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ABSTRACT 
 

Because of the recent paradigm shift focusing heavily on cost minimization, many 

operators are now re-developing existing assets at much lower costs instead of developing 

newly drilled wells. Although it may seem that the hydraulic fracturing process on a well 

would be easier after initial stimulation, this is not usually the case and is often more 

difficult. Being able to identify high margin effects of treatment parameters will help 

engineers design hydraulic fracturing treatments to minimize average STP (STP) and 

minimize costs. This research develops a feature engineered multivariate regression model 

that identifies several high margin areas for STP reduction. These models also yield error 

around 2% when predicting average STP. Using the marginal effects estimated in this 

study, operators can start to consider minimizing STP as a design parameter that has 

implications for pump time, pump maintenance costs, fuel costs, and emissions. 

 

 

 

 

 

 



 

 vii 

Table of Contents 
1. Introduction ........................................................................................................... 1 

1.1 The Real “Energy Transition” ..................................................................................... 1 

1.2 Challenging the Unstated Assumption in the Energy Transition ................................ 8 

1.3 Economics, Climate Change, and Human Well-Being ............................................... 10 

1.4 Counteracting Peak Oil ............................................................................................ 19 

1.5 Re-fracturing: Potential to Recover Stranded Resources in the Williston Basin ....... 23 

1.6 Hypothesis and Research Questions ........................................................................ 26 
1.6.1 Hypothesis ...................................................................................................................... 26 
1.6.2 Research Question 1 ...................................................................................................... 27 
1.6.3 Research Question 2 ...................................................................................................... 27 
1.6.4 Research Question 3 ...................................................................................................... 27 

1.7 Methodology ........................................................................................................... 28 

1.8 Significance .............................................................................................................. 29 

1.9 Dissertation Structure .............................................................................................. 30 

1.10 Glossary ................................................................................................................... 32 

2. Literature Review ................................................................................................ 33 

2.1 The Bakken Petroleum System ................................................................................ 33 

2.2 Hydraulic Fracturing Operations and Treatment...................................................... 38 

2.3 Wellbore Dynamics to Derive Average STP .............................................................. 42 

2.4. Data Mining in the O&G Industry............................................................................. 45 

2.5 Domain Knowledge: A Guide for Independent Variable Selection ........................... 49 

2.6. Multivariate Regression Models .............................................................................. 51 

2.7. Marginal Mindset and Marginal Analysis ................................................................. 58 

2.8. Methodology ........................................................................................................... 61 

3. Modeling Temporal Dependence of Average STP.............................................. 62 

3.1. Re-fracturing ............................................................................................................ 62 
3.1.1 Perforation Standoff ........................................................................................................... 63 
3.1.2. Stage Proppant Weight ...................................................................................................... 64 



 

 viii 

3.1.3. Total Clean Volume ........................................................................................................... 65 
3.1.4. Previous Stage Average STP .............................................................................................. 65 
3.1.5. Number of Perforations ..................................................................................................... 66 
3.1.6. Presence of a 3.5” Liner ..................................................................................................... 66 
3.1.7. Average Pump Rate ........................................................................................................... 67 
3.1.8. Acid Volume ....................................................................................................................... 67 
3.1.9. Formation Type ................................................................................................................. 67 
3.1.10. Causal Diagram of Relationships ..................................................................................... 68 

3.2     Re-fracturing Data, Well Location, and Summary Statistics ........................................ 69 

3.3     Regression Models ...................................................................................................... 71 
3.3.1. Perforation Standoff .......................................................................................................... 73 
3.3.2. Stage Proppant Weight ...................................................................................................... 74 
3.3.3. Total Clean Volume ........................................................................................................... 74 
3.3.4. Number of Perforations ..................................................................................................... 74 
3.3.5. Presence of a 3.5” Liner ..................................................................................................... 75 
3.3.6. Average Pump Rate ........................................................................................................... 75 
3.3.7. Acid Volume ....................................................................................................................... 75 
3.3.8. Previous Stage Average STP .............................................................................................. 76 
3.3.9. Formation Type ................................................................................................................. 76 
3.3.10. Model Visual and Verification ......................................................................................... 77 

3.4     Chapter Summary ....................................................................................................... 81 

4. Accounting for Unobservable, Within-Well Fixed Effects ................................. 82 

4.1     Introduction ................................................................................................................ 82 

4.2     Data ............................................................................................................................ 83 

4.3     Panel Data Model........................................................................................................ 86 

4.4 Fixed Effects Models ................................................................................................ 87 

4.5 Fixed Effects Model Results ..................................................................................... 90 

4.6 Further Model Investigation .................................................................................... 94 
4.6.1. Previous Stage Average STP .............................................................................................. 95 
4.6.2. Perforation Standoff .......................................................................................................... 96 
4.6.3. Number of Perforations ..................................................................................................... 96 
4.6.4. Average Pump Rate ........................................................................................................... 96 
4.6.5. Acid Volume Pumped ........................................................................................................ 97 

4.7 Chapter Summary .................................................................................................... 97 

5. Feature Engineered Model for Improved Performance ...................................... 100 



 

 ix 

5.1 Introduction ........................................................................................................... 100 

5.2 Interaction Effects .................................................................................................. 103 

5.3 Chapter Summary .................................................................................................. 109 
5.3.1. Square Root of Previous Stage Average STP .................................................................. 111 
5.3.2. Perforation Standoff ........................................................................................................ 111 
5.3.3. Total Proppant ................................................................................................................. 112 
5.3.4. Number of Perforations ................................................................................................... 112 
5.3.5. Acid .................................................................................................................................. 112 
5.3.6. 3.5” Liner ......................................................................................................................... 113 
5.3.7. Total Clean Volume ......................................................................................................... 113 
5.3.8. Average Rate .................................................................................................................... 113 
5.3.9. Formation ......................................................................................................................... 113 
5.3.10. End of Stage Depth......................................................................................................... 114 
5.3.11. Interaction Term ............................................................................................................ 114 

6. Discussion, Applications, and Conclusions ....................................................... 120 

6.1 Discussion and Application of Models ................................................................... 120 
6.1.1 Average STP Effects on Fuel Consumption ................................................................ 124 
6.1.2 Average STP Considerations for Operations .............................................................. 125 
6.1.3 Investigation of Trade-offs with Costs and Emissions................................................. 128 
6.1.4 Contracts ...................................................................................................................... 130 
6.1.5 Simultaneous Fracturing Operations .......................................................................... 130 
6.1.6 Using Interaction Effects to Estimate Overall Effects ................................................. 130 

6.2 Conclusions ............................................................................................................ 132 

Appendix A: Using Machine Learning to Characterize Produced Water Reuse on 
Average STP during Hydraulic Fracturing ............................................................. 135 

Appendix B: Produced Water Tank and Manifold Layout for Disposal ................ 157 

Appendix C: Simple Mass Balance Algorithm for Spotting Acid During a Wireline 
Run ............................................................................................................................. 172 

Appendix D: Supplementary Figures ....................................................................... 180 

References .................................................................................................................. 185 
 

 

 



 

 x 

List of Tables 

Table 3. 1 - Summary statistics for re-fracturing datasets used in this study. .................. 70 
Table 3. 2 - Variable definitions for data set used in this study. ...................................... 71 
Table 3. 3 - Regression results showing two different models using stargazer package in 
R (Hlavac, 2022). .......................................................................................................... 72 
Table 3. 4 - Regressions results using stargazer package (Hlavac, 2022) from error model.
 ...................................................................................................................................... 80 
 

Table 4. 1 - Results from FE and Dynamic FE models using stargazer package from R 
(Hlavac, 2022) ............................................................................................................... 91 
Table 4. 2 - Model summaries from Panel Linear (FE) models and Pooled models from 
chapter 3 (Kroschel, Rabiei, & Rasouli (2022a)) using stargazer package from R (Hlavac, 
2022) ............................................................................................................................. 92 
Table 4. 3 - Results from Dynamic FE model with clustered se using stargazer package 
from R (Hlavac, 2022) ................................................................................................... 95 
 

Table 5. 1 – Summary table for interaction of perforation standoff and non-linear average 
STP using stargazer package in R (Hlavac, 2022. https://CRAN.R-
project.org/packages=stargazer) .................................................................................. 106 
Table 5. 2 - Summary of feature engineered model results using stargazer package from 
R (Hlavac, 2022) ......................................................................................................... 109 
 

Table 6. 1 - Summary of feature engineered model results including clustered standard 
errors using stargazer package from R (Hlavac, 2022) ................................................. 120 
Table 6. 2 – Average STP prediction results comparing Pooled models from chapter 4 
and feature engineered model from chapter 6............................................................... 123 
Table 6. 3 – Hypothetical fuel savings with reductions in STP using data from table 6.3
 .................................................................................................................................... 129 
 

Table A. 1 - Regression results from the diff-diff model. ............................................. 148 
Table A. 2 - Regression results from the longitudinal model. ....................................... 149 
 

 



 

 xi 

List of Figures 
 

 

Figure 1. 1 - U.S. energy production, consumption, imports and exports from 1950 - 2021 
(Energy Information Administration, 2023b) ................................................................... 1 
Figure 1. 2 - Data from the EIA showing trend in annual emissions and associated 
percentage changes (Energy Information Administration, 2022) ...................................... 2 
Figure 1. 3 - Data from the EIA showing emissions reductions realized by substituting 
natural gas (blue) and non-carbon sources (green) for electricity generation relative to 
2005 emissions (Energy Information Administration, 2022) ............................................ 3 
Figure 1. 4 - Primary energy consumption by source in the U.S. from 1950 – 2021 
(Energy Information Administration, 2023b) ................................................................... 4 
Figure 1. 5 - U.S. energy by individual sectors using different sources for year 2021 
(Energy Information Administration, 2023b) ................................................................... 5 
Figure 1. 6 - Primary energy consumption by source for year 2021 (Energy Information 
Administration, 2023b) .................................................................................................... 9 
Figure 1. 7 - Annual global CO2 emissions since 1960 - 2021 (Ritchie et al., 2020) ...... 13 
Figure 1. 8 - World GDP in trillions of current U.S. $ from 1960 – 2021 (World Bank, 
2023) ............................................................................................................................. 14 
Figure 1. 9 – GDP in trillions of current U.S. $ from 1960 – 2021 for low and middle-
income countries (World Bank, 2023). .......................................................................... 14 
Figure 1. 10 – GDP in trillions of current U.S. $ from 1960 – 2021 for low and middle-
income countries (World Bank, 2023) ........................................................................... 15 
Figure 1. 11 - CO2 emissions from middle and low income countries from 1960 - 2021 
(Ritchie et al., 2020) ...................................................................................................... 16 
Figure 1. 12 - Life expectancy from 1960 to 2021 (Roser et al., 2013) ........................... 16 
Figure 1. 13 - Decade average worldwide deaths due to geophysical, metoerological, and 
climate events including earthquakes, volcanoes, landslides, drought, wildfire, storms, 
and flooding from 1960s to 2010s and current through the 2020s  (Ritchie et al., 2022) . 18 
Figure 1. 14 – U.S. field production before the revolution highlighting (Energy 
Information Administration, 2023c) .............................................................................. 20 
Figure 1. 15 - U.S. field production of O&G highlighting decline counteraction from 
(Energy Information Administration, 2023c) ................................................................. 21 
Figure 1. 16 - Worldwide expenditure on Production, Exploration, and Development 
(Energy Information Administration, n.d.) ..................................................................... 22 



 

 xii 

Figure 1. 17 – West Texas Intermediate and NYMEX crude oil futures prices with 
confidence intervals (Energy Information Administration, 2023d) ................................. 23 
Figure 1. 18 - Expected production gains in Bakken after re-fracturing treatment 
(Shammam et al., 2021). ................................................................................................ 25 
 

Figure 2. 1 - Recent oil production trends for the Bakken region (EIA, 2022) ................ 34 
Figure 2. 2 - Map of the Williston Basin (Gerhard & Anderson, 1988). ......................... 35 
Figure 2. 3 -  Cross sectional view of Bakken petroleum system (Meissner, 1978). ........ 36 
Figure 2. 4 - Stratigraphic column of the Williston basin (Heck et al., 2002).................. 36 
Figure 2. 5 - Stratigraphic column focusing on the four Bakken members including the 
Sanish/Pronghorn, Lower Bakken, Middle Bakken, and Upper Bakken (Egenhoff, 2017)
 ...................................................................................................................................... 37 
Figure 2. 6 - General layout for operations..................................................................... 40 
Figure 2. 7 – Treatment plot from actual HF treatment .................................................. 41 
Figure 2. 8 - Schematic showing the relationship between STP and other wellbore 
pressures ....................................................................................................................... 43 
Figure 2. 9 - Correlations between well productivity and field treatment data from 
Mohaghegh (2019). ....................................................................................................... 49 
Figure 2. 10 - Bivariate regression model regressing average STP on average pump rate.
 ...................................................................................................................................... 56 
Figure 2. 11 – Plot highlighting marginal thinking ......................................................... 58 
Figure 2. 12 – Flowchart for process of constructing multivariate regression models for 
study ............................................................................................................................. 62 
 

Figure 3. 1 – Flowchart for process of constructing multivariate regression models for 
study (Kroschel et al., 2023a) ........................................................................................ 64 
Figure 3. 2 – Flowchart for process of constructing multivariate regression models for 
study ............................................................................................................................. 69 
Figure 3. 3 - Map showing location of re-fractured well in dataset (Gaswirth et al., 2013)
 ...................................................................................................................................... 69 
Figure 3. 4 - AV plots from R (R Core Team, 2022. https://www.R-project.org/) for 
model 2 showing the isolated relationship for each independent variable. This approach 
holds all other variables constant. .................................................................................. 78 
Figure 3. 5 - Residual plot using R (R Core Team, 2022. https://www.R-project.org/)of 
fitted values for model 2. ............................................................................................... 79 
 



 

 xiii 

Figure 4. 1 - Cross-sectional data set from re-fractured wells with associated trendlines 
highlighting the effect of different within-well characteristics. Plot created in R (R Core 
Team, 2022. https://www.R-project.org/) ...................................................................... 84 
Figure 4. 2 - Plot showing trend in average STP for well 1 ............................................ 85 
Figure 4. 3 - Plot showing trend in average STP for well 2 ............................................ 85 
Figure 4. 4 - Plot showing trend in average STP for well 3 ............................................ 86 
Figure 4. 5 - Plot showing trend in average STP for well 4 ............................................ 86 
 

Figure 5. 1 - Updated causal diagram assuming an interactive relationship between 
perforation standoff and stress shadow effects and stage depth to more accurately account 
for pipe friction effects on average STP ....................................................................... 105 
Figure 5. 2 - Interaction effects of temporal avg. STP measurements and perforation 
standoff using R (R Core Team, 2022. https://www.R-project.org/) ............................. 107 
Figure 5. 3 - Evidence of possible synergistic interaction effects between perforation 
standoff and square root of previous stage avg. STP using R (R Core Team, 2022. 
https://www.R-project.org/) ......................................................................................... 108 
Figure 5. 4 - Coefficient plot showing the effects of perforation standoff, presence of a 
3.5 inch liner, and formation with 95% confidence interval ......................................... 115 
Figure 5. 5 - Coefficient plot showing effects of average rate, number of perforations, and 
the interaction of non-linear, temporal average STP and perforation standoff with 95% 
confidence interval. ..................................................................................................... 116 
Figure 5. 6 - Coefficient plot showing the coefficient estimates for total proppant and end 
depth for the stage with 95% confidence interval. ........................................................ 117 
Figure 5. 7 - Variable importance for all independent variables in final feature engineered 
model .......................................................................................................................... 118 
 

Figure 6. 1 - Treatment plot using only FW as base fluid and increasing rate to counteract 
STP decline ................................................................................................................. 126 
Figure 6. 2 - Treatment plot for using only PW as base fluid........................................ 127 
 

Figure A. 1 - Stage 29 treatment plot using only FW as base fluid and increasing rate to 
counteract STP decline ................................................................................................ 140 
Figure A. 2 - Stage 26 treatment plot for using only PW as base fluids ........................ 141 
Figure A. 3 - Stage 29 chemical plot using only freshwater FR fluid system ................ 141 
Figure A. 4 - Stage 26 chemical plot using PW compatible FR fluid systems ............... 142 



 

 xiv 

Figure A. 5 - Stage 25 treatment plot highlighting the effect of PW on STP ................. 144 
Figure A. 6 - Stage 25 chemical plot highlighting the switch between fluid systems 
during stage ................................................................................................................. 145 
 

Figure B. 1 - Layout 1 Depicting pump down manifold design with ability to switch 
between fresh and produced water. .............................................................................. 162 
Figure B. 2 - Layout 2 Depicting Manifold and Valve Design for Pumping PW with 
Stimulation Equipment. ............................................................................................... 164 
Figure B. 3  - Layout 3 Depicting Manifold and Valve Design for Pumping Produced 
Water with Stimulation Equipment. ............................................................................. 166 
 

Figure C. 1 - Schematic of wellbore designs when developing acid spotting algorithm 173 
 

Figure D. 1 - Static water tanks holding fluid to be used for stimulation. Photograph was 
taken in Wyoming. ...................................................................................................... 180 
Figure D. 2 - Monoline with low and high pressure circuits. Photograph taken in 
Wyoming. ................................................................................................................... 181 
Figure D. 3 - Frac pumps hooking up to missile, converting low pressure fluid to STP. 
Photograph was taken in North Dakota. ....................................................................... 182 
Figure D. 4 - Fluid end of a positive displacement frac pump. Photograph was taken in 
Wyoming. ................................................................................................................... 183 
Figure D. 5 - Graphic of changes in global life expectancy since 1800 (Roser et al., 2013)
 .................................................................................................................................... 184 



 

 1 

 

Chapter 1 

1. Introduction 
Portions of Chapter 1 were taken from Kroschel, J. Rabiei, M. Rasouli, V. Modeling Temporal 

Dependence of Average STP in the Williston Basin Using Dynamic Multivariate Regression. Energies 
2022, 15, 2271 and Kroschel, J. Rabiei, M. Rasouli, V. Accounting for Fixed Effects in Re-Fracturing 
Using Dynamic Multivariate Regression. Energies 2022, 15, 5451. https://doi.org/10.3390/en15155451. 

1.1 The Real “Energy Transition” 

Recently in the U.S., an energy revolution has occurred. U.S. energy imports increased 

and peaked in 2005, coal production peaked in the year 2018, and coal consumption peaked 

the year prior (Energy Information Administration, 2023b). Figure 1.1 from the Energy 

Information Administration (EIA) shows that even with relatively steady energy 

consumption, the U.S. became a net exporter of energy around 2017.  

 

Figure 1. 1 - U.S. energy production, consumption, imports and exports from 1950 - 2021 (Energy 

Information Administration, 2023b) 
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Looking at figure 1.1, the year 2005 saw a sharp turnaround in U.S. energy imports 

and exports. This was due to the implementation of hydraulic fracturing (HF) in 

conjunction with recent advancements in horizontal drilling and the effects of this 

revolution have been extraordinary.  

With this, it would be tempting to argue that this revolution and access to abundant oil 

and natural gas (O&G) would create more greenhouse gas emissions as these resources are 

used. However, this hasn’t been the case. Figure 1.2 shows the trend in annual emissions 

with the associated percentage change. We see the general decreasing trend starting around 

2006, just after the energy revolution in 2005. Even after the rebound from the COVID 19 

pandemic, emissions in 2021 remained well below peak levels in 2007 (Energy Information 

Administration, 2022). 

 

Figure 1. 2 - Data from the EIA showing trend in annual emissions and associated percentage changes 

(Energy Information Administration, 2022) 

 

Figure 1.3 shows the CO2 emissions reductions relative to 2005 levels specifically for 

electricity generation. Year over year, we see more emissions reductions from more 

consumption of natural gas, not less. According to figure 1.3, natural gas is responsible for 
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more CO2 emissions reductions than non-carbon sources from electricity generation. This 

fact should not be taken lightly.  

  

 

Figure 1. 3 - Data from the EIA showing emissions reductions realized by substituting natural gas (blue) 

and non-carbon sources (green) for electricity generation relative to 2005 emissions (Energy Information 

Administration, 2022) 

Figures 1.2 and 1.3 show that if we are worried about emissions, and serious about 

reducing CO2 emissions in particular, it is entirely possible that we should be focusing more 

heavily on natural gas production and consumption instead of limiting it. This is because 

natural gas consists mostly of CH4 and has a high hydrogen content and combustion will 

produce far less CO2 (Energy Information Administration, 2023a). Figure 1.4 shows the 

large decrease in coal consumption for energy generation. This is due to large scale 

substitution from coal to more cost efficient natural gas and other sources for electricity 

generation (Energy Information Administration, 2023b). This highlights the large scale 

substitution of coal for natural gas for electricity generation and the adoption of more 

natural gas for primary energy consumption as well.  
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Figure 1. 4 - Primary energy consumption by source in the U.S. from 1950 – 2021 (Energy Information 

Administration, 2023b) 

On December 08, 2021, President Biden signed an executive order to direct the federal 

government of the U.S. to achieve five goals. Two of the five goals is to 1) produce 100% 

carbon emission free electricity (CFE) by 2030, and 2) 100% zero emission vehicle (ZEV) 

acquisitions by 2035 which includes 100% zero emission light duty vehicle acquisitions by 

2027 (White House, 2021). This shows that electricity is a primary target of energy policy. 

In line with this policy, research in renewable energy, energy storage, and battery and 

electric powered vehicles are becoming more common in our daily lives (Chen, Xiong, Li, 

Sun, & Yang, 2019). However, it’s important to remember that electricity is an end-use 

product, not an energy source. This is highlighted in figure 1.5. The primary energy sources 

in the U.S include fossil fuels (petroleum, natural gas, and coal), nuclear energy sources, 

and renewable sources of energy (Energy Information Administration, 2023b). Energy 

consumption from each sector in the economy has a wide range of variability as shown in 
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figure 1.5 (Energy Information Administration, 2023b). We see that petroleum and natural 

gas are inputs into all sectors of the economy and comprise 68% of the total energy input.  

 

 

Figure 1. 5 - U.S. energy by individual sectors using different sources for year 2021 (Energy Information 

Administration, 2023b) 

 

In contrast to U.S. energy consumption, households in developing countries 

depend on burning wood for energy (Dendup, 2022). Roughly 2.4 billion people around 

the globe rely on open fires or inefficient stoves for household use using fuel sources 

such as kerosene, biomass, and coal, which generates toxic air pollution as a result 

(World Health Organization, 2022). This indoor air pollution is responsible for around 

3.2 million deaths every year and an estimated 86 million healthy life years were lost in 
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2019 as a results of indoor air pollution (Household Air Pollution, 2022). Given this, we 

shouldn’t assume a priori that ceasing O&G use will result in benefits greater than costs. 

Given that fossil fuels are inexpensive, reliable, relatively easily transportable, and wind 

and solar are intermittent and expensive to store (Borenstein & Kellogg, 2021), we 

should also not assume a priori that tethering these developing countries to technologies 

like wind and solar instead of fossil fuels. Considering this, it is worthwhile to analyze 

the arguments for ceasing O&G use.  

It is well documented that CO2 causes global temperatures to rise through the 

greenhouse effect that traps heat from the sun (NASA, What is the greenhouse effect?, 

2023). However,  too much CO2 in the atmosphere and the resulting greenhouse effect is 

an argument for reducing CO2 in the atmosphere, not ceasing O&G extraction and 

consumption. Significant CH4 emission in the natural gas supply chain could undermine 

the gains realized by natural gas combustion (Weller, Hamburg, & von Fischer, 2020). 

The fact that natural gas pipelines leak is an argument for actions like better policy and 

more robust construction, not getting rid of pipelines. Weller et al. (2020) conclude that 

targeting the oldest pipelines and identifying the largest leaks for repair can result in the 

largest emission reduction in the natural gas distribution system (Weller, Hamburg, & 

von Fischer, 2020). In addition, NASA’s Earth Surface Mineral Dust Source 

Investigation was developed to map minerals in desert dust, but can also detect airborne 

methane (NASA, 2022).  

Extending the same logic to intermittent sources of energy like wind and solar, 

intermittent supply is not an argument for not developing wind and solar, it is an 

argument for fixing the issue of intermittent supply. However, although the unit cost of 
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some low-emission technologies has decreased since 2010 (Shukla, 2022), the source 

energy intermittency problem with wind and solar generation still exists. To counteract 

this, storage technologies have traditionally been the solution. Although there has been 

substantial advancement in batteries, batteries are not anymore of an energy source than a 

pantry is a food source. If we also assume that technological advancements will reduce 

the cost of storage and increase efficiency enough to make it feasible to store large 

amounts of electricity, storage is still conditioned on intermittent supply, i.e. you can not 

store what isn’t produced. This also requires assuming that there will be excess capacity 

to store.  

Given the energy source problem and the remarkable increase in energy production 

realized in the U.S., along with large scale CO2 reductions realized by utilizing natural gas, 

an argument can be made that we should not be limiting production of any energy source, 

especially oil and natural gas. We should also not assume that the “energy transition” the 

developed world is attempting to undertake necessarily applies to other areas of the globe.  

The world needs energy as it is vital for economic opportunity (Song, et al., 2023) 

and policymakers are now focused on the relationship between energy supply and 

economic development (Oyekale & Molelekoa, 2023). Thus, limiting energy limits 

economic growth and opportunity. Also, when technology advances swiftly and 

governments try to decide who the winner is a priori, the results are often costly (Borenstein 

& Kellogg, 2021). So, it is not clear that we should decide a priori that electricity generated 

by intermittent supply sources is the way of the future. Also given that we know fossil fuels 

can produce many direct benefits and spillovers, it would be immoral to drag the rest of 
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the world along our energy transition without first letting them transition to industrialized 

societies and reap the benefits readily deployable, reliable, and energy dense fossil fuels. 

1.2 Challenging the Unstated Assumption in the Energy Transition 

In this section, I start by challenging the unstated assumption that we should not do 

things that increase global temperatures, which is required to logically conclude that we 

should cease O&G use.  

The philosopher David Hume proposed that “ought” does not follow logically from 

“is”. (Hume, 1985). More practically, there is no clear path way from facts that exist in the 

world (is) to actions that should be taken (ought). The current debate about what to do 

about climate change can be viewed through this lens. Essentially, CO2 emissions increase 

global temperatures through the greenhouse effect (is). Therefore, we should cease emitting 

CO2 (ought). However, this is not logically complete. To complete this logically, we need 

an assumption of another “ought” (Woodford, 2021). The previous “ought” follows 

logically from “is” if we assume that we should not do things that increase global 

temperatures. So, the complete logical statement looks like the following: “CO2 emissions 

increase global temperature, and we should not do things that increase global temperature. 

Therefore, we should cease emitting CO2.”.  

Burning fossil fuels creates CO2 , H2O, and heat, with the heat being utilized for 

energy (Energy Information Administration, 2023b). Figure 1.6 shows the primary energy 

consumption by sources specifically for the year 2021. We see that O&G made up about 

68% of the total energy consumption for the year 2021. In contrast, energy from renewable 

sources made up only 12% of the overall energy consumption. Of that 12%, solar and wind 
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made up only 39% of the total renewable energy generation. Given this, it should come as 

no surprise that that majority of anthropogenic greenhouse gas emissions in the U.S. come 

from burning fossil fuels for energy (Energy Information Administration, 2023a). 

However, based on evidence, these emissions are simply a cost of our well-being and 

progress, as the rest of the section will argue. 

 

 

Figure 1. 6 - Primary energy consumption by source for year 2021 (Energy Information Administration, 

2023b) 

Christopher Hitchens proposed the following philosophical razor: “If it can be 

asserted without evidence, it can be dismissed without evidence” (Wikipedia, 2023). 

Therefore, the rest of this section will provide evidence that challenges the unstated 

assumption that we should not undertake any activity that warms the planet. This 
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discussion is important because of the debate about what to do about climate change and 

why re-developing O&G assets is justifiable, and moral, based on historical evidence.  

1.3 Economics, Climate Change, and Human Well-Being 

The economist Thomas Sowell has said, “There are no solutions, there are only trade-offs” 

and the Nobel prize-winning economist Milton Friedman expressed similar sentiments 

when he stated, “There is no such thing as a free lunch”. The larger point of these two 

quotations is that there is always a forgone cost, or opportunity cost, associated with an 

action. In doing A, you’re forgoing B, which also has some value and represents a forgone 

benefit, or, an incurred cost. For example, a college students economic cost of attending 

university is not only the cost of attendance, but also any forgone wages that they could’ve 

otherwise been earning in the marketplace over their time in college. One historical 

example was noted by Louis Stotz, in 1938; “the discovery of petroleum in Pennsylvania 

gave kerosene to the world, and life to the few remaining whales” (Stotz, 1938). This 

highlights two economic points: 1) Human ability to adapt and create substitutes, and 2) 

the opportunity cost of pursuing O&G production may have been the existence of whales 

on earth. 

This brings us to the debate about what to do about climate change, which must 

consider the opportunity costs. There is a plethora of literature about the costs around 

climate change as a result of the greenhouse effect. It is well understood that economic 

outcomes are intertwined with climate and this relationship will have policy and market 

impacts in the future (Newell et al., 2018) and according to William Nordhaus, the foremost 

economist on climate economics and Nobel Prize winner, the Social Cost of Carbon (SCC) 
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is the most important economic metric when designing and implementing effective climate 

change policy (Nordhaus, 2017). William Nordhaus estimates the SCC is $31 per 

additional tone of CO2 emitted in 2010 US$ (Nordhaus, 2017). 

There are legitimate concerns around the changing climate. Local air quality from 

O&G operations during extraction may be of concern (Hausman & Kellogg, 2015). 

Drought may become a challenge as global temperatures rise which makes arid and semi-

arid areas especially prone to impacts (Dhanya & Geethalakshmi, 2023). Hajdu and Hajdu 

(2023) analysed data from some 600,000 pregnancy losses between 1984 and 2018 in 

Hungary and estimate that higher temperatures tend to increase the risk of pregnancy 

(Hadjdu & Hajdu, 2022). Hajdu and Hajdu (2022) also estimate that the effect of increased 

exposure to heat is more pronounced during the first half of pregnancy and among women 

with less than high school education (Hadjdu & Hajdu, 2022). However, this is just as 

much evidence for increasing education levels as it is for reducing global temperatures. In 

addition, wealth is generally a metric for a willingness to pay for environmental quality 

(Timmins & Vissing, 2022). So, it seems that focusing on education and wealth generation 

might have more immediate impacts. In addition to the vast amount of academic literature, 

the Intergovernmental Panel on Climate Change (IPCC) recently published their sixth 

assessment report and found that cumulative net CO2 emissions have increased due to 

anthropogenic activities since 1850 (Shukla, 2022). This seems to have been widespread 

knowledge in private, academic, and government circles for quite some time. The review 

of internal documents from Exxon scientists has led to the conclusion that the fossil fuel 

industry has known that the by-products of fossil fuel consumption could cause the earth 

to warm through the greenhouse effect (Supran, Rahmstorf, & Oreskes, 2023). However, 
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Supran, Rahmstorf, and Oreskes (2023) state that these models and knowledge were 

“consistent with, and at least as skilful as, those of independent academic and government 

models.” (Supran et al., 2023). So, it seems most everyone knew about the potential costs 

of burning fossil fuels; however, no one was willing to forgo the benefits. This yields one 

of, if not the, biggest problem when dealing with climate change: intertemporal choice. 

Intertemporal choices are choices made over time, where costs and benefits are dispersed 

(Loewenstein & Thaler, 1989).  

Even if we assume everything thus far regarding climate change is entirely accurate, 

we still need to assume that we ought not undertake activities that raise global temperature 

and may therefore impose a social cost from those activities. Based on historical evidence, 

I would argue this is not a valid assumption and that although the SCC may represent an 

actual cost, there is actually a net benefit in undertaking the anthropogenic activities that 

produce CO2 emissions. O&G provide more than two-thirds of the energy Americans 

consume daily and are a large part of the standard of living, contributing in ways that are 

often not apparent (U.S. Department of Energy, 2020). Broadly speaking, Americans take 

for granted the energy infrastructure in place and the fact that it always works (Borenstein 

& Kellogg, 2021) and over 1/3 of the electricity generated in the U.S. is generated from 

burning natural gas (U.S. Department of Energy, 2020).  

Figures 1.7 shows the world annual CO2 emissions from 1960 to 2021 taken from 

Ritchie et al. (2021). The argument for continued O&G production will continue to refer 

back to this figure as this is usually seen as an existential threat. Although these emissions 

present problems, I would argue that, at least currently, it is simply a cost of improving the 

quality of life much like going to the dentist is a cost for a greatly improved oral health. 



 

 13 

 

Figure 1. 7 - Annual global CO2 emissions since 1960 - 2021 (Ritchie et al., 2020) 

 

Figure 1.8 shows world GPD  (in current US$) from 1960 to 2021, respectively. This 

tracks very closely with world CO2 emissions, and the relationships aren’t only specific to 

the world in aggregation. Figures 1.9 shows that GDP has seen large increases since the 

1960s for low and middle-income countries. However, when comparing these results 

with figure 1.10, we see that the upper and lower middle income countries are responsible 

for nearly all of the increase in GDP, measured in current U.S. $.  
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Figure 1. 8 - World GDP in trillions of current U.S. $ from 1960 – 2021 (World Bank, 2023) 

 

 

Figure 1. 9 – GDP in trillions of current U.S. $ from 1960 – 2021 for low and middle-income countries 

(World Bank, 2023). 



 

 15 

Now, it should come as no surprise that the countries with highest GDP tend to be 

wealthier. However, when comparing figure 1.10 with figure 1.11, which shows the 

emissions for middle and low income countries, we see the same stratification with 

upper-middle, lower-middle, and low income countries in terms of emissions. The 

argument here is not that increasing CO2 emissions increases wealth, but taking 

advantage of opportunity costs does. When societies are able to utilize energy dense and 

reliable resources like fossil fuels, they are able to redistribute their time to other 

activities such as healthcare, medicine, engineering, education, etc. 

 
Figure 1. 10 – GDP in trillions of current U.S. $ from 1960 – 2021 for low and middle-income countries 

(World Bank, 2023)  
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Figure 1. 11 - CO2 emissions from middle and low income countries from 1960 - 2021 (Ritchie et al., 2020) 

 

 

 

Figure 1. 12 - Life expectancy from 1960 to 2021 (Roser et al., 2013) 
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Figures 1.12 (and D.5 in Appendix D) show that life expectancy has also has largely 

increased worldwide, certainly since the 1950s. Now, referring back to CO2 emissions in 

figure 1.7, it is not that CO2 emissions are directly responsible for the improvement in life 

expectancies and GDP, the exogenous variation is the opportunity cost people are able to 

take advantage of when provided a cost effective and energy dense resource like O&G. 

Cheung et al. (2020) note that Hong Kong has the highest life expectancies in the world 

despite cross-boundary air pollution effects from the industrial center Pearl River Delta 

Economic Zone (PRDEZ) (Cheung, He, & Pan, 2020). The Cheung et al. (2020) study 

was unique in that it estimates the effects of high pollution in a high income setting 

(Cheung, He, & Pan, 2020). Their study provides evidence that the negative health 

effects from air pollution can be mitigated through more robust health care and high 

quality medical institutions (Cheung, He, & Pan, 2020). I would argue that this is 

evidence of the opportunity cost we are able to take advantage of when we’re not 

spending time worrying about and procuring energy. Not only was Hong Kong able to 

provide quality health care and health institutions (which require considerable and 

sustained energy), but was also able to provide academics the opportunity to study these 

effects. 

Figure 1.13 shows the average worldwide deaths from climate events over each 

decade from the 1960s through the 2010s and current estimates through the 2020s thus 

far. It’s pretty clear that people are much safer today from climate events than in decades 

prior. This is even more impressive given that population has increased over the same 

time period. 
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Figure 1. 13 - Decade average worldwide deaths due to geophysical, metoerological, and climate events 

including earthquakes, volcanoes, landslides, drought, wildfire, storms, and flooding from 1960s to 2010s 

and current through the 2020s  (Ritchie et al., 2022) 

Examining figures 1.7-1.13, it seems life has improved for a large majority of 

people on the planet despite the imposed SCC. These improvements are also in spite of 

any temporal effects of incurred SCC from CO2 emitted in the past. It stands to reason 

that we should be seeing the SCC for CO2 emitted in the middle of the century and paying 

for it daily. However, it seems the SCC is outweighed by the benefits of our 

anthropogenic activities that create a net benefit from the opportunity cost.   

Fossil fuels have been the worlds primary energy source because they differ from 

renewables in that they can be readily supplied and at low cost (Borenstein & Kellogg, 

2021). This has produced societies where seeking out a certain degree of discomfort is a 
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past time (e.g. camping) and it may even be argued that these are luxury goods given the 

time and resources needed to undertake these activities. This is because we’re largely 

disassociated from the actual harshness of the environment and are no longer at its’ 

mercy. This shift from surviving in the environment to actively seeking discomfort in the 

environment is a product of the activities we undertake that produce emissions.  

This chapter has provided strong evidence, from increased GDP and life 

expectancy, to challenge the assumption that we should undertake activities that produce 

CO2 emissions. Now, after having established a foundation and justification for re-

development of O&G assets, the rest of the chapter will focus on economics of O&G 

production and re-fracturing.   

1.4 Counteracting Peak Oil 

As production naturally declines from O&G production, new technologies and 

processes are needed to counteract the natural reservoir pressure declines and replace 

extracted reserves. A prevailing ecological assumption is that resource scarcity is an 

inevitable consequence of sustained human growth on a finite planet (Seibert & Rees, 

2021). More narrowly, in the O&G sector, Marion King Hubbert proposed an extraction 

profile in the 1950s resembling a “bell shaped” curve for the lower 48 states (Hubbert, 

1962). Hubbert predicted peak U.S. oil production in the lower 48 would occur around the 

year 1970. Figure 1.14 shows the trend in U.S. oil production from 1920 to the late 2000s. 

We can see a peak around 1970 with the production following a bell-shaped curve just as 

Hubbert predicted. The nature of this bell-shaped production profile indicates there should 

be much debate on how resource extraction should be planned (Bardi & Lavacchi, 2009) 
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and those in charge of making decisions are either unaware of “peak production” or see it 

as unjustified (Bardi & Lavacchi, 2009). Figure 1.14 shows the bell shaped curve Hubbert 

predicted and his prediction of the peak year was extremely accurate.  

 

Figure 1. 14 – U.S. field production before the revolution highlighting (Energy Information Administration, 

2023c) 

 

The peak oil production described by Hubbert was the prevailing sentiment until roughly 

2005. However, Hubbert neglected any advancement in technology, largely discounting 

the ingenuity and adaptability of humans. Widespread implementation of the advanced 

technologies of horizontal drilling and HF adopted 2005 reversed the course of O&G 

production in the U.S. (Barati & Alhubail, 2021).  Figure 1.15 shows the most current data 

on U.S. crude oil production. We see that recent production has surpassed that of the peak 

predicted by Hubbert. In fact, Worldwide O&G reserves increased by more than 50% in 

2009 (U.S. Energy Information Administration , February 2011).  
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Figure 1. 15 - U.S. field production of O&G highlighting decline counteraction from (Energy Information 

Administration, 2023c) 

 

In addition to added reserves, average finding costs for Financial Reporting System 

(FRS) companies worldwide decreased to $18.31 per barrel of oil equivalent (BOE) of oil 

reserves added in the 2007-2009 period. This represents a decline of $5.79 per BOE from 

2008 (U.S. Energy Information Administration , February 2011). These figures are in 

spite of the fact that investment in production and development have been much higher 

than exploration since the early 1980s, as shown in figure 1.16. There is a market 

incentive to disseminate proprietary technology from those who developed it and rent it 

to others, which is often most profitable (Baumol, 2002). This indicates that we do not 

necessarily need to find more oil, we just need to get better at extracting and producing it 

through technology.  

Futures prices and contracts are one of the best indications of resource scarcity 

available. Figure 1.16 indicates that with an increase in investment in production and 

development, production can be substantially increased, even with a relatively constant 
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rate of investment in exploration. Figure 1.16 is an example of what the economist William 

J. Baumol would call “routinized” innovation. Essentially, firms will not risk falling behind 

competitors and will make research and development an internal and routine procedure 

(Baumol, 2002).  

 

 

Figure 1. 16 - Worldwide expenditure on Production, Exploration, and Development (Energy Information 

Administration, n.d.) 
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Figure 1. 17 – West Texas Intermediate and NYMEX crude oil futures prices with confidence intervals 

(Energy Information Administration, 2023d) 

1.5 Re-fracturing: Potential to Recover Stranded Resources in the Williston 

Basin 

Given the need for continued O&G production and further development of the 

resource given in the previous sections, redevelopment of O&G assets is essential. There 

is also sufficient evidence that the world is not running out of O&G, we just need to get 

better at extracting it. Additionally, the largest portion of the emissions reductions in the 

U.S. since 2005 have been realized due to substitution to of coal for natural gas for 

electricity generation, as shown in figure 1.4. This indicates that continued development of 

O&G and continued substitution of natural gas for electricity generation will not only have 

positive impacts on human well-being, but also environmental benefits in terms of 

emissions reductions.   

Combining the technological developments of horizontal drilling and HF has not only 

made the U.S. energy independent in terms of O&G but has also made the country an 
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exporter of these resources (Rignol & Bui, 2020). Likely due to economic conditions, 

stimulation until around 2015 largely consisted of sliding-sleeve/packer completion types. 

These consisted of a series of sleeves that would activate a shear pin given a large enough 

pressure differential after a particular-size composite ball would seat and seal off zones 

below it, and thus exposing new perforations in the liner to allows entry into formation in 

a new zone. With such high oil prices from 2010-2015, this technology made it possible to 

extract large quantities oil as quickly as possible. 

There were almost certainly information asymmetries in the early days of HF due 

to its’ novelty. Combine this with an incentive to extract as much oil as quickly as possible 

and there exists a recipe for stranded resources (Barba, Allison, & Villarreal, 2022). This 

presents an opportunity for operators to redevelop assets through re-fracturing (Li, Han, 

LaFollette, & Kotov, 2016). Re-fractured wells in the Bakken have seen an increase in 

production rate and the estimated recoverable reserves (Wan, Rasouli, Damjanac, Torres, 

& Qiu, 2019). Rignol and Bui (2020) estimate production from re-fractured wells to be as 

high as 92% of initial production in the Bakken which is most likely due to insufficient 

initial stimulation (Rignol & Bui, 2020). Figure 1.18 shows the production gains specific 

to the Bakken after analyzing re-fracturing data captured from FracFocus (Shammam et 

al., 2021). Shammam et al. (2021) estimate production gains as high as 160% of original 

production in the Bakken, conditioned on proper well selection. This provides evidence 

that there is opportunity in the Bakken to a make economic wells by redeveloping current 

assets and forgoing the cost of new drills. 
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Figure 1. 18 - Expected production gains in Bakken after re-fracturing treatment (Shammam et al., 2021). 

However, given the potential of re-fractured wells, the re-fracturing process is even 

more complex than initial stimulation operations. Factors such as wellbore degradation, 

depletion, possible stress reversal due to depletion, etc. all play a role in treatment 

implementation. Although work has been done to investigate fracture models based on 

physics to optimize production, there has been little done with a focus on treatment 

implementation in the field to reduce costs. Also, there is a gap in literature for providing 

marginal estimates for the effects of treatment parameters in the Williston basin for re-

fractured wells. With this, there exists a need to develop data driven models, guided by 

field experience and actual treatment data, to provide insights into what knobs to turn to 

make treatment easier to implement in the field and reduce costs.  With many information 

asymmetries working against petroleum engineers, and often complex relationships that 

are often times unobservable, this study will use economic models in an attempt to 
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describe these relationships. These models identify the high margin areas where the most 

efficient reductions can be made. These economic models are also appropriate since 

economists often deal with the same issues of lack of knowledge about entire populations 

and their actions, but still require data driven decisions. 

1.6 Hypothesis and Research Questions 

The continued need for O&G extraction combined with market forces has prompted 

operators to focus on minimizing costs while producing O&G. This is because 

technological advancements have been made and the economics of the industry has 

changed.  However, the process of re-fracturing is complicated and requires a different 

approach from initial stimulation since expected pressures will be different and pressure 

limitations have changed due to wellbore degradation.  

1.6.1 Hypothesis 
 

So, this study will state the following hypothesis and set of accompanying research 

questions. The stated hypothesis is as follows: 

Application of multivariate regression models can identify high margin areas for surface 

treatment pressure (STP) reduction and lead to a more cost-efficient hydraulic fracture 

implementation. 

 

In order to answer this, the following research questions that will be investigated. These 

are important as they will guide the research and provide other insights into the re-

fracturing process.  
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1.6.2 Research Question 1 
 

Can multivariate regression models yield inferences about treatment behaviour? 

It is important to identify marginal effects that will help us to better understand how 

changes in completion parameters effect treatment implementation in terms of average 

STP. Factors such as stress shadow effect, perforations, proppant, etc. may drive up 

average STP.  

 
1.6.3 Research Question 2 
 

Can more complex models resolve endogeneity and increase predictive power of average 

STP? 

This will go a step further in identifying the causal relationship amongst distance between 

stages and previous stage average STP. 

 

1.6.4 Research Question 3 
 

Can we use the lessons learned from the inferential models to accurately predict average 

STP?  

This is important because it will be the culmination of the previous models and, ultimately, 

test whether thy hypothesis can be answered. How can these predictive models be used to 

change parameters that affect treatment implementation and cost? 
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1.7 Methodology 

This project will utilize the following approaches guided by the hypothesis and research 

questions to investigate if average STP can be characterized by general completion 

parameters and can be predicted from these parameters: 

1. Obtain field treatment data 

2. Use domain knowledge about HF treatments, wellbore mechanics, field operations, 

and literature and incorporate it into model specification. Domain knowledge will 

be helpful when selecting independent variables for the regressions as well as 

building other models to answer more complicated questions.  

3. Construct pooled dynamic multivariate regression model as an initial inferential 

analysis. The useful inferences from this model are marginal effects of completion 

parameters on average STP. This will allow operators and field personnel to 

identify those parameters that are most likely to affect average STP during re-

fracturing implementation. This pertains to research question 1 and will be the first 

step in the process of understanding marginal effects of treatment parameters and 

temporal stress shadow effects.   

4. Construct dynamic panel model accounting for within-well differences. This model 

will also serve as inferential and build upon the pooled model. This model should 

serve as a guide to encroach on high margin areas and retreat from low margin areas 

when optimizing and predicting average STP. This model is related to research 

question 2 and will help solidify our understanding of stress shadow effects. 

5. Perform feature engineering using guidance from the pooled and fixed-effects 

models to improve predictive potential of multivariate models. This will help 
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answer the overall hypothesis of the study, incorporating the knowledge gained 

from the previous models.  

1.8 Significance 

The significance of this research is to construct models that estimate the effects of 

completion parameters on treatment implementation. This will be useful as a cost 

minimization tool for operators. This will include the following objectives: 

 

1. Introduction of simple and useful multivariate regression models and approaches and 

much simpler statistical models to use in the highly stochastic systems of the wellbore and 

reservoir; 

 

2. Provide a repeatable framework for operators in the Williston basin using R (R Core 

Team, 2022. https://www.R-project.org/) to provide causal analysis in determining the 

completion parameters that affect average STP. This approach will hopefully scale to other 

basins as basic HF treatment data is available; 

 

3. Present an approach to identify causal elements that affect average STP. This is 

important because it gives engineers a tool to control that parameters that can be controlled 

in a treatment and increases the probability of treatment optimization from a cost 

perspective;  
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4. Provide a feature engineered model that can use the inputs that have a causal effect on 

average STP to predict on other data sets. This will be useful when designing new 

treatments;  

 

5. Provide a reproducible workflow that operators can apply on smaller scale that is cost 

effective and only requires prior or offset treatment data;  

 

6. Provide insight into why average STP is crucial to operations and how costs can be 

minimized by focusing on average STP under operational conditions; 

1.9 Dissertation Structure 

This dissertation consists of six chapters. 

 

Chapter 1 will start with a brief economic and philosophical analysis to support the a priori 

assumption that continued and optimal O&G extraction is and will continue to be beneficial 

to human progression, therefore creating a need to re-fracture wells. Chapter 1 also will 

provide a brief introduction to the project, the hypothesis, research questions, methodology, 

and glossary for this study.  

 

Chapter 2 will provide a thorough investigation of the current literature on operations, 

machine learning methods for optimizing O&G extraction, and a thorough introduction to 

the multivariate regression models used in this study.  



 

 31 

 

Chapter 3 will introduce a pooled multivariate regression model for estimating the marginal 

effects of completions parameters on average STP. This model also provides insight into 

the temporal dependence of STP from previous stages on subsequent stages. 

 

Chapter 4 will build on the model constructed in Chapter 3 by accounting for unobservable, 

within-well fixed effects through the use of panel data and fixed effects multivariate 

regression models. 

 

Chapter 5 will use the results from the multivariate regressions from chapters 3 and 4 as a 

base to perform feature engineering on the models to improve predictive performance of 

average STP. 

 

In Chapter 6, a list of conclusions will be provided as well as discussion about field 

applications for cost minimization and areas for improvement in the process. 
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1.10 Glossary 

Multivariate Regression – Ordinary least squares that includes multiple predictor 

variables (Bailey, 2017) 

Added Variable Plot – Plot highlighting individual effects, all others held constant 

Opportunity Cost – The cost incurred from an opportunity forgone 

Endogenous – Changes in a predictor variable are related to changes in the error term 

(Bailey, 2017) 

Predictor (Independent) Variable – A variable we have reason to believe influences the 

dependent variable in a regression (Bailey, 2017) 

Dependent Variable – An outcome variable we are interested in modelling (Bailey, 2017) 

Fixed Effects Model –  Model utilizing panel data to account for unit and/or time effects 

unique to each unit and/or period in the dependent variable (Bailey, 2017)  

Margin (Marginal) – The next or last unit of analysis 

Residual – The difference between an observed value and a predicted value (Bailey, 2017) 

Statistical Significance – We will say a coefficient is statistically significant if we can 

reject the null hypothesis that the coefficient estimate is zero (Bailey, 2017) 

Standard Error (coefficient) – The standard error of a coefficient estimate refers to how 

wide the distribution of the parameter estimate is (Bailey, 2017) 

Standard Error (regression) – The standard error of the regression is defined as the 

square root of the variance and is therefore measured in the units of the dependent variable. 

Essentially, it is the average distance between the fitted values and the observed values.  

Causality – If changes in an independent variable, X, increase the probability that the 

dependent variable, Y, will change as a result, we assume there is a causal relationship.  
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Inferential Models – Models used to gain insight into relationships as opposed to solely 

making predictions 

 

 

Chapter 2 

2. Literature Review 

2.1 The Bakken Petroleum System 

Chapter 1 outlined an argument for continued O&G extraction and use. This 

argument provides a foundation for the entire study since it is focused on re-developing 

existing O&G assets through re-fracturing. This section will start with a review of the 

Bakken petroleum system. This is followed by a review of the HF process including 

discussion about operations and equipment. Next, an analysis of literature pertaining to 

data mining and domain knowledge. Lastly, a review of multivariate regression models 

and some guiding principles in the development of the models conducted for this study 

will be discussed. The objective for this chapter is to provide a broad and sufficient 

background discussion for the reader about the information pertaining to the objectives of 

this dissertation. 

The Williston basin is an unconventional shale play that spans several states and 

reaches up into Canada. Specifically, it is located in northwestern SD, eastern Montana, 

most of North Dakota, Manitoba and Saskatchewan (Gerhard & Anderson, 1988). Figure 

2.2 shows the extent the Bakken reaches in each direction. The Williston basin was known 

to be oil bearing since the 1950s when Amerada struck economically viable quantities of 
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oil south of Tioga, ND in the Silurian Interlake Formation with following development 

targeted in the Mississippian Madison Group (Ling, et al., 2013). Recently, the widescale 

implementation horizontal drilling augmented with HF in the 2000s has provided a 

measurable increase in production and development of the Williston basin (Fry & Paterniti, 

2014; Ling, et al., 2013). By 2018, the Bakken formation was producing about 1.2 MM 

barrels per day (bpd) (Wan et al., 2018). According to the EIA, the Bakken is currently 

producing around 1,200 thousand bpd and has seen a substantial increase in daily 

production since 2013 (EIA, 2022). These results are shown in figure 2.1. 

 
Figure 2. 1 - Recent oil production trends for the Bakken region (EIA, 2022) 
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Figure 2. 2 - Map of the Williston Basin (Gerhard & Anderson, 1988). 

 

The Bakken reaches its’ maximum thickness near the center of the basin and pinches out 

towards the edges of the basin to near zero (Smith & Bustin, 1995). The Bakken is thickest 

around Watford City at around 145 feet (Fry & Paterniti, 2014). At the deeper, center part 

of the basin, the Bakken overlies the Three Forks formation conformably and becomes 

unconformable towards the margins of the basin as the formations pinch out (Fry & 

Paterniti, 2014). Because of its’ structure, there are very few outcrops of the Bakken that 

are available for study so most of the subsurface knowledge comes from petrophysical 

logs, well logging data, core samples, and seismic surveys (Gerhard & Anderson, 1988). 

Figure 2.3 shows the shape of the Bakken petroleum system from a profile view. We can 

see from figure 2.3 that the Bakken pinches out towards the east and the west and the 

maximum thickness mentioned earlier is near the Nesson Anticline (center of the basin). 
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Figure 2.4 shows the stratigraphic column for the Williston basin with oil bearing 

formations in blue and gas bearing formations in red (Ling et al., 2013). Figure 2.5 

highlights the Bakken system specifically in the stratigraphic column. 

 

 
Figure 2. 3 -  Cross sectional view of Bakken petroleum system (Meissner, 1978). 

 

Figure 2. 4 - Stratigraphic column of the Williston basin (Heck et al., 2002) 
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Figure 2. 5 - Stratigraphic column focusing on the four Bakken members including the Sanish/Pronghorn, 

Lower Bakken, Middle Bakken, and Upper Bakken (Egenhoff, 2017) 

 

The Bakken system consists of four members: Upper Bakken, Middle Bakken, Lower 

Bakken, and the Sanish/Pronghorn member (Egenhoff, 2017). The upper and lower 

members are dark, organic rich source rocks for the middle member, which is a mixture of 

sandstone and mudstone (Ling et al., 2013; Wan et al., 2019). The upper and lower 

memebrs also serve as a seal for the middle member (Fry & Paterniti, 2014; Ling et al., 
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2013) with the upper member being deposited under dynamic and occasional dynamic 

conditions (Egenhoff & Fishman, 2013). The lower and middle member contains a thin 

carbonate transition unit as opposed to a grain coarsening gradation (Egenhoff, 2017). 

These processes have had causal impacts on the rock characteristics that determine how 

they store fluid and how they may react to HF (Fishman, Egenhoff, Boehlke, & Lowers, 

2015). This suggests that the Bakken system has undergone two encompassing sea-level-

oscillations with the first represented by the carbonate boundary present in the lower to 

middle Bakken transition and the second marked by the transition from the middle Bakken 

to the upper Bakken shale (Egenhoff, 2017).  

2.2 Hydraulic Fracturing Operations and Treatment 

Unconventional reservoirs such as the Bakken require HF to realize sufficient production 

to make them economical (Manchanda & Sharma, 2012). Horizontal wells are now used 

in conjunction with multi-stage, multi-fracture treatments to successfully produce from low 

permeability formations (Fry & Paterniti, 2014; Havens & Batzle, 2011; Ling, et al., 2013; 

Roussel & Sharma, 2011; Wan et al, 2018). Successfully generating multiple fractures in 

each stage of a horizontal well is necessary for sufficient production (Abobobaker& Olson, 

2015; Havens & Batzle, 2011). To achieve this, special equipment is required. 

Equipment can be divided into four categories which are transport, servicing 

equipment, iron and pipe equipment, and pressure pumping equipment (Josifovic et al., 

2016). As the targeted formations have become deeper and higher pressure, positive 

displacement pump design has travelled together with pressure and rate requirements to 

accommodate these formations (Josifovic et al., 2016). Positive displacement pumps used 



 

 39 

for HF are able to operate over a broad range of pump rates at high pressure over long 

periods of time (Josifovic et al., 2016). The physical process of HF is carried out 

operationally by moving fluid from a static source, as shown in figure D.1 (Appendix D), 

through equipment that increases in pressure throughout the process to eventually move 

the fluid into the wellbore at stimulation pressure. Figure 2.6 shows the general layout for 

a HF operation. Operationally, there are two different circuits for low and high pressure 

fluid between the pumps and the missile or monoline (Josifovic et al., 2016). A blender is 

required to pull fluid from holding tanks (D.1, Appendix D) via a centrifugal pump, where 

it is mixed with chemicals and sand to create a slurry. The slurry is then discharged via the 

blender to a monoline or missile that all of the HF pumps are connected to. Figure D.2 and 

D.2 in Appendix D show pictures of a monoline with connected HF pumps. Therefore, the 

pressure at the discharge side of the blender becomes the low pressure side of the positive 

displacement pumps used for HF. The pressure at this point ranges from roughly 60 psi to 

100 psi depending on the designed slurry rate and is called the blender discharge pressure. 

Here, the positive displacement HF pumps will convert the fluid at blender discharge 

pressure to a stimulation pressure known as surface treating pressure (STP). This is the 

pressure monitored at the wellhead during treatment. 
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Figure 2. 6 - General layout for operations 

 

Although there are numerous suppliers of positive displacement HF pumps, there is 

surprising homogeneity amongst pump design (Josifovic et al., 2016). Each positive 

displacement pump is powered by a diesel engine connected to a transmission that drives 

the crankshaft of the fluid end of the pump (Josifovic et al., 2016). A fluid end shown in 

figure D.4 (Appendix D). All of these pieces are mounted on a single trailer to make the 

transportation process easier (Josifovic et al., 2016). All of this culminates in delivering a 

treatment to formation to hydraulically stimulate the reservoir.  
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Figure 2. 7 – Treatment plot from actual HF treatment 

 

Figure 2.7 is an actual treatment plot which shows the culmination of operations and 

theory. Section 1 is known as the breakdown phase. Lower rates are generally required 

during formation breakdown, before rate is established and proppant is started (Josifovic 

et al., 2016). During this phase, hydraulic fractures initiate from coalescing tensile failures 

when fracturing fluid pressure is increased above the local least principle stress (Zoback, 

2010).  

 

Section 2 is a wellbore displacement of acid to clean up perforations and near wellbore 

damage. Numerous skin factors from operations culminate in a total skin factor which has 

1 2 3 

4 

5 
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implications for well productivity (Abobaker et al., 2021). Skin factor is a dimensionless 

production efficiency estimate where positive skin values indicate resistance to flow and 

negative skin values indicate flow enhancement (Schlumberger, 2023). Section 3 shows 

the acid, in combination with sand, cleaning up any near wellbore damage as indicated by 

the decrease in STP.  

 

Section 4 in figure 2.7 shows the fracture propagation phase of the treatment. The process 

of hydraulically fracturing formations extends tensile fractures when fracturing fluids are 

pumped at pressures above the least principle stress and are then filled with proppant in an 

attempt to maintain the fracture dimensions (Zoback, 2010). This process leverages the 

fracture networks that are created to increase the stimulated reservoir volume (SRV) 

through micro and macro channels (Barati & Alhubail, 2021). Section 5 in figure 2.7 is 

known as a wellbore flush and is used to clean up the wellbore after treatment and before 

any further operations.  

 

2.3 Wellbore Dynamics to Derive Average STP  

Figure 2.8 shows a general wellbore schematic with the associated pressures during 

treatment. From this, we can derive the equation for STP that will serve as the basis for 

independent variable selection for the models constructed in this study.  
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Figure 2. 8 - Schematic showing the relationship between STP and other wellbore pressures 

 

The variables in figure 2.8 are defined as the following with the associated units: 

 

STP = Surface Treating Pressure (psi) 

BHTP = Bottom Hole Treating Pressure (psi) 

BHFP = Bottom Hole Fracturing Pressure (psi) 

P" = Hydrostatic Pressure (psi) 

P# = Pipe Friction Pressure, (psi) 

P$%&# = Perforation Friction Pressure (psi) 

P'() = Near Wellbore Friction Pressure, (psi) 
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Now, we can derive an equation for BHFP, BHTP, and ultimately STP which will be the 

primary dependent variable for the multivariate regression models. Equation 1 shows the 

equation for BHFP accounting for perforation friction and any NWB friction effects. 

 

𝐵𝐻𝐹𝑃 = 𝐵𝐻𝑇𝑃 −	 𝑃2345 −	𝑃678                                        (1) 

 

Next, we can define the BHTP as follows with down as positive effects ad up as negative 

effects: 

 

𝐵𝐻𝑇𝑃 = 𝑆𝑇𝑃 +	𝑃; −	𝑃5                                                (2) 

 

So, substituting equation 2 into 1, we obtain the following for BHFP: 

 

𝐵𝐻𝐹𝑃 = 𝑆𝑇𝑃 +	𝑃; −	𝑃5 −	 𝑃2345 −	𝑃678                                   (3) 

 

Rearranging equation 3 for STP, we eventually find the following relationship for STP to 

other wellbore factors occurring during treatment: 

 

𝑆𝑇𝑃 = 𝐵𝐻𝐹𝑃 −	𝑃; +	𝑃5 +	𝑃2345 +	𝑃678                                   (4) 

 

Equation 5 shows the standard equation in the industry for estimating perforation friction 

(Gustavo et al., 2016): 
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𝑃2345 = 	
<.>?@ABCD
6ECFEGHI

C                                                            (5) 

 

Where,  

Q = Flow rate, volume/time, (bbl/min) 

𝜌 = Fluid density, mass/volume (lb/gal) 

𝑁2 = Number of perforations, count 

𝐷2 = Diameter of perforations, L, (inches) 

𝐶N = Coefficient of discharge, unitless 

 

Using equations 4 and 5, hypothesis will be formed about how certain completion 

parameters will affect STP for the re-fracturing process. This domain knowledge about 

wellbore dynamics will serve as the basis for independent variable selection in chapter 3. 

2.4. Data Mining in the O&G Industry 

Data mining techniques are good at finding relationships and making predictions under 

stable conditions based off these relationships, but poorly equipped to explain why the 

relationship exists (Huntington-Klein, 2022). Here it is useful to determine whether a 

model is inferential or will be used for predictive purposes. In model construction, 

parsimony is a primary goal, especially for models that will be used for inference (Kuhn & 

Johnson, 2020). Although complexity can be a solution to inadequate accuracy (Kuhn & 

Johnson, 2020), more complex models are not necessarily likely to be more accurate, but 

they are more likely to contain mistakes (Bailey, 2017). 

There are many variables that we are uncertain about in O&G reservoirs and the 

HF process. However, this does not mean these variables or events are random. We are 
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simply uncertain about them which is not the same as randomness. Randomness deals with 

probability and uncertainty stems from information asymmetry (Çambel, 1993). If a 

process were entirely random or consisted of truly random events, there would no 

meaningful time series (Çambel, 1993). However, decision making is all but moot in a 

completely deterministic system because the conclusion is forgone (Çambel, 1993). So, it 

is obvious that models in the O&G space operate somewhere between these two extremes. 

The fact that O&G reservoirs are non-deterministic and suffer from degrees of randomness 

and uncertainty need not prove itself. This can be thought of as a first principle: O&G 

reservoirs are non-deterministic systems and need not be characterized by deterministic 

models.  

Data mining techniques are seeing widespread implementation throughout the 

O&G industry. Data mining is the large sphere that encompasses machine learning, data 

science, and artificial intelligence. Data science projects formalize data from a given 

domain into a mathematical summary or model and make data driven decisions (Bangert, 

2021; Ramirez & Iriarte, 2019). These ML models provide powerful tools for 

understanding complex, often non-linear relationships (Cross et al., 2021). Due to the large 

amount of data and a general lack of understanding of the underlying physics of 

unconventional reservoirs, data-driven techniques may be better suited to deal with these 

complexities and information assymetries (Darabi et al., 2020). It’s important to remember 

that “non-linear” has multiple meanings and does not necessarily mean exponential. 

Petroleum engineers deal with non-linear problems regularly for which there is no explicit 

mathematical general solution (Çambel, 1993).  
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Fry and Paterniti (2014) peformed a study to analyze the effect of a new, 

presumabley cleaner type of fluid system than older guar based systems. They wanted to 

see if the fluid quality had affect on clean-up in the fracture and wellbore and wanted to 

see if this helped production. With so many factors that may affect production, the 

uncertainty was reducd by using wells within a one mile radius of the wells pumped with 

the cleaner fluid system as offsets to compare production to.  

Maldonado and Aoun (2019) successfully created a re-fracturing well selection 

mechanism using data from 50 producing wells in the Messaoud Field in Algeria 

(Maldonado & Aoun, 2019). Peirce and Bunger (2014) predicted fracture growth and 

propagation by deriving a mathematical model accounting for flow of fluid, rock breakage, 

and pressure loss. The authors argued that the goal of the simple model was to: (1) create 

more general models that can make broad predictions by individuals without narrow 

expertise, and (2) Provide a guide for more complex models (Peirce & Bunger, 2015). 

Mohaghegh et al. (2017) developed “Shale Analytics” as a self-contained workflow 

using ML to maximize hydrocarbon production from shale resources in the Utica, 

Marcellus, Niobrara, and Eagle Ford plays (Mohaghegh et al., 2017). Shale Analytics 

provides multiple services, most importantly, optimizing well spacing, prediciton of the 

best candidates for re-fracturing, and Decline Curve Analysis (DCA). 

Complex fracture interactions occur in zones of depletions (Brady et al., 2022). 

Mohaghegh (2016) developed a re-fracturing candidate selection algorithm. (Mohaghegh, 

2016). Mohaghegh (2016) found that the optimal re-fracturing job was defined by creating 

the largest fracture network possible that maximizes hydrocarbon production. While this 
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was certainly a primary goal, the authors of this study added this goal has tradeoffs with 

cost. Correctly analyzing the tradeoffs between production and costs is vital to the 

economcis of re-fracturing. 

Cross et al. (2020) used ML models to generate Shapley values for scaling factors 

in completions designs. Producing the Shapley values allows for the isolation of each 

parameter to estimate its’ effects through time on production (Cross et al., 2020). Cross et 

al. (2021) used ML models to predict O&G production in multiple unconventional basins 

in the U.S. These models incorporated survey data to account for well-well interaction as 

well as key completion parameters normalized over lateral length. They then generated 

Shapley values which estimate the contribution of each completion feature in the model 

(Cross et al., 2021). Sakhardande and Devegowda (2021) used data driven causal analysis 

to optimize well spacing between parent (control group) and child (treatment group) wells. 

They approach the problem by looking at how well performance (normalized over lateral 

length) is affected by a set of independent variables, including well spacing. They claim 

this to be the first study in the O&G industry focusing on causal analysis (Sakhardande & 

Devegowda, 2021). 

Figure 2.9 highlights the problem of distinguishing correlation from causality. This 

was demonstrated by Mohaghegh (2019) in trying to draw conclusions from correlations 

between well productivity and field treatment data (Mohaghegh, 2019) . 
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Figure 2. 9 - Correlations between well productivity and field treatment data from Mohaghegh (2019). 

 

Mohaghegh (2019) attempts to distinguish between correlation and causation by using the 

state-of-the-art soft cluster analysis Shale Analytics workflow to estimate how these 

parameters will affect well productivity and predictions (Mohaghegh, 2019). 

2.5 Domain Knowledge: A Guide for Independent Variable Selection 

The domain knowledge contained in human capital has been steadily decreasing in 

the O&G industry. Between January 2015 and November 2021, the number of employees 

in the O&G extraction sector decreased from around 200,000 to about 140,000 (U.S. 

Bureau of Labor Statistics, 2021). This decrease represents a major loss of human capital 

and anecdotal and domain knowledge. Having a proper amount of domain knowledge will 

help guide research questions and lead to better results. This lost expertise is not usually 

possessed by the data scientist and can therefore not be incorporated into the ML models 
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(Bangert, 2021). Domain knowledge will make data science projects faster, more cost 

effective, and increases the probability of producing a practical result (Bangert, 2021). 

Domain knowledge may then be thought of as a sort of wisdom passed on to the algorithms, 

bridging the gap between smart and wise (Peterson, 2017). One practical example is the 

R801 drilling rig. Although this rig is impressive, it’s far from an end point of fully 

autonomous drilling operations (Rassenfoss, 2021). John Willis, VP of Drilling and 

Completions for Onshore and Carbon Sequestration for Occidental Petroleum, says the 

company’s goal for utilizing such automation is to “capture knowledge”. This refers to 

capturing the most efficient way to perform tasks in control systems so lesser skilled 

workers may be at least as productive as more skilled workers (Rassenfoss, 2021). 

Admittedly, Willis says, they have not found a system that accomplishes this goal 

(Rassenfoss, 2021). One reason may be due to the anecdotal and domain knowledge 

contained within the human capital that is being replaced by the automation.  

Therefore, it must be captured and managed to successfully develop practical 

results from ML and automation from the data. Symptoms of  knowledge mismanagement 

include good ideas and best practices that are not effectively dispersed leading to repetition 

of past events and operations (Van der Spek, 2017). These symptoms can increase overall 

costs and may be quantified as the “cost of ignorance” (Van der Spek, 2017). This is 

increasingly important as the industry shifts paradigms to cost minimization (Barree, 

2020). Darabi et al. (2020) constructed a novel “Augmented AI” framework to leverage 

domain knowledge and incorporate it into an AI workflow and showed positive results in 

the training, testing, and validation data (Darabi, et al., 2020). This augmented approach 
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was used to identify opportunities in completions and locations for new drills to create 

value in an unconventional reservoir (Darabi et al., 2020).  

Data mining techniques are good at finding relationships and making predictions 

under stable conditions based off these relationships, but poorly equipped to explain why 

the relationship exists (Huntington-Klein, 2022). In short, data mining focuses on what’s 

in the data but not why it’s in the data (Huntington-Klein, 2022). Therefore, data mining 

techniques must be augmented not only with good research questions (Huntington-Klein, 

2022), but with domain knowledge and a focus on causality.  

2.6. Multivariate Regression Models 

Clearly, there is a need to develop and implement models in O&G applications that 

are flexible enough account for uncertainty and randomness while also deriving useful 

insights. Although anecdotal observations are important and may create new ideas, but they 

are insufficient to draw any conclusions. We must present some sort of evidence for the 

conclusions drawn. However, it’s also evident that these models must include domain 

knowledge to be self-contained. Multivariate regression models are one ML tool that allow 

for this combination. The multivariate regression method is based on the general bivariate 

regression model (Niu et al., 2021). Multivariate regression allows for identification of 

statistically significant factors that influence a dependent variable (Niu et al., 2021).  

Equation 1 shows the bivariate regression model that is the basis for the models 

used in this study (Bailey, 2017). Here, 𝑌P is the dependent variable of interest, 𝑋P represents 

the independent variable that is thought to affect the dependent variable, 𝛽< is the expected 

value when the independent variable is 0, and 𝛽S	represents the marginal effect that the 
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independent variable will have on the dependent variable. Therefore, if the independent 

variable 𝑋P is increased by one unit, the dependent variable is expected to change by the 

coefficient 𝛽S, all else being equal. Equation 6 represents the true model. This means that 

the coefficient estimates 𝛽< and 𝛽S, are the true values and the error term 𝜖P captures all of 

the variation not explained by 𝛽< and 𝛽S.  

𝑌P = 	𝛽< +	𝛽S𝑋P +	𝜖P                                                     (6) 

 

It’s important to note that when using data sets, the true values are not known because we 

almost certainly will not have population level data. Therefore, whenever a regression is 

constructed from a sample of the population, the 𝛽< and 𝛽S	coefficients are estimates. These 

will be denoted with a hat and follow the notation in Bailey (2017).  

𝑌UV = 	𝛽<W +	𝛽SW𝑋P                                                          (7) 

 

Equation 7 represents a fitted value for the regression and is in fact a regression line 

(Bailey, 2017). Here, as opposed to the error term 𝜖P, we are left with the residual value. 

The residual value is the difference between a predicted value and the actual observation 

and is shown in equation 8 (Bailey, 2017). This can be thought of as the amount of variation 

not explained by the estimated coefficients 𝛽<W and 𝛽SW. Although we will never know the 

true model, we can pull variables out of the error term and estimate a fitted value. It is also 

assumed this error is identical and independently distributed (iid). This means that “the 

theoretical distribution of the error term, 𝜖P, is unrelated to error terms of other observations 

and the other variables for the same observation (independent) as well as the same for each 

observation (identically distributed).” (Huntington-Klein, 2022).  
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𝜖UX = 	𝑌P −	𝑌UV                                                             (8) 

 

The 𝛽Y  coefficient estimates are then calculated by minimizing the residual sum of squares. 

Since 𝑌UV = 	𝛽<W +	𝛽SW𝑋P, we can equivalently write equation 9 (Bailey, 2017). 

  

𝜖UX = 	𝑌P −	𝛽<W −	𝛽SW𝑋P                                                     (9)   

                                                    

The algorithm will then choose the 𝛽Y  coefficients that minimize the residual sum of squares 

shown in equation 10 (Bailey, 2017).  

∑ 𝜖U>W6
P[S = 	∑ (𝑌P −	𝛽<W6

P[S −	𝛽SW𝑋P)2                                       (10) 

 

This minimization algorithm provides specific coefficient estimates that are unique to the 

given sample data set. The hope is that the data is representative of the population and thus 

the coefficient estimates are representative of the true values. The estimate of 𝛽SW is shown 

in equation 11 (Bailey, 2017).  

𝛽SW = 	∑ (^_`	 â)(b_`	ba)c
_de
∑ (^_`	 â)Cc
_de

                                                    (11) 

Equation 11 describes how X	and	Y	move together. The numerator shows the product of 

how far X deviates from its mean, 𝑋a, for the ith observation and how far Y deviates from 

its mean, 𝑌a, for the ith observation. So if X tends to be above its mean when Y tends to be 

above its mean, the numerator will tend to be positive as well, creating a plethora of positive 

values. We’ll also get positive values if X and Y tend to be below their means through the 

multiplication of tow negative numbers. However, if X and Y tend to be opposite in 

direction, if X or Y tends to be below their mean while the other is above their mean, then 



 

 54 

we’ll tend to get negative values for the summation (Bailey, 2017). Then, 𝛽<W = 𝑌a - 𝛽SW𝑋a 

(Bailey, 2017).  

In HF, because of factors like reservoir heterogeneity and wellbore dynamics, there 

is a need to account for multiple independent variables in treatment analysis. This study 

will utilize multivariate regression models to not only construct descriptive models, but to 

estimate the marginal effects of multiple independent variables of interest. Just as the 

coefficient estimate for 𝛽S in the bivariate model gives an estimate of the marginal effects 

𝑋P will have on 𝑌P, so too do the 𝛽i coefficient estimates provide marginal effect estimates 

on the dependent variable. Multivariate regression models are an extension of bivariate 

regression models. Equation 12 shows the basic construction of multivariate regression 

models (Bailey, 2017). 

𝑌P = 	𝛽<W +	𝛽SW𝑋S 		+ ⋯+	𝛽iW𝑋i 		+ 	𝜖P                                   (12) 

 

One important addition to the multivariate model is the error term 𝜖P. The error term is 

meant to capture all other factors not included in the regression model that may have a 

causal relationship with the dependent variable. Leaving variables in the error term that 

have a causal relationship with the dependent variable will lead to what is known as 

endogeneity. Broadly speaking, endogeneity is defined as explanatory variables being 

correlated with the error term (Bailey, 2017). This also leads to problems known with 

collinearity. If two independent variables are correlated with each other, it makes it hard to 

decipher the causal affect that either has on the dependent variables. Endogeneity leads to 

the deduction of causal relationships that may be spurious. One example may be a potential 

relationship between ice cream sales and an increase in drowning rates in swimming pools 
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(Wikipedia, 2021). To regress one variable on the other and then conclude that an increase 

in ice cream sales causes people to drown would be spurious. In fact, it would most likely 

be the case that heat was driving people to buy more ice cream and drive more people to 

pools and thus increasing the likelihood of drownings (Wikipedia, 2021). 

The 𝛽iW  are coefficient estimates given the data sample and if 𝑋i		is uncorrelated 

with the error term 𝜖P, then 𝛽iW  = 𝛽i in the limit (Bailey, 2017). In other words, the estimate 

equals the true underlying value in the limit if all exogenous variation is accounted for. The 

primary precision estimate for 𝛽iW  is the variance which is a measure of how wide the 

distribution around 𝛽iW  is and is shown in equation 13 (Bailey, 2017). 

𝑣𝑎𝑟(𝛽iW) = nCW

6	o	pq4(^)
                                                       (13) 

Where X is the independent variable, N is the number of observations, 𝜎>W  is the variance 

of the regression defined by equation 14 (Bailey, 2017) and explains how well the models 

explains variation in Y (Bailey, 2017). In equation 14, k is the number of predictors in the 

regression and (N-k) is known as the degrees of freedom, 𝑌P is each observation, and 𝑌UV  is 

the fitted value.  

𝜎>	= ∑ (b_`	bsV)Cc
_de

6`t
                                                          (14) 

For practical purposes, R software (R Core Team, 2022. https://www.R-project.org/) will 

export standard errors (se) for each coefficient estimate and the regression. The se for 

each estimate is the square root of the variance of the estimate and the se for the 

regression, 𝜎u, is the is the square root of the variance of the regression. So, the se of the 
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regression will be in the same units as the dependent variable and is roughly equivalent to 

the average distance between the actual and fitted values (Bailey, 2017). The se for the 

coefficient estimates is then essentially a measure of how wide the distribution is around 

each coefficient estimate, 𝛽iW  (Bailey, 2017). The larger the se compared to the 

coefficient estimate, the less confident we are the estimate. Likewise, the larger the se of 

the regression is relative to the dependent variable, the less confident we are in the model. 

 
Figure 2. 10 - Bivariate regression model regressing average STP on average pump rate. 

 

Figure 2.10 shows a bivariate regression showing the relationship between average 

pump rate and average STP using data from re-fracture jobs used in this study. Only 

accounting for average pump rate would lead one to conclude that increasing the average 

pump rate will decrease the average STP. However, this is not congruent with domain 
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knowledge. This is an example of an endogenous model and highlights the necessity to 

account for more variables when trying to draw conclusions about HF treatment effects 

and implementation, i.e. exogenous variation.  

Huchton et al. (2020) performed a multivariate analysis of completion parameters 

on the STACK acreage in Oklahoma. Using six month oil production to evaluate impacts 

at the well level and six month oil production per acre to evaluate area effects, they 

concluded that fluid volume has a strong and significant relationship with production at the 

well and area level (Huchton et al., 2020). Niu et al. (2021) constructed multivariate 

regression models to estimate the ultimate recovery of gas wells in the Weiyuan block. 

This study considered 172 shale gas wells and constructed predictive multivariate models 

with reasonable accuracy (Niu, Lu, & Sun, 2021). However, there are additional benefits 

to using multivariate regression models for analysis. Wang et al. (2022) used multivariate 

regression to estimate sensitivity of a range of geologic and reservoir properties on the 

recovery factor in the Daqing Oilfield to estimate suitability for CO2 flooding (Wang et al., 

2022).  

Recall that data mining focuses on what’s in the data but not why it’s in the data 

(Huntington-Klein, 2022). Therefore, data mining techniques must be augmented not only 

with good research questions (Huntington-Klein, 2022), but with domain knowledge as 

well and a focus on causality. Combining data mining, domain knowledge, and causal 

analysis will lead to a better understanding of the complexities of O&G systems, reduce 

the costs of knowledge mismanagement, reduce uncertainty, and increase the effectiveness 

of ML and AI implementations. 
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After constructing multivariate regression models and estimating the marginal 

effects from an independent variable(s) on the dependent variable, we can start to develop 

a mindset focusing on margins and engineers can then make decisions at the margin.  

2.7. Marginal Mindset and Marginal Analysis 

In economics and economic models, decisions and discussion almost always 

revolve around the margins. Marginal thinking requires making decisions at the margin. I 

would argue that most discussions in the O&G are actually questions about margins or 

questions that are best answered at the margin. Questions about how much sand, how many 

perforations, how many clusters, fluid volume, etc. to add to a treatment are questions about 

margins and require marginal estimates. Figure 2.11 shows a simplified schematic on how 

to think about margins.  

 

Figure 2. 11 – Plot highlighting marginal thinking 
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The basic idea behind figure 2.11 is straightforward. The red line is the marginal 

benefit (MB) from producing the next unit and the blue line represents the marginal cost 

(MC) of producing the next unit. If the MB>MC, it makes economic sense to move ahead 

in production. Tethering this to a treatment, if the marginal benefit of pumping an extra 

100 bbl of slurry yields production greater than the cos of the 100 bbl, then it makes 

economic sense to include the extra 100 bbl of slurry into the treatment design since there 

would benefits left on the table. On the other hand, if the MC>MB, it makes economic 

sense to scale back production. Therefore, the benefit maximizing point is where MC=MB. 

Here, you are not incurring unnecessary costs nor leaving benefits on the table. This 

analysis is  straightforward, but finding estimates on marginal effects in the O&G industry 

sparse. 

 This study focuses on average STP as the outcome and is what the marginal 

benefits/costs will be measured against. For example, what if exceedingly high STPs are 

experienced creating abnormally long pump times which has a direct effect on costs. 

What can be done operationally to reduce the pressure? Practically speaking, there are 

only a few knobs to turn in order to reduce the STP. One knob is the addition of 

perforation to provide more entry points into the reservoir. What is the desired STP? 

Based off of this, how many perforation should be added to the tool string? Given the 

tradeoff with potential decreases in cluster efficiency, is adding perforation even the best 

option for reducing pressure? Moving forward with design, what other factors determine 

STP and how can more effective wellbore designs change the expected STP. Will it be 

beneficial to install larger liners in the lateral section of a wellbore?  
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 These types of questions are difficult to answer without thinking about margins 

and having marginal estimates of costs and benefits The cost of adding an additional 

perforation may be straightforward, but what are the expected benefits in terms of STP 

and will these offset the costs? The models in this study can help answer these types of 

questions and allow engineers to consider margins when designing treatments and 

incorporate marginal thinking into a cost minimization framework and augment these 

models with physics based fracture models used for production maximization. 

 The large decrease of roughly 60,000 employees between 2015 and 2021 (U.S. 

Bureau of Labor Statistics, 2021) and the new focus on cost minimization (Barree, 2020) 

has created a more capital-intensive industry that is just focused on minimizing costs as 

much as maximizing production. This highlights a need for models that can identify 

where treatments may be improved and field implementation made more efficient. This 

study will construct multivariate regression models to identify high margin areas for 

improvements in implementation with regards to average STP. Average STP is often a 

binding constraint in the field, especially in re-fractured wells with wellbore degradation, 

and often limits parameters such as pump rate. However, limiting pump rate also increase 

stage pump time which has direct impact on costs. Higher STPs also create a need for 

more hydraulic horsepower (HHP) which increases equipment costs and fuel costs. The 

high margin areas identified in this study highlight areas where improvements can be 

made to minimize these costs.  
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2.8. Methodology 

Re-fracturing success in terms of production depends largely on the well selection 

(Rignol & Bui, 2020). There is no universal method for candidate screening, but it should 

be based on well potential, production performance, and the success of the initial treatment 

(Rignol & Bui, 2020). Candidate selection is beyond the scope of this study and, here, it is 

assumed that the best candidates were chosen for re-fracturing treatment. Some of the wells 

selected for re-fracturing treatment were also completed during zipper frac operations on 

pads with new drills. Any effects of these operations are assumed to be negligible compared 

to the effect from treatment of previous stages. With the increased complexity and smaller 

margins of re-fractured wells, minimizing costs is a crucial component that should be 

considered in combination with proper well selection. 

The process of model construction to investigate how completion parameters will 

effect treatment implementation is described in figure 2.12. First, domain knowledge will 

guide independent variable selection. Using domain knowledge to select variables will 

allow for investigation into parameters that can actually be altered in the field and account 

for underlying physical relationships. Next, an initial pooled regression model will be built 

as a first attempt to identify causal relationships between completion parameters and 

average STP. Next, a fixed effect models will be constructed to account for any within well 

fixed effects. Finally, a more complex feature engineered model will be constructed, using 

understanding from the first two models, attempting to identify more complex relationships 

without becoming more complex than necessary. 
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Figure 2. 12 – Flowchart for process of constructing multivariate regression models for study 

Chapter 3 
 

3. Modeling Temporal Dependence of Average STP 

This chapter was published in Energies 2022 15(16). Full citation: Kroschel, J. Rabiei, M. Rasouli, V. 
Modeling Temporal Dependence of Average STP in the Williston Basin Using Dynamic Multivariate 
Regression. Energies 2022, 15, 2271. https://doi.org/10.3390/en15062271. As the first author, I have 
contributed more than 75% of the effort to this work including initial draft preparation, experiment design, 
and model construction. 

3.1. Re-fracturing 

Given the complexity of re-fracturing and the market push for cost minimization, 

there is a need to identify places where improvements can be made and cost can be 

minimized. This chapter will construct a pooled multivariate regression model that will 

serve as an initial inferential model to being the analysis conducted in this study. This is 
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the first step described in figure 2.12 and will attempt to answer research question 1 

by identifying statistically significant predictors of average STP, their directional 

impact on average STP, and provide an initial estimate of stress shadow effects by 

accounting for temporal average STP using a dynamic model. 

 Using domain knowledge, initial hypotheses will be stated with justification as to 

why these variables should be accounted for in the multivariate models. Including these 

in the model will provide initial estimates of their marginal effects on average STP and 

identify areas where improvements can be made to improve treatment implementation. 

This will also be a first attempt to identify causal relationships between independent 

variables and average STP that we believe exist based off of our physical understanding 

of wellbore dynamics derived using the wellbore relationships described in section 2.3. 

 The initial inferential model accounts for the temporal nature of stress shadow 

effects. By adding a lagged dependent variable, this relationship can be captured to 

account for temporal effects. The general dynamic equation is shown in equation 15.  

𝑌Pv = 	𝛾𝑌P,v`S +	𝛽< +	𝛽S𝑋SPv + ⋯+ 𝜖Pv																																						(15)	

3.1.1 Perforation Standoff 
 

Net pressure and stress contrast both increase substantially with the number of 

sequential fractures and decreased fracture spacing (Roussel & Sharma, 2011). Induced 

stress shadow from previously fractured stages also has effects on the subsequent zone as 

the effects extend beyond the top perforation and may thus change the fracture initiation 

at the next bottom perforation for the next stage (Barree, 2020). Therefore, the standoff 
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between the top perforation for one stage and the bottom perforation for the subsequent 

stage may affect treatment through stress shadow effects and will be included in the 

regression models. Figure 3.1 is a schematic of the perforation standoff in the wellbore. 

The hypothesis is that increasing the perforation standoff will decrease stress shadow 

effects from previous stages and thus decrease average STP. 

 

Figure 3. 1 – Flowchart for process of constructing multivariate regression models for study (Kroschel 

et al., 2023a) 

 

3.1.2. Stage Proppant Weight 
 

The amount of proppant placed during a stage affects bottom hole treating 

pressure by increasing the hydrostatic pressure. This in turn affects the STP. The amount 

of proppant pumped may also affect STP through perforation erosion as treatment 

progresses through hole erosion and rounding (Behrmann & Nolte, 1998). The hypothesis 

is that the effects of increasing stage proppant weight will be negative as more sand 

increases in hydrostatic pressure and increases perforation erosion, thus decreasing the 

average STP. 
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3.1.3. Total Clean Volume 
 

It is reasonable to assume that treatment size will affect the STP. Total clean 

volume pumped should be a good indication of stage size. The hypothesis is that an 

increase in total clean volume will increase average STP. 

3.1.4. Previous Stage Average STP 
 

This dynamic variable will attempt to capture the stress shadow effects from the 

previous stage treatment. HF treatment with multiple stages and clusters leads to complex 

interactions resulting from different propagating fractures (Damjanac et al., 2018). When 

multiple fractures are growing near each other, the stress fields created around each 

fracture must be considered, as these will affect fracture growth and treatment pressures 

(Barree, 2020). 

This may be even more significant in re-fracturing treatments, since decreases in 

pore pressure can lead to redistributing stresses or even reversal of principle stress in 

regions around initial fractures (He et al., 2021). Stress interference from reorientation 

increases with the number of fractures created and depends on the sequence of fracturing 

(Roussel & Sharma, 2011). 

Fractures on each end of the stage will behave as individual fractures, regardless 

of the number of fractures between the two (Barree, 2020). These end fractures will tend 

to dominate and become the primary fractures (Barree, 2020). Poroelastic effects change 

the net vertical stress along the wellbore (Barree, 2020). Although it is not possible to 

know the rock properties and poroelastic effects for each stage, average STP may capture 
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these effects during and after treatment. This is also related to the perforation stand-off. 

Considering the dominance of the end fractures and the associated stress and poroelastic 

effects that fractures create, the hypothesis is that a higher STP from previous stages will 

increase the average STP for the subsequent stage. Referring to equation 15, this will be 

accounted for by 𝛾𝑌P,v`S where 𝛾 will estimate the escalation factor of average STP due to 

stress shadow effects.  

3.1.5. Number of Perforations 
 

The number of perforations is important to any treatment, as these are the conduit 

from the wellbore that will ultimately deliver the treatment slurry into formation. 

Although only a limited number of perforations may take fluid and preferentially 

propagate major fractures, usually the toe and heel perforations (Roussel & Sharma, 

2011), it is still necessary to have a certain number of perforations above the number of 

fractures for pressure relief during treatment. The hypothesis is that an increase in the 

number of perforations will decrease average STP. 

3.1.6. Presence of a 3.5” Liner 
 

The presence of a 3.5” liner will increase friction due to the smaller inner 

diameter relative to treatments pumped through a 4.5” liner. Installation of a new liner in 

the horizontal section is usually necessary. If the well was initially completed with sliding 

sleeves and packers, these will need to be removed or milled and a new liner installed to 

provide a means for zonal isolation. If the well was initially completed using a cemented 

liner in the horizontal, a new liner may be required to avoid the issues that will arise with 

wireline running into previous perforations and possible casing issues from previous 
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treatment and production. Previous open hole completions also require the installation of 

a new 4.5” liner. The hypothesis is that the presence of a 3.5” liner will increase the 

average STP. This is a binary variable, with “1” indicating the presence of a 3.5” liner 

and “0” indicating a 4.5” liner. The presence of a 3.5” liner may also affect average pump 

rate by increasing friction pressure and thereby decreasing the maximum rate achievable.  

3.1.7. Average Pump Rate 
 

Increased pump rate creates more friction along the wellbore as well as the 

fracture face. The average pump rate will most likely have an effect on treatment costs as 

service companies generally charge for pump time. Therefore, longer pump times will 

increase treatment costs. The assumption is that an increase in average pump rate will 

increase the average STP. 

3.1.8. Acid Volume 
 

Acid is important in designs to clean up any near wellbore damage caused by the 

perforation and cement. It can also have drastic effects on treating pressure if the 

formation is carbonate. The assumption is that an increase in acid volume will decrease 

the average STP. It’s also reasonable to think that acid will affect average pump rate. If 

acid provides pressure relief, it’s reasonable to think maximum pump rate can be 

achieved more quickly and therefore increase average pump rate.  

3.1.9. Formation Type 
 

In an attempt to capture any geologic differences between the formations that may 

affect treatment, a binary variable will be used in Model 2 to see if there are any 



 

 68 

statistical differences between the models and if accounting for geological differences has 

any statistical impact on the models and coefficient estimates for the other independent 

variables. These estimates will be relative to the Three Forks formation. 

3.1.10. Causal Diagram of Relationships 
 

 Figure 3.2 describes the hypotheses in graphical form. These are simply 

representations of a data generating process (DGP) (Huntington-Klein, 2022). These 

diagrams have two components: 1) each variable in the DGP, represented by a node, and 

2) an arrow from the cause to the effect representing a causal relationship (Huntington-

Klein, 2022). It’s important to note that these arrows do not indicate anything about 

positive or negative relationships (Huntington-Klein, 2022). The direction of the 

relationship will be estimated by the multivariate regression models.  
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Figure 3. 2 – Flowchart for process of constructing multivariate regression models for study 

3.2     Re-fracturing Data, Well Location, and Summary Statistics 

 

Figure 3. 3 - Map showing location of re-fractured well in dataset (Gaswirth et al., 2013) 

Figure 3.3 shows the approximate location of the wells where data was collected for 

this study. Data for this study were not normalized as it is not unnecessary because of the 

uniqueness of multivariate regression models. These models attempt to measure marginal 

changes in the independent variable and how these will affect the dependent variable. 

Therefore, since the units of each of the independent variables used in the regression are 

Approximate 
location of field 
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used in the field, they will be kept in these units to make coefficient interpretation easier. 

If the models attempted to account for something like Poisson’s ratio, which has a range 

from 0 to 0.5, then a marginal unit increase does not make sense in this context. In other 

words, the units used for the variables in the regression models are in context with the units 

used in the field so there is no need for standardization. In fact, statistical significance and 

model fit would be the same for standardized and unstandardized results (Bailey, 2017). 

Table 3.1 shows the summary statistics for the data set and table 3.2 provides variable 

definitions and associated units. 

Table 3. 1 - Summary statistics for re-fracturing datasets used in this study. 

Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max 

avg_pump_rate 121 50.331 9.966 10.5 42.6 57.8 75.4 

avg_stp 121 8234.355 465.448 6411 7903 8726 9083 

acid_volume 121 20.711 30.92 0 11 23 227 

total_clean_volume 121 3950.039 839.746 2920.091 3606.364 4024.941 8940.621 

stage_prop_weight 121 220,207.884 37,671.035 25,649 212,565 218,373 405,515 

perfs 121 24.165 1.562 22 24 24 36 

liner_3.5 121 0.686 0.466 0 0 1 1 

formation 121 0.752 0.434 0 1 1 1 

perf_standoff 117 25.573 4.415 18 22 26 49 

avg_stp_prev 117 8235.778 467.02 6411 7907 8726 9083 
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Table 3. 2 - Variable definitions for data set used in this study. 

Variable Variable Definition 

avg_pump_rate Average pump rate, bpm 

avg_stp Average STP, psi 

acid_volume Acid volume, bbls 

total_clean_volume Total clean volume for stage, bbls 

stage_prop_weight Proppant weight pumped for stage, lbs. 

perfs Number of perforations over treatment interval 

liner_3.5 Presence of 3.5” lateral liner (1 = yes, 0 = no) 

formation Binary variable indicating formation (1 = middle Bakken, 0 = Three Forks) 

perf_standoff Distance between top perforation of one stage and bottom perforation of subsequent stage, ft 

avg_stp_prev Average STP for previous stage, psi 

 

3.3     Regression Models 

Table 3.3 summarizes the regression results from R, including the independent 

variables discussed above. The model investigates whether these have a statistically 

significant effect on the dependent variable (average STP) from the given data set. Two 

models were run, with model 2 including a binary variable for which formation the well 

was drilled (1 for middle Bakken and 0 for Three Forks). The coefficient estimate for 

formation is then relative to the Three Forks formation. This was done to see if there were 

any statistical difference between models accounting for geologic properties and those that 

do not. It is important to note that whenever coefficient estimates and results are discussed, 

they are only expectations as the true coefficient estimates, and therefore marginal effects, 

are not known (Bailey, 2017). This extends from the fact that statistical models do not yield 

facts, only expectations. To test the marginal effects, experiments would have to be 
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conducted in the field by altering only one parameter by one unit while holding all others 

constant. 

Table 3. 3 - Regression results showing two different models using stargazer package in R (Hlavac, 

2022). 

 Dependent Variable: 

 Average Surface Treating Pressure (psi) 

 Model (1) Model (2) 

Perforation Standoff (ft) 14.752 * 14.615 * 

 (7.723) (7.796) 

Stage Proppant Weight (lb) −0.001 −0.001 

 (0.002) (0.002) 

Total Clean Volume (bbl) −0.043 −0.044 

 (0.090) (0.090) 

Number of Perforations −22.859 −23.170 

 (15.884) (16.050) 

3.5-inch Liner 228.412 ** 221.913 ** 

 (91.925) (99.258) 

Average Pump Rate (bpm) 9.561 ** 9.471 ** 

 (3.692) (3.742) 

Acid Volume Pumped (bbl) 8.075 *** 7.785 ** 

 (2.628) (3.098) 

Previous Stage Average Surface Treating 
Pressure (psi) 0.714 *** 0.713 *** 

 (0.074) (0.075) 

Formation (1 = middle Bakken, 0 = Three 
Forks)  −14.937 

  (83.683) 

Constant 2217.077 *** 2260.782 *** 

 (821.258) (860.533) 

Observations 117 117 
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R2 0.712 0.712 

Adjusted R2 0.691 0.688 

Residual Std. Error 259.541 (df = 108) 260.712 (df = 107) 

F Statistic 33.423 *** (df = 8; 108) 29.446 *** (df = 9; 
107) 

Note: * p < 0.1; ** p < 0.05; *** p < 0.01. 

  

Model 1 and model 2 yielded similar results, with statistical significance for acid volume 

being the only change and formation not showing statistical significance. Coefficient 

estimates were also largely unchanged after accounting for the different formations. The 

coefficient estimate for the formation type was also not statistically significant, indicating 

that any heterogeneity between the formations had no statistical impact on the average STP. 

The significance codes’ corresponding significance levels are shown in the results 

as well. The marginal estimate for each variable are shown in table 3.3 with corresponding 

standard errors for each coefficient estimate in parenthesis. For example, in model 1, the 

coefficient estimate for perforation standoff is 14.752 with a corresponding standard error 

of 7.723. Although not all independent variables were statistically significant, all of the 

coefficient estimates for model 2 will be discussed. 

3.3.1. Perforation Standoff 
 

Perforation standoff was found to have a statistically significant effect at the 90% 

level. This means that the null hypothesis that the coefficient estimate is 0 can be rejected 

with 90% confidence. However, the coefficient estimate is (+), which runs counter to the 

initial hypothesis. The positive coefficient estimate indicates that, in expectation, a 1 ft. 
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increase in perforation standoff between the top perforation from one zone and the bottom 

perforation for the subsequent zone would yield a 14.615 psi increase in average STP. 

3.3.2. Stage Proppant Weight 
 

The initial hypothesis was that increasing stage proppant weight would decrease 

average STP due to increased hydrostatic pressure and perforation erosion effects. The 

coefficient estimate of −0.001 indicates the initial hypothesis was correct based on the data 

set. The coefficient estimate means that a 1 lb. increase in stage proppant weight yields a 

decrease of 0.001 psi in average STP. However, stage proppant weight was not a 

statistically significant predictor of average STP. 

3.3.3. Total Clean Volume 
 

The initial hypothesis was that an increase in total clean volume would tend to 

increase the average STP simply based on the fact that there is only a finite fracture volume. 

The coefficient estimate of −0.044 counters the initial hypothesis and estimates that a 1 

bbl. increase in total clean volume will decrease the average STP by 0.044 psi. Total clean 

volume was not a statistically significant predictor of average STP. 

 

3.3.4. Number of Perforations 
 

The initial hypothesis that an increase in the number of perforations will tend to 

decrease average STP was backed by the model. The coefficient estimate of −23.17 

indicates that the addition of one perforation will decrease the average STP by 23.17 psi, 

although it was not statistically significant. 
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3.3.5. Presence of a 3.5” Liner 
 

The initial hypothesis that a 3.5” liner will increase average STP was backed by the 

model. The coefficient estimate of 221.913 indicates that a 3.5” liner will increase the 

average STP by 221.913 psi, which agrees with the initial hypothesis. The presence of a 

3.5” liner is also a statistically significant predictor of average STP at the 95% level, 

meaning the null hypothesis that the coefficient estimate is 0 can be rejected with 95% 

confidence. 

 

3.3.6. Average Pump Rate 
 

The initial hypothesis that an increase in average pump rate will tend to increase 

the average STP is backed by the model. The coefficient estimate of 9.471 indicates that a 

1 bpm increase in average pump rate will increase the average STP by 9.471 psi. The 

coefficient is statistically significant at the 95% level, indicating that the null hypothesis 

that the coefficient estimate is 0 can be rejected with 95% confidence. 

 

3.3.7. Acid Volume 
 

The initial hypothesis was that an increase in acid volume would decrease the 

average STP. This hypothesis was not backed by the model. It is also interesting to note 

that the coefficient estimate decreased from model 1 to model 2 and significance level 

dropped from 99% to 95%. This may be because of endogeneity issues and may be resolved 

by including omitted variables or gathering more data. It is also possible that the variable 

is endogenous because the pressure relief seen from acid allows for greater treatment rate 
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which will also increase the STP. The coefficient estimate of 7.785 indicates that a 1 bbl. 

increase in acid volume will increase average STP by 7.785 psi. The estimate is statistically 

significant at the 95% level. 

3.3.8. Previous Stage Average STP 
 

This variable was included to try and capture stress shadow effects on average STP 

from one stage to the next. The (+) coefficient agrees with the hypothesis that a higher 

average STP from the previous stage will tend to increase the STP for the subsequent stage. 

The coefficient estimate indicates that a 1 psi increase in average STP from the previous 

stage will increase the average STP of the next stage by 0.713 psi in expectation. 

Previous stage average STP was statistically significant at the 99% level, meaning 

the null hypothesis that the coefficient estimate is 0 can be rejected with 99% confidence. 

This provides statistical evidence that stress shadow effects may tend to dominate treatment 

from an operational standpoint. 

3.3.9. Formation Type 
 

Accounting for the two different formations (middle Bakken and Three Forks) from 

model 1 to model 2, they did not have a significant effect overall on the model. Although 

the coefficient estimate for acid decreased in magnitude and significance, there was no 

clear evidence that the different formations, and therefore differing geological and 

mechanical properties between the two, had any statistically significant effect on average 

STP. The coefficient estimate of −14.937 indicates that if the well were drilled in the 
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middle Bakken, the average STP is expected to be 14.937 psi lower relative to the Three 

Forks formation. 

3.3.10. Model Visual and Verification 
 

Figure 3.4 shows the added variable (AV) plots for model 2 from R (R Core Team, 

2022. https://www.R-project.org/). Since creating 2-D visuals for multiple regression is 

impossible, one effective way to view individual effects is through AV plots. The plots are 

constructed so that the dependent variable (average STP) is on the y-axis and an 

independent variable is on the x-axis. These plots differ from the bivariate regression 

constructed in Mohaghegh (2019) in that these are accounting for other independent 

variables that are being held constant. Therefore, each plot shows the individual effects of 

one independent variable, with all other independent variables being held constant on the 

dependent variable. 
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Figure 3. 4 - AV plots from R (R Core Team, 2022. https://www.R-project.org/) for model 2 showing 

the isolated relationship for each independent variable. This approach holds all other variables constant. 

 

The trendline shows the direction of effect with a positive slope indicating a positive 

marginal effect and a negative slope indicating negative marginal effect. For a visual 

comparison between AV plots and simple bivariate regression plots, refer back to figure 

2.10 and notice the direction of the estimated effect. Notice the positive relationship 

between average pump rate and average STP in the AV plot (which we would expect due 

to friction) and the negative relationship in the bivariate regression plot from figure 2.10. 

In the bivariate model, we would conclude that the average STP will decrease as the 

average pump rate increases which does not make sense intuitively. Therefore, without 

accounting for other factors, we might draw an incorrect causal inference about the 
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relationship between pump rate and STP. This further highlights the usefulness of 

multivariate regression models as opposed to bivariate models. 

Figure 3.5 is a plot of the residuals vs. the fitted values for model 2. A residual is 

what is not explained by the model and is simply the fitted value minus the actual value at 

each data point and is calculated using equation 8. The most important thing to note is that 

there is not a clear trend in the residual values, which would indicate a different regression 

model may work better. With no clear and present trend in the residuals, this is evidence 

that the linear model constructed in this study may be appropriate. 

 
Figure 3. 5 - Residual plot using R (R Core Team, 2022. https://www.R-project.org/)of fitted values for 

model 2. 
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One model concern is the possibility of induced bias in the model by including a 

lagged dependent variable as an independent variable. This makes sense intuitively because 

average STP is essentially being used as a control variable for its’ future self. This may 

create a positive feedback loop with the other independent variables since they will affect 

average STP in a given period, which will then be used as an independent variable in the 

next period, thus propagating the effects. This feedback would create patterns or serial 

correlation in the errors of the model and induce bias (Bailey, 2017). Therefore, we need 

to make sure that the errors are not serially correlated using the following model shown in 

equation 16 (Bailey, 2017): 

𝜖v = 	𝜌𝜖v`S +	𝜐v                                                    (16) 

 

where 𝜖v and 𝜖v`S are the residuals and lagged residuals, respectively, from the model in 

question. Here, we are simply looking for a statistically significant value for 𝜌, which 

would indicate a correlation between the errors for each period. Table 3.4 shows the results 

from the regression. 

Table 3. 4 - Regressions results using stargazer package (Hlavac, 2022) from error model. 

 Errors 

 Err1 

Lagged Errors 0.067 

 (0.093) 

Constant −1.836 

 (23.327) 

Observations 116 

R2 0.005 

Adjusted R2 −0.004 
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Residual Std. Error 251.236 (df = 114) 

F Statistic 0.523 (df = 1; 114) 

Note: * p < 0.1; ** p < 0.05; *** p < 0.01. 

 

From the model, we see a coefficient estimate of 0.067 for the lagged error that is 

not statistically significant, indicating that there is no correlation of the errors in the model 

from one period to the next. This indicates that the pooled model is appropriate for 

characterizing the factors that affect the average STP. 

3.4     Chapter Summary 

There are additional considerations regarding the models constructed in this study. 

First, although there were numerous independent variables included in the regression and 

there is no clear trend in the residuals and the lagged errors are not statistically significant, 

there still may be variables in the error term that are causing endogeneity. This may be why 

the acid volume seems to increase average STP and the perforation stand-off coefficient 

does not match the intuitive understanding of stress shadow effects from previous zones. 

One way to combat this is to simply add more data from future re-fracturing treatments. 

The assumption of negligible interaction between wells on the same pad may also need to 

be addressed. 

The proppant concentration may also be considered, although this data was not 

available for this study. Since the proppant travels at a different speed than the slurry and 

falls out due to gravity (Gorucu et al., 2021), this may influence the STP near wellbore and 

in the fracture. Cleary et al. (1993) implemented a system using proppant slugs to estimate 
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pressure responses and clean up near wellbore issues that affect treating pressure (Cleary 

et al., 1993). This indicates that sand concentration may be significant predictor of STP. 

Further analysis will need to be conducted to attempt to isolate individual well 

characteristics. Things such as percentage of wellbore drilled out of zone, natural fracture 

networks, variations in geomechanical properties along the wellbore, perforation 

characteristics, etc. may also have a causal role in determining average STP. This will be 

the basis for constructing fixed effects models in the next chapter. 

 
Chapter 4 

 

4. Accounting for Unobservable, Within-Well Fixed Effects  
 

This chapter was published in Energies 2022 15(16). Full citation: Kroschel, J. Rabiei, M. Rasouli, V. 
Accounting for Fixed Effects in Re-Fracturing Using Dynamic Multivariate Regression. Energies 2022, 15, 
5451. https://doi.org/10.3390/en15155451. As the first author, I have contributed more than 75% of the effort 
to this work including initial draft preparation, experiment design, and model construction.  

4.1     Introduction 

In chapter 3, multivariate regression models were constructed to estimate the 

marginal effects of completion parameters on average STP. As mentioned in chapter 3, 

there is a need to account for more factors that potentially drive average STP. Things 

such as wellbore effects, natural fracture networks, and geologic factors may also affect 

the STP. This chapter will build off the previous models by introducing the idea of panel 

data and fixed effects in an attempt to account for important, albeit unobservable, 

parameters. Kroschel, Rabiei, & Rasouli (2022a) created a dynamic multivariate 

regression model to investigate the temporal dependence of average STP on subsequent 
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stages for re-fractured wells since reservoir depletion has a strong influence on reservoir 

stresses (Wan et al., 2019). 

  The model from chapter 3 found that the distance between stages, presence of a 

3.5” liner, average pump rate, and acid volume were all statistically predictors of average 

STP at the 95% level. The model also found that the average STP from the previous stage 

was a statistically significant predictor of average STP at the 99% level. The estimated 

marginal effects of an increase in the previous stage average STP was 0.713 (Kroschel et 

al., 2022a). This pressure translation from one stage to the next may be caused by 

significant stress shadow effects due to depletion and possible stress reversal. However, 

these may also be due to things like faulty packers and cement due to aging wellbores. 

Therefore, it is necessary to try and control for these unobservable factors using more 

advanced multivariate regression models. This chapter will construct dynamic fixed 

effects models treating the data as panel data in an attempt to answer research 

question 2. 

4.2     Data 

Panel data is data that consists of multiple observations for an individual over time 

(Bailey, 2017). For instance, data collected for an individual person over years or data 

collected on a single well over years. For this study, the data consists of multiple HF 

treatments per well combined into a single data set. So, the data for the models in this 

chapter are treated as cross-sectional as they consists of multiple observations for the same 

well over time.  
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Figure 4.1 shows the data set as cross-sectional, separating out the groups by well 

with associated trendlines. Although all trend in the same direction, they do not do so at 

the same rate and well 3 seems to treat drastically different than the other wells in the data 

set. We presume these can be at least partially explained fixed differences within-well. 

Variables such as wellbore trajectory, percent of wellbore out of zone, formation, etc. are 

expected to have different effects on treatment for each well. This presumption and the 

graphical evidence are why it is necessary to treat panel data appropriately and highlights 

the fixed effects inherent within each well. Data used for this model is the same data set 

used in chapter 3. Figures 4.2 - 4.5 show each well individually, further highlighting the 

differences and trends in average STP. 

 
Figure 4. 1 - Cross-sectional data set from re-fractured wells with associated trendlines highlighting the 

effect of different within-well characteristics. Plot created in R (R Core Team, 2022. https://www.R-

project.org/) 

 



 

 85 

 

 

Figure 4. 2 - Plot showing trend in average STP for well 1 

 

 
Figure 4. 3 - Plot showing trend in average STP for well 2 
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Figure 4. 4 - Plot showing trend in average STP for well 3 

 

 
Figure 4. 5 - Plot showing trend in average STP for well 4 

4.3     Panel Data Model 

A pooled data model will treat all observations as independent (Bailey, 2017). So, 

using a pooled data model, as in chapter 3, for panel data will ignore the panel nature of 
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the data and any within well variation (Bailey, 2017). Here we will introduce the panel 

model. Equation 17 shows the generic form of a panel data model accounting for well i 

over time period t (Bailey, 2017).  

𝑌Pv = 𝛽< + 𝛽S𝑋SPv + …+ 𝛽i𝑋iPv + 𝜖Pv                                      (17) 

 

Although this model accounts for the panel nature of the data by specifying individual 

observations over time, it will be helpful to account for effects inherent within individual 

wells. This may include data that is expensive to obtain or is outright unobservable. Often, 

these are the parameters we’re most interested in. For instance, it is reasonable to assume 

that a natural fracture network that exists for a given well is unobservable in part or in 

entirety. Recall here the difference between uncertainty and randomness. We know the 

fractures are not spread randomly and could very well be mapped given enough resources 

and data. Although there may be some indications from data sources such as logs, tracers, 

offset well data such as fiber optic, microseismic, etc., knowing the extent of the entire 

natural fracture network will almost certainly not be observable for every well. Therefore, 

we must make attempts to account for parameters such as these given the inherent 

uncertainty. However, it is reasonable to assume that this natural fracture network will be 

constant prior to stimulation and constant from stage to stage during stimulation. This is 

where we introduce the concept of fixed effects (FE).   

4.4 Fixed Effects Models 

Equation 18 shows the equation of a dynamic FE model (Bailey, 2017). Again, the 

dynamic term, 𝛾𝑌P,v`S, accounts for the dynamic stress shadow effects between stages. FE 
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models attempt to deal with endogeneity by dividing the error term into two parts. The first 

part is a random error term, 𝜐Pv, and the second part is a FE term, 𝛼P. The FE term 𝛼P 

essentially accounts for every unobserved factor that is constant over time for individual i. 

 

𝑌Pv  = 	𝛾𝑌P,v`S +	 𝛽< + 𝛽S𝑋SPv  + …+ 𝛽i𝑋iPv + 𝛼P + 𝜐Pv                        (18) 

 

Pulling the FE term out of the error term allows for control of anything that may be 

correlated with the error term and/or an independent variable which causes endogeneity 

and bias (Bailey, 2017). FE may be thought of as taking a long list of variables, condensing 

them into one variable, and then controlling for that variable (Huntington-Klein, 2022). 

Things like perforation erosion, geologic properties and structure, reservoir 

heterogeneities, natural fracture networks, etc. will play a critical role in determining 

average STP. It is presumed that these characteristics that are inherent within a well will 

affect treatment and may be driving the differences in trends seen in figures 4.2 - 4.5. 

However, FE models allow us to control for the variation that can be expected within each 

well.  

Complex fracture geometry can not be measured by any fracture diagnostic 

technique (Wu & Olson, 2015). If many of these variables are presumed to be constant, 

they can be accounted for using a FE model without costly data collection and 

computationally expensive models. For example, fracture initiation depends on stress 

around the wellbore caused by drilling, cementing, perforating, etc. This is unobservable. 

However, there is no reason to assume it will change prior to treatment and could possibly 
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remain constant over the course of a wellbore. In this regard, FE models have certain 

advantages over deterministic physics-based models. 

From literature, there seems to be several trends that do not change significantly 

throughout HF treatments. Roberts et al. (2020) conducted a study on perforation erosion 

that included more than 6,000 clusters over 600 stages and noted the tendency for non-

uniform proppant placement across a stage and a strong preference for heel-side perforation 

proppant placement and erosion (Roberts et al., 2020). It is also reasonable to assume that 

large geologic structures and wellbore characteristics will also remain constant through HF 

stimulation. For existing structures such as a natural fracture network, HF treatment will 

neither seal a pre-existing fracture nor, by definition, can it create a pre-existing fracture. 

Therefore, these may be thought of as constant between each well prior to and during 

treatment. Evidence from literature also suggests that other geologic and geomechanical 

properties may be treated as constant in the middle Bakken as well. Vertical and horizontal 

moduli show similarity in the middle Bakken and thus indicate elastic isotropy (Havens, 

2012); Ostadhassan et al., 2012; Ostadhassan, 2013). The assumption is that any of these 

properties that do not vary wildly from their mean can be considered constant and captured 

by the FE term and thus differenced out and accounted for in the regression models using 

a de-meaned approach. 

Production logs indicate that as many as 30% of perforations do not contribute to 

production due to under-stimulation from stress shadow effects (Huang & Datta-Gupta, 

2017). Understanding and characterizing these effects is important to increasing production 

and implementing effective treatments in the field. Kroschel et al. (2022a) have already 
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modeled the temporal dependence of average STP from one stage to the next. However, 

the FE model in this chapter should give a better estimation of the temporal dependence of 

stress shadow effects and previous stage treatment after accounting for fixed wellbore and 

geologic effects, while accounting for other factors that affect treatment. Properly 

characterizing the temporal dependence of these effects from one stage to the next may aid 

engineers in effective perforation and treatment design and thus help treatment 

implementation in the field. The FE model is also an attempt to resolve what may 

endogeneity as evidenced by the coefficient estimates for perforation standoff and acid 

volume in chapter 3. 

4.5 Fixed Effects Model Results 

Two FE models were initially constructed: one with dynamic average STP and one 

without. The results from a FE (model 1) and dynamic FE (model 2) models are shown in 

table 4.1. It is important to note that any constant term was differenced out of the 

regression. So, the constant β0, the presence of a 3.5” liner, and the formation are no longer 

in the regression results. These, along with any other unobservable fixed effect captured 

by the variable 𝛼P,	are now accounted for in the regression results. We see that there is still 

a statistically significant temporal dependence on average STP from stage to stage, 

although the coefficient estimate of 0.537 is smaller than that estimated from Kroschel et 

al. (2022a). 
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Table 4. 1 - Results from FE and Dynamic FE models using stargazer package from R (Hlavac, 2022) 

 Dependent variable: 

 Average STP (psi) 

 (1) (2) 

Previous Stage Average STP (psi)  0.537*** 

  (0.089) 

Perforation Standoff (ft) 10.243 17.112** 

 (8.539) (7.482) 

Stage Proppant Weight (lb) 0.0003 0.001 

 (0.002) (0.002) 

Total Clean Volume (bbl) -0.091 -0.102 

 (0.101) (0.088) 

Number of Perforations 0.569 -16.432 

 (17.552) (15.459) 

Average Pump Rate (bpm) -0.003 5.418 

 (4.230) (3.772) 

Acid Volume Pumped (bbl) 8.786** 7.457** 

 (3.409) (2.961) 

Observations 117 117 

R2 0.080 0.317 

Adjusted R2 0.003 0.252 

F Statistic 1.556 (df = 6; 107) 7.014*** (df = 7; 106) 

Note: *p<0.1; **p<0.05; ***p<0.01 

  

The results from the models closely match those in Kroschel et al. (2022a). 

However, the coefficient estimate for previous average STP is significantly lower. Model 
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2 estimates a temporal effect of 0.537 that is statistically significant. Perforation standoff 

is also positive and statistically significant which matches model estimates from Kroschel 

et al. (2022a) but is counterintuitive.  

One interesting note is that the marginal effects from volume of acid pumped is still 

positive and statistically significant which also matches Kroschel et al. (2022a). Reasons 

for this will be explored in the next section. 

We can also perform an F-test using under the null hypothesis H0: α1 = α2 = … = 

αi = 0   to see if at least one of the fixed effects are non-zero (Bailey, 2017). This will 

compare the models in this study and the pooled model from Kroschel et al. (2022a). Table 

4 shows the model results from this study as well as the results from the Pooled model in 

Kroschel et al. (2022a). 

Table 4. 2 - Model summaries from Panel Linear (FE) models and Pooled models from chapter 3 

(Kroschel, Rabiei, & Rasouli (2022a)) using stargazer package from R (Hlavac, 2022) 

 Dependent variable: 

 Average STP (psi) 

 Pooled Panel 

  Linear 

 (1) (2) 

Previous Stage Average STP (psi) 0.713*** 0.537*** 

 (0.075) (0.089) 

Perforation Standoff (ft)              14.615* 17.112** 

               (7.796) (7.482) 

Stage Proppant Weight (lb) -0.001 0.001 
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 (0.002) (0.002) 

Total Clean Volume (bbl) -0.044 -0.102 

 (0.090) (0.088) 

Number of Perforations -23.170 -16.432 

 (16.050) (15.459) 

3.5 Liner 221.913**  

 (99.258)  

Average Pump Rate (bpm) 9.471** 5.418 

 (3.742) (3.772) 

Acid Volume Pumped (bbl) 7.785** 7.457** 

 (3.098) (2.961) 

Formation -14.937 

 (83.683) 

Constant 2,260.782***  

 (860.533)  

Observations 117 117 

R2 0.712 0.317 

Adjusted R2 0.688 0.252 

Residual Std. Error 260.712 (df = 107)  

F Statistic 29.446*** (df = 9; 107) 7.014*** (df = 7; 106) 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

Using R (R Core Team, 2022. https://www.R-project.org/) and the pFtest() package, and 

using the above Pooled and FE models, the F-statistic is 11.318 with a p-value of 0.00107 

under the null hypothesis that fixed effects are zero and the alternative hypothesis that there 
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are significant effects. Using the qf() function in R, the critical F value is 3.931. Since The 

F-statistic is greater than the critical value (11.318 > 3.931), we can reject the null 

hypothesis that at least one of the FE is zero. 

4.6 Further Model Investigation 

The standard error (se) refers to accuracy of the parameter estimate which is 

determined the by distribution of the parameter estimate (Bailey, 2017). This in turn affects 

possible values for the estimate and statistical significance (Huntington-Klein, 2022). 

Figures 4.2 – 4.5 show the individual plots for average STP vs. stage for each well. 

Separating the data out by well highlights an apparent cyclical trend in average STP that is 

different in each well. Given the nature of panel data, and the apparent trends shown in 

figures 4.2 – 4.5, it may necessary to report clustered standard errors. 

Clustered standard errors are used when we think there are correlations between the 

error terms within the group. This is common in data with multiple time periods and known 

as temporal autocorrelation (Huntington-Klein, 2022). This violates the assumption that 

the error term is independent and identically distributed. This assumption requires that the 

error term be uncorrelated with error terms for each observation (independent) and have 

the same distribution for each observation (independently distributed) (Huntington-Klein, 

2022). Therefore, if the error term for one observation can predict another (as is in the case 

of cycles or seasonal trends), the error terms are correlated. Figures 4.2 - 4.5 indicate there 

be some autocorrelation between stages. 
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Table 4. 3 - Results from Dynamic FE model with clustered se using stargazer package from R (Hlavac, 

2022) 

 Dependent variable: 

 Average STP (psi) 

Previous Stage Average STP (psi) 0.537*** 

 (0.097) 

Perforation Standoff (ft) 17.112*** 

 (3.391) 

Stage Proppant Weight (lb) 0.001 

 (0.001) 

Total Clean Volume (bbl) -0.102 

 (0.093) 

Number of Perforations -16.432*** 

 (2.437) 

Average Pump Rate (bpm) 5.418** 

 (2.305) 

Acid Volume Pumped (bbl) 7.457*** 

 (1.388) 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

 
 

4.6.1. Previous Stage Average STP 
 

The coefficient estimate for the previous stage average STP indicates that a 1 psi 

change in average STP for a stage is linearly associated with a temporal effect of a 0.537 

psi increase in average STP for the subsequent stage. This estimate is lower than the 

dynamic pooled models constructed in chapter 3.  
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4.6.2. Perforation Standoff 
 

The coefficient estimate for perforation standoff indicates that a 1 psi change in 

perforation standoff between stages is linearly associated with a 17.112 psi increase in 

average STP for the subsequent stage. This results still does not match what we would 

expect from physics and our domain knowledge. Further investigation will be done in the 

next chapter in an attempt to account for any endogeneity caused by exogenous not 

accounted for in the model. 

4.6.3. Number of Perforations 
 

The coefficient estimate for number of perforations indicates that adding 1 

perforation is linearly associated with a 16.432 psi decrease in average STP for the stage. 

This makes sense intuitively as adding entry points and conduits from well-bore to 

formation should yield pressure relief. This is also observed when cleaning up a wellbore 

and retrieving the frac ball for the previous stage after flowing back a well. Well cleanup 

is much easier when pumping across two zones as opposed to one.    

4.6.4. Average Pump Rate 
 

The coefficient estimate for average pump rate indicates that a 1 bpm change in 

average pump rate is linearly associated with a 5.418 psi increase in average STP for the 

stage. This also makes sense intuitively since increasing rate increases friction along the 

wellbore and fracture 
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4.6.5. Acid Volume Pumped 
 

The coefficient estimate for acid volume pumped indicates that a 1 bbl change in 

acid placed in formation is linearly associated with a 7.457 psi increase in average STP for 

the subsequent stage. This result is still counterintuitive. Possible reasons are examined in 

the next section. 

4.7 Chapter Summary 

The FE model in this study can not be used for prediction since all of the fixed well-

bore effects and intercept were differenced from the data. Prediction would not be clear 

since the models are not accounting for other wells which have their own within-well 

variation that is not captured by the model. This model only provides an estimation of effect 

sizes and would need to be augmented with a physics based model or direct observation 

from fiber optic. Experiments would need to be set up in the field by design. This could be 

tested anecdotally, for example, by increasing the perforation standoff between zones. The 

hypothesis could also be tested by changing the perforation standoff halfway through well 

completions and constructing a difference in difference model and investigating the effects 

of the change in design. This will hopefully be investigated in a future study.  

More data for re-fracturing treatments is necessary to expand on this idea and 

provide estimates of temporal dependence that may differ by company, location, formation, 

etc.    

It is interesting to note that the coefficient estimate for acid volume from both the 

pooled model (chapter 3), the FE model, and the dynamic FE model are all positive. This 
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yields evidence that increasing acid volume tends to increase average STP in re-fractured 

wells. One possibility may be that the acid is opening more interior perforations thus 

increasing overall fracture width, but decreasing individual fracture width as individual 

fractures compete at a constant rate and pressure (Cleary, et al., 1993), and increasing total 

friction along the fracture face. There is also the possibility of faulty acid or insufficient 

mixing on location as the acid is delivered to location raw and cut with water on-the-fly. 

One area of increasing interest is that of supramolecular complexes fracture fluids. Bhat, 

et al. (2021) introduced a novel supramolecular structure-based fluid that is used in alkaline 

conditions (Bhat, et al., 2021). Assuming acid is opening interior perforations, which will 

increase overall width while decreasing individual width, these new fluid structures may 

help alleviate individual fracture width restrictions. One advantage of this fluid is that it’s 

properties are amplified in the presence of salt (Bhat et al., 2021). This may prove even 

more useful as produced water reuse is becoming more common in HF designs.     

It is also possible that model still suffers from endogeneity, which is why the 

coefficient estimates for perforation standoff and acid volume are positive and statistically 

significant. One possible source of endogeneity is that independent variables like 

perforations and perforation standoff vary only slightly within the dataset. More data may 

be needed with more diverse perforation stand-off, clusters, and number of perforations 

per cluster. 

It’s important to reiterate that the coefficient estimates will be bias due to the 

structure of the model. One way to combat this is to use what is known as an instrumental 

variable (IV) but these can be complicated and lead to imprecise results (Bailey, 2017). 
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However, it is worth noting that the bias becomes less severe as the number of observations 

for each panel (in this case each well) increases. Observations over ~20, the problem of 

bias becomes less serious (Bailey, 2017). Thus, since there are more than 20 observations 

for each well in the data set, the bias will be accepted as tolerable.  

This FE model does not account for well-well interactions as this would be a 

different type of model, for example - parent/child or re-frac/new-drill well interactions. 

Interactions between wells that are on a single pad may also exist and were not accounted 

for in this study. However, further model specification needs to be done to resolve the issue 

of endogeneity.  

In the next section, a feature engineered model will be constructed utilizing 

more complex relationships called interaction effects. The models will also add 

additional variables in an attempt to resolve suspected endogeneity in the pooled and 

FE models.  
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Chapter 5 
 

5. Feature Engineered Model for Improved Performance 

5.1 Introduction 

Chapter 3 constructed pooled multivariate regression models to estimate the 

marginal effects of completions parameters on treatments. Chapter 4 built upon this model 

by accounting for within-well fixed effects to better understand these marginal effects. The 

results from these models show there is significant temporal stress shadow effects from 

stage to stage. However, some concern still remains about potential endogeneity since the 

results for perforation standoff show positive marginal effects which doesn’t match what 

we know physically. The coefficient estimates for acid volume also hint there may be 

endogeneity. The inferential models in chapter 3 and chapter 4 are what are known as high 

bias-low variance models, meaning the coefficient estimates may deviate from the true 

value, but they are not very sensitive to small changes in the underlying data set (Kuhn & 

Johnson, 2020). However, they may benefit from feature engineering which is a process of 

manipulating the model to better represent the data set (Kuhn & Johnson, 2020). In 

particular, there is reason to think that some predictor variables in the model may exhibit 

interaction effects which will relate to the outcome (Kuhn & Johnson, 2020).  

Haustveit et al. (2022) measured poroelastic responses from seven subsequent frac 

stages using a bottom hole pressure gauge (BHPG) installed in the first stage of a well. The 

authors state the treatment designs were held relatively constant throughout this process. 

The authors measure a non-linear, attenuating poroelastic responses the further the stage is 

from the BHPG (Haustveit, Elliot, & Roberts, 2022). The tools developed by the authors 
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provide effective models for estimating a pororelastic response that occurs away from a 

fracture face (Haustveit et al., 2022). This insight will be useful to account for non-linear 

features into the previous multivariate models from chapter 3 and chapter 4 as well as 

testing the hypothesis that there are interaction effects present between perforation standoff 

and temporal stress shadow effects. There exists a trade-off between bias and variance in 

statistical modelling and is commonly known as the “bias-variance tradeoff” (Kuhn & 

Johnson, 2020). Variance refers to the extent to which data can differ and bias refers to the 

degree to which the data or predictions are different from the true value (Kuhn & Johnson, 

2020). 

Supplementing low variance models with engineered representations of data that 

decrease bias may also diminish the bias-variance trade-off mentioned (Kuhn & Johnson, 

2020). Ponomareva et al. (2021) concluded the bottom hole flowing pressure (BHFP) of a 

well is governed by complex relationships (Ponomareva et al., 2021). The authors 

approached the problem of complexity by constructing a feature engineered multivariate 

regression models for the Solikamsk depression in the Perm Krai by taking a multilevel 

approach. Using a multilevel approach, the authors were able to eliminate irrelevant factors 

and account for different domes within the Un’vinskoye deposit (Ponomareva et al., 2021). 

Darabi et al. (2020) used feature engineering to improve the predictive power of a machine 

learning model. The authors use raw data to derive a set of important wellbore, operational, 

and reservoir properties to incorporate into their model (Darabi et al., 2020). Kroschel et 

al. (2022b) performed some feature engineering on previous work by accounting for 

within-well fixed effects, treating the data as panel data, to enhance the inferential dynamic 

model in Kroschel et al. (2022a) 
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Extracting knowledge from data and establishing a fast and reliable model to 

predict and carry out optimization is of interest for engineers (Luo, et al., 2022). According 

to economist John A. List, however, if the data are not causal, decisions made are like 

“pushing on a string” (List, 2022). The basic idea behind causality is that causal inference 

necessitates prediction; but one can not infer causality from the ability to predict 

(Sakhardande & Devegowda, 2021). Therefore, variables should be selected that are 

thought to have a causal relationship between predictor and the outcome variable. In this 

chapter, we will focus on the supervised prediction of average STP using feature 

engineering. Supervision refers to predicting known outcomes using given predictors 

(Kuhn & Johnson, 2020). This chapter will build off of the inferential work from chapter 

3 (Kroschel et al., 2022a) and chapter 4 (Kroschel et al., 2022b) by performing feature 

engineering to enhance the prediction performance and resolve endogeneity issues from 

previous models using interaction effects identified in domain knowledge. This feature 

engineered model will attempt to answer research question 3 and increase predictive 

capabilities of the multivariate regression models while also attempting to resolve the 

issue of endogeneity.  

By increasing the predictive power of the models, we will have a better estimate of 

the average STP for re-fractured wells. This is important because STP is often a binding 

constraint on re-fractured wells due to wellbore degradation and field personnel must have 

a way to estimate the effects of altering completion parameters on STP if they are to make 

effective design changes in real time. In addition, by resolving the endogeneity issues, 

informed decisions can be made based off causal evidence.  
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5.2 Interaction Effects 

For predictive purposes, the majority of the variation in the data may be explained 

by the cumulative effect of variables in a regression (Kuhn & Johnson, 2020). Additional 

variation may be explained by interaction between variables (Kuhn & Johnson, 2020). 

However, inclusion of erroneous predictors can reduce model performance and feature 

engineering can help alleviate this problem by getting rid of those predictors and reducing 

the extra noise they cause (Kuhn & Johnson, 2020). Kuhn and Johnson (2020) give an 

example of how interactions between variables might work by describing farming with no 

water and fertilizer, farming with no fertilizer and water, and then farming with both 

fertilizer and water. The interaction between fertilizer and water will almost certainly 

produce more crops than either of the previous scenarios (Kuhn & Johnson, 2020). 

Equation 19 shows the dynamic form for the interaction model constructed in this study 

(Kuhn & Johnson, 2020).  

𝑌P = 	𝑌P,v`S +	𝛽< +	𝛽S𝑋S+	𝛽>𝑋> + ⋯+	𝛽'𝑋S𝑋> + 	ε                              (19) 

 

The interaction term may characterize the interaction between continuous or continuous 

and dummy variables. Looking at the basic model, we see the coefficient estimate 𝛽' 

estimates the response for the interaction. Here, if the coefficient is positive and greater 

than one, then a one unit increase in 𝑋> will yield a more than unit increase in 𝑋S as a 

response. In addition, if the response in positive and less than one, then a one unit increase 

in 𝑋> will yield a less than one unit decrease in 𝑋Sas a response. The opposite interpretation 

will be true if the coefficient estimate is negative an greater than one.  
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As a fracture is initiated and dilated, a resulting force that is perpendicular to the 

fracture face creates a resulting stress on the formation that attenuates with distance from 

the fracture (Haustveit et al., 2022). Net pressure and stress differences both tend to 

increase, maybe substantially, with increasing number of sequential fractures combined 

with decreased fracture spacing (Roussel & Sharma, 2011). This may affect subsequent 

HF treatment implementation. These effects extend beyond the top perforation and may 

therefore affect the fracture initiation at the bottom perforation of the subsequent stage 

(Barree, 2020). Therefore, it is reasonable to assume that the interaction between stress 

shadows from HF treatment and perforation standoff will affect subsequent HF treatments 

and may be included in the feature engineered. The updated causal diagram is shown in 

figure 5.1, with an interactive relationship between perforation standoff and stress shadow 

effects. The cross-over in figure 5.2 as well the statistically significant results from table 

5.1 identify interaction effects between perforation standoff and the square root of the 

previous stage avg. STP. Another addition to the feature engineered model is the stage 

depth which may more accurately account for pipe friction.  
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Figure 5. 1 - Updated causal diagram assuming an interactive relationship between perforation standoff 

and stress shadow effects and stage depth to more accurately account for pipe friction effects on average STP 
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Table 5. 1 – Summary table for interaction of perforation standoff and non-linear average STP using 

stargazer package in R (Hlavac, 2022. https://CRAN.R-project.org/packages=stargazer) 

 Dependent variable: 

 Average Surface Treating Pressure 
(psi) 

Perforation Standoff (ft) -8.370*** 
 (2.785) 

Square Root of Previous Stage Average Surface Treating Pressure 
(psi) -426.283*** 

 (36.122) 

Interaction 5.007*** 
 (0.433) 

Constant 8,286.808*** 
 (158.490) 

Observations 121 
R2 0.547 
Adjusted R2 0.536 
Residual Std. Error 317.133 (df = 117) 
F Statistic 47.163*** (df = 3; 117) 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Figure 5. 2 - Interaction effects of temporal avg. STP measurements and perforation standoff using R 

(R Core Team, 2022. https://www.R-project.org/) 

The interaction coefficient shown in table 5.1 is positive and statistically 

significant and both of the other terms are statistically significant, which indicates the 

relationship may be synergistic (Kuhn & Johnson, 2020).  
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Figure 5. 3 - Evidence of possible synergistic interaction effects between perforation standoff and square 

root of previous stage avg. STP using R (R Core Team, 2022. https://www.R-project.org/) 

 

Figure 5.3 shows the predicted response between perforation standoff and the non-

linear temporal dependence of average STP, the increasing response as each predictor 

increases indicates there may be synergistic effects (Kuhn & Johnson, 2020). 
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5.3 Chapter Summary 

Table 5.2 shows the model results for the full feature engineered model. The left column 

provides coefficient estimates using standard OLS and the right column shows the results 

after clustering standard errors. Recall from chapter 4 that clustered standard errors are 

used when we think there are correlations between the error terms within the group. Recall 

that clustering se is common in data with multiple time periods and known as temporal 

autocorrelation (Huntington-Klein, 2022) which violates the assumption that the error term 

is independent and identically distributed. Clustering the se simply provides more 

confidence in the coefficient estimates.  

Table 5. 2 - Summary of feature engineered model results using stargazer package from R (Hlavac, 

2022) 

 Dependent variable: 
 Average STP (psi)  
 OLS Clustered Std. Errors 
 (1) (2) 

Square Root of Previous Stage Avg. STP (psi) -3.457 -3.457 
 (3.890) (3.270) 

Perforation Standoff (ft) -234.463*** -234.463** 
 (40.481) (91.575) 

Total Proppant (lbs) -0.004*** -0.004*** 
 (0.001) (0.002) 

Number of Perforations -25.354 -25.354*** 
 (15.372) (2.036) 

Acid Volume Pumped (bbls) -1.570 -1.570 
 (1.785) (1.136) 

3.5 Liner (binary) 495.091*** 495.091*** 
 (95.032) (164.191) 

Total Clean Volume (bbl) 0.041 0.041 
 (0.052) (0.046) 

Average Rate (bpm) 26.280*** 26.280*** 
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 (4.075) (9.750) 

Formation (Relative to Middle Bakken)(binary) 238.993*** 238.993*** 
 (74.108) (84.917) 

End Depth of Stage (ft) 0.105*** 0.105** 
 (0.016) (0.045) 

Interaction Term 2.780*** 2.780** 
 (0.500) (1.072) 

Constant 6,131.671*** 6,131.671*** 
 (650.116) (1,154.717) 

Observations 121  

R2 0.739  

Adjusted R2 0.712  

Residual Std. Error 249.656 (df = 109)  

F Statistic 28.009*** (df = 11; 109)  

Note: *p<0.1; **p<0.05; ***p<0.01 
 

Looking at table 5.2, the coefficient estimate for the interaction term is positive and 

statistically significant at the 95% level after clustering se and accounting for other 

variables that we presume affect average STP based off domain knowledge. However, the 

coefficient for the square root of previous stage average STP is no longer significant while 

the coefficient estimates for perforation standoff and the interaction are. This is evidence 

that the interaction may in fact be atypical instead of synergistic as presumed (Kuhn & 

Johnson, 2020).  

As is the case for the fixed models in chapter 4, clustering the se at the well level 

may yield more accurate results for the coefficient se since it may be necessary to account 

for spatial autocorrelation (well location and trajectory) and temporal autocorrelation 

(stress shadow effects) when estimating average STP (Huntington-Klein, 2022). This will 

only change the se of the coefficient estimates. After clustering, the se for number of 

perforations drastically decreased and is statistically significant at the 99% level. The 
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standard error for the interaction term and perforation standoff increased and significant at 

the 95% level. The following subsections will discuss the results of the model with 

clustered se and discuss the implications each estimated coefficient estimate and the 

associated marginal effects.  

The marginal effects estimated from the feature engineered model are discussed in 

the following subsections. Notice that the coefficient estimates are the same for both 

models in table 5.2 with un-clustered and clustered se. The statistical significance for each 

coefficient estimate in the following sections will refer to significance levels after 

clustering.  

5.3.1. Square Root of Previous Stage Average STP 
 

 The coefficient estimate for non-linear temporal average STP is -3.457 with a se 

of 3.27 after clustering at the level of the well. So, The se is almost as large as the 

estimate providing evidence of little confidence in the coefficient estimate. This estimate 

is not statistically significant.  

5.3.2. Perforation Standoff 
 

 The coefficient estimate for perforation standoff is -234.463 and is statistically 

significant at the 95% level. This estimate indicates that increasing the distance between 

the top perforation of one stage and the bottom perforation of the next stage will yield a 

decrease of roughly 235 psi in average STP. It is important to note that the limits of this 

estimate are probably within the range of the data. For instance, it is not reasonable to 

assume that increasing the distance between stages by 20 ft will yield 4700 psi decreases 



 

 112 

in average STP. However, we interested in making decisions at the margin. The 

implications of this finding will be discussed in chapter 6.  

5.3.3. Total Proppant 
 

 The coefficient estimate for the total proppant pumped for a stage is -0.004 and is 

significant at the 99% level. This indicates that increasing the stage proppant by one lbm 

yields an expected decrease of 0.004 psi in average STP. The direction of this 

relationship is consistent with domain knowledge and the relationship derived in chapter 

2 (figure 2.8 and equation 4).  

 

5.3.4. Number of Perforations 
 

 The coefficient estimate for the number of perforations is -25.354 and is 

significant at the 99% level. This indicates that adding one perforation per stage yields 

expected decreases in average STP by roughly 25 psi.  

 

5.3.5. Acid 
 

 The coefficient estimate for acid is -1.57 and is not statistically significant. This 

yields evidence of what is observed qualitatively in the field where this data was 

collected. From field observation, there does not seem to be any difference in STP or 

pumping duration for a stage when acid is pumped, indicating no significant pressure 

relief that allows for more rate (C. Brown, personal communication, April 18, 2023).  
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5.3.6. 3.5” Liner 
 

 The coefficient estimate for the presence of a 3.5 inch liner is 495.091and is 

significant at the 99% level. This indicates that a 3.5 inch liner yields average STPs 

roughly 495 psi higher than average STPs on wells with a 4.5” liner.  

 

5.3.7. Total Clean Volume 
 

 The coefficient estimate for total clean volume is 0.041 and is not statistically 

significant. This indicates that stage size is not a statistically significant predictor of 

average STP. 

 

5.3.8. Average Rate 
 

 The coefficient estimate for average rate  is 26.280 and is significant at the 99% 

level. This indicates that a one bbl/minute increase in average rate will increase average 

STP by an expected 26.28 psi 

 

5.3.9. Formation 
 

 The coefficient for formation is 238.993 relative to the Middle Bakken indicating 

we expect roughly 239 psi higher average STP in the Three Forks formation. This is often 

observed in the field and matches what we expect since the Three Forks formation has a 

higher TVD and lies below the Middle Bakken (as shown in figure 2.5).  
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5.3.10. End of Stage Depth 
 

 The coefficient estimate for stage depth is 0.105 and is significant at the 95% 

level. This addition into the feature engineered model captures the effects of pipe friction 

and differences in pipe friction due to stage depth.  

5.3.11. Interaction Term 
 

 The coefficient estimate for the interaction between non-linear temporal average 

STP and perforation standoff is 2.78 and is significant at the 95% level.  

 

Figure 5.4 - figure 5.6 shows the coefficient plots for the statistically significant 

individual coefficient estimates. These plots provide a visual representation of the 

coefficient estimates and the associated 95% confidence interval. Meaning, the confidence 

band around the coefficient estimate shows with 95% confidence where the true value is 

expected to lie and we can be 95% confident in the direction of the estimates. 
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Figure 5. 4 - Coefficient plot showing the effects of perforation standoff, presence of a 3.5 inch liner, 

and formation with 95% confidence interval 
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Figure 5. 5 - Coefficient plot showing effects of average rate, number of perforations, and the interaction 

of non-linear, temporal average STP and perforation standoff with 95% confidence interval. 
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Figure 5. 6 - Coefficient plot showing the coefficient estimates for total proppant and end depth for the 

stage with 95% confidence interval. 

 

Figure 5.7 shows the variable importance of each predictor and ranks them in descending 

order. Building off of the analysis of the coefficient estimates, the square root of the 

previous stage average STP is the least impactful variable in the model, while perforation 

standoff and the interaction are the 3rd and 4th most impactful variables, respectfully. Refer 

to table 3.2 for variable definitions with respective units. 
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Figure 5. 7 - Variable importance for all independent variables in final feature engineered model 

 

The addition of these variables changed the model significantly and greatly 

improved the interpretability of the coefficients. It also appears the model suffered from 

what is known as omitted variable bias. Omitted variable bias is when an independent 

variable is correlated with another variable in the error term, thus omitting an important 

predictor variable from the regression model and thus violates the exogeneity assumption 

(Huntington-Klein, 2022). In this case, the bias refers to spurious coefficient estimates that 
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will, on average, yield incorrect insights from coefficient estimates (Huntington-Klein, 

2022). The coefficient estimates are now in line with what our domain knowledge 

hypothesized. Acid volume was no longer statistically significant, indicating it provides no 

pressure relief over the stage. This is observed anecdotally in the field and acid is often cut 

out of the design early in well treatment. Perforation standoff now has a negative and 

statistically significant effect on average STP indicating that increasing the distance 

between stages decreases the effects of stress shadows. This indicates that there was 

endogeneity present on both the pooled and fixed effects models and there was exogenous 

variation from pipe friction and interaction between perforation standoff and stress 

shadows that was unaccounted for. By accounting for this exogenous variation, not only 

can we draw conclusions about causality of the predictors that affect average STP, but the 

predictive power of the model was improved. 
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Chapter 6 
 

6. Discussion, Applications, and Conclusions 
Portions of Chapter 1 were taken from Kroschel, J. Rabiei, M. Rasouli, V. Modeling Temporal 

Dependence of Average STP in the Williston Basin Using Dynamic Multivariate Regression. Energies 
2022, 15, 2271 and Kroschel, J. Rabiei, M. Rasouli, V. Accounting for Fixed Effects in Re-Fracturing 
Using Dynamic Multivariate Regression. Energies 2022, 15, 5451. https://doi.org/10.3390/en15155451. 

 

6.1 Discussion and Application of Models 

The next section will address the conclusions of the study and tie them back to the 

hypothesis and research question using the results from the feature engineered model to 

answer each question. Table 6.1 are the results from the feature engineered model 

constructed in chapter 5 with the identified high margin predictors highlighted in red. The 

coefficient estimates for each independent variable represent the expected marginal effects 

of each variable on average STP.  

Table 6. 1 - Summary of feature engineered model results including clustered standard errors using 

stargazer package from R (Hlavac, 2022) 

 Dependent variable: 
 Average STP (psi)  
 OLS Clustered Std. Errors 
 (1) (2) 

Square Root of Previous Stage Avg. STP (psi) -3.457 -3.457 
 (3.890)   (3.270) 

Perforation Standoff (ft) -234.463*** -234.463** 
 (40.481) (91.575) 

Total Proppant (lbs) -0.004*** -0.004*** 
 (0.001) (0.002) 

Number of Perforations -25.354 -25.354*** 
 (15.372) (2.036) 

Acid (Binary) -1.570 -1.570 
 (1.785) (1.136) 
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3.5 Liner (binary) 495.091*** 495.091*** 

 (95.032) (164.191) 

Total Clean Volume (bbl) 0.041 0.041 
 (0.052) (0.046) 

Average Rate (bpm) 26.280*** 26.280*** 
 (4.075) (9.750) 

Formation (Relative to Three Forks)(binary) 238.993*** 238.993*** 
 (74.108) (84.917) 

End Depth of Stage (ft) 0.105*** 0.105** 
 (0.016) (0.045) 

Interaction Term 2.780*** 2.780** 
 (0.500) (1.072) 

Constant 6,131.671*** 6,131.671*** 
 (650.116) (1,154.717) 

Observations 121  

R2 0.739  

Adjusted R2 0.712  

Residual Std. Error 249.656 (df = 109)  

F Statistic 28.009*** (df = 11; 109)  

Note: *p<0.1; **p<0.05; ***p<0.01 
 

These marginal effects are important for re-fracturing design. Using these 

estimates, engineers can alter completion designs and minimize average STP to minimize 

cost. For example, the coefficient for perforation standoff indicates that increasing the 

length between the top perforation from one stage to the bottom perforation of the next 

stage will decrease expected average surface STP by roughly 230 psi, thus mitigating 

stress shadow effects. Using this data, engineers can consider tradeoffs between 

increasing perforation standoff, expected pressure decrease, and lateral length loss. The 

same logic applies for running a 3.5” liner with a coefficient estimate of roughly 485 psi, 

engineers can consider the trade-offs between the expense of running a 4.5” liner and the 

expected pressure increases in running a 3.5” liner. Given their unique cost structure for 
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inputs such as casing costs, rig-time, and fuel, engineers can now compare the cost of 

running a 4.5” liner with a 3.5” liner and the resulting pressure. Liner size will be an 

important factor in reusing produced water as fields mature and are re-fractured. 

Appendix A constructs a difference-in-difference model that estimates positive and 

statistically significant effects from using produced water as a base fluid for stimulation.  

Negative and statistically significant marginal effects on average STP from using 

a 4.5” liner as opposed to 3.5” liner for re-fracturing has temporal considerations. For 

instance, it may be beneficial to install 5.5” liners instead of the 4.5” liners in the lateral 

section as discussed in Appendix C. The installation of larger liners will at least minimize 

the effects of reusing produced water for stimulation as well as more productive wireline 

practices as discussed in Appendix C. Although there are additional considerations with 

fluid volumes required for wireline pump down operations due to minimal drag in larger 

ID casings, this can be mitigated through string design with parachutes or larger OD gun 

strings.  

The model utilizing feature engineering increases the predictive power substantially. 

The average % error was reduced from 5.8% in the initial regression models to 2.1% per 

stage with the current feature engineered, predictive model. Table 6.2 shows the predictive 

results using the model constructed in this study and includes the results from Kroschel et 

al. (2022). The offset well used for prediction was in the Three Forks formation and 

contained a 3.5” liner. So, these binary values are “1” in the models. This form of model 

validation is known as external validation and using the feature engineered model to predict 
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average STP on a different well in the same geographic is the second most stringent form 

of external validation (Harrell, 2015) 

Table 6. 2 – Average STP prediction results comparing Pooled models from chapter 4 and feature 

engineered model from chapter 6. 

Stage Perforation 
Standoff 

End 
Depth 

Total 
Proppant 

Total 
Clean 

Volume 

Avg. 
Rate 

Previous 
Stage 

Avg. STP 

Avg. 
STP 

Predicted 
STP From 

First 
Paper 

% Error 
from 

Pooled 
Model 

Predicted 
from Feature 
Engineering 

% Error 
Feature 

Engineering 

1 0 19974 61748 4230 21.6 NA 8719 NA NA NA NA 

2 26 19675 225181 8317 29.3 8719 8903 7990 10.3 8798 1.2 

3 26 19377 218337 6065 28 8903 8749 8285 5.3 8713 0.4 

4 26 19078 224202 5689 29.7 8749 8968 8142 9.2 8626 3.8 

5 26 18779 227257 5225 29.9 8968 8799 8313 5.5 8647 1.7 

6 26 18480 226392 5007 28.2 8799 8731 8191 6.2 8503 2.6 

7 26 18182 226608 4960 29.1 8731 8848 8153 7.9 8469 4.3 

8 26 17883 226521 5077 29.9 8848 8730 8140 6.8 8510 2.5 

9 26 17584 227421 4666 33.6 8730 8626 8108 6 8507 1.4 

10 26 17285 226288 4396 35.3 8626 8859 8065 9 8474 4.4 

11 26 16987 227810 4300 37.6 8859 8806 8255 6.3 8580 2.6 

12 26 16688 228025 4185 39.1 8806 8732 8235 5.7 8563 1.9 

13 26 16389 228048 4365 42.6 8732 8582 8207 4.4 8606 0.3 

14 26 16091 228459 4172 46.5 8582 8780 8145 7.2 8609 1.9 

15 26 15792 230832 4187 44.6 8780 8881 8266 6.9 8597 3.2 

16 26 15493 213499 3933 43.9 8881 8608 8359 2.9 8644 0.4 

17 26 15194 227737 3903 42 8608 8631 8134 5.8 8404 2.6 

18 26 14896 217414 3782 44.6 8631 8650 8191 5.3 8487 1.9 

19 26 14597 217405 3771 47.8 8650 8728 8235 5.6 8547 2.1 

20 26 14298 217358 4018 41.2 8728 8258 8131 1.5 8390 1.6 

21 26 14000 217387 3742 49.1 8258 8813 7969 9.6 8372 5 

22 26 13701 220905 4441 48.3 8813 8301 8323 0.3 8555 3.1 

23 26 13402 216973 3813 51.5 8301 8339 8020 3.8 8397 0.7 

24 26 13103 217031 3796 49 8339 8347 8024 3.9 8317 0.4 

25 26 12805 217689 3877 50.6 8347 8277 8040 2.9 8334 0.7 

         Average 5.8 Average 2.1 
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6.1.1 Average STP Effects on Fuel Consumption 
 

Wang and Chen (2018) highlight the difficulty in broad, physics-based models by 

identifying latitude and longitude as significant factors in predicting production for wells 

in the Montney Shale (Wang & Chen, 2018). The information asymmetry is simply too 

large to create accurate models rooted in physics. However, what operators almost certainly 

have is a wealth of treatment data. This abundance of treatment data is a direct 

measurement of treatment behavior for all of the operators acreage. 

One implication for designing hydraulic treatments around average STP is fuel 

consumption and fuel efficiency. Fuel consumption is defined as the amount of fuel 

consumed over a given period of time (Grisso, Perumpral, Vaughan, Roberson, & Pitman, 

2010). This fuel consumption may be thought of as the specific volume fuel consumption 

and is measured in units of gallons per horsepower-hour (gal/hp-h) (Grisso et al., 2010). 

The specific volume fuel consumption is not affected by the size of the engine and is used 

to compare efficiency of diesel engines under varying operational situations (Grisso et al., 

2010). This has a range from 0.0476 – 0.1110 gal/hp-h (Grisso et al., 2010). The inverse 

of this yields the fuel efficiency which ranges from 12-21 hp-h/gal for diesel engines 

(Grisso et al., 2010).  

It is well known that the hydraulic horsepower (HHP) needed operationally for 

stimulation is calculated using equation 20. 

 

𝐻𝐻𝑃 =	
𝑃	𝑥	𝑄
40.8 																																																																		(20) 
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Where P is the expected pressure measured in psi, Q is the designed flow rate in bpm. So, 

higher pressures require more HHP and thus increases diesel consumption. This can be a 

major cost in implementation. Therefore, optimizing the treatment around expected 

average STP, or estimating the marginal effects of completion parameters, can help 

minimize expected diesel costs.  

6.1.2 Average STP Considerations for Operations 
 

The idea of circular economies (CE) has been gaining momentum in academic 

literature. Although there are many definitions, the most frequently used definition is a 

combination of reduce, reuse, and recycle activities (Kirchherr et al., 2017). CE is a unique 

economic concept using restorative designs to help sustainable economic development and 

address environmental challenges with waste (Aloini et al., 2020). The idea has also 

touched the O&G industry as more rigorous practices in resource management to minimize 

environmental impacts from O&G production has increased (Castilla et al., 2021). One 

major concern in resource management is the reuse and recycling of produced water (PW). 

PW has generally been disposed of through using disposal wells that are drilled into deep 

basement formations (Tomomewo et al., 2021). As environmental concerns continue to 

grow about fresh water (FW) consumption, there is now a desire to effectively reuse or 

recycle PW by incorporating it into operations. If PW can be effectively recycled, it may 

provide an opportunity to reduce environmental problems with disposal as well as reduce 

freshwater consumption in completions operations. However, minimizing environmental 

impact and a CE in O&G must be considered in conjunction with practices and 

technologies that increase, or at least maintain, O&G production. Declining resource 

production can not only constrain human flourishing (Epstein, 2014), but it also creates a 
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“resource drag” on developing economies as mineral extraction steadies and declines 

(Davis, 2010). 

Reusing PW in treatments can alter operations and affect treatment implementation. 

However, recycling and reusing PW for operations can be economic for operators with 

development plans as few as 5 wells (Aro & Fowler, 2021). Figure 6.1 shows a treatment 

implemented using FW and figure 6.2 shows a treatment implemented using only PW. We 

see the differences in STP trends with the treatment using only PW having a near constant 

trend around 9000 psi.  

 

Figure 6. 1 - Treatment plot using only FW as base fluid and increasing rate to counteract STP decline 
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Figure 6. 2 - Treatment plot for using only PW as base fluid 

 

This trend may be due to the increased perforation friction resulting from the increase in 

base fluid density of the treatment. This relationship is shown in equation 21 (Gustavo et 

al., 2016): 

 

𝑃25 = 	
<.>?@ABCD
6ECFEGHI

C .                                                          (21) 

 

Where,  

Q = Flow rate, volume/time, (bbl/min) 

𝜌 = Fluid density, mass/volume (lb/gal) 

𝑁2 = Number of perforations, count 

𝐷2 = Diameter of perforations, L, (inches) 

𝐶N = Coefficient of discharge, unitless 
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We see that fluid density will increase perforation friction and therefore increase the 

treating pressure. This may have implications when implementing CE into O&G operations 

and designs. Although there is plenty to critique about implementing circular economies, 

the results in table 6.3 show that, theoretically, efficient implementation of CE may be 

possible for the problem of PW reuse and recycling. More analysis of the effects of reusing 

PW for operations can be found in Appendix A. 

6.1.3 Investigation of Trade-offs with Costs and Emissions 
 

A quick comparison of the stages mentioned from above can be done by assuming a 

fuel efficiency factor of 16 hp-h/gal. The PW stage total volume pumped was 3838 bbl and 

the FW stage was 3865 bbl so the stage size is roughly equivalent. The stages are also close 

together in the lateral. Table 6.3 shows the treatment data needed to calculate HHP-H and 

the estimated diesel used to complete the stage.  

- Treatment data and calculated parameters for fuel efficiency for PW and FW stages 

Treatment Average Rate 
(bpm) 

Average 
Pressure (psi) 

Pump Time 
(hours) HHP HHP-H Diesel 

Used (gal) 
PW only 58.4 8845 1.15 12660.5 14559.6 910 
FW only 86.5 8718 0.783 18483 14478.4 905 

 

The results from table 6.3 show that, theoretically, the fuel costs for both jobs is 

nearly identical with one treatment pumping at lower rates, higher pressures for a longer 

time (treatment using PW) and one treatment being pumped at a higher rate in less time. 

All else being equal, the treatments use the same amount of fuel and the resulting emissions 

are almost identical. However, there are implications regarding contracts that service 



 

 129 

companies should be aware of and should build insurances for themselves. If an operator 

were to implement a program utilizing fresh water, requiring lower rates at higher 

pressures, there may be additional costs that fall on the service companies with pump 

maintenance, parts, and equipment.  

After establishing that the fuel costs and HHP requirements are roughly equivalent 

in theory, engineers can now think at the margin in regards to design. In table 6.3, the fuel 

consumption is equivalent because the HHP-H between the two stages is roughly 

equivalent. However, by increasing the perforation standoff by 2 feet for each stage, we 

can expect reductions in average STP by roughly 469 psi (this is simply the marginal 

estimate of 234.5 in table 6.1 multiplied by two). So in theory, increasing the perforation 

standoff by two feet for both stages yields the expected results in table 6.4, ceteris paribus. 

Table 6. 3 – Hypothetical fuel savings with reductions in STP using data from table 6.3 

Treatment Average Rate 
(bpm) 

Average 
Pressure (psi) 

Pump Time 
(hours) HHP HHP-H Diesel 

Used (gal) 
PW only 58.4 8376 1.15 11989 13788 862 
FW only 86.5 8249 0.783 17489 13694 856 

 

  The reduction in average STP yields savings of 48 - 49 gallons of diesel per stage. 

Over a 40 stage well, this yields savings of 1920 – 1960 gallons of diesel. The cost savings 

realized will vary with the price of diesel. However, there are additional benefits from 

decreases in emissions. The Environmental Protection Agency (EPA) uses a conversion 

factor of 10.180x10^-3 metric tons CO2/gallon of diesel (Environmental Protection 

Agency, 2023). So, this yields savings of 19.5 - 20 metric tons of CO2 per well.  
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6.1.4 Contracts 
 

In O&G, primary contract negotiation centers around cost and well service 

contracts will often contain parts for services and equipment (Thomas, 2013). Each party 

that controls their own personnel and equipment are best equipped with the knowledge 

necessary to minimize the risks associated with operations (Thomas, 2013). So, it may be 

beneficial to service company providers to incorporate STP considerations into their 

contracts, especially if design changes are implemented mid-treatment. 

6.1.5 Simultaneous Fracturing Operations 
 

The models constructed in this study may also have benefits in combination with 

simultaneous HF treatments. Over 200 wells have been completed using simultaneous HF 

treatments in the Bakken and Permian (Russel, Stark, Owens, Navaiz, & Lockman, 2021). 

Simultaneous treatment allows for separate treatment designs to be pumped on different 

wells concurrently (Russel, Stark, Owens, Navaiz, & Lockman, 2021). Having the ability 

to predict how STP of re-fracturing treatments will react to altering variables will help 

engineers better understand the wellbore integrity and surface equipment limitations and 

allow for any necessary changes to treatment design. This may become especially 

important in the case of simultaneously fracturing one re-fracture treatment and one 

treatment on a newly drilled and completed well. 

6.1.6 Using Interaction Effects to Estimate Overall Effects 
 

The results from the feature engineered model can provide estimates of overall 

effects between the interaction between perforation standoff and non-linear temporal 
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average STP. By taking the partial derivative of feature engineered model with respect to 

perforation standoff, we can estimate the overall effect of perforation standoff. This is 

shown in equation 22.  

�qp�	�v2
�2345	�vqiN�55

 = -234.463 + 2.78*𝑃𝑟𝑒𝑣	𝐴𝑣𝑔	𝑆𝑇𝑃<.�                     (22) 

This relationship may be utilized in the field in the following manner. After 

pumping a stage, the engineer or operators on location should have post treatment data 

relatively quickly. After calculating the average STP for the stage, equation 22 can estimate 

the effects of adding one foot to perforation standoff before setting the plug for the next 

stage, since the calculated average STP is the previous stage average STP for the plug that 

is about to be set. So, for a stage with average STP of 7000 psi, the effect of adding one 

foot to perforation standoff would be -234.463 + 2.78(7000)0.5 = -1.87 psi. Additionally, 

for 7500 psi, the effect of adding one foot to perforation standoff would be -234.463 + 

2.78(7500)0.5 = 6.3 psi 

So, given the data set, for re-fractured wells in this area, there exists a point 

somewhere between 7000-7500 psi where we’d need to add 2 feet to perforation standoff 

to avoid temporal stress shadow effects. This analysis may be performed at any point 

during the job and recorded. The perforation standoff may be changed as necessary to 

mitigate any unnecessary temporal stress shadow effects that may affect treatment 

implementation.  
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6.2 Conclusions 

• In an attempt to answer research question 1, a dynamic multivariate 

regression model was constructed. This research showed it is possible to create 

unique and area specific models to accurately predict average STP. Although this 

study focuses specifically on re-fractured wells, the same approach may apply to 

new drills provided there is data from offset wells. Initial models showed that stress 

shadow effects from the previous stage on a subsequent stage have a statistically 

significant effect on the average STP. According to the initial dynamic model 

developed in this study, a 1 psi increase in the average STP from the previous zone 

will create a 0.713 psi increase in average STP in the subsequent zone. This 

estimate seemed high but was roughly equivalent to estimates from literature 

(Roussel, 2017). However, this model appeared to suffer from endogeneity since 

estimates of perforation standoff and acid volume did not match what physics based 

models and domain knowledge propose. It was suspected that within well-fixed 

effects may be responsible for the suspected endogeneity.  

• Building off the pooled models and attempting to answer research question 2, 

unobservable wellbore and geologic properties that do not vary from stage to 

stage were accounted for using fixed effects (FE) multivariate regression 

models. These models also allow for estimation of boundary effects from stress 

shadows from one stage to the next. These estimates may differ by formation due 

to inherent geologic, reservoir, and wellbore differences. However, having an 

estimate on the temporal dependence of pressure between stages may be an 

important design parameter for treatments, perforation design, and field 
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implementation. After accounting for FE, previous stage average STP, perforation 

standoff, and acid volume pumped were the only statistically significant predictors 

of average STP for a re-fracturing treatment. Based on our models, a marginal 

increase in average STP in one stage will yield a 0.537 psi increase in the 

subsequent stage. This is significantly smaller than our previous estimate. 

However, as with the pooled models, marginal effects from perforation standoff 

and acid volume were counterintuitive, indicating persisting endogeneity. 

• In the initial and FE models, the amount of acid pumped had a positive and 

statistically significant effect on average STP. From field experience, it is often 

seen anecdotally that acid provides no pressure relief. However, we would not 

expect this effect to be positive and statistically significant. The positive effect may 

be due to interior perforations being opened, decreasing individual fracture width 

and also increasing perforation friction pressure as well as friction pressure along 

the fracture face. So, in an attempt to create more accurate models, the 

inferential models constructed in this study were augmented with more 

complex feature engineered models that would also increase predictive power, 

answering research question 3. The model utilizing feature engineering increases 

the predictive power substantially. The average % error was reduced from 5.8% in 

our original study to 2.1% per stage with the current predictive model. Therefore, 

this confirms the hypothesis that marginal estimates can be obtained and 

accurate predictive models can be constructed to predict average STP for cost 

minimization purposes. Prediction results are shown in table 7.2. Predictions were 

all converted to positive values and then averaged over the course of the well.  
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• After accounting for interaction effects between perforation standoff and non-linear 

temporal pressure dependencies and stage depth, the predictive model yielded 

inferential results that match physical reality. These marginal estimates for 

completion parameters were the following: The presence of a 3.5” liner has 

significant effects on average STP and increases expected average STP by roughly 

500 psi for re-fractured wells in this area of the Williston basin; increasing 

perforation standoff by one lateral foot decreases expected average STP by roughly 

230 psi for the subsequent stage; increasing average rate by one bpm increases 

expected average STP by roughly 25 psi for this area of the Williston basin; acid 

did not have any statistically significant effect on average STP. Ultimately, the 

feature engineered model seemed to perform better at prediction and 

producing marginal estimates of the effects of completion parameters that 

more accurately represent the underlying physics. So, while although fixed 

models can be constructed, the feature engineered model produced better 

results than the fixed effects models. The feature engineered model also shows 

that after accounting for other treatment parameters and the interaction 

between non-linear stress shadow effects and perforation standoff, the stress 

shadow effects are not statistically significant while perforation standoff and 

the interaction is. This result is unique in that the feature engineered model 

designed for prediction actually provided better inferences as well. This is usually 

not the case (Kuhn & Johnson, 2020), but is probably a product of the complexity 

of O&G reservoirs and operations. 
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• The approach in this study provides a framework that is reproduceable and allows 

for the estimation of marginal effects of completion parameters on treatment 

implementation. These are crucial in identifying high margin areas for cost 

minimization.  

Appendix A: Using Machine Learning to Characterize Produced Water 
Reuse on Average STP during Hydraulic Fracturing 

 

Recycling, reuse, and circular economics are gaining momentum in the O&G 

(O&G) industry. Although limited, circular economics does provide an answer to 

increasing pressure to reduce the environmental footprint from operations by attempting 

to internalize environmental externalities. One area of increasing interest is the reuse of 

produced water (PW) for completions operations. Not only will reusing produced water 

reduce the amount that must be disposed, but reusing PW may also reduce trucking costs 

and emissions and replace the use of freshwater (FW) in hydraulic fracturing. After 

extensive field trials, an operator in North Dakota has successfully incorporated large 

amounts of PW into their treatments at various stages in the treatment. Along with 

reducing FW consumption and reduced disposal, reuse of PW has also shown to act as a 

limited entry technique which may help perforation break down, equally distribute 

placement of fractures, and, therefore, increase production. This study constructs two 

multivariate regression models using field treatment data to characterize the extent to 

which PW affects the STP of treatments. The first is a difference-in-difference (diff-diff) 

model, usually used in policy analysis, using data from a hybrid stage that utilizes both 

produced and FW in the treatment. The second is a standard multivariate regression 

model using a dummy variable for PW. The results from both models indicate that the 
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use of PW has a positive and statistically significant effect on STP. The difference-in-

difference model indicates that there are positive effects on STP beyond well and time 

fixed effects. Evidence from previous studies suggest this may be due to suspended 

solids, total dissolved solids, and residual oil inherent in produced water that affects 

injection pressure. This suggests that reusing produced water may have other implications 

for reservoir modeling as the practice becomes more common. 

The idea of circular economies (CE) has been gaining momentum in academic 

literature. Although there are many definitions, the most frequently used definition is a 

combination of reduce, reuse, and recycle activities (Kirchherr, Reike, & Hekkert, 

2017). The idea has also touched the O&G industry as more rigorous practices in 

resource management have been adopted to minimize environmental impacts from O&G 

production (Castilla, Zeuss, & Schmidt, 2021). One major concern in resource 

management is the reuse and recycling of PW. PW has generally been disposed of using 

disposal wells that are drilled into deep basement formations (Tomomewo, et al., 2021). 

As environmental concerns grow with (HF) about fresh water (FW) consumption, there is 

now a desire to effectively reuse or recycle PW by incorporating it into operations. If PW 

can be effectively recycled, it may provide an opportunity to reduce environmental 

problems with disposal as well as reduce freshwater consumption in completions 

operations. However, minimizing environmental impact and a circular economy in O&G 

must be considered in conjunction with practices and technologies that increase and 

maintain production. Declining resource production can not only constrain human 

flourishing (Epstein, 2014), but it also creates a “resource drag” on developing 

economies as mineral extraction steadies and declines (Davis, 2010). This goal is 
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especially difficult as production from unconventional reservoirs and the HF treatments 

implemented in them are highly variable. Proppant distribution is generally distributed 

non-uniformly across perforation clusters and there exists a preference for heel and/or toe 

perforations as well as a low-side wellbore preference for fluid and proppant (Roberts, 

Whittaker, & Paxson, 2020). These types of patterns make uniform treatment, and 

therefore optimal stimulation and production, problematic. 

One technique to increase stimulation effectiveness, and thus increase well 

productivity, is limited entry (LE). Simply put, LE is the development of perforation 

friction through a reduction in the number of perforations (Cramer, 1987). The resulting 

backpressure in the wellbore promotes treatment into multiple perforations of differing 

stress states (Cramer, 1987). Equation A1 shows the most common equation used to 

estimate perforation friction (Gustavo, et al., 2016): 

 

𝑃25 = 	
<.>?@ABCD
6ECFEGHI

C .     (A1) 

Where,  

Q = Flow rate, volume/time, (bbl/min) 

𝜌 = Fluid density, mass/volume (lb/gal) 

𝑁2 = Number of perforations, count 

𝐷2 = Diameter of perforations, L, (inches) 

𝐶N = Coefficient of discharge, unitless 
 

Data suggest that STP (STP) should be maintained at the highest level possible within 

surface equipment constraints (Somanchi, Brewer, & Reynolds, 2017). This is especially 

important in pad to ensure breakdown and fracture extension and make certain that most 

perforations breakdown and begin taking fluid (Somanchi, Brewer, & Reynolds, 2017). 
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In practice and in literature, the previous focus has been primarily on limiting the number 

of perforations, limiting entry hole diameter, or increasing rate (Gustavo, et al., 2016) to 

increase perforation friction and thus, increasing STP above initiation pressure for each 

perforation (Langorne & Rasmussen, 1962). 

Increasing rate and/or reducing the number of perforations or size of perforations 

are all critical design parameters (Gustavo, et al., 2016). Rearranging equation A1 can 

also yield solutions of different variables. Cramer (1981) rearranges equation A1 to solve 

for Q, 𝐷2, 𝑁2, and 𝐶N to provide solutions for these variables and how they will alter 

treatment. However, this process is dynamic, and these variables will change throughout 

stimulation. For instance, as perforations erode, 𝐷2 and 𝐶N will increase which will 

decrease 𝑃25 (Gustavo, et al. 2016). This may be compensated by an increase in Q which 

is meant to counteract these effects and maintain backpressure in the wellbore (Gustavo 

et al. 2016, Cramer 1987, Somanchi, Brewer, & Reynolds, 2017). It’s also important to 

note that rate increases are ineffective during treatment if clusters have already been lost 

(Somanchi, Brewer, & Reynolds, 2017).  

Although it may seem straightforward, implementing effective LE in the field is 

difficult. Exceedingly high STP allows little room for error operationally. Pump rate must 

be constantly monitored to avoid screenouts or overpressuring. Having limited entry 

points into formation can also create problems when cleaning up the wellbore after a 

screenout. Another common problem is that LE treatment distribution tends to be very 

uneven during the slurry phase of treatment (Somanchi et al., 2017). Given the dynamic 

nature of HF treatments, it would be difficult to isolate any values, as there are numerous 
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variables changing at any time, to estimate individual effects of altering parameters and 

their effectiveness.  

Looking at equation A1, it is apparent that increasing density will also increase 

𝑷𝒑𝒇, although it has traditionally been considered fixed (excluding foamed fluids) 

(Cramer, 1987). This study was undertaken after observing the noticeable differences in 

STP between HF treatments that incorporate PW as a base fluid. Qualitative investigation 

of two HF stages shows noticeable differences in the trends of STP and, specifically, STP 

was maintained at the maximum level without increasing rate while using PW as a base 

fluid. The treatment plot for stages 26 and 29, respectively, for a single well are shown in 

figure A.1 and figure A.2. Figure A1 shows a treatment using only FW as a base fluid for 

the treatment and figure A.3 shows the corresponding chemical plot. It’s important to 

note that PW was used in flush. Figure A.2 shows a treatment plot using only PW as the 

base fluid while figure A.4 is the corresponding chemical plot. The proximity of the 

stages within the well will help to alleviate some uncertainty about any heterogeneities 

that may exist in formation or along the wellbore. Therefore, it is assumed that these 

stages are equivalent in these regards. Although specific chemical names could not be 

included in the chemical plots, the blue line represents FW High Viscosity Friction 

Reducer (HVFR) concentration, the green line represents surfactant concentration, and 

the orange line represents PW compatible HVFR concentration. All chemicals are 

measured in concentration ratios of gal/1000gal.  

Although the trends observed in figure A.1 and figure A.2 are straightforward, the 

evidence is anecdotal and needs to be accompanied by a model. With so many moving 

parts, it can be hard to dissect the treatments and draw any useful conclusions about the 
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effectiveness of altering any design parameters. Ramirez and Iriarte (2021) noted this 

problem using high frequency time series treatment data when comparing a neural 

network and domain knowledge-based algorithm to identify the breakdown pressure of 

formation during a HF treatment.  

 

 

Figure A. 1 - Stage 29 treatment plot using only FW as base fluid and increasing rate to counteract STP 

decline 
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Figure A. 2 - Stage 26 treatment plot for using only PW as base fluids 

 

Figure A. 3 - Stage 29 chemical plot using only freshwater FR fluid system 
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Figure A. 4 - Stage 26 chemical plot using PW compatible FR fluid systems 

Estimating the effect of PW on STP is the primary motivation for the models 

constructed in this study. To reduce costs and lessen the environmental footprint from HF 

operations, the operator has also inadvertently added another way in which LE can be 

achieved in the field by altering the density parameter in the perforation friction equation. 

This will be important to incorporate into treatment and surface equipment designs as PW 

becomes more common in HF treatments. There have been other studies using 

multivariate regression to characterize HF treatments. Kroschel, Rabiei, & Rasouli 

(2022a) used multivariate regression models to investigate the marginal effects of design 

parameters on average STP. 

The time series data for the study was collected from the treatment for stages 25 

and 29 on a single well. The construction of a difference-in-difference (diff-diff) model 

for HF treatments is not quite as straightforward as in social sciences, mainly because of 
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the control group. In social sciences, the treated and control groups are viewed side by 

side over time. However, since two treatments cannot be viewed side by side in the same 

well over the same time period, a control stage was selected that was close to the 

treatment stage. As stated earlier, due to the proximity of the stages in the wellbore, it is 

assumed that reservoir and geomechanical properties will be the same in both treatments. 

This assumption allows for the use of stage 29 as a control when constructing the diff-diff 

model. The longitudinal data used for the multivariate model was from stage 25 in the 

well. The treatment data was analyzed raw only excluding data for pressure tests.  

The swap from PW to FW was then marked in the control stage at the same point 

in the time series data. Again, these stages were not viewed side by side over the same 

period, but it is assumed that the stages would not have behaved differently had they been 

pumped at the same time. 

Because of a unique tank and manifold design, the operator was able to switch 

between PW and FW “on the fly”, meaning the water source can be switched without 

shutting down the frac pumps. This allows for the utilization of as much PW as possible 

even if there is insufficient volume to pump an entire stage. This unique design also 

allows for the utilization of longitudinal data where we can observe the effects of 

switching water sources on treatment of an individual stage over time. The treatment plot 

for this design is shown in figure A.5 with the corresponding chemical plot shown in 

figure A.6. When comparing with figures A.1 and A.3, we see the same trend of a 

relatively constant STP when pumping PW and a general decline when using FW. The 

chemicals and corresponding colors shown in figure A.6 are the same as figures A.3 and 
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A.4. Figure A.6 shows that PW was pumped for the first half of the stage and FW was 

pumped for the second half of the stage.   

 

Figure A. 5 - Stage 25 treatment plot highlighting the effect of PW on STP 
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Figure A. 6 - Stage 25 chemical plot highlighting the switch between fluid systems during stage 

 

This study will compare two econometric models that attempt to characterize the 

difference in STP using PW as a base fluid for HF treatments instead of FW. First, a diff-

diff model will compare the differences between stages 25 and 29 comparing the 

treatment stage pumped with PW and FW (stage 25) and a control stage pumped solely 

with FW (stage 29). Diff-diff models are generally used in social sciences to attempt to 

identify the effects from policy actions using a group that received a particular treatment 

and comparing those results to a control group. Next, a general multivariate regression 

model was created using the longitudinal data from stage 25 that contains both PW and 

FW using a dummy variable for PW use. Due to the stochasticity and complexity of 

unconventional reservoirs and HF treatments, simple, qualitative models should be 
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applied instead of more detailed models (Cleary, et al., 1993) because more complex 

models are not necessarily likely to be more accurate, but they are more likely to contain 

mistakes due to assumptions (Bailey, 2017). Much like social systems, these flexible 

statistical models may better capture the complex relationships in HF than more detailed, 

complex models. To the author’s knowledge, there is no study attempting to use diff-diff 

models to characterize and investigate the effects of altering parameters mid-stage on 

STP. 

 

As stated earlier, diff-diff models are generally used in social sciences to evaluate the 

effect of enacted policy. However, these models can be used anytime that there is a 

specific and identifiable point when a treatment is enacted on a treatment group. Then, 

these results are compared against a reasonable control group. After controlling for other 

factors, it is assumed that the differences in the differences of the means of each group 

are due to the treatment (Bailey, 2017). Eq. A2 shows the general form for a diff-diff 

model and is the base for the model constructed in this study (Bailey, 2017): 

𝑌Pv = 	𝛽< +	𝛽S𝑇𝑟𝑒𝑎𝑡𝑒𝑑P +	𝛽>𝐴𝑓𝑡𝑒𝑟v +	𝛽?(𝑇𝑟𝑒𝑎𝑡𝑒𝑑P ∗ 𝐴𝑓𝑡𝑒𝑟v) +	𝜖Pv.     (A2) 

 

Where 𝑇𝑟𝑒𝑎𝑡𝑒𝑑P	equals 1 for a treated zone (stage 25) and 0 for a control zone (stage 

29). 𝐴𝑓𝑡𝑒𝑟v equals 1 for all observations after swapping base fluids for both the treated 

and control zones, and 𝑇𝑟𝑒𝑎𝑡𝑒𝑑P ∗ 𝐴𝑓𝑡𝑒𝑟v represents the interaction of treatment and 

control zones before and after the fluid swap during the treated zone (Bailey, 2017). 

There exists an average STP that the control stage will experience which is captured by 

𝛽<. The average STP of the treated well is then captured by 𝛽< +	𝛽S𝑇𝑟𝑒𝑎𝑡𝑒𝑑P. Notice 
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this can be more, less, or equal to the average STP of the control well depending on if the 

𝛽S coefficient is positive, negative, or zero respectively. It is important to note the 

difference between this experiment and the way in which a diff-diff model is set up in a 

policy analysis. In a policy analysis, the effects between the treatment and the control 

group are measured by taking a difference of the differences in the means after a 

treatment is prescribed, over the same time period. However, for this experiment, the 

effects that we are trying to estimate take place before the “treatment” takes effect. In 

other words, we did not observe the control and treated stages, use PW on the treatment 

stage and then observe the effects afterwards. The process was in reverse. So, since the 

“treatment” or PW will be used in the beginning of the stage, the switch to FW will act as 

the treatment.  

The 𝐴𝑓𝑡𝑒𝑟v term attempts to account for time effects that would exist in the 

absence of treatment. This equals 1 for all time periods for both the control and treatment 

wells after the treatment takes effect (i.e. after the switch to PW in the treated stage).  

The key coefficient is 𝛽? which will equal 1 in the treatment well after treatment takes 

affect and 0 for the control well after the treatment takes effect (since the control well is 

denoted with a 0 via the 𝑇𝑟𝑒𝑎𝑡𝑒𝑑P variable). This coefficient tells us the additional 

effects due to treatment beyond the preexisting conditions for the treated and control 

stages (Bailey, 2017).  

The model also allows for the control of other variables. The models in this study 

will also control for pump rate and sand concentration which will also influence STP 

from friction, hydrostatic pressure, and perforation erosion.  
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Next, we will construct a more general multivariate regression model simply by 

using a binary variable to indicate when PW is being pumped. In the data set, 1 will 

indicate if PW is being used and 0 will indicate FW and the results will therefore be 

relative to FW. The general form of the equation is shown in Eq. A3 (Bailey, 2017): 

 

𝑌P = 	𝛽< +	𝛽S𝑋S + ⋯+	𝛽i𝑋i + 	𝜀.    (A3) 

 

Table A.1 shows the regression results for the diff-diff model and table A.2 shows the 

results from the longitudinal data set. Both models estimate statistically significant effects 

on STP from using PW as base fluid. 

Table A. 1 - Regression results from the diff-diff model. 

 Dependent variable: 

 STP (psi) 

Treatment 1,087.703*** 

 (26.599) 

After -925.263*** 

 (24.507) 

Proppant Concentration (ppg) -44.451*** 

 (14.870) 

Total Pump Rate (bpm) 38.847*** 

 (0.516) 

Treatment*After Interaction 264.257*** 

 (37.501) 

Constant 5,406.875*** 



 

 149 

 (38.695) 

Observations 5,002 

R2 0.729 

Adjusted R2 0.729 

Residual Std. Error 591.927 (df = 4996) 

F Statistic 2,686.602*** (df = 5; 4996) 

Note: *p**p***p<0.01 

 

 

 

Table A. 2 - Regression results from the longitudinal model.  

 Dependent variable: 

 STP (psi) 

Proppant Concentration (ppg) 103.956*** 

 (19.793) 

Total Pump Rate (bpm) 28.395*** 

 (1.209) 

Produced Water as Base Fluid (binary) 1,074.255*** 

 (41.186) 

Constant 5,829.634*** 

 (86.773) 

Observations 3,439 

R2 0.230 

Adjusted R2 0.229 

Residual Std. Error 775.409 (df = 3435) 

F Statistic 342.165*** (df = 3; 3435) 

Note: *p**p***p<0.01 
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When comparing the results for the two models, it appears the diff-diff model (table 

A.1) not only explains more variance in the data with an R2 of 0.729 (compared to 0.23 in 

the multivariate model), but the coefficients and their respective signs seem appropriate 

given what is known about wellbore dynamics. Overall, the diff-diff model seems to 

work better in characterizing the effects of PW on HF stimulation.  

Referring to table A.1, the diff-diff model estimates 5406.875 psi as the expected 

average STP for the control stage. The average expected STP for the treatment stage is 

5406.875 + 1087.703 = 6494.578 psi. This is the result we would expect as we observed 

qualitatively that the STP was higher in the treated stage. The 𝛽? coefficient of 264.257 

estimates the effects above and beyond those not fixed within the stages over time.  

The coefficient estimates for 𝐴𝑓𝑡𝑒𝑟v is −925.263. This captures the change in the 

dependent variable, STP, in the treatment and control stage after switching to FW. This 

makes sense intuitively and appears to align with the qualitative investigation of the 

treatment plots for the treated and control stages in figures 1 and 5, respectively. 

However, when comparing to the treatment plots, the negative effect on STP in the 

control stage may be due to things like perforation erosion and may be due to a difference 

in density in the treatment stage. 

For proppant concentration, we see that the coefficient estimate is -44.451 indicating 

that a one ppg increase in sand concentration will yield an expected 44.451 psi decrease 

in STP. This makes sense intuitively as we would expect higher sand concentrations to 

increase hydrostatic pressure, thus decreasing STP, and increased sand concentration 

would increase perforation erosion thus decreasing STP.  
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The coefficient estimate for total pump rate is 38.847 indicating an expected 38.847 

psi increase in STP with a one bpm increase in total pump rate. This is expected due to 

friction. 

Overall, these results align with the qualitative investigation and knowledge of 

wellbore dynamics. The 𝛽? coefficient estimate of 264.257 estimates the effects above 

and beyond those not fixed within the stages over time. These effects are after switching 

to FW in the treatment and control stages. This indicates a positive and statistically 

significant effect on STP for the treatment stage after switching to FW in the middle of an 

HF treatment. This suggests there may be other processes (chemical or mechanical) that 

are taking place in the reservoir due to PW re-entering formation. This result is backed by 

some evidence in literature from disposal well injection of PW and will be discussed in 

the next section.  

Although the general multivariate regression model results provide an estimate of the 

expected increase in STP due to using PW, the coefficient interpretation for proppant 

concentration does not make sense. Although we would expect the coefficient for 

proppant concentration to be negative (i.e. STP should decrease with an increase in 

proppant concentration), the coefficient of 28.395 for pump rate is reasonable and we 

would expect an increase in pump rate to increase STP, all other things begin equal. The 

PW binary coefficient tells us that if we use PW as a base fluid (PW Binary = 1), we 

expect to see a 1074.255 psi increase in STP. This estimate seems to be in line with what 

was observed qualitatively comparing figure A.1 and figure A.2. Although it’s possible 

that increases in proppant concentration may in fact increase STP, the model may also be 
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endogenous. Endogeneity leads to the deduction of causal relationships that may be 

spurious and can be defined broadly as correlation between independent variables and the 

error term (Bailey, 2017).  

Maybe the most important note is that with some forethought and prior planning, diff-

diff models may provide a tool to help answer tough questions that the O&G industry 

faces. Since each well is a unique experiment, it is difficult, if not impossible, to replicate 

the experiments and draw conclusions based on any replicable results. However, if 

reasonable controls are in place prior to operations starting, it may be possible to design 

stages, wells, and operations so that they are able to be reproduced as best as possible. As 

a hypothetical example, two wells on the same pad that are drilled in the same formation 

may be HF in parallel with each other where one well is used as a control for 

experimental stages on another. Another example may be if there are multiple pads with 

multiple wells in an area and two wells are drilled in the same formation, they may be HF 

in parallel with each other to provide a treatment well and a control well with sufficient 

distance between the two to alleviate concerns about stress shadows effects on treatment. 

This type of study may also be very useful if something such as fiber optics are available. 

With the industry focus shifting towards cost reduction (Barree, 2020), it will become 

increasingly important to plan these experiments in conjunction with operations if we are 

to make practical and meaningful engineering advances.  

Water costs in the Bakken are upwards of USD 5 per bbl of freshwater with disposal 

costs around USD 9 (Ba Geri et al. 2019). These high prices reflect the growing concern 

about FW scarcity as well as opportunity costs. Considering the economic cost (including 

the opportunity cost), it is most likely more efficient to utilize as much PW as possible in 
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lieu of FW. The PW could also be used to support coal mining and irrigation with 

improved quality (Tomomewo, et al., 2021) and may provide another source of reuse. 

More efficient reuse of PW may reduce overall transportation costs and emissions 

associated with PW disposal thus further reducing the environmental impact from 

operations. Dow et al. (2022) identified the opportunity to reduce emissions from rig 

activities by increasing operational efficiencies. This will become increasingly important 

as hydrocarbons will rely heavily on O&G to improve the quality of life for the world’s 

expanding population in the future (Dow et al, 2022). 

There may be additional cost considerations with PW reuse. Higher STP tends to 

limit pump rate and therefore increase stage pump time. This may be a significant source 

of increase in treatment cost that could offset gains made from reusing PW.  

Concerns have been raised about the depletion of surface and groundwater for HF 

operations (Hausman & Kellogg, 2015). This water is not being used in other industries 

within the state of North Dakota, particularly agriculture, creating an opportunity cost, or 

the cost of forgoing use in other sectors. Because the FW is normally procured from 

multiple sources, there is also a cost imposed on those by simply being downstream from 

a private entity who may sell the FW on their land to an O&G operator. The state of 

North Dakota recognizes the following hierarchy for the distribution of FW as a resource 

(Kurz, et al., 2016): 

1. Domestic use 

2. Municipal use 

3. Livestock use 

4. Irrigation use 
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5. Industrial use 

6. Fish, Wildlife, and other recreation use 

 

This hierarchy represents a list of opportunity costs for FW use. It’s apparent the state 

of North Dakota values FW use in sectors more than Industrial use, so there may be 

significant opportunity costs associated with use of FW in HF. This is further evidence 

that reducing FW consumption for HF, while maintaining production, provides further 

economic benefit. 

Fluid treatment of PW is out of the scope of this study as data was not collected for 

PW quality and composition. More research would need to be performed to investigate 

whether different qualities of PW fluid may change the additional effects estimated by 

the diff-diff model. This may be of interest as it is reasonable to assume that different 

formations with varying geological properties may react differently to treatments with 

PW as a base fluid. Previous research suggests that treating pressure and water quality are 

linked to each other (Ochi, Dexheimer, & Corpel, 2013). No matter the degree of 

treatment prior to re-injection, PW will always contain residual oil that will affect 

reservoir interface plugging and could create relative permeability issues (Ochi, 

Dexheimer, & Corpel 2013, Rossini et al. 2020). Rossini et al. (2020) identify total 

suspended content as the third most important factor affecting bottom hole fracturing 

pressure in their PW re-injection models (Rossini, et al., 2020). Therefore, the additional 

effects estimated by the models may be plugging due to residual solids in the PW. A need 

to augment these models with production and fiber optic data follows logically from the 

previous work and the models constructed in this study. If production increases were 
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realized, further research would need to be performed to investigate whether the increases 

were due to LE or the use of PW.   

 

• PW can be effectively reused in HF treatments. With unique manifold, tank, and 

valve designs, it’s possible to incorporate PW into treatments at any point so PW 

volumes on surface will not be a binding constraint on operations. Unique 

approaches and effectively incorporating PW into HD treatments will become 

essential to reduce the environmental impact from operations. These designs are 

discussed in Appendix B; 

• Using the tank and manifold layouts in Appendix B, it is also possible to 

incorporate PW into wireline operations and realize further substitution of FW for 

PW. The manifold and tank layouts are discussed in Appendix B. Appendix C 

proposes a simple mass balance algorithm used in the field for spotting acid 

during WL runs that decreases the amount of fluid needed. This produces further 

cost savings. 

• It is apparent from the perforation friction equation that increasing base fluid 

density increases perforation friction and can counteract the effects of declining 

STP throughout the stage due to things like increased perforation erosion. This 

assertion is backed by qualitative investigation. This assertion is also backed by 

the models constructed in this study. Therefore, increasing rate or limiting the 

number of perforation or restricting perforation diameter are not the only ways to 

counteract declining STP during treatment;  
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• The diff-diff model constructed in this study estimates additional effects, other 

than stage and time fixed effects, on STP from treatments using PW. These 

additional effects may be caused by an interaction of PW with formation. PW 

injection models in literature suggest that suspended solids in PW may also have 

an effect on bottom hole fracturing pressure. These may be the additional effects 

captured by the diff-diff model constructed in this study. Further analysis should 

be done on water treatment and the effects of PW quality in HF fluids has when 

interacting with the reservoir;  

• There may be substantial gains from reusing PW in terms of a circular economy 

by reducing disposal costs. Using PW for HF substitutes FW and provides an 

opportunity for this resource to be used in other sectors of the economy, thus not 

incurring the opportunity cost of using FW for HF treatments; 
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Appendix B: Produced Water Tank and Manifold Layout for Disposal 
 

Recycling and reuse of produced water from oil and gas (O&G) operations is of 

interest to the state of North Dakota, onshore USA, and companies alike. By reusing 

produced water, companies can decrease their disposal, trucking, and freshwater 

consumption costs. North Dakota has an interest in recycling and reusing produced water 

(PW) because of the impact freshwater (FW) consumption can have on local economies 

and environmental spillovers of produced water disposal, both of which may dampen 

public interest in O&G extraction.  

There is a conflation in the O&G industry with the use of PW to augment FW use 

in support of operations and the total replacement of FW with produced water in 

operations. There also seems to be an implicit assumption that to effectively incorporate 

PW into operations, a salt tolerant fluid system or friction reducer is necessary and 

sufficient. However, because stages like a wellbore flush in treatments and wireline pump 

down operations do not require a fluid system to maintain its integrity for proppant 

carrying capacity, these stages do not require such a fluid system. It is therefore possible 

to alter tank arrangements, manifold layouts, and valve placement to use PW in these 

instances. These changes also allow the flexibility to use FW in instances of produced 

water shortages due to the irregularity of delivery to location. Furthermore, in colder 

temperatures, these layouts have the added benefit of allowing continual circulation of 

FW to avoid freezing.   

The designs in this study have already been implemented by certain operators in 

North Dakota that the author has consulted for. While the author realizes that the tank 
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arrangements in this study will not alter fluid compatibility and do not allow complete 

substitution of FW for PW, they do allow for the possibility to substitute FW for PW 

where fluid compatibility is not an issue. These designs also allow operators to use FW 

when necessary to avoid shutting down operations, which can be costly. Shutting down 

operations can also be dangerous in winter. Thus, there are parts of a frac design and 

completions operations where manifold and tank arrangements are sufficient to substitute 

FW for PW while also providing the added flexibility of switching between fresh and 

produced water on-the-fly.    

The practice of disposing of PW is of importance to the operators that stand to 

accrue cost savings as well as the state of North Dakota. Drilling, completions, and 

production operations all produce large amounts of wastewater that is primarily disposed 

of through saltwater injection wells, mostly into the Dakota formation (Energy and 

Environmental Resource Center, 2016). The Energy and Environmental Research Center 

(EERC) estimates that saltwater disposal volumes have increased by 341% from 2008 to 

2014 and may increase another 328% between 2014 and 2035 (EERC, 2021).  

The opportunity cost of water use is increasingly important in parts of the world 

where water is scarce (Al-Muntasheri, 2014). Some previous studies have already been 

undertaken investigating the use of flowback water in frac operations. The produced 

water from the Bakken is highly saline with a TDS range of 170,000-350,000 ppm 

(Tomomewo, et al., 2020). Samples from the Bakken formation have also shown a pH 

and specific gravity of 4.56 and 1.19, respectively (Griffin, Poppel, Siegel, & Weijers, 
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2014). There have also been field trials with salt-tolerant friction reducers (FRs) with 

some success (Wilson, 2017).  

It’s also important to note that along with technologies such as salt-tolerant FRs, 

effective programs must also be implemented to allow drilling and completions 

operations to operate efficiently (Paktinat, O'neill, & Tulissi, 2011). This may include 

things like “stimulation design, execution, and effectiveness” (Griffen et al. 2014). When 

considering “execution” and “effectiveness” in a stimulation design, this not only 

includes the technical aspects like fluid and frac design but should also include the ability 

to execute operations effectively as well. For instance, the randomness of PW being 

recovered can lead to supply issues that can be costly to operations. This may slow down 

or even temporarily shut down operations. This can be costly and dangerous during 

winter operations in places like the Williston basin. Therefore, it is also necessary to have 

the ability to use FW as well as PW during stimulation treatments. The layouts in this 

study make switching between PW and FW possible and will not interrupt stimulation 

operations and should allow almost all pump down operations to be performed with PW. 

While these advancements don’t completely eliminate the use of fresh water, significant 

decreases in consumption can be made.  

This study aims to provide a water transfer surface design, tank arrangements, and 

valve placement that may be utilized on (frac) locations that will incorporate PW into frac 

designs and wireline pump down operations so it may be reused and recycled on site. It’s 

also important to note that the term “produced water” includes water from flowback 

operations as well as any water cut from production. 
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This study provides three layouts that can be used on frac locations that are 

capable of disposing of PW during completions operations. These designs provide a 

starting point and can be altered when necessary. Instances of changes may include things 

like space limitation and equipment arrangements. Layout 1 provides a design for 

incorporating PW into wireline pump down operations. Layout 2 can be used during frac 

operations. Finally, layout 3 will combine the two that can be used in temperatures above 

freezing or as pad size and layout allows. For each layout, it is recommended to place the 

tanks at the edge of location and utilize a drive-over for the suction or discharge hoses. 

The drive-over simply protects the hoses while allowing traffic to be able to flow through 

location. There are numerous ways these can be built and the operator should use 

different materials as they see fit. Typically, these have been constructed with rig mats 

and steel plates, although some service companies offer pre-built drive-overs.   

One of the main problems with incorporating PW into frac operations has been 

the resources necessary to store enough fluid for twenty-four hour operations (Boschee, 

2012). However, this need not be the case. Problems may arise if an operation relied 

solely on PW to pump entire stages. The randomness of flowback rates, water cuts, frac 

operations, truck travel, and weather conditions can create bottlenecks and shortages 

which would require operations to start and stop unnecessarily due to insufficient 

produced water volumes to pump an entire frac stage. A salt tolerant fluid system is not 

sufficient to continue operations in these instances. However, if an operator were able to 

switch between fresh and produced water effectively, safely, and quickly, much of the 

costs associated with these bottlenecks would be diminished or eliminated. It’s also 

important to note that with efficiency gains and an increased number of stages being 
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pumped and perforated per twenty four hour period, it may not be necessary for an 

operator to pump an entire frac stage with produced water to effectively reuse it. If the 

rate of reuse on location through wireline plug pump downs, wellbore flushes, brine caps 

on the wellhead, etc. exceeds the rate from flowback and water cuts, there is no need for a 

salt-tolerant fluid system to effectively reuse produced water. 

Figure B.1 shows the tank, valve, and manifold layout to be utilized for wireline 

pump down operations. The tanks that are generally used are 400 bbl upright tanks with 4 

in. hose connections and hoses. Connections to the service company pump down 

equipment will vary and the operator should consult with the service company as to the 

best setup so achieve sufficient rate for pump downs. It should be noted that it is best 

practice to offload PW through a getty box and into the tanks through a line into the top 

of the tanks. A getty box is an enclosed apparatus that contains a connecting point for 

trucks to offload. This allows the connection to be broken without spilling any residual 

fluid in the line. It’s also best practice to leave the tanks open to each other to equalize at 

the manifold or other equalizing hoses between the tanks. By doing this, the tanks are 

more easily equalized, thus minimizing any mistakes caused by human error. If it is 

necessary to switch to FW, it simply requires isolating the produced water tanks at the 

manifold and opening the two valves on the manifold to fresh water. This should be 

performed prior to starting the pump down depending on PW levels.  
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Figure B. 1 - Layout 1 Depicting pump down manifold design with ability to switch between fresh and 

produced water. 

 

This layout also has the benefit of being able to continuously circulate the FW 

through transfer lines from the fresh water impoundment.  



 

 163 

Heavier brine is also needed on locations during winter operations to prevent 

wellheads and equipment from freezing. It is recommended to use the tank furthest from 

the drive-over for this purpose. This enables the entire manifold to be filled with heavy 

brine and reduces the probability of having a dead spot of FW that can create ice plugs.  

Figure B.2  shows the layout that enables operators to substitute FW for PW in flush, 

pad volumes, low sand concentration stages, or any other place the operator may want to 

cut out FW from the treatment design. Usually, a drive over is not necessary with this 

design because the blender will be spotted at the end of the manifolds with the rest of the 

frac equipment along-side of it. If a drive-over is necessary in some situation, it may be 

used in the same way as in figure B.1. There are some important features to note that will 

help operators and service companies during operations: 

 

• FW transfer lines should be rigged in such a way that they are able to circulate 

through the entire FW manifold to avoid any ice plugs. The size of the suction 

hoses from water transfer to the frac equipment will depend on the connections 

the frac equipment has. Operators should consult with the service company to 

ensure sufficient rate depending on treatment design.  

• PW tanks may be equalized to each other or through the manifold. Care should be 

taken when offloading produced water because the rate of offload may be greater 

than the rate at which the tanks equalize. This will prevent any tanks from 

overflowing. 

• The brine manifold should be tied into the FW running to the blender at a point 

furthest from the blender so it may be brined up when needed. 
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Figure B. 2 - Layout 2 Depicting Manifold and Valve Design for Pumping PW with Stimulation 

Equipment. 

Using the layout in figure B.2 provides the service company and operator a simple 

way to swap between FW and PW as the design or volumes allow. Since hauling PW to 
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location from production facilities or other operations is irregular, this design allows for 

flexibility and does not require one or the other to pump a frac stage. The two gate valves 

on the FW manifold and PW manifold allow the service company to easily swap between 

the two as needed. If the switch needs to be made on-the-fly, open one set of valves 

before closing the other to ensure there is no loss of suction at the blender. For example, 

if a stage is being pumped with FW and the service company wishes to switch to PW for 

flush, open the produced water knife gate valves and then close the fresh water valves to 

maintain prime.  

Figure B.3 shows a combined layout for both frac and wireline pump down that 

will work in warmer weather but will most likely cause too many problems in winter. The 

pump down common manifold is tied into the frac PW and FW manifolds. This design 

does provide the benefit of having consolidated operations. This layout will require 

increased monitoring of the PW tanks as they are common for both frac and wireline and 

the operations may interfere with one another.  
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Figure B. 3  - Layout 3 Depicting Manifold and Valve Design for Pumping Produced Water with 

Stimulation Equipment. 
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The above three designs allow operators to efficiently dispose of produced water 

without having to sacrifice downtime in operations due to insufficient produced water 

volumes. However, this process does require the continuous monitoring of tank volumes 

and freshwater lines. If the process is executed effectively, operators may see decreases 

in well costs by reducing disposal fees and providing sustainable solutions to freshwater 

consumption and truck traffic (Barnes, et al., 2015).  

First, substituting fresh water for produced water in frac designs and pump down 

operations can reduce freshwater costs. Consider a wellbore design for a well drilled in 

the middle Bakken with 7 in. 32 # casing string from 0 ft. at the tubing head to 10,500 ft. 

with liner top at 10,500 ft. and a 4 ½  in. 13.5# cemented liner to a TD of 20,000 ft. MD. 

This wellbore will have a vertical capacity of 0.0360 bbl/ft and a liner capacity of 0.0149 

bbl/ft. Also assume each frac stage has an interval length of 220 ft. So, the flush volume 

will decrease by the volume equivalent of total length of wellbore from plug to plug, or 

220 ft. *(0.0149 bbl/ft) = 3.3 bbls. Using this logic, the wellbore volumes for each type of 

wellbore is summarized in table B.1. A second wellbore design will also be considered 

which only differs in that there is 4 ½ tie back ran from liner top to surface, thus 

decreasing the vertical volume. The flush volumes for each design are summarized in 

table B.1. Note, these volumes do not include the volume of surface lines.  
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Table B. 1 - Example volumes and cost savings for 7 in. and 4.5 in. wellbore designs. 

Stage 
Number 

TD 
(feet) 

Lateral 
Length 
(feet) 

7 in. Flush      
Volume  

(bbl) 

4 ½ in. Flush 
Volume (bbl) 

Cost saving 
per flush for 7 

in. (USD) 

Cost saving per 
flush for 4 ½  in.  

(USD) 

1 20,000 9,500 519.6 298.0 649.4 372.5 

2 19,780 9,280 516.3 294.7 645.3 368.4 

3 19,560 9,060 513.0 291.4 641.2 364.3 

4 19,340 8,840 509.7 288.2 637.1 360.2 

5 19,120 8,620 506.4 284.9 633.0 356.1 

6 18,900 8,400 503.2 281.6 629.0 352.0 

7 18,680 8,180 499.9 278.3 624.9 347.9 

8 18,460 7,960 496.6 275.1 620.8 343.8 

9 18,240 7,740 493.3 271.8 616.7 339.7 

10 18,020 7,520 490.0 268.5 612.6 335.6 

11 17,800 7,300 486.8 265.2 608.5 331.5 

12 17,580 7,080 483.5 261.9 604.4 327.4 

13 17,360 6,860 480.2 258.7 600.3 323.3 

14 17,140 6,640 476.9 255.4 596.2 319.2 

15 16,920 6,420 473.7 252.1 592.1 315.1 

16 16,700 6,200 470.4 248.8 588.0 311.0 

17 16,480 5,980 467.1 245.6 583.9 306.9 

18 16,260 5,760 463.8 242.3 579.8 302.8 

19 16,040 5,540 460.5 239.0 575.7 298.7 

20 15,820 5,320 457.3 235.7 571.6 294.6 

21 15,600 5,100 454.0 232.4 567.5 290.6 

22 15,380 4,880 450.7 229.2 563.4 286.5 

23 15,160 4,660 447.4 225.9 559.3 282.4 

24 14,940 4,440 444.2 222.6 555.2 278.3 

25 14,720 4,220 440.9 219.3 551.1 274.2 

26 14,500 4,000 437.6 216.1 547.0 270.1 
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27 14,280 3,780 434.3 212.8 542.9 266.0 

28 14,060 3,560 431.0 209.5 538.8 261.9 

29 13,840 3,340 427.8 206.2 534.7 257.8 

30 13,620 3,120 424.5 202.9 530.6 253.7 

31 13,400 2,900 421.2 199.7 526.5 249.6 

32 13,180 2,680 417.9 196.4 522.4 245.5 

33 12,960 2,460 414.7 193.1 518.3 241.4 

34 12,740 2,240 411.4 189.8 514.2 237.3 

35 12,520 2,020 408.1 186.5 510.1 233.2 

36 12,300 1,800 404.8 183.3 506.0 229.1 

37 12,080 1,580 401.5 180.0 501.9 225.0 

38 11,860 1,360 398.3 176.7 497.8 220.9 

39 11,640 1,140 395.0 173.4 493.7 216.8 

40 11,420 920 391.7 170.2 489.6 212.7 

Totals 
  

18225.2 9363.2 22781.5 11704.0 

 

 

We can see from table B.1 that the cost savings accrued (assuming 1.25 USD purchase 

price per barrel of FW which is within the range outlined by Boschee (2012)) by 

substituting FW for PW can yield significant cost savings per well.  

The totals provided at the bottom of table B.1 show that even substituting fresh 

water for PW solely for flush would yield a savings of over 18,000 bbls of FW for one 7 

in. wellbore design. These savings can scale rapidly if multiple operators just use PW for 

flush. The savings are further amplified if most pump down operations also utilize 

produced water; thus, for one well on one pad, there is potential to save over 18,000 bbls 

of PW which may be redistributed to other sectors of the economy.  
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Estimating the amount of PW that may be reused during wireline plug pump 

down is harder to estimate. The amount of fluid required to pump a bottom hole assembly 

(BHA) down to plug setting depth is highly dependent on the pump-down efficiency 

(Walton, Nichols, & Fripp, 2019). Factors like plug design, friction in the wellbore, 

weight of BHA, residual proppant in wellbore, line tension, and bypass rates all affect the 

pump down efficiency (Walton et al. 2019). From the field experience of the author, it 

may take 400-450 bbl to pump a 3.68 in. OD plug to a depth of about 20,000 ft from liner 

top, which is usually around 10,500 ft. So, if PW is used for these plug pump downs, the 

operator should see even more savings in FW costs.  

There are some tradeoffs associated with this practice that may be worth 

mentioning. First, an operator runs the risk of pumping PW that may be contaminated 

with organic content as it is transferred from facilities and trucks on site. So, operators 

should treat this water the same as any other FW source. 

Next, the water that is brought from formation to surface is also very hot, usually 

in excess of 150°F. Now while this provides additional benefits to operations in the 

winter, it is a safety hazard to consider. Proper precautions should be taken when 

handling any of the hoses or working around the tanks.  

There are also considerations with water quality. These designs would be hard to 

implement if there were any H2S present in either flowback or PW. Again, special safety 

considerations would have to be taken into account if this were the case and operators 

should implement them accordingly. 
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Although not a problem with PW from production, solids could potentially pose a 

problem when reusing flowback water directly (Boschee, 2014). This is usually mitigated 

during flowback through filtration at the separating tank to avoid any solids disposal 

costs. If an operator wishes to reuse fluid from flowback operations after a screenout, 

there are numerous service companies that offer on-site filtration systems that are 

relatively inexpensive compared to trucking and disposal fees. Tank arrangement, 

manifold design, and valve placement can provide the augmentation of fresh water and 

produced water for stimulation operations. 

Fluid compatibility is not an issue during wellbore flush, wireline pump down, and 

any stage that doesn’t require sand carrying capacity. Therefore, fluid compatibility is not 

an issue during these stages and operations. Relying solely on PW and a salt-tolerant fluid 

system may cause shut downs in operations due to the irregularity of flowback, frac, water 

cuts, and weather. Therefore, a back-up plan is needed for these instances. The layouts in 

this study provide a back-up plan. Avoiding operational shut downs can prevent a positive 

feedback loop for compounding problems during winter operations. Operators may save 

thousands of barrels of FW, even by simply substituting FW for PW using wellbore flushes 

and wireline pump down operations.  

Nomenclature 

TD = Total Depth, feet 

MD = Measured Depth, feet 

OD = Outer Diameter, inches 

# = linear pound per foot of casing/tubing, lbm/ft 
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Appendix C: Simple Mass Balance Algorithm for Spotting Acid During 
a Wireline Run 

 

The oil and gas (O&G) industry has recently seen an increase in the development 

and deployment of machine learning and data mining techniques to become more 

efficient. Although these techniques can streamline operations and reduce human error 

through automation and prediction, they cannot yet develop wisdom and must, therefore, 

be augmented. This novel study presents such wisdom through an algorithm developed in 

the field for spotting acid during wireline operations. Although this is just one of many 

algorithms used in field operations, many of them are not documented as they lack data 

or were not developed through a series of complex equations and are thus, cast aside. 

However, as the O&G industry and field operations begin to automate, these practices 

will become vital resources that can help machine learning models built by data scientists 

gain wisdom. The algorithm developed in this study presents a process to place acid in 

the wellbore during wireline operations. Combining wireline and acid spotting operations 

can save pump time, make operations more efficient, and thus decrease costs. Combining 

these operations was also made possible by the development of a hydrochloric 

replacement acid that is non-corrosive on wireline equipment and necessary for the 

operation. Although the process was developed on two horizontal wellbore designs in the 

Williston basin, the process is robust and will work on any wellbore design. Additional 

operational considerations regarding the wellbore design are also presented.  

This domain knowledge or wisdom contained in human capital rather than data sets 

has been steadily decreasing in the O&G industry. Between January 2015 and November 
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2021, the number of employees in the O&G extraction sector decreased from around 

200,000 to about 140,000 (U.S. Bureau of Labor Statistics, 2021). This is a major loss of 

human capital and anecdotal and domain knowledge. Therefore, it must be captured and 

managed to successfully develop practical results from ML and automation. Symptoms of 

knowledge mismanagement include good ideas and best practices that are not effectively 

dispersed leading to repetition of past events and operations (Van Der Spek 2017). These 

symptoms can increase overall costs and may be quantified as the “cost of ignorance” (Van 

Der Spek 2017). 

The methodology for spotting acid during wireline operations set forth in this paper 

was developed though field operations on two different types of wellbore construction: the 

first is a 7” intermediate string with a 4.5” cemented liner and the second was a 4.5” tieback 

with a cemented 4.5” liner. The calculations to place acid are the same in both instances, 

and should be the same for any wellbore configuration, but the operational issues will be 

different.  

 

Figure C. 1 - Schematic of wellbore designs when developing acid spotting algorithm 
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Figure C.1 shows the wellbore designs present when developing the algorithm in this study, 

although this method should work on any wellbore design.  

The method developed in this study was developed out of the need for: 1) 

decreased freshwater (FW) consumption and 2) decrease pump time on the frac spread to 

decrease stage costs. Traditionally, the wireline tool string is pumped down hole to the 

desired depth using separate pumps from the frac spread. After the isolation plug is set, 

wireline pulls out of the hole and shoots the perforations while moving or “on the fly”. 

After the well is handed over to the frac, the frac spread spearheads acid (traditionally 

hydrochloric acid) and displaces it to clean up the perforations, clean up skin caused by 

cement, or aid in breaking down formation.  

The compatibility of newly developed hydrochloric acid replacement (HCR) that 

is non-corrosive to wireline equipment allows them to interact in the wellbore at the same 

time (Yocham, Allison, & Schwartz, 2021). This is the critical reason why the operations 

had to previously be kept separate. Compatibility allows the acid and tool string to run in 

the hole at the same time and on the wireline side of operations. Being able to spot acid 

during wireline operations allows for the acid to sit a small volume away from 

perforations once the frac spread begins to pump. This essentially eliminates one 

wellbore volume of fluid and thus decreases stage pump time and freshwater 

consumption.  

Yocham et al. (2021) conducted a case study on the deployment of acid during 

wireline operations. They noted significant efficiency gains in decreased time to reach 

designed pump rate and a decrease in the total stage pump time (Yocham et al. 2021), 



 

 175 

thus decreasing costs. This is possible because most pump down charges are included in 

packages and thus there is no cost associated with this pump time. Although Yocham et 

al. (2021) established the efficiency gains by spearheading acid during wireline 

operations, there is no formal method of performing the operation in the field.  

This study proposes a methodology to effectively place or spot acid during 

wireline operations at any desired point in the wellbore. This is formalized in equation 

C.1:  

 

 -BFbbl + PPD = F – SF                                                     (C.1)   

 

Where, 

 

BFbbl = Number of barrels to pump before/after starting pump down (bbl) 

PPD = Previous zone pump down volume (bbl) 

F = Wellbore flush volume to plug depth (bbl) 

SF = Desired safety factor (volume before plug depth) (bbl) 

 

More importantly,  

 

-BFbbl = F – SF - PPD                                                                                  (C.2) 

 

Equation C.2 calculates how much fluid volume is to be pumped before/after pumping 

acid. The sign convention is such that a (-) value for BFbbl indicates fluid volume 

(including acid) before starting pump down and (+) indicates fluid volume (excluding 

acid) after starting pump down. This process is necessary because the fluid required to 
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pump a tool string downhole depends on the drag and is not necessarily equal to the 

wellbore volume at the desired depth while pumping acid in the wellbore depends on 

casing capacities. This procedure requires performing at least one pump down prior to 

implementing this method. This will establish approximately how much fluid it will take 

to pump before the tool string reaches the desired depth. This process assumes the 

difference in volume between the previous and current pump down is negligible. This 

also assumes surface line volume is negligible.  

For example, if the previous pump down volume was 400 bbl, the flush volume to 

plug setting depth is 300 bbl, and a 50 bbl safety factor is desired, then equation C.2 

becomes -BFbbl = 300 – 50 – 400 = -150 bbl, or BFbbl = 150 bbl. This means that 150 bbl 

of fluid needs to be displaced during the pump down before pumping acid. So, if acid is 

clearing the well head at 150 bbl on the flowmeter after starting to pump down the 

wireline tool string, we can expect to pump approximately 250 bbl (PPD – BFbbl) before 

shutting down. This should put the acid 50 bbl short of the flush volume to the plug 

setting depth (300 bbl). Once operations are lined out, pump down volumes tend to 

decrease by a few bbl per stage.  

Conversely, if the previous pump down volume was 300 bbl and the flush volume 

to the plug were 400 bbl, with the same 50 bbl safety factor, equation C.2 yields -BFbbl = 

400 – 50 – 300 = 50 bbl, or BFbbl = -50 bbl. This would mean that you will need to pump 

50 bbl of fluid (including acid) before starting to pump down the tool string. So 

procedurally, pumping 50 bbl (including acid) then a 300 bbl pump down will leave the 

acid 50 bbl short of the volume to the plug (400 bbl).   
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Example 2 also represents the operation after encountering an inflection point in the well 

as plug setting depths progress towards the heel of the well where PPD < F. For example, 

if PPD = 50 bbl, F = 200 bbl, and SF = 50 bbl, then equation C.2 becomes  

 

-BFbbl = 200 bbl – 50 bbl – 50 bbl  

 

Or 

 

BBF = - 100 bbls 

 

This indicates that 100 bbl needs to be displaced before pumping the tool string 

downhole. This makes logical sense: If it will only take 50 bbl to pump the tool string to 

the desired depth, but the volume that the acid has to travel is 200 bbl, then it will need to 

be further down the wellbore before pumping the tool string to the desired depth.  

The above process also requires using a ball in place method, where the ball for 

the frac plug is secured onto the seat of the plug before being installed on the setting tool. 

The best practice is to set the plug, start the rate assist using a pump, and wait for 

pressure to start to increase to a point below the pop-off pressure. The pressure should 

start to fall off after successful firing of guns and the rate assist can be resumed.  

As the perforation depths move towards the heel of the well, there will come an 

inflection point where PPD < F. This is the case shown in Example 2 (although this may be 

the case for other operations as well). For example, if PPD = 50 bbl and F = 200 bbl, then 

equation (2) becomes  
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-BFbbl = 200 bbl – 50 bbl – 50 bbl  

 

Or 

 

BBF = - 100 bbls 

 

This indicates that 100 bbl needs to be displaced behind the acid before pumping 

the tool string downhole. This makes logical sense: If it will only take 50 bbl to pump the 

tool string to the desired depth, but the volume that the acid has to travel is 200 bbl (since 

it’s a fluid and subject to the wellbore volume), then it will need to be further down the 

wellbore before pumping the tool string to the desired depth.  

It’s worth noting here that this operation should be performed at the discretion of 

the operator depending on wellbore construction and the assumed level of risk. The first 

option is to pump the acid before wireline runs in the hole. The second option is to pump 

the acid while wireline is in the vertical section of the wellbore. Although this may be 

marginally quicker, there is an increased level of risk if the area between the ID of the 

casing and the OD of the tool string is sufficiently small. Problems may arise if the 

pumps are shut down too quickly creating large water hammers and surges. 

Combining wireline and acid spotting operations can yield significant savings in 

pump time by allowing the desired pump rate to be achieved more quickly and thus 

decreases overall stage pump time (Yocham et al. 2021). Although previous studies have 

investigated the cost savings, there is no established algorithm to properly execute pumping 

acid during a wireline run.  
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This study provides a methodology for placing HCR acid during wireline pump 

down operations to any desired depth in the wellbore. This will help formalize the process 

and disseminate the necessary knowledge to decrease the cost of ignorance (Van der Spek, 

2017).  

The methodology developed in this study will work for any wellbore design, thus 

providing a standard procedure for spearheading acid in the wellbore during wireline 

operations. 
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Appendix D: Supplementary Figures 
 

 

Figure D. 1 - Static water tanks holding fluid to be used for stimulation. Photograph was taken in 

Wyoming. 
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Figure D. 2 - Monoline with low and high pressure circuits. Photograph taken in Wyoming. 
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Figure D. 3 - Frac pumps hooking up to missile, converting low pressure fluid to STP. Photograph was 

taken in North Dakota. 
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Figure D. 4 - Fluid end of a positive displacement frac pump. Photograph was taken in Wyoming. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 184 

 

 

Figure D. 5 - Graphic of changes in global life expectancy since 1800 (Roser et al., 2013) 
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