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ABSTRACT 

Pipelines enable the largest volume of both intra and international transportation of oil 

and gas and play critical roles in the energy sufficiency of countries. The biggest 

drawback with the use of pipelines for oil and gas transportation is the problem of oil 

spills whenever the pipelines lose containment. The severity of the oil spill on the 

environment is a function of the volume of the spill and this is a function of the time 

taken to detect the leak and contain the spill from the pipeline. A single leak on the 

Enbridge pipeline spilled 3.3 million liters into the Kalamazoo river while a pipeline 

rupture in North Dakota which went undetected for 143 days spilled 29 million gallons 

into the environment. 

Several leak detection systems (LDS) have been developed with the capacity for rapid 

detection and localization of pipeline leaks, but the characteristics of these LDS limit 

their leak detection capability. Machine learning provides an opportunity to develop 

faster LDS, but it requires access to pipeline leak datasets that are proprietary in nature 

and not readily available. Current LDS have difficulty in detecting low-volume/low-

pressure spills located far away from the inlet and outlet pressure sensors. Some reasons 

for this include the following, leak induced pressure variation generated by these leaks 

is dissipated before it gets to the inlet and outlet pressure sensors, another reason is that 

the LDS are designed for specific minimum detection levels which is a percentage of 

the flow volume of the pipeline, so when the leak falls below the LDS minimum 

detection value, the leak will not be detected. Perturbations generated by small volume 

leaks are often within the threshold values of the pipeline's normal operational envelop 

as such the LDS disregards these perturbations. These challenges have been responsible 

for pipeline leaks going on for weeks only to be detected by third-party persons in the 

vicinity of the leaks. 
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This research has been able to develop a framework for the generation of pipeline 

datasets using the PIPESIM software and the RAND function in Python. The 

topological data of the pipeline right of way, the pipeline network design specification, 

and the fluid flow properties are the required information for this framework. With this 

information, leaks can be simulated at any point on the pipeline and the datasets 

generated. This framework will facilitate the generation of the One-class dataset for the 

pipeline which can be used for the development of LDS using machine learning.  

The research also developed a leak detection topology for detecting low-volume leaks. 

This topology comprises of the installation of a pressure sensor with remote data 

transmission capacity at the midpoint of the line. The sensor utilizes the exception-

based transmission scheme where it only transmits when the new data differs from the 

existing data value. This will extend the battery life of the sensor. The installation of the 

sensor at the midpoint of the line was found to increase the sensitivity of the LDS to 

leak-induced pressure variations which were traditionally dissipated before getting to 

the Inlet/outlet sensors.  The research also proposed the development of a Leak 

Detection as a Service (LDaaS) platform where the pressure data from the inlet and the 

midpoint sensors are collated and subjected to a specially developed leak detection 

algorithm for the detection of pipeline leaks. This leak detection topology will enable 

operators to detect low-volume/low-pressure leaks that would have been missed by the 

existing leak detection system and deploy the oil spill response plans quicker thus 

reducing the volume of oil spilled into the environment. It will also provide a platform 

for regulators to monitor the leak alerts as they are generated and enable them to 

evaluate the oil spill response plans of the operators. 
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Chapter 1 

Pipeline Leak Detection 

1.0  Introduction 

Pipeline leaks are one of the greatest challenges associated with oil and gas 

production. While the pipelines provide the most economical mode for transporting 

large volumes of both crude oil and refined products, they present a very high-risk value 

to the environment whenever there is a leak. These leaks can be either due to failures 

associated with age, deliberate acts of vandalization or pipe failure due to operational 

error. (Dey 2004). 

The very long distances and varied terrain where petroleum pipelines transverse, 

complicate the monitoring and maintenance of such pipelines. To overcome these 

challenges, a variety of techniques have been developed for the monitoring of these 

pipelines. These methods range from visual inspection (Guo et al. 2009), 

electromagnetic methods (Wang et al. 2012), acoustic methods (Juliano et al. 2013), 

ultrasonic, radiographic, and thermographic methods (Zheng and Yehuda 2013), and 

more recently transient-based inspection (Lee et al. 2008; Gong et al. 2018; Gong et al. 

2014).  
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The proposed methods are typically divided into the exterior, visual/biological methods, 

and interior/computation. Some authors also classify them into non-optical and optical 

methods or hardware and software-based methods. Exterior methods include acoustic 

sensing (Mahmutoglu and Turk 2018), fiber optic sensors (Png et al. 2018), vapor 

sampling (Boaz et al. 2014), and ground penetration radar (Hoarau et al. 2017).  

Visual/biological methods include AUV/Drone, Trained Dog/Human, etc. 

Interior/computation-based methods include mass-volume balance (Gao et al. 2018), 

negative pressure waves (Chen et al. 2018), pressure point analysis (He et al. 2017), and 

dynamic modeling (Xinhong et al. 2018). Several researchers have developed different 

methods for leak detection with varying characteristics and success levels. Classical 

references can be found in (Wylie et al. 1993; Henrie et al. 2016) more recently, using 

inversion methods in (Wu et al. 2015), The acoustic emission method was also reported 

by Muntakim et al. (2017). 

Other methods which comprise the installation of physical sensors such as optic 

fiber cables along the pipeline provide very reliable and robust leak detection and 

localization but at a very high cost. The fiber optic sensing, pressure point analysis, and 

dynamic modeling are capable of simultaneously detecting the leak size and location. 

Fluid transient waves provide a robust system for detecting pipeline characteristics 

during fluid flow (Bohorquez et al. 2018). However, this technique is highly sensitive to 

multiple system characteristics, and understanding the pressure signal response to 

different types of faults is often very challenging (Xu and Karney 2017). The transient-

based model with very minimal setup requirement and high detection accuracy has been 

the LDS method of choice as the results can be obtained quickly (Gong et al. 2013; Lee 

et al. 2006; Shi et al. 2017). 
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The mass balance method is one of the most popular methods in the industry for the 

detection and (segment-wise) location of leaks in long pipeline networks. This method 

utilizes the real-time transient model (RTTM). The transient model is used to determine 

the expected pressure along the pipeline and also the flow profiles. The actual data 

acquired from flow sensors installed on the line are then compared with the estimated 

values and the real-time calculation of the balance rate, defined by the difference of the 

actual estimated values serves to determine the pipeline mass/volume balance. The 

difference should be zero when there is no leak and when this difference exceeds a 

specific threshold, a leak is inferred and the appropriate alarms triggered, indicating the 

segment in the network where the unbalance is reported. (Whaley et al. 1992). 

Some of the challenges associated with the LDS based on the RTTM include the 

time required for the computation of the pipeline flow parameters using the transient 

model. This results in delays with the determination of pipeline leaks as the estimators 

used in the transient model require a long period to carry out the estimation. The 

estimation error may not converge to zero because these errors propagate along the line 

and affect the overall predicting performance of the LDS for leak diagnosis.  

Other factors which impact on the success of this system include unreliable data 

acquisition, the unexpected low resolution of pressure sensors and uncontrolled 

fluctuations are common implementation problems that may lead to false alarms for 

leak detection systems based on (open loop) transient models (Fukushima et al. 2000; 

van Reet and Skogman 1987; Modisette 2004; Liou, 1991). 

The hardware approach provides the most accurate leak detection and localization 

system, but its deployment is limited due to the very high costs associated with the 

sensor devices and the possibility of vandalization. The software-based LDS, on the 

other hand, relies on leak datasets and Machine learning for the robust Leak detection 
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system with superior performance but this approach relies on the availability of pipeline 

leak datasets for training the machine learning algorithms. The software-based approach 

has been shown to provide good performance with high accuracy. The advancement of 

cloud computing technologies supports the increasing popularity of this method 

(Adegboye et al. 2019). A major challenge with this approach is the fact that it is 

difficult to obtain the actual leak data for pipelines.  

Dynamic modeling is an alternative that helps to overcome the challenge of access 

to pipeline data. It is used to create and analyze models that mimic the actual field. The 

method combines various elements, such as the fluid type, external environment, 

pipeline material; length; and diameter, and analyzes parameters, such as flow rate, 

pressure, and temperature through complex relationships.  

A hypothetical leak situation is created on the pipeline model and the different 

parameters such as the flow rate, pressure, and temperature change are analyzed using 

computer simulations. The time-intensive nature associated with the pipeline network 

leads to the limited real-time capability of this system. The difference between the 

actual and the simulated data of the pipeline also introduces some errors into the actual 

results (He et al. 2017). These errors can be reduced by the introduction of machine 

learning algorithms that can learn the specific patterns of the pipeline flow using the 

synthetic data and make leak predictions without the need for explicit programming. 

(Mitchell 1997; Ian et al. 2016; Koza et al. 1996). This has the capacity of enabling the 

rapid detection of pipeline leaks when actual pipeline data is used. 

The impact of pipeline leaks is amplified by the delays in the detection of these 

leaks. Some leaks have been known to continue for days and weeks before being 

detected. The operators’ actions also play a part in determining the spread of the leak. 

The environment of the leak is one other critical parameter that aids the spread of the 
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leak. Leaks in offshore environments spread much faster as the water body serves as a 

transport medium for the fluid, and this makes it more difficult to contain and more 

devastating to the environment. Figure 1.1 shows the leak lifecycle of petroleum 

pipeline leaks 

 
Figure 1.1 Pipeline Leak lifecycle 

From the diagram in Figure 1.1, the pipeline discharges its contents into the 

environment under the pressure in the pipe. This continues well after the leak has been 

detected until the appropriate remedial action is taken. The remedial actions commence 

with the shutting down of the line and/or the diversion of the fluid. This leads to a 

reduction in the discharge rate of the fluid from the leak point and continues till the 

pipeline section is empty. The volume of crude oil dumped into the environment 

determines the cleanup costs, the environmental impact and the revenue loss that will be 

incurred by the operators. There is therefore a need for early detection of pipeline leaks 

as this will reduce the total volume of oil spilled into the environment and all the 

associated costs. 

1.1  Pipeline Leak Detection Strategies 

There are several strategies employed by operators for detecting pipeline leaks and 

all these approaches have their areas of strength and weaknesses. The most basic 

approach includes the use of line trackers and monitors to monitor the pipeline Right of 
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way and report any leaks to the operators. While this has a low deployment cost, it does 

not provide real-time coverage of the line and some sections of the lines are in 

inaccessible locations thus the leaks can only be discovered by the trackers when it gets 

to their villages or farmlands. Another approach utilized by operators includes the use 

of sensors installed along the line to detect the presence of pipeline leaks and report the 

same to the control room. Table 1.1 presents a summary of key leak detection strategies 

and their operational characteristics. 

Table 1. 1 Characteristics of leak detection strategies (Fiedler 2016) 

Meth

od 

Typical Min 

Detectable 

Leak Rate 

Time to 

Detect leak 

(liquid) 

Time to 

Detect leak 

(gases) 

Detectable 

types of leaks 
False Alarm 

Pressure 

Point 

Analysis 

> 5% Short Long 
Spontaneous 

leaks 
High 

Mass 

balance 

Method 

>1% Long Very long 

Spontaneous 

and Creeping 

leaks 

High 

Statistical 

Methods 
>0.5% Long Very Long 

Spontaneous 

and Creeping 

leaks 

Slight 

RTTM >1% Short Short 

Spontaneous 

and Creeping 

leaks 

Average 

E-RTTM >0.5% Very Short Short  

Spontaneous 

and Creeping 

leaks 

Slight 

1.2  Research Gaps 

The most significant research gap in literature is the lack of access to reliable pipeline  

leak data. Operators are not ready to release pipeline leak datasets for research due to 

the proprietary nature of the datasets and the regulatory implications of these datasets. 

(Adegboye et al. 2019). 

The second research gap is the delays and sometimes inability of the existing leak 

detection systems to detect low pressure/low volume leaks located far away from the 
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inlet of the pipeline. In this case, the pressure variation generated by the leak dissipates 

before it gets to the inlet pressure sensors and the flow volume difference is masked by 

the threshold values and fluctuation associated with the pipeline fluid. This results in the 

delayed detection of the pipeline leaks as shown in (Baumgarten 2022). 

The high cost associated with the development, deployment and management of leak 

detection systems is another challenge associated with the delays with deployment of 

the appropriate pipeline leak detection systems. 

1.3  Research Questions 

The following Research questions have been identified from a review of the literature 

and the leak detection practice in the industry. 

1. How can pipeline leak and no-leak datasets for specific pipeline networks be 

generated using simulation software.   

2. How can leak detection systems be designed to increase their sensitivity to low-

pressure leaks that occur far away from the inlet sensors, and which cannot be 

detected by these inlet sensors. 

1.4  Research Aim and Objectives  

The aim of this research is the development of a low-cost leak detection system to 

detect low-pressure/low volume pipeline leaks located far away from the inlet sensors. 

The objectives are listed below. 

1. Review existing data mining-based pipeline detection systems. 

2. Develop a horizontal pipeline model and generate the pipeline pressure profile 

3. Generate time series pipeline datasets using PIPESIM and Python for the leak/ No 

Leak Scenarios. 

4. Develop a leak detection architecture for the detection of low pressure pipeline leaks  
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5. Develop the leak detection algorithm using the developed leak detection 

architecture. 

1.5  Methodology  

The following approaches will be used in the execution of the research.  

1. Review existing Anomaly Detection methods for Time Series Data. 

2. Develop a pipeline model and simulate leak scenarios using PIPESIM and suitable 

simulation software to acquire pipeline leak dataset. 

3. Develop a pipeline dataset-generating model using PIPESIM and Python 

programming package. 

4. Develop the leak detection topology for detecting low volume leaks. 

1.6 Significance  

1. The PIPESIM simulation software and Python programming will be used to 

simulate the pipeline network and generate pipeline pressure datasets.  

2. The use of this simulation software will enable the generation of pipeline leak 

datasets which is one of the most significant challenges facing pipeline leak 

detection research. 

3. Deep learning models will be used to develop the leak detection and localization 

algorithm and the performance of these models will be evaluated using the 

simulated data. 

1.7. Expected Contribution 

The expected contributions include 

1. A framework for generating both leak and no-leak pipeline datasets for operator 

pipeline network using PIPESIM and Python software 
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2. A low cost leak detection system for detecting low volume leaks which would 

ordinarily be missed by the existing pipeline leak detection systems 

1.8 Thesis Structure  

This thesis consists of six chapters. 

Chapter 1 is an introduction to the research. A brief overview of pipeline leaks is 

given. The objectives, methodology and significance of this project are also presented.  

Chapter 2 includes a literature review of the studies related to pipeline leak 

detection and time series anomaly detection. The review covers time series data 

analytics, anomaly detection models, and a brief overview of the simulation software 

used in this study, PIPESIM. The features, elements and capabilities of the software will 

form the content of this Chapter. 

In Chapter 3, the materials and methods is presented. The experimental processes 

deployed to answer the research questions which includes simulations utilizing 

PIPESIM is presented in the chapter.  

Chapter 4 is a presentation of the results obtained from the numerical simulations 

performed in this study.  

In Chapter 5, a discussions of the results obtained in the research is presented.   

Chapter 6 presents the research contributions made by this work and also provides 

recommendations for further research. 

 1.9 Summary  

In this Chapter, we presented a brief introduction to pipeline leak detection. The 

objectives, significance, and methodology related to this project, as well as the structure 

of this thesis were also presented.  
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In the next Chapter, a review of the literature will be presented to give a 

background to the challenge of leak detection and the various time series data analytics 

and anomaly detection methods. This will include a review of field studies, analytical 

solutions, experimental methods, and numerical simulation. 
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Chapter 2 

Literature Review 

In this Chapter, we present a review of the literature on pipeline leak detection systems 

and algorithms. The chapter is divided into sections covering pipeline leak detection 

using Machine learning algorithms, Time series anomaly detection, and the one-class 

classification algorithms for univariate datasets. 

2.0 Low Pressure Pipeline Leak Challenge 

The severity of pipeline spills is determined by the volume of oil spilled into the 

environment. A review of pipeline spills shows that the early response to the spills 

would have reduced the environmental impact and the financial losses incurred by the 

companies. The key reasons for the delayed response to the oil spills include the 

following. 

1.  The installed leak detection systems are not sensitive to the low-volume leaks 

located in remote locations far from the inlet and outlet pressure sensors. This 

challenge is validated by the oil spill which occurred in Alaska’s North Slope. 

This spill deposited 267,000 gallons of thick crude oil over two acres in the 

Prudhoe Bay production facilities. The spill went undetected for as long as five 

days before an oilfield worker detected the acrid scent of hydrocarbons while 
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driving through the area. The investigation revealed that the pressure of the 

leaking oil gradually expanded the hole to a quarter- or half-inch wide. Most of 

the oil seeped beneath the snow without attracting the attention of workers 

monitoring alarm systems”. Among the reasons for the delayed detection was 

the fact that the leak was  "smaller than our system would detect” and that the 

normal fluctuations of oil flow in this particular pipe could have masked 

warning signals (Baringer 2006). 

2.  The Operator’s personnel are not trained to understand the leak signals and 

alarms generated by the system. The Alberta Energy Regulator (AER) reports 

concluded “that company personnel responsible for leak detection were not 

sufficiently trained or simply failed to recognize that a leak was occurring until 

several days after the leak had started" (Bickis 2017). 

3.  The minimum leak detectable by the installed LDS is a percentage of the liquid 

flow in the pipeline such that for high capacity pipelines, the minimum leaks 

that can be detected will already be too large for the environment to handle 

(Baringer 2006). 

4. The unwillingness of the operators to shut down the lines even when they have 

received the notification of pipeline line leaks on their lines. This was the case 

with Husky Energy which leaked 225,000 barrels. The company waited for 10 

hours before shutting the line even after receiving the leak alerts. In 2010, 

Enbridge pipeline operators took 17 hours to shut down a pipeline after 

receiving the oil spill alerts. This delay resulted in the spill of about 3.3 million 



 

13 

 

liters of crude  which flowed into Michigan's Kalamazoo River (Fitzpatrick et al. 

2015). 

5.  The lack of infrastructure for the regulators to monitor the leak detection 

systems of the operators. This forces the regulators to rely on the estimates 

provided by the operators which in most cases are contested. A typical case  is 

the AER which does not track how leaks are discovered along the pipelines it 

oversees in the province. It relies on companies to submit that information in 

spill reports. A review by the Alberta regulator observed that improper leak 

detection contributed significantly to 8 of the 23 pipeline spills it investigated in 

2013. Several other regulators in different countries rely on third parties for 

reporting cases of pipeline spills (Bickis 2017). The provincial government of 

Saskatchewan only requests a spill report but does not require the details of the 

leak detection. In Nigeria, the National Oil Spill Detection and Response 

Agency (NOSDRA 2022) rely on third-party information and provides estimates 

of the spills. It has a citizen reporting system where citizens can report identified 

leaks to the organization which then undertakes steps to estimate the volume of 

oil spilled from the lines. NOSDRA.  

With over 1600 individual leaks in the US alone and a total volume of over 11 Million 

gallons spilled since 2010, pipeline spills continue to be a very critical area of research 

for the Industry, the environment, and the government. Over 700 leaks were reported in 

North Dakota between 2010 and 2016 releasing an average of 5000 gallons per incident. 

The largest of these spills (September 2013) which was also one of the largest onshore 

oil spills in the U.S was not detected by the Leak Detection Systems of the operator. 

Over 865,000 gallons of crude oil spilled into a wheat field contaminating about 13 
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acres and all the remote monitors missed it. It took the vigilance of the owner of the 

field to detect the spill. Pipelines have been known to leak over 1 million gallons in one 

single leak with these leaks going undetected in some cases due to either the sensors' 

insensitivity or the operators' unwillingness to shut the lines. While the operators have 

leak detection systems installed, some of these LDS are not able to detect leaks that fall 

below their minimum detectable range. This minimum is often a function of the line's 

total fluid-carrying capacity, which can run to several hundred thousand barrels per day. 

Some of these leaks which occur far away from the inlet stations go undetected by the 

operators for several days or weeks and are detected by the locals in the vicinity of the 

lines. Unfortunately, at the time of their detection, the spills would have done major 

damage to the environment around which they occurred. The Operation of old and aging 

pipeline infrastructure is another justification for the installation of a robust leak 

detection system. The companies are emboldened to continue production even when 

their alarms systems indicate the presence of leaks because the regulators do not have 

access to the leak monitoring platforms of the operators.  The use of satellites for image 

capture and processing is a new approach being deployed for detecting these low-

pressure leaks however, in cases like North Dakota with a lot of snow and ice cover and 

for underground pipelines, this application of satellite for leak detection will not be as 

effective as is desired. (Satelytics 2016). Table 2.1 shows some pipeline spills and the 

associated delays with their detection. 
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Table 2. 1 Shows some pipeline oil spills and the delays associated with their 

detection 

Leak  State Duration to 

Detection 
Findings Literature 

Source 

Pipeline Rupture 

Discovered After 

143 Days and 

Discharge of 29 

Million Gallons 

North 

Dakota 
143 days               

(More than 4 

Months) 

The company gave 

misleading and 

incomplete statements 

to the government 

about the duration and 

size of the spill and 

also did not install 

reliable LDS and even 

when they got the 

indications of a leak, 

the continued 

production. 

(Department 

of Justice, 

2021). 

Pipeline carrying 

oil ruptured in a 

farmer’s field, 

spilling an 

estimated 20,600 

barrels over a 

seven acre area. 

North 

Dakota 
Leak went 

undetected by the 

company until a 

farmer drove his 

combine into a 

sodden field of oil. 

Leak was detected 

by a farmer.  

(Coleman 

2014) 

Husky spilled  

225,000-litre  in 

Saskatchewan 

Saskatchew

an.  
10 hours after 

receipt of alerts.  

The company waited 

for 10 hours before 

shutting the line 

even after receiving 

the leak alerts 

(DeBofsky et 

al. 2020) 

Enbridge pipeline 

spilled about 3.3 

million litres of 

crude  which 
flowed into 

Michigan's 

Kalamazoo River. 

Michigan pipeline operators 

took 17 hours to 

shut down a 

pipeline after 

receiving the oil 

spill alerts.  

pipeline operators took 

17 hours to shut down 

a pipeline after 

receiving the oil spill 

alerts.  

(Fitzpatrick 

et al. 2015) 

The oil spill 

occurred in 

Alaska’s North 

Slope.  This spill 

deposited 267,000 

gallons of thick 

crude oil over two 

acres. 

Alaska 5 Days.                    

Was detected by 

an oil field worker 

due to the acrid 

smell from the 

environment 

The leak was  "smaller 

than our system would 

detect” and the normal 

fluctuations of oil flow 

in this particular pipe 

could have masked 

warning signals. 

(Barringer 

2006)  
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2.1. Pipeline Transport of Oil and Gas Products 
Pipelines are the most economical means of transporting huge volumes of 

petroleum products across large geographical locations, however, these lines come with 

the possibility of pipeline leaks which are one of the most devastating environmental 

challenges faced by communities around the pipeline right of way (RoW). Typical 

impacts faced by these communities include the loss of their livelihoods, especially the 

fishing and farming communities, the local fauna and flora are also impacted by the 

leaks. The resulting flames from these pipeline leaks in the event of a fire results in the 

pollution of the environment resulting in expensive cleanup costs and the associated 

fines and economic losses to the companies. There are almost 3 million kilometers of 

pipelines currently in service globally, (Akinsete and Oshingbesan 2019). With over 

830,000 km of oil and gas pipelines, North America has the longest oil and gas 

pipelines. Of these numbers, 154,200.9 km are pipelines that carry crude oil,  103,106.3 

km of the pipeline transport petroleum products, 495,555.3 km of the pipelines is 

responsible for natural gas transport and 81,290.0 km is reserved for NGL. The US 

accounts for 41% of the global pipeline infrastructure.  (Idachaba and Minou, 2021). 

The integrity of the pipelines is impacted by material defects, corrosion, abrasion, and 

other third-party intrusion activities. These activities lead to the loss of containment 

resulting in an oil spill or a pipeline leak. (Wang and Duncan 2014; Bolotina et al. 

2018).  

Costs associated with pipeline accidents in the US alone are close to $7 Billion in 

property damages, spilling millions of barrels of oil into the environment. Figure 2.1 

shows the oil spill occurrences in the US from 1986 to 2020. (Richard 2013).  
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Figure 2.1 USA pipeline leak locations and the impact. (Richard 2013) 

There has been over 18000 incidents leading to over 600 deaths 3752 injuries and a loss 

of over $10 Billion. The Kalamazoo river oil spill resulted in an over  $800 Million loss 

in property damage with more than 840,000 gallons of crude oil spilled into the 

Kalamazoo River. (Lena 2012). 

2.2 Pipeline Leak Lifecycle 

The severity of a pipeline leak is determined by the nature of the pipeline failure, the 

leak size, the leak identification, and eventual localization. The pipeline failure can 

either be a corrosion failure in which case the failure can be a pin hole size failure, a 

crack occasioned by third party activities, or it can be pipeline rupture where there is a 

separation of the pipeline section. The volume of fluid flow to the environment varies 

with the type of pipeline failure, The leak size refers to the dimension of the leak point 

and this determines the flowrate from the pipeline. This range from the pin hole size and 

increases as the dimension of the leak increases. The larger the leak size, the higher the 

volume of oil spilled into the environment in the event of a pipeline failure. These show 

that whenever there is a leak, the total spill volume is dependent on the time of the leak 
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detection and the commencement of containment activities. Regardless of the type of 

pipeline failure, the ability of the leak detection system to both determine the presence 

of a leak as soon as it starts and determine the location are the two most significant 

features of any leak detection system. The pipeline leak lifecycle is shown in Figure 1.1. 

When there is a pipeline failure, the pipe begins to spill its products into the 

environment until the leak is detected. The detection speed is a critical feature in the 

leak detection system as the state of the sensors and the size of the leak affect the 

detection speed. The parameters for detecting the occurrence of a leak include pressure 

sensors, flowrate sensors, and temperature sensors. For sensors with erroneous readings 

or desensitized sensors, they may not be able to detect minute changes in the flow 

parameter in the event of a small leak. This is further reinforced if the leak is in a 

remote location far away from the sensors. The leak signal may be too small to be 

noticed by the sensors when it arrives at the sensor location. If the leak point is in a 

remote location, the operator may not be able to locate the site until the leak spreads to 

more visible locations. This was the situation with the North Dakota leak reported in 

Williams County in North Dakota in 2022. The delayed detection of the spill resulted in 

an actual spill of 1.4 million gallons which is much more than the 8,400-gallon earlier 

reported by the company. This rise in the actual volume was due to the delays in 

detecting the spill as it went on for over a month undetected. Reasons for the delayed 

detection include the fact that the leak point was in a remote location and was detected 

by one of the local farmers in a small town 90 miles from Minot the nearest big city. 

The impact of early detection is also validated by the largest oil field spill in North 

Dakota which went on undetected for five months in 2014 and 2015 and spilled 29 

Million gallons of produced water near Williston, N.D. The estimate initial given was 
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about 70,000 barrels over 10 days, but the final investigations showed that the spill had 

been on for over 5 months resulting in the 29 million gallons spilled (Baumgarten 2022) 

 The oil spill volume continues to increase until the appropriate oil spill response is 

deployed to contain the spill. Some of these actions range from shutting down the line 

to diverting flow to other lines. The rate of discharge is reduced after the remedial 

action, but the spill continues until the line is completely discharged. There is therefore 

a need for early detection of very small spills to minimize the volume of oil spilled into 

the environment. 

Pipeline Leak Detection Regulation  

Several countries in a bid to better manage the risks associated with pipeline 

transport of petroleum products put regulations in place to manage pipeline safety and 

operations. These regulations and their countries of origin include: (Idachaba and 

Minou 2021) 

• The TRFL which is Germany’s Technical Rule for Pipelines  

• Three API standards for the USA 

• Computational pipeline monitoring for liquids. API 1130 

• Variable uncertainties in pipelines and their effects on leak detection 

performance.  API 1149 

• Performance criteria for leak detection systems API 1155 which has  been 

replaced by API 1130  

• Transport of hazardous liquids via pipeline 49 CFR 195 

• Canada - CSA Z662, focuses on oil and gas pipelines 

2.3 Pipeline Leak Detection Methods 

Pipeline leaks are due to a loss of containment and the release of the pipeline content 

into the environment. These leaks are associated with a loss of pressure in the pipeline 
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and the volume of the oil leaked out of the pipeline depends among other on the size of 

the leak orifice and the pressure in the pipeline. The flowrate of the leak is impacted by 

the pressure in the line This flowrate increases when pressure is high and decreases 

when pressure is low. This is why the U.S. Department of Transportation Standards for 

emergency response for pipeline facilities, recommends the isolation of the leak point 

by shutting both the upstream and downstream valves to reduce the pressure in the line 

and as this will reduce the leak flowrate. (U.S. Department of Transportation Standards 

2010). 

There are two broad classifications of leak detection systems, these include 

continuous and noncontinuous systems. Often, the continuous and non-continuous 

systems are used together (Romero-Tapia et al. 2018). The non-continuous systems 

comprise the following activities (Baroudi et al. 2017) 

1. Inspection by helicopter,  

2. smart pigging,  

3. even tracking dogs, and  

4. RoW monitoring and patrol  

These approaches are often reactive as they are usually triggered by a drop in pressure 

indicative of a leak event or scheduled routine surveillance.  

The continuous method can be further classified into internal and external based 

systems depending on the location of the sensors. (Romero-Tapia et al. 2018; Baroudi et 

al. 2017). 

The external systems include the use of  

1. fibre optic cables,  

2. acoustic systems,  

3. semi-permeable sensor hoses, and  
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4. video monitoring.  

Internal systems include:  

1. pressure point analysis,  

2. Mass balance method,  

3. Statistical systems,  

4. RTTM-based systems, and  

5. Extended RTTM.  

 Pipeline Leak detection systems can also be broadly classified as being either 

hardware-based or Software based leak detection systems. (Murvay and Silea  2012; 

Vrålstad et al. 2013; Scott and Barrufet 2003). For hardware-based systems, sensors are 

installed on the lines for the purpose of data acquisition. These methods which are also 

referred to as the exterior methods are costly to deploy and maintain and are subject to 

vandalization and hardware failure. The systems also require data transmission 

capacities which in some cases would require the use of licensed frequency bands for 

long-range transmission. (Idachaba et al. 2014). 

The software-based systems rely on pipeline models and measurements such as 

(pressure, temperature, flowrate, and differential pressure) which are fed into specially 

developed leak detection and localization algorithms for the detection and localization 

of pipeline leaks. These methods are cheaper to deploy as they rely on pipeline 

production data. Inspite of the low cost associated with the software-based methods, it is 

faced with the challenge of a lack of pipeline leak datasets (operators are not ready to 

release these datasets) which makes it difficult for researchers to develop leak detection 

algorithms using field datasets. A summary of the different pipeline leak detection 

methods are shown in Figure 2.2.  
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Figure 2.2 Leak Detection Methods (Adegboye et al. 2019). 

 As shown in Figure 2.2, Pipeline leak detection methods can also be broadly classified 

into three groups which are the exterior, visual/biological and the interior/ 

computational based methods. The exterior methods are largely hardware centric and 

the require the installation of sensors on the pipeline for data acquisition.  The visual 

inspection method is one of the most popular methods for leak detection.  
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Other exterior methods comprise the use of acoustic leak detection systems, infrared 

thermography, ultrasonic methods, or electromagnetic techniques. (Scott and Barrufet 

2003; Adegboye et al. 2019). These systems enable the precise location of the leaks but 

have the disadvantage of being very expensive and taking very long durations before the 

leak can be located. The accuracy of detection also for these systems rely on the 

reliability of the sensors because when the sensor sensitivity begins to drift, the 

detection accuracy will be affected. The analysis of transient pressure waves is another 

method for the detection and localization of pipeline leaks. The occurrence of a leak 

results in the generation of pressure wave which travels throughout the line and are 

detected by the pressure sensors at both ends of the line. The data received by both 

sensors are analyzed to predict the location of the identified leaks. (Misiunas et al. 2005; 

Covas et al. 2005).  

The interior or computational based technique which is also software driven utilizes 

pipeline pressure and flowrate data and a model of the pipeline to detect any variation 

between the predicted and the measured values. The system relies on algorithms that 

generate alarms when these difference in values exceed a given threshold and calculates 

the leak location and magnitude.(Begovich et al. 2012). This system is also referred to 

as the internal method due to the reliance on pipeline data for the leak detection analysis 
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Figure 2.3 Internal Leak detection method. (Baroudi et al. 2019) 

From Figure 2.3, the Internal systems utilize either the operational data or the 

Computational Pipeline Monitoring (CPM) approach. Techniques which utilize the 

operational data include the volume balance technique, the pressure /flow change 

technique or the negative pressure wave technique. The Computational Pipeline 

Monitoring on the other hand utilizes either the mass balance with line pack correction 

or the Real Time Transient Monitoring approach. The internal method relies on field 

sensors to monitor the operational and hydraulic conditions of the pipeline, e.g., 

measurements of the flow, pressure, and temperature. These real-time parameters are 

compared with the normal working parameters of the pipeline which are determined 

either manually by pipeline controllers or based on sophisticated algorithms and 

hydraulic models. (Baroudi et al. 2019) 

A difference between the measured and predicted operational parameters indicates 

a leak. The remote field sensors installed on the pipeline monitor the lines continuously 

and send the data to a centralized monitoring station, where the data undergoes filtering, 

signal processing and is passed on to the leak detection and localization algorithms to 

both detect the presence of the leaks and also identify its location.  



 

25 

 

The data acquisition methods from the sensors include the following.  

1. Negative Pressure Wave (NPW): Negative pressure waves are created by sudden 

drops in pressure caused by leaks, and they propagate in both directions from the 

leak point. A critical challenge of this system is that it cannot differentiate between 

leaks and normal operations, and this results in false alarms.  

2. Volume Balance: This is the volume differential between the incoming and 

outgoing volumes. Volume balance can detect catastrophic failures; however, its 

usage is rare due to its limited performance.  

3. Rate of pressure/flow change: Leaks are associated with sudden changes in 

pressure. However, sudden pressure variations can also be due to transient 

conditions of the pipeline. Filtering techniques and suitable algorithms are used to 

differentiate between leaks and operations-induced pressure changes. Pressure 

waves also dampen out as they traverse a longer length and thus additional pressure 

sensors need to be installed along the pipelines.  

4. Computational Pipeline Monitoring (CPM) This method detects anomalies in 

pipeline operating parameters, and this is accomplished using the Mass Balance 

with line pack approach and the Real Time Transient Modelling method. (Baroudi et 

al. 2019) 

Current trends in pipeline leak detection and localization methods further identify two 

main categories for pipeline leak detection under the internal method using real-time 

transient modelling and pipeline data. These are the signal-based methods and the 

model-based methods. These methods are based on the steady-state models of the 

pipelines, they can predict unknown parameters and determine the occurrence and 

localization of leaks more accurately.  
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The pipeline-model-based method predicts pressure distribution along the pipeline 

and locates the leak through the pressure and flowrate signal on both ends of the 

pipeline. The most popular and widely used pipeline model-based method includes the 

pressure gradient (PG) method and the average friction coefficient (AFC) method. 

(Chuanbo et al. 2018) 

The pressure gradient PG method ignores the influences of friction coefficient, 

temperature, pipe diameter and other factors on the pressure distribution along the 

pipeline and considers the pressure to be linear. The average friction coefficient (AFC) 

method on the other hand assumes the friction coefficient and pipe diameter to be 

constant. (Chuanbo et al. 2018) 

A summary of the classification of pipeline leak detection methods is shown in figure 

2.4. 
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Figure 2.4 Classification of pipeline leak detection systems (Baroudi et al. 

2019) 
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Literature has shown the availability of multiple leak detection strategies; however, the 

evaluation of these different Leak Detection Systems (API 1130) relies on four key 

parameters (Taylor and Hamidreza 2019). 

1. Accuracy: the LDS should be able to calculate leak size and leak location 

accurately. This is quantified as the maximum distance allowed between the 

estimated location and the actual location, as well as the maximum variation 

allowed between the estimated and actual leak size. 

2. Reliability: the LDS should correctly display any real alarms and not report any 

false alarms. This should be quantified in the number of false alarms acceptable. 

3. Robustness: the LDS should be able to operate in non-ideal environments, such as 

when sensor input equipment fails to provide data. This should be quantified in % 

availability. 

4. Sensitivity: the LDS should be able to detect small leaks and detect them quickly. 

This is quantified in absolute flow rate terms because a relative change can be 

misleading. 

The performance criteria of the API 1155 which was replaced by the API 1130 is shown 

in Table 2.3 

 

2.4 Pipeline Modelling 

The scarcity of pipeline datasets is one key challenge facing research in pipeline leak 

detection research. Operators are unwilling to share the datasets and researchers cannot 

fund data acquisition from actual pipelines. This justifies the use of hypothetical data 

generated by the transmission pipeline model (Sukarno et al. 2007).  

The transient pipeline flow model provides the foundation for pipeline simulation and 

modelling. The basic equations governing this model include the continuity, the 
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momentum, the energy equations and the equation of state. (Chaczykowski 2010).The 

continuity equation expressed in the equation 2.1 focuses on the conservation of mass 

principle. It requires that the difference in mass flow into and out of any section of the 

pipeline is equal to the rate of change of mass within the section. This is shown in 

equation 2.1 

𝑑(𝜌)

𝑑𝑡
+ 𝜌

𝛿(𝑉)

𝛿𝑠
= 0        2.1 

                        

In this equation, ρ = density, t = time, V = flow velocity and s = pipeline location 

coordinates 

The conservation of momentum equation is represented in equation 2.2 :  

𝑑(𝑉)

𝑑𝑡
+  

1

𝜌
(

𝛿𝑃

𝛿𝑠
) + 𝑓𝑠 = 0                  2.2                            

In this equation, V = the flow velocity v, t = time, P = pressure , s = pipeline location 

coordinates and fs = pipeline friction. 

The conservation of energy principle is represented in equation 2.3.  

𝑑ℎ

𝑑𝑡
−

1

𝜌
(

𝑑𝑝

𝑑𝑡
) − 𝐼𝐿 = 0                2.3                                                       

In this equation, h = enthalpy , t= time, ρ = density, P = pressure , IL= specific loss 

performance L 

The simulation of a leak is accomplished by introducing a branch pipe of a given 

diameter on the main pipeline. This branch pipe can be located at any point on the main 

line with the leakage rate made variable. The variable leakage rate enables the study of 

different leak types on the main pipeline. This pipe model is represented schematically 

in Figure 2.5. In this Figure, D1 is the distance between the leak point and upstream 

pressure sensor and D2 is the distance between the leak point the and downstream 
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pressure Sensor while S1 and S2 are the inlet and outlet sensors respectively. The fluid 

flow is represented by the direction of the arrows which are from the Pin to the Pout. 

Pin Pout

PLeak
S1 S2

D1 D2  

Figure 2.5 Pipeline with the leak at distance D1 from the inflow section 

Pipeline leaks can be characterized by a sudden drop in the pressure at the leak point 

after which the pressure rises to a value below the initial pre-leak value. The leak point 

is bounded by the upstream point which is the pipeline portion between the inlet and the 

leak point while the downstream portion is the pipeline section between the leak point 

and the outlet of the pipeline. This pipeline model can produce sufficient data for 

different leak conditions and the data will be used for training the leak detection model.  

The mass flow rate into the system = Mass flow rate out of the system. For 

compressible fluid applying conservation of mass,  

ρinAinVin = ρoutAoutVout        2.4 

A = Cross sectional area of the pipe 

V = Velocity of fluid  

ρ = Fluid density 

The pressure at the inlet and outlet of the pipeline is represented by equations 2.5 and 

2.6 

𝑃𝑖𝑛 = 𝑃𝑜𝑢𝑡 + 𝑃𝑙𝑒𝑎𝑘 + 𝑃𝑙𝑜𝑠𝑠                2.5 

𝑃𝑜𝑢𝑡 = 𝛽𝑃𝑖𝑛 − 𝑃𝐿𝑒𝑎𝑘 − 𝑃𝐿𝑜𝑠𝑠                2.6  

Where 𝛽=Pressure Loss Factor due to the length of the pipeline 

PLoss = Pressure loss due to wax buildup in the pipeline (This is 0 for new pipelines) 

PLeak = Pressure loss due to leak. 
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From the diagram in figure 2.5,  

D1 = Distance between Leak point and Upstream Pressure Sensor 

D2 = Distance between Leak point and Downstream Pressure Sensor 

The pressure at the upstream end is p, and at the downstream end the pressure has fallen 

by ∆ p . This value becomes = p -∆ p.  

The driving force due to pressure (F = Pressure x Area) can then be written as:  

driving force=pressure force at input-pressure force at the output as shown in equation 

2.7 

𝑝𝐴 − (𝑝 − ∆𝑝)𝐴 =  ∆𝑝𝐴 = ∆𝑝
𝜋𝑑2

4
                2.7 

The retarding force is the force due to the shear stress by the walls = sheer stress x area 

of pipe wall. The nature of the fluid flow in the pipeline is represented by the Reynolds 

number. 

The Reynolds number formula is expressed by equation 2.8. (Smits and Hultmark 2014) 

  𝑅𝑒 =
𝜌𝑉𝐷

𝜇
           2.8 

Where, μ = Fluid viscosity and  

Reynolds number formula is used to determine the velocity, diameter, and viscosity of 

the fluid. 

The kind of flow is based on the value of Re 

1. If Re < 2000, the flow is called Laminar  

2. If Re > 4000, the flow is called turbulent  

3. If 2000 < Re < 4000, the flow is called transition. This parameter will be utilized 

in the modelling of the petroleum pipeline. 
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The model shown in figure 2.6 for a pipe section can be extended to cover the entire 

pipeline network and also extended to enable the detection of multiple pipeline leaks 

from pipelines. The installation for the entire pipeline network is shown in figure 2.6. 

S1 S2 S3 S4 S5 S6 S7

Pin

P1 P2 P4 P7P6P3 P5

Pout

 

Figure 2.6 Pipeline network modelling for leak detection 

The pipeline section in figure 2.6 comprises of sensors installed at specific points. The 

sensors are represented by S1 to S7 while the pressure values at the different sensors are 

represented by P1 to P7. The goal of the simulation of this pipeline network is to 

determine the minimum distance for the installation of sensors which can provide end-

to-end leak detection from multiple leak sources. 

Once the data has been generated from the pipeline transmission model, the machine 

learning pipeline shown in figure 2.7 will be utilized to develop the leak detection 

model which will be deployed for the detection of leaks from the pipeline. The data will 

also be used in developing the leak localization module. 

 

Figure 2.7 Machine Learning pipeline. (Akerkar 2019) 

The machine learning pipeline is the processes utilized in developing machine learning 

models. The data is acquired and cleaned to remove erroneous entries or missing values. 
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After the data preparation, it is split into training and testing data. Some applications 

classify the data into training, testing and validation. The model is exposed to only the 

training data during the training phase. After the training, the model is exposed to the 

testing data to test and evaluate performance of the data. The model can also be 

subjected to the validation data after which it deployed if it meets the minimum 

benchmark criteria. Once the model has been finalized, tested, and validated, it is 

deployed to monitor the pipeline and develop a database of the pipeline sensor readings. 

The model will be able to able to learn from the data and optimize itself thereby 

increasing both its accuracy and speed of detection. The continuous data acquisition 

leads to the development of the Real Time Transient Model approach for leak detection. 

2.4.1 Governing Equations 
1. Darcy Weisbach Equation (Renata et al. 2020) 

For determining the head loss along the pipeline 

ℎ𝐿 = 𝑓
𝐿𝑉2

𝐷 2𝑔
          2.9 

Where hL: load loss (m); f: friction coefficient; L: pipe length (m); D: pipe diameter 

(m); V: flow velocity (m/s); g gravity acceleration (m/s2).  

2. Reynolds number (Smits and Hultmark 2014) 

For determining the flow regime shown previously in equation 2.8 

3. Colebrook equation (Colebrook 1939) 

For determining the friction factor of the pipeline under turbulent flow conditions 

equation 2.10 is applied. 

1

√𝑓
= −2𝑙𝑜𝑔10 (

𝜀 𝐷⁄

3.7
+

2.51

𝑅𝑒√𝑓
)        2.10 

4. Moody Charts (Moody and Princeton 1944). 
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Shown in figure 2.8, the Moody charts are for determining the  friction factor of 

pipelines. The x axis is the Reynolds number while the y axis is the friction factor 

 
Figure 2.8 Moody Diagram (Moody and Princeton 1944). 

2.4.2 Pipeline pressure profiles 
The pressure profile shows the pressure values along the length of the pipe. These 

profiles are discussed under the single and multiple leak conditions. 

(a) Single leak conditions 

Under single leak conditions, the pipe experiences just one leak . The pressure drop due 

to the leak results in the generation of negative pressure waves which are transmitted to 

the sensors located at both the inlet and the outlet of the pipelines. These variations 

must be outside the pipeline pressure envelope for them to be classified as a leak. Other 
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pipeline activities that can generate these types of pressure variations include a sudden 

shutting down of the pipeline or an increase/decrease in the inlet pressure of the 

pipeline. In these cases, pressure fluctuation is expected and the sensor reading can be 

accurately classified as being due to the known pipeline inlet pressure variations. For 

cases where these variations exceed the operating envelop while the inlet pressure is 

retained at the normal operating values, the pressure variations can be classified as a 

leak occurrence and the required algorithms can be used to locate the leak point 

The pipeline pressure profile is shown in figure 2.9. The colors shown in the figure 

indicate the different pressure profiles present in the pipe. Table 2.2 presents the 

description of the pressure profiles. 
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Figure 2.9 Pressure profile for single leak condition 

The leak distance from the sensor to the leak point is shown in figure 2.10. Since the 

sensor position is known, the flowrate is used to determine the distance the negative 

pressure would have travelled before getting to the sensor. 
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Figure 2.10 Leak Localization 

Table 2.2 Pressure profile descriptions 

S/N Line Colour Pressure Profile 

1 Red This line represents the pressure profile for the pipeline without 

any head loss. This is an ideal condition as there will always be 

head loss due to the friction of the pipe walls. 

2 Blue This line represents the pressure profile for the pipeline without 

any leaks. This is the loss that occurs due to the normal flow of 

the pipeline. The rate of decay is a function of the inlet pipe and 

the state of the pipeline’s internal walls. 

3 Black This line represents the pressure profile for the pipeline under a 

leak condition. The leak occurs before the sensor and the 

negative pressure is transmitted to the sensor and read by the 

sensor as PSENSOR 

4 Dotted Line This line represents a straight line from the leak point to intersect 

the leak profile line at the sensor point. This line is used to help 

determine the leak location 

 

(b) Multiple Leak conditions 

For multiple leaks on a pipeline, the analysis done for the single leak is cascaded 

together for the multiple leak condition. In this case, the pipeline is broken down into 

segments. The segments are determined by the leak point and the downstream pressure 

sensor. The inlet pressure changes whenever a leak occurs upstream and this is factored 

into the equation used for the second segment. This is shown in figure 2.11. 
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Figure 2.11 Multiple pipeline leak pressure profiles 

2.4.3 Correlation of pipeline pressure to time series data 

A time series is defined as a sequence of pairs shown in equation 2.11 

𝑇 = ((𝑝1, 𝑡1) … … … . . (𝑝𝑛, 𝑡𝑛))(𝑡1 < 𝑡2 … … . < 𝑡𝑛)      2.11 

where each pi is a data point in a d-dimensional space and each ti represents the time 

stamp at which the corresponding pi occurs. (Wang et al. 2013) 

The pipeline pressure profile is measured as the pressure along the pipe from the inlet to 

the outlet. This profile is represented in a graph of pressure vs pipeline length. In 

converting this to time series, the pressure at each of the sensors is monitored and 

plotted against time as shown in figure 2.12. 
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Figure 2.12 Time series data from pipeline sensors 

This pipeline pressure profile can be regarded as time series data at each sensor point 

and the anomalies in the data which infer the presence of leaks or other pipeline control 

activities can be determined from the sensor data.  

Time series data are governed by the following key concepts 

1. Trend 

2. Seasonality 

3. Cyclic 

4. Stationary 

Time series data can be classified as either  Univariate where only one attribute varies 

with time or Multivariate where two or more attributes vary with time 

Pipeline data attributes are multivariate, and they include 

1. Pressure 

2. Temperature 

3. Flowrate 
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4. Differential pressure 

However, the pressure data carries the most information about the fluid flow in the 

pipeline. The temperature profile has been shown to have very minimal variations while 

the differential pressure and the flowrate can be derived from the pressure data. 

Univariate Anomaly Detection 

This is an anomaly detection system that utilizes a univariate dataset. Key advantages of 

this system include 

1. It is easier to model and scale 

2. It can learn normal behaviour separately and faster 

3. Less data is required for the system to identify anomalies 

Multivariate Anomaly Detection 

The Multivariate anomaly detection technique utilizes several metrics and combines the 

signals as relating to one system without separating them. This is an anomaly detection 

system that utilizes a multivariate time series dataset. Characteristics of this system 

include the following: 

1. It requires a single model for all the attributes for the system to perform anomaly 

detection 

2. It is harder to scale and interpret 

3. All metrics need to be homogenous 

The system considers all the metrics and generates an output indicating the presence of 

the anomaly without identifying the metrics responsible for the anomaly. For this 

research, the pipeline pressure data, and a univariate data stream will be used for the 

development of the anomaly detection algorithm. 
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A Hybrid Approach 

Hybrid anomaly detection combines the advantages of both the univariate and the 

multivariate anomaly detection methods to develop a system that is easier to implement 

and scale while at the same time not generating a large number of false positives. This is 

achieved by analyzing the metrics independently and identifying the anomalies of each 

metric and then grouping the anomalies. (Anodot 2017). Table 2.3 shows the key 

characteristics of the Univariate, Multivariate and Hybrid approaches to anomaly 

detection (Anodot 2017) 

Table 2. 3. Comparison of the different Anomaly detection methods (Anodot 

2017)

 

2.5 Anomaly Detection in Time series Data 

Anomaly detection is data driven process for identifying unusual patterns in a data 

stream. The data which is generated from the operation of a system, or the behaviour of 

users and systems are characterized by a defined pattern. Any deviation from this 

pattern is termed as an anomaly and the data is classified as an outlier. Anomaly 

detection is therefore a technique for detecting these patterns with the view to 

identifying the causes of the unusual behavior of the system or the users. The taxonomy 

of Outlier detection in time series data is also represented in figure 2.13. 
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Figure 2.13 Taxonomy of outlier detection techniques (Basu and 

Meckesheimer 2006). 

Anomaly detection relies on historical data, and this assumes that the underlying 

process which led to the generation of the data is largely constant. This means that the 

behavior of the system or the user is predictable and can be determined using models 

and specific algorithms. In cases where the data changes over time, the pattern of these 

changes is also evident in the data. These data which change over time are defined by 

some parameters which enable it to conform with specific long-term trends which 

define the dataset to be time series based. (Kishan et al. 2017). 

For real-time systems with the possibility of anomalies,  changes in the data make 

the models developed using those data invalid with the new data. This is because the 

model is not guaranteed to generalize to the new datasets. Traditional approaches for 

anomaly detection in time series follow an established process where the model is 

developed using datasets in an offline manner. This model is now used to detect 

anomalies in a new unseen dataset. Anomalies occur when these datasets change. The 

anomaly detection models need to be able to adapt to these changes in real-time. This 

change which is an indication of a change in normal behaviour is known as concept drift 

(Saurav et al. 2018). The ability of the models to adapt to these changes is referred to as 

Concept drift adaptation. 
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Anomaly Detection for pipeline leak detection relies on the fact that the operation 

of the pipeline and fluid flow in the pipeline is governed by principles which lead to the 

predictable operation of the fluid flow process in the pipeline. The principles governing 

this fluid flow define the normal operation of the pipeline and this can be tracked using 

the pressure profile of the pipeline. Variations in the pressure profile of the pipeline can 

be tracked and classified as an anomaly. Processes such as the switching of the pumps 

and valves and pipeline leaks result in the deviation from the normal operating process 

resulting in datasets varying from the expected values at specific locations along the 

pipe. Pipeline leak is the most important anomaly this research seeks to detect. The 

possibility of several other factors of the pipeline operation leading to anomalies results 

in the generation of false alarms thereby degrading the performance of the leak 

detection system. Feature extractions enable the isolation of unwanted anomalies 

thereby enabling the detection system to identify anomalies associated with pipeline 

leaks.  

These scenarios discussed above are classified as follows 

1. Correct Detection: These are cases where the detected abnormalities correspond to 

the abnormalities in the process 

2. False Positives: These are unexpected abnormalities in the data which are not the 

abnormalities of interest. They can be due to system noise. 

3. False Negatives: These are cases where the anomaly detection system fails to classify 

anomalous data accurately. This can be due to the presence of noise or other data 

corruption making it difficult for the anomaly detection system to differentiate the 

anomaly from the normal datasets. 
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2.5.1 Types of Anomalies (Outliers) 

There are different types of outliers in datasets. These are discussed in the following 

sections. 

1. Global (Point Anomaly) Outlier.  

This is a case where the outlier data has a value which is far outside the range of the 

system data value. This is usually classified as a rare event. Nearly all available 

unsupervised anomaly detection algorithms today are from this type. 

2. Contextual Outliers  

These are data points whose values do not correspond with what is expected at that 

point in the same context. Contexts are usually temporal, and the same situation 

observed at separate times can be not an outlier. 

3. Collective  outliers 

These are a group of data points which deviate from the expected behaviour. 

2.5.2 Anomaly detection strategies 

Anomalies are usually detected using three key approaches 

1. Utilization of rules and thresholds set by domain experts. This is accomplished 

by setting upper and lower admissible values or taking the standard deviation of 

all the residuals. This approach is static and not able to adapt to changes in the 

operational environment of the system being monitored  

2. Deviation of key performance indicators from the normal pattern. These 

indicators are often derived using statistical approaches such as standard 

deviation, confidence intervals etc. The anomalies are detected when the points 

fall outside the defined confidence levels or standard deviations. This approach 

requires domain expertise and would require  the use of a window of data for the 
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analysis to be accurate. This window also known as the moving average assumes 

that a point is anomalous if it is beyond 3 rolling standard deviations. 

3.  The Utilization of Machine Learning: This approach enables the development of 

anomaly detection models which can learn from the data and efficiently detect 

anomalies in the data. This is accomplished using two key steps. 

 (a) Forecast future values from the dataset 

 (b)  Subtract the predicted values from the actual values to determine the 

anomaly. 

To accurately detect anomalies from the time series data, both the trend and seasonality 

of the seasonality have to be removed to ensure that the system accurately detects the 

anomaly. The removal of both seasonality and the trend can be done automatically 

using any of the following methods 

1. Augmented Dickey-fuller test,  

2. KPSS test 

3. Canova-Hansen test 

2.5.3 Deep Learning-based Anomaly Detection System for Pipeline 

Leaks 

Deep learning is a class of machine learning which is used where the datasets are large. 

The introduction of several hidden layers into an Artificial Neural network converts the 

network into a Deep Learning network. The large volume of data associated with the 

pipeline networks creates an opportunity for the application of Deep Learning for the 

development of the anomaly detection network. The Taxonomy of anomaly detection 

techniques using machine Learning is shown in figure 2.14.  
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Figure 2.14 Classification of Anomaly Detection techniques (Saranya and 

Chellammal 2020) 

Pipeline leak datasets which comprise of a Univariate stream of time series pressure 

data can be utilized for the detection  of leak occurrences using Deep Learning 

(Machine learning algorithms). The key machine-learning algorithms which can be 

utilized for anomaly detection in pipeline data include 

1.  Supervised learning methods: The key requirement for the utilization of this 

algorithm is that the datasets must be labelled. The models utilized in this 

algorithm undertake a classification approach and the result is an output of either 

normal or abnormal. It is not able to detect new anomalies. It requires a large 

volume of labelled datasets. They are usually more accurate than unsupervised 

learning methods and have fewer false positives, but the requirement of a well-

defined and labelled data set itemizing all the possible incidents makes this 

approach very expensive and difficult to implement. It is not easy for 

organizations to prepare a list of well-defined incidents and everything that 

could happen especially when these incidents have different anomaly signatures. 

Typical models used for implementing supervised learning include 
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a. Neural Networks 

b. Decision Trees 

c. Support Vector Machine 

d. K-Nearest Neighbor 

e. Bayesian Networks 

2. Semi-Supervised: This method utilizes the subset of the labelled data. All the 

datasets belong to one class, and it has no definite predictions. It is also known 

as Novelty Detection. Examples are listed below  

a. Neural Networks 

b. Clustering 

c. Gaussian 

d. Tree Based 

e. Support Vector Machine 

3. Unsupervised learning method: This method uses statistical tests to detect 

anomalies. The algorithms are fast, and the system learns by itself and 

determines what is normal over time. The anomaly detection is executed when 

whenever the current data that is presented deviates from that normal model. 

The system can detect any type of incident, known or unknown. A key 

disadvantage of this method is that the performance of the system is defined by 

the quality of the definition of the normal operation. Since the model has no 

training sequence. It does not require labelled data and can detect any type of 

anomaly. Examples of the algorithms used in this learning method include 

a. Clustering 

b. K-Means 

c. Autoencoders 
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4. Hybrid method: This method utilizes a mix of both labelled and unlabeled data. 

The supervised and unsupervised methods are combined in this approach where 

the supervised approach is used to detect known anomalies while the 

unsupervised approach is used to detect unknown cases. 

Modern ML techniques for anomaly detection include 

1. Transfer learning 

2. Zero-Shot Learning 

3. Ensemble learning  

4. Reinforcement Learning 

Table 2.4 shows the pros and cons of some outlier detection methods 

Table 2.4 Summary of outlier detection methods (Iqmal et al. 2020) 
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Anomaly Detection Using Unsupervised Learning Methods  

The majority of the pipeline profile datasets are unlabeled time series data as such the 

unsupervised anomaly detection algorithms are used in the development of the anomaly 

detection models. Characteristics of some of the unsupervised anomaly detection 

algorithms are discussed in the following sections. (Chalapathy and Chawla 2019) 

1. Clustering Algorithms 

The clustering algorithms are insensitive to time, so the information is not sequential. 

While this is not in conformity with the time series data models, time classes such as 

weekday/weekend can be created from the dataset and the anomalous points in these 

classes detected. Examples of algorithms utilized under this approach include 

(a) Isolation Forest 

(b) One-Class Support Vector Machine 

(c) Histogram-based Outlier Score 

2. Autoencoders 

These are more refined algorithms when compared with the clustering algorithm. The 

work by compressing the time series metrics into lower dimension latent space and then 

reconstructing the data again. Examples of these algorithms include 

(a) LSTM-based Autoencoders 

(b) Multichannel CNN encoders /LSTM Decoder 

3. Time Series Forecast :  

This is the best and most widely used anomaly detection approach. In this method, a 

forecast of the future values is made with time stamps and these values are compared 

with the real-time values. The anomalies are detected from these comparisons. 

Examples of algorithms used in this method include 
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(a) Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)-based 

Forecasters 

(b) 1d CNN Forecasters 

(c) Specific Time series forecasters such as SARIMA or Holt-Winter Exponential 

Smoothening 

(d) Regressors such as XGBoost, Light GBM etc. 

Hierarchical Temporal Memory  

Deep learning networks are faced with some limitations which limit the quality of the 

results they can generate and the areas of application they can be deployed in. One of 

these challenges is the fact that they require historical data and as such are not able to 

work on real-time anomaly detection systems. Some other limitations of the deep 

learning algorithms include the following: 

1. Requires thousands and in some cases millions of data samples for training 

2. Cannot easily adapt to continuously changing (streaming data) 

3. There are susceptible to noise and can be easily fooled. 

These limitations led to the development of the Hierarchical Temporal Memory (HTM) 

approach. The HTM is a theoretical framework for both biological and generalized 

machine intelligence. It is based on the latest understanding of the neocortex of the 

brain. (Khan et.al., 2021;Mountcastle 1998; Billaudelle and Ahmad 2015) 

Key advantages of this approach include the following: 

1. It requires only a few hundred samples to be able to learn 

2. It learns unsupervised and can adapt easily to changing data 

3. It is immune to up to 40% of noise in the data. 
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The HTM works with streaming data which requires that the data changes over time. It 

can handle the following tasks 

1. Prediction 

2. Anomaly Detection and  

3. Classification 

The block diagram of the HTM approach for anomaly detection is shown in figure 2.15 

 

Figure 2.15 Block diagram for Applications using HTM High-Order Inference 

(Ahmad and Hawkins 2017) 

Hierarchical Temporal Memory (HTM) is a learning system capable of continuously 

learning from the environment. It is also referred to as an online learning system. 

(Mountcastle 1998; Billaudelle and Ahmad 2015). It operates by detecting anomalies in 

real-time from streaming data. The input data for HTM functionality is either numerical 

or categorical. The HTM system merges both data types into an input data stream and is 

converted to a sparse distributed representation using encoders. The HTM system then 

calculates an anomaly score for every new pattern that it receives from the input data 

stream (Görnitz et al. 2013; Ahmad and Hawkins 2017; Hawkins et al. 2017). If the 

received data values are the same as the predicted values, the anomaly score is 

computed to be zero but if they are different, then the anomaly score is computed to be 

one. The SDR of the input data stream determines the similarity. The “similarity” 

between the actual received values and the predicted values is the base of The HTM 

score. The larger the overlap between actual and predicted input patterns results in a 
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smaller anomaly score. (Khan et al. 2021). This approach opens the way to the 

development of truly intelligent systems. The suitability of the HTM system for online 

learning is based on the structure of the HTM design. They are designed to work on a 

continuous temporal stream of data which changes in time. This differs from most 

artificial neural network techniques that are designed to require massive static datasets. 

The learning algorithm of the HTM systems is known as Hebbian Learning and it 

forms the basis of learning mechanisms in HTM systems. Hebbian Learning is a 

phenomenon where repeated activity between neurons strengthens their connections and 

vice versa. The synapses on every dendritic segment of every HTM neuron are updated 

with each new change in the data signal. Learning in the HTM systems is thus 

completely local as they occur at the level of the synapses. (Brody 2018) 

A comparison between the HTM and the Deep Learning algorithms is shown in Table 

2.5 

Table 2.5 Comparison between HTM and Deep Learning Algorithms(Brody 2018) 

 

2.5.4 Real-Time and Batch Anomaly Detection 

Anomaly Detection can also be implemented both in the batch mode and in the real-

time mode. 
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Batch Mode Anomaly Detection 

The characteristics of the batch mode anomaly detection system include the following: 

1. Time is not a critical factor for the detection of the anomaly 

2. The system requires a large volume of data for the detection of the anomaly 

3. The algorithm can iterate over the data multiple time 

4. The process is computationally expensive and scales very poorly. 

Real-Time Anomaly Detection 

The characteristics of the real-time anomaly detection system include the following 

1. The system can learn continuously from streaming data without having to store the 

entire data stream. 

2. The system is not manually supervised 

3. The anomaly detection model evolves as the behavior of the system changes 

Considerations for Real-time Anomaly Detection 

The key considerations for the deployment of real-time anomaly detection systems 

include 

1. Timelines: In what time interval does the business need to know of the anomaly 

2. Scale: How large is the data required to be processed to determine the anomaly 

3. Rate of change of data. Does the data change quickly or is it static? 

4. Conciseness: Will there be a need for multiple metrics to produce an answer from 

the anomaly detection system? 

5. Definition of Incidence: are the anomalies well known are they labeled? 

While online Anomaly detections have a very high response time, they are also prone to 

the generation of False Positives.  
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For algorithms to qualify to be online or real-time, they are required to meet the 

following conditions (Brody 2018) 

1.  Predictions must be made online, i.e., the algorithm must identify state xt as 

normal or anomalous before receiving the subsequent xt+1. 

2. The algorithm must learn continuously without a requirement to store the entire 

stream. 

3. The algorithm must run in an unsupervised, automated fashion without any data 

labels or manual parameter tweaking. 

4. Algorithms must adapt to dynamic environments and concept drift, as the 

underlying statistics of the data stream are often non-stationary. 

5. Algorithms should identify anomalies as early as possible. 

6. Algorithms should minimize false positives and false negatives. 

An algorithm that possesses these properties can rightfully be called a streaming  

Anomaly Detection algorithm. 

2.6 Performance Metrics for Anomaly Detection 

The detection of anomalies in a data stream begins with the accurate modelling of the 

normal behavior of the system. The anomaly detection model must be able to accurately 

model the normal behavior of the system to be able to detect anomalies when they 

occur. This approach is implemented in a 3-step strategy listed below 

1. Model the normal behaviour using forecasting and statistical models 

2. Generate statistical parameters to represent the operational envelope of the normal 

behaviour 

3. Apply the statistical test to each data point and flag as anomalous any point that 

deviates outside the set operational envelop 
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The most predominant statistical test utilized in modelling the normal behaviour of the 

system is the normal distribution. This is represented by the expression in equation 2.12 

(Krithikadatta  2014) 

𝑝(𝑥) =  
1

𝜎√2𝜋
𝑒𝑥𝑝 (−

(𝑥−𝜇)2

2𝜎2 )       2.12 

Where: 

𝜎 =The standard deviation,  

It is sensitive to the presence of anomalies as such it is used in determining the anomaly.  

The test for the anomaly is presented below 

1. Determine the forecast value of the data at a particular point 

2. Compare the actual data at that point with the forecasted data at that point 

3. If the difference between the actual data and the forecasted data is greater than 3 

times the standard deviation at that point, then the data is classified as an anomaly 

Figure 2.16  shows the standard deviation chart. 

 

Figure 2.16 Normal distribution curves showing the anomaly threshold points. 

(Krithikadatta  2014) 
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Scoring Anomalies 

The Z -score is a statistical parameter used in determining the presence of an anomaly. 

It is applied to 1D data and calculated for each data point using the expression in 

equation 2.13. 

𝑍𝑖 =
𝑥𝑖−𝜇

𝜎
           2.13 

The z-score measures how far a point is from the mean value of that data point. Large 

values of the z-score indicate the presence of an anomaly. However, studies have shown 

that the sensitivity of both the mean and the standard deviation makes the z-score metric 

an unreliable parameter for the determination of the presence of anomalies. This led to 

the use of the modified z-score which relies on medians. The expression for the 

modified z-score is given in equation 2.14  

𝑍𝑚𝑖 =
𝑥𝑖−�̂�

𝑀𝐴𝐷
         2.14 

Where  �̂� = 𝑀𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑋, (𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − �̂�|) , 𝑍𝑚𝑖 = 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑧 − 𝑠𝑐𝑜𝑟𝑒 

MAD = Median Absolute Deviation from the median 

Large absolute values of the modified z score indicate the presence of an anomaly. 

Raw Anomaly Score Calculation. The Raw anomaly score is required for the 

computation of the difference between the actual and the predicted data values of a 

given point at any specific point in time. It is computed from the intersection between 

the predicted and actual sparse vectors in HTM. (Khan. et al 2021) 

Output of Anomaly Detection Algorithms 

The output of anomaly detection systems are determined by the machine learning 

algorithm used in implementing the anomaly detection system. For supervised anomaly 

detection, the output is a classification-based output which is defined by the label. The 

label indicates if the data instance is an anomaly or not. For unsupervised or semi-
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supervised anomaly detection, the output is presented as a score or a confidence value 

which indicates the degree of abnormality. Scores are preferred as they can be easily 

ranked and only the top anomalies are flagged. (Goldstein et al.2016). 

Performance metrics of Anomaly Detection Systems 

The performance metric of the anomaly detection system depends on the type of 

machine learning algorithm used. For supervised learning, the metrics used for 

evaluating the anomaly detection algorithm are shown in Table 2.6 

Table 2.6 Anomaly Detection Metrics 

Confusion Matrix Actual Normal Data 

(nn) 

Actual Anomalous Data (na) 

Predicted Non-anomalies TN FN 

Predicted Anomalies FP TP 

TN = True Negative is the number of correctly predicted non-anomalies.  

TP = True Positive is the number of correctly predicted anomalies.  

FN = False Negative is the number of actual anomalies which are predicted as non-

anomalies.  

FP = False Positive is the number of non-anomalies which are predicted as anomalies. 

True Negative Rate (specificity): the ratio between the number of correctly detected 

normal data (TN) and the total number of normal (TN+FP) data 

Precision: the ratio between the number of normal data that are misclassified (FP) as 

anomalies and the total number of data records from normal class (TN+FP) 

recall (sensitivity): the ratio between the number of correctly detected anomalies (TP) 

and the total number of anomalies (TP+FN) 
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Accuracy rate (ACC), is a traditional metric used to evaluate the classifier performance 

in the community of data mining and machine learning it represents the percentage of 

right prediction from the entire datasets. (Hajian-Tilaki 2013). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑅𝑎𝑡𝑒 (𝐴𝐶𝐶) =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑁+𝐹𝑃+𝐹𝑁+𝑇𝑃)
      2.15 

True Positive Rate (TPR) represents the percentage of anomalies that are correctly 

detected, i.e., the ratio between the number of correctly detected anomalies and the total 

number of anomalies. 

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

(𝑇𝑃+ 𝐹𝑁)
     2.16 

False Alarm Rate (FAR) or False Positive Rate (FPR), represents the percentage of 

normal data that are incorrectly considered as anomalies, i.e., the ratio between the 

number of normal data detected as anomalies and the total number of normal data.  

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝐹𝐴𝑅) =
𝐹𝑃

(𝐹𝑃+ 𝑇𝑁)
   2.17 

Receiver Operating Characteristics (ROC) curves are two dimensional plots in which 

the true positive (TP) rate is plotted on the Y axis and the false positive (FP) rate on the 

X axis 

The Area under the curve (AUC) of a classifier is equivalent to the probability that the 

classifier will rank a randomly chosen positive instance higher than a randomly chosen 

negative instance. The AUC-ROC curve is a performance measurement for the 

classification problems at various threshold settings. ROC is a probability curve and 

AUC represents the degree or measure of separability. It tells how much the model is 

capable of distinguishing between classes. The larger the AUC, the more robust the 

classifier is. (Hajian-Tilaki 2013). In Figure 2.17, Curve B represents a more robust 

classifier while the entire square is Ideal AUC.  
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Figure 2.17 Area Under the curve 

2.7 Unsupervised learning algorithm for pipeline leak detection 

Pipeline data can be classified as time series data. These data vary with time and are 

usually unlabeled. A review of the pipeline data shows that of all the metrics, the 

pressure is the most representative of the pipeline flow status. The pipeline pressure 

data can thus be used to detect the operating conditions of the pipeline as well as detect 

anomalies in the pipe flow. Variations in the pipeline pressure profile which result in 

outliers range from switching activities of either the pumps or the well to the presence 

of leaks or pipeline ruptures. The difference between the outliers and the anomalies is 

that while the outlier is a variation in the pressure profile, the anomaly is a variation of 

interest. Anomaly detection in the pipeline data is therefore aimed at detecting pressure 

variations occasioned by the presence of a leak in the pipeline. The leak detection 

algorithm will be categorized as an anomaly detection algorithm and will utilize 

unsupervised learning algorithms due to the lack of labels on the pressure data from the 

pipeline.  
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2.7.1 Data Analytics Applications for Leak Detection  

(Selected Case studies) 

Several researchers have utilized Machine learning tools for the development of 

leak detection systems, and they all have reported different success levels. Artificial 

Neural Networks (ANN), Support Vector Machine (SVM), Decision Trees (DT), 

Random Forest (RF) and Gradient Boosting, have been utilized by researchers with 

varying levels of sensitivity, accuracy, and reliability. The key findings of the research 

suggests that data analytics and artificial intelligence can be utilized with the RTTM to 

improve the leak detection results (Akinsete and Oshingbesan 2019; Kang et al. 2018). 

The quality of the data acquired from the sensors is very critical to the quality of the 

output from the Machine Learning models used for the development of the leak 

detection algorithms  ((Romano et al. 2011).  

(Caputo and Pelagagge 2003; Sivapragasam et al. 2007) proposed the application of 

an Artificial Neural Network (ANN) based approach for the leak detection system. 

Their approach used pressure and flow to infer the leak location and severity, through 

an ANN trained on a dataset generated by a mathematical model of the network and the 

hydraulic simulation software EPANET. The Support Vector Machine approach was 

proposed by (Candelieria et al. 2014; Mashford et al. 2012).They combined the 

EPANET-based leakage simulation software and SVM. The SVM model was trained on 

a dataset of leaks simulated on the junctions of the water distribution networks. (Most 

approaches simulate leaks on pipes). The trained SVM classifier was able to identify the 

leaky junction(s) by utilizing only the pressure and flow values (Candelieri et al. 2014). 

Hidden Markov Model-based agents (Nasir et al. 2010), Genetic Programming (Lijuan 

et al. 2012).), and Bayesian approaches ((Poulakis et al. 2003; Xia et al. 2006) are some 

other prominent machine learning algorithms being utilized for the development of leak 
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detection systems. Table 2.7 presents a summary of key findings from the use of 

different data mining strategies and models for leak detection. 

Table 2.7 A summary of Data Analytic models for leak detection.( Idachaba and 

Minou 2021) 

Method Authors Key findings 

Artificial 

Neural 

Network 

(Caputo and Pelagagge 

2003; Mounce et al. 

2010; Salam et al. 

2014; Zhang et al. 

2016; Romano et al. 

2011;Mounce et al. 

2007; Huang et al. 

2018; Bohorquez et al. 

2020) 

ANNs rely too much on training samples. The 

ANN prediction accuracy is poor if the size 

of the training samples is small. To achieve 

adequate accuracy, sufficient training samples 

will be needed.  

The ANN training time increases as the size 

of the training samples increases.  

ANN needs to be retrained when the physical 

conditions of a water system change; this is 

quite common in developing countries, 

Support 

Vector 

Machines 

(De Silva et al. 2011) They found that the predicted leak location 

was within 500m of the actual leak location 

in all cases for a network that could fit into a 

1000 by 1100m square box. The smallest leak 

registered by EPANET to generate a pressure 

difference was a leakage of 90l/hour. A new 

data set was created to which the SVM was 

trained. A testing accuracy of 35% was found. 

Bayesian 

Probabilistic 

Framework 

(Poulakis et al. 

2003;Zhou et al. 

2011;Costanzo et al. 

2014;Romano et al. 

2010) 

They found that when the model 

measurements had an uncertainty 5% the 

model couldn’t determine the actual leak 

location. 

 

2.8 PIPESIM Simulation Software  

The Schlumberger PIPESIM is a steady-state multiphase flow simulator capable of 

offering complex production and injection network analysis. It is a computational fluid 

dynamics software (CFD) that enables the accurate replication of petroleum production 

systems. By modelling the entire production or injection system as a network, the 

interdependency of wells and surface equipment can be accounted for, and the 

deliverability of the system can be determined. (Schlumberger 2022). 
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PIPESIM offers comprehensive steady-state flow assurance workflows for front-end 

system design and production operations for the oil and gas industry. The flow 

assurance capabilities of the simulator enable the design of safe and effective fluid 

transport—from sizing of facilities, pipelines, and lift systems, to ensuring effective 

liquids and solids management, to well and pipeline integrity. It also enables the 

accurate prediction of the behaviour of different fluids and pipeline networks and 

provides a very high level of flow assurance metrics to the organization by simulating 

how these fluids will perform during transport and storage. PIPESIM can accomplish all 

these features by employing a wide range of industry standard multiphase current 

correlations as well as advanced three-phase mechanistic models. These models enable 

the software to be able to calculate the flow structure, fluid latency, material motion 

characteristics, and pressure reduction of all stations along the production path. 

PIPESIM provides two choices for Liquid Characterization Modeling. The first option 

is the use of the industry standard black oil concepts while the other is a range of hybrid 

models covering a wide range of fluids. 

PIPESIM has other features which provide the user with the ability to accurately 

simulate a wide range of scenarios and conditions. One of the critical features is the GIS 

capability. With PIPESIM, actual pipeline networks can be reproduced using the 

topological coordinates and the GIS maps of the pipeline right of way. This will enable 

the simulation of the actual pipeline network with the environmental and topological 

conditions factored into the simulations. This leads to the generation of results that 

correlate very well with the actual data generated from the field. Production 

optimization is another feature of the PIPESIM software. It provides a complete set of 

workflows which help to achieve optimal production of oil and gas. PIPESIM software 
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can also be integrated with other software production platforms such as the ECLIPSE 

industry-reference reservoir simulator, Aspen HYSYS, Honeywell UniSim, and KBC 

Petro-SIM, as well as real-time data for online optimization, Petrel E&P and Avocet to 

provide a single solution and a complete simulation from tanks to production. 

PIPESIM also includes a fully documented application programming interface (API) 

called Python Toolkit. This API facilitates communication with PIPESIM models 

directly without opening the User Interface (UI). It also streamlines several functions 

such as building modelling from scratch, updating existing models, running simulations 

and getting results back to Excel to any visualization dashboard using Python language.  

The numerous simulation and experimentation capabilities of the software 

eliminate the need for expensive and time-consuming experiments and scenario 

simulations that are needed to improve the production process in many oil and gas 

operations. (Alpandi et al. 2021; Schlumberger 2022; Li et al. 2013; Nsofor et al. 2020; 

Ubani et al. 2018; Prosper et al. 2019). 

2.9 One-Class Classifiers 

Pipeline leak datasets are predominantly comprised of pressure profiles during normal 

operations and very minimal instances of leak-driven pressure variations. These leak-

driven pressure variations which are referred to as outliers and used for the 

determination of leak occurrences in the pipeline are much fewer when compared with 

the no-leak case. With this characteristic, having a labeled dataset with the leak points 

labelled will not be suitable for machine learning applications due to the class 

imbalance problem. Thus, the determination of the suitable machine learning model to 

be deployed in the determination of the leak detection system will rely on the 

characteristics and nature of the pipeline dataset.  
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Characteristics of pipeline leak datasets include 

1. Majority of the data is in one class (No leak case) 

2. The leaked data is very minimal as it occurs only when there is a leak 

3. The data is mostly unlabeled 

4. The data is subject to class imbalance challenge  

With these characteristics, the determination of leaks can be implemented as an 

anomaly detection problem and the most suitable machine learning model for the 

detection based on the characteristics of the data is the One class classifier model. 

2.9.1 One class classifier Model: 

The goal of an anomaly detection system is to detect the presence of anomalous and 

defective patterns that are different from the expected normal data stream. These 

applications range from use cases in manufacturing defect detection (Carrera et al. 

2015; Bergmann et al. 2019), medical image analysis (Schlegi et al. 2017), and video 

surveillance (Liu et al. 2018). One major challenge faced in the development of 

anomaly detection systems is the difficulty in obtaining a large amount of anomalous 

data. The second challenge with anomaly detection is the imbalance between the normal 

and the anomalous datasets. This is known as the class imbalance problem. When the 

number of samples in one class is a lot greater than the number of samples in the other 

classes, the question of class imbalance arises. (Rekha et al. 2021). Traditional machine 

learning algorithms assume that the number of objects in the classes of interest in a 

dataset are equal. This assumption is not the case in real-world applications as the 

distribution of examples is skewed since representatives of some classes appear much 

more frequently. This distribution presents a challenge for the learning algorithms as 

their outputs will be biased towards the majority class. (Krawczyk 2016). Due to limited 
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access to anomalous data, and the challenge of class imbalance, constructing an 

anomaly detector is often conducted under semi-supervised or one-class classification 

settings using normal data only. One class datasets comprise datasets with only one 

class of the classification instance. The objective of the classification model is to 

determine any data point that is not within the normal datasets and classify such data 

points as anomalies. To accomplish this, the dataset is expected to be a one class 

dataset. There are three approaches to handling class imbalance problems in datasets. 

These approaches are 

1. Data-level methods: These are methods that modify the collection of samples to 

balance the distributions and/or remove the difficult samples 

2. Algorithm Levels methods: These are methods that directly modify existing 

learning algorithms to alleviate the bias towards majority objects and adapt them to 

mining data with skewed distributions. 

3. Hybrid methods: These are methods that combine the advantages of both the 

Data level methods and the Algorithm Level methods. 
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Chapter 3 

Materials and Methods 

In this Chapter, the methodology utilized for the research is presented. The 

methodologies are designed to address the research questions identified from the 

literature search. 

3.0 Materials and Methods  

The research utilized the simulations based approach and the PIPESIM simulation 

software was used for the simulations of the pipeline network. The software was 

selected due to the correlation of its simulation results with field data and the GIS 

functionality which enables the modeling of actual operator pipeline networks 

3.1 Research Question 1  

How can pipeline leak and no-leak datasets for specific pipeline networks be generated 

using simulation software   

3.1.1 Research Question 1: Methodology 

1. Simulation of a 20km straight pipeline system using PIPESIM to generate the 

pipeline pressure profile and determine the model of the pressure profile. 
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2. Generation of the time series pressure data from selected sensor location on the 

pipeline using the RAND function in python 

3. Simulation a leak on a 20 km straight pipeline by connecting a choke and sink to the 

mid-point to represent the leak point. 

4. Generation of time series leak datasets for the pipeline using the RAND function 

from python. 

3.1.2 Experimental Processes for Research Question 1 

(a) Generation of Pipeline Pressure Profile 

A 20km horizontal pipeline network was implemented using PIPESIM with the 

following parameters.  

Inlet: 

The inlet pressure is selected to be 1000psia and the black Oil fluid is used in the 

simulation. The Inlet settings are shown in figure 3.1  

 

Figure 3.1 Inlet parameters 
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The Outlet. 

The pressure at the outlet is set to 400psia. The other parameters are shown in figure 3.2 

 

Figure 3.2 Outlet parameters 

Pipeline 

A 20km pipeline is selected for this experiment. The parameters of the pipeline are 

shown in Figure 3.3. 

 

Figure 3.3 Pipeline Parameters 

The complete experimental setup for the pipeline pressure profile is shown in Figure 3.4

 

Figure 3.4 Complete experimental setup for 20km pipeline 

The network simulations are run multiple time and the datasets for the pipeline pressure 

profile is generated.  



 

67 

 

 

(b) Generation of Time Series Data from pipeline pressure profile 

The time series datasets for the pipelines consist of time-varying data from a point on 

the pipeline. These data are usually acquired using sensors installed at specified 

locations. This data is a continuous stream of data that varies with time around an 

average point. 

The steps for the generation of the time series data sets from the pipeline are as follows 

(i) Determine the equation for the pipeline profile. Generate the pressure values for 

the different portions of the line using the pressure profile model.  

(ii) Select a point on the pipeline for which the sensor is to be installed  

(iii) Read the pressure profile data from the table or use the model to determine the 

pressure value at that point 

(iv) Use the RAND function in python to generate a time series data around the 

pressure profile value at that location. 

Generating the first 500 variations of the pressure data at the selected sensor location (J) 

which is at the middle of the pipeline (10km), the RAND function (Random number 

generator) of python with a peak-to-peak pressure variation of 10 psi around each point 

on the pipeline is used. The sensor data is shown in Table 3.1. 

Table 3. 1. Sensor Data 

Sensor Data  Parameter 

Sensor Location 10km 

Pressure at Sensor Location 764psia ( rounded to nearest integer) 

Inlet pressure 1000psia 

Pressure fluctuation value 5psia 

Pressure range at sensor location 759 -769psi 

 

The python script is shown below 

import random 

a=[random.randint(759, 769) for I in range (0,500)] 

print (a) 
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(c) Simulation of a single point leak on the horizontal pipeline 

Generating the pipeline leak dataset with the following parameters 

Leak location = 10km 

Pressure at leak point read from the pressure profile 

A 20km horizontal pipeline network with a leak location at the midpoint was 

implemented using PIPESIM. The experimental process is shown below. 

Inlet: 

The inlet pressure is selected to be 1000psia and the black Oil fluid is used in the 

simulation. The Inlet setting are shown in the Figure 3.5. 

 

Figure 3.5 Inlet parameters 

The Outlet. 

The pressure at the outlet is set to 400psia. The other parameters are shown in the 

Figure 3.6. 
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Figure 3.6 Outlet parameters 

Leak Valve 

The leak valve selection is shown in Figure 3.7. 

 

Figure 3.7. Leak valve selection 

Pipeline 

A 20km pipeline is selected for this experiment. The parameters of the pipeline are 

shown in Figure 3.8. 
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Figure 3.8 Pipeline Parameters 

The complete experimental setup for the pipeline pressure profile is shown in Figure 3.9 

 

Figure 3.9 Complete experimental setup for 20km pipeline with leak point at 

10km 

(d) Generation of Pipeline Leak Datasets 

The occurrence of a leak divides the pipeline system into three parts: exact leak 

location, upstream, and downstream. (Araújo et al. 2014; Edrisi and Kam 2013; Sousa 

et al. 2016). The generation of time series pipeline leak datasets for the leak solution 

utilizes the pressure data extracted from the pipeline profile for the selected sensor 

location and uses the following protocol. 
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1. The pipeline is broken down into 3 sections namely the upstream (pressure value 

before the leak) pressure value at leak point and the downstream (which is the 

pressure value after the leak). 

2. The selected pressure values for the 3 sections listed are used as seed value for the 

RAND functions to generate the time stream data for each of the sections 

3. The generated time series data for each of the sections are combined in series to 

produce a continuous leak time series dataset for the pipeline 

#Import libraries 

import matplotlib.pyplot as plt 

import numpy as np 

import random 

#Generate upstream datasets (Pressure value before leak) 

# Sensor Location is at mid-point  (10km) the No leak value  

# at that point is given to be 764 psi.  

# introducing a peak-to-peak variation of 10psi on the pressure value at this point 

#to account for the variations in the pressure due to the pipe internal surface area 

# and the flowrate at the inlet  import random. Pipeline pressure variation will be 

#from 759 to 769psi for a time frame of 500  readings 

a=[random.randint(759, 769) for i in range (0,500)] 

# Generate Leak point datasets (Pressure value at leak point) 

# The pressure value at the sensor due to a leak which occurred 2km from the inlet 

# The sensor pressure value due to the leak is given to be 686 psi. Adding a 10psi  

# peak to peak  variation for a short duration of 5 readings. 

b=[random.randint(681, 691) for i in range (600,605)] 

# Generate downstream datasets (Pressure value after the leak) 

# Sensor Location is at mid-point  (10km) the pressure value after the leak is such 

 # that it rises  from the leak point but does not get to the upstream value. Selecting 

#a value of 745psi with  a peak-to-peak variation of 10psi on the pressure value at 

# this point with a time frame of 500 readings 

c=[random.randint(740, 750) for i in range (605,1105)] 

# Combine all the three sections of the pipeline datasets  
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d = a+b+c 

print (d) 

plt.plot(d) 

plt.show() 

3.2 Research Question 2  

How can leak detection systems be designed to increase their sensitivity to low-

pressure leaks that occur far away from the inlet sensors, and which cannot be detected 

by these inlet sensors. 

3.2.1 Research Question 2: Methodology 
 

The methodology deployed for this research question includes the following 

1. Simulate single leaks at 2km, 4km, 10km 16km and 18km on the 20km 

horizontal pipeline using PIPESIM 

2.  Determine the impact of the pipeline leaks at those locations on the inlet and 

outlet pressure sensors 

3. Determine the impact of leak location on the detection accuracy of the inlet 

pressure sensor. 

4. Determine the sensor location with the greatest pressure value for leaks farthest 

away from the inlet of the pipeline 

3.2.2 Experimental Processes for Research Question 2 

A 20km horizontal pipeline network with a leak location at the midpoint was 

implemented using PIPESIM.  
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(a) Generation of single leaks at 5 locations on the pipeline 

 

Figure 3.10 Sequential leaks at multiple locations 

The pressure profile for the 5 different simulations are plotted and compared with the   

pressure profile for the no leak case. Figure 3.10 shows the experimental process with  

sequential leaks at 2km, 4km, 10km 16km and 18km on the 20km horizontal pipeline.  

The instance shown in the Figure 3.10 is at the 10 km point. 

(b) Sensor Sensitivity Analysis 

The sensor sensitivity analysis is undertaken to determine the leak location with the 

greatest pressure value at the inlet pressure sensor 

The predominant sensor locations for pipeline leak detection are either at the Inlet and 

the outlet positions. While this is suitable for ease of monitoring and deployment, the 

possibility of leak induced pressure variations being lost exists and this is due to the 

distance between the leak point and the inlet. 

(c) Algorithm for Dataset Acquisition and leak detection 

Initialization 

1.  Set inlet pressure Set_Pi  (This also represents the Inlet valve status) 

2. Read Inlet Pressure as Pi and record Time Ti 

3. Read Outlet Pressure as Po and record time To 

4. Read Midpoint Sensor Pressure as Ps and Record Time Ts (Actual Pressure 

Value) 

5.  Determine Pipeline Pressure Profile model as PPPm 

6. Calculate pressure at midpoint sensor(Psm) using PPPm (expected pressure 

value) 

Dataset Generation and Leak Detection 

7. Set Pressure Threshold as Thresh 

8. if (Ps+Thresh) = (Psm +Thresh) and Pi  = Set_Pi 

  Store Ps = Dataset  
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Label Ps = NoLeak  

  else 

9. if (Ps+Thresh) < (Psm +Thresh) and Pi = Set_Pi 

store Ps = dataset 

label = leak 

10. if (Ps+Thresh) < (Psm +Thresh) and Pi  < Set_Pi  

11. Determine Pipeline Pressure Profile model as PPPm with new Pi=Set_Pi 

12. if (Ps+Thresh) = (Psm +Thresh) and Pi  = Set_Pi 

  Store Ps = Dataset  

Label Ps = NoLeak  

  else 

13. if (Ps+Thresh) < (Psm +Thresh) and Pi = Set_Pi 

store Ps = dataset 

label = leak 
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Chapter 4 

Results 

The results obtained from the simulation experiments are presented in this chapter. The 

results are presented under the different research questions. 

4.0 Results for Pipeline leak and No leak Data generation 

4.1 Results for Research Question 1 

(a) Pipeline No leak Datasets 

The result of the simulation shows the pressure profile of the pipeline. The data 

generated from the experiments are shown in Table 4.1, while the pressure profile is 

shown in Figure 4.1 

Table 4.1 Pipeline pressure profile data 

Pipeline length (km) Pressure (psia) 
0 1000 

0.6096 987.5951 

0.9999878 979.533 
1.609588 966.7574 
2.000006 958.4541 
2.609606 945.2971 
2.999994 936.7461 
3.609594 923.1939 
4.000012 914.3839 

4.609612 900.4187 
5 891.3382 

5.6096 876.9379 
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5.999988 867.5703 
6.609588 852.7071 
7.000006 843.0319 
7.609606 827.6715 
7.999994 817.6658 
8.609594 801.7712 
9.000012 791.4188 
9.609612 774.973 

10 764.2524 
10.6096 747.201 

10.99999 736.0718 
11.60959 718.3456 

12.00001 706.7571 
12.60961 688.2688 
12.99999 676.1598 
13.60959 656.7977 
14.00001 644.0849 
14.60961 623.7034 

15 610.2816 
15.6096 588.6862 

15.99999 574.4088 
16.60959 551.331 
17.00001 535.992 
17.60961 511.045 

17.99999 494.344 
18.60959 467.1713 
19.00001 449.1061 
19.60961 419.7055 

20 400 

 

Figure 4.1 Pressure profile of the line with no leaks 

The model for the pipeline pressure profile is given in the equation 4.1 

y = -29.093x + 1034.5
R² = 0.9864
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𝑦 = −29.093𝑥 + 1034.3      4.1 

From the linear model of the pipeline pressure profile, the pressure values for the 

different portions of the line can be generated using the pressure profile model. These 

values can also be read from Table 4.1. 

Generating the first 500 variations of the pressure data at the selected sensor location (J) 

which is at the middle of the pipeline (10km), the RAND function (Random number 

generator) of python with a peak-to-peak pressure variation of 10 psi around each point 

on the pipeline is used. The sensor data is shown in Table 4.2. 

Table 4.2 Sensor Data 

Sensor Data  Parameter 

Sensor Location 10km 

Pressure at Sensor Location 764psia ( rounded to nearest integer) 

Inlet pressure 1000psia 

Pressure fluctuation value 5psia 

Pressure range at sensor location 759 -769psi 

 

The time series data stream at the sensor location (J) is generated and shown below. 

[759, 761, 762, 766, 763, 764, 766, 765, 767, 767, 762, 765, 764, 759, 767, 760, 766, 768, 764, 766, 

759, 759, 761, 763, 768, 769, 768, 759, 759, 764, 760, 767, 766, 761, 764, 767, 759, 766, 767, 764, 764, 

765, 760, 760, 765, 761, 768, 761, 767, 765, 767, 767, 768, 764, 769, 763, 768, 760, 765, 768, 759, 761, 

767, 764, 760, 767, 760, 759, 766, 762, 764, 762, 765, 764, 760, 760, 764, 761, 767, 760, 762, 765, 768, 

760, 768, 762, 762, 768, 761, 760, 766, 767, 760, 762, 768, 761, 763, 763, 769, 762, 761, 761, 764, 767, 

762, 769, 768, 765, 761, 769, 769, 768, 769, 768, 762, 761, 769, 762, 760, 761, 764, 760, 762, 761, 759, 

759, 759, 764, 764, 764, 763, 759, 769, 761, 767, 769, 767, 760, 765, 766, 760, 765, 763, 767, 764, 767, 

762, 765, 759, 767, 765, 759, 763, 764, 765, 760, 763, 759, 766, 761, 766, 762, 759, 767, 762, 768, 760, 

762, 759, 766, 761, 768, 761, 764, 761, 761, 768, 764, 764, 763, 766, 764, 767, 767, 765, 767, 761, 759, 

769, 768, 763, 765, 759, 764, 764, 761, 767, 762, 761, 769, 760, 763, 761, 766, 766, 759, 766, 764, 761, 

769, 762, 766, 763, 765, 762, 767, 762, 763, 769, 763, 763, 759, 761, 759, 766, 765, 768,  767, 762, 766, 

766, 759, 760, 768, 765, 762, 762, 762, 765, 764, 759, 764, 764, 762, 768, 767, 759, 768, 766, 762, 760, 

763, 767, 763, 759, 766, 766, 768, 765, 761, 766, 762, 761, 769, 759, 766, 767, 767, 763, 761, 766, 761, 

760, 767, 765, 762, 762, 762, 768, 761, 765, 768, 763, 759, 767, 764, 763, 759, 759, 769, 769, 761, 760, 

765, 767, 763, 761, 766, 765, 767, 761, 765, 768, 766, 764, 765, 763, 768, 769, 764, 759, 768, 763, 762, 

767, 763, 765, 767, 767, 766, 759, 766, 769, 766, 762, 759, 763, 764, 768, 766, 767, 764, 760, 764, 768, 

765, 760, 767, 761, 763, 764, 765, 761, 768, 765, 760, 769, 768, 767, 769, 760, 761, 769, 763, 764, 762, 

759, 764, 765, 759, 769, 761, 759, 764, 765, 759, 762, 764, 762, 768, 760, 765, 768, 761, 763, 765, 765, 

767, 762, 759, 767, 765, 759, 766, 763, 769, 759, 759, 763, 765, 768, 767, 765, 762, 765, 761, 767, 760, 

769, 767, 765, 764, 763, 764, 761, 769, 766, 762, 769, 762, 769, 761, 762, 759, 760, 763, 765, 765, 768, 

765, 769, 763, 765, 760, 769, 764, 767, 763, 761, 761, 768, 762, 766, 767, 761, 760, 759, 760, 762, 762, 

761, 762, 761, 759, 759, 768, 762, 768, 760, 767, 760, 762, 763, 762, 765, 759, 759, 767, 765, 759, 767, 

768, 767, 763, 762, 765, 769, 761, 769, 768, 762, 763, 764, 769, 766, 764, 763, 760, 764, 761, 767, 762, 

764, 762, 761, 760, 769, 764, 765, 762, 761, 759, 768, 765, 760, 759, 768, 763, 764, 759] 
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Plotting the datapoints, the following timeseries wave form is generated. 

 

Figure 4.2 Time series Dataset for the No leak condition of the pipeline 

Figure 4.2 is the time series dataset for the no leak case of the experiments. This dataset 

is for a point 10km from the inlet of the pipeline where the pipeline inlet pressure is 

1000psi. The model for the pressure profile is used to determine the expected pressure 

at the sensor location whenever there is a known variation in the pressure at the inlet of 

the pipeline.  

(b) Simulation of a single point leak on the horizontal pipeline using PIPESIM 

Pipeline leaks are characterized by sudden drop in the in the pipeline pressure. The 

ultimate goal of the leak is to equalize the pressure in the pipe with that in the 

environment as such the leak will continue until this equalization is achieved. The 

results of the simulation of a 740-psi leak at 10km on the pipeline is shown in Table 4.3. 

The graph of the pressure profile with the leak is presented superimposed with the no 

leak case to show the impact of the leak on the pressure profile. This is shown in Figure 

(s) 4.3 and 4.4. 
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Figure 4.3 Pressure profile of line with One leak at 10km 

Figure 4.3 shows the pipeline profile where the line has one leak located at the 

midpoint. The model of the profile is shown in figure 4.3. 

 

Figure 4.4 Pressure profile of No leak and One leak simulation experiment 

Figure 4.4 shows the superposition of the leak profile and the no leak profile. 

The Leak and No-Leak pressure profile data is shown in Table 4.3. 
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Table 4.3 Leak and No leak pressure profile 

Pipeline length (km) Pressure (psia) Pressure psia740psia leak@ 10km  
0 1000 1000 

0.6096 987.5951 988.9033 
0.9999878 979.533 977.6371 

1.609588 966.7574 966.1977 
2.000006 958.4541 954.5832 
2.609606 945.2971 942.789 
2.999994 936.7461 930.8109 
3.609594 923.1939 918.6442 
4.000012 914.3839 906.2826 

4.609612 900.4187 893.7218 
5 891.3382 880.9543 

5.6096 876.9379 867.9727 
5.999988 867.5703 854.7687 
6.609588 852.7071 841.3323 

7.000006 843.0319 827.6548 
7.609606 827.6715 813.724 
7.999994 817.6658 799.5311 
8.609594 801.7712 785.0765 
9.000012 791.4188 770.3462 
9.609612 774.973 755.3268 

10 764.2524 737.3895 

10.6096 747.201 724.4424 
10.99999 736.0718 711.2452 
11.60959 718.3456 697.7834 
12.00001 706.7571 684.0431 
12.60961 688.2688 670.0064 
12.99999 676.1598 655.6538 
13.60959 656.7977 640.963 
14.00001 644.0849 625.9081 
14.60961 623.7034 610.4619 

15 610.2816 594.5902 
15.6096 588.6862 578.2544 

15.99999 574.4088 561.4093 

16.60959 551.331 544.0004 
17.00001 535.992 525.9662 
17.60961 511.045 507.2286 
17.99999 494.344 487.6934 
18.60959 467.1713 467.2432 
19.00001 449.1061 445.7529 
19.60961 419.7055 423.3581 

20 400 400 
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(c) Simulation of a progressive leak at single point leak on the horizontal 

pipeline  

The simulation was done to show the gradual reduction of the leak from 740psi to 

350psi, The results shown in Table 4.4 indicate a pipeline failure which is tending to a 

pipeline burst. From the experiments, there is a fluid reversal from the outlet back to the 

inlet when the pressure at the leak point drops below the outlet pressure. This pressure 

profile is shown in Figure 4.5. 

 

Figure 4.5 Progressive pressure drop at a pipeline leak location (midpoint of 

the pipeline) 

 

 

 

 

 

 

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16 18 20

P
re

ss
u

re
 p

si

pipeline Lenght km

Pipeline Pressure Profile: leak pressure 740psi -350psi @ pipeline 
midpoint

No Leak(psia) Leak (740psi@ 10km) Leak (700psi@10km)

Leak (650psi@10km) Leak (600psi@10km Leak (400psi@10km)

Leak(350psi@10km)



 

82 

 

Table 4. 4 Pipeline Leak pressure profile (Leak at leak point= 740 psi to 350psi) 

Distance (km) 

No 

Leak(psia) 

Leak  

(740psia 

@10km) 

Leak 

(700psia@

10km) 

Leak 

(650psia 

@10km) 

Leak 

(600psia@

10km 

Leak 

(400psia@1

0km) 

Leak 

(350psia@1

0km) 

0 1000 1000 1000 1000 1000 1000 1000 

0.4999939 989.8419 988.9033 987.4052 985.6255 980.9052 978.1507 976.915 

0.9999878 979.5329 977.6371 974.6092 971.0091 961.4436 955.8499 953.3376 

1.500012 969.0705 966.1977 961.606 956.1415 941.5919 933.0623 929.2261 

2.000006 958.4539 954.5832 948.3916 941.0148 921.3275 909.7521 904.5371 

2.5 947.6799 942.789 934.9586 925.6176 900.6209 885.8732 879.2156 

2.999994 936.7459 930.8109 921.2997 909.9379 879.4395 861.3737 853.1986 

3.499988 925.6485 918.6442 907.4069 893.9624 857.746 836.1928 826.4118 

4.000012 914.3836 906.2826 893.2704 877.6751 835.496 810.2572 798.7647 

4.500006 902.9485 893.7218 878.8817 861.0611 812.642 783.4847 770.1587 

5 891.338 880.9543 864.2288 844.1004 789.1241 755.8072 740.529 

5.499994 879.5471 867.9727 849.2991 826.7715 764.8988 727.1509 709.75 

5.999988 867.5702 854.7687 834.0784 809.05 739.9229 697.3825 677.6469 

6.500012 855.4003 841.3323 818.5499 790.9098 714.1096 666.3334 644.0476 

7.000006 843.0319 827.6548 802.6978 772.3464 687.3587 633.8072 609.0308 

7.5 830.4567 813.724 786.5151 753.332 659.5418 599.8538 572.4151 

7.999994 817.6659 799.5311 769.9918 733.8304 630.5004 564.3755 533.9062 

8.499988 804.6531 785.0765 753.1058 713.8 600.0347 527.0969 493.1102 

9.000012 791.419 770.3462 735.8308 693.1904 568.1931 487.6493 449.4758 

9.500006 777.9562 755.3268 718.1402 671.9469 534.933 445.5306 402.1994 

10 764.2528 737.3895 693.1238 648.3308 496.1799 400.0009 350 

10.49999 750.2961 724.4424 681.7738 638.5673 491.2167 400.0009 352.565 

10.99999 736.0723 711.2452 670.2022 628.6129 486.3696 400.0009 355.1229 

11.50001 721.5648 697.7834 658.3977 618.4593 481.6223 400.0009 357.6741 

12.00001 706.7578 684.0431 646.3497 608.0991 476.9616 400.0009 360.2182 

12.5 691.6305 670.0064 634.0443 597.5219 472.3756 400.0009 362.7554 

12.99999 676.1606 655.6538 621.4663 586.7169 467.8539 400.0009 365.2858 

13.49999 660.3225 640.963 608.5988 575.6717 463.3877 400.0009 367.8094 

14.00001 644.086 625.9081 595.4215 564.3719 458.9301 400.0009 370.3264 

14.50001 627.4193 610.4619 581.9143 552.8032 454.4075 400.0009 372.8365 

15 610.2828 594.5902 568.051 540.947 449.8184 400.0009 375.3399 

15.49999 592.6309 578.2544 553.8029 528.7831 445.1619 400.0009 377.8365 

15.99999 574.4101 561.4093 539.1365 516.2884 440.4373 400.0009 380.3263 

16.50001 555.5558 544.0004 524.0118 503.4353 435.6431 400.0009 382.8096 

17.00001 535.9935 525.9662 508.3847 490.1943 430.7784 400.0009 385.286 

17.5 515.6287 507.2286 492.1998 476.5285 425.8415 400.0009 387.7557 

17.99999 494.3456 487.6934 475.3916 462.3954 420.8304 400.0009 390.2185 

18.49999 472.147 467.2432 457.8801 447.7442 415.7433 400.0009 392.6744 

19.00001 449.107 445.7529 439.5657 432.513 410.5773 400.0009 395.1234 

19.50001 425.1087 423.3581 420.3261 416.6293 405.3306 400.0009 397.5653 

20 400 400 400 400 400 400.0009 400 
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(d) Generation of Pipeline Leak Datasets 

The simulated time series datasets for the pipeline leaks and the waveform for the 

simulated leak are shown in Figure 4.6   

[763, 766, 767, 759, 768, 766, 764, 762, 766, 767, 769, 764, 766, 769, 765, 763, 765, 766, 768, 769, 

767, 765, 765, 766, 766, 767, 768, 760, 768, 760, 766, 760, 760, 767, 763, 759, 763, 759, 760, 765, 765, 

759, 769, 764, 762, 765, 767, 759, 760, 763, 759, 759, 765, 765, 764, 767, 766, 762, 760, 762, 764, 768, 

764, 768, 766, 762, 766, 765, 761, 764, 761, 769, 765, 766, 760, 760, 765, 760, 762, 764, 768, 760, 766, 

762, 767, 764, 769, 764, 765, 761, 764, 764, 769, 766, 768, 764, 767, 763, 759, 766, 768, 759, 760, 766, 

759, 767, 766, 763, 764, 768, 765, 764, 761, 766, 761, 760, 763, 765, 760, 766, 769, 763, 767, 768, 765, 

764, 762, 764, 766, 764, 761, 769, 769, 764, 766, 762, 763, 765, 765, 766, 761, 767, 763, 759, 759, 761, 

764, 765, 762, 761, 766, 760, 760, 760, 769, 759, 768, 763, 763, 761, 764, 763, 762, 765, 769, 766, 766, 

759, 765, 769, 766, 759, 769, 759, 761, 761, 762, 760, 765, 762, 762, 762, 759, 767, 761, 767, 767, 766, 

765, 765, 766, 761, 767, 769, 767, 768, 764, 761, 768, 761, 762, 761, 766, 760, 769, 762, 765, 768, 762, 

764, 761, 764, 765, 760, 766, 759, 765, 759, 765, 761, 769, 767, 764, 765, 765, 762, 762, 767, 766, 769, 

764, 764, 761, 763, 763, 769, 764, 765, 759, 760, 766, 767, 761, 766, 761, 759, 762, 766, 763, 769, 760, 

761, 763, 765, 765, 764, 766, 767, 765, 761, 768, 765, 760, 766, 768, 763, 763, 762, 760, 763, 764, 766, 

765, 759, 767, 764, 764, 761, 761, 760, 759, 759, 765, 768, 760, 760, 763, 764, 769, 766, 760, 764, 760, 

764, 765, 766, 767, 764, 769, 765, 768, 768, 763, 764, 761, 763, 762, 761, 768, 769, 760, 769, 763, 767, 

769, 764, 768, 767, 768, 768, 766, 760, 769, 765, 763, 760, 759, 765, 768, 768, 764, 765, 760, 766, 764, 

760, 769, 761, 766, 761, 768, 767, 763, 763, 764, 765, 768, 767, 767, 763, 762, 767, 767, 759, 768, 759, 

765, 761, 762, 766, 764, 761, 760, 769, 761, 762, 768, 759, 763, 764, 768, 765, 767, 767, 763, 763, 769, 

759, 769, 763, 760, 761, 769, 763, 764, 760, 759, 768, 769, 762, 760, 760, 768, 768, 768, 761, 769, 765, 

765, 765, 759, 760, 759, 760, 759, 759, 762, 765, 769, 764, 764, 760, 759, 765, 759, 763, 764, 767, 764, 

765, 766, 764, 762, 762, 760, 768, 764, 769, 762, 759, 769, 760, 763, 764, 759, 768, 761, 764, 767, 768, 

762, 759, 759, 767, 768, 766, 764, 761, 761, 759, 760, 762, 764, 768, 766, 761, 759, 768, 769, 759, 765, 

762, 760, 760, 763, 759, 761, 765, 763, 768, 763, 767, 762, 759, 767, 760, 769, 764, 760, 762, 764, 769, 

760, 762, 761, 759, 769, 762, 764, 763, 764, 763, 768, 769, 763, 765, 769, 760, 764, 766, 687, 683, 687, 

686, 683, 685, 690, 683, 681, 685, 749, 749, 747, 749, 741, 750, 743, 744, 749, 743, 742, 741, 750, 745, 

740, 741, 750, 750, 750, 747, 746, 741, 750, 743, 748, 741, 741, 747, 744, 750, 745, 743, 740, 748, 748, 

750, 746, 747, 746, 746, 741, 740, 740, 740, 748, 750, 747, 741, 743, 748, 744, 749, 740, 747, 743, 742, 

750, 748, 746, 743, 745, 749, 750, 747, 744, 747, 745, 745, 745, 745, 742, 748, 749, 750, 743, 746, 741, 

746, 748, 742, 741, 742, 745, 748, 746, 743, 746, 745, 742, 741, 750, 744, 743, 747, 744, 750, 742, 741, 

740, 743, 749, 740, 743, 747, 743, 748, 744, 746, 743, 743, 740, 741, 740, 743, 742, 744, 750, 745, 742, 

748, 750, 741, 740, 740, 748, 749, 743, 746, 741, 744, 740, 750, 748, 740, 749, 748, 747, 747, 749, 740, 

749, 740, 743, 743, 745, 746, 740, 750, 749, 742, 742, 742, 747, 747, 742, 743, 742, 748, 741, 745, 742, 

744, 742, 748, 741, 745, 741, 743, 741, 749, 742, 744, 743, 740, 744, 740, 749, 749, 747, 748, 750, 748, 

745, 744, 742, 741, 742, 745, 745, 742, 740, 750, 744, 742, 745, 750, 743, 749, 748, 744, 747, 748, 748, 

741, 740, 750, 747, 743, 743, 747, 740, 743, 741, 746, 742, 750, 747, 750, 744, 750, 744, 744, 750, 745,  

744, 740, 743, 746, 743, 745, 747, 744, 743, 748, 747, 743, 740, 747, 750, 744, 742, 741, 748, 746, 744, 

743, 742, 741, 746, 744, 744, 750, 746, 749, 740, 744, 741, 748, 750, 744, 742, 748, 740, 750, 745, 749, 

740, 740, 741, 743, 745, 748, 747, 749, 742, 743, 742, 741, 745, 743, 745, 748, 744, 741, 750, 748, 743, 

746, 749, 749, 740, 748, 746, 743, 744, 750, 743, 749, 746, 748, 741, 749, 744, 747, 748, 741, 742, 749, 

745, 749, 750, 747, 741, 750, 748, 743, 743, 749, 741, 743, 748, 742, 741, 749, 748, 749, 744, 741, 740, 

750, 746, 748, 743, 750, 745, 744, 746, 744, 741, 749, 745, 747, 746, 749, 747, 749, 750, 750, 747, 750, 

750, 749, 744, 749, 741, 742, 749, 744, 743, 749, 750, 750, 745, 750, 750, 744, 748, 740, 743, 747, 747, 

745, 740, 745, 741, 742, 740, 749, 741, 750, 745, 748, 749, 749, 741, 745, 745, 742, 742, 740, 743, 748, 

747, 745, 746, 750, 745, 747, 747, 743, 745, 747, 747, 748, 749, 742, 740, 742, 742, 750, 741, 740, 743, 

742, 742, 748, 743, 741, 746, 748, 743, 743, 741, 750, 741, 745, 742, 742, 741, 747, 743, 748, 747, 748, 

741, 747, 746, 748, 747, 741, 750, 741, 744, 743, 750, 740, 750, 750, 744, 744, 742, 740, 740, 746, 748, 

741, 749, 745, 740, 746, 750, 742, 743, 740, 746, 746, 741, 750, 749, 747, 741, 745, 742, 740, 750, 742, 

746, 749, 748, 742, 748, 750, 743, 747, 748, 743, 743, 742, 743, 747, 749, 740, 746, 747, 750, 746, 741, 

741, 745, 746] 
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Figure 4.6 Time series waveform for pipeline leak dataset 

Figure 4.6 shows the time series waveform of the simulated leak datasets 

4.2 Results for Research Question 2 

(a) Simulation of multiple leaks on the horizontal pipeline  

Table 4.5 shows the data generated from the simulation of pipeline leaks at  2km, 4km, 

16km and 18km from the inlet. The pressure reading with a leak at the 10km had been 

earlier simulated and results shown in Table 4.3. 

Table 4.5 Pipeline Pressure leak dataset for single leaks at different points 

Distance (km) 

No Leak 

Pressure psia 

Leak 

850psi@2km 

Leak 

800psi@4km 

Leak 

450psi@16km 

Leak 

450psi@18km 

0 1000 1000 1000 1000 1000 

0.3333293 993.2441 976.1962 984.7504 991.8652 992.8442 

0.6666586 986.4214 951.9658 969.2893 983.6453 985.6165 

0.9999878 979.5314 927.2737 953.6059 975.3388 978.3162 

1.333348 972.573 902.0778 937.6868 966.9437 970.9418 

1.666677 965.5468 876.3377 921.5219 958.4599 963.4939 

2.000006 958.4514 850 905.0951 949.8851 955.9708 

2.000006 958.4514 840.9446 905.0951 949.8851 955.9708 

2.333335 951.2862 835.2698 888.3906 941.2176 948.3716 

2.666665 944.0503 829.5306 871.3905 932.4555 940.6951 

2.999994 936.7428 823.7262 854.0751 923.5967 932.9402 

3.333354 929.3621 817.8557 836.4207 914.6384 925.105 

3.666683 921.9085 811.9209 818.4055 905.5796 917.1894 

4.000012 914.3802 805.9225 800 896.4173 909.1914 

4.000012 914.3802 805.9225 803.3449 896.4173 909.1914 

4.300012 907.5398 800.469 797.9484 888.0802 901.9213 

4.600011 900.637 794.963 792.4986 879.6549 894.5818 

4.900026 893.6704 789.4036 786.9947 871.1386 887.1714 

5.20001 886.6399 783.7912 781.437 862.5303 879.6897 

5.500025 879.543 778.1241 775.8237 853.8256 872.1337 

5.800009 872.38 772.4026 770.1553 845.0236 864.5034 
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6.100023 865.1479 766.625 764.4301 836.1194 856.7955 

6.400008 857.847 760.7916 758.6484 827.1117 849.0097 

6.700022 850.4741 754.9005 752.8083 817.9954 841.1425 

7.000006 843.0293 748.9519 746.9101 808.7685 833.1935 

7.300021 835.5092 742.9438 740.9517 799.4269 825.1588 

7.600005 827.9137 736.8763 734.9332 789.9745 817.0378 

7.90002 820.2392 730.7471 728.8525 780.406 808.8263 

8.200004 812.4852 724.5563 722.7097 770.7193 800.5274 

8.500019 804.6509 718.3014 716.5022 760.9079 792.1391 

8.800003 796.7385 711.9825 710.2301 750.9689 783.6603 

9.100017 788.7442 705.5967 703.8907 740.8951 775.0866 

9.400002 780.6674 699.144 697.4838 730.683 766.4167 

9.700016 772.5039 692.6213 691.0066 720.3243 757.6457 

10 764.2529 686.0284 684.4586 709.8145 748.7719 

10.3 755.9104 679.3623 677.8372 699.1448 739.7902 

10.6 747.4739 672.6216 671.1408 688.3079 730.6972 

10.90001 738.9396 665.8037 664.3668 677.2947 721.4882 

11.2 730.3057 658.9075 657.5143 666.0974 712.1599 

11.50001 721.5667 651.9293 650.5794 654.7034 702.7055 

11.8 712.7205 644.8678 643.5611 643.1038 693.1216 

12.10001 703.7611 637.719 636.4553 631.2835 683.4006 

12.4 694.6859 630.4815 629.2605 619.2311 673.538 

12.70001 685.4882 623.1505 621.9721 606.9285 663.5252 

12.99999 676.1645 615.7243 614.5885 594.3609 653.3567 

13.30001 666.7074 608.1977 607.1044 581.5063 643.0224 

13.59999 657.1127 600.5684 599.5176 568.3451 632.5155 

13.90001 647.3717 592.8307 591.8225 554.8497 621.8243 

14.19999 637.4792 584.9816 584.016 540.994 610.9403 

14.50001 627.4253 577.0146 576.0918 526.7424 599.8494 

14.79999 617.2033 568.9261 568.0462 512.1088 588.5408 

15.10001 606.8018 560.7087 559.872 497.1453 576.9978 

15.39999 596.2124 552.3578 551.5647 481.8285 565.2064 

15.7 585.4214 543.8648 543.1156 466.1242 553.146 

15.99999 574.4182 535.224 534.5193 450 540.7984 

15.99999 574.4182 535.224 534.5193 455.1114 540.7984 

16.33332 561.9246 525.4385 524.7839 450.8607 526.7117 

16.66665 549.1283 515.447 514.8432 446.553 512.2031 

16.99998 536.0043 505.2356 504.6836 442.187 497.2394 

17.33334 522.5228 494.7877 494.2887 437.761 481.8913 

17.66667 508.6534 484.0878 483.6432 433.2743 466.1572 

17.99999 494.3565 473.1151 472.7264 428.7248 450 

17.99999 494.3565 473.1151 472.7264 428.7248 449.1758 

18.33332 479.644 461.847 461.5161 424.1108 441.4379 

18.66665 464.5739 450.2574 449.9865 419.4304 433.5321 

18.99998 449.1144 438.3163 438.1079 414.6816 425.4479 
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19.33334 433.2274 425.9876 425.8448 409.8615 417.1729 

19.66667 416.8732 413.2323 413.1587 404.9687 408.6955 

20 400 400 400 400 400 

 

Single leaks were simulated at different points on the pipeline with a view to 

determining the impact of the pressure variation from the leak point on the sensitivity of 

pressure sensors installed at both the Inlet and the outlet points of the pipeline. Figure 

4.7 is the leak located 2km from the inlet of the pipeline. 

 

Figure 4.7 Leak 2km from the inlet 

Figure 4.8 is the leak 4km from the inlet 

 

Figure 4.8 Leak 4km from the inlet 

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16 18 20

P
re

ss
u

re
 p

si

pipeline lenght (km)

Leak @2km 

No Leak Pressure psia Leak1 850@2km

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16 18 20

P
re

ss
u

re
 P

re
ss

u
re

 (
p

si
a)

Pipeline Lenght (km)

Leak@4km

No Leak Pressure psia Leak2 800@4km



 

87 

 

Figure 4.9 is the leak at the pipeline midpoint (10km) 

 

Figure 4.9 Leak at the midpoint (10km) 

 

Figure 4.10 is the leak 4km from the outlet 

 

Figure 4.10 Leak 4km from the outlet 

Figure 4.11 is the leak located 2km from the outlet 
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Figure 4.11 Leak 2km from the outlet 

Figure 4.12 is the superposition of all the profile of leak points with the No leak 

pressure profile. 

 

Figure 4.12 Pressure profile for different leak locations 

From the results generated from the simulated leaks, the following can be inferred 

1. The leaks closest to the Inlet generate the greatest pressure variation both at the 

inlet and along the pipeline up to the mid-point 
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2. The leaks closest to the outlet have very negligible pressure variation at the inlet 

as such the sensors located at the inlet may not be able to sense the pressure 

variation caused by leaks occurring very close to the outlet. 

3. Leaks closest to the outlet are the most difficult to detect by the inlet sensors. Due 

to the low-pressure value at the outlet, the leak pressure variations would have 

been absorbed before the variations arrive at the inlet pressure 

(b) Sensor Sensitivity Analysis 

The predominant sensor locations for pipeline leak detection are either at the Inlet and 

the outlet positions. While this is suitable for ease of monitoring and deployment, the 

possibility of omitting pressure variations generated by low volume leaks located far 

from the inlet pressure sensor exists. The results from the experiments show that leaks 

occurring close to the inlet have the greatest possibility of detection due to the high 

pressure at those locations while leaks at the midpoint to the outlet have the highest 

chance of being undetected due to the low pressure at those locations. Figure 4.13 

shows the sensor sensitivity analysis for each of the leak locations and the sensor 

locations with a sensor installed at the midpoint of the line. 

 

Figure 4.13 Sensor sensitivity analysis 
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From the results of the pressure variation in Figure 4.13, the pressure variation is 

highest when the leak is closest to the pressure sensor. Thus, leaks closest to the inlet 

present a higher pressure variation to the inlet sensor while presenting a lower pressure 

variation to the opposite sensor. The leak 1 and 2 which are closest to the inlet sensor , 

presents a higher pressure variation to the inlet sensor and a lower pressure variation to 

the outlet sensor. The leaks 3 and 4 which are closer to the outlet presents and higher 

pressure variation to the outlet and a lower pressure variation to the Intel sensor. As 

sensors age, they lose sensitivity and are not able to pick low pressure leaks which 

occur further away from the leak. A typical case is that of the leak 3 and 4. The pressure 

variation at the inlet drops to almost 0 and if the sensors sensitivity has dropped due to 

age, it will not be able to detect the occurrence of the leak at a 18km on the 20km line. 

To remedy this situation this research proposes the installation of a pressure sensor at a 

location midpoint on the pipeline . From the graphs, this sensor located at the midpoint 

which is 10km has better response to the pressure variations occasioned by leaks that 

are both close to the inlet and also the outlet. It also has superior performance to leaks 

located at the midpoint which may be undetectable by the inlet and outlet sensors. 
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Chapter 5 

Discussion 

This chapter presents a discussion of the results obtained from the different simulation 

experiments and the significance of the results in the development of a pipeline leak 

detection system. 

5.0 Discussion 

Pipeline leaks are one of the key justifications employed by groups against the 

continuous exploration and development of the petroleum industry. The significance 

associated with pipeline leaks is premised on the damage a single leak can cause on the 

environment if it is not detected and contained quickly. Single spills have been known 

to discharge millions of gallons of petroleum products into the environment, impacting 

rivers, farms, and communities. The leaks also impact the finances of the operators in 

the form of lost production, fines, and clean-up costs. Generally, where the fines range 

in the 10s of millions of dollars, the cleanup cost extends to the hundreds of millions of 

dollars while the environmental impact cannot be fully estimated.  A review of the 

challenges associated with leak detection shows that in some cases operators continue to 

produce from the pipeline even after receipt of the leak alerts. These actions contribute 

to the increase in the volume of oil spilled into the environment and the actual volume 

of oil spilled into the environment is only determined after investigations have been 

undertaken by the regulatory agencies. There is there for a need for a platform for 
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monitoring the Leak Detection Alerts from the operator network which is accessible to 

the regulator. This will reduce the delays in operator response to pipeline leaks by the 

operators. 

Leak detection is an ongoing research area as the need for a faster LDS cannot be 

overemphasized. The progression from the manual pipeline right-of-way monitoring to 

the hardware-dominated exterior systems-based approach and the software or interior-

based systems for the development of LDS has resulted in changes in the LDS costs and 

detection efficiency. While the Hardware-based approach provided better coverage of 

the entire pipeline network, It is prohibitively expensive to deploy and maintain as such 

very few operators are willing to deploy them. The software-based approach on the 

other hand relies on data generated from the LDS and the application of computational 

pipeline models. While the software-based approach is cheaper in terms of installation 

cost, the complexity associated with the development is high. Machine learning is a 

current approach being explored for the development of Leak detection systems as it 

relies on the pipeline datasets for the development of leak detection algorithms. The key 

challenge with this approach is the lack of datasets for the development of these 

algorithms. 

A limitation in the existing LDS systems is their inability to detect leaks below 

their minimum detectable levels. The main factors responsible for keeping the leaks 

below the minimum levels of the LDS include the leak size and the leak location. Small 

leaks which can be caused by corrosion failure can go undetected because of the leak 

size and the flow rate of the leak. The LDS  with the lowest minimum leak detection 

rate is based on the extended real-time transient model which has a minimum leak rate 

of 0.5% of the nominal flow rate of the line as such leaks which are below this value 

can continue undetected. 
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A key challenge addressed by this research is the detection of low pressure/low-

volume pipeline leaks that are undetectable by the existing LDS. A review of this 

challenge shows that the leak-induced pressure is dissipated before getting to the inlet 

sensor, and the volume of the leak is below the Minimum of the LDS. The most suitable 

solution for detecting this is the Optic Fiber System but it is very costly to deploy. The 

findings from the research experiments show that low-volume leaks are below the 

minimum detection levels of the installed LDS and the perturbations caused by these 

leaks are within the pressure variation range in the pipeline, the leak-induced pressure 

variation from the leak point is dissipated before it gets back to the inlet pressure sensor.  

Machine learning provides an opportunity for the development of faster and more 

robust LDS as research has shown that Artificial Neural Networks used in the 

development of LDS generates a very high detection accuracy for leak detection 

However, it requires a large volume of datasets which are not readily accessible to the 

research community. Where the data exist, the Machine learning algorithm is faced with 

class imbalance challenges as the data will contain more of the No leak cases compared 

with the leak cases. The discussions on the specific contributions of the research are 

presented in the following sections. 

5.1 Pipeline Leak and No leak Time series Dataset Generation 

The use of PIPESIM and python for the generation of time series pressure data 

facilitates the generation of both the leak and no leak datasets. One key challenge 

associated with pipeline leak detection research is the unwillingness of operators to 

share their datasets with the research community. This work has developed a system for 

generating pipeline datasets through the use of the PIPESIM software. The GIS 

capability of PIPESIM enables the development of the actual operator pipeline network 
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using the topology of the pipeline right of way. With this software, all that is required is 

the inlet pressure, the pipeline network topology for the determination of the pipeline 

pressure profile. The use of the RAND function in python enables the generation of 

time series pressure at any point on the pipeline. This functionality will also enable the 

installation of virtual pressure sensors at any point on the line without having to install 

any physical sensor. This system will enable the generation of pipeline dataset from any 

point on the line.  

The insertion of a choke and a sink also enables the generation of pipeline leak datasets 

in the network using the PIPESIM simulation and the RAND function. This 

functionality also enables the simulation of pipeline leaks at any section of the pipeline 

and observing the impact of the leak on the network. This combination of PIPESIM and 

the RAND function is suitable for generating pipeline leak and no leak datasets from 

any portion of the pipeline. 

5.2 One class classifier and leak dataset generation 

The one-class classification algorithm requires that the dataset be solely of one class and 

the Machine learning algorithm requires a large volume of datasets which is also a 

challenge that this research has been able to address. With this framework, researchers 

can generate datasets from any part of the pipeline and can also generate the required 

volume of datasets needed for their research. This is an improvement in the current state 

of the art as it eliminates the need for physical sensors on pipeline networks for the 

generation of pipeline datasets. This approach is cost-effective and provides a platform 

for the development of robust leak detection systems using artificial intelligence and 

machine learning algorithms. 
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An anomaly in the pipeline pressure data is meant to indicate the presence of a leak. 

Other parameters not associated with leaks can cause variations in the pipeline pressure 

thus generating false alarms. It is there required that these non-leak causing activities be 

identified and isolated from the leak decision making process. In this research, the inlet 

pressure is monitored and compared with the midpoint pressure value. Variations in the 

inlet pressure are tracked and correlated with the midpoint pressure sensor and a model 

of the flow is developed. With this, the midpoint pressure sensor value tracks the inlet 

pressure values and this reduces the generation of spurious signals or erroneous signals. 

The algorithm presented in this work enables the leak detection model to track the inlet 

pressure and ensures that variations in the inlet pressure which are reflected in the 

midpoint pressure sensor are not classified as leaks. This minimizes the generation of 

false alarms and also enables the development of a lightweight model for leak detection. 

This model utilizes only the Inlet pressure and the midpoint pressure sensor for the 

development of the real time leak detection algorithm.  

5.3 Midpoint Sensor Installation on the Pipeline 

This research has been able to establish that the possibility of detection for low-volume 

leaks decreases as the leak point moves away from the inlet sensors. Most leak detection 

systems rely on the pressure sensors installed at the inlet of the pipeline as such the 

pressure variation generated by the leak dissipates before it gets to the inlet pressure.  

The results obtained from this research show that the installation of a pressure sensor at 

the midpoint of the pipeline increases the chances of the detection of low-volume leaks 

which occur at locations where they would be undetectable by the inlet pressure sensor. 

The midpoint pressure sensor installation also increases the robustness of the LDS as it 

can counter the loss of sensitivity faced by the inlet pressure sensor and increase the 
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sensitivity of the LDS by enabling the detection of the leak which is lower than the 

minimum detection levels of the installed LDS. 

The result in figures 4.7 to 4.11  shows that the sensors located at the inlet and outlet are 

most responsive to leaks closest to their locations. For very long lines and small leaks, 

the pressure variation gets dissipated before it gets to the sensor locations. The 

introduction of a sensor at the midpoint of the pipeline provides an opportunity for the 

detection of small pressure variations caused by leaks which are around the midpoint of 

the pipeline. The introduction of the exception based algorithms in the midpoint sensors 

enables the batteries serving such sensors to last much longer than is expected as 

transmission only takes place when the pressure falls outside the expected envelop.    

5.4 Leak Detection as a Service (LDaaS). System Overview  

One of the finding of this research has been the fact that there is no platform where 

regulators in the oil and gas industry responsible for oil spill monitoring can access the 

leak alerts generated from operator pipeline networks. These regulators rely on reports 

from the operators or reports from the public whenever there is a leak. This gap is the 

reason why operators can continue production for several hours after a leak has been 

detected and also underreport or underestimate the volume of oil spilled as a result of 

their leak. Studies and data shows that the volume of oil spilled into the environment is 

directly proportional to the time it takes to detect and contain the leak. The leak 

detection architecture proposed in this research provides an opportunity for the 

development of a platform where regulators can register and receive the leak alerts from 

the operator pipeline networks as soon as they are generated. This feature is made 

possible by the development of the Leak Detection as a Service platform. The Leak 

Detection as a Service (LDaaS) is a platform that utilizes the pressure from the inlet and 
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the midpoint of the pipeline in a specially developed algorithm to detect pipeline leaks. 

The data from these two sensors are transmitted to a cloud location and the leak 

detection algorithm utilizes these datasets to provide real time leak detection services to 

these operators without the operators having to deploy their own leak detection systems.  

The algorithm is designed to be lightweight as it only utilizes pressure data from two 

sensors as against existing leak detection models which require multiple data sources to 

determine the occurrence of a leak. This platform will provide a low cost approach to 

operators especially the marginal operators with low footprints to deploy leak detection 

systems on their pipelines. It can accommodate multiple operators and ultimately reduce 

the cost of deploying leak detection systems by eliminating the need for proprietary leak 

detection systems. The relevant regulatory agencies responsible for oil spill monitoring 

can also register on the platform to monitor the leak alerts generated from the operator 

pipeline and evaluate their response to the alerts. The sensors transmitting to the LDaaS 

platform are designed to be GPS enabled such that their locations can be tracked while 

the exception based transmission feature integrated into the sensors will enable them to 

operate for extended durations. The block diagram of the proposed LDaaS system is 

shown in Figure 4.1. The sensors S1 represents the inlet pressure sensor, the S2 sensor 

represents the midpoint sensor while the S3 represents the outlet sensor. P1, P2 and P3 

represents the inlet pressure, the midpoint pressure and the outlet pressure.  
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Online Database: Realtime Data 
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Figure 5.1 Leak Detection as a Service Platform  

Multiple sensors from different operators can be managed by one platform with each 

pipe section identified by the inlet, midpoint and outlet pressure sensors. 
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Chapter 6 

Conclusions 

This section presents the contributions of the research, the key conclusions, and 

recommendations for further research. 

6.0 Research contributions 

1.  The research has been able to develop a framework for generating both the leak 

and no-leak time series datasets from any location of the pipeline. The use of 

PIPESIM with its GIS functionality and the RAND function of Python will 

enable researchers to build a pipeline network using the actual pipeline network 

topography and simulate leaks at any point of the pipeline.  

2.  This research has also been able to develop a pipeline leak detection architecture 

with a pressure sensor at the middle of the pipeline capable of detecting low 

volume leaks released from small diameter leak orifices. The size of the leak 

orifice and the pressure of the line determines the volume of the oil released 

from that orifice. At locations far from the inlet, the pressure is reduced and with 

a leak from a small leak orifice, the inlet sensor will not be able to detect the 

leak.  The installation of a  sensor at the midpoint of the line will enable the leak 

detection system to detect small leak-induced pressure variations which 

ordinarily would have been missed by the sensors at the inlet and outlet of the 

pipeline. 
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`6.1 Recommendations for further research 

The recommendations for further research in this area include the following 

1. Development of the leak detections system for subsea pipelines to investigate 

the impact of underwater transmission of the pressure signals to a cloud location 

2.  The implementation of this research using flowrate sensors to evaluate and 

compare the flowrate-based system against the pressure-based system used in 

this research. 

3. The deployment of the leak detection algorithm developed from this research  

using the One Class Dataset model which tracks the inlet pressure and is able to 

detect leak-induced pressure variation at the midpoint sensor. 

4. The deployment of the Leak Detection as a Service platform comprising three 

pressure sensors and the lightweight leak detection algorithm developed for real-

time leak detection from pipeline networks.  
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