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ABSTRACT 

The sharp increase in oil and gas production in the Williston Basin of North Dakota since 2006 

has resulted in a significant increase in produced water volumes. Primary mechanism for 

disposal of produced water is by injection into underground Inyan Kara formation through 

Class-II Saltwater Disposal (SWD) wells. With number of SWD wells anticipated to increase 

from 900 to over 1400 by 2035, localized pressurization and other potential issues that could 

affect  performance of future oil and SWD wells, there was a need for a reliable model to select 

locations of future SWD wells for optimum performance. Since it is uncommon to develop 

traditional geological and simulation models for SWD wells, this research focused on 

developing data-driven proxy models based on the CRISP-Data Mining pipeline for 

understanding SWD well performance and optimizing future well locations. NDIC’s oil and 

gas division was identified as the primary data source. Significant efforts went towards 

identifying other secondary data sources, extracting required data from primary and secondary 

data sources using web scraping, integrating different data types including spatial data and 

creating the final data set. Orange visual programming application and Python programming 

language were used to carry out the required data mining activities. Exploratory Data Analysis 

and clustering analysis were used to gain a good understanding of the features in the data set 

and their relationships. Graph Data Science techniques such as Knowledge Graphs and graph-

based clustering were used to gain further insights. Machine Learning regression algorithms 

such as Multi-Linear Regression, k-Nearest Neighbors and Random Forest were used to train  

machine learning models to predict average monthly barrels of saltwater disposed in a well.  

Model performance was optimized using the RMSE metric and the Random Forest model was 

selected as the final model for deployment to predict performance of a planned SWD well. A 

multi-target regression model was trained using deep neural network to predict water 

production in oil and gas wells drilled in the McKenzie county of North Dakota.  
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Chapter 1  

Produced Water Management and Saltwater 

Disposal 

1.1 Introduction 
Water is an essential component of oil and gas production. This includes water that is required 

to support oil and gas drilling and production operations (sourced water) and water that is 

brought to surface during oil and gas production (produced water). Produced water, a byproduct 

of oil and gas production is also referred as ‘saltwater’ due to its typically high salt content 

(Table 1.1). 

Table 1.1 Produced Water Quality 

Water Quality Total Dissolved Solids (TDS, mg/L) 

Fresh <1000 

Slightly Saline 1000-3000 

Brackish 3000-10000 

Saline 10000-35000 

Highly Saline >35000 

Source: (Ground Water Protection Council, 2019) 

Produced water refers to one of the following: 

1. Groundwater naturally occurring in deep reservoirs. 

2. Water previously injected into the formation for secondary recovery or well treatment 

purposes. 

3. Flowback water that returns to surface after a well is hydraulically fractured. 
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Managing produced water in an efficient and effective manner is an essential component of oil 

and gas production. Produced water management involves either disposing produced water as 

wastewater (saltwater) or consider it as a resource for beneficial reuse such as base fluid for 

hydraulic fracturing operations, irrigation and livestock watering. Saltwater Disposal (SWD) 

is a method of reinjecting produced water back into the subsurface for disposal.  

1.2  Regulatory Programs  

Produced water management in the United States of America (USA) is regulated by federal, 

state or local agencies. Two major federal permitting programs, the National Pollutant 

Discharge Elimination System (NPDES) and the Underground Injection Control (UIC) govern 

produced water management. The NPDES program regulates discharge of any wastewater to 

the water bodies of the USA such as lakes, rivers and streams. NPDES was created by the USA 

Environmental Protection Agency (EPA) under the Clean Water Act (CWA). The UIC 

program, created by EPA under the Safe Drinking Water Act (SDWA) regulates disposal of 

produced water in injection wells including permitting, construction, operation and closure.  

According to (UIC), an injection well is used to dispose fluid underground into porous geologic 

formations. These underground formations may range from deep sandstone or limestone, to a 

shallow soil layer. Injected fluids may include water, wastewater, brine (saltwater), or water 

mixed with chemicals. 

The (UIC) program consists of six classes of injection wells as given below. Each well 

class is based on the type and depth of the injection activity and the potential for that injection 

activity to result in endangerment of an Underground Source of Drinking Water (USDW).  

 Class I wells are used to inject hazardous and non-hazardous wastes into deep, isolated 

rock formations. 
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 Class II wells are used exclusively to inject fluids associated with oil and natural gas 

production. Produced water disposal is done through Class II wells. 

 Class III wells are used to inject fluids to dissolve and extract minerals. 

 Class IV wells are shallow wells used to inject hazardous or radioactive wastes into or 

above a geologic formation that contains a USDW.  

 Class V wells are used to inject non-hazardous fluids underground. Most Class V wells 

are used to dispose of wastes into or above underground sources of drinking water. 

 Class VI wells are wells used for injection of carbon dioxide (CO2) into underground 

subsurface rock formations for long-term storage, or geologic sequestration. 

Figure 1.1 below provides a summary of produced water management options. 

 
Fig 1.1 Produced water management options 

1.3 Produced Water Management in North Dakota 

The Clarence Iverson#1 well, drilled in the year 1951and the first successful oil producing well 

in North Dakota (ND) kicked off the first oil boom in the state (Ziesch & Ritter, 2018). The 

second oil boom happened in the early 1980s. The third oil boom, also known as the ‘Bakken 

Boom’ started in 2006. The target oil producing formations are the  Bakken and Three Forks 

formation in the Williston Basin. As a result of horizontal drilling and hydraulic fracturing, 

there has been a sharp increase in oil and gas production in the Williston Basin of North Dakota 
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since the ‘Bakken Boom’ which has also resulted in a significant increase in produced water 

volumes.   Figure 1.2 below is a plot of well count evolution, annual oil and water production 

since 2001 in North Dakota’s Bakken shale play, capturing the effect of the ‘Bakken Boom’. 

A total of 5.45 billion barrels of water was produced in the year 2021 along with 3.69 billion 

barrels of oil.  

Fig 1.2 Annual oil and water production along with average annual well count, Bakken Play- 

North Dakota (data courtesy WellDatabase.com, visualization using Tableau software) 

Analysis of Total Dissolved Solids (TDS) data for ND’s Bakken shale play from the USGS 

National Produced Waters Geochemical Database (Blondes, 2018) (year 2006 to year 2012) 

yields an average TDS of 227,000mg/L. Given the highly saline nature (Table 1.1) of the 

produced water quality in ND, primary mechanism for disposal of produced water is by 

injection into underground formations through Class-II SWD wells.  

Geology of the area is a major factor in determining viability of underground injection for 

saltwater disposal. The Lower Cretaceous Dakota geological group in ND’s Williston Basin 

(Fig 1.3) provides an ideal sequence of geologic units at an optimal depth for saltwater disposal 

(Bader, 2016). 
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Fig 1.3 ND stratigraphic column showing the Dakota group (Bader, 2016) 

The Inyan Kara formation of the Dakota group have good porosity (20-30%) and Darcy 

level permeability, overlain by the thick Pierre shales and underlain by the Swift formation 

providing good seal and confinement of the injected saltwater and over 95% of the produced 

water is disposed through SWD wells in this formation (Bader, 2016). With over 700 SWD 

active wells in the state already, a 2016 report by Energy & Environmental Research Center 

(EERC) on Bakken Water Management Practices and Potential Outlook (Kurz et al., 2016) 

estimates the number of SWD wells to increase to 1485 by the year 2035.  

While the highly saline produced water can be treated and reused in the hydraulic fracturing 

process which needs a lot of water, high treating costs has made disposal the preferred option. 

It is encouraging to note from a recent article in Journal of Petroleum Technology (Wright, 

2022) about the potential use of untreated produced water from the Bakken as an alternative 

base fluid for use with polymers such as high-viscosity friction reducers that could reduce 

environmental footprints and lower operating costs. Treating produced water for bacteria, 

heavy metals and organics may still be needed. 
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1.4 Objectives 

A data-driven approach is when decisions are based on analysis and interpretation of hard data 

rather than on observation. A data-driven approach ensures that solutions and plans are 

supported by sets of factual information, and not just hunches, feelings and anecdotal evidence. 

Application of data mining techniques to use past data to gain deeper insights is now possible 

due to the availability of robust statistical / machine learning models and computing power.  

North Dakota Industrial Commission’s (NDIC) Oil and Gas Division which regulates the 

drilling and production of oil and gas in the state of ND collects data about the performance of 

the SWD wells along with other data pertaining to the geology of the formations penetrated by 

the wells.  

Objective of the proposed project is to explore the application of data mining techniques 

to gain insights into SWD well performance in the state of North Dakota and design a data 

driven proxy model to predict/optimize the performance of planned SWD wells. Depending on 

the nature of the data available, both unsupervised and supervised machine learning methods 

will be considered. Graph Data Science (GDS) techniques are gaining a lot of attention now 

due to their ability to gain insights from connected data. Hence, suitability of GDS techniques 

to gain deeper insights and improve predictive power of the machine learning models will be 

examined. As produced water is the reason for SWD, an additional objective is to design data 

driven proxy models for estimating water production from oil and gas wells. 

1.5 Methodology  

The proposed research project is based on the Cross Industry Standard Process for Data Mining 

(CRISP-DM) pipeline shown in Figure 1.4 below, which consists of six steps.   
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Fig 1.4 Cross Industry Standard Process for Data Mining (CRISP-DM) (Juodyte, 2017) 

The following steps will be carried out as part of the project execution: 

 Primary and secondary data sources will be identified. The iterative nature of data 

collection shown in Figure 1.4 will be considered to identify additional data sources 

during the project execution. 

 Technologies for initial data wrangling, visualization and model training / tuning will 

be identified. Both traditional programming and visual programming tools will be 

considered with a focus on open source platforms as much as possible. 

 Data cleaning, data preparation and data integration will be carried out iteratively 

including identifying additional data sources and data augmentation. Emphasis will be 

on identifying data that incorporates surface, subsurface and operational aspects to 

ensure robustness of the models. 

 Exploratory Data Analysis (EDA) and visual analytics will be used to understand data 

and gain initial insights.  

 Analysis will be extended to traditional clustering techniques for gaining additional 

insights. 

 Target variables pertaining to SWD well performance and water production will be 

identified. Basic and advanced machine learning modeling techniques to predict target 

variables reliably will be explored. Variable transformation, feature engineering and 
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cross validation techniques will be incorporated for model tuning and validation 

purposes. 

 The suitability of GDS for creating graph data models, graph analytics and model 

training and improvement will be explored. 

 The final workflow for consuming the trained models and model deployment will be 

defined. 

1.6  Significance  

1. While subsurface modeling of oil and gas reservoirs is common, it is not common to 

see robust subsurface models being developed for saltwater disposal reservoirs. Such 

models can bring in great benefits to oil and gas companies and regulators in planning 

future SWD well operations, particularly when produced water (saltwater) volumes are 

anticipated to increase significantly. Capitalizing on the data available on SWD 

disposal wells from the state of ND to create a data driven proxy model will enable the 

state regulator to evaluate permit applications and plan future SWD well locations in 

an optimum manner. Such models can also be kept alive through regular updates. 

2. The use of Orange data mining platform that is based on visual programming approach 

and provides a no-code environment for developing and deploying data mining models 

(Demsar, et al., 2013). Such data driven proxy models developed using open source 

visual programming tools can enable regulators and domain experts  understand, utilize 

and update the models confidently. 

3. Data driven models need data. Not all the required data is available in a structured 

tabular format. Hence, use of  Python Beautiful Soup library for web scraping to 

automatically extract various data relating to SWD well performance from NDIC 

website and data augmentation considering external data such as proximity to roads and 
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produced water treatment facilities will enable the development of a performant proxy 

model 

4. Oil and gas data well data is spatial data. Hence, Use of Python GeoPandas library to 

incorporate spatial data integration and analysis can  improve performance of data 

driven proxy models.  

5. Exploring connections in SWD well data through the use of Knowledge Graphs and 

graph-based clustering techniques with the Neo4j Graph Data Science connected data 

analytics and machine learning platform can provide additional valuable insights to the 

regulators at NDIC about performance of current wells and potential to optimize future 

well locations.  

1.7 Dissertation Structure  

This dissertation consists of six Chapters. 

Chapter 1 is an introduction to the project. A brief overview is provided about  produced 

water management and disposal in the US oil and gas industry, federal regulations and 

regulations in the state of North Dakota. The objectives, methodology and significance of this 

project are also presented.  

Chapter 2 includes a literature review of the concepts related to traditional subsurface 

modeling techniques in oil and gas for Field Development Planning (FDP), role of data driven 

proxy models, the CRISP data mining pipeline and Graph Data Science (GDS).  

In Chapter 3 we present a brief overview on the data sets, sources, web scraping and data 

integration. We also discuss the various technologies used in executing this project such as 

Orange visual data mining platform, Neo4j graph data science platform, Tableau visual 

analytics platform and specific Python libraries such as Beautiful Soup and GeoPandas.  
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In Chapter 4 a discussion of the results of the application of EDA and unsupervised data 

mining techniques such as clustering including Graph Data Science techniques on the final data 

is presented.  

Chapter 5 is a presentation and discussions of the results obtained from the data driven 

modeling using supervised regression machine learning algorithms for SWD optimization and 

produced water prediction carried out in this study.     

 In Chapter 6 a summary of the findings from this study will be presented along with some 

recommendations and future studies that can be carried out. 

1.8 Summary  

In this chapter we presented a brief introduction on produced water (saltwater), a byproduct of 

oil and gas production operations. Regulatory programs that govern surface and underground 

disposal of produced water in the USA and the various produced water management options 

were discussed. Produced water management in the state of North Dakota was reviewed 

including the evolution of produced water since the ‘Bakken Boom’ and saltwater disposal    

being the primary disposal method. The objectives, significance and the methodology related 

to this project, as well as the structure of this dissertation were also presented.  

In the next chapter, a review of the literature related to traditional subsurface modeling 

techniques in oil and gas for Field Development Planning (FDP), role of data driven proxy 

models, data mining pipeline and Graph Data Science (GDS) will be presented.  



  

 

 

Chapter 2  

Literature Review 

In this chapter,  we will build on the introductory concepts presented in Chapter 1 and present 

a review of the literature on traditional approaches to Field Development Planning (FDP) using 

subsurface models,  its applicability and limitations for modelling disposal wells, data-driven 

proxy modelling alternatives and the data mining process. The chapter is divided into three 

sections related to traditional modelling techniques, data mining process and techniques and 

Graph Data Science (GDS) techniques.  

2.1  Oilfield Subsurface Modeling and Simulation 

Sankaran, et al. (2020) describes a model as ‘a means to describe or understand a system’ that 

can sometimes be used to predict future outcomes. Figure 2.1 shows the schematic of a 

 

 

 

 

 

Fig 2.1 Schematic of a Model (Sankaran, et al., 2020) 

model based on a mathematical description of the static or dynamic behavior of a system or a 

process, where a set of equations is used to transform known input parameters to predict 

outcomes of output parameters. The process of identifying the best model that defines the 



Chapter 2 Literature Review  

12 

 

relationship between the inputs and outputs is known as “learning”, also known as history 

matching, model calibration, or training in the reservoir engineering literature.  

As part of oil and gas exploration and production activities, once a new oilfield is 

discovered and the viability of the reservoir(s) containing oil / gas  is established using seismic 

data from the region and data acquired from the exploration and appraisal wells pertaining to 

formation properties such as logs, well test etc., to characterize the reservoir, oil and gas 

companies typically develop a model to describe the reservoir system as part of the Field 

Development Planning (FDP) process. This is a demanding and involved process, which starts 

with developing a subsurface geological (static) model using static seismic data, well log data 

and geo-statistical techniques, creating a dynamic model considering rock and fluid properties 

and feeding the model to a reservoir simulator.  

Edwards (2012) explains that oil and gas simulations, model activities from deep within 

the reservoir to process plants on the surface and ultimately include economic evaluation and 

depict the overall FDP process which is shown in Figure 2.2 below.  The primary task of a 

reservoir simulator is to analyze flow through porous media and calculate production profiles 

as a function of time for the existing and planned wells in the reservoir. These outputs can then 

be passed on to a surface network simulator for developing well models, then to a process 

simulator to develop a process plant model and eventually to an economic simulator for 

understanding the economic performance of the oilfield when it is developed. The reservoir 

simulators are typically full-physics models, demanding a lot of physical parameters to 

adequately characterize the system, time and computing power.  

Sankaran, et al. (2020) state that when full-physics models are cumbersome to build and 

calibrate or all the multi-physics aspects are not well understood, alternatives could be reduced- 
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Fig 2.2 Field Development Planning Process (Edwards, 2012) 

physics models. These models simplify the physical process(es) through some assumptions or 

analog models that represent the reservoir system by maintaining accurate relationships 

between key aspects of the model while absolute values of the original properties may not be 

preserved. Sankaran, et al., 2020 also mention that for unconventional reservoirs such as shale 

plays, the complexity of the physical phenomena of flow through porous media, combined with 

the scale and pace of field development, has pushed the industry to using analog models and 

data-driven models to answer reservoir management questions. 

2.2  Modeling and Simulation of Dakota Sand 

As noted in Section 1.3 of Chapter 1, there has been a sharp increase in oil and gas production 

in the Williston Basin of North Dakota since the ‘Bakken Boom’ which has also resulted in a 

significant increase in produced water volumes. Normally, produced water is injected into the 

Dakota Formation, which lies about halfway between the Bakken target and the surface.  



Chapter 2 Literature Review  

14 

 

S. Basu (2019) identifies in their paper that the Dakota formation pressure has increased 

in recent years, causing drilling problems for multiple operators across the basin.  The Dakota 

Formation in the Williston Basin does not contain hydrocarbons, resulting in limited core and 

log data coverage. To address the limitation of a lack of a comprehensive geologic or reservoir 

model of the Dakota Formation in the Bakken play to guide drilling decisions, S. Basu (2019) 

developed a geologic model and discussed the results. The paper identifies the challenges to 

build a reliable geologic model given the limited amount of reservoir properties. The authors 

used this geological model to build a reservoir simulation model, which was calibrated to 

injection rates and pressures of saltwater disposal wells in the modelled area. 

As of 2016, approximately 94% of produced brines (by volume) was disposed of via deep 

well injection into the sandstone units of the Inyan Kara Formation, raising questions about the 

long-term viability of the Inyan Kara as a disposal target. Through the Bakken Production 

Optimization Program, the Energy & Environmental Research Center developed a reservoir 

simulation model of a portion of the Inyan Kara Formation to evaluate the effects of current 

and possible future saltwater disposal (SWD) operations on reservoir pressure and long-term 

disposal potential.  The reservoir simulation model developed for this effort encompassed most 

of McKenzie County and a portion of northwestern Dunn County. The data inputs for the 

geologic model included well logs, formation tops, and core sample descriptions and analyses, 

as well as injected volumes and pressure measurements at individual SWD wells. Injection 

rate, volume, and pressure data was compiled for the 103 SWD wells in the modeled area and 

used to history-match the numerical simulation model. The simulation model was used to 

estimate the current distribution of reservoir pressure and injected salinity plumes as a result 

of SWD beginning in 1961. Several potential future scenarios were also simulated to evaluate 

the distribution of pressure and salinity within the Inyan Kara Formation and to evaluate long-

term disposal potential out to the year 2050 (Ge Jun et al., 2018).  
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In addition to the results generated by the simulation model, Ge Jun et al. (2018) also 

developed an equation-based analog model to calculate the volumetric storage potential of the 

Inyan Kara within the modeled area under closed boundary conditions. This calculation 

assumed that all of the available pore space would be accessible via injection wells and that the 

formation fluid pressure would be at the maximum allowable without exceeding the permitted 

injection pressure. This simple estimate of maximum storage potential under closed boundary 

conditions was calculated for comparison to the disposal potential estimated by the reservoir 

simulation model. 

One of the limitations of geological and simulation models is that it takes a lot of time and 

efforts to update the models. Typical practice in the industry is to update these models once 

every three to five years and hence the models might not reflect the current status of the field 

performance, potentially resulting in suboptimal planning scenarios as the model ages. 

Companies tend to prioritize investing time and efforts in acquiring data for reservoir 

characterization, developing and updating geological and simulation models for hydrocarbon 

bearing reservoirs over non-hydrocarbon bearing reservoirs used for water disposal. As a result, 

geological and simulation models for SWD in the Dakota formation may not be frequently 

updated. 

2.3  Data-Driven Models 

According to Sankaran, et al. (2020), data-driven models are often built using data alone and 

require an understanding of dependent  and independent variables. Some of the advantages of 

a data-driven models are: 

 A precise understanding of the physical processes at play is not required.  

 Insights into the processes are derived directly from the data by analyzing patterns.  
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 Correlation is not identical to causality, but it can often lead to better understanding of 

causality.  

 Recognizing recurring patterns can target an area for investigation and help understand 

the cause-and-effect process.  

 Data-driven analytics are often limited to patterns seen in the historical training data 

and tend to perform poorly when extrapolated to new operating states. This limitation 

is usually addressed by retraining  models over new patterns.  

 The speed of data-driven models under favorable conditions is often very attractive, 

and they can add substantial business value if they offer a sound and timely decision. 

The proliferation of high-resolution datasets and decrease in sensor, storage, and 

computing costs are significantly extending our ability to grasp new concepts, improve 

predictions, and perform better field decisions. According to Klie (2021), in  a matter of a few 

years, we have also witnessed the consolidation of data science and machine learning as 

widespread disciplines that could help generate new technologies derived from data. The 

abundance of data and the persistence of elusive physical laws to satisfactorily explain the 

complexity of our assets and operations are promoting a renowned interest for finding ways to 

extend current model capabilities and decision workflow practices. Moreover, the current 

stringent economic environment and the increasing interest in pursuing cleaner, safer, and 

cheaper sources of energy are driving the need for more practical but more robust predictive 

and prescriptive models. Ultimately, the physics we know needs to rely on data to unmask the 

physics that we do not yet know.  

Whenever robust physics is available, it usually entails computationally intensive 

processes or workflows. These models may not be suitable for performing real-time actions. 

The computational demand increases geometrically when these predictive capabilities must be 

employed to optimize field operations. To make optimization and uncertainty quantification 
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viable approaches, the physics model must be replaced by data-driven surrogate models that 

are generated from these physics-based models. The interesting fact is that these data-driven 

models can be trained using both simulation and field data (Klie, 2021). Figure 2.3 below 

summarizes the contrasting perspective between physics-based and data-driven models.  

 
Fig 2.3 Physics-based Vs Data-Driven Models (Klie, 2021) 

2.4  Data Mining 

Shmueli (2018) defines analytics as the practice and art of bringing quantitative data to bear on 

decision-making. They refer to data mining as analytics methods that go beyond counts, 

descriptive techniques, and simple rule-based methods. According to them, data mining stands 

at the confluence of the fields of statistics and machine learning without the constraints of lack 

of sufficient data or computing power. Figure 2.4 shows a visual representation of data mining. 

 

Fig 2.4 Data Mining for Data Driven Decisions 

Juodyte (2017) gives an overview on the steps of a data mining project. The usual tasks of a 

data mining project are grouped together to form the data mining pipeline, which has inputs 

and a number of processing steps chained together in some way to produce some sort of an 
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output. In the pipeline, each step logically follows the next step providing an outcome. Figure 

1.4 represents the CRISP-DM pipeline steps: 

 Business Understanding 

 Data Understanding 

 Data Preparation 

 Modeling 

 Model Evaluation 

 Model Deployment 

 
An overview of the CRISP-DM steps as explained by  Juodyte (2017)  is provided below: 
 
2.4.1 Business Understanding 

This initial phase focuses on understanding the project and requirements from a business 

perspective, then converting this knowledge into a data mining problem definition, data mining 

goals, preliminary plan to achieve the objectives and success criteria. Neglecting this step 

would likely result in a lot of wasted time answering the wrong questions. 

2.4.2 Data Understanding 

This step starts with initial data collection and proceeds with activities that enable the project 

team to become familiar with the data. Kabir (2016) explains the concept of data collection as 

‘the process of gathering and measuring information on variables of interest in an established 

and systematic manner’. The author goes on to describe quantitative data as numerical in nature 

and qualitative data as nominal in nature.  

Data mining prefers data that is tabular in nature. Connolly (2015) says that the most 

common type of data model is a relational data model based on the mathematical concept of a 

relation that is represented as a table which contains rows (tuples) and columns (attributes). In 

a relation, each row (tuple) is uniquely identified by an attribute or a set of attributes known as 
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relational keys. A great strength of the relational model is this simple logical structure backed 

by a sound theoretical foundation.  

If the data is available in a website, such data can be collected through web scraping. 

Karajgikar (2021) defines web scraping as the process of fetching data from third-party website 

by parsing the Hyper Text Markup Language (HTML) code. The author also identifies the 

Python BeautifulSoup open source library as a preferred tool for web scraping which is the 

preferred way to access open data from the web in the absence of Application Programming 

Interface (API) and  explains the importance of understanding the structure of a web page. 

Data description using statistical techniques, Exploratory Data Analysis (EDA) and data 

quality verification are key tasks in this step. EDA helps the project team to gain a good 

understanding of the data, discover initial insights, identify potential data quality and 

inconsistency issues and lay the foundation for the data cleaning and preparation activities. 

Exploratory data analysis can help identify patterns and trends hidden in the data (norm) and 

deviations from the patterns (exceptions). Using visual analytics to carry out EDA helps to 

overcome the cognitive limitation faced when dealing with numbers and spreadsheets. One has 

to realize the importance of creating functional and insightful visualizations by applying Dr. 

Tufte’s visualization design principles (Globus, 1994).  

2.4.3 Data Preparation 

Data preparation phase covers all activities needed to construct the final dataset that will serve 

as input to the modeling process, from the initial raw data. Figure 1.4 shows that the iterative 

nature of data mining and data preparation may be performed multiple times. Attribute 

selection and sample selection are key components of the data preparation task. Dimensionality 

reduction, addressing redundancy in attributes, data cleaning and transformation are also key 

steps included in the data preparation phase. 
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Loshin (2011) explains data enhancement as the process of increasing the value of the 

initially available dataset by appending additional value-added knowledge. Enhancement links 

multiple data sets to pool information from multiple sources, with the intention of identifying 

actionable knowledge from the combined data. Data enhancement has the potential of 

increasing the quality of the final dataset and the predictive power of machine learning models 

trained using the enhanced final dataset. 

Combining data from multiple sources to create the final dataset is known as data 

integration.  McKinney (2017) discusses merge and join operations that can be used to combine 

datasets by linking one or more keys and highlights that these operations are central to 

relational databases that are tabular in nature.  

Oil and gas wells and SWD wells are typically identified using their surface location 

(latitude, longitude and surface elevation) in addition to a unique well identifier issued by the 

regulating authority. 4earthintelligence (2021) defines geospatial data as any type of data that 

contains a geographic component. This includes any data with a location component. As per 

this definition, oil and gas wells and SWD wells are geospatial data. More specifically, they 

are considered point data as each point, identified by surface elevation, latitude and longitude, 

represents a discrete well location (4earthintelligence, 2021). As per 4earthintelligence (2021), 

line data represents data that is inherently imbued with length (examples being roads and rivers) 

and polygon data is used to represent an area using perimeters and boundaries (examples being 

forests, cities and lakes). The concept of data integration using merge and join operations on 

relational dataset discussed earlier in this chapter can be extended to spatial datasets as well. 

Spatial join operation joins attributes of one feature to another based on the spatial relationship 

(ArcGIS Pro). Spatial join is based on proximity of the features calculated using a distance 

measure. Distance between any two features is calculated as the shortest separation between 
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them (ArcGIS Pro). Figure 2.5 below shows how the distances are calculated between different 

spatial features.  

 
Fig 2.5 Distance Calculation between Spatial Features (ArcGIS Pro) 

According to Han (2012), there are several data preparation or preprocessing techniques. 

Data cleaning can be applied to remove noise and correct inconsistencies in data. Data 

reduction can reduce data size by, for instance, aggregating, eliminating redundant features, or 

clustering. Data transformations (e.g., normalization) may be applied, where data are scaled to 

fall within a smaller range like 0.0 to 1.0. This can improve the accuracy and efficiency of 

mining algorithms involving distance measurements. These techniques are not mutually 

exclusive, and they may work together. For example, data cleaning can involve transformations 

to correct wrong data, such as by transforming all entries for a date field to a common format. 

Figure 2.6 below provides a summary of the various data preprocessing steps. 

Han (2012) identifies dimensionality reduction as one of the data reduction strategies to 

reduce the number of random variables or attributes under consideration. Principal Component 
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Analysis (PCA) is a technique of dimensionality reduction that transforms or projects the 

original data on to a smaller space. Suppose that the data to be reduced consist of tuples or data  

 
Fig 2.6 Data Preprocessing Steps (Han, 2012) 

vectors described by n attributes or dimensions. PCA searches for k n-dimensional orthogonal 

vectors that can best be used to represent the data, where k ≤ n. The original data are thus 

projected onto a much smaller space, resulting in dimensionality reduction. PCA combines the 

essence of attributes by creating an alternative, smaller set of variables. The initial data can 

then be projected onto this smaller set. PCA often reveals relationships that were not previously 

suspected and thereby allows interpretations that would not ordinarily result. The basic 

procedure is as follows:  
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 The input data are normalized, to ensure that each attribute falls within the same range 

and that attributes with large domains will not dominate attributes with smaller 

domains. 

 PCA computes k orthonormal vectors that provide a basis for the normalized input data, 

referred to as the principal components. The input data are a linear combination of the 

principal components. 

 The principal components are sorted in order of decreasing “significance” or strength. 

The principal components essentially serve as a new set of axes for the data, providing 

important information about variance. That is, the sorted axes are such that the first axis 

shows the most variance among the data, the second axis shows the next highest 

variance, and so on. For example, Figure 2.7 shows the first two principal components, 

Y1 and Y2, for the given set of data originally mapped to the axes X1 and X2. This 

information helps identify groups or patterns within the data. 

 Dimension reduction can be achieved by eliminating the weaker components, that is, 

those with low variance. Using the strongest principal components, it should be possible 

to reconstruct a good approximation of the original data. 

 
Fig 2.7 Principal Component Analysis. 

Attribute subset selection, which retains a subset of the initial attributes, is a method of 

dimensionality reduction in which irrelevant, weakly relevant, or redundant attributes or 

dimensions are detected and removed. This usually requires domain knowledge and a good 
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understanding of the nature of the attributes. For n attributes, there are 2n possible subsets. An 

exhaustive search for the optimal subset of attributes can be prohibitively expensive, especially 

as n increases. Therefore, heuristic methods that explore a reduced search space are commonly 

used for attribute subset selection. These methods are typically greedy in that, while searching 

through attribute space, they always make what looks to be the best choice at the time. Their 

strategy is to make a locally optimal choice in the hope that this will lead to a globally optimal 

solution. Such greedy methods are effective in practice and may come close to estimating an 

optimal solution. 

2.4.4 Modeling 

As per Juodyte (2017), data mining algorithms are applied to the dataset in this step by selecting 

the appropriate modeling techniques, and their parameters are tuned for optimal model 

performance. As there might be several techniques for the same data mining problem type that 

 
Fig 2.8 Data Mining Paradigms (Juodyte, 2017) 

might have specific requirements on data forms, iterating through the data preparation step is 

often required. Figure 2.8 depicts the data mining paradigms.  The two modeling approaches 

being considered in this research project, clustering and regression are discussed briefly in the 

following paragraphs. 
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Clustering:   

Clustering is an unsupervised machine learning technique that does not require target labels 

and belongs to the discovery and description paradigms of data mining (Fig 2.8).  Luxborg 

(2007) states in his technical report that clustering is one of the most widely used techniques 

for exploratory data analysis, with applications ranging from statistics, computer science, 

biology to social sciences or psychology. According to the author, clustering enables people to 

get a first impression on their data by trying to identify groups of “similar behavior” in their 

data in virtually every scientific field dealing with empirical data. As per Han (2012), clustering 

techniques consider data tuples as objects and partition the objects into groups, or clusters, so 

that objects within a cluster are “similar” to one another and “dissimilar” to objects in other 

clusters. Similarity is commonly defined in terms of how “close” the objects are in space, based 

on a distance function. Figure 2.9 shows the position of four individuals in a two variable 

property space composed of variable 1 and variable 2. It is clear from visual inspection that 

individuals 1 and 2 would be grouped into cluster 1, and individuals 3 and 4 into cluster 2.  

 
Fig 2.9 Illustration of Distance and Similarity (Juodyte, 2017) 

In terms of similarity or dissimilarity, individuals 1 and 2 have high correlations (low distance) 

between each other, as do individuals 3 and 4. Comparing individuals 2 and 3, however, we 

see that they are quite dissimilar (exhibiting higher distance between them) on both variable 1 

and variable 2, showing that their correlation is low. The formula to calculate the Euclidean 

distance is given below in Equation 2.1 
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𝐷2 =  ൫𝑥𝐴𝑖
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  ………………….…………….....(2.1) 

Here D is the distance, K is the number of variables (dimensions), 𝑥𝐴𝑖
 signifies the value of 

variable i for object A, and 𝑥𝐵𝑖
 signifies the value of variable i for object B.  

Regression: 

Juodyte (2017) discusses regression as an algorithm that attempts to find a function which 

models the data with the least error that is, for estimating the relationships among data or 

datasets. It finds the best matching curves to data points, e.g. simple linear regression, multiple 

linear regression, non-linear regression or logistic regression (for classification problems). An 

important part of regression is finding a suitable interpolating function. Regression belongs to 

the discovery and prediction data mining paradigm.  

In (simple) linear regression, the data are modeled to fit a straight line. For example, a 

random variable, y (called a response variable), can be modeled as a linear function of another 

random variable, x (called a predictor variable), with the equation: 

𝑦 = 𝑤𝑥 + 𝑏  ……………………………………………….(2.2) 

where the variance of y is assumed to be constant. In the context of data mining, x and y 

are numeric database attributes. The coefficients, w and b (called regression coefficients), 

specify the slope of the line and the y-intercept, respectively. These coefficients can be solved 

for by the method of least squares, which minimizes the error between the actual line separating 

the data and the estimate of the line. Multiple linear regression is an extension of (simple) linear 

regression, which allows a response variable, y, to be modeled as a linear function of two or 

more predictor variables. 

2.4.5 Model Evaluation  

The objective of this step is to evaluate and understand the performance of the various machine 

learning models trained in the previous step. When the outcome is a number as in regression 
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modeling, the most common method for characterizing a model’s predictive capabilities is to 

use the root mean squared error (RMSE). This metric is a function of the model residuals, 

which are the observed values minus the model predictions. The mean squared error (MSE) is 

calculated by squaring the residuals and summing them. The RMSE is then calculated by taking 

the square root of the MSE so that it is in the same units as the original data. The value is 

usually interpreted as either how far (on average) the residuals are from zero or as the average 

distance between the observed values and the model predictions (Kuhn & Johnson, 2013). MSE 

of a model is calculated as: 

𝑀𝑆𝐸 =  
ଵ


 (𝑦 − 𝑦ො)

ଶ

ୀଵ
  ……………………………. (2.3) 

Where, 𝑦 is the outcome and 𝑦ො is the model prediction of that sample’s outcome. 

Another common metric is the coefficient of determination, commonly written as R2. This 

value can be interpreted as the proportion of the information in the data that is explained by the 

model. Thus, an R2 value of 0.75 implies that the model can explain three-quarters of the 

variation in the outcome. The simplest way to calculate R2 is to find the correlation coefficient 

between the observed and predicted values and squaring this value. While this is an easily 

interpretable statistic, the practitioner must remember that R2 is a measure of correlation, not 

accuracy (Kuhn & Johnson, 2013).     

Using the K-fold cross validation technique in model evaluation is essential to ensure the 

models are not suffering from overfitting and can generalize well for new scenarios when 

deployed. According to Lantz (2015),  the procedure of partitioning the final dataset into 

training and test datasets randomly is known as the holdout method. The training dataset is 

used to generate the model, which is then applied to the test dataset to generate predictions for 

evaluation. The repeated holdout is the basis of a technique known as k-fold cross-validation 

(or k-fold CV), which has become the industry standard for estimating model performance. 

Rather than taking repeated random samples that could potentially use the same record more 
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than once, k-fold CV randomly divides the data into k completely separate random partitions 

called folds. Common convention is to use 10-fold cross-validation (10-fold CV). The reason 

is that the empirical evidence suggests that there is little added benefit in using a greater 

number. For each of the 10 folds (each comprising 10 percent of the total data), a machine 

learning model is built on the remaining 90 percent of data. The fold's matching 10 percent 

sample is then used for model evaluation. After the process of training and evaluating the model 

has occurred for 10 times (with 10 different training/testing combinations), the average 

performance across all the folds is reported.  

2.4.6 Model Deployment  

Creation of the model is generally not the end of the project. Even if the purpose of the model 

is to increase knowledge of the data, the knowledge gained will need to be organized and 

presented in a way that the customer can use it. It often involves applying live models within 

an organizations decision making processes, for example, real-time personalization of Web 

pages or repeated scoring of marketing databases (Juodyte, 2017). 

A traditional learning approach of ML is to acquire enough computer programming skills 

before diving into ML concepts. Venugopal et al (2021) discusses a code-free ML approach in 

their paper which alleviates the need for learning programming for building and deploying ML 

models  by embracing a novel approach of building ML models using visual programming 

approach and trough open source  platforms such as Orange. These platforms do not require 

users to know programming languages such as Python or R,  provide built-in visualization tools 

for rapid data analysis and interactive data exploration,  a graphical user interface and enable 

users to focus on exploratory data analysis rather than on coding. These platforms also enable 

domain experts and users to deploy ML models in an easy manner to derive maximum benefits 

in business related decision making. 
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2.5  Graph Data Science 

Networks are a representation; a tool to understand complex systems and the complex 

connections inherent in today’s data (Hodler & Needham, 2021). A graph is a representation 

of a network, often illustrated with circles to represent entities, also called nodes or vertices, 

and lines between them. Those lines are known as relationships, links, or edges. Each node 

represents an entity (a person, place, thing, category or other piece of data), and each 

relationship represents how two nodes are associated. Figure 2.10 below shows a conceptual 

representation of a network as a graph. 

 

 

Fig 2.10 Graph Representation of a Network  

Nego (2021) states that graphs allow the machine learning system to explore more of the 

data, faster access, and easier cleaning and enrichment. Traditional learning systems train on a 

single table prepared by the researcher, whereas a graph-native system can access more than 

that table. The author also explains that graphs enable data integration through merging of 

multiple data sources into a single uniform and connected dataset, ready for the training phase 

of data mining modeling step. This provides a great advantage in data mining by reducing data 

sparsity, increasing the amount of data available, and simplifying data management. 

According to Hunger (2021), while relational databases are powerful tools for the right 

use case and the right architecture, in today’s complex environment where user and business 
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needs are changing rapidly and where real world data is increasing in volume, velocity and 

variety at a fast pace,  data relationships are often more valuable than the data itself.  Graph 

data models are designed to effectively leveraging those connected data relationships.  

Hodler & Needham (2021) explain Graph Data Science (GDS) as a science-driven approach to 

gain knowledge from the relationships and structures in data, typically to power predictions. 

The authors break GDS down to the three following areas: 

 Graph statistics provides basic measures about a graph, such as the number of nodes 

and distribution of relationships. These insights may influence how you configure and 

execute more complex analysis as well as interpret results. 

 Graph analytics builds on graph statistics by answering specific questions and gaining 

insights from connections in existing or historical data.  

 Graph-enhanced ML is the application of graph data and analytics results to train ML 

models. 

Figure 2.11 below depicts a typical GDS journey. A brief review of the components of the GDS 

journey, as explained by (Hodler & Needham, 2021) is given below: 

 

Fig 2.11 GDS Journey (Hodler & Needham, 2021) 

Knowledge graphs are the foundation of GDS. At a high level, knowledge graphs are 

interlinked sets of data points that describe real-world entities, facts, or things and their 

relationship with each other in a human-understandable form. Unlike a simple knowledge base 
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with flat structures and static content, a knowledge graph acquires and integrates adjacent 

information by using data relationships to derive new knowledge. According to Nego (2021), 

knowledge graphs provide a homogeneous data structure for combining not only data sources, 

but also prediction models, manually provided data, and external sources of knowledge. The 

resulting data is machine ready and can be used during training, prediction, or visualization.   

Graph analytics usually refers to the use of global queries and algorithms that look at entire 

graphs for offline analysis of historical data and usually involves finding clusters, identifying 

influential nodes and evaluating different pathways. Graph analytics is employed after 

implementing the knowledge graph to understand the networks better and answer specific 

questions based on relationships and topology.  We saw earlier in this chapter the role of data 

visualization and visual analytics in data understanding step of the CRISP-DM pipeline. Nego 

(2021) presents the following key features of graph-powered data visualization: 

 Data navigation - Networks are useful for displaying data by highlighting connections 

between elements. They can be used both as aids to help people navigate the data 

properly and as powerful investigation tools. 

 Human-brain analysis - Displaying data in the form of a graph unleashes the power 

of machine learning by combining it with the power of the human brain, enabling 

efficient, advanced, and sophisticated data processing and pattern recognition. 

 Improved communication - Graphs are white-board friendly and conceptually 

represented on a board as they are stored in the database. This feature reduces the gap 

between the technicalities of a complex model and the way in which it is communicated 

to the domain experts or stakeholders. Effective communication improves the quality 

of the final results because it reduces issues with the comprehension of the domain, the 

business goals, and the needs and constraints of the project.  
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Improved communication is particularly important during the business and data understanding 

phases of the CRISP-DM pipeline, whereas data navigation and human-brain analysis are 

related mostly to the evaluation phase (Nego, 2021). 

Clustering was introduced earlier in this chapter. We present a review of spectral clustering 

below. Chatterjee (2020) describes spectral clustering as an EDA technique that reduces 

complex multidimensional datasets into clusters of similar data using the connectivity approach 

to clustering, wherein communities of nodes (i.e. data points) that are connected or immediately 

next to each other are identified in a graph. The nodes are then mapped to a low-dimensional 

space that can be easily segregated to form clusters. Spectral clustering treats the data clustering 

as a graph partitioning problem without making any assumption on the form of the data 

clusters. Spectral clustering uses information from the eigenvalues (spectrum) of special 

matrices (i.e. Affinity Matrix, Degree Matrix and Laplacian Matrix) derived from the graph or 

the data set. Spectral clustering makes no assumptions about the form of the clusters unlike    

other popular clustering techniques such as K-Means that assumes the points assigned to a 

cluster are spherical about the cluster center. The data points should be connected, but may not 

necessarily have convex boundaries, as opposed to the conventional clustering techniques, 

where clustering is based on the compactness of data points. Spectral clustering can be 

computationally expensive for large datasets as eigenvalues and eigenvectors need to be 

computed.   

By computing similarities between data points, tabular data can be represented as a 

similarity graph G = (V, E) such that each vertex vi in G represents a data point xi. Two vertices 

are connected if the similarity sij between the corresponding data points xi and xi is positive or 

larger than a certain threshold, and the edge is weighted by sij. G can then be partitioned such 

that the edges between different clusters (groups) have very low weights (Luxborg, 2007). 
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Chatterjee, 2020 defines an undirected and unweighted graph containing no loops or multiple 

edges as a simple graph and a graph G(V,E) with a set V of vertices and a set E of ordered pairs 

of vertices called directed edges or arrows a directed graph.  

While there are a few options to construct the similarity graph, Luxborg (2007) 

recommends starting with k-nearest neighbor graphs owing to its simplicity. Here the goal is 

to connect vertex vi in the graph G with vertex vj if vi is among the k-nearest neighbors of vi. 

Ignoring the directions of the edges by connecting the vertices with an undirected edge yields 

the k-nearest neighbor graph. The mutual k-nearest neighbor graph can be generated by 

connecting vertices vi and vj if vi is among the k-nearest neighbors of vi and vice versa. Edges 

are weighted by the similarity of the end points once the appropriate vertices are connected.  

Let us review the matrix representations of the similarity graph G, as explained by (Chatterjee, 

2020).  

Adjacency and Affinity Matrix (A): The graph (or set of data points) can be represented as 

an Adjacency Matrix, where the row and column indices represent the nodes, and the entries 

represent the absence or presence of an edge between the nodes (i.e. if the entry in row 0 and 

column 1 is 1, it would indicate that node 0 is connected to node 1). If the values in the matrix 

are replaced with the edge weights i.e. affinity, the matrix is known as the Affinity Matrix.  

The Degree Matrix (D) is a diagonal matrix, where the degree of a node (i.e. values) of the 

diagonal is given by the number of edges connected to it. We can also obtain the degree of the 

nodes by taking the sum of each row in the adjacency matrix. 

The Laplacian Matrix (L) is the main tool for spectral clustering and the unnormalized 

graph Laplacian matrix  is obtained by subtracting the Adjacency (Affinity) Matrix from the 

Degree Matrix (i.e. L = D – A). Figure 2.12 illustrates the definitions of A, D and L using a 

simple example. 
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Fig 2.12 Adjacency, Degree and Laplacian Matrices 

Unnormalized Spectral Clustering Algorithm (Luxborg, 2007): 

Assuming that our data consists of n arbitrary points, say x1, x2. . . , xn, and their pairwise 

similarities sij = s(xi, xj) measured by some symmetric and non-negative similarity function,  

the corresponding similarity matrix can be denoted by S = (sij), i,j = 1...n. 

 Inputs: Similarity matrix S ∈ Rn×n,  Number of clusters to construct k. 

 Construct a k-nearest neighbor or the modified k-nearest neighbor similarity graph.  

 Let A be its weighted adjacency matrix i.e. affinity matrix. 

Unnormalized Laplacian matrix L = D-A 
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 Compute the unnormalized Laplacian L as D-A.  

 Compute the first k eigenvectors u1, . . . , uk of L. 

 Let U ∈ Rn×k be the matrix containing the vectors u1, . . . , uk as columns. 

 For i = 1, . . . , n, let yi ∈ Rk be the vector corresponding to the i-th row of U. 

 Cluster the points (yi), i=1, ..., n in Rk with the k-means clustering algorithm into 

clusters C1, . . . , Ck. 

 Output: Clusters A1, . . . , Ak with Ai = {j| yj ∈ Ci}. 

Another graph clustering algorithm is Louvain clustering, an algorithm which can detect 

communities in large networks. The algorithm first converts the input data into a k-nearest 

neighbor graph and edges are weighted based on similarity. It then maximizes a modularity 

score for each community, where the modularity quantifies the quality of an assignment of 

nodes to communities. This means evaluating how much more densely connected the nodes 

within a community are, compared to how connected they would be in a random network. The 

Louvain algorithm is a hierarchical clustering algorithm, that recursively merges communities 

into a single node and executes the modularity clustering on the condensed graphs (neo4j). 

Graph feature engineering is the process of finding, combining, and extracting predictive 

elements from raw graph data to be used in ML tasks. 

Graph embedding simplifies graphs or subsets of graphs into a feature vector, or set of 

vectors, that are in a lower dimensional form, such as a list of numbers. The goal is to create 

easily consumable data for tasks like ML that still describe more intricate topology, 

connectivity, or nodes attributes. 

Graph Networks refers to native graph learning that takes a graph as an input, performs 

learning computations while preserving transient states, and then returns a graph (Luxborg, 
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2007).  This native graph learning process allows the domain expert to review and validate the 

learning path that leads to more explainable predictions.  With this process comes richer and 

more accurate predictions that use less data and training cycles. 

2.6  Data Driven Model for Water Production Prediction 

Cross, Sathaye, Darnell, Niederhut, & Crifasi (2020) claim that in unconventional oil fields, 

water forecasting, and pre-drill water predictions have not received attention commensurate 

with their economic importance. Operators, regulators, and water disposal companies often 

rely on simplistic water cut ratios or basin-level extrapolations that ignore the complex 

interplay of geology, completions, and spacing decisions on water production. Quantifying 

produced water has importance to a broad set of stakeholders in the oil and gas industry. 

The authors mention that forecasting water production is a difficult problem in part because 

actual water production has been evolving over the life of unconventional fields. Since the 

Bakken-Three Forks play of the Williston Basin provides an excellent example to study 

unconventional water production due to the high-quality publicly-available data and long 

history of development across multiple vintages of completions designs testing both the fringe 

and the core of the play, the authors have trained a decision-tree based machine learning model 

using publicly-available data from NDIC to predict water, gas, and oil production at 30-day 

increments for the first two years of a well’s production. Completions related features 

considered by the authors were per-foot proppant and fluid volumes and stage length. Well 

spacing related features considered were number of neighbor wells and distance to neighboring 

wells. Geologic features considered were mean values and P1/10/90/99 per zone of gamma, 

resistivity, neutron porosity, bulk density, spontaneous potential, and sonic, along with 

structural tops, isopachs, and mud gas chemistry measurements.   The targets for each well 

were represented as a vector of two years of cumulative production, sampled at 30-day 
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intervals, excluding days where the well was offline or non-producing. The authors used a  

multitarget averaging ensemble regressor to train the machine learning models. Based on the 

discussion of the model performance results by the authors, operator choices played the 

dominant role in influencing water production. While proppant is commonly held to be the 

largest lever for oil production, the authors’ model concludes that completions fluid loading is 

the most important for water production. However, proppant shows the strongest interaction 

with geology, with large jobs disproportionately increasing water production in water-prone 

rocks.  

According to Xu (2019), multi-output learning can concurrently predict multiple outputs, 

In contrast to traditional single-output learning.  The outputs can be of various types and 

structures, and this approach can be used to solve a diverse range of problems. Multi-output 

learning maps each input (instance) to multiple outputs. Assume X = Rd is a d-dimensional 

input space, and Y = Rm is an m-dimensional output label space. The aim of multi-output 

learning is to learn a function f : X -> Y from the training set D = {f(xi; yi) | 1 ≤ i ≤ n}. For each 

training example (xi; yi), xi ∈ X is a d-dimensional feature vector, and yi ∈ Y is the corresponding 

output associated with xi. Multi-output learning can then be defined as: Finding a function F : 

X × Y -> R based on the training sample of input-output pairs, where F(x; y) is a compatibility 

function that evaluates how compatible the input x and the output y are. Then, given an unseen 

instance x at the test state, the output is predicted to be the one with the largest compatibility 

score (Xu, 2019).  

The author describes ‘Multi-target Regression’ as the ability to simultaneously predict 

multiple real-valued output variables for one instance. Here, multiple labels are associated with 

each instance, represented by a real-valued vector, where the values represent how strongly the 

instance corresponds to a label. Therefore, we have the constraint of yi ∈ Y = Rm. Given an 
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unseen instance x ∈ X , the learned multi-target regression function f(·) predicts a real-valued 

vector f(x) ∈ Y as the output. 

Neural network models support multi-output regression and have the benefit of learning a 

continuous function that can model a more graceful relationship between changes in input and 

output. Multi-output regression can be supported directly by neural networks simply by 

specifying the number of target variables there are in the problem as the number of nodes in 

the output layer. For example, a task that has three output variables will require a neural 

network output layer with three nodes in the output layer, each with the linear (default) 

activation function. Deep learning neural networks are an example of an algorithm that natively 

supports multi-output regression problems. Neural network models for multi-output regression 

tasks can be easily defined and evaluated using the Keras deep learning library (Brownlee, 

2020). 

2.7  Summary 

In this chapter, we presented a review of the literature on traditional approaches to Field 

Development Planning (FDP) using subsurface models, its applicability and limitations for 

modelling disposal wells. We then presented a detailed literature review of the data mining 

process based on the CRISP-DM pipeline. We then presented a review of literature on the topic 

of Graph Data Science (GDS) and its applicability to explore connections in the data using 

knowledge graphs and graph-based clustering techniques to gain additional insights. We 

concluded the chapter with a discussion on data driven modelling techniques for estimating 

water production and Multi-Regression concept.  

In the next chapter, we will review the various technologies used in this project and an 

overview of primary and secondary data sources used to collect the required data for the project. 

Data collection techniques used and key features in each of the data set will be described.



  

 

 

Chapter 3  

Technologies and Data 

In  this chapter, we present  the list of various technologies used in executing this project. We 

then present all the data sources used to acquire the required data , sourcing methodology, a 

brief description of the various data sets including its attributes and key data integration aspects. 

3.1 Technologies Used 

Anaconda Distribution is the world’s most popular open-source Python distribution platform 

that provides access to a variety of  open-source software for projects in any field, from data 

visualization to robotics. Its intuitive and user-friendly platform enables easy search and 

installation of various packages.  Anaconda Navigator is the desktop application to easily 

manage integrated applications, packages, and environments without using the command line. 

Python is an interpreted, interactive, object-oriented programming language. It 

incorporates modules, exceptions, dynamic typing, very high-level dynamic data types, and 

classes. It supports multiple programming paradigms beyond object-oriented programming, 

such as procedural and functional programming. Python combines remarkable power with very 

clear syntax. It has interfaces to many system calls and libraries, as well as to various window 

systems, and is extensible in C or C++. It is also usable as an extension language for 

applications that need a programmable interface. Finally, Python is portable; it runs on many 

Unix variants including Linux and macOS, and on Windows (Python, 2022). 

Integrated Development Environment used in the project is Jupyter Notebook that is 

available through the Anaconda Distribution platform. One of the major components of the 
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Jupyter project is the notebook, a type of interactive document for code, text (with or without 

markup), data visualizations, and other output. The Jupyter notebook interacts with kernels, 

which are implementations of the Jupyter interactive computing protocol in any number of 

programming languages. Python’s Jupyter kernel uses the IPython system for its underlying 

behavior (McKinney, 2017). 

The  following open source Python packages were used for executing various tasks during 

the project: 

 Numpy - the fundamental package for scientific computing in Python. 

 Pandas - a fast, powerful, flexible and easy to use open source data analysis and 

manipulation tool, built on top of the Python programming language. 

 GeoPandas - an open source project to make working with geospatial data in python 

easier. GeoPandas extends the datatypes used by pandas to allow spatial operations on 

geometric types.  

 Shapley - a Python open source package for manipulation and analysis of planar 

geometric objects. 

 EarthPy - a Python package to plot and work with spatial raster and vector data using 

open source tools. Earthpy depends upon geopandas which has a focus on vector data 

and rasterio with facilitates input and output of raster data files. It also requires the 

matplotlib library for plotting operations. This library’s goal is to make working with 

spatial data easier for scientists. 

 Requests -  a Python library for making HTTP requests in Python. It abstracts the 

complexities of making requests behind an Application Programming Interface (API) 

and allows the user to  can focus on interacting with services and consuming the data 

in their application. 
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 BeautifulSoup - a Python library for pulling data out of HTML and XML files. It 

creates a parse tree for parsed web pages that can be used to extract data from HTML 

and is useful for web scraping.  

 RE - a RegEx, or Regular Expression, is a sequence of characters that forms a search 

pattern. re is the Python Regular Expression library for creating regular expressions to 

manipulate string effectively and to create search patterns for data extraction. 

 OS - is a  Python library that contains useful tools and functions to interact with the 

underlying Operating System being used to execute the running Python code.  

 NLTK - a leading platform for building Python programs to work with human language 

data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as 

WordNet, along with a suite of text processing libraries for classification, tokenization, 

stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-strength 

NLP libraries, and an active discussion forum. 

 lasio - a Python library to read and write Log ASCII Standard files with Python used 

for borehole data such as geophysical, geological, or petrophysical logs, published by 

the Canadian Well Logging Society. 

 Keras -  a deep learning API written in Python, running on top of the machine learning 

platform TensorFlow (an end-to-end, open-source machine learning platform). Keras 

library was used to carry out multi-output (multi-target) regression analysis to estimate 

water production in this project. 

 Scikit-learn - a Python module integrating a wide range of state-of-the-art machine 

learning algorithms for medium-scale supervised and unsupervised problems. This 

package focuses on bringing machine learning to non-specialists using a general-

purpose high-level language. Emphasis is put on ease of use, performance, 

documentation, and API consistency. It has minimal dependencies and is distributed 
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under the simplified BSD license, encouraging its use in both academic and commercial 

settings. (Pedregosa, 2011) 

Some of the code-free visual programming applications used in this project are listed below: 

Orange - An open-source data visualization, machine learning and data mining toolkit. It 

features a visual programming front-end for explorative rapid qualitative data analysis and 

interactive data visualization (Demsar, et al., 2013). 

Tableau – A commercial visual analytics platform to enable data driven business analytics and 

decision making. It helps people see and understand data and is transforming the way people 

use data to solve problems. 

Neo4j Graph Data Science - is a connected data analytics and machine learning platform that 

helps users understand the connections in their  data to answer critical questions and improve 

predictions. It is the only connected data analysis platform that unifies the ML surface and 

graph database into a single workspace and thus enables data scientists run algorithms and ML 

models without jumping between tools for Extraction, Transformation and Loading (ETL). 

3.2 Data 

Backbone of any data driven modeling is data. The CRISP-DM pipeline shown in Fig 1.4 

highlights the importance of data understanding and data preparation. The sections below 

provide a detailed overview of the various data sources (primary and secondary), types of data 

sets collected, and the technologies used to clean, extract and integrate the required data sets to 

create the final data set. While significant time and efforts were spent on data collection and 

preparation, the data understanding and data preparation steps were revisited many times 

during the project execution, during the exploratory data analysis activities and also as part of 

model tuning and evaluation activities as highlighted by the iterative nature of the CRISP-DM 

in Fig 1.4. Domain knowledge and expertise and industry experience of the researcher and the 
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advisor were critical in identifying the various data sources and selecting data sets and features 

that were relevant for the data driven modeling task. 

3.2.1 Primary Data Source 

The Oil and Gas Division of North Dakota Industrial Commission’s (NDICOG)  

(https://www.dmr.nd.gov/dmr/oilgas) regulates the drilling and production of oil and gas in 

North Dakota. Their mission is to encourage and promote the development, production, and 

utilization of oil and gas in the state in such a manner as will prevent waste, maximize economic 

recovery, and fully protect the correlative rights of all owners to the end that the landowners, 

the royalty owners, the producers, and the general public realize the greatest possible good 

from these vital natural resources.  

NDICOG was the primary data source for the project. The following data sets were collected 

from the primary data source, NDICOG using the University of North Dakota (UND) premium 

subscription. Table 3.1 below lists the various datasets and their types. A detailed description 

of each of the datasets and extraction techniques are given below. 

     Table 3.1 Data Sets from Primary Data Source 
Data Set Type 

1. Well Index Flat File (Excel / CSV) 

2. Log Tops Flat File (Excel / CSV) 

3. Monthly Disposal Data for SWD Wells HTML 

4. Well Scout Ticket HTML 

5. Log Data Digital LAS (Log ASCII Standard) 

 

1. Well Index file: This file contained a total of 39455 samples at the time of download 

in Oct 2020. Each sample represented a well drilled in the state of ND for various 

purposes such as Oil Production, Gas Production, Saltwater disposal etc., The dataset 
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contained a total of 27 attributes. A snapshot of all the features is given in Figure 3.1 

below, extracted using Orange software.  

 

Fig 3.1 Attributes (features) in the NDICOG Well Index dataset 

The WellType feature was used to filter the dataset to extract the 905 saltwater disposal 

(SWD) wells for further analysis.  
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2. Log Tops File: This file downloaded from NDICOG website contained formation tops 

information for various formations penetrated by each well in the Well Index dataset. 

This dataset contained 31201 samples and a total of 72 attributes. Each sample 

represented a well drilled in the state of ND that had log data. Features of interest from 

this dataset for further consideration is shown in Figure 3.2 below. 

 

Fig 3.2 Features of interest from the NDICOG Log Tops dataset 

The primary keys to combine the above two datasets were API and FileNo, both of 

which are unique identifiers of each well in the dataset. The K-IK feature provides the 

formation top of the Inyan Kara formation (subsurface information) where saltwater is 

disposed in the state of ND as mentioned in Chapter-1. Elevation features when 

combined with the Latitude and Longitude features from the well index dataset provides 

the complete surface location of the wells. LogsOnFile attribute was used to examine 

the wells that had digital logs to potentially extract log data as additional features and 

evaluate their impact on model performances. 

3. Monthly Disposal Data for SWD Wells: For each of the 905 SWD wells, the monthly 

disposal volumes and average injection pressures were available as time series data in 

HTML format. Web scraping was performed using Python BeautifulSoup library  to 

extract the monthly injection data for each of the well for all the available period. Figure 
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3.3 shows a snapshot of the date for one such SWD well for a period of one year. 

FileNumber was used as the key to integrate this dataset to the well index and log tops 

datasets.  

 
     Fig 3.3 Monthly disposal volume and injection pressure for one SWD well  

Key Python code snippets to carry out the web scraping are presented below with results 

where relevant. Jupyter Notebook IDE was used to write, debug and execute the scripts. 

 

The code snippet below reads the Well Index dataset and displays the top two rows. 

Python Pandas library was used to carry out this task. 

             

The first code snippet below filters only the SWD wells using the WellType feature set 

to ‘SWD’. The next code snippet below does the primary task of scarping the NDICOG 

website that contains the monthly disposal data for all the SWD wells using FileNo as 

the reference key. Python request library’s get method is used along with the UND  

FileNumber Lat Long
Well 

Status
UIC Number Pool Date

EOR BBLS 
Injected

EOR MCF 
Injected

BBLS Salt 
Water 

Disposed

Average 
PSI

7395 48.787475 -102.953443 A W0158S0567C DAKOTA Aug-20 0 0 640 100
7395 48.787475 -102.953443 A W0158S0567C DAKOTA Jul-20 0 0 0 0
7395 48.787475 -102.953443 A W0158S0567C DAKOTA Jun-20 0 0 0 0
7395 48.787475 -102.953443 A W0158S0567C DAKOTA May-20 0 0 0 0
7395 48.787475 -102.953443 A W0158S0567C DAKOTA Apr-20 0 0 0 0
7395 48.787475 -102.953443 A W0158S0567C DAKOTA Mar-20 0 0 0 0
7395 48.787475 -102.953443 A W0158S0567C DAKOTA Feb-20 0 0 0 0
7395 48.787475 -102.953443 A W0158S0567C DAKOTA Jan-20 0 0 0 0
7395 48.787475 -102.953443 A W0158S0567C DAKOTA Dec-19 0 0 1106 200
7395 48.787475 -102.953443 A W0158S0567C DAKOTA Nov-19 0 0 2419 200
7395 48.787475 -102.953443 A W0158S0567C DAKOTA Oct-19 0 0 2275 200
7395 48.787475 -102.953443 A W0158S0567C DAKOTA Sep-19 0 0 0 0
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premium access authorization details (blacked out) to extract the data for each SWD 

well. Python  BeautifulSoup library’s lxml parser is used to parse the HTML page and 

the soup.find_all method is used to grab the appropriate table with the monthly disposal 

data as shown in Fig 3.3. Python Regular Expression library re was used to extract the 

FileNo to a pandas dataframe. Python try / except clause is used where required to 

handle exceptions (runtime errors).  

          

Finally, the Pandas dataframe from the above code snippet that contains the monthly 

disposal data (Fig 3.2) is integrated with the Well Index data for SWD wells using the 
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built-in pandas join method and using the File Number as the key using the code snippet 

below and the output is stored as a Microsoft Excel file for further use in the project. 

             

The SWDwellsInjectionData.xlsx file generated using the above code snipped contains 

a time series for barrels of SWD disposed and average injection pressure for each of 

the SWD well in the database, from spud date till the date of data download. For inactive 

wells, their end time may be earlier than the date of download. An example of the time 

series for one of the SWD wells is given in Figure 3.4 below.  

 
      Fig 3.4 Time Series data of SWD barrels disposed and average injection pressure  

(Example from SWD well 649, plotted using Tableau software) 

For the requirement of the project analysis, the time series data needs to be aggregated 

so that there is one value of barrels of SWD disposed per well and one value of average 

injection pressure. The code snippet below produces aggregated values of barrels of 

SWD disposed and average of the average monthly injection pressures in pounds per 

square inch (psi). Total SWD barrels disposed and average monthly barrels disposed 
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were computed along with the total months the well was operating and the average of 

average monthly injection pressure using the Python Pandas groupby and agg 

(aggregation) methods. A new feature called BBLS_PSI was also computed as the ratio 

of average monthly barrels of SWD disposed over the average of average monthly 

injection pressure. This feature provides a normalized indicator of the SWD well 

performance. 

            

4. Well Scout Ticket Data Scraping: NDICOG maintains a well scout ticket data for 

each of the wells drilled in the state that contains additional essential information about 

the well from the time it is permitted through drilling, completion and production. 

Figure 3.5 below shows an example of a well scout ticket data for SWD well 721. File 

Number for each well (primary key for data integration), Casing Size, Casing Depth,  

Surface Elevation, 'Perforation Interval, Top and Bottom Perforation depths were some 

of the additional features extracted from each SWD well’s scout ticket through web 

scraping using the same procedure and technologies described in Section 3 of this 

Chapter.  
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Fig 3.5 Well Scout Ticket Data example (SWD well 721, from NDICOG) 

The code snippet shown below completed the task of scarping the well scout ticket for 

all the SWD wells in the database. In order to deal with string manipulation effectively 

as part of the scraping process, the tokenize method of the Python NLTK platform was 

used along with regular expressions.  
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5. Log Data Scraping: NDICOG well scout ticket for each SWD well contained the file 

names of log data files with different log data where they were available (Fig 3.5). Such 

log data were either in digital format (.las extension, LAS- Log ASCII Standard) or 

image raster files (.tiff). Our interest was the digital files that contained log data 

representing subsurface such as Gamma Ray, Resistivity and Porosity. Scraping was 

carried out using the get method of Python request library and BeautifulSoup html 

parser to identify each SWD well scout ticket data using the File Number as the key. 

Only for those wells that contained log data in digital format (.las extension), the .las 

file hyperlinks were stored in a Python list. Figure 3.6 below shows a snapshot of LAS 

file links extracted from a few wells. Only 41% of all the SWD wells (369 wells) 

contained log data in LAS format and a total of 969 files were downloaded directly 
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using Python script to a local folder using the code snippet shown below. The Python 

OS library’s path.join method was used to point to the local folder path and the LAS 

file content which was in byte format was decoded using the utf-8 format (UTF-8 is a 

variable-width character encoding used for electronic communication,  defined by the 

Unicode Standard) prior to download. 

 

Fig 3.6 LAS file links extracted from well scout ticket data using web scraping 

The next step was to read all the LAS files using the Python lasio library using the code 

snippets below. From the 969 LAS files, only 900 files contained data.           

            



Chapter 3 Technologies Used and Data  

53 

 

            

Inspecting the content of the log data from the LAS files revealed that Gamma Ray 

measurement was the only measurement available in majority of the 369 wells while 

other measurements such as resistivity and porosity were available in a very small 

number of wells and would not be useful for data mining purposes. Gamma ray curves 

were available in different curve nomenclatures such as GR, GAMMA, Gamma etc., 

and naming inconsistencies were addressed. Since log data is sequential data in nature 

with the depth as index, the data needs to be aggregated so that there is one 

representative value of gamma ray per well per aggregation. Such log data were 

extracted only across the perforated interval which contributes to the SWD operations 

in a given well, extracted from the given well’s scout ticket data as explained in Section 

4 of this chapter. Three gamma ray values (Mean, Top and Bottom) were generated for 

239 wells out of the 369 wells  as shown the code snippet below to be integrated with 

the other data sources explained earlier in this chapter using well file number as the 

key. 
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3.2.2 Secondary Data Sources 

After spending adequate time to do a thorough review of various data sets available within 

NDICOG, the primary data source, we examined other secondary data sources listed in Table 

3.22 below.   

Table 3.2 Data Sets from Secondary Data Sources 
Data Set Type Source 

a. North Dakota Inyan Kara Isopach Maps Shapefile North Dakota Geological 
Survey (Inyan Kara Maps) 

b. North Dakota Roads Shapefile North Dakota GIS Hub   

North Dakota GIS Hub c. North Dakota Oilfield Waste Disposal Sites Shapefile 

d. North Dakota Oil and Gas production, injection and 

disposal wells – Wells and Production Tables  

Flat File (Excel) Envervus 

e. Bakken Oil and Gas Wells Production Data Flat File (Excel) WellDatabase 

 
a. North Dakota Inyan Kara Isopach Maps : Since the objective of the research project 

is to develop a data driven proxy model for SWD wells in ND, considering as many 

subsurface features as possible will help develop a robust model. From the various data 

sets extracted from the primary data source, one key subsurface feature- the formation 

top depth of the Inyan Kara (K-IK) formation was available. Perforation interval was 

also computed from the top and bottom perforation interval depths extracted from the 

well scout ticket data for each SWD well along with gamma ray log information. 

However, gamma ray log data was available for only 239 of the 905 SWD wells. 

Through additional literature reviews and meetings with technical experts at NDIC and 

EERC, this important secondary data source was identified that contained valuable 

thickness information of the Inyan Kara formation across the ND state where oil and 

gas wells including disposal wells were drilled. Figure 3.7 from the data source of this 

data set shows the various quadrangles in the state of ND for which Inyan Kara Isposach 



Chapter 3 Technologies Used and Data  

55 

 

shapefiles were available. They were all downloaded to a local folder and the Python 

GeoPandas, Shapley and EarthPy libraries were used to analyze these files, extract the 

relevant data and integrate them with the SWD data from the data sets in the primary 

data source.  

 

 

 

 

 

 

 

Fig 3.7 Inyan Kara Isopach Map Quadrangles  

For each quadrangle in Figure 3.7, three shape files were available, one containing all 

the oil and gas wells in the region, one containing all the SWD and injector wells in the 

region and one with the Inyan Kara Isopach intervals. A PDF file was also available for 

each of the quadrangle that identified SWD well performance based on the BBLS_PSI 

normalized feature. A new categorical feature called ‘Well_Quality’ was created using 

this criterion as a reference. The code snippet below was used to accomplish this task. 

   

The GeoPandas library’s read_file method was used to read all the shape files. An 

example of the Isopach shape file from the Williston quadrangle is shown below in 
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Figure 3.8. The column ‘contour’ contains the average thickness of the Inyan Kara 

formation in feet within the contour. The ‘geometry’ column provided the boundary 

coordinates of the contour and the length and area of the contour were also provided. 

            
Fig 3.8 Isopach Shapefile Contents for the Williston Quadrangle  

Coordinate Reference System (CRS): Spatial data such as wells are defined using a 

CRS. According to earthdatascience.org (2020), a coordinate reference system (CRS) 

is a coordinate-based local, regional or global system used to locate geographical 

entities. The coordinate reference system is made up of several key components: 

 Coordinate System: The X, Y grid upon which the data is overlaid and how where 

a point is located in space is defined. 

 Horizontal and vertical units: The units used to define the grid along the x, y (and 

z) axis. 

 Datum: A modeled version of the shape of the earth which defines the origin used 

to place the coordinate system in space.  

 Projection Information: The mathematical equation used to flatten objects that are 

on a round surface (e.g. the earth) so you can view them on a flat surface (e.g. your 

computer screens or a paper map). 
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Figure 3.9 below shows how a point on the Earth’s surface is defined in a 2-dimensional 

coordinate system. 

 
    Fig 3.9 Representation of a point on Earth’s surface on a 2-d CRS 

 (earthdatascience.org, 2020) 

One popular format to document a CRS is the European Petroleum Survey Group 

(EPSG) format where a 4-5 digit code is used to represent a CRS. As an example, EPSG 

4326 represents the 2-dimensional WGS84 geographic CRS.  

The Python function below was used to get the Isopach thickness based on the location 

of each of the SWD well by considering the Inyan Kara Isopach files for all the 

quadrangles shown in Fig 3.7 and returning the thickness of the contour using the 

‘within’ method of the GeoPandas library.  

            

The well location point geometry was converted from Lat-Long to EPSG: 26913 - 

nad83 / utm zone 13n CRS using the Python function below, prior to calling the above 

function.  
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The function returned a thickness value for each of the SWD well’s Inyan Kara 

formation from the data base. Upon further analysis, it was noticed that quite a few 

SWD wells had a null value for the Inyan Kara thickness.  

Considering that there were over 35000 oil and gas wells that penetrated the Inyan 

Kara formation and that the thickness information was available as part of the oil and 

gas wells shapefile for each of the quadrangles in Fig 3.7, a spatial join operation was 

carried out to identify the closest oil and gas well to each of the SWD well and the 

associated thickness of the Inyan-Kara formation of the closest oil and gas well was 

assigned as the thickness value of the Inyan-Kara formation of the SWD well which 

resulted in a much more complete thickness column. The code snippets used to carry 

out this operation are given below: 

            

             

b. North Dakota Roads: One of the critical factors in finalizing the location of an oil 

well, gas well, injection well or disposal well in the state of ND or in the entire country 

(United States of America) is the proximity of the well site to established roads in the 

state to minimize transportation related hurdles and additional road construction costs. 

Hence, this secondary data source relating to road infrastructure of all the roads in the 

state of ND was located from the ND GIS Hub website and downloaded as a shapefile. 

The code snippet below was used to read the shape file. A total of 310 road entries were 

identified, 12 of which were Interstate roads, 57 were US roads and the rest were ND 

roads.  
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The next step was to use spatial join to identify the closest road to each of the SWD 

well in the data base, extract the distance of that road in meters along with the road type 

and integrate them as two additional features for the final data set. This was 

accomplished using the code snippet below.  

 



Chapter 3 Technologies Used and Data  

60 

 

c. North Dakota Oilfield Waste Disposal Sites: Figure 3.10 below shows the water 

lifecycle for unconventional oil and gas production. 

 

Fig 3.10 Water Lifecycle- Unconventional Oil and Gas Production 

 (Source: Produced Water Report, GWPC, 2019, page 10) 

One can see from the above figure the need for treating the produced water (saltwater) 

prior to recycling or disposal to remove any residual hydrocarbons and other solids. 

This motivated us to look for data relating to oilfield waste disposal sites that would 

potentially treat produced water and prepare it ready for disposal. This secondary data 

source relating to oilfield waste disposal sites in the state of ND was located from the 

ND GIS Hub website and downloaded as a shapefile. The code snippet below was used 

to read the shape file using the geopandas read_file method and information related to 

10 such sites were extracted as a geopandas dataframe.   

 

CRS was converted using the code snippet below before carrying out spatial join 

operations. 
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The next step was to use spatial join to identify the closest disposal site to each of the 

SWD well in the data base, extract the distance of that site in meters,  and integrate it 

as an additional feature for the final data set. This was accomplished using the code 

snippet below.  

 

Figure 3.11 below shows an example collection of a few SWD wells (identified by the 

file number key) with all the additional features extracted from the secondary data 

sources integrated together. These features were integrated with the data from the 

primary data source to obtain the final data set on which exploratory data analysis and 

data mining activities were carried out. 

 

Fig 3.11 Sample SWD wells with additional features from the secondary data sources 

d. North Dakota Oil and Gas production, injection and disposal wells – Wells and 

Production Tables: This data set was downloaded from Enervus.com, a data, software 

and insights company that serves the energy industry. From their Exploration and 

Production services, two flat files (Microsoft Excel) were downloaded much later in the 
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project using the student subscription obtained by the department of petroleum 

engineering at UND. Their primary use in the project is outlined below: 

 Since the wells table contained bottom hole latitude and longitude for all the SWD 

wells, two additional subsurface features were extracted and integrated to the final 

data set to see their impact on machine learning models already trained. 

 As shown in Fig 3.10, produced water, a byproduct of oil and gas production  is 

the main input for saltwater storage, treatment and disposal.  We discussed the 

importance of estimating produced water in Section 2.5 of Chapter 2. The 

production table contained cumulative water production after 1-month, 6-months, 

12-months and 24-months. These were used with other well related features as 

explained in Section 3.2.1 of this chapter for all oil wells to train multi-target 

regression machine learning models to estimate water production.  

e. Bakken Oil and Gas Wells Production Data: This time series dataset was 

downloaded from WellDatabase.com during the preparation of the Introduction 

Chapter of this dissertation document to generate Fig 1.2. WellDatabase is an oil & gas 

software as a service provider using the latest web and mobile technologies to bring 

data to the oil & gas world. They take data from public and private sources and use a 

proprietary process to normalize it into a single searchable database. 

Out of the 905 SWD wells identified in Section 3.2.1 of this chapter, only 783 wells were 

found to contain valid monthly disposal volume and average injection pressure data and hence 

only these wells were considered for further analysis. 

3.3 Summary 

In this chapter, we first presented a list of all the key technologies used to execute the project, 

starting from the Anaconda platform with the Python programming language, the Jupyter 
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Notebook IDE, all the Python packages used and other technologies such as Orange, Tableau 

and Neo4j software platforms.  

We then introduced NDICOG as the primary data source for this project and all the 

different data sets from this data source that was extracted from different formats such as flat 

files and HTML files using web scraping. We presented the techniques used and the code 

snippets to extract the data using web scraping, data cleaning and data integration using Python. 

We concluded the chapter with an overview of some important secondary data sources, the 

need for such data for developing robust data driven models, data formats, extraction and 

integration techniques.  

In the next chapter, we will take a closer look at the descriptive statistics of some of the 

key data attributes and the results from exploratory data analysis carried out using visual 

analytics techniques and insights gained. We will conclude this chapter with a presentation of 

clustering analysis results and GDS results. 



  

 

 

Chapter 4  

Exploratory Data Analytics and Clustering 

Analysis 

In this chapter, we present the final data set that was generated by integrating the various data 

sets from the primary and secondary data sources described in Chapter 3. We then present 

descriptive statistics and univariate analysis of some of the key features and results from 

Exploratory Data Analysis (EDA). We extend the EDA to include some clustering techniques 

and present those results later in this chapter. 

4.1 Final Data Set  

The final data set was created by integrating the following three data sets using Orange 

software’s ‘Merge Data’ widget in a nested fashion (Figure 4.1 below). The ‘Merge Data’ 

widget is used to horizontally merge two datasets, based on the values of selected attributes 

(columns). The SWD well’s File number unique attribute was used as the key. The ‘Append 

columns from Extra Data outputs’ merge type was used to merge all rows from the Data, 

augmented by the columns in the Extra Data.  

1. SWD Data- This data set contains features extracted from the primary data source 

NDICOG, integrated with the Inyan Kara Isopach maps data, ND road data and Oilfield Waste 

Disposal Sites data. 

2. SWD Casing Data- This data set contains casing and perforated interval related features 

scraped from the NDICOG well scout ticket data. 
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3. Bottom Hole Well Location (Latitude and Longitude data) – These two subsurface 

features were extracted from the Enervus data source’s wells table only for the SWD wells. 

The final data set contained data from 783 SWD wells with over 60 features including 12+ 

meta features prior to any data cleaning.  

 
Fig 4.1 Orange workflow for data integration to create the final data set 

To address data inconsistency, filtering was applied on selected features. In the SWD Data file 

described in (1) above, the AvgInjPres and AvgMonthlyBBLSdisposed are two key continuous 

numerical features. One hundred and twenty-eight SWD wells were filtered out to remove the 

inconsistent zero value  for ‘AvgInjPres’ which implies that disposal activities happened in a 

well without any injection pressure, likely due to data reporting error. Twenty-four SWD wells 
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with a zero value ‘AvgMonthlyBBLSdisposed’ feature implying no disposal activities were 

carried out, were also filtered out. In addition, an inconsistent value (outlier) exceeding 40,000 

psi in ‘AvgInjPres’ feature was also filtered out. Box plots of ‘AvgInjPres’ feature before and 

after filtering, created using the ‘Box Plot’ widget in Orange software are shown in Figure 4.2 

below along with the filtering operation carried out using the ‘Select Rows’ widget.  

 
Fig 4.2 Univariate analysis of AvgInjPres feature before and after cleaning 

The box plot is an effective and popular visualization for univariate analysis of continuous 

numerical features. In the box plots shown in Figure 4.2 above, the blue highlighted area 

represents the value between the first (25%) and third (75%) quartiles, the yellow vertical line 

represents the median, the dark blue vertical line represents the mean value, the thin blue 

horizontal line represents the standard deviation. The values are also annotated in the box plot.  

In addition, the following three features (Figure 4.3 below) were filtered to remove SWD wells 

that did not contain perforating intervals and casing data extracted from NDICOG primary data 

source using web scraping as described in Section 3.2.1 of Chapter 3, resulting in the 

elimination of 56 SWD wells from the data set. However, perforating interval feature was 
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available for some of these 56 wells from the Enervus data set which was considered to increase 

the data set size. 

 
Fig 4.3 Data cleaning- filtering operation on some features 

In the Pool categorical features that contained the disposal pool name for each SWD well where 

the target disposal formation was located, inconsistencies were noticed in the Pool name values 

and they were addressed using the ‘Edit Domain’ widget available in the Orange software, 

which can be used to edit/change a dataset’s domain - rename features, rename or merge values 

of categorical features, add a categorical value, and assign labels. Results of this operation are 

shown below in Figure 4.4 below: 

 

Fig 4.4 Addressing data inconsistency in Pool categorical feature 
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4.2 Exploratory Data Analysis (EDA)      

In this section, we will review results of exploratory data analysis of the key features in this 

data set. We will first review the individual feature, their descriptive statistics and distributions. 

The Orange workflow for EDA, an extension of Figure 4.1, is shown in Figure 4.5 below. 

 
Fig 4.5 Orange EDA workflow 

The ‘Feature Statistics’ widget in Figure 4.5 above provides a quick way to inspect and find 

interesting features in a given data set. In addition to visually inspecting the features, the widget 

outputs a statistics table containing descriptive statistics of the selected features. Fig 4.6 below 

shows a snapshot of some of the categorical (C) and some of the numerical (N) features 

including the distribution, central tendency and missing value count / percentage. Central 

tendency for categorical variables such as Pool, RoadType etc., is the mode while for numerical 

features, both mean and median are presented.  

The dispersion value for categorical  features  is the  entropy  of  the  value  distribution. Lantz 

(2015) describes entropy, a concept borrowed from information theory as a measure that 
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quantifies the randomness, or disorder, within a set of class values. Sets with high entropy are 

very diverse and provide little information about other items that may also belong in the set, as 

there is no apparent commonality. Entropy is measured in bits, with values ranging from 0 to 

1 for a two class variable. For n classes, entropy ranges from 0 to pi log2(pi). In each case, the 

minimum value indicates that the sample is completely homogenous, while the maximum value 

indicates that the data are as diverse as possible, and no group has even a small plurality. 

Mathematical notion of entropy is given in equation 4.1 below: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ −𝑝 logଶ(𝑝)
ୀଵ  ……………………4.1 

where c refers to the number of class levels and pi refers to the proportion of values falling into 

class level i. DisposalFacility and Pool are multi-class features; WellType is a 2-class feature; 

RoadType is a 3-class feature and Wellbore is a 4-class feature. Their distributions based on 

the class frequency are given in Figure 4.6. 

For numeric features, the dispersion value is the coefficient of variation which is 

mathematically written as given below in equation 4.2. 

𝐶௩ =
ఙ

ఓ
 ……………………..………………………4.2  

where 𝜎 is the standard deviation and 𝜇 is the mean of the numerical feature. 

One can observe from the Figure 4.6 and Table 4.1 below the skewed nature of some of the 

numerical features such as AvgIngPres, BBLS_PSI and reasonably normal nature of features 

such as CasingSize and Elev(ground elevation). Many of the supervised and unsupervised 

machine learning algorithms perform optimally when features are normally distributed. Hence, 

we will explore some data transformation options prior to training machine learning models on 

this data set. The histogram distributions for categorical variables such as Well_Quality, 

Wellbore etc., are also part of the Feature Statistics widget output. Dominant Well_Quality 

category is Good (289 SWD wells) followed by Average (203 SWD wells) and the rest were 

Poor (159 SWD wells). 
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Fig 4.6 Feature Statistics Snapshot 

Table 4.1 below lists the key numerical features of the data set along with the statistics output 

from the ‘Feature Statistics’ widget. % Missing values is based on  651 SWD wells. 

Table 4.1 Key numerical features and their statistics 

Key Feature Mean Median Dispersion Min Max 
%Missing 

Values 
AvgInjPres, psi 536.006 442.333 0.762258 0.333333 2013.58 0% 

AvgMonthlyBBLSDisposed, bbls 87739.5 50115.8 1.17664 41.6667 589035 0% 

BBLS_PSI, bbls/psi 413.449 130.525 4.44389 0.373134 35443.8 0% 

DistToRoad, metres 10864.5 9921.62 0.536503 167.166 30032.1 0% 

DisposalFacDist, metres 37723.1 26649.4 0.793757 99.7273 121117 0% 

CasingSize, in 6.32446 7 0.163291 4.5 10.75 7% 

CasingDepth, ft 6942.32 6051.5 0.383496 1925 14380 7% 

Elev, ft 2226.6 2261 0.143806 1473 3197 7% 

PerfInt, ft 247.554 206 0.923586 10 1652 7% 

TD, Total well depth, ft 7988.27 6440 0.431901 2310 20996 7% 

SS_Thickness, Inyan Kara thickness, ft 101.582 96 0.439598 8 234 0% 

K-IK, Inyan Kara formation top, ft 4801.85 5115 0.19654 1964 5979 5% 

 

Correlation Analysis: According to Lantz (2015), correlation between two numerical 

variables is a number that indicates how closely their relationship follows a straight line. 

Pearson's correlation coefficient developed by the 20th century mathematician Karl Pearson is 

most widely used.  The correlation ranges between -1 and +1. The extreme values indicate a 

perfectly linear relationship, while a correlation close to zero indicates the absence of a linear 
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relationship. Let us look at the mathematical notion of the Pearson’s correlation coefficient. 

Equation 4.3 below defines covariance of two numerical variables x and y: 

𝑐𝑜𝑣(𝑥, 𝑦) =
∑(௫ି௫̅)(௬ି௬ത)


  ………………………….……………………..4.3  

where �̅� and 𝑦ത are the mean of the variables x and y and n is the total number of samples.  

Equation 4.4 below defines the Pearson’s correlation coefficient variables x and y using 

covariance of x and y and the standard deviations of x and y: 

𝜌(௫,௬) = 𝑐𝑜𝑟𝑟(𝑥, 𝑦) =
௩(௫,௬)

ఙೣఙ
 ……………………………………………..4.4 

Lantz (2015) provides one method to interpret correlation coefficient as given in Table 4.2 

below.  

Table 4.2 Correlation Coefficient Interpretation 

Range Interpretation 

0.1 – 0.3 or -0.3 - -0.1 Weak 

0.3 – 0.5 or -0.5 - -0.3 Moderate 

>0.5 or < -0.5 Strong 

 

Correlation must however be interpreted in context. For data involving human beings or 

subsurface information as in this project, a correlation of 0.5 may be considered strong, while 

for data generated by mechanical processes, a correlation of 0.5 may be weak. Orange software 

provides a ‘Correlation widget’ to compute pairwise correlations of all continuous numeric 

variables (features) in a data set. Figure 4.7 below shows the top 25 Pearson correlation 

coefficients from the data set. Key observations are: 

 DisposalFacility distance has strong positive correlations with Longitude and Latitude 

(SWD well surface locations) and strong negative correlations with Inyan Kara 

formation top depth and ground elevation. 

 Relationship between average monthly barrels of saltwater volumes disposed and the 

average wellhead injection pressures is moderate to strong positive. 
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 Average monthly barrels of saltwater volume disposed has a moderate to strong positive 

correlation with the casing size. 

Relationships between two continuous numerical variables and their correlations can be 

visualized effectively using a scatter plot. Figure 4.8 below shows examples of two scatter plots 

created using the ‘Scatter Plot’ widget in Orange software. 

 
Fig 4.7 Top 25 ranked Pearson correlation coefficients 
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Fig 4.8 Examples of scatter plot visualizations 

Three features relating to Gamma Ray log were extracted from 239 wells as discussed in 

Section 3.2.1 of Chapter 3. Since the data was available for only 37% of the 651 SWD wells 

considered and the features had a weak correlation with key features discussed earlier in this 

chapter, it was decided not to include these features for further data mining activities in the 

project.  
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The following bar graphs (Figure 4.9) were created using Tableau software to answer 

questions around the most dominant pool where SWD disposal activities occurred, influence 

of road types and oilfield waste disposal sites on SWD well locations.  

 
Fig 4.9 SWD Well Count by Pool, Disposal Facility and Road Type 

Analysis of the above visualization reveals that the dominant pool is the Dakota pool where 

most of the SWD activities had occurred, targeting the Inyan Kara formation. Most of the wells 

were located close to North Dakota state highways while least number of wells were located 

close to US Interstate highways. The top four disposal sites accounted for more than 65% of 

the total SWD wells.  

Figure 4.10 below captures the evolution of SWD well count in the state of North Dakota 

over time to understand the impact of the ‘Bakken Boom’ on SWD well count. Well locations 

are identified in a map view with county labels and presented during four time periods - year 

2000, year 2006 – start of the Bakken Boom, year 2010 and year 2020. The average monthly 

disposal volumes in barrels are included in the final snapshot to identify wells that dispose 

higher average volumes of saltwater. One can see the increase in well density over the 20-year 

period, particularly in the Williams and McKenzie counties.  
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Fig 4.10 SWD Well Count Evolution over time (snapshots during 5 time periods) 
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4.3 Clustering Analysis 

4.3.1 Feature Transformation 

We could notice from  Figure 4.6 and Table 4.1 that the distributions of some of the numerical 

features such as ‘AvgIngPres’ and ‘BBLS_PSI’ are skewed while some of the other features 

like ‘CasingSize’ and ‘Ground Elevation’ are reasonably normal. Many of the supervised and 

unsupervised machine learning (clustering) algorithms perform optimally when features are 

normally distributed. While some supervised machine learning algorithms like linear 

regression and logistic regression explicitly assume the continuous numeric features have a 

normal distribution, other nonlinear algorithms like Random Forest and Ada Boost which may 

not have this assumption, still tend to perform better when variables have a normal   

distribution. Kuhn & Johnson (2013) mention in their book that another common reason for 

transformations is to remove distributional skewness. An un-skewed distribution is one that is 

roughly symmetric. This means that the probability of falling on either side of the distribution’s 

mean is roughly equal which helps in improving model performance. Hence, we will explore 

some data transformation options prior to training machine learning models on this data set. 

According to Sheather (2009), continous numerical features can be trasformed when 

assumption of linear relationship does not hold between two features. A simple way to observe 

the nature of the relationship is to plot the two  numerical features using a scatter plot similar 

to the one shown in Figure 4.6. For univariate analysis, a histogram distribution plot similar to 

the ones shown in Figure 4.4 or Figure 4.1 (Box Plot) can be used to understand if the 

distribution is normal. Transformation can be applied to convert the skewed distributions to a 

normal distribution. Power transformation given in equation 4.5 is commonly used. 

𝑓(𝑥, 𝜆) = 𝑥ఒ ………………………………………………………4.5 

where X is the feature of interest and 𝜆 is the power. Typical values of  𝜆 are -1 (reciprocal), -

-0.5 (reciprocal square root), 0 (log), 0.5 (square root), 1 (no transform) and 2 (square) but other 
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values such as 0.25, 0.1 etc., can also be used. The ‘Feature Constructor’ widget was used along 

with the ‘Distributions’ widget in Orange software to iteratively tune the value of 𝜆 for the 

different features that needed transformation and the best value of lambda was selected.  In 

case of supervised machine learning multi-linear regression models, the model performance 

metrics such as MSE were also used to tune the 𝜆 value.  

 

Figure 4.11 shows the different features that were transformed and the final power 

transformation functions for the 651 SWD wells considered.  

Fig 4.12 Example pre and post transformation distributions for two features 

(PerfInt and BBLS_PSI) 

Fig 4.11 Feature transformation equations 
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Figure 4.12  shows the pre- and post-transformation distributions for a couple of the features 

that were transformed. The distribution visualizations were created using Orange’s 

‘Distribution’ widget. 

4.3.2 Principal Component Analysis (PCA) 

Having transformed the required features to closely represent a normal distribution, the next 

task carried out was dimensionality reduction using PCA. The concept of PCA was introduced 

in Section 2.4 of Chapter 2. The ‘PCA’ widget in Orange software was used for PCA. It is 

strongly recommended to normalize the features so that all features can have equal importance 

and to avoid dependence on the choice of the measurement unit.  Normalization involves 

transforming the data within a given feature to fall within a smaller range such as [0.0, 1.0] 

(Han, 2012). If minA and maxA are the minimum and maximum values of a feature A, then, 

min-max normalization maps a value vi of A to a value v’ in the range [new- minA, new-maxA], 

say [0.0, 1.0], as shown in Equation 4.6 below. Max-min normalization preserves the 

relationships among the original data values. An ‘out of bounds’ error will occur if future input 

cases for normalization falls outside the original range of A (Han, 2012). 

𝑉
ᇱ =

ି 

௫ ି 
(𝑛𝑒𝑤_ 𝑚𝑎𝑥 𝐴 − 𝑛𝑒𝑤_ 𝑚𝑖𝑛 𝐴) + 𝑛𝑒𝑤_ 𝑚𝑖𝑛 𝐴.....4.6 

On the other hand, z-score normalization (also known as zero-mean normalization) normalizes 

the values of the feature A based on its mean value �̅� and standard deviation 𝜎 as shown in 

equation 4.7 below. This method of normalization is useful when the actual minimum and 

maximum of the feature A are unknown, or when there are outliers that dominate the min-max 

normalization (Han, 2012). Z-score normalization was selected for normalization. 

𝑉
ᇱ =

௩ି̅

ఙಲ
 ……………………………………………….....……..4.7 

A total of 19 numerical features were considered for PCA (Figure 4.13). Figure 4.14 below 

shows the results of PCA. 
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Fig 4.13 Numerical continuous features selected for PCA and Clustering analysis 

 Fig 4.14 PCA results 

The first five components were selected and explained variance was 75%. Variance explained by 

the first component is 40%. Table 4-3 below shows the principal component weights for the first and 

the second principal component. It can be noticed from the highlighted components that PC1 is mainly 

influenced by geographical positions of the wells and the depths whereas the SWD well performance 

features such as ‘BBLS_PSI_TR’ and ‘AVGMONBBL_TR’ has a good influence on PC2.  
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Table 4.3 Principal component weights of PC1 and PC2 

Components PC1 PC2 

Variance 0.402608605 0.148738179 

Ground Elevation -0.293857075 0.038321486 

Latitude 0.262491177 -0.156195343 

Longitude 0.315304252 0.056086927 

Bottom Hole Latitude (WGS84) 0.263709807 -0.154795842 

Bottom Hole Longitude (WGS84) 0.314688994 0.058505249 

True Vertical Depth -0.229761478 0.306414109 

TopPerfDepth -0.319245927 -0.070954605 

BtmPerfDepth -0.318258627 -0.123479532 

PerfInt_Tr -0.081270356 -0.33085546 

Dist2DiposalTR 0.269673235 0.167553885 

BBLS_PSI_TR 0.006921964 -0.327713375 

TD_TR -0.247396793 0.245580167 

AVGINJPRES_TR -0.114617514 -0.157339195 

Dist2Rd_TR -0.023229362 0.206222124 

AVGMONBBL_TR -0.080058335 -0.461275271 

4.3.3 k-Means Clustering Analysis  

Figure 4.15 below shows the Orange workflow for feature transformation, PCA and clustering 

analysis using the k-Means clustering algorithm,  an extension of the Orange workflow in Fig 

4.1, from the ‘Nested Second Merge’ widget.  

Fig 4.15 Orange workflow for PCA and k-Means clustering analysis 
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Based on the PCA results in Figure 4.14 above, key preprocessing steps selected using the 

Orange ‘Preprocess’ widget were: imputing missing values using average value of the features, 

z-score normalization and PCA (5-components) as shown in Figure 4.16 below.  

Fig 4.16 Preprocessing widget prior to clustering using k-Means algorithm 

Figure 4.17 below shows the Orange k-Means widget. Value of k (number of clusters) ranged 

from 2 to 5 and clustering initialization was done using kMeans++ method. Silhouette analysis 

is used to study the separation distance between the resulting clusters. Silhouette score takes 

into consideration the intra-cluster distance between the sample and other data points within 

same cluster (a) and inter-cluster distance between sample and next nearest cluster (b). 

Silhouette score, S is calculated using equation 4.8 below:  

𝑠 =
(ି)

௫(,)
 ……………………………………………….4.8 

 Silhouette score has a range of [-1,1]. The silhouette score of 1 means that the clusters are very 

dense and nicely separated. The score of 0 means that clusters are overlapping. Negative scores 

might imply that data belonging to clusters may be wrong / incorrect. The silhouette plots can 

be used to select the most optimal value of the k (number of clusters) in k-means clustering 

(Pedregosa, 2011). Hence, based on the Silhouette score, 2-clusters were selected.  
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Fig 4.17 k-Means Clustering  

Cluster interpretation:  

Figure 4.18 below presents six snapshots and cluster interpretation is given below for the 

respective snapshots. 

1. C2 is the dominant cluster with 545 (83.7%) of the 651 SWD wells assigned to it.  

2. Inyan Kara formation top feature distribution nicely separated by the cluster means. 

3. Ground Elevation feature distribution is nicely separated by the cluster means.  

4. ‘AvgMonthlyBBLSDisposed’ feature seem to be well separated based on the cluster 

centroids with cluster C2 representing SWD wells with an higher average monthly 

disposal volume. However, there is overlap of the distributions between the two 

clusters.  

5. Scatter plot of average injection pressure and average monthly barrels disposed shows 

the overlapping nature of the two clusters C1 and C2. C2 generally indicates wells that 

disposes a higher volume of saltwater in barrels at a higher average injection pressure.  

6. This bar graph shows that C2 represents majority of the ‘Good’ wells based on 

Well_Quality.  
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      Fig 4.18 Six snapshots to aid k-Means clusters interpretation 
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4.3.4 Louvain Clustering Analysis  

Louvain clustering algorithm was introduced in Section 2.5 of Chapter 2 as a graph-based 

clustering algorithm to detect communities in large networks. It is a hierarchical clustering 

algorithm that recursively merges communities into a single node. Figure 4.19 below shows 

the Orange workflow for Louvain clustering. Features used are the same as k-Means clustering 

(Figure 4.13).  

 
Fig 4.19 Orange workflow for Louvain clustering 

Figure 4.20 below shows the Louvain algorithm widget in Orange. 

 

Fig 4.20 Louvain clustering widget 

The algorithm first converts the input data into a k-nearest neighbor graph and edges are 

weighted based on similarity. A modularity optimization algorithm is applied to the graph to 
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retrieve clusters of highly interconnected nodes. For preprocessing, input data is normalized 

using z-score normalization is applied along with PCA (5-components). Graph parameters 

include a ‘Distance metric’ (Equation 2.1), ‘Number of neighbors (k)’ and ‘Resolution’ which 

affects the size of the recovered clusters. Smaller resolutions recover smaller clusters and 

therefore a larger number of them, while, conversely, larger values recover clusters containing 

more data points. Distance metric of Euclidean was used. After iterating over k values of [30, 

50, 75, 100] and Resolution values of [2,3,4,5] and observing cluster performance, final 

parameters selected are shown in Figure 4.20 above. 

Fig 4.21 Two snapshots- Louvain clustering results 
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Cluster Interpretation:  

Figure 4.21 shows two snapshots for the final 3 clusters. 

These snapshots are like snapshots 5 & 6 of Fig 4.18 but one can see the improved clusters 

visually from the Louvain graph-based algorithm compared to the k-Means algorithm. 

Snapshot interpretations are given below:   

1. C1 is dominated by the ‘Good’ SWD wells while C2 is dominated more by ‘Poor’ wells 

followed by ‘Average’ wells.  

2. Scatter plot shows reasonable alignment Good, Average and Poor wells based on 

Well_Quality with clusters C1, C3 and C2. Considering that there is still good amount 

of overlap between C2 and C3, one can also interpret  C1 as the cluster of ‘Good’ wells 

while clusters C2 and C3 together represents not ‘Good’ wells.   

4.3.5 Spectral Clustering Analysis 

Spectral clustering analysis was also introduced in Section 2.5 of Chapter 2 as an EDA 

technique that reduces complex multidimensional datasets into clusters of similar data using 

the connectivity approach to clustering, wherein communities of nodes (i.e. data points) that 

are connected or immediately next to each other are identified in a graph. The nodes are then 

mapped to a low-dimensional space that can be easily segregated to form clusters. Spectral 

clustering treats the data clustering as a graph partitioning problem without making any 

assumption on the form of the data clusters. 

Since Orange software does not have a widget for Spectral clustering, the data set containing 

Z-score based standardized values of the 19 features identified in Figure 4.13 and used for the 

k-Means and Louvain clustering analysis was exported as a flat file (.csv). This file was 

imported using Jupyter notebook IDE and the Python scikit learn library was used to cluster 

the data set using spectral clustering. PCA analysis was carried out using the code snippet 
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below as part of preprocessing. Principal components 1 to 5 with an explained variance of 75% 

was used for clustering like the earlier two clustering methods.  

 

The code below displays the first 5 principal components. 

 

The affinity matrix needed as an input for the spectral clustering algorithm was calculated using 

the ‘nearest neighbors’ method which computes a graph of nearest neighbors. The code snippet 

below was used to create 3 clusters. Random state was set as zero for reproducibility of results. 

Once the normalized Laplacian matrix was created from the graph network based on nearest 

neighbors, Cluster labels were generated using discretization approach which is less sensitive 

to random initialization of clusters (Pedregosa, 2011).  
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 A scatter plot of principal components PC1 and PC2 was generated and one can see the 3 

clusters generated using the spectral clustering algorithm.  

 

The cluster labels were merged with the input dataset and was saved as an excel file. This excel 

file was read in Orange and the two visualizations, similar to Figure 4.21, were created to 

understand the clusters (Figure 4.22 below).  

The clusters are like the ones generated using Louvain clustering. Snapshot interpretations are 

given below:   

1. C1 is dominated by the ‘Good’ SWD wells while C2 is dominated more by ‘Poor’ wells 

followed by ‘Average’ wells.  

2. Scatter plot shows reasonable alignment Good, Average and Poor wells based on 

Well_Quality with clusters C1, C3 and C2. Considering that there is still good amount 

of overlap between C2 and C3, one can also interpret  C1 as the cluster of ‘Good’ wells 

while clusters C2 and C3 together represents not ‘Good’ wells. 
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Fig 4.22 Two snapshots- Spectral clustering analysis 

4.4 Knowledge Graphs 

Knowledge graphs were introduced in Section 2.5 of Chapter 2 as the foundation of GDS. 

Knowledge graphs are interlinked sets of data points that describe real-world entities, facts, or 

things and their relationship with each other in a human-understandable form. They acquire 

and integrate adjacent information by using data relationships to derive new knowledge. Neo4j 

software platform’s AuraDB application which is a fully managed cloud graph database service  
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Fig 4.23 Neo4j AuraDB graph model creation workflow using Data Importer 

that enables fast querying for real-time analytics and insights was used to create the knowledge 

graphs leveraging relationships in final data set. Figure 4.23 shows the workflow to define a 

graph model using the Neo4j’s built-in Data Importer which  provides a no-code approach to 

load data into Neo4j. The flat file (.csv) exported from Orange for spectral clustering was used 

to as the input file and nodes and relationships were identified to define the graph model as 

shown in Figure 4.24 below. The features in the input flat file were mapped to the graph model 

and it was imported to AuraDB for querying and analysis. 

As seen in Figure 4.24,  four nodes, SWD-Wells, County, TreatmentSite and Road were 

defined along with the associated properties. For example, SWD-Wells node, with UIC as the 

ID, contains properties such as Inyan Kara thickness, Inyan Kara formation top, ground 

elevation, true vertical depth, transformed versions of BBLS_PSI, average injection pressure  

Fig 4.24 Graph model for SWD wells  
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and average monthly barrels disposed as shown in the ‘Mapping Details’ in the right side of 

Figure 4.24. The other 3 nodes contained just one property – county name, road type and 

disposal facility name.   

Three relationships were defined to complete the graph model. The ‘contains’ relationship 

connects SWD wells and the county where they are located, ‘Closest Road’ connects each 

SWD well to its closest road and has an associated property  ‘distance to road’ as shown in 

Figure 4.25 below. ‘Closest Treatment Site’ connects each SWD well to its closest treatment 

site with ‘distance to disposal facility’ as the associated property.  

Fig 4.25 Graph model showing ‘Closest Road’ relation and its mapping 

The ‘Run Import’ tool was used to import the graph model and the associated data to the 

Neo4j AuraDB service. Figure 4.26 shows the import results for the SWD-Wells node, County 

node and the ‘contains’ relationship such as number of nodes, properties, labels, relationships 

and query counts. 

The Neo4j Bloom no coding data visualization tool was used to  explore and interact with 

the graph data and create  knowledge graphs perspectives to gain quick insights. Figure 4.27 

provides a quick visual insight that majority of the wells are located close to ‘ND’ state roads 

while least number of wells are located close to ‘Interstate’ highways. The edges between the 
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3 road type nodes and the SWD wells nodes are size weighted using  the ‘distance to road’ 

property to get the insight of how close the wells are to their closest road type. Well legend, 

based on the Well_Quality feature enables quick identification of wells. Majority of the GOOD 

SWD wells are located close to ND and US road types. 

 Fig 4.26 Import results from Neo4j data importer 

Figure 4.28 is another knowledge graph visualization that helps us to understand the relationship 

between SWD wells and counties they are located in. The  red nodes represent the 15 counties and the 

edges connect the  SWD wells to the respective counties where they are located. Well legend, based 

on the Well_Quality feature enables quick identification of wells. McKenzie county has the 

most of SWD wells followed by Williams county. Mountrail county has the most number of 

GOOD wells while McKenzie county also has a good proportion of GOOD wells. Billings is 

one of the counties with lower number of GOOD wells.   
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Fig 4.27 Knowledge graph- SWD wells and roads  

 

 

 

 

 

 

 

 

Fig 4.28 Knowledge graph – SWD wells and counties 
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4.5 Summary 

In this chapter, we first presented the workflow to create the final data set using a nested merge 

operation. We then presented the results of data cleaning to prepare the final data set that 

contained 651 SWD wells. As part of EDA, we presented univariate analysis of some of the 

key features to understand SWD well performance using box plots, histograms and statistical 

summaries. We highlighted the nature of the distributions and the potential need for feature 

transformation. Results from correlation analysis, scatter plots, bar graphs and map 

visualizations were presented to gain a deeper understanding of the data set, key features and 

their relationships to understand SWD well performance. 

The section on Clustering analysis started with an overview of feature transformation 

techniques and how this helped to convert distribution of skewed features to close to normal 

distributions. The final 19 continuous numeric features were presented along with results from 

PCA where the first five components with an explained variance of 75% was selected for 

clustering analysis. K-Means clustering results which identified two clusters was presented first 

followed by graph-based clustering using Louvain and spectral clustering methods. The 

clustering results from the graph-based clustering analysis showed an improved cluster 

representation compared to the k-Means algorithm. Cluster interpretation was presented using 

appropriate visualizations.  

The chapter concluded with an overview of the graph data model created using Neo4j 

AuraDB and a couple of effective knowledge graph visualizations to gain quick insight of the 

SWD well performance and their relationships with counties and closest roads. 

In the next chapter, we will take a look at the application of supervised machine learning 

algorithms as part of the data mining activities to model the performance of SWD wells and 

water production in oil and gas wells in the state of ND. Results from the model tuning and 

performance of the various models will be presented in this chapter.  



  

 

 

Chapter 5  

Supervised Machine Learning Models 

In this chapter, we present the results of supervised machine learning regression models trained 

using Orange software considering well location and other relevant features to predict 

performance of SWD wells. The target variable and the predictors were identified from the 

final data set leveraging the results from the EDA and clustering analysis described in Chapter 

4. We explain the machine learning algorithms identified, the model training and tuning process 

to arrive at the final models. We also present the results of the neural network multi-target 

regression model to predict water production in ND oil and gas wells. 

5.1 SWD Well Performance Modeling 

Three machine learning algorithms were considered for training regression models to predict 

saltwater performance. Regression is concerned with specifying the relationship between a 

single numeric dependent variable (the value to be predicted) and one or more numeric 

independent variables (the predictors) (Lantz, 2015).  

Average monthly barrels of saltwater disposed (AvgMonthlyBBLSdisposed) was 

identified as the target variable from the list of features shown in Figure 4.13. We will briefly 

discuss the three machine learning algorithms. 

5.1.1 Machine Learning Algorithms 

k-Nearest Neighbors (kNN): The kNN approach predicts a new sample using the k-closest 

samples from the training set. kNN is a non-parametric algorithm that does not make any 

assumptions on the distribution of the underlying data. The construction of this approach is 
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solely based on individual samples in the training data. kNN algorithm is a dual use algorithm 

that can be used both for classification and regression. To predict a new sample for regression, 

kNN algorithm identifies the sample’s k-nearest neighbors in the predictor space. The predicted 

response is then the mean of the k-nearest neighbors’ responses. The nearest neighbors are 

identified using distances between the samples. Equation 2.1 which defines the Euclidean 

distance between samples and is a commonly used metric can be generalized to the Minkowski 

distance as shown in equation 5.1 below where the distance is same as Euclidean for q=2. For 

q=1, it is known as the Manhattan (city-block) distance.  

𝐷 =  |𝑥
− 𝑥

|


ୀଵ
……………………………………….5.1 

Due to its strong dependency on the distance between samples, normalization of the 

predictors using max-min method (equation 4.6) or z-score method (equation 4.7) is essential 

to avoid potential bias of predictors with large scales and to enable all the predictors to 

contribute equally to the distance calculation. Distance between samples cannot be computed 

if there are missing values in the predictors and hence missing values should be imputed or 

samples with missing values should be removed. Once the preprocessing steps of normalization 

and imputing are complete, kNN algorithm can be used to train the models using number of 

neighbors, k as the tuning parameter and model performance can be evaluated using RMSE 

(equation 2.3). Distance metric, q, can also be used as a tuning parameter. Orange software has 

a kNN widget that is used to train kNN regression models. 

Linear Regression: Linear regression is a parametric algorithm to describe the relationship 

between a target (dependent) variable and one or more predictors (independent variables). The 

algorithm also provides the ability to predict the value of the target variable for a new sample 

using the trained model. Simple and multi-linear algorithm concepts based on ordinary least 
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squares method were presented in Section 2.4.4 of Chapter 2. Both the kNN and Linear 

Regression algorithms are considered as base algorithms.  

Random Forest: The technique of combining and managing the predictions of multiple 

models is known as meta-learning; an approach that utilizes the principle of creating a varied 

team of experts known as ensemble. Ensemble methods are based on the idea of combining 

multiple weaker learners to create a stronger learner. Figure 5.1 below shows the process 

diagram for an ensemble model.  

 
Fig 5.1 Process diagram for an ensemble model 

An allocation function dictates how much training data each of the models receive. The 

allocation function can increase diversity by artificially varying the input data to bias the 

resulting learners, even if they are the same type. For instance, it might use bootstrap sampling 

to construct unique training datasets or pass on a different subset of features or examples to 

each model. After the models are constructed, they can be used to generate a set of predictions.  

The combination function governs how disagreements among the predictions are reconciled. 

For example, the ensemble might use a majority vote to determine the final prediction, or it 

could use a more complex strategy such as weighting each model's votes based on its prior 

performance. Ensemble methods have better generalizability to future problems by reducing 

the chance of overfitting the model to the training dataset as several learners are incorporated 
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to arrive at the final prediction. They also tend to perform better on both massive and miniscule 

datasets (Lantz, 2015).  

The Random Forest ensemble-based algorithm, based on ensembles of decision trees, 

combines the principles of bagging with random feature selection to add diversity to the base 

decision tree models. Decision trees are powerful dual use algorithms which utilize a tree 

structure to model relationships among features and the potential outcomes. They are based on 

a heuristic approach called recursive partitioning based on divide and conquer strategy. While 

the decision tree algorithm used for classification task uses the concept of entropy introduced 

in Section 4.2 of Chapter 2 as a measure of homogeneity to decide the feature to split, splitting 

criterion of Standard Deviation Reduction (SDR) is used as the measure of homogeneity for 

regression task. As the ensemble uses only a small, random portion of the full feature set, 

random forests can handle datasets with a large number of features, where the so-called "curse 

of dimensionality" might cause other models to fail. At the same time, its error rates for most 

learning tasks are on par with nearly any other method (Lantz, 2015). 

5.1.2 Feature Selection and Preparation 

The EDA analysis carried out in Chapter 4 helped in identifying the target variable and the 

predictors for the regression modeling. In addition to considering all the numerical features 

identified in Figure 4.13, the following categorical features were also considered.  

 WellType- This feature was created as part of feature engineering based on whether an 

SWD well was drilled as a new well or if an old oil / gas well was converted to an SWD 

well. 32% of the 651 SWD wells considered were ‘Converted’ type and the remaining 

68% of the SWD wells were ‘New’ type.  

 Wellbore- This feature contained orientation of the SWD wells. Values were 

‘VERTICAL’- majority of the SWD wells (85%) were of vertical orientation, 
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‘HORIZONTAL’- 9% of the wells were of horizontal orientation including 1% of 

horizontal re-entry wells and ‘DIRECTIONAL’- remaining 6% of the SWD wells.  

 RoadType- Figure 4.27 shows a visual representation of the 3 road types. ‘I’ – Only 2% 

of the SWD wells were located close to Interstate highways, ‘US’- 33% of the SWD 

wells were located close to US roads and ‘ND’- majority of the SWD wells (65%) were 

located close to North Dakota state roads. 

When considering categorical features as predictors, their values should be converted to 

numerical format using dummy encoding for algorithms such as kNN and linear regression. 

The Orange ‘Preprocess’ widget introduced in Chapter 4 provides an option for dummy 

encoding of categorical features. The ‘One Hot Encoding’ approach was used which creates 

one numerical feature per categorical value of the given categorical feature by placing a value 

of 1 where a sample has that categorical value and zero otherwise (Demsar, et al., 2013). Figure 

5.2 shows an example of ‘One Hot Encoding’ results for the feature ‘WellType’ for twenty 

SWD wells. 

Fig 5.2 One Hot Encoding results for WellType categorical feature 

Table 4.1 in Chapter 4, which presented statistical summaries of key numerical features 

considered, also included percentage of missing values. As part of preprocessing, missing 
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values were imputed using mean values for numerical features. Numerical features were 

normalized using the z-score normalization, similar to what was done for clustering analysis. 

Figure 5.3 shows the snapshot of the Orange ‘Preprocess’ widget and the various preprocessing 

tasks carried out prior to regression modeling and analysis. 

 
Fig 5.3 Orange preprocessing for regression analysis 

The concept of feature transformation and its benefits in data preparation were presented 

in Section 4.3.1 of Chapter 4. A fundamental assumption for linear regression algorithm model 

validity  is that the errors (residuals) computed as difference between the predicted values by 

the model and the actual values has a zero mean and a constant variance. Feature transformation 

applied to the target variable helps in addressing this requirement and ensuring model validity. 

Hence, AVGMONBBL_TR, transformed version of the ‘AvgMonthlyBBLSdisposed’ was 

used as the target variable for training regression models. 
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5.1.3 The Base Model  

Once the features from the primary data set were extracted and examined, a base linear 

regression model was created to understand the relationship between the predictors and the 

target variable. Figure 5.4 below shows the Orange workflow for the base model. This 

workflow is an extension of the Orange workflow in Figure 4.1. Six numerical features and 

one categorical feature were used as predictors. The correlation widget displays the Pearson 

correlation of the numerical predictors to the target. AVGINJPRES_TR has the highest 

correlation followed by K-IK (Inyan Kara formation top). The Linear Regression widget uses 

default preprocessing to carry out the preprocessing steps highlighted in Figure 5.3. The 

coefficient table shows the parameters of the linear regression model once the training is 

completed. Latitude and AVGINJPRES_TR are the two predictors with the highest positive 

impact on predicting the target variable. While an intercept value of -39.6685 does not have 

any interpretive meaning, it is part of the model parameters and is used to predict the target for 

future values of the predictors. The ‘Test and Score’ widget in Orange is used to test the linear 

regression model that was trained using 10-fold cross validation sampling technique. Model 

performance measures selected were RMSE and R2 which were introduced in Section 2.4.5 of 

Chapter 2. R2 value of 0.317 can be interpreted as 31.7% of variance in AVGMONBBL_TR 

target variable can be explained by the base linear regression model and RMSE is 4.172. While 

this is not a strong model, it does indicate that the relationship between the target and predictors 

is worth examining to explore the potential for an improved model. As shown in Figure 1.4, 

data mining and its steps are iterative in nature. We will present the results of linear regression 

and other models considering the additional features extracted using primary and secondary 

data sources.  
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Fig 5.4 Orange workflow and results for base linear regression model 

5.1.4 Advanced Models and Results 

Figure 5.5 is the Orange workflow used to train Linear regression, kNN and Random Forest 

models on the final data set. Figure 5.6 shows the final list of features used to train machine 

learning models to predict AVGMONBBL_TR, the target variable. Principal Component 

Analysis (PCA) was carried out on the features using a similar process as presented in Section 

4.3.2 of Chapter 4. Explained variance from 10 PC was 86% and 11 components explained 

variance was 90%. Models were trained using principal components as well but were not 

considered due to the performance metrics. The Preprocess widget used is the same as Figure 

5.3. 
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Fig 5.5 Orange workflow for final regression models 

 
                                                    Fig 5.6 Final set of features  

The ‘Rank’ widget available in Orange software was used to understand the importance of 

the features in Figure 5.6. For regression, Rank widget has two scoring options- univariate 

regression based on linear regression for a single variable and RReliefF, which is based on the 

relative distance between predicted values of two samples or instances. Figure 5.7 below shows 

the results of the more robust RReliefF method for ranking the selected features. 
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Fig 5.7 Feature ranking using RReliefF method 

With all the 23 features in Figure 5.7 selected, three machine learning models were trained 

using Linear Regression, kNN and Random Forest algorithms. Figure 5.8 below shows a 

snapshot of the 3 model training widgets from Orange with the final set of parameters. 
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Fig 5.8 Model widgets with the final parameters 

Model tuning: The modeling widgets shown in Figure 5.8 were used along with the Test 

and Score widget to interactively tune each of the models. For linear regression, Lasso (Least 

Absolute Shrinkage and Selection Operator) model was selected and the tuning parameter- 

Alpha with a range of [0.0001, 1000] was tuned to find the alpha value (0.02) that yielded the 

lowest RMSE of 3.862 using 10-fold cross validation sampling method (Figure 5.9). Lasso 

regression is one method of regularization to train complex models on data sets without severe 

overfitting or address issues of collinearity by limiting the effective model complexity. 

Regularization is accomplished by adding a penalty term to the sum of squared error (SSE) 

term as shown in equation 5.2 below where yi is the actual value of target, 𝑦పෝ  is the predicted 

value and 𝐵 are the predictor coefficient.The L1 penalty term signifies first order penalty and 

𝜆(Alpha in Orange) is a tuning parameter. In addition to regularization to improve model 

performance, Lasso model assists in feature selection by setting some of the coefficients to zero 

(Kuhn & Johnson, 2013). Figure 5.10 shows the coefficients table for the tuned Lasso model 

and 7 coefficients are set to zero. 

𝑆𝑆𝐸భ
=  (𝑦 − 𝑦ො)

ଶ

ୀଵ
+ 𝜆  ห𝐵ห
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Fig 5.9 Cross validation RMSE profile for the Lasso regression model 

 
Fig 5.10 Final Lasso Regression model coefficients 

For kNN, the primary tuning parameter is the number of neighbors(k). A range of [2,30] 

was used to tune this parameter. In addition, both Euclidean and Manhattan distance metrics 

were considered along with uniform and distance-based weighting of the neighbors. Twelve 

neighbors and Manhattan distance metric with distance-based weighting yielded the lowest 

RMSE of 3.731, a 3.4% improvement over the best Lasso regression model. R2  also improved 

by 4% points (Figure 5.11). 
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Fig 5.11 Cross Validation profiles of kNN model 

For the Random Forest algorithm, two parameters, the number of decision trees and 

number of attributes considered at each split, were tuned for a combination of values as shown 

in Figure 5.12 below along with the RMSE from 10-fold cross validation.  

Fig 5.12 Cross Validation profiles of the Random Forest models 

Parameter combination of 300 trees with 5 attributes at each node split yielded the lowest 

RMSE of 3.491, a 6% improvement over the best kNN model and 10% improvement over the 
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best Lasso regression model. All the Random Forest models outperformed the best kNN and 

Lasso Regression models. Figure 5.13 is a snapshot of the ‘Test and Score’ widget with 

performance of the best models from the 3 algorithms. The Random Forest model’s R2 value 

showed a 11% improvement over the best Lasso regression model and a 7% improvement over 

the best kNN model.  

 
Fig 5.13 Comparison of the best kNN, Random Forest and Linear Regression (Lasso) models 

Prior to deciding on the parameters for the best Random Forest model, the feature ranking 

shown in Figure 5.7 was used to eliminate the lowest ranked features and model performance 

was monitored.  

Fig 5.14 Final model results with top 16 features 
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The best performing model was with the top 16 features  selected and the model results are 

shown in Figure 5.14. To summarize, the best performing model to predict AVGMONBBL_TR 

using various predictors that captured the SWD well location information along with other 

features was the Random Forest model with the top 16 ranked features, 300 decision trees and 

5 attributes considered at each node split. This model’s RMSE using 10-fold cross validation 

showed a marked improvement of 17% compared to the base model (Figure 5.4). 

Figure 5.15 shows the model diagnostics plots for the final Random Forest model. The 

scatter plot of residual was computed using the ‘Feature Constructor’ widget as the difference 

between predicted values and the actual values and it appears to be a null plot. The distribution 

of the residual has a mean close to zero and constant variance confirming the validity of the 

model. Scatter plot of the predicted versus actual values is also presented to help understand 

the performance of the model. Regression line shows a correlation of 0.73.  An ideal model 

will have a correlation of 1.  

 
Fig 5.15 Model diagnostics plots for the final Random Forest model 

5.1.5 Model Deployment 

As discussed in Section 2.4.5 of Chapter 2, model deployment is an essential final step to derive 

business benefit from the modeling project. We present the procedure to deploy the best 

performing Random Forest model to predict performance of a newly planned SWD well using 
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Orange. Figure 5.16 below shows the model deployment of the Random Forest model on a data 

set not seen by the model and the value of the target variable, AVGMONBBL_TR is unknown. 

The ‘Predictions’ widget in Orange software can be used to predict target values by deploying 

one or more machine learning models. The sample data set for model deployment was selected 

from the list of SWD wells that were filtered out due to zero values of AvgInjPres (Section 4.1 

of Chapter 4). Same transformations were used on the features as Figure 4.11. The 

preprocessing steps applied during model training such as normalization, imputing etc., are 

automatically applied by Orange on the features in the new data set on which target values 

must be predicted. The results of the predictions by the Random Forest model are also shown 

in Figure 5.16 below. Note that not all the features are displayed. As a final step, the predicted 

values must be re-transformed by using the inverse transformation on AVGMONBBL_TR 

(Figure 4.11).  

 

 

 

 

 

 

 

Fig 5.16 Orange model deployment using the Predictions widget and the prediction results 
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5.2 Multi-Target Regression Modeling 

In this section, we present the results from multi-target regression model to predict water 

production from horizontal wells in the McKenzie county of ND. Data set (d) from Table 3.2 

of Section 3.2.2, Chapter 3 was used as the source data.  

5.2.1 Neural Network Algorithm 

Artificial Neural Network (ANN) models the relationship between a set of input signals and an 

output signal using a model derived from our understanding of how a biological brain responds 

to stimuli from sensory inputs. Just as a brain uses a network of interconnected cells called 

neurons to create a massive parallel processor, ANN uses a network of artificial neurons or 

nodes to solve learning problems (Lantz, 2015).  

According to Lantz (2015), a neural network can be identified by the following three 

characteristics:  

 An activation function that transforms a neuron’s combined input signals into a single 

output to be broadcasted further in the network. A commonly used activation function 

is the ReLU function, a graph of which is shown in Figure 5.17 below: 

 
Fig 5.17 ReLU  function 
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 A network topology that determines the complexity of the network can be identified by 

the following three characteristics:   

o Number of layers 

o Number of nodes within each layer of the network 

o How information travels in the network (forward / backward) 

 Training algorithm that specifies how the connection weights are set in order to inhibit 

or excite neurons in proportion to the input signal. 

Figure 5.18 shows the architecture of a typical multi-output feedforward network in which 

input signal is fed continuously in one direction from connection to connection till it reaches 

the output layer.  

Fig 5.18 Neural network architecture (source: Lantz, 2015) 

While the input nodes process the actual data as it is received, the connection between the input 

nodes to hidden layers and output node have connection weights. Backpropagation is the 

strategy used to train a neural network by adjusting the connection weights to optimize the 

model performance. Backpropagation uses the derivative of each neuron's activation function 

to identify the gradient in the direction of each of the incoming weights.  The gradient suggests 
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how steeply the error will be reduced or increased for a change in the weight. The algorithm 

will attempt to change the weights that result in the greatest reduction in error by an amount 

known as the learning rate. The Adam optimization algorithm is a commonly used optimization 

algorithm. Number of layers, number of nodes and learning rate are the model tuning 

parameters. Including multiple hidden layers in the network for model training is referred to as 

deep learning (Lantz, 2015).  

5.2.2 Model and Results 

In order to leverage the multi-target output capabilities of neural network in the Keras deep 

learning library, the model training was done using Python and code was written and executed 

using Jupyter Notebook IDE. After loading the required Python libraries such as Pandas, 

Numpy, Scikit-learn and Keras, the input data set was read using Pandas read_csv method.   

Data was filtered out to extract 9463 oil and gas wells drilled in the McKenzie county targeting 

the Bakken play and select the required features. All the target variables (cumulative water 

production after 1-month, 6-months, 12-months and 24-months) were transformed using a 
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power transformation. Null values were removed from the four target variables. Code snippets 

below were used to achieve the above tasks.  
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The data set was reduced to 4793 horizontal oil and gas wells in the McKenzie county. 

Correlation analysis of the four target variables with the thirteen selected predictors were 

carried out using Pandas ‘corrwith’ method. Code snippet and results are presented below from 

which we can identify that features like Measured Depth, Horizontal Length and Gross 

Perforated Interval have strong positive correlation with the target while Ground Elevation has 

a moderate negative correlation. Since the weights will be adjusted by the neural network 

backpropagation algorithm during model training to reduce the effect of collinearity, no further 

feature reduction was done. The correlation strength is the highest for the 24-months 

cumulative water production and the lowest for the 1-month cumulative water production. 
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All the predictors were scaled using z-score normalization after which a multi-target neural 

network model was trained using 10-fold cross validation with 3 repeats using the code shown 

in the snippets below.  
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Model was optimized for mean absolute error (mae) using the Adam optimizer. ReLU 

activation function was used as the activation function for all the layers. Results of the cross 

validation profile is shown in Figure 5.19. The model.predict() method can be used to predict 

the four target variables for a new oil and gas well in McKenzie county to get water production 

estimates. These values must be re-transformed using inverse power transform. 

 
Fig 5.19 Cross validation mae profile for the multi-target neural network model 

5.3 Summary 

In this chapter, we first presented the concepts behind three machine learning algorithms-  

kNN, Linear Regression and Ensemble based Random Forest used to train models to predict 

performance of SWD wells. We then presented the results from feature selection and 
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preparation with specific focus on preprocessing requirements for three machine learning 

algorithms used.  

Results from the base linear regression model was presented which confirmed the 

moderate relationship between predictors and the target variable with an R2  value of 32% and 

encouraged us to explore the potential for an improved model. 

Results from the model training and tuning of the 3 algorithms were presented along with 

the conclusion that the Random Forest algorithm outperformed the other models. The final 

model showed a 17% improvement over the base model. Orange workflow to use this model 

for predicting SWD well performance was also presented. Other algorithms such as AdaBoost 

and Support Vector Machines were also considered but results were not presented as the model 

performance was at best on par with the Random Forest model.  

The chapter concluded with the presentation of the results from deep neural network based 

multi-target regression model to predict water production from new oil and gas wells in the 

McKenzie county.  



  

 

 

Chapter 6  

Conclusions and Recommendations 

The first section of this chapter lists the main conclusions made from this work and the second 

section presents some recommendations for future work to improve the models and expand the 

scope of the study. 

6.1 Conclusions 

We can draw the following conclusions from the results of this project: 

 The efforts to develop a data-driven proxy model to predict performance of SWD wells 

and optimize locations of newly planned SWD wells in the state of ND, leveraging data 

from NDICOG and other secondary sources has yielded an acceptable model. This 

provides a viable alternative to traditional geological and simulation models.  

 While Python is a powerful programming language with many state-of-the-art open 

source libraries for data analysis, model training and deployment, the Orange visual 

programming platform enables code-free data preparation, model training and 

deployment and allows domain experts and end users with little to no programming 

skills carry out data mining, model training and deployment to derive business benefits. 

 Exploratory data analysis was an important step in the data mining process to 

understand the univariate distributions of the features and the relationship among 

variables and to gain good insights about the data set, which helped in identifying the 

most relevant features and preparing the data for unsupervised and supervised machine 

learning modeling tasks. 
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 Transformation of both predictors and target variable to remove skewness helped in 

improving model performance and producing valid regression and cluster models. 

 Knowledge graphs, the foundation of Graph Data Science revealed quick insights about 

the relationships between key features such as SWD well performance, county location 

and proximity to roads through effective visualizations. 

 Graph-based clustering techniques such as Louvain clustering and Spectral clustering 

performed better than k-Means clustering and revealed three clusters that matched 

reasonably well with the good, average and poor performing wells based on the SWD 

well’s quality indicator. 

 The machine learning model trained using Random Forest ensemble-based algorithm 

to predict SWD well performance outperformed other models trained using base 

algorithms such as kNN and Lasso regression. 

 Predicting water production from oil and gas wells can help plan downstream 

operations such as treatment, disposal or reuse of produced water. A multi-target 

regression model using Keras deep learning framework produced an acceptable 

regression model to estimate water production from new oil and gas wells in the 

McKenzie county of North Dakota.  

6.2 Recommendations 

Data is the most important aspect of data mining to build robust data-driven models.  

 Of the 905 SWD wells in the NDICOG, only 651 wells (72%) were available for data 

mining. Increasing the sample size to include more SWD wells can aid further 

improvement in model performance. One option to increase sample size is to create 

synthetic wells by accessing one of the simulation models discussed in Section 2.2 of 

Chapter 2. Another option is to expand the scope to include other states such as Texas, 
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New Mexico, Colorado and Wyoming with high oil and gas activities where SWD wells 

are common.  

 Increasing the feature space to include additional subsurface data from well logs, 

geological models and seismic data such as density, porosity, permeability and features 

pertaining geological structure such as formation dip etc., can also aid in improving 

model performance. Well log information may be limited from SWD wells and hence 

such information can potentially be extracted from nearby oil and gas wells.  

 Considering feature augmentation through generating graph-based features such as 

node degree, page rank etc., from the network models presented in Sections 4.3 and 4.4 

of Chapter 4 and retraining regression models presented in Section 5.1 of Chapter 5 can 

result in possible improvement in  model performance. 

 Training classification models to predict well quality indicator and evaluating model 

performance could provide an  alternative approach to regression models for 

understanding performance of future SWD wells. 

 Since the horizontal oil and gas wells from McKenzie county considered for training 

neural network based multi-target regression are hydraulically fractured, considering 

additional features pertaining to hydraulic fracturing such as proppant and fluid 

volumes, stage count and stage length along with average petrophysical properties such 

as porosity, water saturation and thickness of the oil and gas reservoir can aid in 

improving the performance of the multi-target regression models. The scope can be 

further expanded to include cumulative oil and gas production targets and to develop a 

full-fledged data-driven proxy model for Bakken play in the McKenzie county. 
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