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ABSTRACT 

 

Day-ahead electricity price forecasting is a critical research area that revolves 

around predicting prices in wholesale electricity markets. While significant progress 

has been made in energy price forecasting, the existence of a state-of-the-art method 

for accurately predicting prices in the USA energy market remains a topic of debate. 

The wholesale and retail markets in the USA greatly value improvements in the 

accuracy of electricity price forecasts. It is evident that renewable energy sources have 

become increasingly influential in the US power market, enhancing their effectiveness. 

However, existing forecasting models exhibit limitations, such as inadequate 

consideration of the impact of renewable energy and insufficient feature selection. 

Furthermore, the reproducibility of research, transparent depiction of input features, 

and the inclusion of renewable resources in electricity price forecasting are either 

lacking or loosely attempted. 

In this research, we tackle these issues by providing a wide range of input 

features, including historical price data, weather conditions, and renewable energy 

generation. These features are carefully engineered to capture the complex dynamics 

and dependencies within the electricity market. The inclusion of renewable input 

features like temperature data to catch solar energy effect, and wind speed data to 

capture wind energy effects in electricity prices in the USA market make our model 

unique. Additionally, data preprocessing techniques, such as data windowing, data 

cleaning, normalization, and feature scaling, are employed to ensure the quality and 

relevance of the input data. We developed four high-performing hybrid deep learning 

models to enhance the accuracy and reliability of electricity price predictions. Our 



xiv 
 

proposed model integrates the Variational Mode Decomposition (VMD) technique with 

the strengths of four deep learning (DL) architectures, including dense neural networks 

(DNN), convolutional neural networks (CNN), long short-term memory (LSTM) 

networks, and bidirectional LSTM (BiLSTM) networks, to capture the intricate patterns 

and temporal dependencies present in electricity price time series data. To deploy the 

VMD-DL hybrid model, we created four different combinations, namely: (i) VMD-

DNN, (ii) VMD-CNN, (iii) VMD-LSTM, and (iv) VMD-BiLSTM. However, in our 

study, the VMD-BiLSTM model demonstrates superior performance compared to the 

other models in all window implementations. The VMD-BiLSTM hybrid model with 

24 input features shows only 0.2733 mean absolute error with the MISO market data to 

forecast prices. The findings of this research contribute to the field of electricity price 

forecasting by providing an advanced and comprehensive solution tailored to the USA 

energy market. The proposed hybrid deep neural network models offer valuable insights 

and practical tools for market participants, energy traders, and policymakers, enabling 

them to make informed decisions, optimize energy efficiency, and navigate the volatile 

energy market landscape.  

 

 

Keywords – Electricity price forecasting, Renewable energy, A Day-ahead market, 

USA energy market, Neural network, Deep learning, MISO, VMD, LSTM, CNN, Bi-

LSTM, DNN. 
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1.2 Problem Statement, and Motivation  
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1.1 Introduction 

    We find ourselves in an era driven by digital advancements, where data holds immense 

value, especially the vast quantities found in big data. Unfortunately, traditional tools are ill-

equipped to handle such extensive databases' storage, processing, and analysis [1]. Prominent 

companies have recognized big data technologies’ significance and invested in complex 

distributed networks to maintain their competitive edge. Leveraging the potential of these 

massive datasets has become crucial for making informed decisions, ranging from forecasting 

to business intelligence and ensuring customer satisfaction [2]. However, managing such 

colossal databases poses significant challenges, necessitating a focus on the fundamenta l 

building blocks of big data software architecture [1]. Therefore, to achieve success in big data 

systems, it is paramount to ensure the adoption of optimal software architecture that aligns with 

the most suitable non-functional requirements (NFRs). 

    Big data utilization is pervasive across various sectors, encompassing social networks, 

energy forecasting, academia, healthcare, aerospace, transport planning, oil and gas 

development, telecoms, e-commerce, finance and insurance, military and surveillance, and 

many other domains [3]. Yet, the true value of this vast volume of data lies in our ability to 

uncover the concealed patterns it holds. Data analytics serves as the tool that unveils these 

patterns, enabling data to convey meaningful insights in a comprehensible manner. The 

capability of big data analytics to analyze, correlate, and extract knowledge from enormous 

datasets is increasingly crucial in numerous fields, empowering informed decision-mak ing 

through predictive analytics. 

    In the realm of big data analytics, NFRs are particularly significant due to the unique 

challenges and complexities associated with processing and analyzing large volumes of data. 

One area where NFRs are of paramount importance is in the domain of electricity price 
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forecasting. Accurate and reliable price predictions are essential for market operators, energy 

traders, and policymakers to make informed decisions and effectively manage energy 

resources. 

Forecasting electricity prices is a pivotal aspect of optimizing energy efficiency within the 

electricity market. Specifically, day-ahead electricity price forecasting plays a crucial role in 

optimizing the efficiency of power plants, maximizing financial gains, and mitigat ing 

unnecessary energy waste. Accurate predictions of day-ahead prices offer valuable insights for 

the economic operation of power plants, aiding in effectively predicting future electricity load 

and preventing unexpected power outages within a short time frame. Anticipating short-term 

electricity prices has proven to be of utmost importance for utilities and generation firms, 

enabling them to make informed decisions and maintain economic viability. Moreover, for 

emerging market participants like retailers and aggregators, their ability to thrive in the 

competitive energy market and sustain profitability relies heavily on their understanding of spot 

market pricing trends. In this particular context, the application of forecasting involves the 

process of making predictions based on historical time series data. Time series data often exhibit 

complex non-linear relationships, prompting the application of various functions to explore the 

data with the specific objectives of modeling, extracting knowledge, and understanding the 

intricate dynamics between independent features and labels [4]. In real-world scenarios, short-

term forecasting, which entails predicting outcomes within seconds, hours, days, weeks, or 

months, holds the most practical value [5]. The time series model, recognized as one of the most 

effective methods, is frequently employed to capture the linear characteristics of electricity 

pricing [6]. However, forecasting in this domain presents significant challenges due to the 

intricate nature of power pricing, characterized by periodicity and substantial volatility [7]. To 

better grasp the characteristics of day-ahead electricity prices, a novel integrated machine 

learning model or a combination of models that encompasses data cleaning, data preparation, 



4 

 

data engineering, data normalization, and artificial neural networks can emerge as a promising 

solution in electricity price forecasting endeavors. 

1.2 Problem Statement, and Motivation 

In recent years, the electricity market has witnessed a significant transformation due to the 

integration of renewable energy sources, advancements in smart grid technologies, and the 

increasing complexity of demand patterns. As a result, accurate and reliable forecasting of day-

ahead electricity prices has become a crucial task for market participants, energy traders, and 

policymakers. The ability to anticipate price fluctuations allows stakeholders to make informed 

decisions regarding electricity generation, consumption, and trading strategies.  

The renewable energy market, including sources like solar and wind power, has a significant 

impact on the American energy market. Electricity generation occurs in both central and 

peripheral power plants, and it is transmitted through a network of substations, transformers, 

transmission lines, and distribution lines before reaching the end customers. Since electric ity 

cannot be easily stored in large quantities, it must be generated in real-time to meet demand. 

The U.S. power grid, which connects approximately 145 million customers nationwide, 

comprises over 7,300 power plants, nearly 160,000 miles of high-voltage power lines, and 

millions of miles of low-voltage power lines and distribution transformers, as reported by the 

U.S. Energy Information Administration (EIA, 2016) [8,9]. As of the year 2022, renewable 

energy sources accounted for around 24% of the nation's electricity production due to the 

increasing demand for cleaner energy options [10]. The integration of renewable energy into 

the electrical network has made electricity price forecasting more challenging than ever before 

[11-13]. Traditional forecasting methods, such as statistical models and time series analysis, 

have provided valuable insights in the past. However, they often struggle to capture the intricate 

nonlinear relationships and dynamic patterns present in electricity price data. In response to 
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this challenge, the field of machine learning has emerged as a powerful tool for electricity price 

forecasting, leveraging its ability to model complex relationships and handle vast amounts of 

data. 

Continuous advancements are being made in energy price forecasting (EPF) techniques with 

the aim of minimizing the disparity between forecasted and actual prices. However, many 

previous studies have overlooked the influence of renewable energy sources, such as wind 

speed and weather temperature, as important features in their state-of-the-art forecasting 

models. Another significant issue in the electricity price forecasting market is the lack of 

sufficient information provided in research papers to ensure reproducibility. Common issues 

include the absence of details regarding the dataset used, lack of clarity on data preparation 

techniques (e.g., training-validation-test dataset splitting) [14-21], absence of input parameters 

used in the prediction models, and even the absence of data normalization, a critical 

preprocessing step prior to model training [22-24]. Some common issues at hand revolve 

around electricity price forecasting in the context of the energy market are given in the 

following. 

(i) Machine learning (ML) models necessitate substantial quantities of high-qua lity 

data for effective training. However, obtaining such data is often a challenge due to 

its limited availability. Many prior studies have faced difficulties in addressing this 

issue by relying on a relatively small dataset, typically spanning only one or two  

years! 

(ii) Deep learning (DL) models can be sensitive to data quality issues, which can impact 

their performance and reliability. Historical energy data may have noise, missing 

data points, or inconsistencies that can affect the accuracy of the predictions. 

Ensuring data quality is critical for ML model performance.  
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(iii) Due to the rapid integration of renewable energy in power generation, electric ity 

price forecasting became vulnerable and volatile.  

(iv) Understanding the underlying factors that influence electricity production is 

important. So, the identification of influential input features other than price has a 

lot of potential in energy price prediction. Several previous studies have been 

deemed unprofessional as they rely on a limited number of input features, typically 

ranging from 2 to 5, for electricity price forecasting. 

(v) Sequential data often has variable- length sequences, which can be challenging to 

handle using machine learning methods.  

(vi) Existing forecasting models, including those based on neural networks, often lack 

the ability to effectively capture both short-term and long-term dependencies in 

electricity price data. This limitation hampers the accuracy and reliability of their 

predictions. 

(vii)  Sometimes a model learns to memorize the training data instead of learning the 

underlying patterns or relationships. In such cases, the model may perform well on 

the training data but may not generalize well to new data. Validating a model, and 

handling under fitting or overfitting issues, involves assessing its performance and 

generalization ability using a separate dataset.  

(viii) Reproduction of existing research is important in machine learning to validate 

results, provide benchmarks for new approaches, educate researchers, and improve 

efficiency. Reproducibility in deep learning (DL) models can pose certain 

challenges. Some common issues are the lack of standardized frameworks, code 

libraries, computational resources, specialized hardware, and publicly availab le 

dataset hindering the reproducibility of model training and evaluation. 
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1.3 Our Research Contribution 

    Our research makes several contributions to the field of electricity price forecasting. We aim 

to advance the field of electricity price forecasting, providing valuable insights for market 

participants, policymakers, and stakeholders in the energy sector. In order to address the 

research gap and tackle the aforementioned challenges, our work aims to make the following 

contributions. 

i. We propose, design, and develop four state-of-art hybrid deep-learning models to 

forecast electricity prices in the US energy market, namely, (a) VMD-DNN, (b) 

VMD-CNN, (d) VMD-LSTM, and (d) VMD-BiLSTM 

ii. Our dataset is long enough (5 years) so that the deep learning model can train with 

enough information. We also include decomposed data of historical prices that 

generate more data to capture additional information. 

iii. To ensure data quality, we use VMD to de-noise the data, implement interpola t ion 

(Spline) to handle missing data points, and normalize the dataset using Z – score 

normalization techniques to reduce inconsistency and standardize the data. 

iv. To reduce volatility and uncertainty in price forecasting, we include weather 

temperature data to catch the influence of solar energy and wind speed data to catch 

the influence of wind energy in the electricity market.  

v. We also ensure the dataset is recent enough to include the effects of integrat ing 

renewable energy (2018 to 2022) sources on wholesale electricity prices. 

vi. We consider 24 time-sensitive input features that can capture underlying patterns in 

data to improve electricity price forecasting. 

vii. Handling variable-length sequences and capturing temporal dependencies, we 

design a Sliding Window technique to train, validate, and test the VMD-DL hybrid 

model with data. Sliding window techniques are significant in machine learning 
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model training because they enable the model to handle variable- length sequences, 

capture temporal dependencies, increase the amount of training data, and improve 

batch processing. 

viii. To work on the validation of our proposed hybrid model, we separately use a 

validation dataset during the training of the model. MSE was used to balance the 

overfitting-under fitting issue and ensure validation of the model. 

ix. We provide a clear view of input features for our VMD-DL forecasting model. 

Provide a clear indication of data splitting with our dataset and also share our 

dataset, and state of art model publicly to ensure the reproduction of this research. 

x. We deliver a set of best practice guidelines in the field of electricity price 

forecasting.    

    This research endeavors to contribute to the advancement of electricity price forecasting 

methodologies by considering NFRs, harnessing the power of big data analytics, and 

harnessing the potential of hybrid DL models. By combining these elements, we strive to 

enhance the accuracy, reliability, and efficiency of electricity price forecasting, ultima te ly 

benefiting market participants, policymakers, and the overall energy sector. 

1.4 Organization of this Dissertation 

    The rest of this dissertation is organized as follows: Chapter 2 provides a comprehens ive  

study related to big data definition, big data system, and important non-functional requirements 

to work with the framework of big data forecasting analysis. Chapter 3 presents the top ten big 

data analytics and machine learning algorithms, and also the challenges to work with data 

analytics in the domain of forecasting activities. The literature research of related works 

discussed in chapter 4. Chapter 5 presents the state-of-art research methodology in detail, 

including the architecture of the hybrid deep neural network models and the integration of 
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external features. The data description, preprocessing, data engineering, and input features are 

described in Chapter 6. Chapter 7 presents the validation of the models, comprehensive results 

and analysis, comparing the results of proposed four hybrid models. Finally, Chapter 8 

concludes the chapter, by summarizing the key findings, discussing the guidelines in electric ity 

price forecasting, and outlining potential future research directions. 
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Chapter 2: Big Data System 

 

This chapter at a glance: 

2.1 Chapter Two in Short 

2.2 What is Big Data?                                                                                 

2.3 Software Architecture of Big Data System (BDS) 

2.4 Non-Functional Requirements                                       

2.5 Chapter Two Discussion and Analysis      

2.5.1 Overview of Primary Study     

2.5.2 Implementation of ISO/IEC 25010:2011 Quality Models 

2.5.3 Most important NFRs for Big Data Systems 

2.5.4 Discuss Scalability 

2.5.5 Non-functional Requirements in Big Data System 

2.6 Chapter Conclusion and Future Direction                
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2.1 Chapter Two in Short  

    Chapter two introduces the definition of big data, and the concept of big data systems, 

emphasizing their significance in handling large volumes of data. It explains that big data 

systems are designed to process, store, and analyze massive datasets that exceed the capabilit ies 

of traditional data processing tools. The chapter highlights the challenges posed by big data, 

such as velocity, variety, and volume, and the need for scalable and distributed big data system 

architectures to effectively manage and extract insights from these datasets. It discusses key 

non-functional requirements in big data systems. Big data has become the most popular and 

influential to exist in this competitive digital world. In this regard, the selection of suitable 

quality attributes or non-functional requirements in big data software architecture can play a 

million-dollar solution. In this chapter, we work on gathering and understanding key non-

functional requirements in the domain of big data systems. Using Systematic Mapping Study 

(SMS) on scientific articles, we find more than 40 different quality attributes related to big data 

systems. Then, we implement the ISO/IEC 25010:2011 quality model to map all these arbitrary 

NFRs into 8 characteristics of the ISO/IEC 25010:2011 model. Finally, we get that 

performance efficiency, functional suitability, reliability, security, usability, and scalability 

should be a data-intensive system's most important quality attributes. 

Chapter One sets the stage for exploring the intricacies of big data systems and their 

applications in subsequent chapters. 

2.2 What is Big Data? 

    Technological advancements produce numerous sorts of structured data, but the majority is 

semi-structured or unstructured data, which is mostly big data. Big data refers to large, complex 

data collections that necessitate sophisticated and cost-effective data administration and 

analysis tools to extract insights and make decisions [25]. Structured data, such as that found 
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in spreadsheets or relational databases, accounts for only 5% of total data [26]. Unstructured 

data includes online text, photographs, audio, and video, all of which lack structural 

organization and need special analytics/tools for data analysis [26]. A notable example of semi-

structured data is the Extensible Markup Language (XML), which has an informal tag-type 

structure for sharing data on the Web [27-28]. Because big data is massive in quantity, too 

speedy, has a diverse structure, and is often sophisticated for traditional technology to acquire, 

preserve, maintain, and assess, it poses a significant challenge for conventional technology. 

The nature of large data, as well as the concerns and challenges that arise with it, hinders current 

data science techniques and approaches from resolving those challenges [29-30]. 

    Douglas Laney is regarded as a forerunner in the fields of data warehousing and information 

economics (infonimics). Data strategy, big data, data analytics, infonomics, data science 

solutions, and so on are among his specialties. In 2001 Laney first defined big data in terms of 

Volume, Velocity, and Variety [31-32]. This became the most logical and popular definition of 

big data (3V definition). Mr. Laney is working as a VP and Chief data officer in Gartner’s 

research team [33]. Mark A. Beyer, a data scientist who specializes in data architecture, data 

integration, data management, and data governance, has joined Laney in this research and the 

two are working together on big data development [34].  As a result, in 2012, Laney and Beyer 

increased the scope of the big data definition by adding two more V’s; Veracity and Value 

[31,35-37]. These two new V’s are required to satisfy business objectives and goals. Without 

veracity and value in data, i.e. any fake or meaningless data may lead to damage in revenue 

and hence degrade the decision-making process. Until today, 5Vs’ is the most widely accepted 

definition of big data. Figure 2.1 graphically represents 5 V’s, where each circle contains the 

most appropriate keywords for describing that particular V. 
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Figure 2.1: 5 V’s in Big Data 

   Recently, another group of researchers used the term "Bigs" rather than "V’s" to define big 

data [38]. They expand the 5Vs’ by adding five more characteristics in the big data system. 

The big volume, big velocity, big variety, and big veracity are grouped as fundamental features 

to define big data. The technological perspective of big data refers to big intelligence, big 

analytics, big infrastructure. The big service, big value, and big market cover big data 

socioeconomically. A brief description of all bigs used in the sunflower model is written in 

table 2.1. To reflect the combination of 5 V’s and 10 Bigs in big data, we develop and propose 

the "Sunflower Model of Big Data."  The Sunflower Model is depicted visually in Figure 2.2. 

Each leaf of the sunflower model represents a characteristic of big data technology. We propose 

this as a flexible and dynamic model. This model's dynamic quality is that the leaf (new 

features) can be added to the sunflower to bring it up to date. However, the new feature must 

have a clear and logical relationship with the 10 Bigs and big data systems.  
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Figure 2.2: Sunflower Model to Define Big Data. 

    It was projected that the total volume of big data is going to be 44 Zettabytes by 2020 [39]. 

However, this was more than that in reality. According to statista.com, the volume of big data 

reached 64.2 zettabytes in 2020, and this will become 181 Zettabytes by 2025 [40]. The fact is 

that data sharing on social media-based platforms is continuously increasing. Every day, 

billions of people on social media update their statuses and post pictures and videos with their 

networks, revealing vital information about their interests, views, ideas, beliefs, movements, 

demographics, and much more [39]. The increase in data volume is also due to the pandemic's 

increased desire for distance learning, employment, and recreation. Furthermore, data from  
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Table 2.1: 10 Bigs including 5 V’s in Big Data 

Bigs/V’s in Big 

Data 

Meaning Remarks  

Big Volume This indicates the data set's size, which is commonly measured in 

terabytes (TB), petabytes (PB), and other units  [30]. Data volume is 

relative in this case, and it varies depending on a lot of things. Because 

storage capabilities are rising, even larger data sets will be gathered in 

the near future; what is described as big data now may not fulfill the 

barrier tomorrow [27].  

1st V 

Big Velocity Data processing speed is data velocity. The rate at which data is 

produced and assessed referred to as velocity [42]. It has to do with data 

latency and throughput [30].  

2nd V 

Big Variety This refers to the wide range of data kinds, formats, and sources 

available. Big data can be s tructured, semi-structured, or unstructured, 

but it is mostly unstructured in practice. According to statistics, 80 

percent of today's data is unstructured [30, 42]. Because social media big 

data is a mix of nationalities in a culturally diverse, multi-language 

setting, it is not structured data [30]. 

3rd V 

Big Veracity It must be accurate and genuine to be deemed big data. This relates to 

the data's trustworthiness  [42]. When working with huge data, there is 

confusion, imperfection, and inconsistency.  However, data analytics 

must be used to extract meaningful insight from ambiguous, partial, and 

unclear big data sets  [30].  

4th V 

Big Intelligence A collection of concepts, methods, and tools for managing and 

processing large amounts of data automatically and artificially is known 

as big intelligence [30]. This is a part of big computing and combined 

computer science, electrical engineering, mechanical engineering, data 

science, statistics, and so on. 

 

Big Analytics This is a combination of algorithms/techniques that support data 

management, gathering, and data analysis. Analytics uses artificial 

intelligence, and machine learning to extract meaningful patterns which 

is automatic and reliable [30]. Big analytics can discover hidden patterns 

from unreadable raw data. Most of the time, big analytics strongly 

related and used big intelligence for implementation. 

 

Big 

Infrastructure 

The architecture, tools, methods, platforms, and services that provide big 

data processing are referred to as big data infrastructure. The Apache 

Hadoop ecosystem, distributed data center, supercomputing machine, 

etc., are critical components of large-scale infrastructure [30].   

 

Big Service A comprehensive platform capable of serving millions of individuals. 

Amazon web services, Google cloud services, mobile services, social 

networking services are big services  [30]. Often these services provide 

their own API to get public access.  

 

Big Value The aim of a data set necessitates its relevance and aspect. This implies  

that big data brings big social value. Big data has revolutionized society 

in terms of socializing and perceiving, according to its high social worth  

[30]. 

5th V 

Big Market A data-driven market is required. The big market operates at a 

socioeconomic level [30]. This includes government, defense, 

education, manufacturing, business, healthcare, finance and insurance, 

social networking, and more.  

 

 

several other sources in the digital economy, such as smart sensors, machine logs, 

communications technology, geospatial data, and consumer data, is increasing rapidly [41]. 
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Big data analytics assists scholars in evaluating structured, semi-structured, and unstructured 

data so that it may become useful for various companies to make important decisions. 

Personalization is made possible by big data analytics, helping businesses to reach out to clients 

in a more tailored manner based on their preferences and likes. It provides in-depth knowledge 

and a thorough picture of the customer, allowing organizations to personalize messages to them 

to increase engagement and acceptance. 

2.3 Software Architecture of Big Data System  

    A big data system (BDS) refers to a complex infrastructure designed to handle and process 

vast amounts of data that traditional data processing methods cannot efficiently handle. Big 

data systems employ various technologies, tools, and architectures to collect, store, manage, 

process, and analyze massive datasets. These systems enable organizations to derive valuable 

insights, make data-driven decisions, and gain a competitive advantage. 

    Software architecture plays a crucial role in designing and implementing big data systems. 

Day by day the architecture of the big data software becomes more complicated. That’s why 

non-functional requirements and architectural design of big data systems with proper 

communication between structural components become a concerning issue [43-44]. Software 

architecture design is a step-by-step procedure for implementing all functional and non-

functional requirement decisions [45]. Finally, software architecture can be defined as a set of 

principal design decisions in building software which ensures communication and coordination 

using connectors and establish configuration among components, connectors, and constraints. 

In the context of big data, software architecture refers to the high-level structure, components, 

and interactions of the software system that enable efficient processing, storage, and analysis 

of large and complex datasets. Software architecture plays a significant role in the activities of 

data intensive systems. 
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2.4. Non-Functional Requirements 

    Non-Functional Requirements (NFRs) in big data systems encompass a range of crucial 

aspects beyond the core functionality. These requirements focus on qualities such as 

performance. NFRs affect software architecture [46] and they are important metric in software 

design because NFRs define syntax, semantics, constraints, and protocols for software’s each 

non-behavioral activity [47].  If the software is too large or too complex (like big data software) 

then domain specific and architecturally significant NFRs should be identified before designing 

the actual product [48]. Moreover, we must do more research on defining and validating quality 

attributes [49], when we are designing software architecture for big and complex products like 

big data systems. Big data systems must exhibit high performance, ensuring effic ient 

processing and response times, as well as scalability to handle increasing data volumes and 

processing demands. 

2.5. Chapter Two Discussion and Analysis 

2.5.1 Overview of Primary Study 

    The NFRs collectively ensure that big data systems are robust, efficient, secure, and user-

friendly, enabling organizations to derive maximum value from their vast data resources. This 

section represents an overview and our findings from our primary study. The result starts with 

table 2.2 which presents paper ID, year of publication for that paper and a list of quality 

attributes collected from that paper. The first column of this table presents paper ID and 

publication year with reference number. From this column, we can see all the scientific papers 

used for this survey are the most recent. The oldest one is from 2012 and the newest one from 

2019.  Then, the second column presents a list of QAs discussed in that specific paper.  In the 

last column we implement ISO/IEC 25010:2011 [50-51]; system and software quality model 

to each QA which we get from scientific papers in this survey.  We list only those 
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characteristics (ISO/IEC model) which are discussed in that paper by mapping them with sub-

characteristics from column two of this table. So, a complete list of non-functiona l 

requirements related to the big data system is presented in table 2.2. 

2.5.1. Implementation of ISO/IEC 25010:2011 Quality Models 

    Surveying these papers, we list more than 40 different NFRs related and necessary to 

different big data systems. During the study, we found some NFRs are listed only for 

maintaining relevance with big data systems; there is no detailed understanding or 

implementation of those NFRs in that paper. To shorten this NFRs list, we decide to implement 

ISO/IEC 25010:2011; system and software quality model to this NFRs list. ISO/IEC 

25010:2011 defines a comprehensive set of quality models for software products, providing a 

structured approach to assessing and evaluating software quality. The standard presents a 

framework known as the SQuaRE (Software Product Quality Requirements and Evaluat ion) 

model, which encompasses eight primary quality characteristics: functional suitability, 

performance efficiency, compatibility, usability, reliability, security, maintainability, and 

portability [50-51]. Each of these characteristics is further detailed with sub characteristics and 

associated metrics, enabling objective measurement and comparison of software products. By 

adhering to ISO/IEC 25010:2011, organizations can ensure that their software meets the 

desired quality standards, facilitating effective decision-making and enhancing overall user 

satisfaction. The standard serves as a valuable reference for software developers, evaluators, 

and stakeholders, promoting the delivery of high-quality software products that align with user 

needs and requirements. 

    According to iso.org this model is the latest model [52]. This model has eight characterist ics 

of NFRs with other NFRs as sub characteristics. We consider all NFRs getting from this survey 

as sub-characteristics and then map those with eight main characteristics of ISO/IEC  

25010:2011. Second column of the table 2.2, we group and list all NFRs as sub-characterist ics 
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and then in the third column we write only those characteristics for which at least one sub-

characteristics can be found in the second column. Beside the listed sub-characteristics in 

ISO/IEC 25010:2011, we consider (i) ‘accuracy’ as ‘functional correctness’ [50-51, 53-55], (ii) 

‘timeliness’ and ‘real-time processing’ as ‘time behavior’ [50-51, 55-57], (iii) 

‘understandability’ and ‘readability’ as ‘learnability’ [50-51, 55, 58], (iv) ‘dependability’ and  

‘believability’ as ‘reliability’ [50-51, 54], (v) ‘efficiency’ and ‘effectiveness’ as ‘performance 

efficiency’ [50-51, 59-60], (vi) ‘authorization’ and ‘privacy’ as ‘security’ [50-51, 53, 55], (vii) 

‘survivability’, ‘credibility’ and ‘safety’ as ‘recoverability/reliability’ [50-51, 55, 61-62]. 

That’s how we map all these NFRs into eight characteristics of ISO/IEC model. 

2.5.3 Most important NFRs for BDS 

After mapping all sub-characteristics into their relevant characteristics, we get numeric 

statistics that are presented in table 2.3. The percentage amount of these statistics is presented 

in figure 2.3. We see, 100% of this study discusses ‘performance efficiency’; which is the most 

important QA for data intensive systems. Then, 79% discuss ‘functional suitability’, 

‘reliability’ and ‘security’ as QAs for data intensive systems. ‘Usability’ is also a good QA for 

big data systems, 71% discuss ‘usability’. Only 36% of them are talking about ‘compatibility’, 

while 43% of them present ‘maintainability’ and ‘portability’ as QAs in their study. From 

figure 2.3, we see more than 70% of the research work from this survey discuss performance 

efficiency, functional suitability, reliability, security and usability. According to this survey, 

these five QAs should be the most important quality attributes for data intensive systems where 

performance efficiently is must with 100%. 
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Table 2.2: List of NFRs in BDS with ISO/IEC 25010:2011 Implementation 

Paper ID 

(publication 

year)/ 

Reference  

List of QAs After mapping with ISO/IEC 

25010:2011 

P1 (2015) [27] {accuracy, completeness,} {timeliness}, {accessibility}, 

{integrity},  consistency 

Functional suitability, Performance 

efficiency, Usability, Security 

P2 (2017) [28] {accuracy, correctness}, {performance, efficiency, real-

time },  {reliability, safety, dependability},  {security, 

integrity}, consistency, scalability 

Functional suitability, Performance 

efficiency, Reliability, Security 

P3 (2017) [29] {performance}, {security},  {maintainability}, scalability Performance efficiency, Security, 

Maintainability 

P4 (2016) [30] {performance}, {reliability, availability}, {security} Performance efficiency, Reliability , 

Security 

P5 (2013) [31] {performance, real-time processing}, {reliability , 

availability}, {security},  parallelism, scalability 

Performance efficiency, Reliability , 

Security 

P6 (2015) [32] {accuracy, completeness}, {timeliness},  {believability}, 

consistency, coverage/amount of data  

Functional suitability, Performance 

efficiency, Reliability 

P7 (2015) [33] {accuracy}, {mission effectiveness, resource utilization , 

time duration}, {interoperability}, {usability}, {safety, 

reliability, availability, survivability, dependability},  

{security}, {modifiability, maintainability}, 

{adaptability}, flexibility, scalability  

Functional suitability, Performance 

efficiency, Compatibility , 

Usability, Reliability, Security, 

Maintainability, Portability 

P8 (2014) [34] {accuracy}, { performance}, {interoperability}, 

{accessibility, usability}, { reliability}, {security}, 

{maintainability}, {portability}, scalability, data retention, 

Functional suitability, Performance 

efficiency, Compatibility , 

Usability, Reliability, Security, 

Maintainability, Portability 

P9 (2012) [35] {accuracy, completeness}, {performance}, 

{interoperability, compatibility}, {usability},  {reliability , 

availability, safety, dependability}, {confidentiality , 

security,  privacy, integrity,}, {reusability, 

maintainability}, { installability , portability}, scalability 

Functional suitability, Performance 

efficiency, Compatibility , 

Usability, Reliability,  Security, 

Maintainability, Portability 

P10 (2015) 

[36] 

{accuracy, completeness}, {timeliness}, {accessibility, 

usability, readability}   {availability, credibility , 

reliability},  {authorization, integrity}, consistency 

Functional suitability, Performance 

efficiency, Usability, Reliability , 

Security 

P11 (2017)  

[37] 

{accuracy, completeness}, {timeliness}, {believability}, 

consistency  

Functional suitability, Performance 

efficiency, Reliability 

P12 (2019)  

[40] 

{accuracy}, {performance}, {interoperability}, 

{usability}, {reliability}, {privacy, security}, 

{modifiability},  {adaptability}, scalability 

Functional suitability, Performance 

efficiency, Compatibility , 

Usability, Reliability, Security, 

Maintainability, Portability 

P13 (2018) 

[41] 

{completeness, correctness, appropriateness}, {time 

behavior, resource utilization, capacity}, {co-existence, 

interoperability}, {recognizability, learnability , 

operability, error protection, accessibility}, {maturity , 

availability, fault tolerance, recoverability}, {modularity , 

reusability, analyzability, modifiability, testability}, 

{confidentiality, integrity, non-reputation, accountability, 

authenticity}, {adaptability, installability, replaceability} 

Functional suitability, Performance 

efficiency, Compatibility , 

Usability, Reliability, Security, 

Maintainability, Portability 

 

 

P14 (2016) 

[42] 

{Accuracy, completeness, precision}, {efficiency}, 

{accessibility, understandability},{ availability , 

recoverability, credibility }, {confidentiality}, { 

portability, }, consistency 

Functional suitability, Performance 

efficiency, Usability, Reliability , 

Security, Portability 
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Table 2.3: Paper ID vs. QAs Mapping Table 

NFRs/QA 

characteristics 

Papers writing about this NFR Tot

al  

Functional suitability P1,P2,P6,P7,P8,P9,P10,P11,P12,P13,P14 11 

Performance efficiency P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12

,P13, P14 
14 

Compatibility P7,P8,P9,P12,P13 5 

Usability P1,P2,P3,P7,P8,P9,P10, P12,P13,P14 10 

Reliability P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14 11 

Security P1,P2,P4,P5,P7,P8,P9,P10,P12,P13,P14 11 

Maintainability P3,P7,P8,P9,P12,P13 6 

Portability P7,P8,P9,P12,P13,P14 6 

 

 

Figure 2.3: Percentage of NFRs in BDS. 

2.5.3. Discuss Scalability 

    Big data systems must support ‘scalability’. These days, increased volume of data with 

different data types makes storage and computing difficult. This problem can be solved by 

keeping data in a distributed system and applying parallel computing on those big data [63]. 

This means we should consider increasing the amount of workload by extending resources to 
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the big data system [59]. This also refers to how easily a system can manage a growing amount 

of user requests, transactions using distributed servers [53]. For supporting internet scale large 

complex datasets storage and for ensuring real-time processing on distributed system manner; 

scalability is the unavoidable characteristic to big data systems development [64-66]. 

Considering these, we want to add ‘scalability’ as an independent characteristic out of ISO/IEC 

25010:2011 quality model. By studying references [50-51, 53-55, 59, 63], we are considering 

flexibility, data retention, parallelism, coverage of data and consistency as sub-characterist ics 

for scalability. Besides, most of our survey papers list ‘scalability’ as quality attribute. Mapping 

these sub-characteristics with scalability, 12 (P1, P2, P3, P5, P6, P7, P8, P9, P10, P11, P12, 

P14) out of 14 papers (85.7%) discuss scalability as quality attribute of data intensive systems.  

2.5.5 Non-functional Requirements in Big Data System 

    Critical elements that go beyond the essential functionality are known as non-functiona l 

needs in a big data system. The top five NFRs required for any big data system are provided 

by our method of systematic mapping study on NFRs in big data systems. Simultaneously, we 

suggest adding scalability as another important NFR to the workings of big data systems. 

Performance becomes a crucial factor because of the enormous amounts of data involved; the 

system must be able to handle big datasets effectively and provide real-time or almost real- time 

processing capabilities. The system must be able to expand effortlessly to handle expanding 

data quantities and user demands, therefore scalability is crucial. Because reliability is so 

important, fault tolerance methods are required to guarantee ongoing operation even in the case 

of failures. To safeguard sensitive data, ensure secure data transmission, and guard against 

unauthorized access or data breaches, security measures are of the utmost significance. 

Additionally, functional appropriateness considerations guarantee that the system will continue 

to be simple to upgrade, modify, and debug as required. Last but not least, usability concerns 

center on offering user-friendly tools and interfaces to support efficient data exploration and 
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analysis. To ensure a reliable, effective, safe, and user-friendly Big Data system that can 

provide valuable insights and assist data-driven decision-making, it is essential to address these 

non-functional needs. The research process that led to the acquisition of six significant NFRs 

for the creation of a cutting-edge big data system is shown in figure 2.4 below. 

 

Figure 2.4: Research Flow to Find Top Six NFRs in Big Data System 

2.6 Chapter Conclusion and Future Directions 

    Complexity in big data is increasing rapidly which directly affects the software architecture 

of big data systems. From this chapter, we find that non-functional requirements play a vital 

role in software architecture in big data systems. After implementing ISO/IEC 25010:2011 

quality model to our surveyed NFRs we find performance efficiency, functional suitability, 

reliability, security, and usability should be the most important quality when building data 

intensive systems. Besides, out of ISO/IEC 25010:2011 model; scalability should be added as 

another significant attribute for big data systems. Our findings show that these six 

characteristics should be mandatory QAs related to data intensive systems. We believe this will 

be useful and contribute to developing big data systems in future.  
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    In this chapter we learn about big data, big data system and identify general NFRs for big 

data systems. We will continue the study to work on big data analytics and algorithms to study 

the analysis of big data and machine learning implementation of big data analysis through 

subsequent chapters.  
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Chapter 3: Big Data Analytics 

 

This chapter at a glance: 

3.1 Chapter Three in Short 

3.2 What is Big Data Analytics (BDA)? 

3.3 The Top Ten Analytics to Big Data Analysis 

3.4 Taxonomy of Analytics 

3.5 Machine Learning Techniques in BDAs  

3.6 Challenges and Limitations 

3.7 Chapter Conclusion and Future Direction  
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3.1 Chapter Three in Short 

In recent years, the proliferation of digital technologies and the exponential growth of data have 

transformed the way we live, work, and make decisions. The recent advancement in Internet 

2.0 creates a scope to connect people worldwide using society 2.0 and web 2.0 technologies. 

This new era allows the consumer to directly connect with other individuals, business 

corporations, and the government. People are open to sharing opinions, views, and ideas on 

any topic in different formats out loud. The availability of vast amounts of data, commonly 

referred to as big data, presents both opportunities and challenges. This creates the opportunity 

to make ‘Big Data’ handy by implementing machine learning approaches and data analyt ics. 

Big data analytics has emerged as a powerful approach to extracting valuable insights and 

knowledge from these massive and complex datasets, driving innovation and transforming 

industries across the globe. 

This chapter introduces the field of big data analytics, exploring its fundamental concepts, 

methodologies, and applications. We will shed light on the wide-ranging applications of big 

data analytics in various sectors, including social media, energy, healthcare, finance, 

marketing, and transportation. In this chapter, we provide the top ten big data analytics with 

their working data types. A comprehensive list of relevant statistical/machine learning methods 

to implement each of these big data analytics is discussed in this chapter. We create and propose 

a taxonomy of data analytics based on the need, behavior, and working domain. As a result, 

researchers will have an easier time deciding which data analytics would best suit their needs. 

3.2 What is Big Data Analytics? 

    Every day, an enormous number of people all over the world generate massive amounts of 

data, which can be of any type, including text, photographs, audio, video, web transactions,  

gifs, blogs, and other formats [67-69]. Some sort of special technique is required for the process 
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of examining and extracting valuable insights and knowledge from large and complex datasets 

like those above. It involves applying advanced analytical techniques, such as data mining, 

machine learning, statistical analysis, and predictive modeling, to uncover patterns, trends, and 

correlations within big data. The systematic computing and interpretation of data using 

statistical methods is known as analytics. Analytics uses mathematics, statistics, and artific ia l 

intelligence to help with data analysis in difficult-to-understand formats so that better decisions 

may be made. At the same time, big data analytics assist data analysis by revealing trends, 

patterns, and other insights from messy social data [69-70]. Text mining, predictive analys is, 

sentiment analysis, statistical analysis, cyber risk analysis, and others are some of the diverse 

approaches to big data analytics [71]. Furthermore, by merging, modifying, and extending 

ways to handle massive data, these analytics contribute to the development and assessment of 

systems and informatics tools [71].  

    Different firms might use the results of big data analytics to improve their production or 

marketing strategies to stay competitive in the digital business world. For example, data 

analytics in digital marketing may help businesses get user input on their products, which can 

be used to make changes and get more value out of their brand [72-73]. Leading companies 

such as Apple, Microsoft, Google, Honda, Facebook, NVidia, Amazon, Samsung, and others 

employ big data analytics regularly to improve their corporate strategies and customer relations 

practices [74]. Research, civil defense, healthcare, banking, telecommunication, public 

transport system, insurance, and a variety of other industries can gain benefits from BDAs to 

prepare for the future and make better data-driven recommendations while remaining flexib le 

and agile [74]. Sensitive events like elections frequently use sentiment and opinion mining in 

local and national elections processes [67]. The federal or state government uses data analyt ics 

to develop a predictive decision.  
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3.3 The Top Ten Analytics to Big Data Analysis 

    The primary goal of this chapter is to identify and collect notable big data analytics (BDA). 

We have identified 10 mostly analytics so far. The details list is presented in the following table  

3.1. The serial numbers of source papers were mentioned in the leftmost column. The second 

column lists the titles of the final 20 articles in this study, along with their reference numbers. 

The authors of those publications, as well as the year of publication, are included in the third 

column for clarification. Finally, the right-hand column displays the name of BDAs, as 

discovered in those twenty articles. Different analytics are used for different purposes and in 

diverse domains. For example, text analytics for text analysis, video for video data analys is, 

and image data are analyzed by using image data analytics. To date, "Text Analytic" has been 

the most widely used analytic method for large-scale data analysis. In addition, predictive 

analytics is the most potential BDA in time-series data analysis. 

Table 3.1: The Most Used Big Data Analytics 

Study 

source 

Title of the paper Authors (Publication 

year) 

Discussed BDAs 

S1 Beyond the hype:  Big  data  concepts,  

methods,  and analytics [70] 

Amir Gandomi and 

Murtaza  Haider (2015) 

i. Text Analytics (Text 

Mining) 

ii. Audio Analytics (Speech 

Analytics) 
iii.  Video Analytics (Video 

Content Analysis - VCA) 

iv. Predictive Analytics 

S2 Social media big data analytics: A survey 
[75] 

Norjihan Abdul Ghani 
et al. ( 2018) 

i. Descriptive Analytics (Post-
mortem Analysis) 

ii. Diagnostic Analytics 

iii.  Predictive Analytics 

iv. Prescriptive Analytics 

S3 Big data and social media analytics [76] Vikas Dhawan and 
Nadir Zanini ( 2014) 

i. Text Analytics 
ii. Web Analytics 

S4 Big Data and the brave new world of social 
media research [77] 

Ralph Schroeder 
(2014) 

i. Text Analytics 

S5 Web-based Collaborative Big Data 

Analytics on Big Data as a Service Platform 
[78] 

Kyounghyun Park, 

Minh Chau Nguyen, 
Heesun Won (2015) 

i. Video Analytics 

S6 Social Set Visualizer: A Set Theoretical 

Approach to Big Social Data Analytics of 
Real-World Events [79] 

Benjamin Flesch et al. 

(2015) 

i. Text Analytics 

ii. Visual Analytics 

S7 Social Set Analysis: A Set Theoretical 

Approach to Big Data Analytics [80] 

Ravi Vatrapu et al.  

(2016) 

i. Visual Analytics 

ii. Predictive Analytics 

iii.  Prescriptive Analytics 
iv. Descriptive Analytics 
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v. Text Analytics 

S8 Social Media Analytics based Product 

Improvement Framework [81] 

Chuan-Jun Su and Yin-

An Chen (2016) 

i. Social Media Analytics 

(Social Media Product 

Improvement Framework 

(SM-PIF)) 
ii. Text Analytics (Social 

Media Product 

Improvement Framework 

(SM-PIF)) 

S9 Evolving Analytics for E-commerce 

Applications: Utilizing Big Data and Social 

Media Extensions [82] 

Constantine J. Aivalis  

et al. (2016) 

i. Text Analytics (Log File 

Analyzer) 

S10 Big Social Data Analytics of Changes in 

Consumer Behaviour and Opinion of a TV 

Broadcaster [83] 

Anna Hennig et al.  

(2016) 

i. Text Analytics (Text 

Classification) 

ii. Visual Analytics 

S11 Social Media Analytics Based on Big Data 

[84] 

Farzana Shaikh et al.  

(2018) 

i. Text Analytics (Sentiment  

Analytics) 

S12 The Role of Artificial Intelligence in Social 
Media Big data Analytics for Disaster 

Management -Initial Results of a 

Systematic Literature Review [85] 

Vimala Nunavath and 
Morten Goodwin 

(2019) 

i. Text Analytics (Text 
Classification) 

ii. Image Analytics (Image 

Classification) 

S13 The Impact of Sentiment Analysis on Social 

Media to Assess Customer Satisfaction: 

Case of Rwanda [86] 

Marius 

Ngaboyamahina and 

Sun Yi (2019) 

i. Text Analytics (Sentiment  

Analysis) 

S14 A glimpse on big data analytics in the 
framework of marketing strategies [87] 

Pietro Ducange et al.  
(2018) 

i. Text Analytics 
ii. Web Analytics 

S15 Social Set Analysis: Four Demonstrative 

Case Studies [88] 

Ravi Vatrapu et al.  

(2015) 

i. Predictive Analytics 

ii. Descriptive Analytics 
iii.  Perspective Analytics 

iv. Visual Analytics 

S16 Social Media Analytics and Internet of 
Things: Survey [89] 

Workneh Yilma Ayele 
and Gustaf Juell-

Skielse (2018) 

i. Text Analytics 

S17 Understanding Customer Experience 
Diffusion on Social Networking Services by 

Big Data Analytics [90] 

Francesco Piccialli, Jai 
E. Jung (2017) 

i. Text Analytics             
ii. ( Content Analysis) 

S18 Cyber risk prediction through social media 

big data analytics and statistical machine 
learning [91] 

Athor Subroto and 

Andri Apriyana (2019) 

i. Text Analytics 

ii. Predictive Analytics 

S19 Social  media,  big  data,  and  mental  

health:  current  advances and  ethical  
implications [92] 

Mike  Conway and  

Daniel  O’Connor 
(2016) 

i. Text Analytics  

S20 Social  media  analytics  for  enterprises: 

Typology,  methods,  and  processes [93] 

In  Lee (2018) i. Text Analytics 

ii. Image Analytics 
iii.  Video Analytics 

3.4 Taxonomy of Analytics 

    We discussed the ten big data analytics which are the most potential so far. These data 

analytics are divided into three groups. These are (i) based on data types, (ii) based on purpose, 

and (iii) based on the nature of the task. The taxonomy is shown in the following figure 3.1. 

    There are four analytics based on the data type. These are primitive data types like text, 

image, audio, and video. (a) Text Analytics work with string/text data. For example, review on 
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a consumer product, comment on a topic, views on an issue, and other text data from social 

media. (b) Image Analytics supports images, pictures, scenario, or photographs of any object. 

Social media users enormously share a picture of a business product, a beautiful moment of a 

trip, photographs of events, or a social gathering. (c) Audio Analytics uses machine learning to 

extract meaningful information from audio, speech, or music. Several kinds of research are 

going on to convert speech into text, analyze audio of social media users to extract insights, 

and others. (d) Video Analytics shows the recent advancement of technology in social data 

analysis. Making video data talk for us is a new era in digital communication and data 

assessment.  

    Based on the purpose of data analysis, there are another four types of data analytics. (a) 

Predictive Analytics uses a machine- learning algorithm to develop a forecasting model. This 

model gives data prediction based on historical data analysis. (b) Descriptive Analyt ics 

identifies flaws by analyzing data from the present or past. This analysis assists in monitor ing 

events and generates results in the form of a report. (c) Prescriptive Analytics examine several 

situations and offer the most optimal solution. This emphasizes conditions and critica lly 

chooses the best outcome based on the historical condition-result relationship. (d) Diagnost ic 

Analytics works continuously to develop better results. Data mining and data correlation assist 

in each round of diagnostic improvement in the data analysis process.  

    To do other specific tasks in various platforms, there is two more big data analytics. (a) 

Visual Analytics expands the concept of video analytics. This works with video, image, 

animation, gif, and other forms of visual data. Social Set Visualizer (SoSeVi) is a good example 

of visual analytics [83, 88]. (b) Web Analytics are some analytic tools provided for free and 

public use. The data from WWW that are automatically generated or indirectly connected with 

users like metadata, log file analyzer, transaction on web, bookmarks data, etc. are an example 

of data used in web analytics. Web analytics works with other sources of data too.  
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Figure 3.1: Taxonomy in Big Data Analytics. 

3.5 Machine Learning Techniques in BDAs 

    Different algorithms are used in association with distinct types of data analytics. Table 3.2 

shows all of the techniques employed with each of the 10 big data analytics (BDA) classes 

revealed in this chapter. The serial number of the BDA and the name of the BDA is stated in 

the leftmost column of Table 3.2. The middle column listed associated statistical or machine 

learning methods/techniques with the relevant big data analytics. The scope of machine 

learning algorithms definition is loosely considered rather extended for the sake of the articles 

found in this study. Machine learning algorithms, to broaden the scope of work, includes not 

only mostly used algorithms but also a technique, or an approach, or a procedure that may 

employ an algorithm in the background to evaluate any kind of data. For example, there are 

some similarities among sentiment analysis, sentiment classification, social network analys is 

but they all differ by approach, purpose, and procedural way behind them. Sentiment analys is 

can be done by both supervised and unsupervised learning methods, while the sentiment 

classification must follow a supervised learning method, on the other hand, social network  

Social Media 

Analytics 

1. Text Analytics 

2. Image Analytics 

3. Audio Analytics 

4. Video Analytics 

1. Predictive Analytics 

2. Descriptive Analytics 

3. Prescriptive Analytics 

4. Diagnostic Analytics 

1. Visual Analytics 

2. Web Analytics 

based on purpose 
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Table 3.2: Techniques used in each of Big Data Analytics 

BDA Types Techniques or Algorithms Working 

Data Type  

BDA 1: Text 

Analytics (Text 

Mining) / Text 
Classification  

[ 70, 75-77, 79-

82, 84-87, 89-93] 

Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), Gibbs 

Sampling Approach, Latent Dirichlet Allocation Algorithm, Random Forests (RF), 

Decision Tree (DT), Information Extraction (Entity Recognition, Relation Extraction), 
Sentiment Analysis/Opinion Mining (Document Level, Sentence Level, Aspect Based, 

Location (Country) Based, Timestamp Based, Followers Count Based), Lexical 

Resource Approach , Probabilistic Neural Network, , Unstructured Data Normalizer 

(UDN), Text Summarization (Extractive Approach, Abstractive Approach), Social 

Influence Analysis, Natural Language Processing (Information Retrieval based 
Approach, Knowledge based Approach, Hybrid Approach, Social Data Analytics Tool 

(SODATO), Support Vector Machine (SVM), Nave Bayesian classifiers (NB), 

Logistic Regression (LR), Multinomial Logistic Regression, Restricted Boltzmann 

Machine,  Message Content Analysis, Non-parametric ANOVA Analysis, Cluster 

Analysis, Cluster Dendrogram Analysis, Histogram Analysis, Word Cloud and 
Commonality analysis, Pyramid Analysis, Cyber Risk Analysis, Social  Network  

Analysis, Statistical  Analysis(Markov  chain  Monte  Carlo  methods,  regression  

models,  factor analysis), Trend Analysis, Extended Log File Analyzer (cross 

correlation, self-updating system, customize  the configuration, Near Real Time 

Extensions (NRTE), Social Media Product Improvement  Framework - SM-PIF 
(Contextual Information Retrieval (Feature Based Ontology (FBO), Extraction and 

Storage (ES)), Feature Improvement Recommendation (Product Recommendation 

Service (PRS)}, Artificial Neural Networks (ANN), Swarm Intelligence, Evolutionary 

Computation, Deep Learning, Formal Model, Fuzzy Logic 

Structured 

and 

Unstructured  

BDA 2: Image 

Analytics (Image 

Classification) 

[85, 93] 

Convolutional Neural Networks (CNN), Support Vector Machine (SVM), Linear 

SVM, Statistical  Analysis  of  tag  data,  demographic  data, download  frequency, etc.  

Unstructured 

BDA 3: Audio 

Analytics 

(Speech 

Analytics) [70]  

Transcript-based Approach (large-vocabulary continuous speech recognition, 

LVCSR) and Phonetic-based Approach 

Unstructured 

BDA 4: Video 

Analytics (video 

content analysis - 
VCA) [ 70, 78, 

93]  

CCTV metadata analytic, Modified CCTV VMS (Video  Management  System), 

Server-based Approach and Edge-based Approach, Statistical Analysis by number of  

users,  response  rate,  subject,  and  location 

Unstructured 

BDA 5: 
Predictive 

Analytics [70, 75, 

80, 91, 99]  

Naive Bayes, K-nearest Neighbors, Support Vector Machines, Decision Trees, 
Artificial Neural Networks, Statistical Method, Modeling Machine Learning, Game 

Theory, Google Prediction API, Social Set Analysis, Linear Regression, Social Graph 

Theory (actors, actions, activities, and  artifacts), Social  Text Theory (topics,  

keywords, pronouns,  and  sentiments)  

Structured 
and 

Unstructured 

BDA 6: 

Descriptive 

analytics (Post-

mortem 

Analysis) [75, 80, 
88]  

Social Graph Analysis, Social Text Analysis, Social Set Analysis, Statistical Analysis 

based on historical/past data 

Unstructured 

and 

Structured  

BDA 7: 

Diagnostic 
Analytics [75] 

Data Discovery, Drill-down, Data Mining, Data Correlations, Data Comprehension, 

Data Visualization, Search and Filter 

Unstructured 

BDA 8: 

Prescriptive 
Analytics [75, 80, 

88]  

Social Set Analysis, Intensive Approach, Optimization Theory, Game Theory, 

Simulation and Decision techniques,  

Unstructured 

BDA 9: Web 

Analytics [74, 
76] 

Google Analytics, AWStats, Amung.us, WebSTAT, Radian6, Atlas.ti and T-LAB Structured 

and 
Unstructured  

BDA 10: Visual 

Analytics [ 79-
80, 83, 88]  

Social Set Visualizer (SoSeVi), visual analytics tool Tableau, SSA approach using 

D3.js libraries, Social Data Analytics Tool (SODATO)  

Unstructured 
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analysis follows a graph theory to analyze social data [94-97]. The goal and data analys is 

techniques are different in each of these three methods. Similarly, Google Analytics is a web 

analytics technique to track and report website traffic [98-99]. Many businesses organizat ions 

frequently use google analytics for online business and marketing purposes. AWStats, 

Amung.us, and WebSTAT are other similar tools where machine learning algorithms are 

working from behind. Most of the researchers use these tools and techniques as the brand name 

rather than the behind algorithms or combination of algorithms. To increase clarification, we 

listed the name of techniques and the machine learning algorithms in a broad sense. Popular 

machine learning algorithms are included as well like Recurrent Neural Networks (RNN), 

Convolutional Neural Networks (CNN), Support Vector Machine (SVM), Naive Bayesian 

classifiers (NB), Random Forests (RF), Decision Tree (DT) and many more.  

    Big data analytics support structured, semi-structured, and unstructured data types. The 

rightmost column of the following table 3.2 presents which BDA support whatever data type 

for social data analysis. Text analytics supports both structured and unstructured formats of 

data. Derived numbers from social text data are in structured data format, while text data itself 

is unstructured. Image analytics, audio analytics, and video analytics mostly work with 

complex, unstructured, and messy data. In this study, we find that predictive analytic and 

descriptive-analytic support both structured and unstructured data types while diagnostic and 

prescriptive mostly work with only unstructured data. Visual analytics always works with 

unstructured data types. Web analytics can work with structured, semi-structured, and 

unstructured data. These strategies are crucial for enhancing decision-making by analyzing a 

large amount of potential social data. As a result, these methodologies represent a useful subset 

of the big data analytics technologies accessible to the researchers. 
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Figure 3.2. Use of Big Data Analytics in Percentage 

3.6 Challenges and Limitations 

Many disciplines and sectors have advanced as a result of the widespread use of social media 

data and big data analytics. There are numerous hurdles and limitations to working in this 

domain. 

 With the increasing abundance of data, files are now being distributed over multip le 

physical sites. Public access is becoming difficult and technical skills are needed to 

access these data.  

 The maintenance of large social datasets is challenging and expensive. 

 Integrating and combining social data from many platforms is a difficult task. 

 Consumes continuously sharing status updates, photos, videos, etc., are not always 

useful for analysis. Data cleaning and filtering are required to extract necessary data 

from this complex dataset that is costly and time-consuming.  

 Social media data may suffer from issues related to data quality and representativeness. 

The data collected from social media platforms may be biased or skewed, as it primarily 

represents the subset of the population actively using these platforms. This can lead to 

limited generalizability and may not accurately reflect the broader population or 

specific demographics. 
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 Privacy concerns are significant when dealing with social media data. While user-

generated content is publicly available, ethical considerations must be taken into 

account when using social media data, especially when it involves personal or sensitive 

information. Respecting privacy rights, ensuring data anonymization, and obtaining 

necessary consent are essential aspects to address. 

 Cyber-attacks have a severe impact on social data during sensitive events such as 

elections, which could result in a faulty conclusion. 

 Validating and verifying the accuracy of social media data can be challenging. It is 

crucial to assess the credibility and authenticity of the information shared on social 

media platforms to ensure the reliability of the insights derived from the data. 

 Social media platforms frequently update their APIs (Application Programming 

Interfaces), which can impact data collection and analysis processes. Changes in 

platform policies or access restrictions can pose challenges in retrieving and analyzing 

historical or real-time data. 

 Social media data and the algorithms used to analyze them can exhibit biases due to 

various factors, including user biases, algorithmic biases, or echo chamber effects. 

These biases can affect the accuracy, fairness, and inclusivity of the insights derived 

from social media data. 

3.7 Chapter Conclusion and Future Direction 

    Big data, along with advances in computing tools, has evolved as significant data analyt ics 

for understanding human behavior by analyzing data. All types of organizations, from industry 

to government, can benefit by using social data, and data analytics. This chapter fills in the 

research gap by identifying the ten most widely accepted and used big data analytics for 

analyzing big data and making decisions. Considering the overlap among the approaches of 

data analytics, we design a taxonomy of big data analytics depending on the purpose, nature of 
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usage, and working area. Data analysis is aided by machine learning techniques. Each of these 

data analytics has a long list of machine learning or statistical methodologies associated with 

it.  

    This chapter looks at big data analytics in social media in a broad, generic way. A specific 

field of interest, for example, business analytics in social media, geospatial/location-based 

analytics, social media data analysis for political science research, etc can be explored to serve 

the same purpose. Considering the challenges and potential risk, we decide not to explore social 

media for data analysis due to concerns related to data cost, availability, data quality, privacy, 

ethical considerations, representativeness, algorithmic biases, technical challenges, or legal 

constraints. Instead, we will continue our investigation by focusing on the USA energy market. 

We also want to figure out and decide a few common attributes/characteristics of big data 

analytics by which we can tune up one analytics and perform comparative performance 

analysis. 
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4.1 Chapter Four in Short 

    Chapter two provides insights into the big data domain, emphasizing that performance is the 

most crucial non-functional requirement (NFR) in this context. In chapter three, predictive 

analytics is one of the identified potential big data analytics (BDA). Based on the information 

presented in these two chapters, we make the decision to integrate the scientific findings and 

outcomes to explore the combination of performance-focused approaches and predictive 

analytics in the big data domain. Finally, our research culminates in the development of a 

hybrid deep neural network model specifically tailored to predict day-ahead electricity prices 

within the energy market of the United States. We feel that a thorough literature evaluation is 

essential for guaranteeing the validity and applicability of a research endeavor and for 

enhancing the academic conversation on the subject of choice. 

    Researchers and practitioners alike have shown a keen interest in research on day-ahead 

electricity price forecasting in the US energy market. To better understand and develop 

forecasting models and methods for reliably predicting power costs, numerous studies have 

been carried out. According to the literature, several different methodologies have been used, 

including neural networks, statistical time series models, machine learning algorithms, and 

hybrid strategies. Researchers have also looked at a number of variables that affect energy 

prices, including weather, demand patterns, costs, and regulatory policies. The accuracy and 

usefulness of day-ahead power price forecasting in the dynamic and developing US energy 

market can be improved by carefully studying related literature. In this chapter, we address the 

aforementioned challenges by presenting a comprehensive literature research that encompasses 

various aspects.  
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4.2 Electricity Markets in the United States 

 The electricity market in the United States is a complex and dynamic system that plays a 

critical role in powering the nation's economy and meeting the energy needs of its population. 

It operates on a regional basis, with various organizations, regulatory bodies, and market 

participants working together to ensure a reliable and affordable electricity supply. According 

to EIA (U.S. Energy Information Administration), the power grid in the United States connects 

145 million customers nationwide. It comprises over 7300 power plants, nearly 160,000 miles 

of high-voltage power lines, millions of miles of low-voltage power lines, and distribution 

transformers. The electricity markets in the United States are primarily organized into two main 

types: regulated markets and competitive markets. In regulated markets, utilities have vertically 

integrated operations and are subject to state or federal regulation, which determines the rates 

they can charge and the investments they can make. On the other hand, competitive markets 

promote competition among generation companies, allowing consumers to choose their 

electricity supplier and enabling market-driven pricing. 

 In the United States, a range of materials and tools are used to produce electricity, like natural 

gas, oil, coal, renewables, and some others. The wholesale electricity market is a crucial 

component of the overall electricity system. It facilitates the buying and selling of electricity 

among generators, traders, and utilities. Market participants engage in various market 

mechanisms, such as day-ahead and real-time energy markets, capacity markets, and ancillary 

services markets, to ensure a reliable supply of electricity and maintain system balance. The 

American power markets encompass both the wholesale and retail sectors, representing distinct 

segments within the industry. Before being supplied to customers, power is first sold in 

wholesale markets to electric utilities and electricity merchants. Electricity is sold to consumers 

in retail markets. Both the wholesale and retail markets might be very open to competing or 

historically governed. The following figure 4.1 is collected from the eia.gov website which 
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represents the USA energy market [100]. The grey area of the diagram represents regulated 

markets, a section of the US wholesale electricity market that is in charge of its generation, 

transmission, and distribution of power to the area's residents. Thus, there is no competition in 

this market. On the other side, there is competition in the markets of the Northeast, Midwest, 

Texas, and California. These markets are controlled and managed by independent system 

operators (ISOs) named CAISO, MISO, SPP, ISO-NE, NYISO, ERCOT, and PJM [100-102]. 

The exchange of power between independent power producers and non-utility generators is 

made possible by ISOs using competitive market procedures. 

 

Figure 4.1: Wholesale Electricity Markets in the USA [100] 

4.3 A Day-Ahead Electricity Market 

    A financial market called the Day-Ahead Energy Market allows market players to buy and 

sell electricity through bidding for day-ahead prices for the next day. A day-ahead electric ity 

prices market is a specific segment within the electricity market where participants trade 

electricity for delivery on the following day. It is a forward market where buyers and sellers, 

such as generators, utilities, and energy traders, come together to determine and agree upon the 

price of electricity for the upcoming day. 
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    In the day-ahead market, participants submit bids and offers based on their anticipated supply 

and demand for electricity. These bids and offers take into account factors such as generation 

costs, expected demand patterns, availability of resources, and market conditions. The market 

operator then matches the bids and offers to determine the clearing price, which represents the 

price at which electricity will be traded for the next day. The day-ahead market provides a 

valuable opportunity for market participants to manage their risks, hedge against price 

fluctuations, and make informed decisions regarding electricity generation, consumption, and 

trading strategies. The following figure 4.2 illustrate a day-ahead electricity market in the USA. 

Wholesale market sellers and buyers participate in an auction event, submitting their bids for 

the delivery of electricity during day 𝑑. The bidding process takes place before the gate closure 

on day 𝑑 - 1, and it involves pricing for 24 hourly intervals of electricity. Notably, the auction 

event commences at midday. 

 

Figure 4.2: A Day-ahead Market Diagram [149]  

4.4 Related Literature Research 

A crucial part of research is the literature review, which comprises a thorough evaluation and 

analysis of the current scholarly publications, academic articles, books, and other pertinent 

materials on a given subject or research issue. It acts as the starting point for comprehending the 

present level of knowledge and research gaps in a specific field of study. An effective literature 
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review highlights the techniques and results of earlier studies while assisting researchers in 

identifying major topics, trends, and disputes. We did our literature study to expand on existing 

knowledge, set the stage for our own research, and suggest fresh contributions to the area by 

synthesizing and evaluating the literature. 

The large volume of related studies attests to the significance of electricity price forecasting 

for the functioning of power systems. There have been numerous approaches published that vary 

in the steps of data preparation, model evaluation, and assessment. Price forecasting is becoming 

a more active area of research as electricity markets become more competitive. Volatility is a 

feature of the hourly electricity price, which is established in a dynamic and aggressive 

marketplace [103]. Recent advancements in renewable energy and other factors have an impact 

on the logical evolution of market price [104]. Therefore, careful attention should be paid to the 

choice of input variables and configuration of the model, the inspection of the model, and the 

experimental setup to produce credible forecasting in the energy market. For projecting 

electricity prices, numerous models have been put forth recently. The most widely used models 

can often be divided into three groups. 

(i) Statistical Models 

(ii) Deep Neural Network Models 

(iii)  Hybrid Models  

4.4.1 Statistical Models 

A methodical approach where variation in a regressor variable is extracted using a variable 

that is orthogonal to the unseen components of the target result is known as a statistical method 

[104]. A statistical machine learning model follows statistical principles and techniques. There 

have been many significant advancements in the area of statistical approaches for electricity 

price forecasting over the past several years. Most models in this category rely on simple linear 

regression methods, logistic regression or clustering methods, and related tree-based techniques, 
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etc. [105]. Most of the cases a linear combination of multiple independent variables (e.g. 

regressors, or features) is used to represent the dependent/output variable ( e.g. electricity price) 

by using these statistical models. For example, let’s assume an hourly time series dataset, the 

regression model follows equation 4.1 given below. 

             𝑃ℎ = 𝐶ℎ𝑋ℎ + 𝐸                                                                                                               (4.1)                                                                                 

Where 𝐶ℎ = [ C0, C1,….. Cn] represents a row vector containing hourly coefficients, 𝑋ℎ = [ X0, 

X1,….. Xn]T is a column vector of input features, and E is an error/bias term to calculate hourly 

electricity price 𝑃ℎ. 

The use of the least absolute shrinkage and selection operator (LASSO) as a feature selection 

method in cases when the model contains a big number of inputs or regressors is one of the 

recent developments in the field of forecasting energy prices using linear regression techniques 

[106-112]. Although LASSO can be considered a machine learning approach because the 

underlying model is autoregressive [113], it is considered a statistical method in this study. 

Several studies also used (the autoregressive integrated moving average) ARIMA/GRAPH 

(generalized autoregressive conditional heteroskedastic) model to predict electricity prices like 

references [107, 114] that belong to a statistical model.    

4.4.2 Deep Neural Network Models 

The idea of replicating the human brain led directly to the artificial neural network (ANN), 

sometimes known as the dense neural network model. The Neural Network model is efficient, 

scalable, and has exceptional fault tolerance and parallel processing capability. Artific ia l 

neurons, a group of interconnected units or nodes, make up a neural network model. Like the 

synapses in a human brain, each connection (e.g. edges) has the ability to send communicat ion 

to neighboring neurons. Each connection works with a weight that often changes as learning 

progresses throughout the model training. The weight alters a connection's signal intensity by 
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increasing or decreasing it. Usually, each neuron has a threshold (e.g. activation function) that 

allows a signal to cross connection to the next level. The basic neural network has three layers, 

(i) Input layer – the first layer that accepts inputs into the model. The input layer consists of one 

to a very large number of neurons to collect input features; (ii) hidden layer – an intermed iate 

layer that helps in complex calculation and learning processes; (iii) the Output layer – to produce 

the expected results depending on how many neurons are desired to present the output. The 

ability of ANNs to produce more accurate results from complicated natural systems with large 

inputs is a strong benefit [115]. The unique and advanced ability of the artificial brain network 

that supports back-and-forth information processing within multiple layers makes the neural 

network model an ideal solution in the field of forecasting results. The following figure 4.3 

represents the basic building blocks of most of the neural network models. The accuracy of the 

prediction of the price of electricity in the day-ahead market has been improved significantly by 

employing several deep-learning neural network models.  

 

Figure 4.3: Basic Structure of a Neural Network Model. 

In the realm of forecasting short-term electricity prices, the stacked denoising auto-encoder 

(SDA) model, a subclass of deep neural networks, attracted interest in 2016 [116]. In the context 

of forecasting the short-term energy market, Long Short Term Memory (LSTM) is currently the 

most widely used neural network model [117-122]. In addition to RNN, several researchers use 

a straightforward, multi-layer Dense Neural Network (DNN) to serve the purpose of hourly 
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electricity price prediction [120, 123-126]. In several research projects in this field, the 

convolutional neural network (CNN in one dimension) model was also utilized [120]. Due to 

their ability to handle massive and complicated datasets, these models have become a crucial 

component of contemporary data-driven decision-making processes.  

4.4.3 Hybrid Models  

Over the past few years, the scientific community has paid close attention to hybrid and 

ensemble machine learning algorithms. Conceptually and practically, it has been demonstrated 

that hybrid models perform much better than single models, particularly when dealing 

with complex regression [128]. In order to solve complex, advanced, and sophisticated 

challenges, the integration of fundamental technologies into hybrid machine-learning solutions 

facilitates more intellectual approaches that combined diverse domain knowledge with scientific 

evidence. Hybrid models are extremely intricate frameworks for predicting made up of two or 

more algorithms. They typically include at least two of each of the three modules listed below 

[129-143].  

(i) An algorithm for decomposing data,  

(ii) An algorithm for feature selection  

(iii)One or more statistical/neural network models whose predictions are combined. 

Yet another sort of hybrid mode is the stacked/ensemble model, which is occasionally 

produced by combining two neural network models [127]. The Wavelet Transform(W T), 

Empirical Mode Decomposition (EMD), and Variational Mode Decomposition are the most 

used decomposition techniques in the energy forecast domain so far. The mutual information 

technique and correlation analysis are the two most often used techniques for selecting features. 

LSTM and CNN have historically been the most often used deep learning models for training 



46 

 

with time series data. The following figure 4.4 depicts the basic structure of a hybrid model in 

the domain of electricity price forecasting.   

 

Figure 4.4: Block Diagram of Hybrid Models 

4.5 Significance of Hybrid Models in Electricity Price Forecasting 

    The value of a hybrid model in predicting energy prices rests in its capacity to combine the 

advantages of many forecasting methodologies to provide predictions that are more reliable and 

accurate. Due to the complicated and dynamic structure of the energy market, which is 

influenced by a variety of factors including weather conditions, demand changes, and regulatory 

laws, projecting electricity prices is a difficult process. In order to overcome the shortcomings 

of individual models and enhance overall forecasting performance, hybrid models incorporate 

many forecasting methodologies, such as statistical time series models, machine learning 

algorithms, and artificial intelligence techniques. Some major benefits and the significance of 

employing a hybrid model in predicting electricity prices are given in the following. 

 A hybrid model can capture diverse parts of the price dynamics by combining mult ip le 

forecasting techniques, producing forecasts that are more accurate and trustworthy. 

Combining the forecasts of different models, each of which may be particularly good at 

catching certain patterns or trends, can produce a forecast that is more thorough and 

precise. 



47 

 

 Various unforeseen circumstances and uncertainties can affect the energy market. 

Because a hybrid model can combine many methodologies, it is more resistant to 

unforeseen changes or data outliers. It can adjust to various market circumstances and 

offer more reliable projections. 

 Hybrid models provide the freedom to change the importance or contribution of each 

component model in accordance with past results or subject-matter expertise. 

Researchers and practitioners can adjust the model for certain market circumstances or 

time periods thanks to its versatility. 

 The performance of specific forecasting models may be impacted in some circumstances 

by the availability of past data. By using a hybrid approach, we can expand the data 

coverage and predictive power of the model by incorporating data from additional 

sources or historical periods. 

    We opted to create a hybrid model for our research project, focusing on its design, 

development, and implementation. Our aim was to strike a balance, ensuring that the model's 

structure remained understandable, allowing other researchers to reproduce our work with ease. 

4.6 Chapter Conclusion 

In conclusion, the literature review has offered insightful knowledge and a thorough 

comprehension of the state of the art in the subject of forecasting energy prices. We have 

uncovered important themes, trends, approaches, and discoveries relevant to this topic by a 

thorough review of several scholarly works, academic articles, and research publications. We 

have seen the important contributions made by earlier scholars, and their work has helped to set 

the stage for our investigation. We intend to expand on the current body of knowledge and fill 

in the known research gaps as we continue our investigation on electricity price forecasting by 

developing a state-of-art hybrid model. 
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4.1 Chapter Five in Short 

    A day-ahead electricity price forecasting is a very crucial area of research that focuses on 

predicting prices in wholesale electricity markets. Although many contributions have been 

made to the subject of energy price forecasting in the last few years, it is debatable if there is a 

state-of-the-art method for assessing prediction in the USA energy market. The USA wholesale 

and retail markets highly appreciate any improvements in accurate forecasts with electric ity 

prices. At the moment, it is clearly noticeable how much more effective renewable energy 

sources are having at the US power market. In addition, the reproducibility of research, clear 

view of input features, and inclusion of renewable resources in electricity price forecasting are 

missing or loosely attempted. In this chapter, we address the aforementioned challenges by 

presenting a comprehensive research methodology of our hybrid models approach that 

encompasses various aspects. By doing so, we aim to offer a thorough understanding of our 

methods and highlight the strengths of these models in relation to our research objectives. 

5.2 Research Methodology 

It is exceedingly difficult to determine which techniques are the state-of-the-art ones because 

of the issues that have been mentioned when comparing electricity price forecasting models. 

After careful investigation, we came up with a state-of-the-art approach to employ hybrid deep 

neural network model building with a combination of Variational Mode Decomposition(VMD) 

and a Deep Neural Network (DNN, CNN, LSTM, Bi-LSTM).  

5.2.1 VMD 

Variational Mode Decomposition (VMD) is a data-driven signal processing technique that 

has gained significant attention in recent years. The VMD method was proposed by 

Dragomiretskiy and Zosso in 2014 [144-145]. It is a novel method of non-recursive signal 

processing designed to decompose a dimensional signal into independent modes. The goal of 



50 

 

VMD is to decompose a real-valued (electricity price) input signal, into a discrete number of 

sub-signals (modes). VMD provides an effective method for decomposing complex signals into 

a set of intrinsic mode functions (IMFs) with varying temporal and spectral characteristics. Each 

IMF represents a distinct temporal oscillatory component, allowing for the separation of 

different frequency components within the signal. The effectiveness and versatility of VMD 

have been demonstrated in several studies, highlighting its ability to handle nonlinear and 

nonstationary signals, like electricity prices, while preserving their inherent features [146-147]. 

In our study, we decomposed the original electricity price signal into 12 distinct sub-signals, 

treating each sub-signal as an independent subseries and referring to them as Intrinsic Mode 

Functions (IMF, IMF2,…, IMF12). The following figure 5.1 represents decomposed signals in 

one graph. Each mode is compacting around a center pulsation; it is to be determined with 

decomposition.  

 

Figure 5.1: Decomposed Price Signal ( 12 IMFs) 

There are three steps to make it work given in the following.  

(i) Obtaining the unilateral frequency spectrum of every subseries, through Hilbert 

transform computing analytic signal 
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(ii) Gaining the corresponding estimated center frequency through modifying the mode 

frequency spectrum  

(iii)Assessing each mode bandwidth through the H Gaussian smoothness of the 

decomposed signal.  

Each IMF series is considered as an input feature which is later combined with others to feed 

into the deep neural network model.   

5.2.2 DNN 

    Dense Neural Networks (DNNs) have emerged as a powerful approach for time series data 

analysis, enabling effective modeling and prediction of temporal patterns. DNNs, also known 

as feedforward neural networks or multi- layer perceptrons(MLP), consist of multiple fully 

connected layers where each neuron is connected to every neuron in the subsequent layer [148-

149]. In the context of time series analysis, DNNs can effectively capture complex nonlinear 

relationships and dependencies within the temporal data. DNNs offer several advantages for 

time series analysis. They can handle high-dimensional input data with varying temporal 

resolutions and effectively learn complex temporal patterns, even in the presence of noise or 

missing values. Additionally, their ability to automatically extract features and hierarchica l 

representations from the data makes them suitable for capturing both short-term and long- term 

dependencies in time series. 

    DNNs for time series analysis typically involve an input layer that takes in the sequentia l 

data, one or more hidden layers consisting of densely connected neurons, and an output layer 

that provides the predicted values or classifications. The activation functions applied to the 

neurons, such as the rectified linear unit (ReLU) or sigmoid, introduce non-linearity into the 

network and enable it to learn and represent intricate temporal patterns. For this research, we 

design a DNN starting with (i) a Flatten layer to reshape the multidimensional feature maps 
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into a linear format, (ii) three hidden dense layers with 32 neurons, and ReLU activation 

function, and Finally (iii) an output layer (reshape) to generate 24 forecasts. 

5.2.3 CNN 

    A Convolutional Neural Network (CNN) is a type of artificial neural network that is widely 

used for image and video processing tasks, and natural language processing. While traditiona lly 

used for two-dimensional data, such as images, CNNs can also be applied to analyze one-

dimensional time series data [150-151]. The key feature of CNNs is the use of convolutiona l 

layers. These layers consist of small filters or kernels that slide over the input data, performing 

element-wise multiplications and aggregating the results[150]. The convolution operation 

allows the network to capture spatial patterns and local dependencies in the input. CNNs applied 

to one-dimensional time series data analysis have demonstrated impressive performance in 

various domains, including financial forecasting, sensor data analysis, and biomedical signal 

processing.  

    In the context of one-dimensional time series data analysis, CNNs offer a powerful approach 

for capturing local patterns and dependencies within the temporal domain [152-153]. The key 

idea is to utilize one-dimensional convolutional layers to extract meaningful features from the 

input time series. These convolutional layers employ filters to perform local convolutions across 

the temporal dimension, effectively capturing relevant patterns at different scales. Their ability 

to automatically learn relevant temporal features and capture dependencies within the data 

makes them a valuable tool for extracting meaningful insights and making accurate predictions 

in time series analysis tasks. In this research, we used a 1D convolutional layer with 256 

neurons, and ReLU as an activation function. We also use dense, and reshape layers to handle 

the format of input data and output forcasts. 
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5.2.4 LSTM 

Long Short-Term Memory (LSTM) networks have gained significant popularity in time series 

forecasting tasks due to their ability to capture long-term dependencies and handle sequential 

data effectively. LSTM is a deep-learning neural network with backpropagation support. This 

is a special kind of Recurrent Neural Network (RNN) that works as a composition of long-term 

and short-term memory. LSTM overcomes the vanishing gradient issue of RNN during the 

training of a neural network [154 - 157]. LSTM efficiently identifies hidden patterns and the 

potential of the data through a continuous self-learning process with the help of gates and 

activation functions. One of the distinguishable factors in the LSTM network is the memory 

cell, also known as the LSTM cell.  The usually hidden layers of a deep neural network are 

replaced by memory cells in LSTM architecture [157]. LSTM cell includes an input gate, a 

forget gate, and an output gate in the memory block [155, 157]. This network works through a 

sigmoid layer, a tanh layer, pointwise multiplication, and pointwise addition operations. LSTM 

knows how to maintain cell state and can control input flow from one cell to another. LSTM 

networks make use of their memory cells to store and update information over time, enabling 

them to capture long-term dependencies in the time series. The gates within the LSTM 

architecture control the flow of information, determining which information to retain and which 

to discard.  

    Each LSTM cell contains 5 layers. Three of them are sigmoid and two are tanh layers. In 

this research, we used (i) an input layer for inserting data by following the setup of the sliding 

window method; (ii) an LSTM layer that has 50 neurons to work repeatedly until getting the 

best result; (iii) a dropout layer with 30% dropout to overcome the issue of overfitting by the 

model; (iv) a dense layer to get output from the previous layer which piped through one-

dimensional tensor; and (v) output (reshape) layer to generate the output of 24 forecasts. The 
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following figure 5.2 shows a basic structure of a single LSTM cell. The details of an LSTM cell 

can be found in reference [157]. 

 

 

Figure 5.2: An LSTM Cell [157] 

5.2.5 Bi-LSTM 

    Bidirectional Long Short-Term Memory (Bi-LSTM) is a recurrent neural network (RNN) 

architecture that has been widely used in various applications involving sequential data analysis. 

Bi-LSTM overcomes the limitations of traditional LSTM models by processing the input 

sequence in both forward and backward directions, capturing past and future contextual 

information simultaneously. The Bi-LSTM architecture consists of two LSTM layers: one that 

processes the input sequence from the beginning to the end (forward LSTM) and another that 

processes the sequence in reverse (backward LSTM) [158-160]. This incorporation of 

information from both past and future contexts empowers Bi-LSTM models to effective ly 

capture extended dependencies and temporal patterns in the data. The combination of the 

forward and backward LSTM layers can be achieved through concatenation of their hidden 

states or element-wise addition [159-160]. The model improves its ability to capture complex  
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Figure 5.3: Simple Architecture of Our BiLSTM Network 
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relationships and improves its efficiency in sequence modeling by utilizing information from 

both directions.  

    The above figure 5.3 illustrate a architecture network of the BiLSTM model. In this research, 

we used (i) an input layer for inserting data by following the setup of the sliding window 

method; (ii) a Bi-LSTM layer that has 50 neurons to work repeatedly until getting the best 

result; (iii) a dropout layer with 30% dropout to overcome the issue of overfitting by the model; 

(iv) a dense layer with 64 neurons and ReLU activation function; (v) a dense layer to get output  

from the previous layer which piped through one-dimensional tensor; and (vi) output (reshape) 

layer to generate the output of 24 forecasts. 

5.2.6 Proposed System Model  

The system model for electricity price forecasting using a deep learning hybrid approach 

consists of multiple interconnected components that work together to capture and analyze the 

complex dynamics of electricity prices. At the core of our system model is the deep learning 

hybrid model, which incorporates four combinations of VMD and neural network architectures 

to capture temporal and non-linear relationships in the data. 

To deploy a hybrid deep neural model to forecast electricity price, we choose VMD as an 

algorithm for decomposing data, and one of the deep learning neural network models (DNN, 

CNN, LSTM, Bi-LSTM) to perform training with the MISO dataset. Hence, our designed  

system model includes VMD for filtering, denoising, and generating the features of the origina l 

electricity price data, and a deep learning (DL) model for training, validating, and testing the 

time series data and thus generating electricity price forecasting. To organize the training with 

data, we designed a sliding window method that considers 336/168/24 hours of prior time steps 
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to predict the next 24 hours of time steps in the future. The same sliding window technique is 

followed to train the DL model, perform validation to reduce loss by the VMD-DL model, and 

also forecast electricity price on test data. The following figure 5.4 shows our VMD-DL system 

model architecture to perform electricity price forecasting in the USA energy market. The  

 

Figure 5.4: System Model Architecture 

proposed hybrid model has shown promising results in day-ahead time electricity price 

forecasting. Some notes on our system model architecture are given in the following. 

 Each box represents a major component of the system. The component has a name 

on it like data sources, machine learning etc.  
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 Each component (box) has its subcomponents in it. The arrow represents the 

connection between subcomponents. 

 Each component must have a receiveData sub-component and a sendData sub-

component to make an interaction with other components. Except for the last 

'Forecast' component because it shows the final forecasts and visualization.  

 The image/name representing a subcomponent is designed by maintaining the 

relevancy of that subcomponent. If there is an image of subcomponents, then it also 

has a name with it.  

 Subcomponents are interacting with each other by connecting lines (unidirectiona l 

single arrow). The red box represents the get-out connection, and the green box 

represents the get-in connection. 

    The system model is dependent on various input variables, encompassing historical prices, 

demand levels, weather conditions, time-related aspects (such as time of day and day of the 

week), and other market indicators. These inputs undergo meticulous processing and are 

employed during both the training and forecasting phases of the model. Training is 

accomplished using the Adam optimization algorithm, and the model's performance is evaluated 

using appropriate metrics. The system model facilitates the generation of real-time electricity 

price predictions, providing valuable insights to guide decision-making within the energy 

industry. 

5.3 Data Windowing Techniques 

    The data windowing method is a widely used strategy when deep learning models are being 

trained for time series analysis. In order to train, validate, and test the model, this technique 

entails segmenting the time series data into smaller windows or subsequences. A set number of 

consecutive data points make up each window, and this segmentation allows the model to 
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identify regional patterns and temporal connections in the data [161]. Utilizing the temporal 

ordering of the data and enhancing the model's capacity to detect localized patterns, data 

windowing allows the deep learning model to process and learn from the segmented windows. 

Several time series analytic tasks, including energy forecasting, stock market forecasting, and 

activity recognition, have shown this method to be successful. In this research, we design three 

separate windows to explore different possibilities to capture the underlying trends in time-series 

data. We design and implement the training, validation, and testing by our hybrid model using 

(i) a 15(14+1) days window, (ii) an 8 (7+1) days window, and (iii) a 2 (1+1) days window. The 

details data points considered for each windowing technique are given in the following table 

5.1.  

Table 5.1: Data Windowing Technique 

Techniques Previous hours  Forecasting hours Total Window Size 

Window 1 336 (14 days/ 2 weeks) 24 (1 day) 360 hours (14 + 1 days) 

Window 2 168 (7 days/ 1 week) 24 (1 day) 192 hours (7 + 1 days) 

Window 3 24 (1 day) 24 (1 day) 48 ours (1 + 1 days) 

 

5.4 Chapter Conclusion 

    The research technique has given our study a strong base on which to operate. The validity 

of our research is ensured by the careful selection of techniques and models. The research 

methodology employed in this study for DL hybrid methods has proven to be effective in 

achieving our research objectives and generating valuable insights. The utilization of hybrid 

approaches, combining VMD with different deep learning architectures such as DNNs, CNNs, 

LSTMs, and BiLSTMs, has allowed us to leverage the strengths of each model and enhance the 
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accuracy and robustness of our predictions. Despite certain limitations, our research 

methodology has provided a strong foundation for developing and evaluating DL hybrid 

methods for electricity price forecasting, contributing to the advancement of the field and 

providing valuable insights for stakeholders in the energy market. 
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6.1 Chapter Six in Short 

    Data plays a crucial role in developing accurate and reliable forecasting models, as it forms 

the foundation for training, validating, and evaluating the performance of these models. By 

understanding the characteristics and composition of the dataset, we can gain insights into the 

underlying patterns, trends, and complexities of electricity prices. 

    In this chapter, we provide an overview and description of the dataset, and input features 

used in our research for electricity price forecasting. This chapter serves as a comprehens ive 

guide to the dataset used in our research, offering a detailed description of its characterist ics, 

quality, and potential implications for electricity price forecasting. By establishing a solid 

understanding of the data, we can proceed with confidence in developing accurate and robust 

forecasting models that contribute to the optimization and efficiency of the energy market.  

6.2 Data Description and Input Features 

This section describes the dataset and its features. To ensure reproducible research we 

consider the following conditions.  

(i) Dataset is publicly available 

(ii) Dataset is long enough so that the deep learning model can train with enough 

information 

(iii)Dataset is recent enough to include the effects of integrating renewable  

energy sources on wholesale prices 

We select the MISO market dataset that satisfies the above conditions. This section also 

includes input features, data preprocessing steps, data flow, data preparation, and data 

engineering.  
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6.2.1 MISO Market Data 

The MISO (Midcontinent Independent System Operator) market is a regional energy market 

in the United States that operates in the Midwest and parts of the South and Gulf Coast. This 

market structure enables market participants, including generators, utilities, and wholesale 

customers, to engage in the buying and selling of electricity through various market mechanisms 

such as the day-ahead market. The MISO market plays a crucial role in promoting competition, 

optimizing grid operations, and facilitating the integration of renewable energy resources. We 

considered MISO historical time series data to evaluate our hybrid neural network model in the 

training, validation, and test phases. This is an hourly historical time series dataset that is 

available on misoenergy.org and also energyonline.com [162-163]. This time series contained 

5 years of hourly electricity prices from January 1, 2018, to December 5, 2022. MISO is a big 

wholesale market in the US that consist of 8 regional HUB to operate the whole MISO market. 

For the sake of simplicity, only Minnesota HUB (MINN.HUB) is considered for this research. 

Figure 6.1 shows the day-ahead electricity price time series data of the MISO dataset. Figure 

6.1 shows that prices are always positive, and zero prices are uncommon, however, spikes are 

common in the MISO market. To capture the influence of wind and solar 

 

Figure 6.1: A Day-ahead Electricity Price Time Series Data of the MISO Market 
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energy contribution, hourly temperature data and hourly wind speed data are also included in 

this dataset. These two weather data are available publicly by the ASOS Network of Iowa State 

University [164]. We collect Minnesota State temperature data and wind speed data for the same 

time period as MISO day-ahead price data.  

6.2.2 Features Selection 

In the context of time series analysis, input features for a deep learning (DL) model play a crucial 

role in extracting pertinent information and patterns from the data. These characteristics serve 

as the model's input variables and aid in its capacity to learn and forecast. When dealing with 

time series data, the input features are frequently obtained from previous observations or outside 

variables that affect the target variable. The proper selection of input features plays an important 

role in a neural network model. The subsequent figure 6.2 illustrates the process of feature 

generation and selection for the electricity price forecasting project. 

 

Figure 6.2: Steps in Feature Selection Process 

To forecast 24 hours of day-ahead prices the following input features are employed in this 

research project. 
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(i) Historical day-ahead electricity prices time series  

(ii) Historical temperature (F) time series  

(iii)Historical wind speed (mph) time series 

(iv) Historical day-ahead electricity prices as a decomposed signal, we use 12 

decomposed signal   

(v) Boolean identification of weekdays/weekends from time series, i.e. weekdays = 0 and 

weekend = 1 

(vi) Indication of the hour from a day, i.e. hour = [0,1,2….,23] 

(vii) Indication of day from a week, i.e. dayofweek = [0,2,3,….6 (based on week)] 

(viii)  Indication of day from a month, i.e. day = [1,2,3,….28/30/31 (based on month)]  

(ix) Indication of month from a year i.e. month = [1, 2,….,12] 

(x) Indication of midweek/non-midweek, i.e. Tue/Wed/Thu =mid-week =1, and 

Fri/Sat/Sun/Mon = non mid-week = 0 

(xi) The complete time series as a day sine signal and a day cosine signal  

(xii) The complete time series as a year sine signal and a year cosine signal  

Overall, we consider a total of 24 above input features for our hybrid deep neural network model.   

6.2.3 Data Interpolation 

    Data interpolation is a technique used in preparing time series data for deep learning (DL) 

models. It involves filling in missing or incomplete data points within the time series to create 

a continuous and complete dataset. Interpolation methods are employed to estimate the values 

of missing data based on the available information. The purpose of data interpolation is to 

maintain the temporal integrity of the time series and ensure that the DL model has a consistent 
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and uninterrupted sequence of data points for training or analysis [165]. We used spline 

interpolation to deal with missing data points in this research work. By breaking up the data into 

smaller pieces, spline interpolation fits a piecewise continuous curve to each section. These 

smooth connections between polynomial equations at particular data points, or knots, are what 

characterize these curves, which are known as splines. Splines are a good option for 

interpolating data with noise or abnormalities since their smoothness attribute guarantees that 

the generated curve does not show sudden changes between consecutive data points. Spline 

interpolation has the ability to handle irregular data distributions, it ensures de-noising by 

providing a reliable estimate between data points. 

6.2.4 Data Normalization 

It is important to scale features before training a neural network. Normalization is a common 

way of doing this scaling. Data normalization, also known as feature scaling or standardization, 

is a preprocessing technique used in deep learning (DL) models to transform input data into a 

common scale or range. It involves adjusting the values of the input features to ensure that they 

have similar magnitudes and distributions. Data normalization is important for DL models 

because it helps in improving convergence, stability, and performance during training. It is a 

necessary process required to normalize heterogeneous data. The Z- score normalization to 

handle outliers in our train dataset. It is measured by subtracting the mean from the original data 

points and dividing it by the standard deviation. The following equation 6.1 is used in the case 

of z-score normalization on every single value of the dataset [166]. 

Z-score=(x–μ)/σ                                                                                                                          (6.1)                                                                             

Where, x = Original value, μ = Mean of the dataset,   σ = Standard deviation of the dataset 

The mean and standard deviation should only be computed using the training data so that the 

models have no access to the values in the validation and test sets. This is for the sake of 
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achieving the highest accuracy from the trained model. Following are some advantages of Z-

score data normalization.  

 It reduces the correlation between features, hence improves the stability and 

interpretability of the model coefficients.  

 It accelerates convergence in optimization algorithms, leading to faster model 

training and better performance.  

 Z-score normalization is less sensitive to outliers, resulting in more robust models. 

 Following Z-score normalization, features with larger absolute z-scores exhibit 

higher variability in the data, facilitating a clearer interpretation of their relative 

significance within the model. 

6.2.5 Data Preparation 

Machine learning models usually required three types of datasets to perform any 

experimental analysis, (i) ‘train dataset’ to train the model, (ii) ‘validation dataset’ for evaluating 

the quality of the model, (iii) ‘test dataset’ to test the model after the model has gone through 

the validation process. In this research, the training dataset comprises the first 34920 hours, i.e., 

from 1/1/2018 until 12/25/2021, the validation starts 12/26/2021 and goes until 9/20/2022, i.e., 

6456 hours of data, finally, the test dataset spans from 9/21/2022 to 12.04/2022. We did not 

randomly shuffle the data during splitting to reserve the sequence in the dataset. The following 

table 6.1 shows the data splitting description on our MISO dataset. 

Table 6.1: Data Splitting on MISO Market Data 

Dataset Name Start Date End Date Hours 

Training 1/1/2018 12/25/2021 34920  

Validation 12/26/2021 9/20/2022 6456 

Test 9/21/2022 12/04/2022 1800 
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6.3 The Data Flow Diagram  

    The data flow diagram for the electricity price forecasting model shows how information 

flows through the model and into the forecasting process. With the help of the data flow diagram, 

a trustworthy and knowledgeable projection of electricity prices is made visible. Initia lly, 

historical information on electricity costs, weather, and other time-related aspects is gathered 

from reputable sources and stored in a central data frame. The forecasting model's main inputs 

are these data frames. The obtained data is transformed in the data preprocessing stage in order 

to get it ready for model training. These transformations include Z-score normalization, feature 

engineering, and data interpolation. To aid in the evaluation and generalization of the model, 

the preprocessed data is then divided into training, validation, and test sets. To capture short-

term dependencies in price forecasting, the data was preprocessed through a data windowing 

technique before training. The hybrid deep learning model, which incorporates elements of our 

VMD-DL model, is trained using the training data. After being trained, the model is utilized to 

forecast power prices in real time using the test dataset. The accuracy and efficiency of the 

model are then evaluated using the relevant performance criteria on the anticipated pricing. The 

following figure 6.3 shows the data flow diagram of our proposed hybrid model. In order to 

maximize energy efficiency and provide strategic planning with relevant data, the forecasting 

results are finally shared with key players and decision-makers in the energy industry. 

6.4 Technology and Processing Unit  

    Deep learning models using neural networks have a big problem with computational time. 

Using conventional CPUs to train a model can be a laborious operation that frequently takes 

many hours. But by utilizing GPU power, we can complete the same operation much more 

quickly—typically in a matter of minutes. GPUs are excellent at performing these tasks in 

parallel, which leads to considerable speed increases and shorter training times. We used Google 

CoLab notebooks to write the Python scripts for each of our machine- learning model  
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Figure 6.3: Data Flow Diagram of our Proposed Model 
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implementations. We run our DL models on TensorFlow 2 by using NVIDIA T4 Tensor Core 

GPUs to increase the training speed and reduce computational costs [167]. 

6.5 Chapter Conclusion 

    The data description and selection of input features in DL hybrid methods play a crucial role 

in the accuracy and effectiveness of electricity price forecasting. A thorough description of the 

data, including its sources, characteristics, and limitations, provides a comprehensive 

understanding of the dataset used in the research. The identification and selection of appropriate 

input features, particularly those capturing the impact of renewable energy and other relevant 

factors, are essential for capturing the complex dynamics of electricity prices. Careful 

consideration is given to feature engineering, normalization, and preprocessing techniques to 

ensure the quality, relevance, and compatibility of the input data with the DL hybrid models.  

Overall, the comprehensive data description and thoughtful selection of input features in DL 

hybrid methods provide a solid foundation for accurate and insightful electricity price  

forecasting, facilitating informed decision-making in the energy market. 
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7.1 Chapter Seven in Short 

    In this chapter, we present the analysis of results obtained from our electricity price 

forecasting models and discuss the process of model validation. After developing and training 

our forecasting models, it is essential to assess their performance, evaluate their predictive 

accuracy, and validate their ability to generalize to unseen data.  

    In parallel to the result analysis, we emphasize the importance of model validation. Model 

validation is crucial in assessing the models' generalization capabilities and their ability to 

perform well on unseen data. We discuss the methodologies employed for validation. By using 

separate validation datasets or splitting the data into training and validation sets, we evaluate 

the models' performance in terms of accuracy, robustness, and stability. This chapter provides 

a comprehensive examination of the outcomes, allowing us to draw meaningful insights and 

conclusions. 

7.2 Experimental Setup 

    The experimental setup for electricity price forecasting using our proposed four state-of-art 

hybrid deep learning hybrid models begins with obtaining a comprehensive and reliable dataset 

of historical electricity prices, including 24 relevant input factors. The historical price data is 

de-noise and decomposed using the potential VMD method. The dataset is then preprocessed 

by cleaning the data, normalizing the features, and splitting it into training, validation, and 

testing subsets. Relevant input features are selected, considering factors such as historica l 

prices, weather conditions, time of day, day of the week, holidays, and other market indicators. 

Later, four deep learning hybrid models are designed, incorporating neural network 

architectures namely dense neural networks (DNN), convolutional neural networks (CNNs), 

Long Short-Term Memory (LSTM), and Bidirectional Long Short-Term Memory (BiLSTM) 

to capture temporal and spatial dependencies in the data. The model is trained using the training 
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dataset, optimizing it with the Adam optimization algorithm and other adjusting 

hyperparameters. The trained model is then evaluated using the validation dataset to assess its 

performance and fine-tune hyperparameters if necessary. Finally, the model is tested using the 

testing dataset for an unbiased evaluation and deployed for day-ahead electricity price 

forecasting. The complete experimental setup requires the following technology and 

algorithms. 

 Machine Learning Framework: TensorFlow 2.0  

 Programming Language: Python 3, Pandas, NumPy, Matplotlib, Seaborn 

 Processing Unit: GPU (NVIDIA T4 Tensor Core) 

 Notebook: Google CoLab 

 Dataset Market: MISO 

 Dataset Length: 5 years 

 Total Inputs: 24 input features  

 Data Interpolation Method: Spline 

 Data Normalization Method: Z-score 

 Data Splitting: Training, Validation and Test 

 Window Sliding Method: (i) Window 1 (14+1 days), (ii) Window 2 (7+1 days), and 

(iii) Window 3 (1+1 days) 

 Deep Learning Neural Network: VMD, DNN, CNN, LSTM, and BiLSTM 

 Optimization Algorithms: Adam 

 Model Validation and Performance Matrices: MSE, MAE 

 Forecasting Timeframe: 24 hours 
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7.3 Model Validation Matrices 

In the field of electricity price forecasting, the most widely used metrics to measure the accuracy 

of forecasts are mean absolute error (MAE) and mean squared error (MSE). We have used MSE 

as a loss function to measure the loss during the training of the DL model and MAE to calculate 

the error during the forecasts by the model.      

7.3.1 MSE 

Mean Squared Error(MSE) is a very popular metric to measure the loss function of a deep 

learning model. MSE is utilized to investigate the model loss on training and validation datasets. 

To compute the MSE, the differences between the predicted and actual values are squared and 

then averaged across the dataset [168]. The squared differences emphasize larger errors, making 

it particularly useful for capturing the magnitude of errors in regression tasks. The equation 7.1 

to measure MSE is given in below. 

                                                                                                                 (7.1)                                                                                   

Where n = total data points, Y = original electricity price, and Y-hat = forecasted price by VMD-

DL hybrid model.  

7.3.2 MAE 

The Mean Absolute Error(MAE) is one of the most frequently employed metrics in the field 

of electricity price forecasting to assess the precision of price forecasts. To compute the MAE, 

the absolute differences between the predicted and actual values are calculated, and then 

averaged across the dataset [169]. The absolute differences provide a measure of the average 

magnitude of errors in the predictions. Unlike the squared differences used in Mean Squared 

Error (MSE), MAE does not amplify the impact of outliers or large errors. This makes MAE 

more robust to extreme values and outliers, making it suitable for situations where the presence 
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of such data points is expected. The error calculation was measured by the following equation 

7.2 [169].  

                                                                                          (7.2)  

Here, N = total of hours, Xreal = Original price, Xforecasted = forecasted price by VMD-DL 

hybrid model. 

7.4 Result Analysis and Discussion 

Electricity price forecasting is one of the most critical issues in the economic operation of 

the power system. High accuracy in the day-ahead price prediction can increase the profitability 

of the wholesale electricity market. Our hybrid models on MISO market data shows ignorable 

error and impressive performance on electricity price forecasts. In this section, we present the 

results of the stare of art VMD-DL hybrid deep learning model on the MISO dataset. To deploy 

the VMD-DL hybrid model, we created four different combinations, namely: (i) VMD-DNN, 

(ii) VMD-CNN, (iii) VMD-LSTM, and (iv) VMD-BiLSTM. 

7.4.1 Model Loss 

Loss functions quantify the discrepancy between predicted and actual values and serve as 

optimization objectives during model training and validation of the model. We chose MSE as a 

measure of the quality of the model. The values are always non-negative, and the ones closer to 

zero are always better for MSE. The following figure 7.1, figure 7.2, figure 7.3, and figure 7.4 

show the model loss during the training and validation process by each of four hybrid model 

combinations. The x-axis represents 50 epochs of training and validation by the hybrid model 

and the y-axis represents the loss on each epoch. The loss figure shows that the training loss and 

validation loss of each of these model are closer to zero. This ensured that this model was neither 
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under fitting nor overfitting, rather the fitting with the given dataset is within an acceptable 

range.  

The overall loss during the training and validation period by our three different windowing 

techniques and four different combinations of hybrid models are presented in the following table  

7.1. We have found that, (Window 1) when we consider 14 previous days to forecast 1 day 

ahead electricity prices the model’s overall loss by VMD – DNN is 0.3312, loss by VMD – 

CNN is 0.2637, loss by VMD – LSTM is 0.1796, and the loss by VMD – BiLSTM is only 

0.1517. All of these loss values are ignorable and significantly indicate a good result by each of 

these hybrid models. However, in our study, the VMD-BiLSTM model demonstrates superior 

performance compared to the other three models in all window implementations. 

             

Figure 7.1: Training-Validation Data Loss by VMD-DNN Model                   Figure 7.2: Training-Validation Data Loss by VMD-CNN Model 

            

Figure 7.3: Training-Validation Data Loss by VMD-LSTM Model             Figure 7.4: Training-Validation Data Loss by VMD-BiLSTM Model 
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Table 7.1: Model Loss by Different Windowing Techniques and Hybrid Models. 

Window Techniques Hybrid Model Model Loss (MSE) 

Window 1 (14+1 days) VMD – DNN 0.3312 

VMD – CNN 0.2637 

VMD – LSTM 0.1796 

VMD – BiLSTM 0.1517 

Window 2 (7+1 days) VMD – DNN 0.2824 

VMD – CNN 0.1956 

VMD – LSTM 0.1730 

VMD – BiLSTM 0.1318 

Window 3 (1+1 days) VMD – DNN 0.1229 

VMD – CNN 0.1418 

VMD – LSTM 0.1590 

VMD – BiLSTM 0.1236 

 

7.4.2 Model Performance 

    Machine learning model performance refers to the evaluation and measurement of how well 

a deep learning model performs in achieving its intended task or objective. It is important to 

note that DL model performance is not solely determined by the model architecture but also 

influenced by factors such as the quality and representativeness of the training data, the 

availability of labeled or ground truth data for evaluation, and the choice of appropriate hyper 

parameters and optimization algorithms during model training. The Mean Absolute Error(MAE) 

is one of the most frequently employed metrics in the field of electricity price forecasting to 

assess the precision of price forecasts.  A lower error means high accuracy in price prediction. 

The following figure 7.5, figure 7.6, figure 7.7, and figure 7.8 show the model performance on 

the validation and test datasets by each of four hybrid model combinations. The MAE for each 

of these hybrid models are almost equal and very close to each other on validation dataset and 

testing dataset.  
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Figure 7.5: Model Performance by VMD – DNN                          Figure 7.6: Model Performance by VMD - CNN 

                 

Figure 7.7: Model Performance by VMD – LSTM                   Figure 7.8: Model Performance by VMD - BiLSTM 

The MAE on the test dataset by the three different windowing techniques and four different 

combinations of hybrid models are presented in the following table 7.2. We have found that, 

(Window 1) when we consider 14 previous days to forecast 1 day ahead electricity prices the 

model’s MAE by VMD – DNN is 0.4623, MAE by VMD – CNN is 0.4083, MAE by VMD – 

LSTM is 0.3312, and the MAE by VMD – BiLSTM is only 0.3014. All of these MAE values 

are ignorable errors and significantly indicate a high accuracy in price forecasting by each of 

these hybrid models. However, in our study, the VMD-BiLSTM model demonstrates superior 

performance compared to the other three models in all window implementations. 
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Table 7.2: Model Performance by Different Windowing Techniques and Hybrid Models. 

Window Techniques Hybrid Model Model Loss (MSE) 

Window 1 (14+1 days) VMD - DNN 0.4623 

VMD - CNN 0.4083 

VMD - LSTM 0.3312 

VMD - BiLSTM 0.3014 

Window 2 (7+1 days) VMD - DNN 0.4161 

VMD - CNN 0.3472 

VMD - LSTM 0.3238 

VMD - BiLSTM 0.2782 

Window 3 (1+1 days) VMD - DNN 0.2710 

VMD - CNN 0.2930 

VMD - LSTM 0.3077 

VMD - BiLSTM 0.2733 

 

7.4.3 Electricity Price Forecasting Using Hybrid Models  

In this section, we delve into the electricity price predictions made by the VMD-DL models 

on our designated test dataset. As previously mentioned, we have formulated four hybrid model 

combinations like the following: (i) VMD-DNN, (ii) VMD-CNN, (iii) VMD-LSTM, and (iv) 

VMD-BiLSTM. Within each hybrid model we present three figures, each with five subplots 

representing five random windows.  

In each of the following figures, the blue portion has different length depending on the 

window size. This can be of three kinds, (a) the length of window 1 is the previous 336 hours 

(14 days) of price, (b) the length of window 2 is the previous 168 hours (7 days) of price, and 

(c) the length of window 3 is the previous 24 hours (1 day) of price. The green circles are 24 

hours (1 day) of original data labels, and the orange cross is 24 hours of forecasted price by the 

four hybrid models. The green circles and orange forecasts have the same length, i.e., 24 hours 

for all three windowing techniques.  
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(i) VMD - DNN  

The following figure 7.9, (a) window 1, (b) window 2, and (c) window 3; displays the 

predicted outcomes for hourly electricity prices by the VMD – DNN hybrid model on five 

randomly selected days from the test dataset. These visual representations demonstrate the 

remarkable adherence of the price prediction to the underlying trend, indicating strong 

forecasting capabilities of this hybrid model within the MISO energy market. 

 

(a) 

 

(b)
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(c) 

Figure 7.9: A Day-ahead Electricity Price Forecasting using VMD-DNN Hybrid Model, (a) 

Window 1 (14 + 1 days), (b) Window 2 (7 + 1 days), and (c) Window 3 (1+1 days) 

(ii) VMD - CNN  

The following figure 7.10, (a) window 1, (b) window 2, and (c) window 3; displays the 

predicted outcomes for hourly electricity prices by the VMD – CNN hybrid model on five 

randomly selected days from the test dataset. These visual representations demonstrate the 

remarkable adherence of the price prediction to the underlying trend, indicating strong 

forecasting capabilities of this hybrid model within the MISO energy market. 
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(a) 

 

(b)
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(c) 

Figure 7.10: A Day-ahead Electricity Price Forecasting using VMD-CNN Hybrid Model, (a) 

Window 1 (14 + 1 days), (b) Window 2 (7 + 1 days), and (c) Window 3 (1+1 days)  

(iii) VMD - LSTM  

The following figure 7.11, (a) window 1, (b) window 2, and (c) window 3; displays the 

predicted outcomes for hourly electricity prices by the VMD – LSTM hybrid model on five 

randomly selected days from the test dataset. These visual representations demonstrate the 

remarkable adherence of the price prediction to the underlying trend, indicating strong 

forecasting capabilities of this hybrid model within the MISO energy market. 
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(a) 

 

(b)
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(c) 

Figure 7.11: A Day-ahead Electricity Price Forecasting using VMD-LSTM Hybrid Model, (a) 

Window 1 (14 + 1 days), (b) Window 2 (7 + 1 days), and (c) Window 3 (1+1 days)  

(iv) VMD - BiLSTM  

The following figure 7.12, (a) window 1, (b) window 2, and (c) window 3; displays the 

predicted outcomes for hourly electricity prices by the VMD – BiLSTM hybrid model on five 

randomly selected days from the test dataset. These visual representations demonstrate the 

remarkable adherence of the price prediction to the underlying trend, indicating the strong 

forecasting capabilities of this hybrid model within the MISO energy market. 
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(a) 

 

(b)



87 

 

 

(c) 

Figure 7.12: A Day-ahead Electricity Price Forecasting using VMD-BiLSTM Hybrid Model, 

(a) Window 1 (14 + 1 days), (b) Window 2 (7 + 1 days), and (c) Window 3 (1+1 days)  

    Through this comprehensive result analysis and model validation process, we aim to provide 

a thorough evaluation of our electricity price forecasting models. The insights gained from this 

analysis enable us to assess the practicality and reliability of the models in real-world scenarios, 

offering valuable guidance for decision-makers in the energy market. 

7.4.4 Comparative Analysis with Other State-of-art Hybrid Models 

    In order to assess the efficiency and performance of various strategies in the field of energy 

price forecasting, a comparison with other cutting-edge models is essential. By contrasting our 

suggested model with current similar state-of-the-art models in terms of forecast accuracy 

(errors) and robustness, our study seeks to add to this analysis. We can discover areas where 

our model excels or fails in comparison by doing a thorough analysis that reveals the 
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advantages and drawbacks of other approaches. The following table 7.3 provide a comparative 

analysis to other similar model with electricity price forecasting. These are not same model but 

similar model with electricity price forecasting hybrid models. The table is delivering  a feel of 

how good our approaches are comparing with others. In 2022, a team of researchers led by 

Anbo Meng utilized a hybrid model called Empirical Wavelet Transform - Attention 

Mechanism- Long Short Term Memory - Crisscross Optimization Algorithm (EWT-AM-

LSTM-CSO) to forecast electricity prices in a different market, achieving a Mean Absolute 

Error (MAE) of 1.24 [169]. Additionally, they demonstrated an MAE of 3.39 with the VMD-

LSTM hybrid model. Similarly, Xiaoping Xiong and colleagues (2023) achieved an MAE of 

1.075 using the ACBFS -VMD-BOHB-LSTM model (Adaptive Copula-Based Feature 

Selection – Variational Mode Decomposition - Bayesian Optimization and Hyperband - Long 

Short Term Memory) [170]. In the same year (2023), Keke Wang and team achieved an 

impressive MAE of 0.506 by employing a combination of five models named RF-IMD- 

Table 7.3:  A Comparative Analysis with Other State-of-art Hybrid Models 

 

ICEEMD-VMD-BiLSTM (Random Forests - Improved Mahalanobis Distance - Improved 

Comprehensive Ensemble Empirical Mode Decomposition - Variational Mode Decomposit ion 

  EWT-

AM-

LSTM-

CSO 

ACBFS-

VMD-

BOHB-

LSTM 

RF-IMD-

ICEEMD 

-VMD-

Bi-LSTM 

VMD - 
DNN 

VMD - 
CNN 

VMD - 
LSTM 

VMD - 
BiLSTM 

Anbo Meng et. al (2022) 1.24         3.39  

Xiaoping Xiong et. al. 
(2023) 

  1.075         

Keke Wang et. al. 
(2023) 

    0.506       

 

Our 
Approach 

Window 1      0.462 0.408 0.331 0.301 

Window 2    0.416 0.347 0.324 0.278 

Window 3    0.271 0.293 0.308 0.273 
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– Bi Long Short Term Memory) [171]. Comparing our model to these state-of-the-art 

approaches, our VMD-BiLSTM model surpasses all others, yielding an outstanding MAE of 

0.273. 

7.5 Resolution of Technical Issues 

    To reduce downtime, avoid disruptions, and maintain peak performance, technical issues 

must be fixed quickly and effectively. Technical problems are resolved by locating their 

underlying causes, precisely diagnosing the problem, and putting the right fixes in place. We 

can reduce possible risks, improve system dependability, and guarantee the ongoing operation 

of their technological infrastructure by quickly resolving technical issues. Following are some 

resolution of handling technical issues arose with our system. 

 Data Integration - After collecting data from different sources putting them all together 

in a suitable format for our hybrid model is a very challenging task. We use the Pandas 

data frame module to resolve it.  

 Machine Learning Framework - We design and develop our hybrid models in 

TensorFlow 2 by writing Python scripts in Google CoLab notebooks.  

 Scalability - To resolve the scalability issue to work with our big dataset and model 

operation we use the Google Cloud platform.  

 Processing Speed - Training with a big amount of data is a time-consuming task. We 

utilize the power of GPU to resolve it.  

 Hyperparameter Tuning – We use dynamic learning rate for our machine learning 

model and Adam optimizer to achieve the best performance  

 We tackle and resolve the underfitting-overfitting of the model issue by using a totally 

separate validation dataset during the training of the model and utilizing MSE as an 

evaluation matric. 
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7.6 Challenges, Assumptions and Constraints 

    Challenges, assumptions, and constraints are integral elements that influence the planning 

and execution of any project or endeavor. Below are some challenges and limitations 

encountered in our project. 

 Publicly available data is very limited and challenging to collect.  

 A large number of data points should not be Missing in the dataset. In our case, it’s only 

180 values.  

 This hybrid model Forecasts only 24 hours in the future.  

 The Test Dataset should be long enough. In our case, it’s around four months but the 

longer test dataset is better. 

 Computationally advanced GPU must be utilized to reproduce the same results by our 

models. 

7.7 Chapter Conclusion 

    The model validation and result analysis phase in DL hybrid methods for electricity price 

forecasting is a critical step in evaluating the performance and reliability of the models.  

Through rigorous validation techniques, we can quantify the accuracy, precision, and 

robustness of the model’s predictions. Furthermore, result analysis allows for the identifica t ion 

of strengths and weaknesses in the DL hybrid models. By analyzing the patterns and trends in 

the predicted prices, we can gain a deeper understanding of the underlying factors influenc ing 

electricity price dynamics. This analysis enables us to make informed decisions on model 

selection, feature engineering, and potential improvements for future research. However, it is 

important to acknowledge the limitations and uncertainties associated with the result analysis. 
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Chapter 8: Conclusion and Future Direction  

 

This chapter at a glance: 

8.1 Best Practices in Electricity Price Forecasting 

8.2 Conclusion and Future Direction  
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8.1 The Best Practices in Electricity Price Forecasting 

    The USA electricity markets are evolving to accommodate changing energy landscapes, 

emerging technologies, and environmental considerations. The pursuit of a reliable, affordable, 

and sustainable electricity supply remains a top priority, driven by market forces, regulatory 

policies, and the collective goal of achieving a clean energy future. This research aims to 

explore the intersection of NFRs, big data analytics, and electricity price forecasting using a 

hybrid model. By addressing critical NFRs such as performance, scalability, and reliability, we 

seek to develop a robust and efficient solution that can handle the challenges posed by 

analyzing vast amounts of data in real-time. Additionally, we aim to investigate the impact of 

incorporating different DL architectures, such as DNNs, CNNs, LSTMs, and BiLSTMs, in 

hybrid models for electricity price forecasting. 

    Based on the extensive comparison of chapter 4, chapter 5, and chapter 6, it can be concluded 

that the VMD – BiLSTM hybrid model outperform all other hybrid models. Through extensive 

research on electricity price forecasting (EPF) we outlined some best prictices in the EPF 

domain. 

(i) Integration of the data from renewable energy sources, like solar, wind, etc., has a great 

influence to achieve a notable accuracy on electricity price forecasting. 

(ii) Dataset must be long enough, e.g. five years and also recent enough to capture the 

impact of the renewable energy sources in the electricity grid market. 

(iii)The test dataset comprises at least a year of data. 

(iv) We propose, design, and develop four state-of-art hybrid deep-learning models to 

forecast electricity prices in the US energy market, namely, (a) VMD-DNN, (b) VMD-

CNN, (d) VMD-LSTM, and (d) VMD-BiLSTM. The VMD – BiLSTM hybrid model 

outperform all other hybrid models 
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(v) To ensure data quality, a data de-noising technique like VMD is appreciable to achieve 

high accuracy. 

(vi) Data interpolation to handle missing data points, and data normalization techniques to 

standardize the data is very helpful in price forecasting. 

(vii)  Increasing amount of time sensitive features have the potential to improve the 

accuracy in forecasting approach. We consider 24 time-sensitive input features that can 

capture underlying patterns in data to improve electricity price forecasting. 

(viii) Sliding Window techniques are significant in machine learning model training 

because they enable the model to handle variable- length sequences, capture temporal 

dependencies, increase the amount of training data, and improve batch processing. 

(ix) A validation dataset is very appreciable to balance the overfitting-underfitting issues of 

the model. 

 

8.2 Conclusion and Future Work 

Our research on electricity price forecasting using hybrid deep learning (DL) models has 

demonstrated promising results in the USA energy market. We have formulated a 

comprehensive set of best practices within the domain of electricity price forecasting. Our 

analysis encompasses various factors that influence the accuracy of electricity price predictions, 

including data windowing techniques and the incorporation of input features that capture the 

impact of renewable energy on electricity prices. To ensure the adequacy, reproducibility, and 

practicality of our research in the USA energy market, we have developed four advanced hybrid 

deep learning models. By combining the strengths of the Variational Mode Decomposition 

(VMD) technique with DL architectures such as DNN, CNN, LSTM, and BiLSTM, we have 

achieved accurate and reliable price predictions. The VMD-BiLSTM hybrid model has proven 

to be particularly effective, surpassing other model combinations in terms of accuracy. Its 
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performance, as measured by the Mean Absolute Error (MAE) metric, stands at 0.2733, 

underscoring its proficiency as a price forecaster within the US energy market. 

However, there is scope for enhancing the model performance by exploring additional input 

features, experimenting with different optimization algorithms, and employing other techniques. 

Our current hybrid models do not incorporate any feature optimization or selection methods, 

and incorporating such techniques may further improve the model's performance. We remain 

committed to advancing our research in the field of electricity price forecasting within the USA 

energy market, and we plan to explore datasets from other Independent System Operator (ISO) 

markets to broaden our investigation. 
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Appendix A 

Code: Variational Mode Decomposition (VMD) 

# -*- coding: utf-8 -*- 
"""VMD_2023.ipynb 
Author : Md. Saifur Rahman 

Email: mdsaifur.rahman.1@und.edu 
""" 

!pip install vmdpy

from vmdpy import VMD #make sure if it imported the package with no problems - if there's 
an error, try from vmdpy import VMD 
import numpy as np 

import pandas as pd 
import math 

import matplotlib.pyplot as plt 

import datetime as dt 

#file location path 

data = pd.read_csv('./MISO2018.csv') 
price_data = data['LMP'] 

price_data 

#Whole year data 
#S1 = np.array(price_data[:43176]) 
S1 = np.array(price_data[:43176]) 

# assign here which timeseries you want to decompose 

signal = S1 

#+ S2 + S3 + S4 #price_data? temp_data? etc 

# signal_hat = np.fft.fftshift((np.fft.fft(signal))) 

#set VMD parameters 
alpha = 20000.0 
tau = 0 

K = 16 
DC = 0 

init = 1 
tol = 1e-7 

# signal - the time domain signal(1D vector) to be decomposed 
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# alpha - the balancing parameter of the data - fidelity constraint 
# tau - time - step of the dual ascent(pick 0 for noise - slack) 

# K - the number of modes to be recovered 
# DC - true if the first mode is putand kept at DC(0 - freq) 

# init - 0 = all omegas start at 0 1 = all omegas start uniformly distributed 2 = all omegas 
initialized randomly 
# tol - tolerance of convergence criterion; typically around 1e-6 

 
(u,u_hat,omega)=VMD(signal, alpha, tau, K, DC, init, tol) 

 
 
plt.figure() 

plt.plot(u.T) 
plt.title('Decomposed modes') 

print(u.T) 
print(len(u.T)) 
plt.show() 

 
type(u.T) 

 
DF = pd.DataFrame(u.T) 
DF 

 
DF.to_csv('DecompP.csv') 
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Appendix B 
 

Code: Dense Neural Network (DNN) 
 
 

# -*- coding: utf-8 -*- 
"""DNN ElectricityPriceForecasting.ipynb 
Author : Md. Saifur Rahman 

Email : mdsaifur.rahman.1@und.edu 
""" 

 
# I use google colab and GPU to run this model 
# import necessary libraries 

import os 
import datetime as dt 

import IPython 
import IPython.display 
import matplotlib as mpl 

import matplotlib.pyplot as plt 
import numpy as np 

import pandas as pd 
import seaborn as sns 
import tensorflow as tf 

mpl.rcParams['figure.figsize'] = (8, 6) 
mpl.rcParams['axes.grid'] = False 
 

# Upload data in co-lab 
from google.colab import files 

uploaded = files.upload() 
 
# A Day-ahead electricity price dataset 

dfP = pd.read_csv('MISO2018DP.csv') 
dfP.head() 

 
# Hourly Temparate dataset 
dfT = pd.read_csv('MSP2018.csv') 

dfT.head() 
 

# Hourly wind-speed dataset 
dfS = pd.read_csv('MSPWS2018.csv') 
dfS.head() 

 
# Convert to datetime format 

dfP['Date'] = pd.to_datetime(dfP['Date']) 
 
# Convert to datetime format 

dfT['Date'] = pd.to_datetime(dfT['Date']) 
 

# Convert to datetime format 
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dfS['Date'] = pd.to_datetime(dfS['Date']) 
 

# Most of the case, I have found that the data are not sorted by timestamp! So, Sort by date if 
not sorted yet! 

dfT = dfT.sort_values(by=['Date']) 
dfS = dfS.sort_values(by=['Date']) 
 

# Remove duplicate rows 
dfT = dfT.drop_duplicates() 

dfS = dfS.drop_duplicates() 
 
# Again, convert to datetime format 

dfT['Date'] = pd.to_datetime(dfT['Date']) 
dfS['Date'] = pd.to_datetime(dfS['Date']) 

 
# Dataset after removing duplicates 
dfT = dfT[~dfT.index.duplicated()] 

dfS = dfS[~dfS.index.duplicated()] 
 

# Convert object datatype to float datatype 
dfT['TempF'] = pd.to_numeric(dfT['TempF'],errors = 'coerce') 
dfS['WS(mph)'] = pd.to_numeric(dfS['WS(mph)'],errors = 'coerce') 

 
# Add missing timestamp row to a dataframe. By default NaN will be added to each value for 

newly added timestamp. 
#dfT = dfT.set_index('Date').asfreq('1H') 
dfT =dfT.resample('1H', on='Date').mean() 

dfS =dfS.resample('1H', on='Date').mean() 
 

#Merge both of these data frames in one based on one single timestamp column. 
# Outer join , This uses the keys from both frames, and NaNs are inserted for missing rows in 
both case. 

df1 = dfP.merge(dfT, on='Date', how = 'outer') # 483779 
 

# Again merge with wind speed dataset 
df = df1.merge(dfS, on='Date', how = 'outer') 
 

# Check final dataset 
df.head() 

 
# Add three column. these are hour of the day, days of the month, and boolean value for week 
days (0) and week end(1). The day of the week with Monday=0, Sunday=6 

df['hour'] = df['Date'].dt.hour 
df['week_end'] = ((df['Date'].dt.dayofweek)//5 == 1).astype(int) 

df['day_of_month'] = df['Date'].dt.day 
 
# Lets check the dataset 

df.head() 
 

# day of week variable to work on mid-week boolean value 
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df['week_day'] = df['Date'].dt.dayofweek 
 

# Tue,Wed, and Thu are mid-week 
# Fri, Sat, Sun, and Mon are non mid-week day 

df.loc[(df.week_day== 1) | ( df.week_day== 2) | (df.week_day== 3), 'mid_week'] = 1 
df.loc[(df.week_day== 4) | ( df.week_day== 5) | (df.week_day== 6) | (df.week_day== 0), 
'mid_week'] = 0 

 
# remove unnecessary columns from data frame 

#df = df.drop(df[['week_day']], axis=1) 
 
# check the dataframe again 

df.info() 
 

# Chcek null values in each column 
df.isnull().sum(axis = 0) 
 

# Interpolation techniques estimate the missing values by assuming a relationship within a 
range of data points. 

# spline: Estimates values that minimize overall curvature, thus obtaining a smooth surface 
passing through the input points. 
df['TempF']= df['TempF'].interpolate(option='spline') 

df['WS(mph)']= df['WS(mph)'].interpolate(option='spline') 
 

# convert format and pop date time 
date_time = pd.to_datetime(df.pop('Date'), format='%YYYY/%mm/%dd %H:%M:%S') 
 

# Plot few features over time (completet data) 
plot_cols = ['LMP' ] 

plot_features = df[plot_cols] 
plot_features.index = date_time 
_ = plot_features.plot(subplots=True) 

 
# Plot for 10 days 

plot_features = df[plot_cols][:240] 
plot_features.index = date_time[:240] 
_ = plot_features.plot(subplots=True) 

 
# Plot for 1 days 

plot_features = df[plot_cols][:24] 
plot_features.index = date_time[:24] 
_ = plot_features.plot(subplots=True) 

 
# Check the statistics of this dataset 

df.describe() 
#df.describe().transpose() 
 

# Similarly the Date Time column is very useful, but not in this string form. Start by 
converting it to seconds 
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timestamp_s = date_time.map(dt.datetime.timestamp) 
 

# A simple approach to convert it to a usable signal is to use sin and cos to convert the time to 
clear "Time of day" and "Time of year" signals 

 
 
day = 24*60*60 

year = (365.2425)*day 
 

df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) 
df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) 
df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) 

df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year)) 
 

# Split for the training, validation, and test sets. Note the data is not being randomly shuffled 
before splitting 
 

#print(df.columns) 
column_indices = {name: i for i, name in enumerate(df.columns)} 

#print(column_indices) 
n = len(df) 
print("Total Data:",n) 

 
# 2018 to 2022 Master dataset 

train_df = df[0:34920] # 34920 
val_df = df[34920:41376]   # 7896 
test_df = df[41376:43176]  # 35088 #  1800 

 
# check how many for train/validation/test 

print("Train Data:",len(train_df)) 
print("Validation Data:",len(val_df)) 
print("Test Data:",len(test_df)) 

 
# Check number of features in the data frame columns (df.shape[1]). Data frame works like 

(row, column) = (0,1) 
dataframe = df.shape 
print(dataframe) 

num_features = df.shape[1] 
 

# Normalize the data 
# It is important to scale features before training a neural network. Normalization is a 
common way of doing this scaling. Subtract the mean and divide by the standard deviation of 

each feature. 
# The mean and standard deviation should only be computed using the training data so that 

the models have no access to the values in the validation and test sets. 
# Standardization(Z-score normalization) is the subtraction of the mean and then dividing by 
its standard deviation. 

 
train_mean = train_df.mean() 

train_std = train_df.std() 
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train_df = (train_df - train_mean) / train_std 

val_df = (val_df - train_mean) / train_std 
test_df = (test_df - train_mean) / train_std 

 
# Plot to check 
# Now peek at the distribution of the features. Price do have long tails, but there are no 

obvious errors. 
df_std = (df - train_mean) / train_std 

df_std = df_std.melt(var_name='Column', value_name='Normalized') 
plt.figure(figsize=(12, 6)) 
ax = sns.violinplot(x='Column', y='Normalized', data=df_std) 

_ = ax.set_xticklabels(df.keys(), rotation=90) 
 

# Wnidow Generator 
# Indexes and offsets 
# Create the WindowGenerator class. The __init__ method includes all the necessary logic 

for the input and label indices. 
 

class WindowGenerator(): 
  def __init__(self, input_width, label_width, shift, 
               train_df=train_df, val_df=val_df, test_df=test_df, 

               label_columns=None): 
    # Store the raw data. 

    self.train_df = train_df 
    self.val_df = val_df 
    self.test_df = test_df 

 
    # Work out the label column indices. 

    self.label_columns = label_columns 
    if label_columns is not None: 
      self.label_columns_indices = {name: i for i, name in 

                                    enumerate(label_columns)} 
    self.column_indices = {name: i for i, name in 

                           enumerate(train_df.columns)} # only consider train dataset 
 
    # Work out the window parameters. 

    self.input_width = input_width 
    self.label_width = label_width 

    self.shift = shift 
 
    self.total_window_size = input_width + shift 

 
    self.input_slice = slice(0, input_width) 

    self.input_indices = np.arange(self.total_window_size)[self.input_slice] 
 
    self.label_start = self.total_window_size - self.label_width 

    self.labels_slice = slice(self.label_start, None) 
    self.label_indices = np.arange(self.total_window_size)[self.labels_slice] 

 



114 
 

  def __repr__(self): 
    return '\n'.join([ 

        f'Total window size: {self.total_window_size}', 
        f'Input indices: {self.input_indices}', 

        f'Label indices: {self.label_indices}', 
        f'Label column name(s): {self.label_columns}']) 
 

# window size is 2 weeks + 24 hours 
OUT_STEPS = 24 

#INPUT_WIDTH = 336 # 14 days 
#INPUT_WIDTH = 168 # 7 days 
INPUT_WIDTH = 24 # 1 day 

w1 = WindowGenerator(input_width=INPUT_WIDTH, label_width=OUT_STEPS, 
shift=OUT_STEPS, 

                     label_columns=['LMP']) 
w1 
 

# split window 
 

def split_window(self, features): 
  inputs = features[:, self.input_slice, :] 
  labels = features[:, self.labels_slice, :] 

  if self.label_columns is not None: 
    labels = tf.stack( 

        [labels[:, :, self.column_indices[name]] for name in self.label_columns], 
        axis=-1) 
 

  # Slicing doesn't preserve static shape information, so set the shapes manually. This way the 
`tf.data.Datasets` are easier to inspect. 

  inputs.set_shape([None, self.input_width, None]) 
  labels.set_shape([None, self.label_width, None]) 
 

  return inputs, labels 
 

WindowGenerator.split_window = split_window 
 
# Lets see! 

# Stack three slices, the length of the total window: 
#example_window = tf.stack([np.array(train_df[:w1.total_window_size]), 

#                           np.array(train_df[100:100+w1.total_window_size]), 
#                           np.array(train_df[200:200+w1.total_window_size])]) 
 

example_window = tf.stack([np.array(test_df[:w1.total_window_size])]) 
 

example_inputs, example_labels = w1.split_window(example_window) 
 
print('All shapes are: (batch, time, features)') 

print(f'Window shape: {example_window.shape}') 
print(f'Inputs shape: {example_inputs.shape}') 

print(f'labels shape: {example_labels.shape}') 
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# plot to observe 

 
w1.example = example_inputs, example_labels 

 
# design plot methods 
 

def plot(self, model=None, plot_col='LMP', max_subplots=5): 
  inputs, labels = self.example 

  plt.figure(figsize=(12, 8)) 
  plot_col_index = self.column_indices[plot_col] 
  max_n = min(max_subplots, len(inputs)) 

  for n in range(max_n): 
    plt.subplot(5, 1, n+1) 

    plt.ylabel(f'{plot_col} [normed]') 
    plt.plot(self.input_indices, inputs[n, :, plot_col_index], 
             label='Inputs', marker='.', zorder=-10) 

 
    if self.label_columns: 

      label_col_index = self.label_columns_indices.get(plot_col, None) 
    else: 
      label_col_index = plot_col_index 

 
    if label_col_index is None: 

      continue 
 
    plt.scatter(self.label_indices, labels[n, :, label_col_index], 

                edgecolors='k', label='Labels', c='#2ca02c', s=64) 
    if model is not None: 

      predictions = model(inputs) 
      plt.scatter(self.label_indices, predictions[n, :, label_col_index], 
                  marker='X', edgecolors='k', label='Predictions', 

                  c='#ff7f0e', s=64) 
 

    if n == 0: 
      plt.legend() 
 

  plt.xlabel('Time [h]') 
 

WindowGenerator.plot = plot 
 
# Create Datasets 

# This make_dataset method will take a time series DataFrame and convert it to a 
tf.data.Dataset of (input_window, label_window) pairs using the 

preprocessing.timeseries_dataset_from_array function. 
 
def make_dataset(self, data): 

  data = np.array(data, dtype=np.float32) 
  print(data.shape) 

  ds = tf.keras.preprocessing.timeseries_dataset_from_array( 
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      data=data, 
      targets=None, 

      sequence_length=self.total_window_size, 
      sequence_stride=1, 

      shuffle=True, # False 
      batch_size= 24) #168) #336) #168) 
 

  ds = ds.map(self.split_window) 
 

  return ds 
 
WindowGenerator.make_dataset = make_dataset 

 
# The WindowGenerator object holds training, validation and test data. 

# Add properties for accessing them as tf.data.Datasets using the above make_dataset 
method. 
 

@property 
def train(self): 

  return self.make_dataset(self.train_df) 
 
@property 

def val(self): 
  return self.make_dataset(self.val_df) 

 
@property 
def test(self): 

  return self.make_dataset(self.test_df) 
 

@property 
def example(self): 
  """Get and cache an example batch of `inputs, labels` for plotting.""" 

  result = getattr(self, '_example', None) 
  if result is None: 

    # No example batch was found, so get one from the `.train` dataset 
    #result = next(iter(self.train)) 
    result = next(iter(self.test)) 

    # And cache it for next time 
    self._example = result 

  return result 
 
WindowGenerator.train = train 

WindowGenerator.val = val 
WindowGenerator.test = test 

WindowGenerator.example = example 
 
# Iterating over a Dataset yields concrete batches 

 
for example_inputs, example_labels in w1.train.take(1): 

  print(f'Inputs shape (batch, time, features): {example_inputs.shape}') 
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  print(f'Labels shape (batch, time, features): {example_labels.shape}') 
 

# The training procedure into a function. This will enhance reusability 
 

MAX_EPOCHS = 300 
 
#def compile_and_fit(model, window, patience=2): 

def compile_and_fit(model, window): 
  early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', 

                                                    #patience=patience, 
                                                    mode='min') 
 

  model.compile(loss=tf.losses.MeanSquaredError(), 
                optimizer=tf.optimizers.Adam(), 

                metrics=[tf.metrics.MeanAbsoluteError()] 
                #metrics=['accuracy'] 
                ) 

 
  history = model.fit(window.train, epochs=MAX_EPOCHS, 

                      validation_data=window.val,) 
                      #callbacks=[early_stopping]) 
  return history 

 
'''# LSTM model design (One o/p) 

lstm_model = tf.keras.models.Sequential([ 
    # Shape [batch, time, features] => [batch, time, lstm_units] 
    tf.keras.layers.LSTM(50, return_sequences=False), 

    tf.keras.layers.Dropout(0.3), 
    tf.keras.layers.Dense(OUT_STEPS, 

                          kernel_initializer=tf.initializers.zeros), 
    #tf.keras.layers.Dropout(0.1), 
    tf.keras.layers.Reshape([OUT_STEPS, 1]) 

])''' 
 

DNN_model = tf.keras.Sequential([ 
    # Shape: (time, features) => (time*features) 
    tf.keras.layers.Flatten(), 

    tf.keras.layers.Dense(units=32, activation='relu'), 
    tf.keras.layers.Dense(units=32, activation='relu'), 

    #tf.keras.layers.Dense(units=1), 
    # Add back the time dimension. 
    # Shape: (outputs) => (1, outputs) 

    #tf.keras.layers.Reshape([1, -1]), 
    tf.keras.layers.Dense(OUT_STEPS,kernel_initializer=tf.initializers.zeros), 

    tf.keras.layers.Reshape([OUT_STEPS, 1]) 
]) 
 

'''# LSTM model design (single shot all o/p) 
lstm_model = tf.keras.models.Sequential([ 

    # Shape [batch, time, features] => [batch, time, lstm_units] 
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    #With return_sequences=True, the model can be trained on 336 hours of data at a time. 
    tf.keras.layers.LSTM(50, return_sequences=False), 

    tf.keras.layers.Dropout(0.3), 
    tf.keras.layers.Dense(OUT_STEPS*num_features, 

                          kernel_initializer=tf.initializers.zeros), 
    #tf.keras.layers.Dropout(0.1), 
    tf.keras.layers.Reshape([OUT_STEPS, num_features]) 

])''' 
 

print('Input shape:', w1.example[0].shape) 
print('Output shape:', DNN_model(w1.example[0]).shape) 
 

# Start Training the model 
val_performance = {} 

performance = {} 
 
history = compile_and_fit(DNN_model, w1) 

 
IPython.display.clear_output() 

val_performance['DNN'] = DNN_model.evaluate(w1.val) 
performance['DNN'] = DNN_model.evaluate(w1.test, verbose=2) 
 

# Plot model loss 
plt.plot(history.history['loss']) 

plt.plot(history.history['val_loss']) 
plt.title("Model Loss") 
plt.xlabel("epochs") 

plt.ylabel("loss") 
plt.legend(['train', 'val'], loc='upper right') 

 
# lets check the prediction and compare with original price 
w1.plot(DNN_model) 

 
# Performance bar chart 

 
x = np.arange(len(performance)) 
width = 0.3 

metric_name = 'mean_absolute_error' 
metric_index = DNN_model.metrics_names.index('mean_absolute_error') 

val_mae = [v[metric_index] for v in val_performance.values()] 
test_mae = [v[metric_index] for v in performance.values()] 
 

plt.ylabel('mean_absolute_error [LMP, normalized]') 
plt.bar(x - 0.17, val_mae, width, label='Validation') 

plt.bar(x + 0.17, test_mae, width, label='Test') 
 
plt.xticks(ticks=x, labels=performance.keys(), 

           rotation=45) 
_ = plt.legend() 
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# Let's get MAE of this model 
for name, value in performance.items(): 

 
  print(f'{name:12s}: {value[1]:0.4f}') 

 
DNN_model.summary() 
 

# Save the model 
import os.path 

#if os.path.isfile() is False: 
DNN_model.save('DNN1 300 epochs.h5',overwrite=True) 
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Appendix C 
 

Code: Convolutional Neural Network (CNN) 
 
 

# -*- coding: utf-8 -*- 
"""CNN_ElectricityPriceForecasting_LSTM.ipynb 
Author: Md. Saifur Rahman 

Email: mdsaifur.rahman.1@und.edu 
""" 

 
# I use google colab and GPU to run this model 
# import necessary libraries 

import os 
import datetime as dt 

import IPython 
import IPython.display 
import matplotlib as mpl 

import matplotlib.pyplot as plt 
import numpy as np 

import pandas as pd 
import seaborn as sns 
import tensorflow as tf 

 
mpl.rcParams['figure.figsize'] = (8, 6) 
mpl.rcParams['axes.grid'] = False 

 
# Upload data in co-lab 

from google.colab import files 
uploaded = files.upload() 
 

# A Day-ahead electricity price dataset 
dfP = pd.read_csv('MISO2018DP.csv') 

dfP.head() 
 
# Hourly Temparate dataset 

dfT = pd.read_csv('MSP2018.csv') 
dfT.head() 

 
# Hourly wind-speed dataset 
dfS = pd.read_csv('MSPWS2018.csv') 

dfS.head() 
 

# Convert to datetime format 
dfP['Date'] = pd.to_datetime(dfP['Date']) 
 

# Convert to datetime format 
dfT['Date'] = pd.to_datetime(dfT['Date']) 
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# Convert to datetime format 
dfS['Date'] = pd.to_datetime(dfS['Date']) 

 
# Most of the case, I have found that the data are not sorted by timestamp! So, Sort by date if 

not sorted yet! 
dfT = dfT.sort_values(by=['Date']) 
dfS = dfS.sort_values(by=['Date']) 

 
# Remove duplicate rows 

dfT = dfT.drop_duplicates() 
dfS = dfS.drop_duplicates() 
 

# Again, convert to datetime format 
dfT['Date'] = pd.to_datetime(dfT['Date']) 

dfS['Date'] = pd.to_datetime(dfS['Date']) 
 
# Dataset after removing duplicates 

dfT = dfT[~dfT.index.duplicated()] 
dfS = dfS[~dfS.index.duplicated()] 

 
# Convert object datatype to float datatype 
dfT['TempF'] = pd.to_numeric(dfT['TempF'],errors = 'coerce') 

dfS['WS(mph)'] = pd.to_numeric(dfS['WS(mph)'],errors = 'coerce') 
 

# Add missing timestamp row to a dataframe. By default NaN will be added to each value for 
newly added timestamp. 
#dfT = dfT.set_index('Date').asfreq('1H') 

dfT =dfT.resample('1H', on='Date').mean() 
dfS =dfS.resample('1H', on='Date').mean() 

 
#Merge both of these data frames in one based on one single timestamp column. 
# Outer join , This uses the keys from both frames, and NaNs are inserted for missing rows in 

both case. 
df1 = dfP.merge(dfT, on='Date', how = 'outer') # 483779 

 
# Again merge with wind speed dataset 
df = df1.merge(dfS, on='Date', how = 'outer') 

 
# Check final dataset 

df.head() 
 
# Add three column. these are hour of the day, days of the month, and boolean value for week 

days (0) and week end(1). The day of the week with Monday=0, Sunday=6 
df['hour'] = df['Date'].dt.hour 

df['week_end'] = ((df['Date'].dt.dayofweek)//5 == 1).astype(int) 
df['day_of_month'] = df['Date'].dt.day 
 

# Lets check the dataset 
df.head() 
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# day of week variable to work on mid-week boolean value 
df['week_day'] = df['Date'].dt.dayofweek 

 
# Tue,Wed, and Thu are mid-week 

# Fri, Sat, Sun, and Mon are non mid-week day 
df.loc[(df.week_day== 1) | ( df.week_day== 2) | (df.week_day== 3), 'mid_week'] = 1 
df.loc[(df.week_day== 4) | ( df.week_day== 5) | (df.week_day== 6) | (df.week_day== 0), 

'mid_week'] = 0 
 

# remove unnecessary columns from data frame 
df = df.drop(df[['week_day']], axis=1) 
 

# check the dataframe again 
df.info() 

 
# Chcek null values in each column 
df.isnull().sum(axis = 0) 

 
# Interpolation techniques estimate the missing values by assuming a relationship within a 

range of data points. 
# spline: Estimates values that minimize overall curvature, thus obtaining a smooth surface 
passing through the input points. 

df['TempF']= df['TempF'].interpolate(option='spline') 
df['WS(mph)']= df['WS(mph)'].interpolate(option='spline') 

 
# convert format and pop date time 
date_time = pd.to_datetime(df.pop('Date'), format='%YYYY/%mm/%dd %H:%M:%S') 

 
# Plot few features over time (completet data) 

plot_cols = ['LMP' ] 
plot_features = df[plot_cols] 
plot_features.index = date_time 

_ = plot_features.plot(subplots=True) 
 

# Plot for 10 days 
plot_features = df[plot_cols][:240] 
plot_features.index = date_time[:240] 

_ = plot_features.plot(subplots=True) 
 

# Plot for 1 days 
plot_features = df[plot_cols][:24] 
plot_features.index = date_time[:24] 

_ = plot_features.plot(subplots=True) 
 

# Check the statistics of this dataset 
df.describe() 
#df.describe().transpose() 

 
# Similarly the Date Time column is very useful, but not in this string form. Start by 

converting it to seconds 
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timestamp_s = date_time.map(dt.datetime.timestamp) 

 
# A simple approach to convert it to a usable signal is to use sin and cos to convert the time to 

clear "Time of day" and "Time of year" signals 
 
 

day = 24*60*60 
year = (365.2425)*day 

 
df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) 
df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) 

df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) 
df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year)) 

 
# Split for the training, validation, and test sets. Note the data is not being randomly shuffled 
before splitting 

 
#print(df.columns) 

column_indices = {name: i for i, name in enumerate(df.columns)} 
#print(column_indices) 
n = len(df) 

print("Total Data:",n) 
 

# 2018 to 2022 Master dataset 
train_df = df[0:34920] # 34920 
val_df = df[34920:41376]   # 7896 

test_df = df[41376:43176]  # 35088 #  1800 
 

# check how many for train/validation/test 
print("Train Data:",len(train_df)) 
print("Validation Data:",len(val_df)) 

print("Test Data:",len(test_df)) 
 

# Check number of features in the data frame columns (df.shape[1]). Data frame works like 
(row, column) = (0,1) 
dataframe = df.shape 

print(dataframe) 
num_features = df.shape[1] 

 
# Normalize the data 
# It is important to scale features before training a neural network. Normalization is a 

common way of doing this scaling. Subtract the mean and divide by the standard deviation of 
each feature. 

# The mean and standard deviation should only be computed using the training data so that 
the models have no access to the values in the validation and test sets. 
# Standardization(Z-score normalization) is the subtraction of the mean and then dividing by 

its standard deviation. 
 

train_mean = train_df.mean() 
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train_std = train_df.std() 
 

train_df = (train_df - train_mean) / train_std 
val_df = (val_df - train_mean) / train_std 

test_df = (test_df - train_mean) / train_std 
 
# Plot to check 

# Now peek at the distribution of the features. Price do have long tails, but there are no 
obvious errors. 

df_std = (df - train_mean) / train_std 
df_std = df_std.melt(var_name='Column', value_name='Normalized') 
plt.figure(figsize=(12, 6)) 

ax = sns.violinplot(x='Column', y='Normalized', data=df_std) 
_ = ax.set_xticklabels(df.keys(), rotation=90) 

 
# Wnidow Generator 
# Indexes and offsets 

# Create the WindowGenerator class. The __init__ method includes all the necessary logic 
for the input and label indices. 

 
class WindowGenerator(): 
  def __init__(self, input_width, label_width, shift, 

               train_df=train_df, val_df=val_df, test_df=test_df, 
               label_columns=None): 

    # Store the raw data. 
    self.train_df = train_df 
    self.val_df = val_df 

    self.test_df = test_df 
 

    # Work out the label column indices. 
    self.label_columns = label_columns 
    if label_columns is not None: 

      self.label_columns_indices = {name: i for i, name in 
                                    enumerate(label_columns)} 

    self.column_indices = {name: i for i, name in 
                           enumerate(train_df.columns)} # only consider train dataset 
 

    # Work out the window parameters. 
    self.input_width = input_width 

    self.label_width = label_width 
    self.shift = shift 
 

    self.total_window_size = input_width + shift 
 

    self.input_slice = slice(0, input_width) 
    self.input_indices = np.arange(self.total_window_size)[self.input_slice] 
 

    self.label_start = self.total_window_size - self.label_width 
    self.labels_slice = slice(self.label_start, None) 

    self.label_indices = np.arange(self.total_window_size)[self.labels_slice] 
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  def __repr__(self): 

    return '\n'.join([ 
        f'Total window size: {self.total_window_size}', 

        f'Input indices: {self.input_indices}', 
        f'Label indices: {self.label_indices}', 
        f'Label column name(s): {self.label_columns}']) 

 
# window size is 2 weeks + 24 hours 

OUT_STEPS = 24 
#INPUT_WIDTH = 336 
#INPUT_WIDTH = 168 

INPUT_WIDTH = 24 
w1 = WindowGenerator(input_width=INPUT_WIDTH, label_width=OUT_STEPS, 

shift=OUT_STEPS, 
                     label_columns=['LMP']) 
w1 

 
# split window 

 
def split_window(self, features): 
  inputs = features[:, self.input_slice, :] 

  labels = features[:, self.labels_slice, :] 
  if self.label_columns is not None: 

    labels = tf.stack( 
        [labels[:, :, self.column_indices[name]] for name in self.label_columns], 
        axis=-1) 

 
  # Slicing doesn't preserve static shape information, so set the shapes manually. This way the 

`tf.data.Datasets` are easier to inspect. 
  inputs.set_shape([None, self.input_width, None]) 
  labels.set_shape([None, self.label_width, None]) 

 
  return inputs, labels 

 
WindowGenerator.split_window = split_window 
 

# Lets see! 
# Stack three slices, the length of the total window: 

#example_window = tf.stack([np.array(train_df[:w1.total_window_size]), 
#                           np.array(train_df[100:100+w1.total_window_size]), 
#                           np.array(train_df[200:200+w1.total_window_size])]) 

 
example_window = tf.stack([np.array(test_df[:w1.total_window_size])]) 

 
example_inputs, example_labels = w1.split_window(example_window) 
 

print('All shapes are: (batch, time, features)') 
print(f'Window shape: {example_window.shape}') 

print(f'Inputs shape: {example_inputs.shape}') 
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print(f'labels shape: {example_labels.shape}') 
 

# plot to observe 
 

w1.example = example_inputs, example_labels 
 
# design plot methods 

 
def plot(self, model=None, plot_col='LMP', max_subplots=5): 

  inputs, labels = self.example 
  plt.figure(figsize=(12, 8)) 
  plot_col_index = self.column_indices[plot_col] 

  max_n = min(max_subplots, len(inputs)) 
  for n in range(max_n): 

    plt.subplot(5, 1, n+1) 
    plt.ylabel(f'{plot_col} [normed]') 
    plt.plot(self.input_indices, inputs[n, :, plot_col_index], 

             label='Inputs', marker='.', zorder=-10) 
 

    if self.label_columns: 
      label_col_index = self.label_columns_indices.get(plot_col, None) 
    else: 

      label_col_index = plot_col_index 
 

    if label_col_index is None: 
      continue 
 

    plt.scatter(self.label_indices, labels[n, :, label_col_index], 
                edgecolors='k', label='Labels', c='#2ca02c', s=64) 

    if model is not None: 
      predictions = model(inputs) 
      plt.scatter(self.label_indices, predictions[n, :, label_col_index], 

                  marker='X', edgecolors='k', label='Predictions', 
                  c='#ff7f0e', s=64) 

 
    if n == 0: 
      plt.legend() 

 
  plt.xlabel('Time [h]') 

 
WindowGenerator.plot = plot 
 

# Create Datasets 
# This make_dataset method will take a time series DataFrame and convert it to a 

tf.data.Dataset of (input_window, label_window) pairs using the 
preprocessing.timeseries_dataset_from_array function. 
 

def make_dataset(self, data): 
  data = np.array(data, dtype=np.float32) 

  print(data.shape) 
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  ds = tf.keras.preprocessing.timeseries_dataset_from_array( 
      data=data, 

      targets=None, 
      sequence_length=self.total_window_size, 

      sequence_stride=1, 
      shuffle=True, # False 
      batch_size= 24) #168) #336) #168) 

 
  ds = ds.map(self.split_window) 

 
  return ds 
 

WindowGenerator.make_dataset = make_dataset 
 

# The WindowGenerator object holds training, validation and test data. 
# Add properties for accessing them as tf.data.Datasets using the above make_dataset 
method. 

 
@property 

def train(self): 
  return self.make_dataset(self.train_df) 
 

@property 
def val(self): 

  return self.make_dataset(self.val_df) 
 
@property 

def test(self): 
  return self.make_dataset(self.test_df) 

 
@property 
def example(self): 

  """Get and cache an example batch of `inputs, labels` for plotting.""" 
  result = getattr(self, '_example', None) 

  if result is None: 
    # No example batch was found, so get one from the `.train` dataset 
    #result = next(iter(self.train)) 

    result = next(iter(self.test)) 
    # And cache it for next time 

    self._example = result 
  return result 
 

WindowGenerator.train = train 
WindowGenerator.val = val 

WindowGenerator.test = test 
WindowGenerator.example = example 
 

# Iterating over a Dataset yields concrete batches 
 

for example_inputs, example_labels in w1.train.take(1): 
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  print(f'Inputs shape (batch, time, features): {example_inputs.shape}') 
  print(f'Labels shape (batch, time, features): {example_labels.shape}') 

 
# The training procedure into a function. This will enhance reusability 

 
MAX_EPOCHS = 300 
 

#def compile_and_fit(model, window, patience=2): 
def compile_and_fit(model, window): 

  early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', 
                                                    #patience=patience, 
                                                    mode='min') 

 
  model.compile(loss=tf.losses.MeanSquaredError(), 

                optimizer=tf.optimizers.Adam(), 
                metrics=[tf.metrics.MeanAbsoluteError()] 
                #metrics=['accuracy'] 

                ) 
 

  history = model.fit(window.train, epochs=MAX_EPOCHS, 
                      validation_data=window.val,) 
                      #callbacks=[early_stopping]) 

  return history 
 

'''CONV_WIDTH = 24 
conv_model = tf.keras.Sequential([ 
    # Shape [batch, time, features] => [batch, CONV_WIDTH, features] 

    tf.keras.layers.Lambda(lambda x: x[:, -CONV_WIDTH:, :]), 
    # Shape => [batch, 1, conv_units] 

    tf.keras.layers.Conv1D(256, activation='relu', kernel_size=(CONV_WIDTH)), 
    # Shape => [batch, 1,  out_steps*features] 
    tf.keras.layers.Dense(OUT_STEPS*num_features, 

                          kernel_initializer=tf.initializers.zeros()), 
    # Shape => [batch, out_steps, features] 

    tf.keras.layers.Reshape([OUT_STEPS, num_features]) 
])''' 
 

CONV_WIDTH = 24 #168 # 336 
conv_model = tf.keras.Sequential([ 

    # Shape [batch, time, features] => [batch, CONV_WIDTH, features] 
    tf.keras.layers.Lambda(lambda x: x[:, -CONV_WIDTH:, :]), 
    # Shape => [batch, 1, conv_units] 

    tf.keras.layers.Conv1D(256, activation='relu', kernel_size=(CONV_WIDTH)), 
    # Shape => [batch, 1,  out_steps*features] 

    tf.keras.layers.Dense(OUT_STEPS, 
                          kernel_initializer=tf.initializers.zeros()), 
    # Shape => [batch, out_steps, features] 

    tf.keras.layers.Reshape([OUT_STEPS, 1]) 
]) 
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print('Input shape:', w1.example[0].shape) 
print('Output shape:', conv_model(w1.example[0]).shape) 

 
# Start Training the model 

val_performance = {} 
performance = {} 
 

history = compile_and_fit(conv_model, w1) 
 

IPython.display.clear_output() 
val_performance['CNN'] = conv_model.evaluate(w1.val) 
performance['CNN'] = conv_model.evaluate(w1.test, verbose=2) 

 
# Plot model loss 

plt.plot(history.history['loss']) 
plt.plot(history.history['val_loss']) 
plt.title("Model Loss") 

plt.xlabel("epochs") 
plt.ylabel("loss") 

plt.legend(['train', 'val'], loc='upper right') 
 
w1.plot(conv_model) 

 
# Performance bar chart 

 
x = np.arange(len(performance)) 
width = 0.3 

metric_name = 'mean_absolute_error' 
metric_index = conv_model.metrics_names.index('mean_absolute_error') 

val_mae = [v[metric_index] for v in val_performance.values()] 
test_mae = [v[metric_index] for v in performance.values()] 
 

plt.ylabel('mean_absolute_error [LMP, normalized]') 
plt.bar(x - 0.17, val_mae, width, label='Validation') 

plt.bar(x + 0.17, test_mae, width, label='Test') 
 
plt.xticks(ticks=x, labels=performance.keys(), 

           rotation=45) 
_ = plt.legend() 

 
# Let's get MAE of this model 
for name, value in performance.items(): 

 
  print(f'{name:12s}: {value[1]:0.4f}') 

 
conv_model.summary() 
 

# Save the model 
import os.path 

#if os.path.isfile() is False: 
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conv_model.save('CNN1 300 epoches.h5',overwrite=True) 
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Appendix D 
 

Code: Long - Short Term Memory (LSTM) 

 
 

# -*- coding: utf-8 -*- 
"""ElectricityPriceForecasting_LSTM.ipynb 
Author: Md. Saifur Rahman 

Email: mdsaifur.rahman.1@und.edu 
""" 

 
# I use google colab and GPU to run this model 
# import necessary libraries 

import os 
import datetime as dt 

import IPython 
import IPython.display 
import matplotlib as mpl 

import matplotlib.pyplot as plt 
import numpy as np 

import pandas as pd 
import seaborn as sns 
import tensorflow as tf 

 
mpl.rcParams['figure.figsize'] = (8, 6) 

mpl.rcParams['axes.grid'] = False 
 
'''# Upload data in co-lab 

from google.colab import files 
uploaded = files.upload()''' 

 
# A Day-ahead electricity price dataset 
dfP = pd.read_csv('MISO2018DP.csv') 

dfP.head() 
 

# Hourly Temparate dataset 
dfT = pd.read_csv('MSP2018.csv') 
dfT.head() 

 
# Hourly wind-speed dataset 

dfS = pd.read_csv('MSPWS2018.csv') 
dfS.head() 
 

# Convert to datetime format 
dfP['Date'] = pd.to_datetime(dfP['Date']) 

 
# Convert to datetime format 
dfT['Date'] = pd.to_datetime(dfT['Date']) 
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# Convert to datetime format 
dfS['Date'] = pd.to_datetime(dfS['Date']) 

 
# Most of the case, I have found that the data are not sorted by timestamp! So, Sort by date if 

not sorted yet! 
dfT = dfT.sort_values(by=['Date']) 
dfS = dfS.sort_values(by=['Date']) 

 
# Remove duplicate rows 

dfT = dfT.drop_duplicates() 
dfS = dfS.drop_duplicates() 
 

# Again, convert to datetime format 
dfT['Date'] = pd.to_datetime(dfT['Date']) 

dfS['Date'] = pd.to_datetime(dfS['Date']) 
 
# Dataset after removing duplicates 

dfT = dfT[~dfT.index.duplicated()] 
dfS = dfS[~dfS.index.duplicated()] 

 
# Convert object datatype to float datatype 
dfT['TempF'] = pd.to_numeric(dfT['TempF'],errors = 'coerce') 

dfS['WS(mph)'] = pd.to_numeric(dfS['WS(mph)'],errors = 'coerce') 
 

# Add missing timestamp row to a dataframe. By default NaN will be added to each value for 
newly added timestamp. 
#dfT = dfT.set_index('Date').asfreq('1H') 

dfT =dfT.resample('1H', on='Date').mean() 
dfS =dfS.resample('1H', on='Date').mean() 

 
#Merge both of these data frames in one based on one single timestamp column. 
# Outer join , This uses the keys from both frames, and NaNs are inserted for missing rows in 

both case. 
df1 = dfP.merge(dfT, on='Date', how = 'outer') # 483779 

 
# Again merge with wind speed dataset 
df = df1.merge(dfS, on='Date', how = 'outer') 

 
# Check final dataset 

df.head() 
 
# Add three column. these are hour of the day, days of the month, and boolean value for week 

days (0) and week end(1). The day of the week with Monday=0, Sunday=6 
df['hour'] = df['Date'].dt.hour 

df['week_end'] = ((df['Date'].dt.dayofweek)//5 == 1).astype(int) 
df['day_of_month'] = df['Date'].dt.day 
 

# Lets check the dataset 
df.head() 
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# day of week variable to work on mid-week boolean value 
df['week_day'] = df['Date'].dt.dayofweek 

 
# Tue,Wed, and Thu are mid-week 

# Fri, Sat, Sun, and Mon are non mid-week day 
df.loc[(df.week_day== 1) | ( df.week_day== 2) | (df.week_day== 3), 'mid_week'] = 1 
df.loc[(df.week_day== 4) | ( df.week_day== 5) | (df.week_day== 6) | (df.week_day== 0), 

'mid_week'] = 0 
 

# remove unnecessary columns from data frame 
#df = df.drop(df[['week_day']], axis=1) 
 

# check the dataframe again 
df.info() 

 
# Chcek null values in each column 
df.isnull().sum(axis = 0) 

 
# Interpolation techniques estimate the missing values by assuming a relationship within a 

range of data points. 
# spline: Estimates values that minimize overall curvature, thus obtaining a smooth surface 
passing through the input points. 

df['TempF']= df['TempF'].interpolate(option='spline') 
df['WS(mph)']= df['WS(mph)'].interpolate(option='spline') 

 
# convert format and pop date time 
date_time = pd.to_datetime(df.pop('Date'), format='%YYYY/%mm/%dd %H:%M:%S') 

 
# Plot few features over time (completet data) 

plot_cols = ['LMP' ] 
plot_features = df[plot_cols] 
plot_features.index = date_time 

_ = plot_features.plot(subplots=True) 
 

# Plot for 10 days 
plot_features = df[plot_cols][:240] 
plot_features.index = date_time[:240] 

_ = plot_features.plot(subplots=True) 
 

# Plot for 1 days 
plot_features = df[plot_cols][:24] 
plot_features.index = date_time[:24] 

_ = plot_features.plot(subplots=True) 
 

# Check the statistics of this dataset 
df.describe() 
#df.describe().transpose() 

 
# Similarly the Date Time column is very useful, but not in this string form. Start by 

converting it to seconds 
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timestamp_s = date_time.map(dt.datetime.timestamp) 

 
# A simple approach to convert it to a usable signal is to use sin and cos to convert the time to 

clear "Time of day" and "Time of year" signals 
 
 

day = 24*60*60 
year = (365.2425)*day 

 
df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) 
df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) 

df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) 
df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year)) 

 
# Split for the training, validation, and test sets. Note the data is not being randomly shuffled 
before splitting 

 
#print(df.columns) 

column_indices = {name: i for i, name in enumerate(df.columns)} 
#print(column_indices) 
n = len(df) 

print("Total Data:",n) 
 

# 2018 to 2022 Master dataset 
train_df = df[0:34920] # 34920 
val_df = df[34920:41376]   # 7896 

test_df = df[41376:43176]  # 35088 #  1800 
 

# check how many for train/validation/test 
print("Train Data:",len(train_df)) 
print("Validation Data:",len(val_df)) 

print("Test Data:",len(test_df)) 
 

# Check number of features in the data frame columns (df.shape[1]). Data frame works like 
(row, column) = (0,1) 
dataframe = df.shape 

print(dataframe) 
num_features = df.shape[1] 

 
# Normalize the data 
# It is important to scale features before training a neural network. Normalization is a 

common way of doing this scaling. Subtract the mean and divide by the standard deviation of 
each feature. 

# The mean and standard deviation should only be computed using the training data so that 
the models have no access to the values in the validation and test sets. 
# Standardization(Z-score normalization) is the subtraction of the mean and then dividing by 

its standard deviation. 
 

train_mean = train_df.mean() 
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train_std = train_df.std() 
 

train_df = (train_df - train_mean) / train_std 
val_df = (val_df - train_mean) / train_std 

test_df = (test_df - train_mean) / train_std 
 
# Plot to check 

# Now peek at the distribution of the features. Price do have long tails, but there are no 
obvious errors. 

df_std = (df - train_mean) / train_std 
df_std = df_std.melt(var_name='Column', value_name='Normalized') 
plt.figure(figsize=(12, 6)) 

ax = sns.violinplot(x='Column', y='Normalized', data=df_std) 
_ = ax.set_xticklabels(df.keys(), rotation=90) 

 
# Wnidow Generator 
# Indexes and offsets 

# Create the WindowGenerator class. The __init__ method includes all the necessary logic 
for the input and label indices. 

 
class WindowGenerator(): 
  def __init__(self, input_width, label_width, shift, 

               train_df=train_df, val_df=val_df, test_df=test_df, 
               label_columns=None): 

    # Store the raw data. 
    self.train_df = train_df 
    self.val_df = val_df 

    self.test_df = test_df 
 

    # Work out the label column indices. 
    self.label_columns = label_columns 
    if label_columns is not None: 

      self.label_columns_indices = {name: i for i, name in 
                                    enumerate(label_columns)} 

    self.column_indices = {name: i for i, name in 
                           enumerate(train_df.columns)} # only consider train dataset 
 

    # Work out the window parameters. 
    self.input_width = input_width 

    self.label_width = label_width 
    self.shift = shift 
 

    self.total_window_size = input_width + shift 
 

    self.input_slice = slice(0, input_width) 
    self.input_indices = np.arange(self.total_window_size)[self.input_slice] 
 

    self.label_start = self.total_window_size - self.label_width 
    self.labels_slice = slice(self.label_start, None) 

    self.label_indices = np.arange(self.total_window_size)[self.labels_slice] 
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  def __repr__(self): 

    return '\n'.join([ 
        f'Total window size: {self.total_window_size}', 

        f'Input indices: {self.input_indices}', 
        f'Label indices: {self.label_indices}', 
        f'Label column name(s): {self.label_columns}']) 

 
# window size is 2 weeks + 24 hours 

OUT_STEPS = 24 
#INPUT_WIDTH = 336 # 14 days 
#INPUT_WIDTH = 168 # 7 days 

INPUT_WIDTH = 24 # 7 days 
w1 = WindowGenerator(input_width=INPUT_WIDTH, label_width=OUT_STEPS, 

shift=OUT_STEPS, 
                     label_columns=['LMP']) 
w1 

 
# split window 

 
def split_window(self, features): 
  inputs = features[:, self.input_slice, :] 

  labels = features[:, self.labels_slice, :] 
  if self.label_columns is not None: 

    labels = tf.stack( 
        [labels[:, :, self.column_indices[name]] for name in self.label_columns], 
        axis=-1) 

 
  # Slicing doesn't preserve static shape information, so set the shapes manually. This way the 

`tf.data.Datasets` are easier to inspect. 
  inputs.set_shape([None, self.input_width, None]) 
  labels.set_shape([None, self.label_width, None]) 

 
  return inputs, labels 

 
WindowGenerator.split_window = split_window 
 

# Lets see! 
# Stack three slices, the length of the total window: 

#example_window = tf.stack([np.array(train_df[:w1.total_window_size]), 
#                           np.array(train_df[100:100+w1.total_window_size]), 
#                           np.array(train_df[200:200+w1.total_window_size])]) 

 
example_window = tf.stack([np.array(test_df[:w1.total_window_size])]) 

 
example_inputs, example_labels = w1.split_window(example_window) 
 

print('All shapes are: (batch, time, features)') 
print(f'Window shape: {example_window.shape}') 

print(f'Inputs shape: {example_inputs.shape}') 
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print(f'labels shape: {example_labels.shape}') 
 

# plot to observe 
 

w1.example = example_inputs, example_labels 
 
# design plot methods 

 
def plot(self, model=None, plot_col='LMP', max_subplots=5): 

  inputs, labels = self.example 
  plt.figure(figsize=(12, 8)) 
  plot_col_index = self.column_indices[plot_col] 

  max_n = min(max_subplots, len(inputs)) 
  for n in range(max_n): 

    plt.subplot(5, 1, n+1) 
    plt.ylabel(f'{plot_col} [normed]') 
    plt.plot(self.input_indices, inputs[n, :, plot_col_index], 

             label='Inputs', marker='.', zorder=-10) 
 

    if self.label_columns: 
      label_col_index = self.label_columns_indices.get(plot_col, None) 
    else: 

      label_col_index = plot_col_index 
 

    if label_col_index is None: 
      continue 
 

    plt.scatter(self.label_indices, labels[n, :, label_col_index], 
                edgecolors='k', label='Labels', c='#2ca02c', s=64) 

    if model is not None: 
      predictions = model(inputs) 
      plt.scatter(self.label_indices, predictions[n, :, label_col_index], 

                  marker='X', edgecolors='k', label='Predictions', 
                  c='#ff7f0e', s=64) 

 
    if n == 0: 
      plt.legend() 

 
  plt.xlabel('Time [h]') 

 
WindowGenerator.plot = plot 
 

# Create Datasets 
# This make_dataset method will take a time series DataFrame and convert it to a 

tf.data.Dataset of (input_window, label_window) pairs using the 
preprocessing.timeseries_dataset_from_array function. 
 

def make_dataset(self, data): 
  data = np.array(data, dtype=np.float32) 

  print(data.shape) 
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  ds = tf.keras.preprocessing.timeseries_dataset_from_array( 
      data=data, 

      targets=None, 
      sequence_length=self.total_window_size, 

      sequence_stride=1, 
      shuffle=True, # False 
      batch_size= 24) #168) #336) #168) 

 
  ds = ds.map(self.split_window) 

 
  return ds 
 

WindowGenerator.make_dataset = make_dataset 
 

# The WindowGenerator object holds training, validation and test data. 
# Add properties for accessing them as tf.data.Datasets using the above make_dataset 
method. 

 
@property 

def train(self): 
  return self.make_dataset(self.train_df) 
 

@property 
def val(self): 

  return self.make_dataset(self.val_df) 
 
@property 

def test(self): 
  return self.make_dataset(self.test_df) 

 
@property 
def example(self): 

  """Get and cache an example batch of `inputs, labels` for plotting.""" 
  result = getattr(self, '_example', None) 

  if result is None: 
    # No example batch was found, so get one from the `.train` dataset 
    #result = next(iter(self.train)) 

    result = next(iter(self.test)) 
    # And cache it for next time 

    self._example = result 
  return result 
 

WindowGenerator.train = train 
WindowGenerator.val = val 

WindowGenerator.test = test 
WindowGenerator.example = example 
 

# Iterating over a Dataset yields concrete batches 
 

for example_inputs, example_labels in w1.train.take(1): 
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  print(f'Inputs shape (batch, time, features): {example_inputs.shape}') 
  print(f'Labels shape (batch, time, features): {example_labels.shape}') 

 
# The training procedure into a function. This will enhance reusability 

 
MAX_EPOCHS = 300 
 

#def compile_and_fit(model, window, patience=2): 
def compile_and_fit(model, window): 

  early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', 
                                                    #patience=patience, 
                                                    mode='min') 

 
  model.compile(loss=tf.losses.MeanSquaredError(), 

                optimizer=tf.optimizers.Adam(), 
                metrics=[tf.metrics.MeanAbsoluteError()] 
                #metrics=['accuracy'] 

                ) 
 

  history = model.fit(window.train, epochs=MAX_EPOCHS, 
                      validation_data=window.val,) 
                      #callbacks=[early_stopping]) 

  return history 
 

# LSTM model design (One o/p) 
lstm_model = tf.keras.models.Sequential([ 
    # Shape [batch, time, features] => [batch, time, lstm_units] 

    tf.keras.layers.LSTM(50, return_sequences=False), 
    tf.keras.layers.Dropout(0.3), 

    tf.keras.layers.Dense(OUT_STEPS, 
                          kernel_initializer=tf.initializers.zeros), 
    #tf.keras.layers.Dropout(0.1), 

    tf.keras.layers.Reshape([OUT_STEPS, 1]) 
]) 

 
'''# LSTM model design (single shot all o/p) 
lstm_model = tf.keras.models.Sequential([ 

    # Shape [batch, time, features] => [batch, time, lstm_units] 
    #With return_sequences=True, the model can be trained on 336 hours of data at a time. 

    tf.keras.layers.LSTM(50, return_sequences=False), 
    tf.keras.layers.Dropout(0.3), 
    tf.keras.layers.Dense(OUT_STEPS*num_features, 

                          kernel_initializer=tf.initializers.zeros), 
    #tf.keras.layers.Dropout(0.1), 

    tf.keras.layers.Reshape([OUT_STEPS, num_features]) 
])''' 
 

print('Input shape:', w1.example[0].shape) 
print('Output shape:', lstm_model(w1.example[0]).shape) 
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# Start Training the model 
val_performance = {} 

performance = {} 

history = compile_and_fit(lstm_model, w1) 

IPython.display.clear_output() 

val_performance['LSTM'] = lstm_model.evaluate(w1.val) 
performance['LSTM'] = lstm_model.evaluate(w1.test, verbose=2) 

# Plot model loss 
plt.plot(history.history['loss']) 

plt.plot(history.history['val_loss']) 
plt.title("Model Loss") 

plt.xlabel("epochs") 
plt.ylabel("loss") 
plt.legend(['train', 'val'], loc='upper right') 

# lets check the prediction and compare with original price 

w1.plot(lstm_model) 

# Performance bar chart 

x = np.arange(len(performance)) 

width = 0.3 
metric_name = 'mean_absolute_error' 
metric_index = lstm_model.metrics_names.index('mean_absolute_error') 

val_mae = [v[metric_index] for v in val_performance.values()] 
test_mae = [v[metric_index] for v in performance.values()] 

plt.ylabel('mean_absolute_error [LMP, normalized]') 
plt.bar(x - 0.17, val_mae, width, label='Validation') 

plt.bar(x + 0.17, test_mae, width, label='Test') 

plt.xticks(ticks=x, labels=performance.keys(), 
rotation=45) 

_ = plt.legend() 

# Let's get MAE of this model 

for name, value in performance.items(): 

  print(f'{name:12s}: {value[1]:0.4f}') 

lstm_model.summary() 

# Save the model 
import os.path 

#if os.path.isfile() is False: 
lstm_model.save('LSTM1-300.h5',overwrite=True) 
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Appendix E 

Code: Bi-directional Long - Short Term Memory (Bi-LSTM) 

# -*- coding: utf-8 -*- 
"""Bi- LSTM ElectricityPriceForecasting.ipynb 
Author: Md. Saifur Rahman 

Email: mdsaifur.rahman.1@und.edu 
""" 

# I use google colab and GPU to run this model 
# import necessary libraries 

import os 
import datetime as dt 

import IPython 
import IPython.display 
import matplotlib as mpl 

import matplotlib.pyplot as plt 
import numpy as np 

import pandas as pd 
import seaborn as sns 
import tensorflow as tf 

mpl.rcParams['figure.figsize'] = (8, 6) 
mpl.rcParams['axes.grid'] = False 

'''# Upload data in co-lab 

from google.colab import files 
uploaded = files.upload()''' 

# A Day-ahead electricity price dataset 
dfP = pd.read_csv('MISO2018DP.csv') 

dfP.head() 

# Hourly Temparate dataset 

dfT = pd.read_csv('MSP2018.csv') 
dfT.head() 

# Hourly wind-speed dataset 
dfS = pd.read_csv('MSPWS2018.csv') 

dfS.head() 

# Convert to datetime format 
dfP['Date'] = pd.to_datetime(dfP['Date']) 

# Convert to datetime format 
dfT['Date'] = pd.to_datetime(dfT['Date']) 
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# Convert to datetime format 
dfS['Date'] = pd.to_datetime(dfS['Date']) 

# Most of the case, I have found that the data are not sorted by timestamp! So, Sort by date if 

not sorted yet! 
dfT = dfT.sort_values(by=['Date']) 
dfS = dfS.sort_values(by=['Date']) 

# Remove duplicate rows 

dfT = dfT.drop_duplicates() 
dfS = dfS.drop_duplicates() 

# Again, convert to datetime format 
dfT['Date'] = pd.to_datetime(dfT['Date']) 

dfS['Date'] = pd.to_datetime(dfS['Date']) 

# Dataset after removing duplicates 

dfT = dfT[~dfT.index.duplicated()] 
dfS = dfS[~dfS.index.duplicated()] 

# Convert object datatype to float datatype 
dfT['TempF'] = pd.to_numeric(dfT['TempF'],errors = 'coerce') 

dfS['WS(mph)'] = pd.to_numeric(dfS['WS(mph)'],errors = 'coerce') 

# Add missing timestamp row to a dataframe. By default NaN will be added to each value for 
newly added timestamp. 
#dfT = dfT.set_index('Date').asfreq('1H') 

dfT =dfT.resample('1H', on='Date').mean() 
dfS =dfS.resample('1H', on='Date').mean() 

#Merge both of these data frames in one based on one single timestamp column. 
# Outer join , This uses the keys from both frames, and NaNs are inserted for missing rows in 

both case. 
df1 = dfP.merge(dfT, on='Date', how = 'outer') # 483779 

# Again merge with wind speed dataset 
df = df1.merge(dfS, on='Date', how = 'outer') 

# Check final dataset 

df.head() 

# Add three column. these are hour of the day, days of the month, and boolean value for week 

days (0) and week end(1). The day of the week with Monday=0, Sunday=6 
df['hour'] = df['Date'].dt.hour 

df['week_end'] = ((df['Date'].dt.dayofweek)//5 == 1).astype(int) 
df['day_of_month'] = df['Date'].dt.day 

# Lets check the dataset 
df.head() 
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# day of week variable to work on mid-week boolean value 
df['week_day'] = df['Date'].dt.dayofweek 

# Tue,Wed, and Thu are mid-week 

# Fri, Sat, Sun, and Mon are non mid-week day 
df.loc[(df.week_day== 1) | ( df.week_day== 2) | (df.week_day== 3), 'mid_week'] = 1 
df.loc[(df.week_day== 4) | ( df.week_day== 5) | (df.week_day== 6) | (df.week_day== 0), 

'mid_week'] = 0 

# remove unnecessary columns from data frame 
#df = df.drop(df[['week_day']], axis=1) 

# check the dataframe again 
df.info() 

# Chcek null values in each column 
df.isnull().sum(axis = 0) 

# Interpolation techniques estimate the missing values by assuming a relationship within a 

range of data points. 
# spline: Estimates values that minimize overall curvature, thus obtaining a smooth surface 
passing through the input points. 

df['TempF']= df['TempF'].interpolate(option='spline') 
df['WS(mph)']= df['WS(mph)'].interpolate(option='spline') 

# convert format and pop date time 
date_time = pd.to_datetime(df.pop('Date'), format='%YYYY/%mm/%dd %H:%M:%S') 

# Plot few features over time (completet data) 

plot_cols = ['LMP' ] 
plot_features = df[plot_cols] 
plot_features.index = date_time 

_ = plot_features.plot(subplots=True) 

# Plot for 10 days 
plot_features = df[plot_cols][:240] 
plot_features.index = date_time[:240] 

_ = plot_features.plot(subplots=True) 

# Plot for 1 days 
plot_features = df[plot_cols][:24] 
plot_features.index = date_time[:24] 

_ = plot_features.plot(subplots=True) 

# Check the statistics of this dataset 
df.describe() 
#df.describe().transpose() 

# Similarly the Date Time column is very useful, but not in this string form. Start by 

converting it to seconds 
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timestamp_s = date_time.map(dt.datetime.timestamp) 

 
# A simple approach to convert it to a usable signal is to use sin and cos to convert the time to 

clear "Time of day" and "Time of year" signals 
 
 

day = 24*60*60 
year = (365.2425)*day 

 
df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) 
df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) 

df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) 
df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year)) 

 
# Split for the training, validation, and test sets. Note the data is not being randomly shuffled 
before splitting 

 
#print(df.columns) 

column_indices = {name: i for i, name in enumerate(df.columns)} 
#print(column_indices) 
n = len(df) 

print("Total Data:",n) 
 

# 2018 to 2022 Master dataset 
train_df = df[0:34920] # 34920 
val_df = df[34920:41376]   # 7896 

test_df = df[41376:43176]  # 35088 #  1800 
 

# check how many for train/validation/test 
print("Train Data:",len(train_df)) 
print("Validation Data:",len(val_df)) 

print("Test Data:",len(test_df)) 
 

# Check number of features in the data frame columns (df.shape[1]). Data frame works like 
(row, column) = (0,1) 
dataframe = df.shape 

print(dataframe) 
num_features = df.shape[1] 

 
# Normalize the data 
# It is important to scale features before training a neural network. Normalization is a 

common way of doing this scaling. Subtract the mean and divide by the standard deviation of 
each feature. 

# The mean and standard deviation should only be computed using the training data so that 
the models have no access to the values in the validation and test sets. 
# Standardization(Z-score normalization) is the subtraction of the mean and then dividing by 

its standard deviation. 
 

train_mean = train_df.mean() 
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train_std = train_df.std() 

train_df = (train_df - train_mean) / train_std 
val_df = (val_df - train_mean) / train_std 

test_df = (test_df - train_mean) / train_std 

# Plot to check 

# Now peek at the distribution of the features. Price do have long tails, but there are no 
obvious errors. 

df_std = (df - train_mean) / train_std 
df_std = df_std.melt(var_name='Column', value_name='Normalized') 
plt.figure(figsize=(12, 6)) 

ax = sns.violinplot(x='Column', y='Normalized', data=df_std) 
_ = ax.set_xticklabels(df.keys(), rotation=90) 

# Wnidow Generator 
# Indexes and offsets 

# Create the WindowGenerator class. The __init__ method includes all the necessary logic 
for the input and label indices. 

class WindowGenerator(): 
  def __init__(self, input_width, label_width, shift, 

train_df=train_df, val_df=val_df, test_df=test_df, 
label_columns=None): 

    # Store the raw data. 
    self.train_df = train_df 
    self.val_df = val_df 

    self.test_df = test_df 

    # Work out the label column indices. 
    self.label_columns = label_columns 
    if label_columns is not None: 

      self.label_columns_indices = {name: i for i, name in 
enumerate(label_columns)} 

    self.column_indices = {name: i for i, name in 
          enumerate(train_df.columns)} # only consider train dataset 

    # Work out the window parameters. 
    self.input_width = input_width 

    self.label_width = label_width 
    self.shift = shift 

    self.total_window_size = input_width + shift 

    self.input_slice = slice(0, input_width) 
    self.input_indices = np.arange(self.total_window_size)[self.input_slice] 

    self.label_start = self.total_window_size - self.label_width 
    self.labels_slice = slice(self.label_start, None) 

    self.label_indices = np.arange(self.total_window_size)[self.labels_slice] 
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  def __repr__(self): 

    return '\n'.join([ 
        f'Total window size: {self.total_window_size}', 

        f'Input indices: {self.input_indices}', 
        f'Label indices: {self.label_indices}', 
        f'Label column name(s): {self.label_columns}']) 

 
# window size is 2 weeks + 24 hours 

OUT_STEPS = 24 
#INPUT_WIDTH = 336 
#INPUT_WIDTH = 168 

INPUT_WIDTH = 24 
w1 = WindowGenerator(input_width=INPUT_WIDTH, label_width=OUT_STEPS, 

shift=OUT_STEPS, 
                     label_columns=['LMP']) 
w1 

 
# split window 

 
def split_window(self, features): 
  inputs = features[:, self.input_slice, :] 

  labels = features[:, self.labels_slice, :] 
  if self.label_columns is not None: 

    labels = tf.stack( 
        [labels[:, :, self.column_indices[name]] for name in self.label_columns], 
        axis=-1) 

 
  # Slicing doesn't preserve static shape information, so set the shapes manually. This way the 

`tf.data.Datasets` are easier to inspect. 
  inputs.set_shape([None, self.input_width, None]) 
  labels.set_shape([None, self.label_width, None]) 

 
  return inputs, labels 

 
WindowGenerator.split_window = split_window 
 

# Lets see! 
# Stack three slices, the length of the total window: 

#example_window = tf.stack([np.array(train_df[:w1.total_window_size]), 
#                           np.array(train_df[100:100+w1.total_window_size]), 
#                           np.array(train_df[200:200+w1.total_window_size])]) 

 
example_window = tf.stack([np.array(test_df[:w1.total_window_size])]) 

 
example_inputs, example_labels = w1.split_window(example_window) 
 

print('All shapes are: (batch, time, features)') 
print(f'Window shape: {example_window.shape}') 

print(f'Inputs shape: {example_inputs.shape}') 
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print(f'labels shape: {example_labels.shape}') 
 

# plot to observe 
 

w1.example = example_inputs, example_labels 
 
# design plot methods 

 
def plot(self, model=None, plot_col='LMP', max_subplots=5): 

  inputs, labels = self.example 
  plt.figure(figsize=(12, 8)) 
  plot_col_index = self.column_indices[plot_col] 

  max_n = min(max_subplots, len(inputs)) 
  for n in range(max_n): 

    plt.subplot(5, 1, n+1) 
    plt.ylabel(f'{plot_col} [normed]') 
    plt.plot(self.input_indices, inputs[n, :, plot_col_index], 

             label='Inputs', marker='.', zorder=-10) 
 

    if self.label_columns: 
      label_col_index = self.label_columns_indices.get(plot_col, None) 
    else: 

      label_col_index = plot_col_index 
 

    if label_col_index is None: 
      continue 
 

    plt.scatter(self.label_indices, labels[n, :, label_col_index], 
                edgecolors='k', label='Labels', c='#2ca02c', s=64) 

    if model is not None: 
      predictions = model(inputs) 
      plt.scatter(self.label_indices, predictions[n, :, label_col_index], 

                  marker='X', edgecolors='k', label='Predictions', 
                  c='#ff7f0e', s=64) 

 
    if n == 0: 
      plt.legend() 

 
  plt.xlabel('Time [h]') 

 
WindowGenerator.plot = plot 
 

# Create Datasets 
# This make_dataset method will take a time series DataFrame and convert it to a 

tf.data.Dataset of (input_window, label_window) pairs using the 
preprocessing.timeseries_dataset_from_array function. 
 

def make_dataset(self, data): 
  data = np.array(data, dtype=np.float32) 

  print(data.shape) 
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  ds = tf.keras.preprocessing.timeseries_dataset_from_array( 
      data=data, 

      targets=None, 
      sequence_length=self.total_window_size, 

      sequence_stride=1, 
      shuffle=True, # False 
      batch_size= 24) #168) #336) #168) 

 
  ds = ds.map(self.split_window) 

 
  return ds 
 

WindowGenerator.make_dataset = make_dataset 
 

# The WindowGenerator object holds training, validation and test data. 
# Add properties for accessing them as tf.data.Datasets using the above make_dataset 
method. 

 
@property 

def train(self): 
  return self.make_dataset(self.train_df) 
 

@property 
def val(self): 

  return self.make_dataset(self.val_df) 
 
@property 

def test(self): 
  return self.make_dataset(self.test_df) 

 
@property 
def example(self): 

  """Get and cache an example batch of `inputs, labels` for plotting.""" 
  result = getattr(self, '_example', None) 

  if result is None: 
    # No example batch was found, so get one from the `.train` dataset 
    #result = next(iter(self.train)) 

    result = next(iter(self.test)) 
    # And cache it for next time 

    self._example = result 
  return result 
 

WindowGenerator.train = train 
WindowGenerator.val = val 

WindowGenerator.test = test 
WindowGenerator.example = example 
 

# Iterating over a Dataset yields concrete batches 
 

for example_inputs, example_labels in w1.train.take(1): 
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  print(f'Inputs shape (batch, time, features): {example_inputs.shape}') 
  print(f'Labels shape (batch, time, features): {example_labels.shape}') 

# The training procedure into a function. This will enhance reusability 

MAX_EPOCHS = 300 

#def compile_and_fit(model, window, patience=2): 
def compile_and_fit(model, window): 

  early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', 
#patience=patience, 
mode='min') 

  model.compile(loss=tf.losses.MeanSquaredError(), 

optimizer=tf.optimizers.Adam(), 
metrics=[tf.metrics.MeanAbsoluteError()] 
#metrics=['accuracy'] 

          ) 

  history = model.fit(window.train, epochs=MAX_EPOCHS, 
validation_data=window.val,) 
#callbacks=[early_stopping]) 

  return history 

# Bi-LSTM model design (One o/p) 
BiLstm_model = tf.keras.models.Sequential([ 
    # Shape [batch, time, features] => [batch, time, lstm_units] 

    tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(50, return_sequences=False)), 
    tf.keras.layers.Dropout(0.3), 

    tf.keras.layers.Dense(64, activation='relu'), 
    tf.keras.layers.Dense(OUT_STEPS, 

kernel_initializer=tf.initializers.zeros), 

    #tf.keras.layers.Dropout(0.1), 
    tf.keras.layers.Reshape([OUT_STEPS, 1]) 

]) 

print('Input shape:', w1.example[0].shape) 

print('Output shape:', BiLstm_model(w1.example[0]).shape) 

# Start Training the model 
val_performance = {} 
performance = {} 

history = compile_and_fit(BiLstm_model, w1) 

IPython.display.clear_output() 
val_performance['BiLSTM'] = BiLstm_model.evaluate(w1.val) 

performance['BiLSTM'] = BiLstm_model.evaluate(w1.test, verbose=2) 

# Plot model loss 
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plt.plot(history.history['loss']) 
plt.plot(history.history['val_loss']) 

plt.title("Model Loss") 
plt.xlabel("epochs") 

plt.ylabel("loss") 
plt.legend(['train', 'val'], loc='upper right') 

# lets check the prediction and compare with original price 
w1.plot(BiLstm_model) 

# Performance bar chart 

x = np.arange(len(performance)) 
width = 0.3 

metric_name = 'mean_absolute_error' 
metric_index = BiLstm_model.metrics_names.index('mean_absolute_error') 
val_mae = [v[metric_index] for v in val_performance.values()] 

test_mae = [v[metric_index] for v in performance.values()] 

plt.ylabel('mean_absolute_error [LMP, normalized]') 
plt.bar(x - 0.17, val_mae, width, label='Validation') 
plt.bar(x + 0.17, test_mae, width, label='Test') 

plt.xticks(ticks=x, labels=performance.keys(), 

rotation=45) 
_ = plt.legend() 

# Let's get MAE of this model 
for name, value in performance.items(): 

  print(f'{name:12s}: {value[1]:0.4f}') 

BiLstm_model.summary() 

# Save the model 
import os.path 
#if os.path.isfile() is False: 

BiLstm_model.save('Bi-LSTM1 300 epoches.h5',overwrite=True) 
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