files.upload()

A Day-ahead electricity price dataset

dfP = pd.read_csv('MISO2018DP.csv')
dfP.head()

Hourly Temparate dataset
dfT = pd.read_csv('MSP2018.csv')

dfT.head()

Hourly wind-speed dataset
dfS = pd.read_csv('MSPWS2018.csv')
dfS.head()

Convert to datetime format

dfP['Date'] = pd.to_datetime(dfP['Date'])

Convert to datetime format

dfT['Date'] = pd.to_datetime(dfT['Date'])

Convert to datetime format

110

dfS['Date'] = pd.to_datetime(dfS['Date'])

Most of the case, I have found that the data are not sorted by timestamp! So, Sort by date if
not sorted yet!

dfT = dfT.sort_values(by=['Date'])
dfS = dfS.sort_values(by=['Date'])

Remove duplicate rows
dfT = dfT.drop_duplicates()

dfS = dfS.drop_duplicates()

Again, convert to datetime format

dfT['Date'] = pd.to_datetime(dfT['Date'])
dfS['Date'] = pd.to_datetime(dfS['Date'])

Dataset after removing duplicates
dfT = dfT[~dfT.index.duplicated()]

dfS = dfS[~dfS.index.duplicated()]

Convert object datatype to float datatype
dfT['TempF'] = pd.to_numeric(dfT['TempF'],errors = 'coerce')
dfS['WS(mph)'] = pd.to_numeric(dfS['WS(mph)'],errors = 'coerce')

Add missing timestamp row to a dataframe. By default NaN will be added to each value for

newly added timestamp.
#dfT = dfT.set_index('Date').asfreq('1H')
dfT =dfT.resample('1H', on='Date').mean()

dfS =dfS.resample('1H', on='Date').mean()

#Merge both of these data frames in one based on one single timestamp column.
Outer join , This uses the keys from both frames, and NaNs are inserted for missing rows in
both case.

df1 = dfP.merge(dfT, on='Date', how = 'outer') # 483779

Again merge with wind speed dataset
df = df1.merge(dfS, on='Date', how = 'outer')

Check final dataset
df.head()

Add three column. these are hour of the day, days of the month, and boolean value for week
days (0) and week end(1). The day of the week with Monday=0, Sunday=6

df['hour'] = df['Date'].dt.hour
df['week_end'] = ((df['Date'].dt.dayofweek)//5 == 1).astype(int)

df['day_of_month'] = df['Date'].dt.day

Lets check the dataset

df.head()

day of week variable to work on mid-week boolean value

111

df['week_day'] = df['Date'].dt.dayofweek

Tue,Wed, and Thu are mid-week
Fri, Sat, Sun, and Mon are non mid-week day

df.loc[(df.week_day== 1) | (df.week_day== 2) | (df.week_day== 3), 'mid_week'] = 1
df.loc[(df.week_day== 4) | (df.week_day== 5) | (df.week_day== 6) | (df.week_day== 0),
'mid_week'] = 0

remove unnecessary columns from data frame

#df = df.drop(df[['week_day']], axis=1)

check the dataframe again

df.info()

Chcek null values in each column
df.isnull().sum(axis = 0)

Interpolation techniques estimate the missing values by assuming a relationship within a
range of data points.

spline: Estimates values that minimize overall curvature, thus obtaining a smooth surface
passing through the input points.
df['TempF']= df['TempF'].interpolate(option='spline')

df['WS(mph)']= df['WS(mph)'].interpolate(option='spline')

convert format and pop date time
date_time = pd.to_datetime(df.pop('Date'), format='%YYYY/%mm/%dd %H:%M:%S')

Plot few features over time (completet data)
plot_cols = ['LMP']

plot_features = df[plot_cols]
plot_features.index = date_time
_ = plot_features.plot(subplots=True)

Plot for 10 days

plot_features = df[plot_cols][:240]
plot_features.index = date_time[:240]
_ = plot_features.plot(subplots=True)

Plot for 1 days

plot_features = df[plot_cols][:24]
plot_features.index = date_time[:24]
_ = plot_features.plot(subplots=True)

Check the statistics of this dataset

df.describe()
#df.describe().transpose()

Similarly the Date Time column is very useful, but not in this string form. Start by
converting it to seconds

112

timestamp_s = date_time.map(dt.datetime.timestamp)

A simple approach to convert it to a usable signal is to use sin and cos to convert the time to
clear "Time of day" and "Time of year" signals

day = 24*60*60

year = (365.2425)*day

df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day))
df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day))
df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year))

df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year))

Split for the training, validation, and test sets. Note the data is not being randomly shuffled
before splitting

#print(df.columns)
column_indices = {name: i for i, name in enumerate(df.columns)}

#print(column_indices)
n = len(df)
print("Total Data:",n)

2018 to 2022 Master dataset

train_df = df[0:34920] # 34920
val_df = df[34920:41376] # 7896
test_df = df[41376:43176] # 35088 # 1800

check how many for train/validation/test

print("Train Data:",len(train_df))
print("Validation Data:",len(val_df))
print("Test Data:",len(test_df))

Check number of features in the data frame columns (df.shape[1]). Data frame works like

(row, column) = (0,1)
dataframe = df.shape
print(dataframe)

num_features = df.shape[1]

Normalize the data
It is important to scale features before training a neural network. Normalization is a
common way of doing this scaling. Subtract the mean and divide by the standard deviation of

each feature.
The mean and standard deviation should only be computed using the training data so that

the models have no access to the values in the validation and test sets.
Standardization(Z-score normalization) is the subtraction of the mean and then dividing by
its standard deviation.

train_mean = train_df.mean()

train_std = train_df.std()

113

train_df = (train_df - train_mean) / train_std

val_df = (val_df - train_mean) / train_std
test_df = (test_df - train_mean) / train_std

Plot to check
Now peek at the distribution of the features. Price do have long tails, but there are no

obvious errors.
df_std = (df - train_mean) / train_std

df_std = df_std.melt(var_name='Column', value_name='Normalized')
plt.figure(figsize=(12, 6))
ax = sns.violinplot(x='Column', y='Normalized', data=df_std)

_ = ax.set_xticklabels(df.keys(), rotation=90)

Wnidow Generator
Indexes and offsets
Create the WindowGenerator class. The __init__ method includes all the necessary logic

for the input and label indices.

class WindowGenerator():
 def __init__(self, input_width, label_width, shift,
 train_df=train_df, val_df=val_df, test_df=test_df,

 label_columns=None):
 # Store the raw data.

 self.train_df = train_df
 self.val_df = val_df
 self.test_df = test_df

 # Work out the label column indices.

 self.label_columns = label_columns
 if label_columns is not None:
 self.label_columns_indices = {name: i for i, name in

 enumerate(label_columns)}
 self.column_indices = {name: i for i, name in

 enumerate(train_df.columns)} # only consider train dataset

 # Work out the window parameters.

 self.input_width = input_width
 self.label_width = label_width

 self.shift = shift

 self.total_window_size = input_width + shift

 self.input_slice = slice(0, input_width)

 self.input_indices = np.arange(self.total_window_size)[self.input_slice]

 self.label_start = self.total_window_size - self.label_width

 self.labels_slice = slice(self.label_start, None)
 self.label_indices = np.arange(self.total_window_size)[self.labels_slice]

114

 def __repr__(self):
 return '\n'.join([

 f'Total window size: {self.total_window_size}',
 f'Input indices: {self.input_indices}',

 f'Label indices: {self.label_indices}',
 f'Label column name(s): {self.label_columns}'])

window size is 2 weeks + 24 hours
OUT_STEPS = 24

#INPUT_WIDTH = 336 # 14 days
#INPUT_WIDTH = 168 # 7 days
INPUT_WIDTH = 24 # 1 day

w1 = WindowGenerator(input_width=INPUT_WIDTH, label_width=OUT_STEPS,
shift=OUT_STEPS,

 label_columns=['LMP'])
w1

split window

def split_window(self, features):
 inputs = features[:, self.input_slice, :]
 labels = features[:, self.labels_slice, :]

 if self.label_columns is not None:
 labels = tf.stack(

 [labels[:, :, self.column_indices[name]] for name in self.label_columns],
 axis=-1)

 # Slicing doesn't preserve static shape information, so set the shapes manually. This way the
`tf.data.Datasets` are easier to inspect.

 inputs.set_shape([None, self.input_width, None])
 labels.set_shape([None, self.label_width, None])

 return inputs, labels

WindowGenerator.split_window = split_window

Lets see!

Stack three slices, the length of the total window:
#example_window = tf.stack([np.array(train_df[:w1.total_window_size]),

np.array(train_df[100:100+w1.total_window_size]),
np.array(train_df[200:200+w1.total_window_size])])

example_window = tf.stack([np.array(test_df[:w1.total_window_size])])

example_inputs, example_labels = w1.split_window(example_window)

print('All shapes are: (batch, time, features)')

print(f'Window shape: {example_window.shape}')
print(f'Inputs shape: {example_inputs.shape}')

print(f'labels shape: {example_labels.shape}')

115

plot to observe

w1.example = example_inputs, example_labels

design plot methods

def plot(self, model=None, plot_col='LMP', max_subplots=5):
 inputs, labels = self.example

 plt.figure(figsize=(12, 8))
 plot_col_index = self.column_indices[plot_col]
 max_n = min(max_subplots, len(inputs))

 for n in range(max_n):
 plt.subplot(5, 1, n+1)

 plt.ylabel(f'{plot_col} [normed]')
 plt.plot(self.input_indices, inputs[n, :, plot_col_index],
 label='Inputs', marker='.', zorder=-10)

 if self.label_columns:

 label_col_index = self.label_columns_indices.get(plot_col, None)
 else:
 label_col_index = plot_col_index

 if label_col_index is None:

 continue

 plt.scatter(self.label_indices, labels[n, :, label_col_index],

 edgecolors='k', label='Labels', c='#2ca02c', s=64)
 if model is not None:

 predictions = model(inputs)
 plt.scatter(self.label_indices, predictions[n, :, label_col_index],
 marker='X', edgecolors='k', label='Predictions',

 c='#ff7f0e', s=64)

 if n == 0:
 plt.legend()

 plt.xlabel('Time [h]')

WindowGenerator.plot = plot

Create Datasets

This make_dataset method will take a time series DataFrame and convert it to a
tf.data.Dataset of (input_window, label_window) pairs using the

preprocessing.timeseries_dataset_from_array function.

def make_dataset(self, data):

 data = np.array(data, dtype=np.float32)
 print(data.shape)

 ds = tf.keras.preprocessing.timeseries_dataset_from_array(

116

 data=data,
 targets=None,

 sequence_length=self.total_window_size,
 sequence_stride=1,

 shuffle=True, # False
 batch_size= 24) #168) #336) #168)

 ds = ds.map(self.split_window)

 return ds

WindowGenerator.make_dataset = make_dataset

The WindowGenerator object holds training, validation and test data.

Add properties for accessing them as tf.data.Datasets using the above make_dataset
method.

@property
def train(self):

 return self.make_dataset(self.train_df)

@property

def val(self):
 return self.make_dataset(self.val_df)

@property
def test(self):

 return self.make_dataset(self.test_df)

@property
def example(self):
 """Get and cache an example batch of `inputs, labels` for plotting."""

 result = getattr(self, '_example', None)
 if result is None:

 # No example batch was found, so get one from the `.train` dataset
 #result = next(iter(self.train))
 result = next(iter(self.test))

 # And cache it for next time
 self._example = result

 return result

WindowGenerator.train = train

WindowGenerator.val = val
WindowGenerator.test = test

WindowGenerator.example = example

Iterating over a Dataset yields concrete batches

for example_inputs, example_labels in w1.train.take(1):

 print(f'Inputs shape (batch, time, features): {example_inputs.shape}')

117

 print(f'Labels shape (batch, time, features): {example_labels.shape}')

The training procedure into a function. This will enhance reusability

MAX_EPOCHS = 300

#def compile_and_fit(model, window, patience=2):

def compile_and_fit(model, window):
 early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss',

 #patience=patience,
 mode='min')

 model.compile(loss=tf.losses.MeanSquaredError(),
 optimizer=tf.optimizers.Adam(),

 metrics=[tf.metrics.MeanAbsoluteError()]
 #metrics=['accuracy']
)

 history = model.fit(window.train, epochs=MAX_EPOCHS,

 validation_data=window.val,)
 #callbacks=[early_stopping])
 return history

'''# LSTM model design (One o/p)

lstm_model = tf.keras.models.Sequential([
 # Shape [batch, time, features] => [batch, time, lstm_units]
 tf.keras.layers.LSTM(50, return_sequences=False),

 tf.keras.layers.Dropout(0.3),
 tf.keras.layers.Dense(OUT_STEPS,

 kernel_initializer=tf.initializers.zeros),
 #tf.keras.layers.Dropout(0.1),
 tf.keras.layers.Reshape([OUT_STEPS, 1])

])'''

DNN_model = tf.keras.Sequential([
 # Shape: (time, features) => (time*features)
 tf.keras.layers.Flatten(),

 tf.keras.layers.Dense(units=32, activation='relu'),
 tf.keras.layers.Dense(units=32, activation='relu'),

 #tf.keras.layers.Dense(units=1),
 # Add back the time dimension.
 # Shape: (outputs) => (1, outputs)

 #tf.keras.layers.Reshape([1, -1]),
 tf.keras.layers.Dense(OUT_STEPS,kernel_initializer=tf.initializers.zeros),

 tf.keras.layers.Reshape([OUT_STEPS, 1])
])

'''# LSTM model design (single shot all o/p)
lstm_model = tf.keras.models.Sequential([

 # Shape [batch, time, features] => [batch, time, lstm_units]

118

 #With return_sequences=True, the model can be trained on 336 hours of data at a time.
 tf.keras.layers.LSTM(50, return_sequences=False),

 tf.keras.layers.Dropout(0.3),
 tf.keras.layers.Dense(OUT_STEPS*num_features,

 kernel_initializer=tf.initializers.zeros),
 #tf.keras.layers.Dropout(0.1),
 tf.keras.layers.Reshape([OUT_STEPS, num_features])

])'''

print('Input shape:', w1.example[0].shape)
print('Output shape:', DNN_model(w1.example[0]).shape)

Start Training the model
val_performance = {}

performance = {}

history = compile_and_fit(DNN_model, w1)

IPython.display.clear_output()

val_performance['DNN'] = DNN_model.evaluate(w1.val)
performance['DNN'] = DNN_model.evaluate(w1.test, verbose=2)

Plot model loss
plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])
plt.title("Model Loss")
plt.xlabel("epochs")

plt.ylabel("loss")
plt.legend(['train', 'val'], loc='upper right')

lets check the prediction and compare with original price
w1.plot(DNN_model)

Performance bar chart

x = np.arange(len(performance))
width = 0.3

metric_name = 'mean_absolute_error'
metric_index = DNN_model.metrics_names.index('mean_absolute_error')

val_mae = [v[metric_index] for v in val_performance.values()]
test_mae = [v[metric_index] for v in performance.values()]

plt.ylabel('mean_absolute_error [LMP, normalized]')
plt.bar(x - 0.17, val_mae, width, label='Validation')

plt.bar(x + 0.17, test_mae, width, label='Test')

plt.xticks(ticks=x, labels=performance.keys(),

 rotation=45)
_ = plt.legend()

119

Let's get MAE of this model
for name, value in performance.items():

 print(f'{name:12s}: {value[1]:0.4f}')

DNN_model.summary()

Save the model
import os.path

#if os.path.isfile() is False:
DNN_model.save('DNN1 300 epochs.h5',overwrite=True)

120

Appendix C

Code: Convolutional Neural Network (CNN)

-*- coding: utf-8 -*-
"""CNN_ElectricityPriceForecasting_LSTM.ipynb
Author: Md. Saifur Rahman

Email: mdsaifur.rahman.1@und.edu
"""

I use google colab and GPU to run this model
import necessary libraries

import os
import datetime as dt

import IPython
import IPython.display
import matplotlib as mpl

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd
import seaborn as sns
import tensorflow as tf

mpl.rcParams['figure.figsize'] = (8, 6)
mpl.rcParams['axes.grid'] = False

Upload data in co-lab

from google.colab import files
uploaded = files.upload()

A Day-ahead electricity price dataset
dfP = pd.read_csv('MISO2018DP.csv')

dfP.head()

Hourly Temparate dataset

dfT = pd.read_csv('MSP2018.csv')
dfT.head()

Hourly wind-speed dataset
dfS = pd.read_csv('MSPWS2018.csv')

dfS.head()

Convert to datetime format
dfP['Date'] = pd.to_datetime(dfP['Date'])

Convert to datetime format
dfT['Date'] = pd.to_datetime(dfT['Date'])

121

Convert to datetime format
dfS['Date'] = pd.to_datetime(dfS['Date'])

Most of the case, I have found that the data are not sorted by timestamp! So, Sort by date if

not sorted yet!
dfT = dfT.sort_values(by=['Date'])
dfS = dfS.sort_values(by=['Date'])

Remove duplicate rows

dfT = dfT.drop_duplicates()
dfS = dfS.drop_duplicates()

Again, convert to datetime format
dfT['Date'] = pd.to_datetime(dfT['Date'])

dfS['Date'] = pd.to_datetime(dfS['Date'])

Dataset after removing duplicates

dfT = dfT[~dfT.index.duplicated()]
dfS = dfS[~dfS.index.duplicated()]

Convert object datatype to float datatype
dfT['TempF'] = pd.to_numeric(dfT['TempF'],errors = 'coerce')

dfS['WS(mph)'] = pd.to_numeric(dfS['WS(mph)'],errors = 'coerce')

Add missing timestamp row to a dataframe. By default NaN will be added to each value for
newly added timestamp.
#dfT = dfT.set_index('Date').asfreq('1H')

dfT =dfT.resample('1H', on='Date').mean()
dfS =dfS.resample('1H', on='Date').mean()

#Merge both of these data frames in one based on one single timestamp column.
Outer join , This uses the keys from both frames, and NaNs are inserted for missing rows in

both case.
df1 = dfP.merge(dfT, on='Date', how = 'outer') # 483779

Again merge with wind speed dataset
df = df1.merge(dfS, on='Date', how = 'outer')

Check final dataset

df.head()

Add three column. these are hour of the day, days of the month, and boolean value for week

days (0) and week end(1). The day of the week with Monday=0, Sunday=6
df['hour'] = df['Date'].dt.hour

df['week_end'] = ((df['Date'].dt.dayofweek)//5 == 1).astype(int)
df['day_of_month'] = df['Date'].dt.day

Lets check the dataset
df.head()

122

day of week variable to work on mid-week boolean value
df['week_day'] = df['Date'].dt.dayofweek

Tue,Wed, and Thu are mid-week

Fri, Sat, Sun, and Mon are non mid-week day
df.loc[(df.week_day== 1) | (df.week_day== 2) | (df.week_day== 3), 'mid_week'] = 1
df.loc[(df.week_day== 4) | (df.week_day== 5) | (df.week_day== 6) | (df.week_day== 0),

'mid_week'] = 0

remove unnecessary columns from data frame
df = df.drop(df[['week_day']], axis=1)

check the dataframe again
df.info()

Chcek null values in each column
df.isnull().sum(axis = 0)

Interpolation techniques estimate the missing values by assuming a relationship within a

range of data points.
spline: Estimates values that minimize overall curvature, thus obtaining a smooth surface
passing through the input points.

df['TempF']= df['TempF'].interpolate(option='spline')
df['WS(mph)']= df['WS(mph)'].interpolate(option='spline')

convert format and pop date time
date_time = pd.to_datetime(df.pop('Date'), format='%YYYY/%mm/%dd %H:%M:%S')

Plot few features over time (completet data)

plot_cols = ['LMP']
plot_features = df[plot_cols]
plot_features.index = date_time

_ = plot_features.plot(subplots=True)

Plot for 10 days
plot_features = df[plot_cols][:240]
plot_features.index = date_time[:240]

_ = plot_features.plot(subplots=True)

Plot for 1 days
plot_features = df[plot_cols][:24]
plot_features.index = date_time[:24]

_ = plot_features.plot(subplots=True)

Check the statistics of this dataset
df.describe()
#df.describe().transpose()

Similarly the Date Time column is very useful, but not in this string form. Start by

converting it to seconds

123

timestamp_s = date_time.map(dt.datetime.timestamp)

A simple approach to convert it to a usable signal is to use sin and cos to convert the time to

clear "Time of day" and "Time of year" signals

day = 24*60*60
year = (365.2425)*day

df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day))
df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day))

df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year))
df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year))

Split for the training, validation, and test sets. Note the data is not being randomly shuffled
before splitting

#print(df.columns)

column_indices = {name: i for i, name in enumerate(df.columns)}
#print(column_indices)
n = len(df)

print("Total Data:",n)

2018 to 2022 Master dataset
train_df = df[0:34920] # 34920
val_df = df[34920:41376] # 7896

test_df = df[41376:43176] # 35088 # 1800

check how many for train/validation/test
print("Train Data:",len(train_df))
print("Validation Data:",len(val_df))

print("Test Data:",len(test_df))

Check number of features in the data frame columns (df.shape[1]). Data frame works like
(row, column) = (0,1)
dataframe = df.shape

print(dataframe)
num_features = df.shape[1]

Normalize the data
It is important to scale features before training a neural network. Normalization is a

common way of doing this scaling. Subtract the mean and divide by the standard deviation of
each feature.

The mean and standard deviation should only be computed using the training data so that
the models have no access to the values in the validation and test sets.
Standardization(Z-score normalization) is the subtraction of the mean and then dividing by

its standard deviation.

train_mean = train_df.mean()

124

train_std = train_df.std()

train_df = (train_df - train_mean) / train_std
val_df = (val_df - train_mean) / train_std

test_df = (test_df - train_mean) / train_std

Plot to check

Now peek at the distribution of the features. Price do have long tails, but there are no
obvious errors.

df_std = (df - train_mean) / train_std
df_std = df_std.melt(var_name='Column', value_name='Normalized')
plt.figure(figsize=(12, 6))

ax = sns.violinplot(x='Column', y='Normalized', data=df_std)
_ = ax.set_xticklabels(df.keys(), rotation=90)

Wnidow Generator
Indexes and offsets

Create the WindowGenerator class. The __init__ method includes all the necessary logic
for the input and label indices.

class WindowGenerator():
 def __init__(self, input_width, label_width, shift,

 train_df=train_df, val_df=val_df, test_df=test_df,
 label_columns=None):

 # Store the raw data.
 self.train_df = train_df
 self.val_df = val_df

 self.test_df = test_df

 # Work out the label column indices.
 self.label_columns = label_columns
 if label_columns is not None:

 self.label_columns_indices = {name: i for i, name in
 enumerate(label_columns)}

 self.column_indices = {name: i for i, name in
 enumerate(train_df.columns)} # only consider train dataset

 # Work out the window parameters.
 self.input_width = input_width

 self.label_width = label_width
 self.shift = shift

 self.total_window_size = input_width + shift

 self.input_slice = slice(0, input_width)
 self.input_indices = np.arange(self.total_window_size)[self.input_slice]

 self.label_start = self.total_window_size - self.label_width
 self.labels_slice = slice(self.label_start, None)

 self.label_indices = np.arange(self.total_window_size)[self.labels_slice]

125

 def __repr__(self):

 return '\n'.join([
 f'Total window size: {self.total_window_size}',

 f'Input indices: {self.input_indices}',
 f'Label indices: {self.label_indices}',
 f'Label column name(s): {self.label_columns}'])

window size is 2 weeks + 24 hours

OUT_STEPS = 24
#INPUT_WIDTH = 336
#INPUT_WIDTH = 168

INPUT_WIDTH = 24
w1 = WindowGenerator(input_width=INPUT_WIDTH, label_width=OUT_STEPS,

shift=OUT_STEPS,
 label_columns=['LMP'])
w1

split window

def split_window(self, features):
 inputs = features[:, self.input_slice, :]

 labels = features[:, self.labels_slice, :]
 if self.label_columns is not None:

 labels = tf.stack(
 [labels[:, :, self.column_indices[name]] for name in self.label_columns],
 axis=-1)

 # Slicing doesn't preserve static shape information, so set the shapes manually. This way the

`tf.data.Datasets` are easier to inspect.
 inputs.set_shape([None, self.input_width, None])
 labels.set_shape([None, self.label_width, None])

 return inputs, labels

WindowGenerator.split_window = split_window

Lets see!
Stack three slices, the length of the total window:

#example_window = tf.stack([np.array(train_df[:w1.total_window_size]),
np.array(train_df[100:100+w1.total_window_size]),
np.array(train_df[200:200+w1.total_window_size])])

example_window = tf.stack([np.array(test_df[:w1.total_window_size])])

example_inputs, example_labels = w1.split_window(example_window)

print('All shapes are: (batch, time, features)')
print(f'Window shape: {example_window.shape}')

print(f'Inputs shape: {example_inputs.shape}')

126

print(f'labels shape: {example_labels.shape}')

plot to observe

w1.example = example_inputs, example_labels

design plot methods

def plot(self, model=None, plot_col='LMP', max_subplots=5):

 inputs, labels = self.example
 plt.figure(figsize=(12, 8))
 plot_col_index = self.column_indices[plot_col]

 max_n = min(max_subplots, len(inputs))
 for n in range(max_n):

 plt.subplot(5, 1, n+1)
 plt.ylabel(f'{plot_col} [normed]')
 plt.plot(self.input_indices, inputs[n, :, plot_col_index],

 label='Inputs', marker='.', zorder=-10)

 if self.label_columns:
 label_col_index = self.label_columns_indices.get(plot_col, None)
 else:

 label_col_index = plot_col_index

 if label_col_index is None:
 continue

 plt.scatter(self.label_indices, labels[n, :, label_col_index],
 edgecolors='k', label='Labels', c='#2ca02c', s=64)

 if model is not None:
 predictions = model(inputs)
 plt.scatter(self.label_indices, predictions[n, :, label_col_index],

 marker='X', edgecolors='k', label='Predictions',
 c='#ff7f0e', s=64)

 if n == 0:
 plt.legend()

 plt.xlabel('Time [h]')

WindowGenerator.plot = plot

Create Datasets
This make_dataset method will take a time series DataFrame and convert it to a

tf.data.Dataset of (input_window, label_window) pairs using the
preprocessing.timeseries_dataset_from_array function.

def make_dataset(self, data):
 data = np.array(data, dtype=np.float32)

 print(data.shape)

127

 ds = tf.keras.preprocessing.timeseries_dataset_from_array(
 data=data,

 targets=None,
 sequence_length=self.total_window_size,

 sequence_stride=1,
 shuffle=True, # False
 batch_size= 24) #168) #336) #168)

 ds = ds.map(self.split_window)

 return ds

WindowGenerator.make_dataset = make_dataset

The WindowGenerator object holds training, validation and test data.
Add properties for accessing them as tf.data.Datasets using the above make_dataset
method.

@property

def train(self):
 return self.make_dataset(self.train_df)

@property
def val(self):

 return self.make_dataset(self.val_df)

@property

def test(self):
 return self.make_dataset(self.test_df)

@property
def example(self):

 """Get and cache an example batch of `inputs, labels` for plotting."""
 result = getattr(self, '_example', None)

 if result is None:
 # No example batch was found, so get one from the `.train` dataset
 #result = next(iter(self.train))

 result = next(iter(self.test))
 # And cache it for next time

 self._example = result
 return result

WindowGenerator.train = train
WindowGenerator.val = val

WindowGenerator.test = test
WindowGenerator.example = example

Iterating over a Dataset yields concrete batches

for example_inputs, example_labels in w1.train.take(1):

128

 print(f'Inputs shape (batch, time, features): {example_inputs.shape}')
 print(f'Labels shape (batch, time, features): {example_labels.shape}')

The training procedure into a function. This will enhance reusability

MAX_EPOCHS = 300

#def compile_and_fit(model, window, patience=2):
def compile_and_fit(model, window):

 early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss',
 #patience=patience,
 mode='min')

 model.compile(loss=tf.losses.MeanSquaredError(),

 optimizer=tf.optimizers.Adam(),
 metrics=[tf.metrics.MeanAbsoluteError()]
 #metrics=['accuracy']

)

 history = model.fit(window.train, epochs=MAX_EPOCHS,
 validation_data=window.val,)
 #callbacks=[early_stopping])

 return history

'''CONV_WIDTH = 24
conv_model = tf.keras.Sequential([
 # Shape [batch, time, features] => [batch, CONV_WIDTH, features]

 tf.keras.layers.Lambda(lambda x: x[:, -CONV_WIDTH:, :]),
 # Shape => [batch, 1, conv_units]

 tf.keras.layers.Conv1D(256, activation='relu', kernel_size=(CONV_WIDTH)),
 # Shape => [batch, 1, out_steps*features]
 tf.keras.layers.Dense(OUT_STEPS*num_features,

 kernel_initializer=tf.initializers.zeros()),
 # Shape => [batch, out_steps, features]

 tf.keras.layers.Reshape([OUT_STEPS, num_features])
])'''

CONV_WIDTH = 24 #168 # 336
conv_model = tf.keras.Sequential([

 # Shape [batch, time, features] => [batch, CONV_WIDTH, features]
 tf.keras.layers.Lambda(lambda x: x[:, -CONV_WIDTH:, :]),
 # Shape => [batch, 1, conv_units]

 tf.keras.layers.Conv1D(256, activation='relu', kernel_size=(CONV_WIDTH)),
 # Shape => [batch, 1, out_steps*features]

 tf.keras.layers.Dense(OUT_STEPS,
 kernel_initializer=tf.initializers.zeros()),
 # Shape => [batch, out_steps, features]

 tf.keras.layers.Reshape([OUT_STEPS, 1])
])

129

print('Input shape:', w1.example[0].shape)
print('Output shape:', conv_model(w1.example[0]).shape)

Start Training the model

val_performance = {}
performance = {}

history = compile_and_fit(conv_model, w1)

IPython.display.clear_output()
val_performance['CNN'] = conv_model.evaluate(w1.val)
performance['CNN'] = conv_model.evaluate(w1.test, verbose=2)

Plot model loss

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title("Model Loss")

plt.xlabel("epochs")
plt.ylabel("loss")

plt.legend(['train', 'val'], loc='upper right')

w1.plot(conv_model)

Performance bar chart

x = np.arange(len(performance))
width = 0.3

metric_name = 'mean_absolute_error'
metric_index = conv_model.metrics_names.index('mean_absolute_error')

val_mae = [v[metric_index] for v in val_performance.values()]
test_mae = [v[metric_index] for v in performance.values()]

plt.ylabel('mean_absolute_error [LMP, normalized]')
plt.bar(x - 0.17, val_mae, width, label='Validation')

plt.bar(x + 0.17, test_mae, width, label='Test')

plt.xticks(ticks=x, labels=performance.keys(),

 rotation=45)
_ = plt.legend()

Let's get MAE of this model
for name, value in performance.items():

 print(f'{name:12s}: {value[1]:0.4f}')

conv_model.summary()

Save the model
import os.path

#if os.path.isfile() is False:

130

conv_model.save('CNN1 300 epoches.h5',overwrite=True)

131

Appendix D

Code: Long - Short Term Memory (LSTM)

-*- coding: utf-8 -*-
"""ElectricityPriceForecasting_LSTM.ipynb
Author: Md. Saifur Rahman

Email: mdsaifur.rahman.1@und.edu
"""

I use google colab and GPU to run this model
import necessary libraries

import os
import datetime as dt

import IPython
import IPython.display
import matplotlib as mpl

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd
import seaborn as sns
import tensorflow as tf

mpl.rcParams['figure.figsize'] = (8, 6)

mpl.rcParams['axes.grid'] = False

'''# Upload data in co-lab

from google.colab import files
uploaded = files.upload()'''

A Day-ahead electricity price dataset
dfP = pd.read_csv('MISO2018DP.csv')

dfP.head()

Hourly Temparate dataset
dfT = pd.read_csv('MSP2018.csv')
dfT.head()

Hourly wind-speed dataset

dfS = pd.read_csv('MSPWS2018.csv')
dfS.head()

Convert to datetime format
dfP['Date'] = pd.to_datetime(dfP['Date'])

Convert to datetime format
dfT['Date'] = pd.to_datetime(dfT['Date'])

132

Convert to datetime format
dfS['Date'] = pd.to_datetime(dfS['Date'])

Most of the case, I have found that the data are not sorted by timestamp! So, Sort by date if

not sorted yet!
dfT = dfT.sort_values(by=['Date'])
dfS = dfS.sort_values(by=['Date'])

Remove duplicate rows

dfT = dfT.drop_duplicates()
dfS = dfS.drop_duplicates()

Again, convert to datetime format
dfT['Date'] = pd.to_datetime(dfT['Date'])

dfS['Date'] = pd.to_datetime(dfS['Date'])

Dataset after removing duplicates

dfT = dfT[~dfT.index.duplicated()]
dfS = dfS[~dfS.index.duplicated()]

Convert object datatype to float datatype
dfT['TempF'] = pd.to_numeric(dfT['TempF'],errors = 'coerce')

dfS['WS(mph)'] = pd.to_numeric(dfS['WS(mph)'],errors = 'coerce')

Add missing timestamp row to a dataframe. By default NaN will be added to each value for
newly added timestamp.
#dfT = dfT.set_index('Date').asfreq('1H')

dfT =dfT.resample('1H', on='Date').mean()
dfS =dfS.resample('1H', on='Date').mean()

#Merge both of these data frames in one based on one single timestamp column.
Outer join , This uses the keys from both frames, and NaNs are inserted for missing rows in

both case.
df1 = dfP.merge(dfT, on='Date', how = 'outer') # 483779

Again merge with wind speed dataset
df = df1.merge(dfS, on='Date', how = 'outer')

Check final dataset

df.head()

Add three column. these are hour of the day, days of the month, and boolean value for week

days (0) and week end(1). The day of the week with Monday=0, Sunday=6
df['hour'] = df['Date'].dt.hour

df['week_end'] = ((df['Date'].dt.dayofweek)//5 == 1).astype(int)
df['day_of_month'] = df['Date'].dt.day

Lets check the dataset
df.head()

133

day of week variable to work on mid-week boolean value
df['week_day'] = df['Date'].dt.dayofweek

Tue,Wed, and Thu are mid-week

Fri, Sat, Sun, and Mon are non mid-week day
df.loc[(df.week_day== 1) | (df.week_day== 2) | (df.week_day== 3), 'mid_week'] = 1
df.loc[(df.week_day== 4) | (df.week_day== 5) | (df.week_day== 6) | (df.week_day== 0),

'mid_week'] = 0

remove unnecessary columns from data frame
#df = df.drop(df[['week_day']], axis=1)

check the dataframe again
df.info()

Chcek null values in each column
df.isnull().sum(axis = 0)

Interpolation techniques estimate the missing values by assuming a relationship within a

range of data points.
spline: Estimates values that minimize overall curvature, thus obtaining a smooth surface
passing through the input points.

df['TempF']= df['TempF'].interpolate(option='spline')
df['WS(mph)']= df['WS(mph)'].interpolate(option='spline')

convert format and pop date time
date_time = pd.to_datetime(df.pop('Date'), format='%YYYY/%mm/%dd %H:%M:%S')

Plot few features over time (completet data)

plot_cols = ['LMP']
plot_features = df[plot_cols]
plot_features.index = date_time

_ = plot_features.plot(subplots=True)

Plot for 10 days
plot_features = df[plot_cols][:240]
plot_features.index = date_time[:240]

_ = plot_features.plot(subplots=True)

Plot for 1 days
plot_features = df[plot_cols][:24]
plot_features.index = date_time[:24]

_ = plot_features.plot(subplots=True)

Check the statistics of this dataset
df.describe()
#df.describe().transpose()

Similarly the Date Time column is very useful, but not in this string form. Start by

converting it to seconds

134

timestamp_s = date_time.map(dt.datetime.timestamp)

A simple approach to convert it to a usable signal is to use sin and cos to convert the time to

clear "Time of day" and "Time of year" signals

day = 24*60*60
year = (365.2425)*day

df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day))
df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day))

df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year))
df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year))

Split for the training, validation, and test sets. Note the data is not being randomly shuffled
before splitting

#print(df.columns)

column_indices = {name: i for i, name in enumerate(df.columns)}
#print(column_indices)
n = len(df)

print("Total Data:",n)

2018 to 2022 Master dataset
train_df = df[0:34920] # 34920
val_df = df[34920:41376] # 7896

test_df = df[41376:43176] # 35088 # 1800

check how many for train/validation/test
print("Train Data:",len(train_df))
print("Validation Data:",len(val_df))

print("Test Data:",len(test_df))

Check number of features in the data frame columns (df.shape[1]). Data frame works like
(row, column) = (0,1)
dataframe = df.shape

print(dataframe)
num_features = df.shape[1]

Normalize the data
It is important to scale features before training a neural network. Normalization is a

common way of doing this scaling. Subtract the mean and divide by the standard deviation of
each feature.

The mean and standard deviation should only be computed using the training data so that
the models have no access to the values in the validation and test sets.
Standardization(Z-score normalization) is the subtraction of the mean and then dividing by

its standard deviation.

train_mean = train_df.mean()

135

train_std = train_df.std()

train_df = (train_df - train_mean) / train_std
val_df = (val_df - train_mean) / train_std

test_df = (test_df - train_mean) / train_std

Plot to check

Now peek at the distribution of the features. Price do have long tails, but there are no
obvious errors.

df_std = (df - train_mean) / train_std
df_std = df_std.melt(var_name='Column', value_name='Normalized')
plt.figure(figsize=(12, 6))

ax = sns.violinplot(x='Column', y='Normalized', data=df_std)
_ = ax.set_xticklabels(df.keys(), rotation=90)

Wnidow Generator
Indexes and offsets

Create the WindowGenerator class. The __init__ method includes all the necessary logic
for the input and label indices.

class WindowGenerator():
 def __init__(self, input_width, label_width, shift,

 train_df=train_df, val_df=val_df, test_df=test_df,
 label_columns=None):

 # Store the raw data.
 self.train_df = train_df
 self.val_df = val_df

 self.test_df = test_df

 # Work out the label column indices.
 self.label_columns = label_columns
 if label_columns is not None:

 self.label_columns_indices = {name: i for i, name in
 enumerate(label_columns)}

 self.column_indices = {name: i for i, name in
 enumerate(train_df.columns)} # only consider train dataset

 # Work out the window parameters.
 self.input_width = input_width

 self.label_width = label_width
 self.shift = shift

 self.total_window_size = input_width + shift

 self.input_slice = slice(0, input_width)
 self.input_indices = np.arange(self.total_window_size)[self.input_slice]

 self.label_start = self.total_window_size - self.label_width
 self.labels_slice = slice(self.label_start, None)

 self.label_indices = np.arange(self.total_window_size)[self.labels_slice]

136

 def __repr__(self):

 return '\n'.join([
 f'Total window size: {self.total_window_size}',

 f'Input indices: {self.input_indices}',
 f'Label indices: {self.label_indices}',
 f'Label column name(s): {self.label_columns}'])

window size is 2 weeks + 24 hours

OUT_STEPS = 24
#INPUT_WIDTH = 336 # 14 days
#INPUT_WIDTH = 168 # 7 days

INPUT_WIDTH = 24 # 7 days
w1 = WindowGenerator(input_width=INPUT_WIDTH, label_width=OUT_STEPS,

shift=OUT_STEPS,
 label_columns=['LMP'])
w1

split window

def split_window(self, features):
 inputs = features[:, self.input_slice, :]

 labels = features[:, self.labels_slice, :]
 if self.label_columns is not None:

 labels = tf.stack(
 [labels[:, :, self.column_indices[name]] for name in self.label_columns],
 axis=-1)

 # Slicing doesn't preserve static shape information, so set the shapes manually. This way the

`tf.data.Datasets` are easier to inspect.
 inputs.set_shape([None, self.input_width, None])
 labels.set_shape([None, self.label_width, None])

 return inputs, labels

WindowGenerator.split_window = split_window

Lets see!
Stack three slices, the length of the total window:

#example_window = tf.stack([np.array(train_df[:w1.total_window_size]),
np.array(train_df[100:100+w1.total_window_size]),
np.array(train_df[200:200+w1.total_window_size])])

example_window = tf.stack([np.array(test_df[:w1.total_window_size])])

example_inputs, example_labels = w1.split_window(example_window)

print('All shapes are: (batch, time, features)')
print(f'Window shape: {example_window.shape}')

print(f'Inputs shape: {example_inputs.shape}')

137

print(f'labels shape: {example_labels.shape}')

plot to observe

w1.example = example_inputs, example_labels

design plot methods

def plot(self, model=None, plot_col='LMP', max_subplots=5):

 inputs, labels = self.example
 plt.figure(figsize=(12, 8))
 plot_col_index = self.column_indices[plot_col]

 max_n = min(max_subplots, len(inputs))
 for n in range(max_n):

 plt.subplot(5, 1, n+1)
 plt.ylabel(f'{plot_col} [normed]')
 plt.plot(self.input_indices, inputs[n, :, plot_col_index],

 label='Inputs', marker='.', zorder=-10)

 if self.label_columns:
 label_col_index = self.label_columns_indices.get(plot_col, None)
 else:

 label_col_index = plot_col_index

 if label_col_index is None:
 continue

 plt.scatter(self.label_indices, labels[n, :, label_col_index],
 edgecolors='k', label='Labels', c='#2ca02c', s=64)

 if model is not None:
 predictions = model(inputs)
 plt.scatter(self.label_indices, predictions[n, :, label_col_index],

 marker='X', edgecolors='k', label='Predictions',
 c='#ff7f0e', s=64)

 if n == 0:
 plt.legend()

 plt.xlabel('Time [h]')

WindowGenerator.plot = plot

Create Datasets
This make_dataset method will take a time series DataFrame and convert it to a

tf.data.Dataset of (input_window, label_window) pairs using the
preprocessing.timeseries_dataset_from_array function.

def make_dataset(self, data):
 data = np.array(data, dtype=np.float32)

 print(data.shape)

138

 ds = tf.keras.preprocessing.timeseries_dataset_from_array(
 data=data,

 targets=None,
 sequence_length=self.total_window_size,

 sequence_stride=1,
 shuffle=True, # False
 batch_size= 24) #168) #336) #168)

 ds = ds.map(self.split_window)

 return ds

WindowGenerator.make_dataset = make_dataset

The WindowGenerator object holds training, validation and test data.
Add properties for accessing them as tf.data.Datasets using the above make_dataset
method.

@property

def train(self):
 return self.make_dataset(self.train_df)

@property
def val(self):

 return self.make_dataset(self.val_df)

@property

def test(self):
 return self.make_dataset(self.test_df)

@property
def example(self):

 """Get and cache an example batch of `inputs, labels` for plotting."""
 result = getattr(self, '_example', None)

 if result is None:
 # No example batch was found, so get one from the `.train` dataset
 #result = next(iter(self.train))

 result = next(iter(self.test))
 # And cache it for next time

 self._example = result
 return result

WindowGenerator.train = train
WindowGenerator.val = val

WindowGenerator.test = test
WindowGenerator.example = example

Iterating over a Dataset yields concrete batches

for example_inputs, example_labels in w1.train.take(1):

139

 print(f'Inputs shape (batch, time, features): {example_inputs.shape}')
 print(f'Labels shape (batch, time, features): {example_labels.shape}')

The training procedure into a function. This will enhance reusability

MAX_EPOCHS = 300

#def compile_and_fit(model, window, patience=2):
def compile_and_fit(model, window):

 early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss',
 #patience=patience,
 mode='min')

 model.compile(loss=tf.losses.MeanSquaredError(),

 optimizer=tf.optimizers.Adam(),
 metrics=[tf.metrics.MeanAbsoluteError()]
 #metrics=['accuracy']

)

 history = model.fit(window.train, epochs=MAX_EPOCHS,
 validation_data=window.val,)
 #callbacks=[early_stopping])

 return history

LSTM model design (One o/p)
lstm_model = tf.keras.models.Sequential([
 # Shape [batch, time, features] => [batch, time, lstm_units]

 tf.keras.layers.LSTM(50, return_sequences=False),
 tf.keras.layers.Dropout(0.3),

 tf.keras.layers.Dense(OUT_STEPS,
 kernel_initializer=tf.initializers.zeros),
 #tf.keras.layers.Dropout(0.1),

 tf.keras.layers.Reshape([OUT_STEPS, 1])
])

'''# LSTM model design (single shot all o/p)
lstm_model = tf.keras.models.Sequential([

 # Shape [batch, time, features] => [batch, time, lstm_units]
 #With return_sequences=True, the model can be trained on 336 hours of data at a time.

 tf.keras.layers.LSTM(50, return_sequences=False),
 tf.keras.layers.Dropout(0.3),
 tf.keras.layers.Dense(OUT_STEPS*num_features,

 kernel_initializer=tf.initializers.zeros),
 #tf.keras.layers.Dropout(0.1),

 tf.keras.layers.Reshape([OUT_STEPS, num_features])
])'''

print('Input shape:', w1.example[0].shape)
print('Output shape:', lstm_model(w1.example[0]).shape)

140

Start Training the model
val_performance = {}

performance = {}

history = compile_and_fit(lstm_model, w1)

IPython.display.clear_output()

val_performance['LSTM'] = lstm_model.evaluate(w1.val)
performance['LSTM'] = lstm_model.evaluate(w1.test, verbose=2)

Plot model loss
plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])
plt.title("Model Loss")

plt.xlabel("epochs")
plt.ylabel("loss")
plt.legend(['train', 'val'], loc='upper right')

lets check the prediction and compare with original price

w1.plot(lstm_model)

Performance bar chart

x = np.arange(len(performance))

width = 0.3
metric_name = 'mean_absolute_error'
metric_index = lstm_model.metrics_names.index('mean_absolute_error')

val_mae = [v[metric_index] for v in val_performance.values()]
test_mae = [v[metric_index] for v in performance.values()]

plt.ylabel('mean_absolute_error [LMP, normalized]')
plt.bar(x - 0.17, val_mae, width, label='Validation')

plt.bar(x + 0.17, test_mae, width, label='Test')

plt.xticks(ticks=x, labels=performance.keys(),
rotation=45)

_ = plt.legend()

Let's get MAE of this model

for name, value in performance.items():

 print(f'{name:12s}: {value[1]:0.4f}')

lstm_model.summary()

Save the model
import os.path

#if os.path.isfile() is False:
lstm_model.save('LSTM1-300.h5',overwrite=True)

141

142

Appendix E

Code: Bi-directional Long - Short Term Memory (Bi-LSTM)

-*- coding: utf-8 -*-
"""Bi- LSTM ElectricityPriceForecasting.ipynb
Author: Md. Saifur Rahman

Email: mdsaifur.rahman.1@und.edu
"""

I use google colab and GPU to run this model
import necessary libraries

import os
import datetime as dt

import IPython
import IPython.display
import matplotlib as mpl

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd
import seaborn as sns
import tensorflow as tf

mpl.rcParams['figure.figsize'] = (8, 6)
mpl.rcParams['axes.grid'] = False

'''# Upload data in co-lab

from google.colab import files
uploaded = files.upload()'''

A Day-ahead electricity price dataset
dfP = pd.read_csv('MISO2018DP.csv')

dfP.head()

Hourly Temparate dataset

dfT = pd.read_csv('MSP2018.csv')
dfT.head()

Hourly wind-speed dataset
dfS = pd.read_csv('MSPWS2018.csv')

dfS.head()

Convert to datetime format
dfP['Date'] = pd.to_datetime(dfP['Date'])

Convert to datetime format
dfT['Date'] = pd.to_datetime(dfT['Date'])

143

Convert to datetime format
dfS['Date'] = pd.to_datetime(dfS['Date'])

Most of the case, I have found that the data are not sorted by timestamp! So, Sort by date if

not sorted yet!
dfT = dfT.sort_values(by=['Date'])
dfS = dfS.sort_values(by=['Date'])

Remove duplicate rows

dfT = dfT.drop_duplicates()
dfS = dfS.drop_duplicates()

Again, convert to datetime format
dfT['Date'] = pd.to_datetime(dfT['Date'])

dfS['Date'] = pd.to_datetime(dfS['Date'])

Dataset after removing duplicates

dfT = dfT[~dfT.index.duplicated()]
dfS = dfS[~dfS.index.duplicated()]

Convert object datatype to float datatype
dfT['TempF'] = pd.to_numeric(dfT['TempF'],errors = 'coerce')

dfS['WS(mph)'] = pd.to_numeric(dfS['WS(mph)'],errors = 'coerce')

Add missing timestamp row to a dataframe. By default NaN will be added to each value for
newly added timestamp.
#dfT = dfT.set_index('Date').asfreq('1H')

dfT =dfT.resample('1H', on='Date').mean()
dfS =dfS.resample('1H', on='Date').mean()

#Merge both of these data frames in one based on one single timestamp column.
Outer join , This uses the keys from both frames, and NaNs are inserted for missing rows in

both case.
df1 = dfP.merge(dfT, on='Date', how = 'outer') # 483779

Again merge with wind speed dataset
df = df1.merge(dfS, on='Date', how = 'outer')

Check final dataset

df.head()

Add three column. these are hour of the day, days of the month, and boolean value for week

days (0) and week end(1). The day of the week with Monday=0, Sunday=6
df['hour'] = df['Date'].dt.hour

df['week_end'] = ((df['Date'].dt.dayofweek)//5 == 1).astype(int)
df['day_of_month'] = df['Date'].dt.day

Lets check the dataset
df.head()

144

day of week variable to work on mid-week boolean value
df['week_day'] = df['Date'].dt.dayofweek

Tue,Wed, and Thu are mid-week

Fri, Sat, Sun, and Mon are non mid-week day
df.loc[(df.week_day== 1) | (df.week_day== 2) | (df.week_day== 3), 'mid_week'] = 1
df.loc[(df.week_day== 4) | (df.week_day== 5) | (df.week_day== 6) | (df.week_day== 0),

'mid_week'] = 0

remove unnecessary columns from data frame
#df = df.drop(df[['week_day']], axis=1)

check the dataframe again
df.info()

Chcek null values in each column
df.isnull().sum(axis = 0)

Interpolation techniques estimate the missing values by assuming a relationship within a

range of data points.
spline: Estimates values that minimize overall curvature, thus obtaining a smooth surface
passing through the input points.

df['TempF']= df['TempF'].interpolate(option='spline')
df['WS(mph)']= df['WS(mph)'].interpolate(option='spline')

convert format and pop date time
date_time = pd.to_datetime(df.pop('Date'), format='%YYYY/%mm/%dd %H:%M:%S')

Plot few features over time (completet data)

plot_cols = ['LMP']
plot_features = df[plot_cols]
plot_features.index = date_time

_ = plot_features.plot(subplots=True)

Plot for 10 days
plot_features = df[plot_cols][:240]
plot_features.index = date_time[:240]

_ = plot_features.plot(subplots=True)

Plot for 1 days
plot_features = df[plot_cols][:24]
plot_features.index = date_time[:24]

_ = plot_features.plot(subplots=True)

Check the statistics of this dataset
df.describe()
#df.describe().transpose()

Similarly the Date Time column is very useful, but not in this string form. Start by

converting it to seconds

145

timestamp_s = date_time.map(dt.datetime.timestamp)

A simple approach to convert it to a usable signal is to use sin and cos to convert the time to

clear "Time of day" and "Time of year" signals

day = 24*60*60
year = (365.2425)*day

df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day))
df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day))

df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year))
df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year))

Split for the training, validation, and test sets. Note the data is not being randomly shuffled
before splitting

#print(df.columns)

column_indices = {name: i for i, name in enumerate(df.columns)}
#print(column_indices)
n = len(df)

print("Total Data:",n)

2018 to 2022 Master dataset
train_df = df[0:34920] # 34920
val_df = df[34920:41376] # 7896

test_df = df[41376:43176] # 35088 # 1800

check how many for train/validation/test
print("Train Data:",len(train_df))
print("Validation Data:",len(val_df))

print("Test Data:",len(test_df))

Check number of features in the data frame columns (df.shape[1]). Data frame works like
(row, column) = (0,1)
dataframe = df.shape

print(dataframe)
num_features = df.shape[1]

Normalize the data
It is important to scale features before training a neural network. Normalization is a

common way of doing this scaling. Subtract the mean and divide by the standard deviation of
each feature.

The mean and standard deviation should only be computed using the training data so that
the models have no access to the values in the validation and test sets.
Standardization(Z-score normalization) is the subtraction of the mean and then dividing by

its standard deviation.

train_mean = train_df.mean()

146

train_std = train_df.std()

train_df = (train_df - train_mean) / train_std
val_df = (val_df - train_mean) / train_std

test_df = (test_df - train_mean) / train_std

Plot to check

Now peek at the distribution of the features. Price do have long tails, but there are no
obvious errors.

df_std = (df - train_mean) / train_std
df_std = df_std.melt(var_name='Column', value_name='Normalized')
plt.figure(figsize=(12, 6))

ax = sns.violinplot(x='Column', y='Normalized', data=df_std)
_ = ax.set_xticklabels(df.keys(), rotation=90)

Wnidow Generator
Indexes and offsets

Create the WindowGenerator class. The __init__ method includes all the necessary logic
for the input and label indices.

class WindowGenerator():
 def __init__(self, input_width, label_width, shift,

train_df=train_df, val_df=val_df, test_df=test_df,
label_columns=None):

 # Store the raw data.
 self.train_df = train_df
 self.val_df = val_df

 self.test_df = test_df

 # Work out the label column indices.
 self.label_columns = label_columns
 if label_columns is not None:

 self.label_columns_indices = {name: i for i, name in
enumerate(label_columns)}

 self.column_indices = {name: i for i, name in
 enumerate(train_df.columns)} # only consider train dataset

 # Work out the window parameters.
 self.input_width = input_width

 self.label_width = label_width
 self.shift = shift

 self.total_window_size = input_width + shift

 self.input_slice = slice(0, input_width)
 self.input_indices = np.arange(self.total_window_size)[self.input_slice]

 self.label_start = self.total_window_size - self.label_width
 self.labels_slice = slice(self.label_start, None)

 self.label_indices = np.arange(self.total_window_size)[self.labels_slice]

147

 def __repr__(self):

 return '\n'.join([
 f'Total window size: {self.total_window_size}',

 f'Input indices: {self.input_indices}',
 f'Label indices: {self.label_indices}',
 f'Label column name(s): {self.label_columns}'])

window size is 2 weeks + 24 hours

OUT_STEPS = 24
#INPUT_WIDTH = 336
#INPUT_WIDTH = 168

INPUT_WIDTH = 24
w1 = WindowGenerator(input_width=INPUT_WIDTH, label_width=OUT_STEPS,

shift=OUT_STEPS,
 label_columns=['LMP'])
w1

split window

def split_window(self, features):
 inputs = features[:, self.input_slice, :]

 labels = features[:, self.labels_slice, :]
 if self.label_columns is not None:

 labels = tf.stack(
 [labels[:, :, self.column_indices[name]] for name in self.label_columns],
 axis=-1)

 # Slicing doesn't preserve static shape information, so set the shapes manually. This way the

`tf.data.Datasets` are easier to inspect.
 inputs.set_shape([None, self.input_width, None])
 labels.set_shape([None, self.label_width, None])

 return inputs, labels

WindowGenerator.split_window = split_window

Lets see!
Stack three slices, the length of the total window:

#example_window = tf.stack([np.array(train_df[:w1.total_window_size]),
np.array(train_df[100:100+w1.total_window_size]),
np.array(train_df[200:200+w1.total_window_size])])

example_window = tf.stack([np.array(test_df[:w1.total_window_size])])

example_inputs, example_labels = w1.split_window(example_window)

print('All shapes are: (batch, time, features)')
print(f'Window shape: {example_window.shape}')

print(f'Inputs shape: {example_inputs.shape}')

148

print(f'labels shape: {example_labels.shape}')

plot to observe

w1.example = example_inputs, example_labels

design plot methods

def plot(self, model=None, plot_col='LMP', max_subplots=5):

 inputs, labels = self.example
 plt.figure(figsize=(12, 8))
 plot_col_index = self.column_indices[plot_col]

 max_n = min(max_subplots, len(inputs))
 for n in range(max_n):

 plt.subplot(5, 1, n+1)
 plt.ylabel(f'{plot_col} [normed]')
 plt.plot(self.input_indices, inputs[n, :, plot_col_index],

 label='Inputs', marker='.', zorder=-10)

 if self.label_columns:
 label_col_index = self.label_columns_indices.get(plot_col, None)
 else:

 label_col_index = plot_col_index

 if label_col_index is None:
 continue

 plt.scatter(self.label_indices, labels[n, :, label_col_index],
 edgecolors='k', label='Labels', c='#2ca02c', s=64)

 if model is not None:
 predictions = model(inputs)
 plt.scatter(self.label_indices, predictions[n, :, label_col_index],

 marker='X', edgecolors='k', label='Predictions',
 c='#ff7f0e', s=64)

 if n == 0:
 plt.legend()

 plt.xlabel('Time [h]')

WindowGenerator.plot = plot

Create Datasets
This make_dataset method will take a time series DataFrame and convert it to a

tf.data.Dataset of (input_window, label_window) pairs using the
preprocessing.timeseries_dataset_from_array function.

def make_dataset(self, data):
 data = np.array(data, dtype=np.float32)

 print(data.shape)

149

 ds = tf.keras.preprocessing.timeseries_dataset_from_array(
 data=data,

 targets=None,
 sequence_length=self.total_window_size,

 sequence_stride=1,
 shuffle=True, # False
 batch_size= 24) #168) #336) #168)

 ds = ds.map(self.split_window)

 return ds

WindowGenerator.make_dataset = make_dataset

The WindowGenerator object holds training, validation and test data.
Add properties for accessing them as tf.data.Datasets using the above make_dataset
method.

@property

def train(self):
 return self.make_dataset(self.train_df)

@property
def val(self):

 return self.make_dataset(self.val_df)

@property

def test(self):
 return self.make_dataset(self.test_df)

@property
def example(self):

 """Get and cache an example batch of `inputs, labels` for plotting."""
 result = getattr(self, '_example', None)

 if result is None:
 # No example batch was found, so get one from the `.train` dataset
 #result = next(iter(self.train))

 result = next(iter(self.test))
 # And cache it for next time

 self._example = result
 return result

WindowGenerator.train = train
WindowGenerator.val = val

WindowGenerator.test = test
WindowGenerator.example = example

Iterating over a Dataset yields concrete batches

for example_inputs, example_labels in w1.train.take(1):

150

 print(f'Inputs shape (batch, time, features): {example_inputs.shape}')
 print(f'Labels shape (batch, time, features): {example_labels.shape}')

The training procedure into a function. This will enhance reusability

MAX_EPOCHS = 300

#def compile_and_fit(model, window, patience=2):
def compile_and_fit(model, window):

 early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss',
#patience=patience,
mode='min')

 model.compile(loss=tf.losses.MeanSquaredError(),

optimizer=tf.optimizers.Adam(),
metrics=[tf.metrics.MeanAbsoluteError()]
#metrics=['accuracy']

)

 history = model.fit(window.train, epochs=MAX_EPOCHS,
validation_data=window.val,)
#callbacks=[early_stopping])

 return history

Bi-LSTM model design (One o/p)
BiLstm_model = tf.keras.models.Sequential([
 # Shape [batch, time, features] => [batch, time, lstm_units]

 tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(50, return_sequences=False)),
 tf.keras.layers.Dropout(0.3),

 tf.keras.layers.Dense(64, activation='relu'),
 tf.keras.layers.Dense(OUT_STEPS,

kernel_initializer=tf.initializers.zeros),

 #tf.keras.layers.Dropout(0.1),
 tf.keras.layers.Reshape([OUT_STEPS, 1])

])

print('Input shape:', w1.example[0].shape)

print('Output shape:', BiLstm_model(w1.example[0]).shape)

Start Training the model
val_performance = {}
performance = {}

history = compile_and_fit(BiLstm_model, w1)

IPython.display.clear_output()
val_performance['BiLSTM'] = BiLstm_model.evaluate(w1.val)

performance['BiLSTM'] = BiLstm_model.evaluate(w1.test, verbose=2)

Plot model loss

151

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])

plt.title("Model Loss")
plt.xlabel("epochs")

plt.ylabel("loss")
plt.legend(['train', 'val'], loc='upper right')

lets check the prediction and compare with original price
w1.plot(BiLstm_model)

Performance bar chart

x = np.arange(len(performance))
width = 0.3

metric_name = 'mean_absolute_error'
metric_index = BiLstm_model.metrics_names.index('mean_absolute_error')
val_mae = [v[metric_index] for v in val_performance.values()]

test_mae = [v[metric_index] for v in performance.values()]

plt.ylabel('mean_absolute_error [LMP, normalized]')
plt.bar(x - 0.17, val_mae, width, label='Validation')
plt.bar(x + 0.17, test_mae, width, label='Test')

plt.xticks(ticks=x, labels=performance.keys(),

rotation=45)
_ = plt.legend()

Let's get MAE of this model
for name, value in performance.items():

 print(f'{name:12s}: {value[1]:0.4f}')

BiLstm_model.summary()

Save the model
import os.path
#if os.path.isfile() is False:

BiLstm_model.save('Bi-LSTM1 300 epoches.h5',overwrite=True)

	A Hybrid Deep Neural Network Model To Forecast Day-Ahead Electricity Prices In The USA Energy Market
	Recommended Citation

	intro-title
	other intro pages
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4 - WC
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Final Ref
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

