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ABSTRACT 

Hydraulic fracturing treatments are routinely pumped in oil and gas wells worldwide to 

enhance production and manage the economic recovery of hydrocarbon reserves. The uplift in 

the production after a fracture stimulation job depends on several parameters, of which optimal 

coverage of the payzone by the treatment is one of the more important ones. The vertical growth 

of hydraulic fractures thus is a topic of great interest amongst researchers because of its ability 

to influence the outcome of a stimulation treatment. 

The modeling and prediction of fracture height, especially in layered formations, is a 

challenging task  given the associated complexities often observed when setting up the 

mathematical model. The models developed for a case where the fracture is confined to the 

payzone layer surrounded by barriers in a simple 3-layer case, serves as a starting point for 

developing more complex models that can account for stress and mechanical property changes 

in layered or laminated reservoir with contrasting properties. In this study, the solution to such 

complex and rigorous mathematical problems were obtained by developing a simulation model 

which adopted a semi-analytical approach during the computational process.  

Apart from strength and mechanical attributes of the formation rocks, it is also important 

to account for the fracturing treatment parameters such as the injection rates and fracturing 

fluid rheology in fracture height estimation process because of the influence they wield. To 

accurately determine the fracture evolution during the treatment, the newly developed height 

growth model was extended to enable history matching of the treatment data. To validate this 

model, it was applied to several field cases worldwide, covering a variety of completions 

including treatment on shallow coal bed methane wells, low permeability sandstone reservoirs, 

foamed fluid treatments, offshore frac packs, and high-rate fracturing treatments typically 

pumped in unconventional reservoirs. The fracture dimensions predicted by the model 

reasonably matched the field observations  and also led to additional model-enhancements.  

The findings from the research were published in various journals and shared with 

audiences worldwide via presentations in SPE conferences. Whilst the prediction of fracture 

height will continue to attract and engage researchers worldwide, it is hoped that  this work 

will make significant contributions to the existing literature and assist those who wish to 

continue exploring further in this arena.  

 

  



 

 

CHAPTER 1 

Hydraulic Fracturing and Fracture Dimensions 

1.1. Introduction 

Hydraulic fracturing is a popular and well known well stimulation technique routinely 

employed to accelerate the hydrocarbon production and improve the overall recovery from 

subterranean reservoirs. The process involves injecting fluids in the downhole formations at 

pressures that far exceed the failure pressures of the rock formation, thus initiating and 

propagating a fracture which is then held open by pumping solid materials termed as proppants. 

The presence of proppant prevents the walls of the hydraulically created fracture to close 

completely even after the high injection pressures are released at end of the treatment. The 

fracture, now purposely held open by proppant, acts as a conductive pathway that eases the 

flow of formation fluids into the wellbore and results in increased hydrocarbon production.  

Since its inception after first such treatment was pumped in 1949 (Montgomery and Smith 

2010) the technique continued to evolve in the decades that followed. Over the time, various 

fracturing methods appeared to gain popularity only to be replaced by another approach as the 

benefits from one versus the other were evaluated. Economic benefits from a fracturing 

treatment over an untreated well has always been the cornerstone of fracturing design 

philosophy and the exclusive driver behind the advancement in technology. 

With the advent of hydraulic fracturing, it is possible to economically exploit hydrocarbon 

reserves from not only the conventional low permeability sandstones (trap rock) reservoirs but 

also from ultralow permeability rocks such as shales that form most of the source rocks. An 

optimally designed hydraulic fracturing treatment results in increased surface contact area of 

the hydrocarbon bearing rock with the wellbore and thus leads to accelerated hydrocarbon 

recovery. This understanding which is adapted from Darcy’s equation (Darcy 1856) for 

pressure drop in porous media,  is shown in Eq. (1.1) which relates the production from a well 

to surface area available for inflow of reservoir fluids. 
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where, q is the flow rate, k is the effective permeability to fluid, h is the pay-zone height and, 

 is the viscosity of the produced fluid. The fluid flow rate  into the wellbore will increase with 

the application of larger pressure drawdown (P ) over unit length x, and with increase  area 

A available for flow, as is  the case after the treatment. Since the post-treatment well production 

is several folds higher than that from an unstimulated well in most cases, the treatments are 

overall economic to pump and is the primary reason for the popularity of this technique.  

1.2. Fracture Dimensions 

A hydraulic fracture is typically represented as an entity with planar features that are described 

with dimensions such as fracture height (hf), fracture half-length (Xf) assuming a bi-wing 

fracture emanating from the injection point and, fracture width, which may vary from a 

maximum value at the wellbore (ww) to an average value (𝑤ഥ) across the fracture length. In 

most cases, the fracture geometrical attributes are sufficient in describing the fracture 

advancement during the treatment and even for most mathematical calculations related to 

fracture modeling and production forecast from a hydraulically fractured well. A simple 

fracture geometry simulated using one of the commercially available fracture simulators is 

shown in Fig. 1.1 where the fracture half-length and height are illustrated. The track on the left 

shows the modeled formation stresses and the contour on the right reflects the distribution of 

the proppant inside the fracture.  

 

Fig. 1.1: Fracture dimensions of a planar fracture. (Pandey and Cramer, 2019) 
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1.2.1. Influence of Fracture Dimensions on Well Production 

The influence of hydraulic fractures in improving well performance has been thoroughly 

researched and well documented in the literature. The presence of fracture dominates the early 

time production and continues to the pseudo-steady state flow regime where the effects of 

drainage boundary are starting to be felt at the wellbore (Raghavan and Hadinoto 1978). 

Equations (1.2) and (1.3) show the flow potential in this state. 

 

𝑝௪஽ = 2𝜋𝑡஽஺ + ln ൬
௫೐

௑೑
൰ +

ଵ

ଶ
ln ቀ

ଶ.ଶହ

஼ಲ
ቁ .....................................................(1.2) 

where, 

𝑡஽஺ =
଴.଴଴଴ଶ଺ଷଽ ௞௧

థఓ௖೟஺
 ; 𝐴 = 4𝑥௘𝑦௘  .................................................................(1.3) 

Here, pwD and tDA are dimensionless pressure and time respectively, xe
 and ye are half-lengths 

of reservoir dimensions, CA is the geometric shape factor (Dietz 1965), k is the permeability of 

the reservoir, t is the time in hours,  is the viscosity in cP, ct is the total compressibility in psi-

1 and A is in ft2. The production rates from a fractured well and its unstimulated counterpart 

may eventually converge, but the benefits from fracturing the well will have already been 

obtained by this time.  

 

 

Fig. 1.2: Production History match of an example case. Xf  = 280 ft, hf = 100 ft. 
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To maximize the production using hydraulic fracturing treatment, it is important that both, the 

fracture half-length and fracture height, are allowed to grow to the optimal dimensions. Though 

both propped and unpropped fractures may contribute to production (Warpinski 2010; Sharma 

and Manchanda 2015; Britt et al. 2006) based on separate mechanisms, inadequate vertical 

coverage of the pay section can negatively affect the well performance. As presented in Eq. 

(1.1), the flow rate is directly proportional to the thickness of the payzone (h) and hence a 

conductive fracture must completely cover the payzone. To illustrate this effect an example is 

shown in Fig. 1.2 where the production model for a multi-stage hydraulically fractured shale 

formation with ultra-low permeability of 0.023 nd is first calibrated with history match of 

production data and then used for forecasting production for various fracture heights. It may 

be noted that though the payzone thickness is nearly 200 ft (60.96 m), only 50% of it was 

accessed during the stimulation process. The treatment pressure history-matched fracture half-

length that was calibrated with the help of microseismic (MS) survey data, was determined to 

be nearly 280 ft (85.3 m). The plot of cumulative production versus production time shown in 

Fig. 1.3 was generated with the help of numerical simulator and clearly indicates the possible 

uplift in production if the effective fracture heights are increased till the entire payzone is 

sufficiently covered. The “Base Case” refers to the fracture height obtained from history match 

of the treatment and calibrated with MS data.  

 

Fig. 1.3: Sensitivity analysis of expected production with increasing fracture height.  

Base Case 
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1.2.2. Influence of Fracture Height on Well Planning 

The extent of height growth or a lack thereof can also be a deciding factor when making 

decisions related to the placement of horizonal wellbores in thicker payzones with variable 

stresses. The hypothetical scenario of well placement strategy commonly encountered in the 

real world is shown in Fig. 1.4. The influence of stresses on controlling hydraulic fracture 

vertical growth is well known (Warpinski and Smith 1989) and presence of any high-stress 

layer as shown, can limit the vertical growth. For the fracture to grow past such high-stress 

layers, higher fracture pressures may be required which depends on pumping parameters and 

other factors. If a horizontal wellbore (Well A) is drilled in the lower section of the payzone 

highlighted by yellow color, the individual fractures may not cover the entire payzone if there 

is a lack of ample pressure energy and result in a partially stimulate pay. Likewise, in the 

presence of strong stress barriers, the downward fracture growth will be limited if the lateral is 

landed in upper section (Well B) of the pay. Both these scenarios can result in sub-optimal 

production and may call of either a stacked-pay type completions that cover the entire pay or 

use of other technologies such as multi-lateral well completions.  

 

Fig. 1.4: Well planning and placement strategy when considering fracture vertical growth.  

Well A Well B 
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y 
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1.3. Fracture Height Measurements 

The vertical growth of hydraulic fracture is an important parameter that is critical to the success 

of hydraulic fractures and hence attempts to measure this parameter in the field are common. 

Measurement of major fracture dimensions be it half-length or height, is not an exact science 

and is often inferred even if direct measurement techniques such as microseismic survey 

mapping, radioactive tracer survey, temperature logs, pre and post formation stress 

measurements, and other such techniques are used. The data published by several researchers 

show a large variation in fracture heights measured in the field ranging from few tens of a feet 

to more than a thousand feet in some cases. 

 

 

Fig. 1.5: Fracture height measurements. Pandey, et al. (2015) and Stegent, et al. (2019). 

 

The results from a radioactive tracer survey conducted on shallow wells completed to exploit 

coal bed methane from Walloons coals measures of Surat Basin, eastern Australia (Pandey and 

Flottmann 2015) are shown on the left section of Fig. 1.5. The well was fracture stimulated in 

multiple stages to place the fractures across the coal seams using specialized techniques to 

contain the fracture height growth to productive coal seams only. The average fracture height 

was less than 20 m (65.6 ft) in each stage. In a contrast, fracture heights of up to 1,000 ft (304.8 

m) were observed when microseismic survey was conducted while fracture stimulating a well 

in Wolfcamp B formation in Permian basin as reported by Stegnet et al. (2019). Fracture 
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heights inferred during fracture stimulation on several treatments pumped in major US shale 

plays of Barnett, Woodford, Marcellus and Eagleford shales were reported by Fisher and 

Warpinski in 2012 and show variations that are characteristic to respective plays.  

1.4. Fracture Height Estimation 

The estimation of fracture dimensions prior to pumping the actual treatment is pivotal to the 

modeling efforts involved in hydraulic fracturing treatment design. The performance from a 

fracturing treatment can be maximized if the treatment results in a desired geometry, i.e., where 

the effective fracture half-length reaches the designed value and the conductive fracture 

adequately covers but remains bound within the payzone. To accomplish this goal, the height 

growth is often modeled based on various numerical schemes that account for various critical 

parameters such as stress distribution in the formation, rock mechanical properties and injection 

fluid properties. The accuracy of prediction however depends on the workings of the model, 

and it is not uncommon to see variation in outcomes from various simulators and an overall 

mismatch of predicted and observed data. This shortcoming often results in unfavorable 

treatment outcomes which negatively effects the well performance.  

The underlying theory and assumptions of modeling fracture height growth of a planar 

fracture is discussed in detail in the text that follows. A full-fledged semi-analytical model 

capable of predicting fracture height growth in layered formations was developed during the 

study and its details are presented in Chapter 3. The model generates a map of fracture vertical 

growth with respect to fracture net pressure and predicts fracture location and height as the 

treatment evolves.  

Continuing the study, a model to carryout out pressure history match of fracturing treatment 

using fracture height versus net pressure mapping was also developed; this numerical model 

accounts for all critical pumping parameters such as injection rates, fluid rheology, fracturing 

fluid leakoff and the relationship between fracture growth and fracture net pressure to predict 

fracture height growth, fracture half-length and width. The results from this simulator were 

compared with those from commercially available simulator and with field observed fracture 

dimensions. The model was also extended to acid fracturing cases to determine etched fracture 

parameters such as length, height, and width.  

The various outcomes indicate an interesting behavior of fracture height growth history that 

were corroborated by field observations and have helped in optimizing fracture stimulation 

designs.  
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1.5. Nomenclature 

A  = drainage area, M0L2t0, ft2 (m2) 

ct =  total compressibility, M-1L1t2, psi-1 (Pa-1) 

CA =  geometric shape factor, dimensionless 

h = height of the payzone, M0L1t0, ft (m) 

k  = reservoir permeability, M0L2t0, md (m2) 

pWD =  dimensionless pressure, dimensionless 

P = drawdown pressure, M1L-1t-2, psi (Pa) 

t =  time, hours 

tDA =  dimensionless time, dimensionless 

xe = half-length of reservoir dimension, M0L1t0, ft (m) 

xf = fracture half-length, M0L1t0, ft (m) 

x =  distance, M0L1t0, ft (m) 

ye = half-length of reservoir dimension, M0L1t0, ft (m) 

 = porosity, fraction 

 = fluid viscosity, M1L-1t-1, cP (Pa.s) 
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CHAPTER 2 

Fracture Height in Multilayered Stress Models 

2.1. Crack Propagation and Fracture Toughness 

The pioneering work done by Griffith and Taylor in 1921 and Griffith in 1924 on crack growth 

in low tensile strength brittle materials laid the foundation to the theory of linear elastic fracture 

mechanics (LEFM) which became the cornerstone of modern-day fracture mechanics. The 

theory states that  the onset of crack propagation occurs when the strain energy release rate (Ge) 

is twice the value of fracture specific surface energy, Gf because two new surfaces are created. 

Gf (J/m2) is a material property that quantifies the energy required to create a fracture of unit 

area from an unloaded state and bears similar units as surface tension of a fluid. Irwin (1957) 

showed that after proper substitution, fracture specific surface energy for one surface can be 

related to the fracture toughness, KIC: 

𝐺௙ =
௄಺಴

మ

ாᇲ  .........................................................................................................................(2.1) 

in which the modified elasticity is 𝐸ᇱ = 𝐸 (1 − 𝜈ଶ)⁄  for plane strain and 𝐸ᇱ = 𝐸 for plane stress 

assumptions. KIc is considered a material property for a perfectly elastic medium as shown by 

Thiercelin (1987) and its typical values for various materials in literature (Warpinski and Smith 

1989). It can be likened to resistance to fracture propagation and can also be calculated from 

fracture tip pressures or vice versa; fracture tip pressure may be assumed as the value of fracture 

pressure itself at the start of the treatment where fracture tip pressures dominate the propagation 

mode. As noted by  Gulrajani and Nolte (2000), because of its dependence on fracture 

geometry, the effective or apparent fracture toughness values are not considered a material 

property and require a correction prior to use. In general, the fracture tip pressure-based value 

of fracture toughness is higher by one order magnitude than typically assumed or laboratory 

derived values of fracture toughness for various rock types as shown by  Shlyapobersky (1985).  

The work of Barenblatt (1962) on crack tip behavior, is equally noteworthy as it facilitated 

the assumption and use of smoothly closing fracture tip by one of the two-dimensional fracture 

models of constant height.  

2.2. Stress Intensity Factors 

Based on the work of Muskhelishvili (1953a, 1953b), Rice (1968) defined complex stress 

function in plane elasticity to generate solutions for n number of cracks along the same axis. 



 

10 

 

He also noted that all crack tip stress fields exhibit an inverse square root singularity. For the 

case of a single finite crack of length 2a, the solutions were compared with the stress fields 

around the crack tips obtained by Irwin (1960), resulting in stress intensity factors at the tip of 

the fractures for three distinct singular stress fields for opening (mode I), sliding (mode II) and 

shear (mode III; anti-plane) sliding cases, while introducing stress intensity factor KI which in 

a way represents the strength of singularity. For a mode I fracture in the presence of uniform 

stress field , stress intensity factor can be given as follows: 

𝐾ூ = 𝜎√𝜋𝑎 ....................................................................................................................(2.2) 

In a more specific configuration, of crack extending from – a to +a along the distance  along 

the crack, having internal pressure changes given by function p(), the stress intensity factor 

KI for mode I fracture is given as: 

𝐾ூ =
ଵ

√గ௔
∫ 𝑝()

ି௔

ା௔

ඥ௔ା

ඥ௔ି
𝑑 .......................................................................................(2.3) 

The above relationship has proved extremely useful in development of height growth models.  

For the fracture to propagate, the value of stress intensity factor should exceed a critical 

value termed as fracture toughness and denoted by KIc. The relation between the net pressure 

in the fracture which is the difference between the fracture pressure that keeps the fracture open 

and the externally acting insitu stress tending to close it, and the fracture toughness, can be 

obtained by simply substituting stress  in Eq. (2.2)  with (Pf ‒ 3) as shown below: 

𝐾ூ௖ = ൫𝑃௙ − 𝜎ଷ൯√𝜋𝑎 ..................................................................................................(2.4) 

where, Pf is fracture pressure, and 3 is minimum in-situ stress. Now that the behavior of crack 

formation in infinite or semi-infinite, brittle and/or elastic rock-type materials was established, 

the postulations were extended to multiple formation layers or interfaces.  

2.3. Fracture Height Calculations 

The basis of fracture height calculation is already established in Eq. (2.3) where the solution 

can be obtained by solving the integral across the length of the crack 2a. The relationship shows 

a clear dependence of fracture growth on net pressure across the crack where a ununiformly 

pressurized crack is assumed; Eq. (2.4) shows net pressure on right hand side under parenthesis. 

2.3.1. Vertical Stress Calculation 

For an isotropic medium in tectonically relaxed environment the insitu stress can be calculated 

as a function of depth using the following relation (Detournay and Cheng 1993) that is a simple 
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extension of Hooke’s stress-strain relationship (Hooke 1678) where the horizontal strains are 

constrained and only the vertical deformation is permitted, with the introduction of Poisson’s 

ratio (Poisson 1829): 

𝜎௛ =
ఔ

ଵିఔ
൫𝜎௩ − 𝛼𝑃௣൯ + 𝛼𝑃௣ ....................................................................................(2.5) 

where, is Biot’s poroelastic constant (Biot 1941, 1956), h is the in-situ stress in horizontal 

direction assuming isotropic stresses,  is Poisson’s ratio, v is overburden stress, and Pp is the 

pore pressure. In presence of tectonics, (Thiercelin and Plumb 1994) proposed the following 

relation to determine insitu stress where the strains h & H in the minimum and maximum 

principal stress directions respectively, are added to the calculation along with plane strain 

modulus described by E/(1-2). 

𝜎௛ =
ఔ

ଵିఔ
൫𝜎௩ − 𝛼𝑃௣൯ + 𝛼𝑃௣ + 𝜖௛

ா

(ଵିఔమ)
+ 𝜖ு

ఔா

(ଵିఔమ)
  .......................................(2.6) 

Formation stresses generated using downhole logs or other data help in defining stress model 

which can be converted to a layered data model that averages stresses across various lithologies 

along with creating a description of rock mechanical properties such as elastic modulus, 

Poisson’s ratio, and fracture toughness. 

2.3.2. Stress Intensity Factors at Fracture Tips 

The mode I stress intensity factor at the two crack tips can be given by following relations 

(Anderson, 2005) that are nearly similar to Eq. (2.3) above:  

𝐾ூ(௫ୀଶ௔) =
ଵ

√గ௔
∫ 𝑝(𝑥)ට

௫

ଶ௔ି௫

ଶ௔

଴
𝑑𝑥   .......................................................................(2.7) 

𝐾ூ(௫ୀ଴) =
ଵ

√గ௔
∫ 𝑝(𝑥)ට

ଶ௔ି௫

௫

ଶ௔

଴
𝑑𝑥   .........................................................................(2.8) 

The setup described in these equations relates to a crack extending from 0 to 2a and acted upon 

with non-uniform crack-face traction p(x) which acts normally to the plane of crack when the 

body is still uncracked as shown in Fig. 2.1 (adapted from Anderson 2005). This scenario 

represents the variation in insitu stress profile that may be calculated along the wellbore depth 

using Equations (2.5) or (2.6) above. 

A slow advancing or a quasi-static fracture which is nearly in equilibrium with the layers 

that it has already penetrated will have vertical dimension that can be estimated by simple force 

balance between the net stresses in the layers of various thicknesses where the fracture resides 

and the strength of the layers that the fracture has intersected. The term x/(2a-x) or its 
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reciprocal, in Eq. (2.7) and (2.8) respectively represents the ratio of sectional lengths from one 

end of the crack to the location of interest along the crack length. The ratio will take the form 

that is dependent on how integral is set. For example, if the crack tip locations are located at – 

a and a, the ratio will take the form (a+x)/(a-x) and (a-x)/(a+x) for upper and lower stress 

intensity factors, respectively. 

 

             Fig. 2.1: Arbitrary traction on crack surfaces (Adapted from Anderson 2005). 

 

 

 

Fig. 2.2: 3-layered stress model showing payzone bound by high-stress members.  
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2.3.3. Height growth in 3-layered stress model 

A three-layered model consisting of payzone or targeted zone in the middle and upper and 

layers forming stress barriers, is shown in Fig. 2.2. The thickness of the middle zone is given 

by 2L and the fracture half-height is depicted as a. The pressurized fracture with pressure 

distribution p(y) in the vertical direction has penetrated both the barriers by a distance of hs. 

The upper and lower layers have a fracture toughness value of KIc whereas, a, b and c denote 

the insitu stresses of payzone, upper and lower layers, respectively. For such a configuration, 

Simonson et al. (1978) utilized the superposition principle to solve for stress intensity factor 

by following the Rice (1968) and Erdogan (1962) approach. The stress intensity factor at the 

tip of the crack is given by: 

𝐾ூ =
ଵ

√గ௟
∫ 𝑝(𝑦)ට

௟ା௬

௟ି௬

ା௟

ି௟
𝑑𝑦 ........................................................................................(2.9) 

where p(y) is crack pressure in vertical direction. The solution to the above integral for the case 

where upper and lower layers have identical strengths is shown as: 

𝐾ூ = (𝜎௕ − 𝜎௔)ට
௟

గ
ቄ2 sinିଵ ቀ

௅

௟
ቁቅ + (𝑝 − 𝜎௕)√𝜋𝑙 ...............................................(2.10) 

The excess pressure required to advance the crack length can be determined from  Eq, (2.10). 

For an asymmetric case, the stress intensity factors at the top and bottom tips of the fractures 

are shown by the following expression. 

𝐾ூ
௠,௡ =

√గ௟

ଶ
𝑝௦ ±

ଵ

√గ௟
(𝜎௖ − 𝜎௕)√𝑙ଶ − 𝐿ଶ + ට

௟

గ
sinିଵ ቀ

௅

௟
ቁ (𝜎௖ + 𝜎௕ − 2𝜎௔) .....................(2.11) 

where, ps = 2p – b – c , m and n denote the top and bottom fracture tips, respectively with the 

corresponding ± sign for mathematical operation. 

Fracture half-height and location can now be obtained by adding and subtracting individual 

equations for top and bottom stress intensity factors and by substituting KI with known values 

of fracture toughness (KIc). The use of KIc is valid because it is known that the crack 

advancement takes place only when stress intensity factor reaches the critical value KIc of the 

material. It is inherently assumed in this solution method, also known as the equilibrium-height 

solution, that the contributions of the pressure differences at any one tip position does not 

influence the stress intensity factor at the other tip. These solutions are  shown in Appendix A. 
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2.3.4. Literature Review: Height Growth in Multilayered Stress Models 

2.3.4.1. Method 1 

The stress distribution in most formations is too complex to be represented by a simple 3 

layered setup and hence recognizing the need, the solution was extended to incorporate 

multiple layers by using the principle of superposition. Tada et al. in 1973 presented one such 

model for fracture half-height a which is shown below.  

𝐾ூ
௠,௡ =

ଵ

√గ௔
∫ ∆𝑝(𝑥, 𝑦௢ + 𝑦ᇱ)ට

ଶ௔±ଶ௬ᇲ

ଶ௔∓ଶ௬ᇲ
𝑑𝑦ᇱ௔

ି௔
 ........................................................(2.12) 

Here, m and n represent top and bottom tips of the fractures respectively, p is the pressure 

distribution at a given cross section held constant at a horizontal distance x from fracture, y’ is 

vertical distance measured from center of the fracture, and yo is half the difference in distance 

that the fracture extends in both directions from the pay zone. For a fracture with slow vertical 

growth in comparison to horizontal extension, the pressure-drop of the fluid traversing 

vertically to the fracture-tips can be neglected and thus, p assumes the value of net pressure. 

 

 

       Fig. 2.3: Multilayered Model – Method 2 & 4. (Adapted from Fung et al. 1987) 
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2.3.4.2. Method 2 

In 1987, Fung et al. introduced an equilibrium-height model which has been frequently quoted 

in industry for its application to asymmetric multi-layer cases obtained after solving the  

following integral: 

𝐹ఙଵ,ଶ = ට
ଶ

గ௛೑
∫ [𝑝 − 𝜎(𝑦)]ට

ଵ∓௬

ଵ±௬

௛೑ ଶ⁄

ି௛೑ ଶ⁄
𝑑𝑦 ...............................................................(2.13) 

where,  F1,2 represents the stress intensity factor for lower and upper fracture tips respectively, 

p is the pressure in the fracture, and hf is the fracture height. (y) is stress distribution in vertical 

direction, y. The solution is obtained by integrating over the various layers starting from bottom 

tip of the fracture to top of the fracture and results in the following form, after applying minor 

correction from original publication to ensure dimensional accuracy. 

𝐹ఙ௖ = ට
௛೑

ଶగ
ቐ𝑝௞𝜋 + ∑ (𝜎௜ାଵ − 𝜎௜)௞

௜ୀଵ × ቎2 sinିଵ
ට

௛೔

௛೑
− (−1)௖ ඨ1 − ൬

ଶ௛೔ି௛೑

௛೑
൰

ଶ

቏ቑ ..........(2.14) 

where c assumes the value of 1 or 2 for lower and upper tips respectively, hf is total fracture 

height, and hi is the elevation from bottom tip of the fracture to the top of the ith stress-layer, 

counting from bottom upwards as shown in Fig. 2.3.  The count of k is the upper-most layer 

bearing a stress of k, where the upper tip of the fracture resides and pk = p – k. To solve the 

integration for each segment of layer thickness while moving up, the location of the top of any 

given layer i, is denoted as hi-a where a is the half height hf/2 in Eq. (2.14). 

 

2.3.4.3. Method 3 

The solution to finding fracture location for a given height was also proposed by Warpinski 

and Smith (1989) where the problem was solved for both, the upper and lower half of the 

fracture with the help of a specific geometry coefficient b2 by applying the superposition 

principle on the basic relation presented in Eq. (2.3). The solution resulted in two non-linear 

equations that can be solved iteratively to obtain fracture location for input height for a given 

layered stress distribution and fracture toughness scenario, and the corresponding fracture 

pressures. These are presented below after rectifying a few minor errors in the original format 

of the equations.  

√గ௔(௄಺೎೙ି௄಺೎೘)

ଶ
= ∑ 𝑆௜

௠
௜ୀଶ,ଶ ට𝑎ଶ − 𝑏௜

ଶ −  ∑ 𝑆௝
௡
௝ୀଷ,ଶ ට𝑎ଶ − 𝑏௝

ଶ ...........................(2.15) 

√గ(௄಺೎೘ା ௄಺೎೙)

ଶ√௔
= 𝑆௢

గ

ଶ
+ ∑ 𝑆௜

௠
௜ୀଶ,ଶ sinିଵ ቀ

௕೔

௔
ቁ + ∑ 𝑆௝

௡
௝ୀଷ,ଶ sinିଵ ቀ

௕ೕ

௔
ቁ ................(2.16) 
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Here, KIcn and KIcm denote the fracture toughness of the layers where bottom and top tips of the 

fracture reside respectively, a is fracture half-height, and bi and bj represent geometry 

coefficients for upper and lower layers from the center of the fracture, respectively. The  

fracture initiation layer is apportioned into b2 (upper section) and b3 (lower section) as shown 

in Fig. 2.4 and is useful in obtaining the solution by employing iterative methods such as 

Newton Raphson that seeks the value of b2 that will satisfy Eq. (2.15). Also,  Si = i – i-2 for 

i>2, Sj = j – j-2 for j>3, and i = 2,2 (or j=3,2) implies that i (or j) is incremented by a value of 

2 because the upper half layers are denoted by even numbers and bottom half layers are denoted 

odd numbers. In Eq. (2.14) , So = ps - top - bot, ps is treatment pressure above the closure stress 

(or net pressure) and top and bot represents stresses in top and bottom layers where the tip of 

the fracture resides. Additional details are provided in the original publication (Warpinski and 

Smith 1989). 

 

 

Fig. 2.4: Multilayered Model – Method 2 & 3. (Adapted from Warpinski and Smith 1989) 

 

2.3.4.4. Method 4 

Another solution to Eq. (2.9) was proposed by Mack et al. in 1992 by following a similar 

approach as the one adopted by Fung et al. (1987) where the integration was carried out from 

bottom tip upwards. The effect of gravity was also included in effective pressure calculations. 

The pressure p of Eq. (2.9) can be expressed as a sum of pressures at the center of the 
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perforations pcp and the hydrostatic pressure difference between the center of the perforation 

hcp, and at a given elevation z from bottom tip of the fracture. Thus, Eq (2.17) is then obtained 

after substituting for p as, 𝑝 = 𝑝௖௣ + 𝜌௙𝑔൫ℎ௖௣ − 𝑧൯ in base Eq. (2.9) along with “a” for 

fracture half-height and presented as follows: 

𝐾ூ
௕௢௧,௧௢௣

=
ଵ

√గ௔
∫ ൣ𝑝௖௣ + 𝜌௙𝑔൫ℎ௖௣ − 𝑧൯ − 𝜎(𝑧)൧ට

௔∓௭

௔±௭

௔

ି௔
𝑑𝑧 ..............................(2.17) 

where, 𝐾ூ
௕௢௧,௧௢௣

 is the stress intensity factor for bottom and top fracture tips and defined in 

the equation with the help of mathematical operator ∓ , f is the fluid density and g is the 

acceleration due to gravity. To solve for various parts of the integral that cover the fracture 

from half-height -a to a while intersecting k number of stress layers, z is taken as a-hi to reach 

the final expression. The solution of Eq. (2.17) is presented below and resembles the solutions 

obtained by Fung et al. (1987).  

𝐾ூ
௕௢௧,௧௢௣

= ට
గ௛

ଶ
ቂ𝑝௖௣ − 𝜎௞ + 𝜌௙𝑔 ቄℎ௖௣ −

ఋ௛

ସ
ቅቃ + ට

ଶ

గ௛
∑ (𝜎௜ାଵ −௞ିଵ

௜ୀଵ

𝜎௜) ቂ
௛

ଶ
cosିଵ ቀ

௛ିଶ௛೔

௛
ቁ ± ඥℎ௜(ℎ − ℎ௜)ቃ  ....................................................................(2.18) 

In this equation,  is 1 for bottom layers and 3 for top layers. The derivation of Eq. (2.18) is 

shown in Appendix B.    

The pressure term can be eliminated if the equations are arranged to find the difference of 

stress intensity factors. This will result in the following non-linear expression that can be solved 

using iterative methods to determine fracture location if the fracture height (or half-height) is 

assumed: 

𝐾ூ
௕௢௧ − 𝐾ூ

௧௢௣
= ට

ଶ

గ௛
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௛
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∑ (𝜎௜ାଵ − 𝜎௜)௞ିଵ
௜ୀଵ ቂ

௛

ଶ
cosିଵ ቀ

௛ିଶ௛೔

௛
ቁ − ඥℎ௜(ℎ − ℎ௜)ቃቅ  + ට

గ௛

ଶ
𝜌௙𝑔

௛

ଶ
 ................(2.19) 

Fracture pressure can now be determined explicitly after adding both the stress intensity factors 

and solving for fracture pressure at the center of perforations pcp and including the contribution 

from hydrostatic pressure as shown by the following equation.  
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ඥℎ௜(ℎ − ℎ௜)ቃቅ  .............................................................................................................(2.20) 

With all the inputs now available, the fracture width in the vertical direction w(y) in each layer 

can be estimated by the following relation: 

𝑤(𝑦) =
ସ
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௛
ቁቃ  .(2.21) 

where y is the elevation measured from perforation depth and, E’ is the plane strain modulus. 

The calculations in the model proposed by Mack et al. (1992) are based on elevations measured 

from the bottom tip of the fracture, and hence, it is not necessary to continuously identify the 

layer where the center of the fracture  resides which makes the solution process simple.  

Modifications to the height growth model have been proposed in several recent studies 

including those by Weng et al. (2011), Cohen et al. (2015), Liu and Valko´ (2018) and Xu et 

al. (2019) addressing the fracture vertical growth computation. The effects of layered stress 

contrast, elastic modulus contrast and, sliding and slipping interfaces on fracture height 

containment have been discussed in these papers at length and a few modeling-based solutions 

are offered to assist in better prediction. Equilibrium-height  models assume uniform pressure 

distribution in the fracture and do not account for possible variations in the predicted outcomes 

due to non-uniform pressures. The fluid-flow induced pressure distribution in the fracture was 

incorporated in the modeling process for the case where the base model was not able to match 

the predicted outcome with field-measured fracture height. 

2.4. Nomenclature 

a  = radius of crack, crack half-length, fracture half-height, M0L1t0, ft (m) 

b2 = specific geometry factor, M0L1t0, ft (m)   

bi, bj = geometry coefficients, upper and lower layers from mid-frac depth, M1L1t0, ft (m) 

c = number, Eq. (2.14) 

E =  Young’s modulus, M1L-1t-2, psi (Pa) 

E’ = plane strain modulus, M1L-1t-2, psi (Pa) 

F1,2 = stress intensity factors for bottom and top layers, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5) 
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Fc = stress intensity factors - bottom &  top layers, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5) 

g = acceleration due to gravity, M0L1t-2, ft/s2 (m/s2) 

Gf =  fracture specific surface energy, M1L0t-2, J/m2 

h =  fracture height, M1L1t0, ft (m) 

hcp =  elevation from the bottom tip of the fracture to center of perforations, M1L1t0, ft (m) 

hf =  fracture height, M1L1t0, ft (m) 

hi = elevation of ith layer top from bottom tip of the fracture, M1L1t0, ft (m) 

hs =  fracture penetration in surrounding layers (Fig. 2.2)  M1L1t0, ft (m) 

i,j, = count, unitless 

k = number of layers, number 

KI =  stress intensity factor, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5) 

KIcn =  stress intensity factor – bottom tip of fracture, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5) 

KIcm =  stress intensity factor – top tip of fracture, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5) 

KI
top,bot =  stress intensity factor for top and bottom layers, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5)  

KIc =  critical stress intensity factor, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5)  

l = fracture half-height, M0L1t0, ft (m) 

L = half of payzone thickness, M0L1t0, ft (m) 

m = top tip of the fracture, unitless 

n =  bottom tip of the fracture, unitless 

p = pressure in the fracture, M1L-1t-2, psi (Pa) 

pcp = pressure at the center of the perforations, M1L-1t-2, psi (Pa) 

ps = stress/pressure difference, M1L-1t-2, psi (Pa) 

p(x) = crack face traction (Fig.2.1), M1L-1t-2, psi (Pa) 

p(y) = pressure in the crack in vertical direction, M1L-1t-2, psi (Pa) 

p() = pressure in the crack in vertical direction, M1L-1t-2, psi (Pa) 

Pf =  fracture pressure, M1L-1t-2, psi (Pa) 

Pp = pore pressure, M1L-1t-2, psi (Pa) 

Si, Sj, So = various stresses, Eq. (2.16) and Eq. (14), M1L-1t-2, psi (Pa) 

w(y) = width in vertical direction y, M0L1t0, in. (mm) 

x = any distance value in horizontal x-axis, M0L1t0, ft (m)  

y = elevation in vertical distance, M0L1t0, in. (m) 

y’ =  vertical distance measured from center of the fracture, M0L1t0, in. (m) 

yo  = half-difference in distance of fracture extension from fracture ends, M0L1t0, in. (m) 
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z = elevation in vertical distance from bottom tip/center of the fracture, M0L1t0, in. (m) 

 =  Biot’s constant, dimensionless 

 = coefficient, unitless 

p = pressure distribution in Eq. (2.12), M1L-1t-2, psi (Pa) 

𝜖௛  = strain in minimum principal horizontal stress direction, dimensionless 

𝜖ு  = strain in maximum principal horizontal stress direction, dimensionless 

 = Poisson’s ratio, unitless 

 = fluid viscosity, M1L-1t-1, cP (Pa.s) 

f = fluid density, M1L-3t0, lbm/gal (kg/m3) 

 =  stress in crack or fracture, M1L-1t-2, psi (Pa) 

h =  maximum principal stress in horizontal direction, M1L-1t-2, psi (Pa) 

i j =  stress in ith and jth layers, M1L-1t-2, psi (Pa) 

k =  stress in the nth or uppermost layer, M1L-1t-2, psi (Pa) 

v =  vertical principal stress, M1L-1t-2, psi (Pa) 

a = stress in payzone (Fig. 2.2), M1L-1t-2, psi (Pa) 

b = stress in barriers or stress in upper barrier alone (Fig. 2.2), M1L-1t-2, psi (Pa) 

bot = stress in the bottom layer where fracture bottom tip resides, M1L-1t-2, psi (Pa) 

c = stress in lower barrier (Fig. 2.2), M1L-1t-2, psi (Pa) 

top  = stress in the top layer where fracture bottom tip resides, M1L-1t-2, psi (Pa) 

(y) = stresses distribution in vertical y-direction, M1L-1t-2, psi (Pa) 

 = minimum insitu principal stress in horizonal direction, M1L-1t-2, psi (Pa) 

 = distance along the crack, M0L1t0, ft (m)  
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CHAPTER 3 

Modeling Fracture Growth in Multi-Layer Setup 

3.1. Modeling Approach 

The various methods discussed in Chapter 2 allow for estimation of fracture growth in layered 

formations. One of the primary assumptions is the slow advancement of the fracture to allow 

the fracture tips to equilibrate to the stress environment that surrounds the fracture but pressures 

at one tip not to influence the other tip. Furthermore, this solution is primarily a “solid 

mechanics” solution because it does not account for the fluid flow induced pressure drop inside 

the fracture by assuming a uniform pressure distribution. The modeling approach adopted in 

this research study is summarized in the following steps: 

1. Develop the basic solid mechanics solutions method: 

a. to handle up to 100 layers of stress and mechanical property data, 

b. to solve using both fixed and floating fracture location. 

2. Calibrate the model output with the data available in the literature. 

3. Predict fracture height growth for various cases and compare with field measurements.  

4. Incorporate the effects of fluid flow inside the fracture using superposition principle. 

5. Extend the model to allow pressure history matching of treatment injection data and 

forecast fracture height growth pattern during the treatment. 

6. Extend model to account for other non-ideal behavior such as abrupt height growth 

truncation and others.  

The steps are discussed in detail in the following text and in various chapters that follow.  

3.2. Developing Preliminary Height Growth Model 

During the initial phase of research, the solutions provided in Equations (2.14), (2.15), (2.16) 

and (2.19) were programmed separately as calculation “modes” and individually applied to 

reach the solution to a 7-layered stress model shared by Warpinski and Smith (1989). The 

simulator engine was ultimately reprogrammed to adopt a solution approach that introduced 

speed and accuracy to the process. 

The model was programmed in Microsoft ExcelTM VBA using array, strings, and variant 

tables to allow speedy calculations for up to 100 layers of input data consisting of layer depths, 

thicknesses, stresses, fracture toughness, Poisson’s ratio, modulus, and fluid leakoff. The 
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program is written in a manner that number of layers is not a limitation. The calculations can 

be carried out using any of the following routines: 

a. increment the fracture bottom tip location to determine corresponding fracture height,  

b. input a known fracture height and find fracture location (fracture location not fixed),  

c. accept or ignore “alternate” solutions where taller fractures could be obtained even with 

lower net pressures, and  

d. assume a given net pressure and run a nested loop to obtain fracture location and height 

using either modes (a) or (b). This is a more rigorous case but is useful when fluid flow 

related modifications to the calculations must be carried out.  

The solution to the non-linear equations described in Equations (2.14), (2.15), (2.16) and 

(2.19) were obtained by determining the roots of the equation by employing iterative solutions 

such as bisection method which is guaranteed to find a root if it exits and Newton-Raphson 

method which is several folds faster than bisection method. A combination of these methods 

was also used wherever applicable. 

 

Fig. 3.1: Superposition solution for height growth problem in multiple layers. 

 

To speed up the calculations it is necessary to (a) make a good initial guess and, (b) define 

boundary conditions to prevent endless iterative loops. To enable this, the calculation is 

initiated by first assuming a fracture height hf, greater than the perforated interval, and assign 
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a lower and upper bound to the distance by which its center can move with respect to the layer 

from which the fracture initiates. The fracture is then “moved” across the layers with stress and 

fracture toughness inputs until Equations (2.14) or (2.19) are satisfied or until the solver reaches 

a certain pre-decided number of iterations. The calculation is then moved to the next 

incremented fracture height. The tip location hi shown in Fig. 3.1 is thus dynamic and its value 

is obtained by solving for hi which is the depth difference between the grid bottom and bottom 

tip of the fracture. This special feature introduced in the modeling phase enables close guess 

of the root and helps in quicker convergence. One may note that the middle of the fracture 

denoted by hmid is different than the middle of perforation distance hcp, measured from bottom 

tip of the fracture. The pressure values are obtained from Eq. (2.20). The height increments are 

decided at the start of the program and are generally set to 0.5 to 1 ft (0.15 to 0.31 m); there is 

no limit to the increment value so long as it is greater than zero. On average, for a 100-layer 

input model, the simulation for 200 values of height can be carried out in less than a minute. 

The routines discussed above describe the assumptions and processes to calculate fracture 

vertical growth in formations with variable rock properties along the depth. With addition of 

lithological layer data in the model, the calculation complexity increases, but the relative ease 

with which additional constraints can be introduced to the solution scheme makes the semi-

analytical fracture height growth model an attractive choice. The model presented in this study 

follows a similar methodology and introduces constraints based on field measurements of 

fracture height. The codes used for programming the subroutine are show in Appendix D. 

3.3. Benchmarking Model Outputs with Literature Data 

The base benchmarking model selected in the study was from the one presented by Warpinski 

and Smith (1989). The model comprises of 7 layers of non-uniform stresses but the facture 

toughness of all the layers was set to 1,000 psi.in0.5 (3,806.5 kPa.m0.5). The stress data are 

presented in Fig. 3.2. The fracture initiation layer is in the middle and the distance of zero on 

the left vertical axis denotes the perforation depth. The middle layer is 50 ft (15.24 m) thick, 

the bottom most layer is 75 ft (22.9 m) thick, whereas the remainder of the layers are 25 ft (7.62 

m) thick. The plot shows  treating or net pressures in the x-axis. With the increase in net 

pressure, not only the fracture height appears to increase but its location also changes. The 

stress member with 1,500 psi (10.34 MPa) just above the pay zone acts a strong barrier initially 

and prevents upward growth of the fracture thus driving it down. However, as the net pressures 

exceed 200 psi (1.38 MPa), barrier strength is overcome, and fracture shows an upward growth 
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as well. The center of the fracture stays within the payzone but moves about indicating that 

hydraulic fracture may not be always centered around the perforation. 

 

Fig. 3.2: Multilayered height growth model example (Warpinski and Smith 1989). 

 

 

Fig. 3.3: Data points reproduced by current model in the model calibration process.  

The location of the top and bottom of the fracture tips can be read from the left y-axis 

representing the distance of the point from the fracture initiation point denoted by zero. This 
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distance versus net pressure mapping is extremely beneficial in forecasting fracture pressures 

and is also useful in carrying out pressure history match of treatment data as will be seen in  

later in Chapter 5. 

The results reproduced by the current height growth simulation model is shown in Fig. 3.3. 

In this case the mode “b” setup of simulation, mentioned in section 3.2 above, where the 

fracture tip location is not fixed but is determined for an input fracture height, was employed. 

As can be seen from the closeness of output data points represented as “FracTOP” and 

“FracBOT” in the plot, the height increments used were very small.  

 

Fig. 3.4: Alternate solution for fracture top location once the height reaches 50 ft.  

An alternate solution quoted under item “c” of modeling steps above (section 3.2) is shown in 

Fig. 3.4. This scenario is possible once the fracture top fracture grows past 50 ft (15.2 m) and 

crosses the stress barrier of 1,500 psi (10.3 MPa) just above the pay zone. From this point 

onwards,  for a brief period, further height growth is possible even with lower net pressures 

because the stress layer where the upper tip of the fracture resides k, in Eq. (2.20) used in 

obtaining fracture pressure, reduces from 1,500 psi (10.34 MPa) to 1,200 psi (8.30 MPa) as 

shown in Fig. 3.4. With the remainder of the component on right of k either remaining constant 

or increasing with increasing height, the overall effect is a reduced value of pcp. The effect 
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shown in Fig. 3.4 by the “FracToP (Alternate)” curve, is thus a real-world possibility and not 

just a mathematical artifact. However, keeping the fracture open at the injection-point is 

necessary to continue the fracturing operations, which could be challenging because of loss of 

net pressure (and subsequent loss of fracture width) as the fracture migrates to lower stressed 

zones. Note that eventually with increase in net pressure and fracture vertical growth, the 

solutions from both the methods merge. The mode of alternate solution was adopted in majority 

of the case histories studied  because it supports the general notion and fact that it is relatively 

easy to propagate larger fractures (Daneshy 1978) which would be the case here with increasing 

fracture heights and half-lengths. 

Using this procedure, both solutions shown for the example above can be obtained. The net 

pressures differ slightly because of inclusion of hydrostatic effects in this solution method, but 

the overall values are comparable. The programming codes for height growth prediction 

simulator developed in Excel VBA.  

3.4. Model Application: Horizontal Well Landing 

This example case pertains to the hypothetical case of landing a horizontal well in a laminated 

formation as a close analog to the scenario mentioned in section 1.2.2. The formation is 

characterized by non-uniform stress distribution which are obtained from downhole logs. The 

7-layer model is now extended to a 100-layer of data input model with thickness varying form  

stress and mechanical property model. The average values of inputs for the real-world case 

study are shown in table below. 

 

Number of layers in the stress model   100 

Payzone Stress     5,050 psi (34.82 MPa) 

Average Stress     5,475 psi (37.75 MPa) 

Fracture initiation layer thickness   2.3 ft (0.70 m) 

Average layer thickness    2.7 ft (0.83 m) 

Average Young’s Modulus    2.33 × 106 psi (16.1  GPa) 

Average Poisson’s Ratio    0.23  

Average Fracture Toughness    3,064 psi.in0.5 (3,367.0 kPa/min0.5) 

Payzone True Vertical Depths (TVD)  8,240 to 8,380 ft (140 ft thick)  

TABLE 3.1: Formation properties used as input in the horizontal well landing example.  
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The simulation was carried out for fracture heights ranging from 5 ft to 220 ft (1.52 to 67.1 m) 

in 1 ft (0.31 m) intervals. Solutions were obtained for 178 values of height inputs with the 

maximum height for which a solution could be obtained being the one where both the fracture 

tips stayed within the top and bottom grid of the layered model defined (see Fig. 3.1). In most 

cases, a higher fracture height was associated with increased net pressure, but with alternate 

solutions being part of the solving process, it was observed that in early time when fracture 

height was still evolving, even a lower net pressure could result in taller fractures. However, 

with the increase in fracture height, this effect diminishes, and fracture growth occurs 

proportionately with net pressure increase. These effects are seen in distance versus net 

pressure plot of Fig. 3.5 where the horizontal wellbore was landed just above the high stress 

middle layer member at 8,320 ft shown in the right plot.  

 

Fig. 3.5: Fracture location plot for horizontal well landed above middle stress layer. 

 

Fig. 3.6: Fracture location plot for horizontal well landed below the middle stress layer.  
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The input fracture heights for which the results could be obtained are shown as vertical bars on 

the right plot, with each bar representing a fracture height. The depths in this plot are aligned 

with the distances in the left plot with the perforations (or depth of the lateral)  corresponding 

to the 0 distance (denoted by dashed line). For sake of clarity early time data is not shown in 

left plot as it reflects several alternate solutions. In this setup, the fractures will tend to grow 

upwards first and unless high net pressures are generated, will not grow down to adequately 

cover lower pay. 

The scenario shown in Fig. 3.6 represents the case where the lateral section of the horizontal 

well was drilled in lower section below the high stress member which was also the more 

productive region of the pay. Also, for oil well, with assistance from gravity, better drainage 

could be expected. From hydraulic fracturing viewpoint, this case is more favorable because 

the fracture tends to cover the lower section of the pay even with lower net pressures. Even if 

the net pressures were to increase during the treatment, they will assist in covering the entire  

pay vertically and hence will be most beneficial from production standpoint.  

The model outputs for this case study clearly illustrates that the fracture height growth 

potential and net pressure requirements will vary with the location of fracture initiation point 

specially for cases where there are significant changes in the stress profiles and mechanical 

property values. The model derived height growth mapping for given net pressure is thus a 

helpful tool in planning the placement of perforations or in case of horizontal wells, its 

positioning in the payzone to derive maximum benefit from fracture stimulation. 
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CHAPTER 4 

Height Growth Model Applied to Field Cases  

4.1. Fracture Growth Measurements in Field – Vertical Wells 

The vertical growth of a hydraulic fracture during a treatment is often measured with the help 

of techniques such as tracing the treatment with radioactive (RA) material where specific small 

half-life isotopes of Antimony, Scandium and Iridium are introduced in the fracturing fluid 

during the treatment. After the treatment is pumped and wellbore is cleaned up, a gamma ray 

tool is run in the well to identify the  presence of RA tracers which provides an estimate of 

fracture height in vertical wells as shown in Fig. 1.5 (left figure). For multi-stage treatments in 

vertical wells, it is customary to alternate between these isotopes to help in identifying fracture 

growth in individual stages, whereas for single stage treatments or when there is sufficient 

distance separating subsequent stages in a multi-stage treatment, the three isotopes maybe 

injected in the pad, and various proppant stages.  

Microseismic (MS) measurements are yet another method to estimate fracture dimensions 

and offers an insight into fracture height growth, both in vertical and horizontal wellbores. 

Other less common methods to estimate fracture height growth especially in vertical wells are 

use of temperature logging and post-treatment sonic logs to survey changes in compressional 

and shear wave transit times to determine fracture height.  

4.2. Case Study Selection and Modeling Steps 

The objective of the case study was to compare the model outputs with the observed data and 

examine the accuracy of predictions. For this purpose, examples from various hydraulic 

fracturing case studies were selected as test cases. The examples were selected from past 

studies (Pandey and Agreda 2014, Kirk-Burnnand et al. 2015, Pandey and Flottmann 2015) 

and presented in detail in Pandey and Rasouli (2021a, 2021c). The cases discussed were found 

suitable because of the relatively lower treatment injection rates that satisfies the condition of 

gradual fracture advancement, and the low-permeability environment which helps in limiting 

the leak-off velocity. The common features amongst these cases are listed below:  

i. vertical well treatments where multiple zones that were treated,  

ii. availability of dipole sonic log data which enabled generating vertical stress profile, 

iii. RA tagged treatments for fracture height measurement,  

iv. availability of bottomhole pressure (BHP) data in most cases,  



 

30 

 

v. fracture initiation from single cluster, (pinpoint injection) and,  

vi. low rate and low viscosity treatments to contain the fracture height growth by minimizing 

the net pressure (NP).  

The following list highlights the various steps adopted during fracture height growth 

modeling and analysis: 

1. Prepare a preliminary stress and mechanical properties model using downhole log data. 

2. Calibrate the layered stress model by history matching the treatment. 

3. Using the model, generate distance versus NP map for the calibrated stress model.  

4. Based on the mapping, obtain the fracture height for the observed net pressure. 

5. Compare the fracture height with field traced fracture height from RA tracer survey.  

4.3. Case Studies 

4.3.1. Vertical Well: Shallow Sandstone –  Case 1 

This example is taken from the data published by Pandey and Agreda (2014) that summarizes 

the successes of low rate and low viscosity fracture stimulations executed on several shallow 

wells completed in the San Miguel formation in the Sacatosa field in south Texas with an 

objective to minimizing the horizontal or “pancake” fractures by controlling the net pressures. 

The low injection rate design and execution assisted in limiting the net pressures which resulted 

in gradual fracture advancement, making these wells ideal candidates for the current study. 

 

 

Fig. 4.1: Horizontal fracture component from tiltmeter. Conceptual sketch on right. 
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The typical fracture gradient of pay sands range from 0.85 to 0.92 psi/ft (19.23 to 20.8 kPa/m) 

for average depths of 1,600 ft (487.7 m) and hence if the net pressure in the fracture were to 

exceed 220 psi (1.52 MPa), fracture rotation in horizontal plane is possible because effective 

injection pressures can overcome the overburden. This was also evinced by tiltmeter survey 

carried in the field as shown in Fig. 4.1 (Pandey and Agreda 2014). The model description and 

other layer properties are listed in Table 4.2 below. 

 

Number of layers in the stress model   67 

Payzone Stress     1,467.0 psi (10.11 MPa) 

Average Stress     1,626.7 psi (11.56 MPa) 

Fracture initiation layer thickness   3.1 ft (0.95 m) 

Average layer thickness    2.4 ft (0.73 m) 

Average Young’s Modulus    1.33 × 106 psi (9.2  GPa) 

Average Poisson’s Ratio    0.28  

Average Fracture Toughness    1,288 psi.in0.5 (4,902.8 kPa.m0.5) 

Payzone True Vertical Depths (TVD)  1,593 to 1,609 ft (16 ft thick) 

TABLE 4.1: Formation properties used as input in Case 1.  

The main treatment comprising of low concentration cross-linked gel of 12.0 lbm/Mgal (1.44 

kg/m3) loading, was pumped down the 4 ½ in. casing × 1 ¾ Coiled Tubing (CT) annulus, at a 

maximum of 8.0 bbl/min (0.021 m3/s), after the CT was used to jet-cut holes in the casing. The 

jetting ports of CT allowed for constant monitoring of the bottomhole treating pressures (BHP). 

The injection test analysis indicated a high fluid efficiency of 60% for a closure pressure of 

1,500 psi (10.3 MPa) resulting in a fracture gradient of 0.935 psi/ft (21.2 kPa/m). 

The treatment plot of Fig. 4.2 shows measured and matched bottomhole pressure (BHPInj) 

and BHP_Match respectively. The formation face pressure (FFP) and net pressure (NP) shown 

in Fig. 4.2 were generated from the treatment data using technique discussed in Pandey et al. 

(2020) and calculated bottomhole injection pressure was history matched to calibrate the stress 

model. The net pressure gradually increases to 200 psi (1.38 MPa) at the end of the pad 

indicating the much-desired extension and preventing fracture from rotating to horizontal 

plane. However, the increase of  injection rate to 8.0 bbl/min with onset of proppant in the 

formation and subsequent increase of net pressure more than 220 psi could lead to this 

condition. This is also supported by the “flat” net pressure response seen from 25 to 27 minutes 

if injection history. Due to the apparent pad dehydration owing to possible presence of 

horizontal component (Daneshy 2003), the tip screen out (TSO) set in, and the treatment was 
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terminated early. The equilibrium height model will not apply under these circumstances for 

late time data. It is generally assumed that with the occurrence of TSO the fracture dimensions 

including height may not change much unless the barriers are extremely weak and rock has 

moderate strength (Smith 1985, Smith et al. 1987, Smith et al. 1996). 

 

Fig. 4.2: Fracture stimulation treatment plot for Case 1. 

 

 

Fig. 4.3: Height growth vs. NP match and comparison with RA tracer survey data in field.  

 

The treatment was traced with single RA tracer iridium, shown by red shades in extreme right 

track of Fig. 4.2 to differentiate the signature from previous stage that was traced using 

antimony and scandium which are represented by blue and yellow shades, respectively. This 

color scheme applies to all cases presented henceforth. The depths from 1,584 to 1,638 ft (482.8 

to 499.3 m) show presence of tracers for nearly 54 ft (16.5 m), though the 2nd stage being 

discussed shows around 46 ft (14.0 m) of vertical growth based on the iridium traces (red color).  
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The distance versus net pressure plot in Fig. 4.3 (far left) shows the model-calculated top and 

bottom tips of the vertical fracture as the net pressure increases. The dashed vertical purple line 

shows the fracture height of  nearly 46 ft (14.0 m) corresponding to the net pressure of 140 psi 

that was generated during the pad stage in the treatment. The center of this plot which is 

represented by “0” in the y-axis, coincides with the perforation depth shown in the middle plot 

of depth versus stress, to give a perspective on fracture growth with respect to stress profile. 

Additional details regarding the case history are presented in Pandey and Rasouli (2021c).  

4.3.2. Vertical Well: Shallow Sandstone – Case 2 

In this vertical well completion, a 4 ½ in. (114.3 mm) casing was set at 1,700 ft (518.2 m) and 

perforated in San Miguel C sand, with the middle of the perforations at a depth of 1,600 ft 

(487.7 m). The treatment was injected down 2 ⅞ in. (73.1 mm) tubing using a 12.0 lbm/Mgal 

(1.44 kg/m3) borate crosslinked fluid. In the first stage of the treatment, a total of 9,500 lbm 

(4.31 t) of US mesh-size 16/30 resin-coated sand was pumped at 6.0 bbl/min (0.016 m3/s) with 

a maximum concentration of 5 lbm/gal (600.0 kg/m3). 

 

Fig. 4.4: Fracture stimulation treatment plot for Case 2.  

 

The treatment plot presented in Fig. 4.4 shows that to cure near-wellbore restrictions identified 

in the pre-job injection tests, 500 gal (1.9 m3) of 15% HCl by wt. and sand slugs of small 

concentrations were introduced. The fracture closure was picked at 1, 380 psi (7.8 MPa), or 

0.862 psi/ft (19.5 kPa/m), which implied an operating window of 220 psi (1.52 MPa) for an 

overburden gradient of 1.0 psi/ft (22.62 kPa/m ) before pancake fractures could potentially 

form. The treatment pressure match indicates a maximum net pressure gain (matched) of 165 
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psi (1.14 MPa) in the pad, and an overall gain of nearly 200 psi (1.38 MPa) for the entire 

treatment. Formation and model properties are shown in Table 4.2 below. 

 

Number of layers in the stress model   60 

Payzone Stress     1,375.0 psi (9.48 MPa) 

Average Stress     1,519.0 psi (10.47 MPa) 

Fracture initiation layer thickness   4.1 ft (1.25 m) 

Average layer thickness    3.15 ft (0.96 m) 

Average Young’s Modulus    1.86 × 106 psi (12.82  GPa) 

Average Poisson’s Ratio    0.28  

Average Fracture Toughness    1,308 psi.in0.5 (4,979.0 kPa.m0.5) 

Payzone True Vertical Depths (TVD)  1,584 to 1,600 ft (16 ft thick) 

TABLE 4.2: Formation properties used as input in Case 2. 

  

 

Fig. 4.5: Fracture height growth measurements and modeling for Case 2.  

 

The results of height growth model analysis are presented in Fig. 4.5. The distance versus net 

pressure plot indicates that an overall height growth of nearly 55 ft (16.76 m) is possible if a 

net pressure of 165 psi is available, as highlighted by dashed purple line. This prediction is 

nearly 6% more than the actual height growth of 52 ft (15.85 m) observed in the field, shown 

by the RA tracer log in the extreme right of Fig. 4.5. All three RA tracer types were pumped in 

the treatment. Though majority of RA tracer activity is confined to the depths of 1,578 to 1,610 

ft (481 to 490.73 m), the scandium pumped in the pad is also seen at the deeper depth of 1,625 

ft (495.3 m). The fracture may have grown deeper as supported by the model, but most of the 

proppant stages were confined to shallower depth due to low injection rates. 
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4.3.3. Vertical Well: Shallow Sandstone – Case 3 

The third case history details the fracture stimulation of shallow well completed in San Miguel 

sands (Pandey and Agreda, 2014), where the treatment was injected down 4 ½ in. (114.3 mm) 

casing set at 1,618 ft (493.2 m) with perforations at 1,435 ft (437.4 m). The treatment consisted 

of 20,000 lbm (9.1 t) of US-mesh-size 20/40 Ottawa sand pumped at a maximum concentration 

of 5.0 lbm/gal at 12.0 bbl/min (0.032 m3/s) with a 30 lbm/Mgal (3.6 kg/m3) linear gel of 23 cP 

(0.0023 Pa.s) viscosity at ambient conditions. A closure pressure  of 1,290 psi (8.38 MPa) was 

obtained from the pressure decline analysis which equates to a fracture gradient of 0.90 psi/ft 

(20.4 kPa/m). This implies that if  the net pressures increase beyond 220 psi (1.52 MPa), the 

during the treatment, the fracture pressures will exceed overburden and may cause the fracture 

to rotate in the horizontal plane.  

The gradual increase of net pressure in the treatment data plot presented in Fig. 4.6 shows 

that the fracture remains confined and continues to extend till the end of the pad. The threshold 

net pressure of 220 psi is exceeded at nearly 23 min into the treatment. The increase in injection 

rate, primarily to ensure good proppant transport, especially with low viscosity linear gel as the 

fracturing fluid, may have contributed to that.  

 

Fig. 4.6: Fracture stimulation treatment plot for Case 3.  

 

A maximum net pressure of 155 psi (1.10 MPa) is obtained in the pad, though the gain in net 

pressure at the end of the treatment is nearly 275 psi (1.89 MPa). The end-of-job fracture 

pressure is around 1,490 psi (10.3 MPa) which results in a final fracture gradient of nearly 1.04 

psi/ft (23.5 kPa/m). During the treatment, all 3 RA tracer isotopes were pumped to trace pad 
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and proppant stages. These are shown in the rightmost track of Fig. 4.7 where an overall 

fracture height of 18 ft (5.48 m) was measured based on gamma ray responses from 1,426 to 

1,444 ft (434.6 to 440.1 m). Below is the summary for stress and formation property data used 

in the model. 

 

Number of layers in the stress model   64 

Payzone Stress     1,252.8 psi (8.64 MPa) 

Average Stress     1,382.2 psi (9.53 MPa) 

Fracture initiation layer thickness   4.1 ft (1.25 m) 

Average layer thickness    4.2 ft (1.28 m) 

Average Young’s Modulus    1.46 × 106 psi (10.0  GPa) 

Average Poisson’s Ratio    0.28  

Average Fracture Toughness    1,867 psi.in0.5 (7,106.7 kPa.m0.5) 

Payzone True Vertical Depths (TVD)  1,428 to 1,440 ft (12 ft thick) 

TABLE 4.3: Formation properties used as input in Case 3. 

 

 

Fig. 4.7: Fracture height measurement modeled evolution with net pressure for Case 3.  

 

The stress profile in the middle track of Fig. 4.7 shows low stresses pay interval surrounded by 

various non-pay lithological layers with increasing stress which is near identical to a classic 

textbook case used during the model calibration process (Chapter 3). With such a stress 

distribution, the fracture will not only remain contained but also the middle of the fracture will 

hover around the middle perforation depth as can be seen in the distance versus net pressure 

plot on the left. For stress setups that similar to these, the fractures will continue to increase as 

more net pressure is added into the system. However, in real world, if the effective fracture 

pressure exceeds overburden, additional fracture components in horizontal plane may form and 
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prevent further vertical growth as is the case here where even though net pressure of 275 psi 

was generated in the treatment, the height was restricted to 18 ft as depicted by RA tracer data. 

In their paper, Pandey and Agreda (2014) explain the presence of calcium rich quartz streaks 

where material property changes are prominent and could be the potential sites where the 

horizonal component of the fractures could originate. The fracture location plot also shows that 

a height growth of nearly 18 ft corresponds to a net pressure  of 155 psi which aligns well with 

the data from RA tracer logs for this well. The conditions that favor the horizontal fracture 

component are discussed in Ch. 7 in details.  

4.3.4. Vertical Well: Coal Bed Methane – Case 4 

The height growth model application was extended to estimate fracture height in shallow coal 

bed methane gas wells that were drilled and completed in low permeability Walloon coal 

measures in Surat basin, eastern Australia. Given the low rate and viscosity techniques applied 

when stimulating selective coal seams, the data was found suitable for the study (Pandey and 

Rasouli 2021a) because it satisfies the slow fracture advancement rates while ignoring 

fracturing fluid leakoff. The evolution of treatment designs is documented by Pandey and 

Flottmann (2015) and Kirk-Burnnand et. al. (2015) with additional details on these Jurrasic age 

sequences that were formed as a part of an extensive intra-continental sag basin (Cook and 

Draper 2013). 

 

Fig. 4.8: Treatment plot of fracture stimulation in Walloons coal measures for Case 4. 

 

The next two cases relate to a well where fracturing treatments were pumped in low 

permeability coals using a Coiled Tubing (CT)-conveyed pinpoint fracturing method. The 
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perforations were first jet-cut with 100-mesh sand pumped down a 1⅜ in. (34.93 mm) CT, 

whereas the main treatment was injected down the annulus of the CT and 5-½ in. (139.7 mm) 

casing. In the first stage of the treatment that is being discussed, the targeted interval was a thin 

coal seam at a depth of 3,268 ft (996.1 m), and most of the treatment was pumped at a low rate 

of 8.0 bbl/min (0.021 m3/s) using low viscosity fluids of 15 to 20 lbm/Mgal [1.8 to 2.4 kg/m3] 

crosslinked gels, with a maximum proppant concentration of 4.0 PPA (479.3 kg/m3). The 

treatment plot is shown in Fig. 4.8. The downhole pressures were recorded during the treatment 

and used to calibrate the stress model generated with the help of dipole sonic data. The model 

data and average formation properties are shown below:  

 

Number of layers in the stress model   99 

Payzone Stress     2,225.0 psi (15.3 MPa) 

Average Stress     2,398 psi (15.53 MPa) 

Fracture initiation layer thickness   1.31 ft (1.25 m) 

Average layer thickness    2.62 ft (0.80 m) 

Average Young’s Modulus (pay)   3.43 × 105 psi (2.36  GPa) 

Average Poisson’s Ratio (pay)   0.31  

Average Fracture Toughness    1,402 psi.in0.5 (5,336.7 kPa.m0.5) 

Payzone True Vertical Depths (TVD)  3,265 to 3,275 ft (10 ft thick) 

TABLE 4.4: Formation properties used as input in Case 4. 

 

 

Fig. 4.9: Fracture height measurement modeled evolution with net pressure for Case 4.  

 

The net pressure in the pad increases from 165 to 210 psi (1.14 to 1.45 MPa) which corresponds 

to a maximum fracture height of 60 ft (18.3 m) and reasonably agrees with the fracture height 
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of 65 ft (~19.8 m) interpreted from RA tracer survey and shown in the extreme right track of 

Fig. 4.9.  In the presence of low-stressed members below the perforations, the fracture may 

grow downward initially, but as it approaches the high-stress regions around 3,295 ft (1,004.3 

m) the growth direction may reverse. As noted, with the net pressure enough to overcome the 

barrier strength of stresses around the depth of 3,250 ft (990.6 m), the fracture yet again changes 

its growth pattern and tends to grow in upward direction which is supported by traces of RA 

material as high as 985 m (3,231.6 ft) measured depth. 

4.3.5. Vertical Well: Coalbed Methane – Case 5 

This case study was also taken from the same well as the previous one but targeting much 

shallower coal seam in the multistage completion with Coiled Tubing. The perforations were 

jet-cut with the help of CT at the depth of 2,663.8 ft (811.9 m). The treatment was pumped at 

8.0 bbl/min (0.021 m3/s) down the annulus of casing and CT as in previous case using low 

viscosity fluids of 20 lbm/Mgal [2.4 kg/m3] crosslinked gel, with a maximum proppant 

concentration of 8.0 PPA (958.6 kg/m3). A total of  37,000 lbm (16.78 t) were pumped in the 

treatment successfully. The treatment plot shown in Fig. 4.10 shows both surface and 

bottomhole treating pressures and the net pressure generated during the treatment. The 

specialized low-rate and low-viscosity pinpoint fracturing method helped in limiting the net 

pressure gain to 220 psi (1.52 MPa) during the treatment. The downhole pressures were 

recorded during the treatment and used to calibrate the stress model generated with the help of 

dipole sonic data. The model data and average formation properties are shown below:  

 

Number of layers in the stress model   98 

Payzone Stress     1,833.4 psi (12.64 MPa) 

Average Stress     1,994.4 psi (13.75 MPa) 

Fracture initiation layer thickness   2.30 ft (0.70 m) 

Average layer thickness    1.66 ft (0.51 m) 

Average Young’s Modulus (pay)   3.43 × 105 psi (2.36  GPa) 

Average Poisson’s Ratio (pay)   0.31  

Average Fracture Toughness    1,614 psi.in0.5 (6,143.7 kPa.m0.5) 

Payzone True Vertical Depths (TVD)  2,660 to 2,670 ft (10 ft thick) 

TABLE 4.5: Formation properties used as input in Case 5. 

The layered stress and mechanical property data was input in the model to generate fracture 

height growth pattern for the shallow stage and compare the forecasted output with the field 
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observed data. The distance versus net pressure plot in Fig. 4.11 predicts a fracture height 

growth of nearly 70 ft (21.34 m) for a net pressure of 220 psi. This prediction matches closely 

with the fracture height measurements from RA Tracer shown in the extreme right track. In 

this case, the downward growth is more prominent as the net pressure exceed 180 psi (1.24 

MPa) a condition that is reached within the first few minutes into the treatment as shown in 

Fig. 4.10.  

 

Fig. 4.10: Treatment plot of fracture stimulation in Walloons coal measures for Case 5. 

 

 

Fig. 4.11: Fracture height measurement modeled evolution with net pressure for Case 5. 

4.3.6. Deviated Well:  Offshore Frac-Pack – Case 6 

The use of the newly developed fracture height growth prediction model was also extended to 

offshore frac and pack example cited in Haddad et al. (2012), which is also elaborated in 
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Pandey and Cramer (2019). The job was designed as a TSO treatment for Wilcox 1 and 2 sands, 

in Cascade/Chinook field, with the former shown here as case history. The average 

permeability of Wilcox 1 was observed to be 25 md whereas Wilcox 2 was slightly lower at 10 

md, though  both are reasonably high to result in appreciable fluid loss during pumping. In 

principle the presence of high leak-off velocities violates the basic assumption of equilibrium 

model, but nevertheless an attempt was made to predict the fracture growth in this unique case 

and compare with the fracture heights determined from RA survey conducted after the 

treatment. The treatment was placed at 30 bbl/min (0.08 m3/s). The TSO design called for a 

maximum proppant concentration of 10.0 lbm/gal (1,198.3 kg/m3) but only up to 8.6 lbm/gal 

was placed in the formation before taking the returns at the surface and inducing an annulus 

pack.  

 

Fig. 4.12: Frac and pack Tip Screen Out treatment pumped in Willcox Sand 1. 

 

The history match of treatment data shown in Fig. 4.12 shows a nominal net pressure build up 

during the treatment with a near constant value of 255 psi (1.76 MPa) during the early stage of 

the treatment, despite a small pad indicating low strength and high permeable rock, where the 

tip effects may dominate fracture propagation. The range of Young’s Modulus was reported to 

be 2.0 to 3.0 × 106 psi (13.8 to 20.7 × 104 MPa) which is a moderate value, and the fracture 

toughness was assumed to be a constant value of 2,000 psi.in0.5 (7,613.0 kPa.m0.5) for all the 

layers. The stress and mechanical property data was input in the predictive model and the plot 

of distance versus net pressure was generated to predict fracture height growth. The plot shown 

in Fig. 4.13 depicts a gradual vertical growth with the increase of net pressure and with 255 
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psi, a fracture height of nearly 200 ft (61.0 m) is possible. The RA tracer survey plot at the far 

right reported a similar fracture height growth. 

 

 

Fig. 4.13: Fracture height measurement modeled evolution with net pressure for Case 6. 

 

Though the height growth observed in the field for the frac and pack case conforms well with 

the predictions from the newly developed model, the conditions do not align with the 

requirements set for the candidate selection because (a) the candidate well is slightly deviated, 

(b) treatment was pumped at higher rate, (c) high fluid losses and finite leak-off velocity were 

expected, and (d) assumption of linear elastic fracture mechanics (LEFM) may not fully apply 

to soft rock fracturing which is generally the case for most frac-packs.  Despite these, since the 

model follows a rigorous and sound calculation approach, the predictions will match in most 

cases if the injection flux, which is the ratio of injection rate to generated fracture height is 

small and by virtue of that allows fracture vertical growth at slow enough pace to allow 

adequate equilibrium.  

4.4. Model Modification to Account for Non-Uniform Fracture Pressure  

The model was successfully tested in several field cases that employed low rate and low 

viscosity type treatment schedules that did not principally violate the basis on which the model 

was developed because of slow pace of fracture advancement. Most of the treatments were 

pumped with fracturing fluids that aided in maintaining low net pressures by not imparting 

excessive slurry frictional pressures in the slot-like fracture. Though, the solid mechanics-based 

fracture height prediction were found to be adequate in these examples, there were some 

exceptions where the model predicted fracture heights were lower than those observed in the 
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field. With the formation and stress properties being nearly the same, these mismatches were 

attributed to higher slurry friction in the fracture, which did not align with the assumption of 

uniform pressure inside the fracture.  

4.4.1. Non-uniform Fracture Pressure Profile 

In the cases where the flow of the injected fluid in the fracture generates higher frictional 

pressures such as when using the foamed fluid, a non-uniformity in fracture pressure profile 

can be expected. The non-uniform pressure distribution can follow either linear, quadratic or a 

power law behavior and can influence the outcome of the model – in related studies (Rummel 

and Winter 1982; Nolte 1979), it is recommended to assume power law or quadratic behavior 

of pressure distribution to solve this problem mathematically. The details of the non-uniform 

pressure behavior are presented in Pandey and Rasouli (2021a, 2021c) and are mainly 

highlighted here to acknowledge their influence. The fracture pressures during the pumping 

phase can be represented as either a simple quadratic form of pcp[1 – (z/a)2], where pcp is the 

pressure at the center of the perforations, z/a is the ratio of elevation to fracture half-height and 

 is the calibration constant. A more accurate fit to the projected pressure in the fracture can 

be shown with a quadratic form pcp[1 – c2(z/a)2 + c3(z/a)], where c2 and c3 are calibration 

coefficients. The value of pcp is the cumulative of individual pressure drops across various 

widths in given layers from the upper tip to the center of perforations and can be equated to net 

pressure from fluid mechanics solution. 

The pressure term in Eq. (2.17)  can be modified to account for quadratic pressure behavior 

in the fracture resulting from frictional flow of slurries in the fracture and is presented below 

for stress intensity factors at the top and bottom of the fracture as follows:   
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For the sake of simplification, it is assumed that (a) both the sections of fracture will exhibit 

uniform quadratic pressure behavior, and (b) there is no fluid leak-off. For a vertically 

asymmetric fracture from the perforation depth, the integral can be expanded as follows: 
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If the last term on the right is denoted by I, its integration for both upper and lower stress 

intensity factors lead to the following form after simplification:  
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Further simplification during the subtraction process leads to a residual term of only a/2 where 

a = h/2 is fracture half-height, since the right side of both integrals vanish as the term under 

square root reduces to zero on evaluation for z. This mathematical manipulation also allows 

the elimination of pressure term pcp which is convenient when performing iterations to solve 

for fracture height. To obtain pressure, an additional geometric calibration term (h/2) is 

introduced in the denominator as shown below:  
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If it is assumed that  just as the fracture height exceeds the entire pay height where the 

perforations are located, the pcp is nearly the same as the stress value in the pay, the calibration 

constant  can be determined easily. Further, in this case hcp ≈ h/2 and hi = h. This assumption 

will result in the elimination of fgh term and the term cos-1 term will result in a value of h/2; 

 can now be determined conveniently. The overall effect of including the pressure distribution 

in the calculations results in a requirement of higher net pressure values to attain the same 

fracture height. 

4.4.2. Vertical Well: Coalbed Methane – Case 7 

The non-uniform pressure distribution mode was invoked in some of the cases where the base 

model was unable to generate the distance versus net pressure plot accurately that led to 

underestimation of fracture height. The example presented here is detailed in Pandey and 

Rasouli (2021a, 2021c) and pertains to a shallow coal bed methane completion at a depth of 

3,250 ft (990.6 m) and fracture stimulated with nitrogen assisted 70-quality foamed treatment. 

The treatment was injected down the annulus of 1 ¾ in CT and 4 ½ inch casing where the 

perforations were jet-cut with the help of CT. During the treatment, an injection rate of 0.25 

bbl/min (2.38 m3/h) was maintained in the CT to prevent influx of fracturing slurry. The 

treatment was designed and successfully placed at the designed injection rate of 8.0 bbl/min 

(0.021 m3/s) and maximum bottomhole proppant concentration of 4.0 PPA (479.3 kg/m3).  
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The treatment plot containing pressure history match data is shown in Fig. 4.14. Because of a 

foamed treatment, the surface proppant concentration is higher than effective bottomhole 

proppant concentration. An average net pressure of 210 psi (1.45 MPa) is obtained from the 

match. Following the workflow adopted, the stress and mechanical property data from the 

match were used to generate fracture height and width profiles. The corresponding pressure 

drop profile in the fracture for a 20 lbm/Mgal (2.40 kg/m3) 70 quality nitrogen foamed fluid 

with n’ of 0.71 and K’ of 0.00563 lbf-sn/ft2 (0.0723 Pa.s) was calculated in the final step.  

 

 

Fig. 4.14: Treatment plot of foamed job pumped in CBM well detailed in Case 7. 

. 
The modified model was able to incorporate the calibration variable. For case 7 a match was 

obtained with  = 0.1325 which was within 5% of the initial guess obtained with help of 

procedure mentioned above. The distance versus net pressure plot is shown in Fig. 4.15 below 

and indicates that for a net pressure of 210 psi, a fracture height of nearly 65 ft (19.81 m) may 

be obtained for the layered stress distribution shown in the middle track. The results from the 

RA tracer survey shows similar results. The value of  less than unity will tend to increase the 

calculated fracture pressure; the movement of foamed fluid inside the fracture at the designed 

injection rates can result in higher than normally expected fracture pressure especially for 

smaller width fractures associated with foamed fluids (because of lower viscosity). The larger 

pressure drop can also result in fluid diversion into regions where higher fracture widths will 

be generated for smaller rock moduli in an absence of significant stress contrast amongst 

various layers (which is the case here). This action leads to a downward fracture growth as 

projected by fracture height plot and observed in the tracer survey to the right, in Fig. 4.15. 

BHP Inj Match 

Injection  Rate 

Treating Pressure 

Net Pressure  

Prop. Conc. 

Prop. Conc. (BH) 

BHP Injection Pr. 
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The layered mechanical properties are show in Table 4.7 below.  

Number of layers in the stress model   99 

Payzone Stress     2,135.8 psi (14.74 MPa) 

Average Stress     2,249.3 psi (15.51 MPa) 

Fracture initiation layer thickness   1.64 ft (0.50 m) 

Average layer thickness    1.97 ft (0.60 m) 

Average Young’s Modulus (pay)   5.87 × 105 psi (4.1  GPa) 

Average Poisson’s Ratio (pay)   0.31  

Average Fracture Toughness    1,614 psi.in0.5 (6,143.7 kPa.m0.5) 

Payzone True Vertical Depths (TVD)  3,138 to 3,148 ft (10 ft thick) 

TABLE 4.7: Formation properties used as input in Case 7. 

 

 

Fig. 4.15: Fracture height estimation after model modification for Case 7. 

 

This case was also solved using the alternate approach where the pressure distribution in the 

fracture was represented by the pressure format pcp[1 – c1(z/a)2 + c2(z/a)] but results in a 

residual term of 𝑝௖௣. 𝑐ଷ. ඥ𝜋ℎ 2⁄  when carrying out the procedure of  KIbot – KItop to eliminate 

the pressure term pcp. As mentioned earlier, this cannot be readily solved using the procedure 

adopted so far. The expression is shown below.  

𝐾ூ
௕௢௧ − 𝐾ூ

௧௢௣
= ට

ଶ

గ௛
ቄ∑ (𝜎௜ାଵ − 𝜎௜)௞ିଵ

௜ୀଵ ቂ
௛

ଶ
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௛ିଶ௛೔

௛
ቁ + ඥℎ௜(ℎ − ℎ௜)ቃ − ∑ (𝜎௜ାଵ −௞ିଵ

௜ୀଵ

𝜎௜) ቂ
௛

ଶ
cosିଵ ቀ

௛ିଶ௛೔

௛
ቁ − ඥℎ௜(ℎ − ℎ௜)ቃቅ  + ට

గ௛

ଶ
𝜌௙𝑔

௛

ଶ
− ට

గ௛

ଶ
𝑝௖௣𝑐ଷ ..................................(4.6) 
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The solution for fracture height using Eq. (4.6) requires the use of a “nested” loop approach 

where  for a given pcp, the fracture location is determined for a fracture of assumed height. The 

value of pcp is then incremented in the outward loop, and the inward loop calculates the 

corresponding location for the new fracture. The term c3 requires calibration because of 

uncertainty in pressure distribution, although its initial value may be predicted using relevant 

expressions such as the one developed by Rummel and Winter (1982). The solution obtained 

by this procedure is also detailed in Pandey and Rasouli (2021a, 2021c). The table below 

compares the predicted and observed fractured heights after fracture stimulation treatment.  

 

Case 

History 

Net Pressure  Fracture Height (ft) Height % 

Difference  

 (psi) From Model From RA Tracer Diff. (ft)  

Case 1 140(0.97 MPa) 46 (14.0 m) 46 (14.0 m) 0 0 

Case 2 165 (1.14 MPa) 55 (16.76 m) 52 (15.85 m) +3 (0.91 m) 6.0% 

Case 3 155 (1.10 MPa) 18 (5.5 m) 18 (5.5 m) 0 0 

Case 4 210 (1.45 MPa) 60 (18.3 m) 65 (19.81 m) -5 ( 1.52 m) -7.6% 

Case 5 220 (1.52 MPa) 70 (21.34 m) 70 (21.34 m) 0 0 

Case 6 255 (1.76 MPa) 200 (61.0 m) 200 (61.0 m) 0 0 

Case 7 210 (1.45 MPa) 65 (18.21 m) 65 (18.21 m) 0 0 

TABLE 4.9: Summary of modeled and observed fracture height in the field.  

 

The modification of the model to account for the pressure drop in the fracture due to fluid 

movement appears to account for the difference in observed and predicted values. The problem 

of estimating fracture vertical growth, however, is a complex one and there may be other 

mechanisms by which the growth is either accelerated or impeded. With net pressure being the 

main driver, the crack advancement in the vertical direction will largely depend on how it 

balances against the stresses and fracture toughness of various layers that tend to counteract 

the propagation force. 

4.5. Nomenclature 

a  = radius of crack, crack half-length, fracture half-height, M0L1t0, ft (m) 

c1,c2,c3 = coefficients, dimensionless 

g = acceleration due to gravity, M0L1t-2, ft/s2 (m/s2) 

h =  fracture height, M1L1t0, ft (m) 
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hcp =  elevation from the bottom tip of the fracture to center of perforations, M1L1t0, ft (m) 

hi = elevation of ith layer top from bottom tip of the fracture, M1L1t0, ft (m) 

Itop,bot = Integration for upper and lower stress intensity factors, Eq. (4.3) & (4.4) 

i = count, unitless 

k  = number of layers, number 

KI
top,bot =  stress intensity factor for top and bottom layers, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5)  

pcp = pressure at the center of the perforations, M1L-1t-2, psi (Pa) 

z = elevation in vertical distance from bottom tip/center of the fracture, M0L1t0, in. (m) 

 =  calibration constant, Eq. (4.1), unitless 

 = fluid density, M1L-3t0, lbm/gal (kg/m3) 

i j =  stress in ith and jth layers, M1L-1t-2, psi (Pa) 

k =  stress in the nth or uppermost layer, M1L-1t-2, psi (Pa) 
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Chapter 5 

Developing Velocity Based Toughness Model 

5.1. Stress Intensity Factor 

For linear, homogenous, and isotropic elastic materials, if the strain in one of the directions, 

e.g., along the wellbore, is neglected then the condition leads to a plane strain assumption which 

is both acceptable and practical as it greatly simplifies the solution to several fracture 

mechanics related problems. If u1 and u2 are the displacements in directions of a cartesian 

coordinate system of x1 and x2, then they can be defined as u1 = u1(x1, x2) and u1 = u1(x1, x2). As 

per Airy (Saad 2005), the stress function (x,y) maybe used to define the  normal stresses in x 

and y directions (xx and yy, respectively), and shear stress (xy), for a two-dimensional 

continuous elastic medium as shown by Rice (1968).  

𝜎௫௫ =
డమ஍

డ௬మ
;  𝜎௬௬ =

డమ஍

డ௫మ
 ;  𝜏௫௬ =

డమ஍

డ௫డ௬
           ...........................................................(5.1) 

For the equilibrium and compatibility conditions to be satisfied automatically  for plane stress 

conditions, the function  must have the property of 22 = 0 . On the other hand, the relation 

of stress intensity factor which represents the strength of singularity of the stress field that 

exists near the crack tip, can be obtained by compact calculations offered by Westergaard 

(1939). It was shown that a limited class of problems can be resolved by introduction of a 

complex stress function Z(z) such that z = x + iy, where  𝑖 = √−1  is the imaginary portion of 

the function. The Westergaard function can be related to Airy stress function as follows, where 

Re denotes the real part of the function and Im is the imaginary part: 

Φ = Re𝑍̿  + 𝑦 Im𝑍̅    ..................................................................................................(5.2) 

Here, 𝑍̅ = 𝑑𝑍̿ 𝑑𝑍 ⁄ and 𝑍 = 𝑑𝑍̅ 𝑑𝑍⁄   are integrals with respect to z. To apply the Westergaard 

solution to above problem, the normal stress components xx and yy in Eq. (5.1) can be equated 

to ReZ – y ImZ’ and ReZ + y ImZ’ respectively, for a case of identical stress values on a crack 

plane of vertical displacement y = 0 and crack of length 2a along x axis. This will result in the 

following expressions:  

𝜎௫௫ = 𝜎௬௬ = ReZ =
ఙ ௫

√௫మି௔మ
;  for 𝑍(𝑧) =  

ఙ ௭

√௭మି௔మ
 ...............................................(5.3) 

where, for distance – a < x < a, Z is imaginary. The square-root term in the denominator can 

be replaced by 2x* if x* = x – a and with x* << a, whereby this assumption implies 𝑥 = √𝑎. 

The inverse square root singularity of stresses as a function distance away from crack tip is 
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seen here. From Eq. (5.3), the stresses on the crack plane, at angle  = 0, are given by the 

following: 

𝜎ఏఏ  =  𝜎௫௫ = 𝜎௬௬ =
௄಺

√ଶగ௫∗
 .......................................................................................(5.4) 

where KI is the stress intensity factor or the strength of singularity. Further simplification of 

Eq. (5.3) and (5.4) leads to yet another important relation for a determining stress intensity 

factor (Irwin 1960) for mode-I fracture in the presence of uniform stress field  : 

𝐾ூ = 𝜎√𝜋𝑎, ...................................................................................................................(5.5) 

where a is the radius of the crack or fracture half-height or, half-length for other applications. 

For the fracture to propagate, the stress intensity factor should exceed a critical value also 

termed as fracture toughness and is denoted by KIc. Fracture toughness can be related to net 

pressure by replacing the stress term   in the above equation with net pressure (Pf ‒ 3) as 

shown below: 

൫𝑃௙ − 𝜎ଷ൯ =
௄಺೎

√గ௔
, .........................................................................................................(5.6) 

where, Pf is the fracture pressure, and 3 is the minimum in-situ stress in horizontal direction. 

This relation is useful in calibration of layered stress and mechanical property model. 

Additional explanations to above derivations are given in Pandey and Rasouli (2021b). It may 

be noted that because of the stress field around the fracture tip, even if the influence of fracture 

toughness is ignored, the singularity does not vanish because of effects from coupled fluid flow 

and leakoff. SCR Geomechanics Group (1993), and Lenoach (1994, 1995) show that for power 

law fluids the hydraulic fracture singularity depends on power law index n, as it  assumes a 

form of  n/(n+2) for impermeable rocks and up to 3n/(4 + 4n) for permeable rocks. Thus, even 

for cases where fracture toughness is notionally ineffective, the singularity of stresses persists 

because of the relationship the fluid flow shares with elastic formation properties. 

5.2. Obtaining Fracture Toughness from Tip Velocity 

Based on the work carried out by Desroches et al. (1994) and Lenoach (1994) that used the 

potential function (z) described above, the crack opening can be obtained by the following 

expression: 

𝑤(𝑥) =
ସ஺

ாᇲఈ
 sin(𝛼𝜋)𝑥ఈ  ............................................................................................(5.7) 

where, x is the distance from the crack tip along axis of the crack, w(x) denotes near-tip crack 

opening, A and  are the amplitudes and exponent respectively, that must be determined to 
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obtain the solution, and E’ is the plane strain modulus. The pressure on the fracture faces 

obtained from the same potential function was given as: 

𝑝(𝑥) = 𝜎௢ − 𝐴 cos ([1 − 𝛼]𝜋)𝑥ఈିଵ ......................................................................(5.8) 

where, o is the far-field compressive state acting perpendicular to the fracture plane. Equations 

(5.7) and (5.8) define the width and pressures at near-tip region for a semi-infinite problem, 

respectively. For a non-uniformly pressurized crack, the pressure gradient in the crack assumes 

the following form after finding the derivative of Eq. (5.8): 

ௗ∆௉

ௗ௫
=

(ଵିఈ)

௫ഀషమ
𝐴 cos ([1 − 𝛼]𝜋)  .................................................................................(5.9) 

To introduce lubrication in the above equation which would assist in further simplification, the 

left-hand side can be replaced by equation for flow in elliptical geometry. This expression as 

proposed by Nolte (1991) is shown below: 

ௗ∆௉

ௗ௫
=

ோ௩೙

(௡ାଶ)௪೙శభ
  ..........................................................................................................(5.10) 

where, 

𝑅 =
ଶ௄(ଶ௠)೘(௡ାଶ)

[(ସ గ⁄ )೘థ(௡)]೙
; 𝑚 =

ଶ௡ାଵ

௡
; 𝜙𝑛(𝑛) ≅ 1 − 0.41𝑛0.61  ........................................(5.11) 

In Eq. (5.10), the left-hand term denotes the pressure drop in the fracture over a distance x 

measured from the tip of the fracture, P is the net pressure itself (fracture pressure minus 

closure stress),  w is the average cross-sectional width, and v is the average cross-sectional 

velocity. The term R, shown in Eq. (5.11) is composed of power law fluid components K which 

denotes consistency index, and n, which represents flow behavior index, along with (n)that 

is the mth moment of the dimensionless width over the fracture cross-section which can be 

shown as the function of flow behavior index.  

If right hand terms of Equations (5.9) and (5.10) are equated and the value of R is 

substituted in Eq. (5.10), the following form is obtained after rearranging the terms for fluid 

velocity which closely approximates the fracture tip velocity after assuming a near 

impermeable linearly elastic solid where the body forces are neglected.  

𝑣 = ቀ
ସ

గ
ቁ

௠

ቀ
௡

ଶ௡ାଵ
ቁ 𝜙(𝑛) ቂ

(ଵିఈ)஺cos[(ଵିఈ)గ]

௄௫మషഀ ቃ

భ

೙
 ቂ

ଶ஺sin(ఈగ)௫ഀ

ாᇲఈ
ቃ

ଵା
భ

೙
 ..........................(5.12) 

The right-side term is independent of distance since uniform velocity is assumed. The value of 

exponent  is obtained as a function of n as, (n) = 2 / (2 + n). As suggested by Lenoach 

(1995), using inversion process, the value of amplitude A can be obtained explicitly. The 
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amplitude A can also be deconvoluted by studying a similar relationship shown for Newtonian 

fluid with n=1, by Dontstov and Peirce (2015) after ignoring the constant, as follows: 

𝑑 =
୼௄಺೎

ల

ఓమாᇲర௏మ
 ...................................................................................................................(5.13) 

where d is the characteristic length of the problem, KIc is apparent fracture toughness,  is the 

viscosity, E’ is plane strain modulus and V is the vertical velocity of the horizontal fracture 

fronts at the top or bottom of the blade-like fracture. Using dimensionality and similitude, the 

amplitude A in Eq. (5.12) is numerically equivalent to apparent fracture toughness KIc, with 

the characteristic length x assuming a 1/6th power for Newtonian fluids, the same as d in Eq. 

(5.13),  when expressed in terms of fracture toughness. This important relationship was used 

in the newly developed model to define fracture toughness directly as a function of vertical 

velocity, thus eliminating the need to input values in the model that may be possibly incorrect. 

The apparent fracture toughness (KIc) can now be expressed  in terms of fracturing fluid,  

formation properties and pumping parameters as follows: 

∆𝐾ூ௖ = ቄ𝑣 ቀ
గ

ସ
ቁ

௠

ቀ
ଶ௡ାଵ

௡
ቁ

ଵ

థ(௡)
ቅ

೙

೙శమ
ቂ

௄௫మషഀ

(ଵିఈ)cos[(ଵିఈ)గ]
ቃ

భ

೙శమ
 ቂ

ாᇲఈ

ଶsin(ఈగ)௫ഀషబ.మఱቃ

೙శభ

೙శమ
 ...(5.14) 

For Newtonian fluids where, n = 1, the following proportionality is obtained which agrees with 

Eq. (5.13): 

∆𝐾ூ௖ ∝ 𝑣ଵ ଷ⁄ 𝜇ଵ ଷ⁄ 𝐸ᇱଶ ଷ⁄ 𝑥ଵ ଺⁄     ...................................................................................(5.15) 

The dependence of KIc  on fracture tip (or fluid) velocity and fluid viscosity is the same and 

proportional to ⅓rd power. In an analog comparison, the net pressure also shows the same power 

of dependence (¼th for Newtonian fluids) on injection rates and fluid viscosity in two-

dimensional fracturing models. In case of power law fluids, the dependence is that by n/(n+2)  

under fluid flow conditions.  

The characteristic length  (or same as x in Eq. 5.14) in the tip region of the fracture can be 

expressed in terms of flow behavior index n as follows: 

𝜉 = 𝐿 ቀ
గ(ଶି௡)

ଶ√ଶ(ଶା௡)
ቁ

೙

(మశ೙)
 ..................................................................................................(5.16) 

where, L is crack half-length. As an example, for a fracture half-height of 50 ft (15.24 m) and 

fluid behavior index of 0.71,  is obtained as 2.14 ft (0.65 m) which is nearly 1/23rd of the 

fracture height and is also the typically calculated ratio. For Newtonian fluids (n = 1), this ratio 

is nearly 1/30. This estimate, though considerably larger than the fluid-lag region obtained by 

other methods such as Barenblatt (1962), serves an important input as it replaces the “x” in Eq. 
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(5.14) and still represents the near crack-tip region. Furthermore, the simulations by SCR 

Geomechanics Group (1993) show that the size of the fluid lag region adjusts to meet the 

fracture propagation criteria. For a specific scaling or characteristic length defined as 𝐿௛ =

𝑉(𝐾 𝐸ᇱ⁄ )ଵ ௡⁄  by the above researchers, the following relationship for fracture width at near-tip 

region was presented which accounts for the elastic response of rock to the fluid pressure: 

𝑤 = 𝜉ଶ (ଶା௡)⁄ 𝐿௛
௡ (ଶା௡)⁄

൤ቀ
ଶ௡ାଵ

௡
ቁ

௡ (ଶା௡)మ

௡

ୱ୧୬(ఈగ)

cos[(ଵିఈ)గ]
− 𝑐ଶ(𝑛) ቀ

క

௅
ቁ

(ଶାଷ௡) (ସାଶ௡)⁄

൨ ..................(5.17) 

where value of c2(n) is nearly 3.17 for Newtonian fluids or around ඥ32 𝜋⁄ . For Newtonian 

fluids this constant is around 21/3×35/6. This solution thus provides a term that dominates the 

crack-tip region requiring smaller energy to propagate than what is required to pump the fluid 

into the crack. 

It is known from solid-mechanics solutions that the fracture toughness and fracture net 

pressure share a direct relationship though connected with the square root of the ratio of fracture 

half-heights which is depicted in Equations (2.20) and (5.6). If the closely stacked fracture 

heights obtained from height-to-net pressure mapping, are nearly the same, the proportionality 

is ultimately rendered to that of the ratio between fluid velocities. This ansatz is used in 

pressure scaling during simulation and described in the section below. 

5.3. Fracture Tip Pressures 

The net pressure in the fracture can be determined with the help of Eq. (5.10) by making 

appropriate substitution of fracture width and inserting the fracture compliance term if the 

fracture responds elastically to the internal pressure (Nolte 1979, 1991). The pressure is then 

given as product of fracture width and local fracture stiffness S, which is the inverse of fracture 

compliance, cF whose local value is given as: 

𝑐ி =
గ

ଶ

ఉ೛

ாᇲ
ℎ௙ =

ଵ

ௌ
 ..........................................................................................................(5.18) 

where, hf is the fracture height, p is the ratio of average net pressure to the net pressure at the 

wellbore while pumping, and E’ is the plane strain modulus. p is obtained as a function of 

power law index n as (2n+2)/(3n+3+ av) where, av ranges from 0 to 2 depending on viscosity 

degradation assumed (Nolte 1979). Eq. (5.10) can now be expressed in the terms of fracture tip 

pressure (po), at follows: 

∆𝑝(𝑥) = [𝑝଴
௘ + (𝑅𝑣௪

௡𝑥) 𝑐ி
௡ାଵ⁄ ]ଵ ௘⁄ ;  𝑣௪ = 𝑞௪ ℎ௙𝑤௪⁄  ........................................(5.19) 

where, p(x) is the pressure at any point x in the fracture measured from the tip, e = n+2, and 

vw is the fluid velocity obtained from volumetric flow rate per wing, qw. Furthermore, hf is the 
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fracture height and ww is the width of the fracture at the wellbore. The fluid pressure from the 

viscous flow alone pF, can be determined if the pressure at the tip of the fracture (x = xf,, where 

xf is fracture half-length) po, is assumed to be nearly zero.  

𝑝ி = ൣ൫𝑅𝑣௪
௡𝑥௙൯ 𝑐ி

௡ାଵ⁄ ൧
ଵ

௘ൗ
 .........................................................................................(5.20) 

With proper substitutions and rearrangement of terms, the fracture net pressure pf  can be 

linked with a dimensionless ratio pT that captures the tip effects and pumping parameters for 

power law fluids in a very useful equation for fracture history match modeling used in the 

model development. This is shown below: 

Δ𝑝௙ = ൬
ோ௤ೢ

೙ ௫೑

௛೑
೙௖ಷ

మ೙శభ௣೅
൰

ଵ (ଶ௡ାଶ)⁄

;  𝑝் =  1 [1 + (𝑝௢ 𝑝ி⁄ )௘]⁄  ....................................(5.21) 

where volumetric flow rate qw replaces fluid velocity with the inclusion of fracture height hf in 

the equality. The simultaneous solution of fracture half-length and vertical height is challenging 

and hence must be solved using iterative techniques. For this purpose, if a tip velocity-

calibrated apparent fracture toughness model is used to generate the fracture height versus net 

pressure relation for the given stress setup, then the calibration of such a model can be carried 

out with the help of pT. With further algebraic manipulation of Eq. (5.19) to Eq. (5.21), it can 

be shown that for a dimensionless fracture length variable ’ such that ’ = x/xf , where x is the 

measurement from the tip of the fracture to the wellbore, the net pressure distribution along the  

fracture can be expressed as follows:  

∆𝑝(𝜉′) = 𝑝ி[(1 𝑝் − 1⁄ ) + 𝜉′]ଵ ௘⁄ ..........................................................................(5.22) 

where e = n+2 for power law fluids. Once the value of pT is obtained from iterative solution 

above, then the fracture width at wellbore can be determined from the following relation, 

expressed in known notations. It may be noted that wellbore width is also the product of local 

fracture compliance and net pressure given as ww = cFpf. 

𝑤௪ = ቂ
ସ௄(ଶ௠)೙(௡ାଶ)௤ೢ

೙ ௫೑

ாᇲ௛೙షభథ೙௣೅
ቃ

ଵ (ଶ௡ାଶ)⁄

 ...........................................................................(5.23) 

5.4. Fracture Propagation Modeling 

Following the successful development of height growth model and its calibration with field 

data that is covered in Ch. 1 to 4, in the next step of model development, additional features 

were added to facilitate net pressure history matching aimed at studying the early time fracture 

height evolution and fracture tips effects. Key fracture dimensions such as width and half-

length were also obtained as a function of time from the actual pumping data. To eliminate the 
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uncertainty in the inputs of fracture toughness, the velocity-based fracture toughness 

calculations developed in study and expressed by Eq. (5.14)  was also included in the solution 

scheme. 

5.4.1. Fracturing Fluid Rheology and Efficiency 

The rheology of the power fluids traditionally used in hydraulic fracturing is sensitive to shear 

and must be accounted for as the fluid moves in the narrow fracture width. The shear rate (𝛾̇) 

can be obtained as follows, if the tip-velocity and fracture width are available: 

𝛾̇ =
଼௩

஽೓ቀ
మ೙

మ೙శభ
ቁ
 ..................................................................................................................(5.24) 

where v is the fluid velocity and Dh is the hydraulic diameter which is taken as twice the fracture 

width in this case. Power law indices n and K inputs can be updated continuously with fracture 

growth with the changes in fluid shear and corresponding viscosities, and in the static mode 

when the fracture toughness mapping is being generated for a given fixed injection rate or 

assumed tip velocity.  

The fracturing fluid efficiency , which is an indicator of how much of the pumped fluid 

is spent in creating and propagating a fracture versus the amount lost to the formation, plays an 

important role in determining net pressure which is the main driver behind the vertical growth 

of the fracture. This parameter must be duly accounted for in net pressure calculations. Elbel 

(1993) presented an expression for fluid efficiency that is independent of injection and depends 

on net pressure and fluid parameters such as fluid leak-off and spurt loss. A much simpler time-

dependent relation that accounts for fluid leakoff (CL) and average fracture width (𝑤ഥ) can also 

be used to calculate fluid efficiency and is given below: 

𝜂 =
ଵ

ଵାଶ஼ಽඥ௧೛ ௪ഥ⁄
 ............................................................................................................(5.25) 

The average fracture width can be easily calculated if wellbore widths are known. The 

efficiency is then used as an input to compute “reduced time” as described by Nolte (1991).  

When developing the codes for calculating fracture height, width, and half-length it was 

assumed that with the introduction of elemental volume of fluid into the fracture, the net 

pressure will develop with the interaction of three primary actions which are : (a) insitu stresses 

of the payzone and surroundings, (b) resistance offered to fracture advancement by fracture 

toughness and (c) fluid parameters such as leakoff and viscosity. The extent of fracture growth 

will depend on net pressure magnitude. The influence from any other external stress source, 

e.g., stress interference amongst various fractures, etc. is not currently included in the model. 
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With the continued injection, the net pressure is expected to increase if the fluids exhibit 

reasonable efficiency. The net pressure will continuously test the stress barriers and play a role 

in fracture height estimation based on the fracture height versus net pressure mapping generated 

for given stress distribution along formation depth. Since the influence of tip effects is unknown 

at this time, it is calibrated to match the reduced-time derived net pressures with those obtained 

from apparent fracture toughness calculations.  

The net pressure at the wellbore for the given time step was obtained as follows:    

Δ𝑝௙ =
ଵ

௖ಷ
൤

ோ௖ಷ

ఉ೛௣೅
ቀ

௤ೢ

௛
ቁ

௡ାଵ

൨
ଵ (ଶ௡ାଷ)⁄

(𝑡∗)ଵ (ଶ௡ାଷ)⁄  ....................................................(5.26) 

Similarly, fracture half-length was calculated using the following equation: 

𝑥௙ =
ଵ

ఉ೛
൤

ఉ೛௣೅

ோ௖ಷ
ቀ

௤ೢ

௛
ቁ

௡ାଶ

൨
ଵ (ଶ௡ାଷ)⁄

(𝑡∗)(ଶ௡ାଶ) (ଶ௡ାଷ)⁄  ..............................................(5.27) 

Fracture width at the wellbore as function of time was estimated with the help of following:  

𝑤௪ =
ସ

గ
൤

ோ௖ಷ

ఉ೛௣೅
ቀ

௤ೢ

௛
ቁ

௡ାଵ

൨
ଵ (ଶ௡ାଷ)⁄

(𝑡∗)ଵ (ଶ௡ାଷ)⁄  .......................................................(5.28) 

In all the above equations, Eq. (5.26) to (5.28), t* = te is the reduced time that depreciates the 

exposure time to account for fluid efficiency, with te being the actual exposure time of the given 

fluid on a given formation layer. The set of equation presented above are sufficient to develop 

a fracture growth model that can predict fracture growth in field cases. 

5.5. Extensions to Model – History Match Simulator 

The previous height-growth prediction model was extended (Pandey and Rasouli 2021b) to 

incorporate the post stimulation analysis features to conduct in depth study on how the fracture 

height evolves during a stimulation treatment. The fracture height versus net pressure height 

provides an insight into how the fracture height could potentially evolve, but instead of 

hypothetical net pressures if actual net pressures are input with respect to time, a clearer fracture 

growth pattern will emerge. The model development workflow is summarized as follows:  

Step 1. Generate apparent fracture toughness matrix for the layered model to assist in 

creating fracture height growth versus net pressure mapping instead of using generic values, 

Step 2. Simulate time-dependent fracture pressure using actual injection rate and fluid 

properties while applying corrections to the tip-velocity calculation dynamically, and  

Step 3. Obtain the fracture height growth history and other relevant output. 
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5.5.1. Step 1: Generate Fracture Toughness Matrix 

To carry out the first step, processed downhole logs that contain depth, stress, elastic modulus, 

and Poisson’s ratio are used as input in a layered format. The input data must also contain  

petrophysical data such as porosity, permeability, formation compressibility and others to 

enable help in preliminary estimates of fluid leakoff. It is however not mandatory to input 

fracture toughness at this point.  

With all the necessary information available, the effective (or apparent) fracture toughness 

is obtained using Eq. (5.14) where the value of characteristic length x is replaced by  whose 

solution is presented in Eq. (5.16). The apparent fracture toughness (hereon only mentioned as 

“fracture toughness”) array is calculated for every fracture location and height combination and 

it is expected to change as the fluid velocity changes with the change in flux (q/h) and fracture 

width. The fluid velocity v which is assumed at the start of calculations (generally 0.5 to 1.5 

ft/s), and the flux is recalculated as the new fracture heights are added to the solution set. The 

corresponding widths in crack-tip region are obtained from Eq. (5.17). The fracture toughness 

array for each height solution is retained to assist in solution process later. 

5.5.2. Step 2 and Step 3: History match to obtain fracture height 

The workflow of the second and third steps are listed below:   

1. From treatment data, construct a BH pump schedule with rate and fluid property data. 

2. For every time step (a) compute effective shear rate using Eq. (5.24); parameters V and 

Dh are determined using iterative process, and (b) update fluid viscosity for shear rate. 

3. To start the calculation process, (a) set the fracture height equal to that of pay zone and 

calculate the net pressure using Eq. (5.21), using corresponding injection rate and fluid 

rheology parameters,  local fracture compliance from Eq. (5.18), and fracture half-

length from Eq. (5.27), and (b) use this net pressure to update the fracture height from 

distance versus net pressure mapping such as shown in Fig. 3.2 after applying fluid-

velocity based correction to net pressure.  

4. The net pressure from the Eq. (5.21) and the velocity-corrected net pressure are not 

expected to match, hence use , pT in Eq. (5.21)  as the calibrating parameter to converge 

their values. Update n, K’ and 𝛾̇ after every time step.  

5. With most inputs now known, calculate net pressures using Eq. (5.26). Note that there 

may be small differences in results if Eq. (5.21) which accounts for time dependence 

with the help of fracture half-length, is used instead. Obtain injection rate q  and time 
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te from pump schedule, fracture height and compliance from initial net 

pressure/height/compliance mapping, R from current value of n, and the fluid behavior 

dependent variable, p using the relation described in the text above.  

6. Calculate fracture half-length from Eq. (5.27) and  wellbore width from Eq. (5.28).  

7. Calculate average fracture width from wellbore fracture width and update the fluid 

efficiency of Eq. (5.25). The effective leak-of CL is a height averaged leakoff of all the 

layers now exposed to the latest value of fracture height and  tp is the total injection 

time till the time step under consideration.  

 

 

Fig. 5.1: Flow chart showing the workflow of pressure history match calculations. 

  

The flow chart in Fig. 5.1 illustrates the various steps of history matching modeling process 

and workflow adopted in the study. The calculations account for fluid leakoff  and hence the 

efficiency in two principal ways. The first method employs inclusions of layered leakoff 

properties by effective book-keeping of all the layers the fracture has touched and its 
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corresponding length in those layers, whereas the second approach uses a height-averaged 

leakoff coefficient as an approximation. The calculations did not reveal a significant difference 

between the two approaches since the effect of leakoffs are proportional to square root of time. 

For smaller duration of injection i.e., periods less than 2 to 3 hours, the latter approach was 

found to be effective and computationally efficient.  

To ensure a smooth outcome from the iterative process at every time step (i.e., uniformly 

increasing/decreasing/constant fracture pressures), the initial guess of pT was taken as the same 

value for which a solution was obtained in the previous time step. However, when using this 

technique, the solution must run ample loops for the error to be rendered to near zero values to 

prevent cumulative errors in the successive solution. Average error in model output was 1×10-

6 % and computation time for 30 min of per second data (~1600 rows) is around 5 seconds. It 

was noted that extremely large values of leakoff (e.g., > 0.1 ft/min0.5) can cause instability in 

calculations which is also observed in many commercial software.  

5.6. Case Studies 

The pressure history simulator was tested on several case studies, a few of which are presented 

here. Additional details can be found in Pandey and Rasouli (2021b).  

5.6.1. Vertical Well: Low Pressured Sandstone Completion – Case 1 

The primary reasons for selecting this case study were (a) presence of dead string that allowed 

constant monitoring of bottomhole injection pressures, and (b) the injection rates were 

increased gradually at the start of the treatment that aided in estimating evolution of fracture 

height growth from onset of the treatment. Below are the  model properties and inputs.  

 

Number of layers in the stress model   44 

Payzone Stress     3,848.5 psi (26.5 MPa) 

Average Stress     4,203.0 psi (29.0 MPa) 

Fracture initiation layer thickness   5.3 ft (1.62 m) 

Average layer thickness    6.76 ft ( 2.1 m) 

Average Young’s Modulus (pay)   2.4 × 106 psi (16.5  GPa) 

Average Poisson’s Ratio (pay)   0.29 

Average Fracture Toughness    1,300 psi.in0.5 (4,948.5 kPa.m0.5) 

Payzone True Vertical Depths (TVD)  5,545 to 5,555.4 ft (10 ft thick) 

TABLE 5.1: Formation properties used as input in Case 1. 
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The well was completed with 4 ½ in. (114.3 mm) casing set at 5,750 ft (1,752.6 m) with a 1.9 

in. (48.2 mm) velocity string hung packer-less above the perforation depth of 5,540 ft (1,688.6 

m). The treatment was pumped at 22.0 bbl/min (0.058 m3/s)down the annulus of casing and 

tubing string thus providing a dead string for BHP measurements; the displacement volume to 

the top of the perforations was around 70.5 bbl (11.21 m3). The fracture gradient was calculated 

as 0.71 psi/ft (16.15 kPa/m). Initial wellbore fluid was circulated out and displaced with 2% by 

wt. solution of potassium chloride (KCl). A diagnostic injection test was then performed with 

30 lbm/Mgal (3.6 kg/m3) linear gel that was flushed to the perforation depth with a linear gel 

of identical loading.  

The cross-linked fluid rheology was reported in the field as n of 0.4 and viscosity of 320 

cP (0.32 Pa.s) at 100 s-1, which results in consistency index (K) of 0.1059 lbf-s0.4/ft2 (5.1 

Pa.s0.4). This data, along with actual pump schedule was input in a regular fracture simulator 

to generate the match, mostly to ensure that the stress model was reasonable. The leakoff 

calibrated from pressure match was nearly 0.00168 ft/min0.5. The result from the match is 

shown in Fig. 5.2. The BH injection and net pressure matches are shown by the curves 

“BHP_Match” and “NetPr”. The formation face pressure (FFP) is same as the  fracture inlet 

pressure and is used in determining net-pressure. 

 

 

Fig. 5.2: Pressure, injection rate and proppant concentration plot for treatment of Case 1. 
 

To generate the fracture height versus net pressure mapping, the layered fracture toughness 

was set to zero value in absence of pertinent data but expected fracture tip velocity was set to 

values ranging from 0.29 to 1.0 ft/s (0.09 to 0.31 m/s). The resultant plot is shown in Fig. 5.3, 
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where the upper and bottom tip of the fractures are shown as the distance from the center of 

the fracture. The fracture heights were generated in 1.0 ft (0.31 m) interval and when plotted 

against depth, appear to show nearly uniform distribution in both the upper and lower section, 

with the center of the fracture staying close to the injection point. The maximum fracture height 

possible for the given stress profile is 215 ft (65.5 m) for a net pressure of nearly 455 psi (3.13 

MPa). Fracture compliance for corresponding fracture height and location pair were calculated 

with the help of Eq. (5.18), for use in the next step. 

 

 

Fig. 5.3: Fracture height and location versus net pressure plot for Case 1. 
 
The simulated fracture height values for fracture toughness values of 0 and 1000 psi.in0.5 

(1099.0 kPa.m0.5) were also generated for comparison purposes and are shown in Fig. 5.4. The 

fracture height based on the fracture toughness based on velocity model is also presented. The 

fracture growth pattern for uniform fracture toughness cases is identical with the only 

difference being the pressure offset which represents the strength of singularity for the given 

case. The curve (green) obtained for the final fracture height, using velocity-based fracture 

toughness method, bears a similar profile also but leans towards the values obtained for KIC = 

1000 psi.in0.5. The curves also demonstrate that with an increase in fracture toughness (from L 

to R), more net pressure is required to attain the same height. Finally, the fracture height versus 

net pressure relationship observed from the actual simulation is shown by yellow triangles 

which indicate good agreement with modeled values and also  falling in the reasonable fracture 

toughness range of 0 to 1,000 psi.in0.5.  
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Fig. 5.4: Fracture height vs. Net pressure curves for various fracture toughness values. 
 
5.6.1.1.Pressure History Simulation 

The history-matched net pressure data obtained from the newly developed simulator is shown 

in Fig. 5.5. The main objective here was to study the fracture height growth evolution in the 

early time since the early time data is generally not handled very accurately by most 

commercial simulators. The pressure data shows a reasonable match of simulated net pressure 

with the observed values. Since the model is not programmed to account for changes in net 

pressure in presence of proppants in the fracture, the  simulation was run till the point where 

the proppant enters the fracture.  

With the rapid increase in injection rates, the fracture attains a height of 125 ft (38.1 m) in 

3.6 minutes of the treatment even with a low viscosity (1.0 cP) wellbore fluid. With continued 

injection and eventual switching to cross-linked fluid, the fracture height gradually  increases 

to 165 ft (50.3 m) as the net pressures increase to 365 psi (2.52 MPa) after 16 minutes into the 

treatment. Since the net pressure is continuously increasing, the simulated fracture height will 

also show an increase in accordance with the relationship shown in Fig. 5.3 ultimately reaching 

nearly 198 ft (60.4 m) prior to the proppant onset in the formation. The fracture half-length 

increases proportionately and extends to nearly 515 ft (157.0 m).  
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5.6.1.2. Comparison of Model Output with Commercial Simulator 

The results from the simulator developed in the study were compared with those obtained for 

identical inputs, from some of the commercially available numerical fracture simulators that 

employ a pseudo-3D or fully 3D solution scheme. This exercise was conducted to ensure that 

the results predicted by the semi-analytical simulator were within the reasonable range of the 

ones output by typical numerical simulators. One such comparison is shown in Fig. 5.5 for  one 

of those simulators where the P3D simulator outputs are shown by dashed curves that connect 

the discrete data points described in the legend.  

 

Fig. 5.5: Net pressure history match showing fracture height evolution for Case 1.  
 

The data points from simulator outputs were obtained after history matching the bottomhole 

injection pressure and net pressure by this simulator and shown in Fig. 5.2 for net pressure 

(Pnet), fracture half-length (Xf), fracture height (hf), and fracture width (wf). Whilst the 

commercial simulator matches most of the recorded net pressure accurately, the match in the 

initial period (<10 min) is not exact. Contrary to this, the output from the newly developed 

simulator offers a more accurate and systemic representation of how the net pressure and the 

corresponding fracture height may have evolved given the small initial injection rates. Apart 

from initial mismatch where the current model outputs details fracture evolution patterns, the 

simulator is also able to successfully replicate the evolution of  Pnet, Xf, hf, and wf simulated by 

the numerical P3D simulator. 
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Some of the key observations made during the pressure history matching are listed below:  

1) Longer fracture half-lengths are simulated if low viscosity fluids are used. 

2) Low viscosity fluid has negative effect on the fluid efficiency due to higher leakoff. 

3) With increase in viscosity, Xf tends to increase at a slower pace but the hf may increase 

if Pnet has not reached the maximum value defined in the hf versus Pnet mapping. 

4) The fluid behavior index affects the incremental changes in fracture parameters. 

 

 

Fig. 5.6: Early time fracture height evolution for Case 1 from the new simulator.  
 
5.6.1.3.Fracture Height Growth Development 

The very early (< 1.0 min) part of the net pressure match is obtained using the simulator 

developed in the study, with higher-than-average fluid leakoff values as would be expected. 

The simulation shows that the fracture height was relatively contained in the first 2 minutes of 

injection where low viscosity near-Newtonian type wellbore fluid is entering the fracture. With 

the increase in injection rates however, the net pressure generation is quick, and this accelerates 

the fracture vertical growth. With nearly 3.6 min into the treatment and with injection of nearly 

20 bbl (3.2 m3) of wellbore fluid injected in the formation, a fracture height of nearly 125 ft 

(38.1 m) is simulated, for a corresponding net pressure of 265 psi (1.83 MPa) as shown in Fig. 
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5.6. The red hollow-circles representing the matched net-pressure, show a good agreement 

between observed (solid purple curve) and simulated values. Based on the simulation, it may 

be noted that nearly 65% of the total fracture height growth occurs within the first few minutes 

of the treatment. The increase in injection rate and a corresponding increase in net pressure 

around 15 min in the treatment  with the fracture height that is  now nearly constrained, the 

continued increase of net pressure reflects viscous fluid movement inside the fracture, 

especially after 10.0 min when the cross-linked viscous fluid enters the formation. As the fluid 

rheology stabilizes around 13.0 min, even a rate increase to 23.0 bbl/min (0.061 m3/s) does not 

result in appreciable net pressure increase. 

5.6.1.4.Fracture Half-Length Evolution 

The time-dependent fracture half-length is calculated with the help of Eq. (5.27) and compared 

with the height-weighted average of fracture extension in all the layers; the calculations in the 

latter case include fluid losses to various layers for corresponding exposure times. With 

increasing injection rates, the fracture half-length should also increase because of its direct 

dependence on flux (q/h)(n+2)/(2n+3) and elapsed time at t(2n+2)/(2n+3), provided the fluid leakoff is 

limited or under control. This behavior is seen once the fracture height “stabilizes” around 165 

ft (50.3 m) and the injection takes place at near constant rate of 23.0 bbl/min (0.061 m3/s). 

During the pressure history matching process, it was realized that it is important to account for 

early -time data and preferably perform the initial simulation steps at smaller time interval to 

characterize the fracture development because the fracture can grow rapidly at the start of the  

treatment.                                                                       

5.6.1.5.Fracture Tip Effects 

The influence of tip pressure on overall fracture pressures can be obtained with the help of  

variable  pT described in Eq. (5.21). Due to the uncertain nature of this variable, it was also 

used as calibrating parameter because unless a negligible pressure (po) at the fracture tip (x = 

0 at xf) is assumed, its value cannot be obtained explicitly. Results from various simulations 

clearly showed that once the fracture vertical growth occurs in initial period, the value of pT 

diminishes considerably implying a fracture propagation that was dominated by viscous 

pressure and not so much by the tip effects. This behavior is also seen in the viscous pressure 

curve (represents flow pressure near tip region only and hence is less than total net pressure) 

of Fig. 5.6, that is affected by change in injection rates, especially in the early part of the 

treatment. With constant injection rates and fluid properties, its influence is near constant, 

especially after 3.5 min in the treatment. 
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The viscous pressures are yet to influence the pressure behavior at the very beginning of the 

treatment in most cases, and here is where the fracture tip effects dominate the fracture 

extension. Eventually as the viscous non-Newtonian type fluid enters the fracture, the 

contribution of viscous-flow related pressures to net pressure generation far exceeds the now 

diminishing solid mechanics-based tip pressure values. The plot in Fig. 5.7 is generated using 

Eq. (5.22) after accounting for p, for various dimensionless length ratios along the fracture, 

where ’ =1 is at the fracture inlet and  = 0, is at the tip of the fracture. The various curves 

show the presence of stress singularity and even near-zero tip pressures at a characteristic 

distance that is short of the actual fracture-tip in cases where pT  > 1.0. As the value of pT 

reduces, the pressure at the tip of the fracture is no longer zero but has some finite value 

represented by the local viscous pressure pF itself. This is reflected by the curves “PT= 0.984 

and Pnet = 14.5 psi” and “PT= 0.891 and Pnet = 15.3 psi”in Fig. 5.7 where the gap between viscous 

pressure front and the fracture tip appears to close completely.  

 

Fig. 5.7: Movement of viscous pressure front with respect to the  fracture tip for Case 1.  
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5.6.2. Vertical Well: Low Pressured Sandstone Completion – Case 2 

This field case study pertains to a 30-quality liquid CO2 assisted treatment pumped down the 

annulus of  a  4 ½ in. (114.3 mm) casing and a velocity string, with the latter to serve as dead-

string during the treatment and helpful in obtaining BHP. The pay, primarily a low permeability 

(<0.1 md) sandstone, was located at a depth of 6,320 ft (1,926.3 m) having an average Young’s 

Modulus of 3.88 × 106 psi (26.75 GPa) and a Poisson’s ratio of 0.27.  The YM was determined 

from calibration injection test. An average fracture gradient of 0.69 psi/ft (15.61 kPa/m) was 

obtained from decline analysis. The leakoff estimated from pressure decline and history match 

was a low value of  0.000154 ft/min0.5 which explains the near-constant pressure value after 

shut-in at 20 minutes in Fig. 5.8. The various data curves have similar descriptors as Fig. 5.2. 

 

Number of layers in the stress model   39 

Payzone Stress     4,326.4 psi (29.83 MPa) 

Average Stress     4,718.1 psi (32.53 MPa) 

Fracture initiation layer thickness   10.0 ft (3.08 m) 

Average layer thickness    20.41 ft ( 6.22 m) 

Average Young’s Modulus (pay)   3.08 × 106 psi (21.1  GPa) 

Average Poisson’s Ratio (pay)   0.30 

Average Fracture Toughness    4,500 psi.in0.5 (17,129.0  kPa.m0.5) 

Payzone True Vertical Depths (TVD)  6,295 to 6,305 ft (10 ft thick) 

TABLE 5.2: Formation properties used as input in Case 2. 

 

Following the step-by-step procedure established, the model was populated with layered data 

and a fracture tip distance versus net pressure plot was developed based on velocity-based 

layered fracture toughness values. The average toughness value was nearly 4,500 psi.in0.5 

(17,129.0 kPa.m0.5) for average velocity of 1.5 ft/s of fluid n’ of 0.39 and viscosity of 350 cP 

at average shear rate of 70 s-1. The plot shown in Fig. 5.9 shows the expected fracture growth 

profile with fractures potentially reaching a height of nearly 288 ft (87.8 m) for a net pressure 

of 610 psi (4.21 MPa). The is a tendency of fracture to have more downward growth once the 

barrier strength of higher stress layer from 6,450 to 6,490 ft (1,966.0 to 1,978.2 m) is overcome.  

The treatment history match of net pressure  with the current model results in a net pressure 

gain of 400 psi (2.76 MPa) after 12 min of injection as show in Fig. 5.10 where the simulated 

fracture height is nearly 165 ft (50.3 m). The initial wellbore 2% KCl brine is displaced by a 
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delayed zirconate cross-linked foam-assisted fluid that enters the perforations around 8 min 

where a change in net pressure slope is also seen. Simulated fracture height reaches nearly 143 

ft (43.6 m) in the first minute of injection given the low leakoff formation which supports rapid 

net pressure build up.  

 

 

Fig. 5.8: Pressure, injection rate and proppant concentration plot for treatment of Case 2. 

 

 

Fig. 5.9: Fracture height and location versus net pressure plot for Case 2. 
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The net pressure data from the treatment was history-matched till the onset of proppant in the 

formation. The effect of proppant “slug” injected in the middle of the pad, around 15 min as 

shown in Fig. 5.11 on fracture growth containment or on net pressure evolution is ignored here. 

The fracture height continues to increase with the continuous increase of net pressure with the 

extent primarily dictated by the  distance versus net pressure relationship established earlier in 

the modeling phase. At the end of 30 min of injection, a fracture vertical growth of nearly 195 

ft (59.44 m) is simulated. There is minimal net pressure gain after this point indicating an onset 

of equilibrium conditions which can limit the fracture dimensions. In case the fracture 

toughness is set to zero, the fracture may understandably grow at a higher  pace even for lower 

simulated net pressures. The simulated net pressure curve of KIc = 0 psi.in0.5 is shown to depict 

the effect of fracture toughness in net pressure calculations; such inputs can lead to incorrect 

estimation of fracture heights and must be avoided during modeling process. 

 

Fig. 5.10: Fracture height and location versus net pressure plot for Case 2. 

 

The model enhancement in this phase of the study led to better characterization of how the 

fracture height evolves during the treatment. The uncertainty of fracture toughness was 

addressed by formulating a fracture tip velocity model that calculates apparent fracture 
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toughness and it is a useful tool in developing the relationship between fracture toughness and 

height even for non-Newtonian fluids.  

 

Fig. 5.11: Net pressure history match showing fracture height evolution for Case 2.  
 

The predictive model was also used successfully in history matching process and clearly 

showed that nearly 65 % of fracture height growth occurred in the first few minutes of the 

treatment, an observation that is also supported by data such as microseismic survey gathered 

in the field. The increase in fracture height was occured even with a low viscosity fluid such 

as wellbore fluid and hence appears to be more dependent on injection rate. If the fracture 

height must be controlled, the injection rates must be increased gradually in the beginning of 

the treatment. 

The analysis of simulation data also shows that tip effects tend to dominate only in the early 

treatment phase, especially in cases where highly viscous fluids are used for propagating the 

fracture. The gap between the viscous front and fracture tip is wide at the beginning but with 

time as the fracture dimensions increase with the increase in net pressure the viscous fluid front 

is seen to be in proximity of the fracture tip. 
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5.7. Nomenclature 

a  = radius of crack, crack half-length, fracture half-height, M0L1t0, ft (m) 

av =  viscosity calibrating parameter, dimensionless 

A = amplitude in Eq. (5.7), strength of singularity, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5) 

cF = fracture compliance, M-1L2t2, ft/psi (m/Pa) 

CL = leakoff coefficient, M0L1t−0.5, ft/min0.5 [m/s0.5] 

c2(n) = constant, function of power law index, Eq. (5.17), dimensionless 

d = characteristic length, M0L1t0, ft (m) 

dp/dx = flowing pressure gradient along the fracture. Eq. (5.9), M1L-2t-2, psi/ft (Pa/m) 

Dh =  hydraulic diameter, M0L1t0, ft (m) 

e = function of power law index, e = n+2, dimensionless 

E’ = plane strain modulus, M1L-1t-2, psi (Pa) 

h, hf =  fracture height, M1L1t0, ft (m) 

KI =  stress intensity factor, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5) 

KIc =  critical stress intensity factor or fracture toughness, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5)  

KIc =  apparent fracture toughness, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5)  

K =  power law fluid consistency index, M1L-1tn-2, lbf-secn/ft2 (Pa.sn) 

L = crack half-length, M0L1t0, ft (m) 

Lh = characteristic length, M0L1t0, ft (m) 

m = variable – function of power law index shown in Eq. (5.11), unitless 

n =  power law fluid flow behavior index, dimensionless 

pF = viscous flow pressure, M1L-1t-2, psi (Pa) 

po = fracture tip pressure, M1L-1t-2, psi (Pa) 

pT = influence of facture tip on fracture pressure, dimensionless   

p(x) = crack face traction (Fig. 3), M1L-1t-2, psi (Pa) 

Pf = fracture pressure, M1L-1t-2, psi (Pa) 

q =  injection rate, M0L3t-1, bbl/min (m3/s) 

qw =  volumetric flow rate per wing, M0L3t-1, bbl/min (m3/s) 

R =  constant describe in Eq. (5.10), M1L-1tn-2, lbf-secn/ft2 (Pa.sn) 

S = stiffness, M1L-2t-2, psi/ft (Pa/m) 

te  = exposure time of fluid to a given formation,  M0L0t1, min (s) 

tp = injection time or pump time, M0L0t1, min (s) 

t* = reduced time function, M0L0t1, min (s) 
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u1, u2 = displacements in respective directions, M0L1t0, in. (m) 

v =  average cross-sectional velocity, tip-velocity in y direction, M0L1t-1, ft/sec (m/s) 

V =  vertical velocity of horizontal fracture, M0L1t-1, ft/sec (m/s) 

w, ww = width of fracture, M0L1t0, in. (mm) 

𝑤ഥ  = average width of the fracture, M0L1t0, in. (mm) 

w(x) = width along the crack in x direction, M0L1t0, in. (mm) 

x1,x2 = distances along crack axis in horizontal x-axis, M0L1t0, ft (m)  

x = distance from the tip at axis-crack, Eq. (5.7) to (5.9), and (5.12), M0L1t0, ft (m) 

xf = fracture half-length, M0L1t0, ft (m) 

x* = difference between arbitrary distance along x-axis & half-length, M0L1t0, ft (m) 

y = vertical displacement, M0L1t0, in. (m) 

z = any value in displacement along the axis of the crack, M0L1t0, ft (m) 

𝑧̅ = conjugate of complex variable z presented in Eq. (8). 

Z =  complex stress function Eq. (2), M1L-1t-2, psi (Pa) 

Z’ =  complementary of Z stress function Eq. (2), M1L-1t-2, psi (Pa) 

 𝑍̅, 𝑍̿ = integrals with respect to arbitrary variable z. 

n) =  exponent, function of n, dimensionless 

p = net pressure ratio, dimensionless 

p(x) = pressure at any point x in the fracture measured from the tip, M1L-1t-2, psi (Pa) 

pf =  fracture net pressure, M1L-1t-2, psi (Pa) 

P = fracture net pressure, M1L-1t-2, psi (Pa) 

n = dimensionless width over fracture cross-section, dimensionless  

z = potential function resulting in stress, M1L-1t-2, psi (Pa) 

x,y = Airy stress function in x and y plane, M1L-1t-2, psi (Pa) 

𝛾̇ = shear rate, M0L0t-1 (1/s) 

  fluid efficiency, fraction or percent 

 = fluid viscosity, M1L-1t-1, cP (Pa.s) 

 =  stress, M1L-1t-2, psi (Pa) 

xx,yy =  normal stresses in x and y directions respectively, M1L-1t-2, psi (Pa) 

 =  stress in radial coordinates at angle , M1L-1t-2, psi (Pa) 

o =  far-field compressive stress acting on the fracture face, M1L-1t-2, psi (Pa) 

 = minimum in-situ stress in horizontal direction, M1L-1t-2, psi (Pa) 
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xy =  shear stresses in x-y plane, M1L-1t-2, psi (Pa) 

𝜉 = distance from the fracture tip to the wellbore in near vicinity of tip, M0L1t0, in. (m) 

’ = dimensionless ratio of length, dimensionless 
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Chapter 6 

Model  Enhancements: Apparent Stresses 

6.1. Net Stress Effects on Fracture Growth 

The fracture height growth predicted with the help of the model developed in the study agrees 

reasonably well with the field observations. Most of the cases selected for the study were the 

ones that conform to equilibrium approach where the fracture advancement is at a slow pace. 

These treatments were intentionally pumped at low injection rates to limit the net pressure gain 

and prevent the fractures from rotating to a horizontal plane which is likely if the injection 

pressures exceed the overburden during the treatment. The formation of out-of-plane fractures 

can restrict fracture vertical growth propagation, but it is often difficult to predict the site where 

such an event will occur due to the uncertainties in characterizing rock properties in a fine 

scale. However, changes in the net compressive stresses generated in the plane normal to the 

main body of the vertical planar fracture can be used as a tool to determine if fracture tip 

extension in vertical direction will be restricted under the influence of cumulative increase of 

stresses. In this chapter such an approach is discussed where the influence of fracture width on 

resultant stresses is incorporated in the calculation process while solving for  vertical growth 

of hydraulic fractures. The effects of viscous fluid movement in the fracture are also included 

in the calculation scheme. 

It is clearly established in previous chapters that the vertical growth of the fracture is 

primarily controlled by the distribution of in-situ stresses in the various subterranean layers and 

their corresponding mechanical properties; the fracture height then ultimately depends on the 

available fracture net pressure. In case of layered formations however, the height growth 

prediction becomes a challenging task especially in presence of non-uniform formation 

properties which can introduce additional growth controlling mechanisms.  

The hydraulic fracture’s ability to cross or terminate at the layer-interface is dictated by 

existing conditions as noted by He and Hutchinson (1989). Possible outcomes range from 

delamination across the interface to kinked penetration or even bifurcation in case the fracture 

crosses the interface. Based on the field observations based on radio-active survey, Pandey and 

Agreda (2014),  reported vertical fracture growth restrictions across the interfaces of a mix-

layer composed of quartz, calcite and feldspar grains and fine-grained sandstones in shallow 

San Miguel sandstone formation. Pandey and Flottmann (2015) and Kirk-Burnnand et al. 

(2015) made similar observations when fracture stimulating shallow coal bed methane (CBM) 
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wells of the Surat basin, Australia. The heavily laminated and layered formations of Walloons 

coals are further compounded by the presence of strike-slip and reverse fault regimes 

(Flottmann et al. 2013) that often result in hydraulic fractures with a horizonal component and 

termination of the vertical growth across coal seams as evinced from several RA tracer and 

tiltmeter surveys. Based on experimental results, Daneshy (1978) noted that the obstacles to 

vertical growth of fracture were not imposed by the material properties alone, but also by the 

weak interfaces between the layers. At shallower depths, the influence of weak interfaces on 

fracture growth may dominate because the bonding between the various rock layers may not 

be very effective; based on the experiments it was suggested that strong interfaces would allow 

the fractures to grow through them. Similar observations of fractures propagating along the 

interface but not crossing them were also made by other researchers (Warpinksi et al. 1982; 

Teufel and Clark 1984). Reneshaw and Pollard (1995) proposed a crossing criterion for 

cohesionless surfaces which may be a reasonable assumption in cases where the layer interfaces 

are penetrated by the fracturing fluid. The experimentally derived criterion is shown to be a 

function of effective stresses in vertical (’yy) and horizontal (’xx) directions, rock tensile 

strength (To) and coefficient of friction .  
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 ..................................................................................................(6.1) 

The vertical stress (overburden) acts normally on the interface thus applying the fracture-

closing forces to any horizontal component. Since the tensile strength of the rock is generally 

small and can be neglected, the coefficient of friction is thus  the only material property that is 

required for this criterion.  

6.2. The Influence of fracture width in height growth calculations  

The presence of a non-zero width fracture in the layered media will induce additional stress in 

the near vicinity of the body of the fracture. The magnitude of the stress will vary depending 

on the width profile along the fracture height. Thus, the presence of fracture width (wp) can 

potentially alter the original stress state by an additional value that is equivalent to the net 

pressure in the layer. As per Palmer and Carroll (1983) the net (pnet) along the fracture can be 

defined for a propped fracture as follows for a non-uniform pressure field: 

𝑝୬ୣ୲ =
௪౦ாᇲ

ସ௔
 ...................................................................................................................(6.2) 

where a is the fracture half-height and E’ is the plane strain modulus. Tan et al. (2021) noted 

that the presence of tensile stresses in the near tip region facilitated fracture advancement, but 
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a compressive load normal to the plane of the fracture is also induced by the main body of the 

fracture in its surrounding. These forces are opposed by the insitu stresses which imposes limits 

on the total displacement. The net increase in stress due to this action can be considered as 

increased layered stress analogous to resistance by a compression spring under ever increasing 

loads.  

The width-induced net stresses can be estimated with the help of local fracture compliance, 

and if added to the stress of the corresponding layers, will result in an “apparent” layered stress 

only for calculation purposes, but sufficient to investigate if this additional stress can limit 

vertical fracture growth. This is the approach discussed in this chapter. The factor p discussed 

in Ch. 5 which is applicable during the treatment pumping phase is the part of calculation 

process. Once the calculations for a given height-width combination are completed, the stress 

profile is reset to the original input prior to initiating the next set of calculations. To account 

for the history of stress modifications, the output arrays are stored in a virtual library during 

calculation and printed if needed.  

The incremental stress around the fracture acting perpendicular to the plane of a vertical 

fracture can also be estimated with help of relationships proposed by Sneddon (1946) shown 

below: 

∆𝜎୶୶ =
ா௪ౣ౗౮

ସ(ଵିజమ)௔
ቊ1 − ቀ

௫మ

௫మା௔మቁ
ଷ ଶ⁄

ቋ .........................................................................(6.3) 

where, xx is the induced stresses away from the fracture face at distance x, E is the Young’s 

Modulus,  is the Poisson’s ratio, a is the fracture half-height and wmax is the maximum fracture 

width. The stresses at any given distance away from fracture face are incrementally affected 

by the fracture height in addition to the existing principal stresses. Palmer (1993) proposed an 

approximate form derived from Eq. (6.3) by linearizing the behavior which suggests that the 

extent of fracture induced stresses or more commonly referred to as “stress shadow” can reach 

up to 1.5 times the fracture height. This can be obtained by setting stresses on left hand side of 

the Eq. (9) to zero. 

∆𝜎୶୶ ≈
௪ౣ౗౮ாᇲ

ସ௔
ቄ1 −

௫

ଷ௔
ቅ ........................................................................................... (6.4) 

where E’ = E/(1-2) is the plane strain modulus. Eq. (6.4) is of the same form as Eq. (6.3), 

though the traditional stress shadow calculations and studies have mainly focused on the 

propagation of fractures which may range from fracture coalescence, curving or restricted 
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growth (Olson 2004; Wu and Olson 2016) or increasing insitu stresses with successive stages 

in multi-stage hydraulic fracturing treatments (Yuan et al. 2003; Casero and Rylance 2020). 

6.3. Workflow For Including Net Stress Calculations in Model 

The solution to the contained fracture height growth problem was obtained in a three-step 

process. In the first step, the location of the fracture of a given height was obtained for a 

multilayered stress model by solving a set of non-linear equations presented in Ch. 2. The 

corresponding fracture pressure and width profile were obtained in the second step by solving 

Eq. (2.19) – here a provision was added to calculate fracture widths for non-uniform pressure 

distribution in the fracture. The third step consisted of calculation of width-induced apparent 

stresses that were used to temporarily modify the stress profile for the next iteration. Following 

steps outline the model modification to predict fracture growth in special cases: 

1. Calculate local fracture compliance using the following relationship which is also 

described in Ch. 5 under Eq. (5.18): 

𝑐ி =
గ

ଶ

ఉ೛

ாᇲ
ℎ௙.......................................................................................................(6.5)  

2. Calculate net stress in various layers using the local fracture compliance and fracture 

width distribution w(y) obtained from Eq. (2.21) as follows: 

∆𝜎௡௘௧ = 𝑤(𝑦) 𝑐ி⁄  ..........................................................................................(6.6) 

3. Add the net-stresses across the layers where the fracture of a given height penetrates 

(see Fig. 3.1), to the initial stress profile, which will influence the location of the next 

input fracture height because of the altered values of i. If the net stresses are 

sufficiently high, the resultant stresses will prevent the fracture tip from crossing the 

high-stress layer (see Fig. 6.7). 

The assumptions and features of the model developed in the study are listed below: 

1. Height averaged fracture compliance sufficiently represents the corresponding 

influence of all the layers the fracture has contacted since plane strain moduli is 

adequately accounted for in the calculation process.  

2. The net stress generated with the help of fracture width from the previous iteration step, 

e.g., i-1  is applied to the current step. This approach is valid provided the height 

increments are kept sufficiently small, e.g., 0.5 ft (0.15 m) or less, as is the case here. 

3. During the calculation process, the stresses and the critical stress intensity factors at 

both fracture tips remain unaltered from original values input in the model, but the 

positioning of the fracture is affected due to superposition of stresses in other layers as 
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shown by Eq. (2.18). 

4. Though E’ does not influence fracture growth significantly, its effect on fracture width 

is considerable and hence eventually affects the incremental stress in Eq. (6.6). 

5. For simplicity of calculations the width induced stresses  as enforced only in the upper 

quarter of the fracture height simulated based on the observation that inclusion of all 

layers does not impact the overall model outcome which is demonstrated for one of the 

case histories.  

6.4. Width Calculations for non-Uniform Fracture Pressures 

The uneven width across the fracture height can result in non-linear pressure distributions 

induced by fluid flow during a fracturing treatment as noted by Weng (1992) and further 

addressed by Pandey and Rasouli (2021a, 2021c). This is also addressed in section 4.4.  

6.4.1. Estimating fracture widths for various pressure distributions 

The width solution proposed by Sneddon and Lowengrub (1969) requires the assumption that 

the fracture width has an arch arch-type fracture profile which limits its use. On the other hand, 

the solution method put forward by England and Green (1963) for determining crack width for 

a material exhibiting linearly elastic behavior offers the flexibility to include arbitrary pressure 

profiles in the calculations such as a quadratic pressure profile shown below.  

𝑝(𝑦) =  −𝑝௖௣[(𝑦 𝑎⁄ )ଶ − 𝑐ଵ(𝑦 𝑎⁄ ) − 𝑐ଶ] ..........................................................................(6.7) 

Here p(y) is pressure distribution along vertical y-axis, y/a is the ratio vertical displacement to 

the fracture half-height (a), and c1 and c2 are the coefficients of the polynomial. The width 

solution is obtained with the help of odd and even functions denoted by g(y) and f(y) 

respectively, such that the final pressure distribution p(y) satisfies the following condition: 

𝑝(𝑦) =  −𝑓(𝑦) − 𝑔(𝑦) ....................................................................................................(6.8) 

where both the functions are also sectionally continuous between 0 ≤ y ≤ a. The final width 

distribution in vertical y direction is obtained with the help of additional functions G(t) and F(t) 

described below (England and Green, 1963): 

𝑤(𝑦) =
ିଵ଺(ଵିఔమ)

ா
∫

ி(௧)ା௬ீ(௧)

ඥ௧మି௬మ

௔

|௬|
𝑑𝑡   (|𝑦| ≤ 𝑎)   ..................................................(6.9) 

where, t is a placeholder variable, and a is the fracture half-height. The value of functions F(t) 

and G(t) are obtained from net pressure distribution (scalar quantity)  described by Eq. (6.7). 

The value of function G(t) is given by: 

𝐺(𝑡) =
ିଵ

ଶగ௧
∫

௨ ௚(௨)

√௧మି௨మ

௧

଴
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The above integral is solved by  integrating from the center of the crack in either direction to 

reach the position of interest at distance t, with u being the other dummy variable. Thus, the 

width solution involves integration of two kernel components and yet another integration (Eq. 

6.9) across the length of the crack. For Eq. (6.7), the even function can be defined as: 

𝑓(𝑦) = 𝑝 = −𝑝௖௣ ൤
1
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ቀ
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𝑎
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𝑎
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1

2
𝑐2൨  ...........................................................(6.11) 

where, p is the solution of the even function for any location y from the center of the crack at 

which the solution is desired. Similarly, the odd function g(y), is given by: 

𝑔(𝑦) = 𝑞 = 𝑝௖௣ ൤
3

2
ቀ

𝑦

𝑎
ቁ

2

− 𝑐1

3

2
ቀ

𝑦

𝑎
ቁ −

3

2
𝑐2൨  ..............................................................(6.12) 

with similar notations as Eq. (6.11) expect q denoting the final value of odd function.  

Similarly, the value of function  F(t) can be obtained by solving the following integral:   

𝐹(𝑡) =
ି௧

ଶగ
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௣
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௧
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The integral is solved by accounting for all the layer interfaces k, that the fracture has crossed  

before reaching the point of interest t, starting from the middle of the fracture at 0, and likewise 

in the other direction to the point -t.  
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Thus, when using the solution during the width estimation process, the fracture mid-point 

location must be continuously obtained. In Eq. (6.14), n denotes the various layer numbers and 

dn represents the distance to the top of the interfaces starting from the center of the fracture and 

replaces the arbitrary integration variable u found in the original integral. The subscript n  

denotes the point of interest. The integration is carried out for both halves of the fracture to the 

point of interest t (and -t ) located along the axis of the crack. To find the solution for G(t), the 

rule   ∫ 𝑢 𝑑𝑢 √𝑡ଶ − 𝑢ଶ =  −√𝑡ଶ − 𝑢ଶ  ⁄ is used and the results are summed up over the various 

layers as follows: 

𝐺(𝑡) =
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ଶగ௧
∫

௨ ௤
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2 ቃ .........................(6.15) 

To obtain the final width, the integration is carried out across the entire fracture height for odd 

and even functions for a specially defined grid generated with the help of a separate algorithm; 

this grid is over and above the layered data input in the model for height growth calculations. 

The reason for using a separate grid is because the center of the fracture and the fracture 

initiation point will not always coincide, thus making the problem a complex one. The 

subroutine to generate the fracture width vertical grid, first  determines the number of stress-
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layers that the fracture of a given height has crossed in either direction and, subsequently 

identifies the layer in which the mid-point of the fracture is located. While executing the code, 

the algorithm ensures that both yt and yb of the grids are greater than both, dn and, the reference 

depth y at which the fracture width is to be determined. This segmentation process is the most 

difficult step in the model building process, especially when splitting the layer where the center 

of the fracture resides. Once the dynamic gridding is complete, the width distribution in vertical 

direction for a given fracture height input is obtained by combining the solutions of odd and 

even functions  and multiplying the results with -16/E’ as shown in Eq. (6.9) to obtain the final 

width solution. The process is then repeated for next set of input data and continues till the 

solution to the entire input array is completed. 

Functions F(t) and G(t) in Eq. (6.9) can be evaluated separately, across end points yt and yb 

that denote equidistant points from the center of the fracture in the upper and lower sections 

respectively, which is a similar approach as the one adopted by Warpinski and Smith (1989). 

The depth positions represented by yt and yb are obtained from the algorithm-derived grid to 

serve as the points where the widths will be calculated. 

The solution to the integral containing F(t) and G(t) are shown below: 
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Where, 𝐴 = ඥ𝑦௕
ଶ − 𝑦ଶ , 𝐵 = ඥ𝑦௧

ଶ − 𝑦ଶ, 𝐶 = ඥ𝑦௕
ଶ − 𝑑௡

ଶ, and 𝐷 = ඥ𝑦୲
ଶ − 𝑑௡

ଶ. 

6.5. Case Studies 

The first two case histories (Pandey and Flottman 2015)  pertain to the hydraulic fracturing 

treatments pumped in the shallow coal bed methane (CBM) wells drilled and completed in the 

Surat Basin, south-eastern Australia, which exhibit depth dependent stress regimes (Flottmann 

et al. 2013). As mentioned previously in Ch. 4, section 4.3, the sediments in the basin are 

dominated by siltstones and mudstones with minor sandstones that were all deposited in a 

fluvio-lacustrine depositional environment which was exposed to intermittent volcanic activity. 

The non-coal inter-burden (non-coal) rocks have low porosity and permeability which 

generally results in low fluid leak-off for typical polymer-based fracturing fluid systems in this 

heavily layered and laminated geologic setup. Multiple coal seams, with an average thickness 

of 0.4 m [1.3 ft] are a common occurrence in the field. The PR of 0.35 or higher and a low YM 
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of less than 1.0 MMpsi (6.9  GPa) in coal seams give them a ductile nature and results in lower 

in situ stress compared to interburden due to the compressive stress environment. 

The stress state in the basin is depth dependent where a transition from reverse to strike slip 

regime occurs typically just below 400 m (1312.3 ft). The coal in the region is low strength 

with a YM around 0.65 to 1.0 MMpsi (4.5 to 6.9 GPa) and PR of more than 0.35 whereas the 

interburden has a YM that ranges from 1.39 to 2.5 MMpsi (9.6 to 14.5 GPa). These values 

reported by Pandey and Flottmann (2015) based on analytical calibration of injection test data 

and supported by triaxial test results. The region is characterized by intermediate differential 

stresses that fall in the range of 600 to 750 psi (0.41 to 0.52 MPa.  

6.5.1. Case – 1: CBM Completion in Shallow/Laminated Formations 

The stimulation treatment was pumped down a vertical well 7 in. (177. 8 mm) casing that set 

around 1,032 m (3,385.8 ft). During the stimulation, downhole microseismic survey was 

conducted to monitor the fracture geometry as it evolved with time. The monitoring was carried 

out using arrays lowered in two of the offset wells nearby. 

 

Fig. 6.1: Pressure, injection rate and proppant concentration plot for treatment of Case 1. 

 

The first-stage treatment covered a gross interval of nearly 150.0 ft (45.9 m) with multiple 

perforation sets that targeted various coal seams with an average insitu stress gradient of 0.90 

psi/ft (20.4 kPa/m). In the absence of a downhole pressure gauge the net pressure is calculated 

with the help of surface treating, frictional and hydrostatic pressures, and injection rates for 

Treating Pressure Match 

Injection  Rate 
Fracture Pressure 

Overburden Pressure 

Net Pressure (Calc) 
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given fluid and proppant concentrations using average closure stresses. A small stage of 100 

mesh sand was used for clearing up restrictions in near well region. The treatment net pressure 

shown in Fig. 6.1 by “Pnet” curve is less than 150 psi (1,034.0 kPa) in the early part of the 

treatment  but eventually increases to 160 psi (1,103 kPa) around 70 min into the treatment. 

This is followed by a small drop in pressure, before an upward trend is observed again, reaching 

nearly 165 psi (1,138 kPa) at 80 min. The fracture pressure (Pfrac) however remains below the 

overburden during the entire treatment which does not necessarily imply that horizontal 

components cannot form at these shallower depths, but just that vertical fracture orientation 

will dominate (Palmer and Carroll 1983; Daneshy 1978). 

 

Fig. 6.2: Fracture height and location versus net pressure plot for Case 1. 

 

The formation material properties input in the model are summarized below: 

Number of layers in the stress model   100 

Payzone Stress     3,038.3 psi (20.95 MPa) 

Average Stress     3,122.7 psi (21.53 MPa) 

Fracture initiation layer thickness   2.30 ft (0.70 m) 

Average layer thickness    2.25 ft ( 0.69 m) 

Average Young’s Modulus (pay)   1.85 × 106 psi (12.8  GPa) 

Average Poisson’s Ratio (pay)   0.34 

Average Fracture Toughness    727 psi.in0.5 (2,767.3 kPa.m0.5) 

Payzone True Vertical Depths (TVD)  3,312 to 3,318 ft (6 ft thick) 

TABLE 6.1: Formation properties used as input in Case 1. 
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As in the past cases, the fracture heights are obtained with the help of the distance versus net 

pressure relationship show in Fig 6.2, where distances of the top and bottom fracture tips are 

plotted as a function of net pressure. Unlike other cases, this plot is peculiar because it 

represents two distinct and probable trends of fracture growth. In the first instance, the fracture 

height tends to remain contained  as long as the net pressures do not exceed 165 psi (1.14 Mpa) 

mostly because of the high stress layers of 3,280 psi (22.6 MPa) between 3,275 ft (998.2 m) 

and 3,283 ft (1,066.7 ft). However, as the net pressures exceed the threshold value, an upward 

fracture growth exceeding 80 ft (24.4 m) is possible even with lower net pressures. Possible 

vertical fracture growth after this point is predicted by the dashed curves that denote the upper 

(blue) and lower (red) fracture tip locations. As mentioned above, this condition is reached 

after 70 min into the treatment. The modeled evolution of fracture treatment with time is 

illustrated in Fig. 6.3. Fracture heights are represented by vertical bars and plotted according 

to their corresponding depth wise locations as determined by the model. The x-axis does not 

apply to vertical bars representing fracture heights. In the case of MS events shown by yellow 

triangles however, both the time and the depth axis are applicable. The model is thus able to 

accurately predict the vertical growth evolution of the fracture during the treatment 

             Fig. 6.3: Fracture height growth evolution; MS data is overlaid – Case 1. 
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The events from a microseismic survey have a spatial distribution which is commonly used in 

estimation of fracture geometry resulting from hydraulic fracturing treatments. In this case 

however, only a 2D plot of events is shown because the study primarily focuses on the 

modeling of vertical fracture growth which is mostly influenced by superimposed stresses of 

the layers that the fracture intersects  and the critical stress intensity factors of layers where 

fracture tips reside. The fractures of various heights depicted by vertical bars in Fig. 10 are 

overlaid  with MS data points to show that the modeled fracture location and height are 

reasonably close when compared to the observed events. 

The MS data featured in Fig. 6.3 shows a downward growth of the fracture in the first 80 

min of the treatment, which aligns reasonably with the fracture height and locations shown for 

net pressures that are limited to 160 psi in Fig. 6.2. Once the treatment net pressures exceed 

this value, the upper barrier at 3,285 ft (1,001.3 m) is breached and the fracture grows upwards; 

a drop in calculated net pressure is observed at this point which now reduces to 125 psi (0.862 

MPa psi) as seen in Fig. 6.1. A maximum height of 121 ft (39.0 m) inferred from MS events 

observed after nearly 2 hours of pumping is matched by model output with lower net pressure 

of 130 psi (0.896 MPa). 

The successful match of MS based fracture height estimates with that from the fracture 

height growth model validates its application in layered formations such as these and was found 

to adequately describe the field observations without the need of using the features developed 

during model modification.  

6.5.2. Case – 2: CBM Completion in Shallow/Laminated Formations  

The second case study (Pandey and Flottmann, 2015) discusses a shallow CBM well treated 

with 20 lbm/Mgal (2.4 kg/m3) borate cross-linked fluid and 16/30 U.S. mesh size (1.194 – 

0.584 mm) sand. The treatment was injected down a 5-½ inch (139.7 mm) N-80 casing set at 

758.0 m (2,486.9 ft) with the mid-perforations located at 1,401.0 ft (427.0 m). Stress and 

mechanical properties were calculated with the help of dipole sonic log data and calibrated 

with injection tests.  

Pre-treatment diagnostics indicated a fracture gradient of nearly 0.97 psi/ft (21.94 kPa/m) 

implying that fracture pressures could conceivably exceed the overburden during the treatment 

and rotate to a horizontal plane which can limit fracture vertical growth. Furthermore, a few of 

the shallower coal seams situated above the above the targeted coal package, e.g., at depth of 

1,296 ft (395.0 m), showed a low YM 0.08 to 1.0 MMpsi (551.6 to 689.5 MPa) and PR of 

nearly 0.39, that could result in higher widths if the fracture penetrated that layer. The 
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combination of these two factors could lead to formation of a horizontal component that can 

limit the fracture height growth. The pressure match of surface pressure is shown in Fig. 6.4. 

The presence of near wellbore restrictions that result in higher treating pressures initially is 

evident. However, with the onset of proppant in the formation and ensuing erosion, there is 

significant drop in the treating pressures owing to the removal of those restrictions and possible 

erosion of perforations shot in N-80 casing. As is obvious, with the gain of only 0.03 psi/ft or 

mere 40 psi (275.8 kPa), the fracture pressures will equal the overburden. This condition is 

reached approximately 14 minutes into the treatment coinciding with the time when the 

injection rates of 35.0 bbl/min (0.093 m3/s) are achieved. Table 6.2 summarizes model input. 

 

Number of layers in the stress model   100 

Payzone Stress     1,323.7 psi (9.13 MPa) 

Average Stress     1,365.2 psi (9.41 MPa) 

Fracture initiation layer thickness   3.70 ft (1.13 m) 

Average layer thickness    3.98 ft ( 1.21 m) 

Average Young’s Modulus (pay)   1.04 × 106 psi (7.2  GPa) 

Average Poisson’s Ratio (pay)   0.37 

Average Fracture Toughness    977 psi.in0.5 (3,719.0 kPa.m0.5) 

Payzone True Vertical Depths (TVD)  1,354 to 1,360 ft (6 ft thick) 

TABLE 6.2: Formation properties used as input in Case 2. 

 

 

Fig. 6.4: Pressure, injection rate and proppant concentration plot for treatment of Case 2.  
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The MS activity recorded  around 14 min shows majority of events occurring at shallow depths 

ranging from 1,294.4 to 1,296.6 ft (394.5 to 395.2 m) in the left-hand side plot of Fig. 6.5. 

Most of the events occur below these depths as the treatment continues, indicating a possible 

limit to upward growth after this point in time. The base model was unable to replicate this 

growth pattern; however, with the width induced net stress calculation mode, the real-world 

observations could be reasonably replicated as shown in the right-hand side  plot of Fig. 6.6. 

 

          

Fig. 6.5: Fracture heights and MS data (Left) and widths at corresponding depths (Right). 

 

 

Fig. 6.6: Stress modification (Left) and revised heights (Right) for same depth scale. 
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The simulations carried out with the modified model generated higher widths (though apparent 

and not real), that are shown in the right-hand side plot of  Fig. 6.5 by red curve, along with the 

width profile (blue curve – base model) generated using Eq. (2.21) that does not consider the 

effects of incremental net stress. The corresponding induced net-stresses are displayed in the 

left-hand side plot of Fig. 6.6, around the depth of 1,296 ft (395.0 m) where a 3.3 ft (1.0 m) 

thick coal seam with low YM value of 0.81 MMpsi (5.6 × 104 MPa) is known to exist. The 

incremental net stresses (simulated only – not real) are nearly 500 to 600 psi (3.45 to 4.14 MPa) 

higher than the base model and play a dominant role in restricting the fracture vertical growth. 

The change in compliance with increase in height translates to a corresponding change in 

net stresses (Eqs. 6.5 and 6.7), which when added to the original stress is coined as “Modified 

Stress” for the given height case and plotted versus depth as shown in the left plot of Fig. 6.6. 

The final output of this simulation is presented in the right-hand side plot of  Fig. 6.6 where the 

fracture heights and locations for the period after 45 min appear to match reasonably well with 

the MS events recorded during the treatment. Not many events are recorded at deeper depths, 

especially after a possible initiation of a horizontal component around 1,300 to 1,325 ft (396.2 

to 40.3.9 ft) where most of the late time events are confined. 

 

Fig. 6.7: Comparison of fracture width distribution from base and modified model.  
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For computational efficiency,  the net stress calculations are sectionally carried out in the upper 

half of the perforation depth. The outcome for cases where such a constraint is not enforced, is 

however not significantly different from what is shown in Fig. 6.7 because the  stress profile is 

reset to original stress profile prior to carrying out calculations for every input data set. Despite 

this however, the width projection will differ because the net stresses will be influenced by 

contributions from several layers instead of the few, especially in the case where only the layers 

in upper section of the fracture are included in the calculations. The simulated vertical width 

distributions shown in Fig. 6.7 illustrate this behavior where the profiles for incremented stress 

for limited number of layers (dashed green curve) or all layers (dashed red curve) bear similar 

profile and vary only in magnitude. 

The net stress values for various fracture heights as they increase are shown in the depth 

versus stress curve of Fig. 6.8 which is plotted in the same depth scale as Fig. 6.7. Note that 

for a given fracture height, only a few layers are influenced by apparent stresses (also see Fig. 

6.6). The simulated net stresses in this mode of calculation range from 50 to 625 psi (0.35 to 

4.31 MPa) with the maximum value closely matching with what was obtained with fewer 

layers. Overall, the width induced net stresses tend to limit the simulated vertical growth of 

fracture as shown in the right-hand side plot of Fig. 6.6. 

            Fig. 6.8: Corresponding temporary net stress calculated for various fracture heights.  
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6.5.3. Case – 3: Horizontal Well Shale Oil Completion  

This example represents one of the fracture-stimulated zones on a horizontal well completed 

in a shale play. The formation under consideration is typically highly laminated, organic-rich, 

ultra-low permeability calcareous shale. The deposition is believed to have occurred in low-

energy marine waters farther away from the shore and at deeper depths that helped in avoiding 

effects of wave disturbance. The shales are relatively brittle with moderate modulus, but the 

low Poisson’s ratio (brittle rocks) helps in creating fracture complexity during the hydraulic 

fracturing treatments resulting in favorable well performance.  

 

Number of layers in the stress model   97 

Payzone Stress     12,035.4 psi (83.0 MPa) 

Average Stress     12,491.3 psi (86.1 MPa) 

Fracture initiation layer thickness   3.40 ft (1.13 m) 

Average layer thickness    3.48 ft ( 1.21 m) 

Average Young’s Modulus (pay)   4.04 × 106 psi (27.9  GPa) 

Average Poisson’s Ratio (pay)   0.26 

Average Fracture Toughness    1,756 psi.in0.5 (6,684.0 kPa.m0.5) 

Payzone True Vertical Depths (TVD)  12,125 to 12,325 ft (200 ft thick) 

TABLE 6.3: Formation properties used as input in Case 3. 

 

The treatment consisting of 30 lbm/Mgal (3.6 kg/m3) cross-linked fluid and intermediate 

strength proppant with maximum concentration of 3.5 PPA (419.4 kg/m3) was pumped down 

a 5 ½ in. (139.7 mm ) casing at 70 bbl/min (0.185 m3/s) with 8 perforation sets spread across 

200 ft (60.1 m) laterally in a horizontal well completion. The fluid leakoff  calibrated from 

treatment injection pressure match obtained with the help of a commercial numerical simulator 

is around 0.00011 ft/min0.5 (4.3 × 10-6 m/s0.5). The treatment data and pressure match curves 

are shown in Fig. 6.9. The stress and mechanical properties were determined from sonic logs 

and calibrated with injection data. The effective formation face pressures (Pandey et al., 2020) 

were calculated with the help of data obtained from downhole memory pressure gauge and 

found to be exceeding the overburden at 12,800 psi (88.3 MPa) during the treatment. Despite 

high bottomhole injection pressures of nearly 13,500 psi (93.1 MPa) which is inclusive of 

perforation friction, the net pressures were calculated in the range of around 450 psi (3.1 MPa). 
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Fig. 6.9: Pressure, injection rate and proppant concentration plot for treatment of Case 3. 
 

The fracture height generated from the pressure history match using a commercial software is 

shown in Fig. 6.10, which shows an over-estimation when compared to the MS events that 

overlaid in the plot. After observing this mismatch between predicted and MS data, the height 

growth model was employed to compare its output for the given conditions.  

 

Fig. 6.10: Fracture geometry derived from commercial simulator for Case 3. 
 

The distance versus net pressure plot shown in Fig. 6.11 indicates that for the given vertical 

stress distribution, a fracture growth of 200 ft (61.0 m) is possible if a net pressure of 435 psi 

(3.0 MPa) is available during the treatment. However, when various fracture heights are 
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overlaid on the MS data points, it is apparent that except for early time, when fracture growth 

occurs rapidly, the predicted fracture locations and height do not match the MS survey data. 

 

Fig. 6.11: Fracture height growth potential and comparison with MS data for Case 3. 
 

 
Fig. 6.12: Fracture placement prediction – width induced stress modification for Case 3. 
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The normal simulation yields to a prediction of upward fracture growth with the bottom of the 

fracture nearly static. This however does not align with the MS data shown by yellow triangles 

on the right plot that clearly show that most of the late time events are below the depth of 

12,100 ft (3688.1 m) as though the fracture is contained at that depth. 

Using width induced net stress feature,  more accurate prediction of fracture height that 

compares well with the MS events was obtained. This is shown in Fig. 6.12. With the increased 

apparent stresses applied in the shallower section around the depths of 12,110 ft (3,691.1 m), 

the model predicts that the upward fracture growth will be constrained, causing the fracture to 

be bound between the lower higher stress member at 12,300 ft (3,749.0 m) and 12,100 ft 

(3,688.1 m) which closely matches the real time observations. Because the net pressure in the 

fracture does not evolve much beyond 435 psi, with passage  of time, the fracture growth will 

stabilize. The plot in Fig. 6.15 shows the fracture pressure distribution generated from even 

and odd functions in Eq. (6.11) and (6.12), respectively, for a quadratic pressure distribution 

of the form expressed in these equations.  

 

Fig. 6.12: Quadratic Pressure distribution in the fracture – Case 3. 

 

The vertical growth of a hydraulic fracture is dictated by several variables, some of which were 

discussed in this chapter. In laminated or heavily layered formations of varying material 
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properties such as toughness and elastic modulus, the modeling of fracture height growth, 

especially early termination can be challenging. A mathematical model capable of computing 

incremental stress in the presence of a finite width, and  normal to the plane of fracture was 

developed in this phase of the study. The additional stresses, denoted as net stresses, were  then 

added to the input array of depth-dependent stress profile in a dynamic mode to calculate the 

fracture position in the modified stress profile for a given height while the fracture height versus 

net pressure mapping were being generated. 

Results from the model showed that for cases where larger fracture widths were simulated, 

e.g., layers with low elastic modulus that were reasonably stressed, the level of fracture 

truncation was higher which is also observed in real world cases that were studied. In the cases 

presented, the fracture entry pressures exceeded the overburden and the possible horizontal or 

pancake fractures resulting from such an action, apparently acted to contain the fracture vertical 

growth. The model was able to accurately replicate the fracture height and its relative position 

with respect to the initiation point observed in field with the help of MS survey. 

6.6. Nomenclature 

a  = fracture half-height, M0L1t0, ft (m) 

av  = fluid viscosity behavior coefficient, unitless 

c = constant of integration, various units 

cF = fracture compliance, M0L1t2, ft/psi (m/Pa) 

c1,c2,c3 = calibration constants, unitless 

dn = elevation or distance of the nth layer from the middle of the facture, M0L1t0, ft (m)   

E =  Young’s modulus, M1L-1t-2, psi (Pa) 

E’ = plane strain modulus, M1L-1t-2, psi (Pa) 

f(y)  = even function Eq. (6.11), M1L-1t-2, psi (Pa) 

g(y)  = odd function Eq. (6.12), M1L-1t-2, psi (Pa) 

F(t)  = width function Eq. (6.13), M1L-1t-2, psi (Pa) 

G(t)  = width function Eq. (6.10), M1L-1t-2, psi (Pa) 

hf =  fracture height, M1L1t0, ft (m) 

k = count of the interface the fracture has crossed, unitless 

n =  layer count, unitless 

p = solution to even function Eq.(6.11), M1L-1t-2, psi (Pa) 

pn = solution to even function from n = 1 to k, M1L-1t-2, psi (Pa) 

pcp = pressure at the center of the perforations, M1L-1t-2, psi (Pa) 
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p(y) = pressure in the crack in vertical direction, M1L-1t-2, psi (Pa) 

Pnet =  net pressure, M1L-1t-2, psi (Pa) 

qn = solution to odd function from n = 1 to k, M1L-1t-2, psi (Pa) 

t  = placeholder variable, M1L1t0, ft (m) 

To =  rock tensile strength, M1L-1t-2, psi (Pa) 

 u  = placeholder variable, M1L1t0, ft (m) 

wmax = maximum fracture width, M0L1t0, in. (mm) 

wp = propped fracture width, M0L1t0, in. (mm) 

w(y) = width in vertical direction y, M0L1t0, in. (mm) 

x = any value of distance in horizontal x-axis, M0L1t0, ft (m)  

y = elevation in vertical distance, M0L1t0, in. (m) 

yb = depth from the center of fracture to the lowermost point of interest, M0L1t0, in. (m) 

yt = elevation from center of the fracture to uppermost point of interest, M0L1t0, in. (m) 

p = net pressure ratio in Eq. (6.5), dimensionless 

 = coefficient of friction,  unitless  

 = Poisson’s ratio,  unitless  

’xx = effective minimum insitu stress, M1L-1t-2, psi (Pa) 

’yy = effective overburden, M1L-1t-2, psi (Pa) 

net  = net stress, M1L-1t-2, psi (Pa) 

xx  = net stress in x-direction along horizontal direction, M1L-1t-2, psi (Pa) 
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Chapter 7 

Predicting Fracture Complexity During Treatment 

7.1. Fracture Growth in Presence of Fracture Complexity 

The modeling of hydraulic fractures using the traditional pseudo-3D (P3D) numerical 

simulators results in planar fracture that vary in widths across the height of the fracture. The 

variation depends on the stresses and mechanical property of the layers that the fracture crosses. 

The laboratory experiments, that are discussed in some of the sections below, show that the 

propagating cracks may have a three-dimensional (3D) characteristic given the observed 

combination of deviation (kinking) and out-of-plane displacements that can hinder the vertical 

growth. In a test specimen with prefabricated multiple flaws, a 3-dimension failure patterns 

and crack propagation are seen which can be approximated as a two-dimensional (2D) model 

by considering it as a mixed boundary value, triple-crack problem where the crack is internally 

pressurized. The stress intensity factors (SIF) at the tip of such discrete (or mildly continuous 

via fine ligament like cracks)  may be determined first and then their effects can be  

superimposed on to the primary crack propagation solution to include the influence of real-

world 3D cracks on vertical growth estimation. 

Incorporating the effects of fracture complexity in the traditional models that predict height 

growth, allows for the  prediction of out-of-plane fracture such as a horizontal component of 

the fracture across certain layers. These, generally unwanted features, can often result in early 

truncation of fracture height or in some cases even lead to undesirable case of casing shear or 

failure. The predictive model can be developed by constructing a mathematical algorithm that 

is continuously investigating for criteria or conditions that favor fracture complexity, during 

the height growth simulation process. Once these conditions are detected, the model can predict 

the liable depths and the interfaces where complexity will be enhanced, with a high degree of 

confidence, especially if the injection parameters such as fracture pressures also favor such an 

event. The predictions can then be verified in real world cases where height growth 

measurements were carried out during the treatment combined with well history that 

corroborates the model forecast. 

7.2. Crack growth under compressive loads   

The vertical growth of fractures (or cracks) in a layered formation depends on the in-situ 

stresses variations amongst the various geologic layers, their corresponding stress intensity 
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factors, and the internal pressure of the crack. Fairhurst and Cook (1966) explained that the 

rocks tend to split along the direction of maximum compression in the presence of an existing 

flaw. In a vertically held specimen show in left-hand side plot of Fig. 7.1, that is subjected to 

horizontal confining stress (3) and loaded along the vertical axis, as the vertical compressive 

stress (1) exceeds a certain critical Griffith criterion (Gc), the associated shear stress () along 

any pre-existing crack of length 2a, will cause its extension across the sliding surfaces of the 

crack abതതത, which will result in reduction of both, the compressive stress (f), and shear stress 

across the crack aaതതത. This crack propagation will continue till the energy from compression is 

no longer sufficient to generate requisite tensile stresses at the tip region (b) to overcome the 

resistive forces offered by the confining stresses and material properties. Because the crack 

growth originates due to  tensile stress concentrations at its tips, a mode-I propagation is 

assumed. This assumption is sufficient to only account for the forces in horizontal direction (p 

– 3) that produce normal opening of the crack (Germanovich et al. 1994) as seen in the right-

hand side sketch of  Fig. 7.1 which is an important conclusion that enables crack-modeling. 

 

  

Fig. 7.1: Crack-extension: Fairhurst & Cook (Left). 2D Crack: Germanovich et al. (Right) 
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7.3. Vertical and Horizontal Fracture Components 

As is known and also mentioned in the introductory text, that apart from insitu stress 

distribution, the vertical propagation of a hydraulic fracture is also influenced by the presence 

of formation layers of various rock types and their corresponding material properties. Daneshy 

(1978),  Warpinksi et al. (1982) and, Teufel and Clark (1984) all noted that the weak interfaces 

between the layers can also resist vertical propagation. The effects of rock layering are more 

dominant at shallower depths where the interlayer bonding may be weak, though the fracture 

growth truncation can also occur in deeper formations if the conditions favor such an event. 

The failure of bonding between weak interfaces can result in the possible forming of horizontal 

components of a hydraulic fracture along the bedding planes if there is sufficient pressure 

energy available to overcome the overburden. The presence of such an out-of-plane fracture 

adds yet another dimension to the existing 2D fracture plane which is generally assumed to be 

in vertical direction for normal stressed extensional environments (Anderson 1951). 

Occurrences of horizontal fracture components in shallow well completions have been 

noted and documented by various researchers (Warpinsiki et al. 1982, Pandey and Agreda 

2014; Pandey and Flottmann 2015; Kirk-Burnnand et al. 2015) though the existence of 

horizontal fracture components when stimulating deeper formations are mostly inferred from 

downhole treating pressures and with the aid of measurement devices such as tiltmeters (Wright 

et al. 1997; Wright et al. 1998). With the help of tiltmeter survey conducted on a horizontal 

well stimulation in the Bakken formation at depths of nearly 10,858 ft (3,309.50 m) a total of 

20% horizontal fracture component with tilt ranging from 1,000 to 2,500 µin (0.0254 to 0.0635 

mm) was observed on average for the 2 stages that were pumped (North Dakota Govt. Report, 

2007). The treatment data shows that the fracture pressures exceeded the overburden of 10,860 

psi at nearly 1.0 psi/ft (22.62 kPa/m) in the final stages of the treatment, which could explain 

the presence of a horizontal fracture component in some of the portions of the horizontal lateral.  

In the modern multi-stage completions of long horizontal laterals, the increase in  

bottomhole injection pressures and instantaneous shut-in pressures (ISIP) after successive 

zone-wise stimulation stages is a well-known phenomenon and has been routinely reported 

(Yuan et al. 2003; Casero and Rylance 2020). Some of these values are often higher than 

overburden, especially in cases where the initial conditions indicated higher than routinely 

observed  fracture gradients (high pressured or tectonically charged formations). It may also 

be noted that the presence of a horizontal fracture component does not unconditionally imply 

its immediate dominance on the fracture propagation trend, but as suggested by downhole 
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microseismic data, if such a component develops around a certain weak interface, the hydraulic 

fractures cease to grow vertically. The untimely growth arrest can lead to suboptimal treatment 

outcome, and in some cases, even lead to damage to tubular goods if the existence of the 

horizontal fracture component is associated with layer-movement or slippage around the 

bedding plane.  

7.3.1. 2D and 3D Crack Growth 

The uniaxial crack propagation along the vertical axis of the specimen and associated mode-I 

opening is represented as a 2D crack problem in Fig. 7.1 (rightmost sketch). Propagation of 

such cracks is generally smooth because there are no constraints other than internal resistance 

due to possible branching or friction. The real-world scenarios may however be far more 

complex, although it is recognized that the mathematical modeling of a 3D crack is not simple 

either because there is a lack of consistent theory to predict such occurrences.  

 

 

Fig. 7.2: Splitting crack (Dyskin et al.) and 2D model of 3D crack (Germanovich et al).  

 

The probability of a 3D crack condition arises in an equiaxial scenario when there is a 

significant body of the fracture in both the axes. Such a condition induces additional complexity 

merely because of the resistance met during the fracture propagation while trying to fail the 

material along both the axes. As observed by Dyskin et al. (1994) and Germanovich et al. 

(1996), these additional constraints obstruct the crack growth that result from a split-opening 
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fracture shown in the right-hand side sketch of Fig. 7.2 to mix-mode fractures shown in Fig. 

7.2 obtained from the experiments conducted on transparent casting polyester resin that was 

pre-notched with a laser. The material behaved plastically under ambient conditions but 

becomes sufficiently brittle if frozen to -20oC (-4oF) and exhibits near linear stress-strain 

relationship with a Young’s Modulus of 0.58 × 106 psi (4 GPa) and KIc of 546 psi.in05 (0.6 

MPa.m0.5). 

The experimental study shows wing like fractures growing from initial cracks and 

ultimately resulting in large tensile fractures that are independent of how the crack was 

initialized. One important observation made from the experiments (Dyskin et. al 1994) was 

that the mere presence of complex fractures may be sufficient for a horizonal fracture 

component to develop and propagate. Thus technically, the presence of an extended crack along 

the initial direction, and associated wing like and/or tensile fractures are sufficient to represent 

the complexity of a 3D crack growth. The 2D equivalent of such a complex crack setup is in 

the extreme right sketch shown in Fig. 7.2, represented as a case of three collinear cracks of 

mixed mode, where the middle crack in the center acts as the driver to the wing cracks with 

energy provided by compressive load  . The coefficient  represents the crack density.  

7.3.2. Modeling of 3D Cracks: Oblique and/or Elliptical Fractures 

For a 3D elliptical crack, the fracture propagation criteria proposed by Key (1969) in terms of 

average strain energy release rate (G) along the crack boundary is as follows: 

 

𝐺 =
ସగ

ଷாᇲ 𝜎ଶ డ

డ஺೎
ቀ

௫మ௖

ா(௞)
ቁ  ........................................................................................... (7.1) 

where, x and c are the minor and major axes of the elliptical crack, respectively, Ac is the area 

of elliptical crack given as xc,  is  the uniaxial stress normal to the crack that has developed 

into an ellipsoidal cavity in three dimensions, and E(k) is the complete elliptical integral of the 

second kind, and k = [1- (x/c)2]½. The solution to the above equation was presented by Daneshy 

(1978) after taking effective stress as the difference between crack internal pressure and closure 

stresses (p – ). The solution shown below was obtained after using the relation for G (or Gf) 

from Eq. (2.1) in terms of critical stress intensity factor or fracture toughness, KIc.  

 

𝐾ூ௖ =
(௣ିఙ)

ா(௞)
ට

ଶ

ଷ

௫[ଶ(௫మା௖మ)ா(௞)ି௫మ௄(௞)]

(௫మା௖మ)
 ........................................................... (7.2) 
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where, K(k) is the complete elliptical integral of the first kind. For a penny-shaped fracture with 

a large value of minor axis such that x → c, Eq. (7.2) reduces to the criterion proposed by 

Sneddon (1946) for penny shaped fractures, as both E(k) and K(k) are reduced to a value of /2 

for k = 0 (since x = c). 

7.4. Collinear Cracks and Their Coalescence 

For a system of two coplanar cracks where the end members are yet to coalesce the stress 

intensity factor 𝐾ூ
௧௜௣ at the outer tips of the cracks can be given as follows (Cherepanov 1979): 

 

𝐾ூ
௧௜௣

=
ଶி

ඥగ௪(௪మି௬మ)
ቈ𝐿ට

௅మି௬మ

௪మି௬మ −
௟௡(௬)

௪௅
×

௪ඥ(௪మି௅మ)(௪మି௬మ)

௄(௞)
቉ ............ (7.3) 

where, w is crack half-length, F is the average force equal to the horizontal projection 2w(a) 

with a being the angle representing the direction of stress compression (). The variable (a) 

depends on the angle a and the friction angle  of the material. The variable y represents the 

distance from the middle of the gap between the two coplanar fractures, e.g., half the distance 

between the points -b and -c in Fig. 7.4, and w is the distance from midpoint of the gap to the 

tip of the fracture on either side. L is the distance from the midpoint to the loading point along 

the axis of the crack where the force F is acting normal to the crack (see Fig. 7.1 right plot). If 

the gap 2y between the cracks vanishes and the cracks coalesce, a more simplified form of SIF, 

as shown below, emerges: 

𝐾ூ
௧௜௣

=
ଶ√௪ி

ඥగ(௪మି௅మ)
 .................................................................................................... (7.4) 

where, the system is still pressurized at two locations consistent with the conditions prior to 

coalescing. If after coalescing, the force is assumed to be uniform throughout the crack and 

acting at L = 0 which is the center of the total crack length now 2w, Eq. (7.4) assumes a similar 

form as that of the stress intensity factor for a crack in an infinite elastic medium. 

7.5. Crack Propagation in 3D Under Compression 

The 3D mode of crack propagation illustrated in the middle schematic of Fig. 7.3 were also 

observed and modeled by other researchers (Adams and Sines 1978; Scholz 1990) with 

remarkable similarity in observations. The main body of the crack lies in the horizontal 

direction; its propagation was assisted by the starter flaws that bore elliptical or penny shapes  

that were planted to help initiate complex 3D fracturing. Under the compressive loads,  several 
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vertical tensile fractures developed around the boundary of the primary crack, assisted by 

secondary wing or petal-shaped fractures, even under triaxial loading conditions as seen in Fig. 

7.3. The 3D pattern of fracture growth is simplified to a 2D problem by adopting the approach 

shown in the right-most sketch of Fig. 7.2 where the complexity is now represented as a 

collection to three discrete collinear cracks. 

 

   Fig. 7.3: Crack propagation under 3D compression loads. (Adapted from Scholz 1990)       

 

The collinear cracks can be configured in 2 different modes illustrated in Fig. 7.4 . In case (a), 

the fractures mirror across an imaginary midpoint of the center fracture with distances c < b < 

l along the crack x axis. The crack in the middle is held open by pressure p and is equivalent to 

the influence that wing cracks have on the growth of large fractures in the middle schematic of 

Fig. 7.2. The pressure p is in fact the effective stress that will result in the same opening of the 

middle crack as that of the simulated wing crack. Because of this arrangement, stress 

singularities are expected at the points x ± c, x ± b and x ± l, and in the region  c < |x| < b shown 

in (b) where the condition of non-zero displacement distribution uy(x)≠0 exists. Because of the 

symmetry in the layout of the problem, the solution is only required for positions of x at c, b, 
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and l. It may be noted that in the solution provided by Germanovich et al. (1996), the 

displacement is set to a zero value which will result in a different SIF value. 

 

Fig. 7.4: Collinear Cracks (a); mixed boundary conditions (b). (Germanovich et al. 1996) 

7.6. Modeling Approach   

Though the modeling of 3D fractures is complex, its inclusion in some form or other is 

important to ensure predictions that match the field occurrences, especially those related with 

formation of horizontal components and fallouts from that. To accomplish this, the model can 

be improved by adopting a more simplified mathematical representation of a 3D fracture with 

active horizontal component, as discussed above, and elaborated in Pandey and Rasouli 

(2022a). While taking this approach, it can be hypothesized that in the presence of at least three 

discrete collinear fractures, if infinitesimally small displacements can be detected during the 

simulation process, then there exists a possibility of horizontal component forming across the 

plane where such a behavior was detected. For the fractures to orient in a horizontal plane 

however the effective fracture pressures must exceed overburden, which is not unusual in 

hydraulic fracturing treatments where the initial stresses are high. 
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The simulation of width profile from an example case that emulates the presence of 3 collinear 

cracks is shown in Fig. 7.5. The changes in width as the net pressure increases are simulated 

for three instances: early, middle, and late time. The fracture appears to be sufficiently held 

open in early stages of the treatment  but offers little hint that ultimately it will progress to a 

scenario that will support development of any horizontal component.  

 

Fig. 7.5: Evolution of fracture width and existence of collinear cracks in late time.  

 

The fracture height increases with the net pressure and as the late-time width profile beings to 

take shape, it is evident that the criteria of  discrete collinear fractures will be eventually met. 

Thus, for the purposes of prediction for fracture complexity, the simulator was programmed to 

detect these possible discontinuities and if other conditions are met, flag the corresponding 

depths as possible sites where the horizontal fracture components can initiate and propagate 

from. For accuracy of calculations and to incorporate the mechanics of the problem, the effects 

of modified stress intensity factors must be superimposed to the original calculations to account 

for anomalies in fracture vertical growth. 
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7.7. Stress Intensity Factors (SIF) for Specific Cases 

The solution to the triple crack problem with  mixed boundary conditions (discussed in section 

7.5) was explicitly derived and presented by McCartney (1983). The solution process involves 

several mathematical sub-steps that operate around the assumed boundary conditions and a set 

of transforms for appropriate coordinate system. As the problem is set up for a symmetric case, 

only the positive values of displacement from c to l are evaluated. For triple collinear cracks of 

Fig. 7.5, the transformation parameter t is given as follows: 

 

𝑡 =
ଶకమି௕మି௖మ

௕మି௖మ
   ..............................................................................................................(7.5) 

where,  𝜉 is the elemental length advancing from midpoint of middle fracture to l. For positions 

of 𝜉 ranging from 0, c, b and l, t assumes various values that are denoted by t = -t0, t = -1, t = 

1, and t = t1, which are used in the principal solution equation being given by Eq. (21) in 

McCartney (1983). 

7.7.1. SIF for Triple Collinear Crack Conditions 

When expanding the height prediction model to include fracture complexity from 3D fractures, 

the effects of SIF in the presence of both zero and non-zero displacements along the crack axes 

for regions lying between the two collinear cracks shown as u(x) in Fig. 7.4(a), were 

comprehensively accounted for in the calculation routines. The stress intensity factors at the 

tips of a pressurized crack of length 2l  such as shown in Fig. 7.4(b) was proposed by Sneddon 

and Lowengrub (1969) as follows: 

 

𝐾ூ = 2ට
௟

గ
∫

௣(క)ௗక

ඥ(௟మିకమ)

௟

଴
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for a symmetric pressure distribution of 𝑝(𝜉) =  𝑝(−𝜉). If Eq. (7.6) is expanded for mixed 

boundary conditions, the following expression that superposes various SIFs for regions of the 

crack from the midpoint of the central crack (0) to the tip of the extreme crack (l) is obtained:  
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where, po and p1 represent effective pressures in the sections 0 to c and b to l, respectively. On 

transforming to variable t defined in Eq. (7.5), the expression transforms to: 

 

𝐾ூ = ට
௟
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൨  ...... (7.8) 

 

Here, P0(t)≡p0(𝜉), P1(t)≡p1(𝜉), and 𝑞ത(𝑡) = ∫ 𝑝(𝑦)𝑑𝑦
క

௖
ඥ(𝑙ଶ − 𝜉ଶ)ൗ  describes the pressure 

distribution of the crack in the region between c and b for appropriate values of t. It may be 

noted that during height growth simulation if the internal pressure distribution in the crack is 

known (which is usually the case), the solution to the problem is greatly simplified. If the 

displacement in the region c < |x| < b is assumed to be zero, the solution reduces to the triple 

crack problem for which an exact solution was developed using Muskhelishvili’s (1953) 

method (Tada et al. 1973). The mode–I SIFs at locations, c, b, and l are presented below. 

 

𝐾ூ
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(௟మି௖మ)

(௕మି௖మ)
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𝐾ூ
௟ = 𝑝√𝜋𝑙ට

(௟మି௖మ)

(௟మି௕మ)
ቄ1 −
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௄(௞)
ቅ  ................................................................................ (7.11) 

 

where, p is the crack opening pressure, 𝐾ூ
௖, 𝐾ூ

௕ and 𝐾ூ
௟ are the stress intensity factors at the 

locations c, b and l described in Fig. 7.4, and k is obtained as k = (l2 – b2)/(l2 – c2) for c < b < l. 

When solving for SIFs, the values of complete elliptical integrals of the first and second kinds, 

given by K(k) and E(k) respectively, were obtained from tables provided in Appendix L of Tada 

et al. (1973). The solution to SIFs for the triple crack problem was also obtained by Goyal 

(1974) but should be corrected by proper substitution of constants C1 and C2 described in the 

study which leads to final form that resembles Eq. (7.9) to (7.11). 
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7.7.2. SIF for Triple Collinear Cracks with non-Zero Displacements 

The problem defined in Fig. 7.4(b) shows a condition where the 3D crack is transformed to a 

2D crack while maintaining non-zero widths in the regions of c < |x| < b which is more 

appropriate representation of real-world conditions where collinear cracks of varying widths 

may exist and maybe connected via hairline fractures. For these conditions the solution offered 

by McCartney (1981) for a main crack linked with micro-void via a ligament is suitable; in 

terms of current problem set up the one-half of middle crack shown in Fig. 7.4(a) acts as the 

main crack, the gap between locations c and b where c < b denotes the ligament with non-zero 

widths and the location b < x < l represents the void, with all the cracks being coplanar. The 

SIF at position l is given by 
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where, r and 0 are coefficients to Chebyshev polynomials bearing the units of stress that can 

be obtained using standard procedures. Here it is assumed that  0 = p, is the external stress 

acting normal to the plane of the crack, and r is the number of degrees of the Chebyshev 

polynomials. Also, based on Eq. (7.5) the value of t1 = (2l2-b2-c2)/(b2-c2) for 𝜉 = 𝑙. 

The expressions for stress intensity factors at crack tips at c and b are given by the following 

relations that are modified from the original text that presented these in the terms of transform 

variable t.  
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For zero displacement in the region between c and b, and uniform pressure in the crack p, 

Equations (7.12) to (7.14) will reduce to corresponding solutions shown for discrete triple crack 

case as the term r will be reduced to zero. 
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Fig. 7.6: Plot of SIF versus k values generated with random inputs of c, b and l. 

 

Assuming a case where total force F = pc opens the crack shown in Fig. 7.4(b), Germanovich 

et al. (1996) also presented a solution based on the work by McCartney (1983) for  mixed 

boundary conditions. The final equation from the study is shown below with a correction in the 

term originally reported as  √𝑏ଶ − 𝑙ଶ which will lead to errors if the assumed precondition of l 

>>b >c is applied. 

 

𝐾ூ
௟ =

ி

√గ௟

௕[௄(௖ ௕⁄ )ିா(௖ ௕⁄ )]

௖௟௡൫ସ௟ √௟మି௕మ⁄ ൯
  .......................................................................................... (7.15) 

 

A plot of SIF at the outer tip of the fracture (l) versus k was generated for plotting purposes 

using random values of c, b, and l such that the resultant k was observed as increasing function. 

The behavior of k clearly depicts a singularity, as shown in Fig. 7.6 for both cases of triple 

cracks discussed above along with the values of SIF obtained from Eq. (7.15). The initial 

calculated data points show higher SIF values for case where uy(y)≠ 0 that represents  non-zero 

width, analogous to a thin ligament connecting the main cracks. In laboratory experiments this 

ligament represents the initial horizontal crack that assists in development of both wing cracks 
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and vertical tensile cracks under compression (Fig. 7.2), and in the real world its presence may 

provide a site for initiating a horizontal component of fracture. Although the data set was 

generated using random values, increases in SIF values of the triple crack case (3 discrete 

cracks) with that of k values, cannot be ruled out. The calculated data points from Eq. (7.15) 

increase at a rapider pace than the data sets representing other cases. The method does not offer 

solutions for smaller k values, hence was found unreliable during the simulation process. 

7.8. Calculation Sequence of the Model 

The height growth model carries out the following operations sequentially to predict complex 

fracture induced height growth restrictions: 

1. The model generates a “count” of zero-width features interspersed within the non-zero 

width fractures around the tip, where it attempts to identify an “island” like crack with 

a lower continuous crack and an isolated crack in upper flank, as depicted by Fig. 7.4(a). 

The variable l designates the upper tip of the fracture.  

2. The calculations continue to determine corresponding SIFs if the crack count suggests 

that at least 3 non-zero widths are available (though a count of two  theoretically 

sufficient, the programming logic creates mathematical instability) which allows 

obtaining the value of crack lengths a, b and l.  

3. The value of k is then calculated and eventually SIFs for various conditions are 

obtained. 

4. For record-keeping purposes, the model retains all solutions of each height increment 

for both zero and non-zero crack widths calculated during the simulations.  

7.9. Model Application to Field Cases 

The model was applied to field cases to predict the possible occurrence of horizontal fracture 

components, especially in the presence of fracture pressures that exceeded the overburden at 

the depth of application. The model construction and simulation for a given case is a 3-step 

process that can be stated as below: 

1. Gathering model input data which includes layered input of  formation true vertical 

depths, layer thicknesses, stresses, fracture toughness, layered moduli, Poisson’s ratio, 

expected layer leakoffs, fluid rheology and others. Uncertainties in the fracture 

toughness values can be handled by the model while generating the stress and fracture 

toughness matrix prior to history matching process elaborated in Chapter 5 and 6. 
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2. The second step in the process consists of determining the location of the 

fracture, corresponding net pressure and fracture width for a given input value of 

fracture height – the height increments are very small, simulating a slowly advancing 

fracture. The pressure distribution inside the fracture is allowed to vary based on the 

assumptions made – linear, power law, or following a quadratic behavior. These 

influence the fracture width calculations. During this second step itself the simulator 

identifies the presence of three collinear cracks for each height input starting from the 

upper tip of the fracture to the middle of the fracture (see Fig. 7.5) and applies the 

necessary correction to the fracture toughness that was either calculated based on fluid 

velocity or input as a layered property. The effect of solid mechanics-based width 

estimation and the ensuing effect on dependent calculations, is thus incorporated 

simultaneously as discussed in Pandey and Rasouli (2022a). 

3. In the third step, the fracture top and bottom tip distance from midpoint versus 

net pressure mapping generated at the end of the second step is then used in carrying 

out a pressure history match of actual field data using the rate, fluid rheology data, and 

formation leakoff. 

7.9.1. Case – I: Fracturing in Highly Laminated Formation 

This case history pertains to the fracture stimulation treatment pumped as the last stage in a 

multi-stage horizontal well completion of a deep and highly laminated limestone and shale 

formation consisting of alternate sequences of shales, siltstones, mudstones, and limestones 

with significant variations in Young’s Modulus ranging from 2.25 MMpsi (1.55 × 104 MPa) 

for shaly layers to nearly 5.88 MMpsi (4.054 × 104 MPa) for limestones. The primary target 

was oil reserves trapped in limestone with low porosity of 9% and permeability of less than 0.1 

md which results in a calculated fluid leakoff of 0.00011 ft/min0.5 (4.3 × 10-6 m/s0.5) that was 

determined from the falloff during pre-treatment diagnostic tests. The treatment plot is shown 

in Fig. 7.7 that displays various data related to fracturing treatment including the simulated net 

pressure and the match of the surface pressure data. 

The initial fracture gradient (F.G.) of 0.946 psi/ft (21.40 kPa/m) probably resulting from 

stress accumulation after the fracture stimulation of previous stages, was observed. Considering 

the true vertical depth (TVD) of 9,942 ft (3,030.3 m), this meant that a net pressure gain of 

approximately 525 psi (3.62 MPa) will result in fracture pressures reaching the overburden 

gradient of 1.0 psi/ft (22.62 kPa/m). In the treatment plot presented, the end-of-the-treatment 

F.G. is 0.99 psi/ft indicating that during the pumping, the pressures were higher than 
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overburden. The treatment was pumped down 4 ½ in. (114.3 mm) casing at 22.0 bbl/min (0.06 

m3/s) using  a 20 lbm/Mgal (2.4 kg/m3) cross-linked fluid with a maximum proppant 

concentration of 1.5 PPA (179.74 kg/m3).  

 

Fig. 7.7: Fracturing treatment and surface pressure history match – Case 1.  

 

 

Fig. 7.8: Height growth vs. net pressure (left) and comparison with MS Data – Case 1.  

 

The fracture distance versus the net pressure plot shown in the left  of Fig. 7.8 suggests that 

with the net pressure of 525 psi (3.62 MPa) that was observed during the treatment (see Fig. 

7.7), the fracture height can increase up to 150 ft which closely matches the field measurements 

based on the microseismic (MS) survey shown in right hand side plot of Fig. 7.8. The upper 

and lower fracture-tips are denoted as FracTOP and FracBOT respectively, and FracMID 

shows the mid-depth of the fracture that may not always coincide with perforation depth at 0 

Net Pressure ~525 psi  

Bottomhole Pressure 

Surface Pressure Match 

BH ISIP Pressure 
Disturbance  
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distance. The corresponding layered stress model is shown on the right plot along with fracture 

height and locations represented by vertical bars for various net pressures. The yellow triangles 

represent the MS events with respect to time that that is shown in x-axis; the event depth can 

be obtained from either of the y-axes. The red triangle designates the event that was measured 

around 900 ft (274.3 m) south of the wellbore heel. 

The simulated fracture width profiles along the fracture for some of the fracture heights 

depicting early to late time hydraulic width evolution are shown in Fig. 7.9. Mathematically, 

the profile suggests a probability of three-dimensional (3D) fractures to take form because of 

the presence of near zero width collinear cracks at the fracture tip that develop at late time and 

the fact that the injection pressures exceeded the overburden during the treatment.  

The low YM shales contribute to larger simulated widths near the perforation depth shown 

by the yellow triangle in Fig. 7.10, supported by availability of maximum net pressure at that 

depth. The width constrictions seen at 9,900 ft (3,017.5 m) and 9,914.7 ft (3,022 m) can act as 

a potential site for horizontal fracture component if the effective fracture pressures were to 

exceed the overburden.  

 

Fig. 7.9: Fracture width profile and prediction of site of fracture complexity  – Case 1 
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The fractures were initiated from the base of the limestone member, primarily in laminated 

shales, mudstones, and brittle siltstones which is shown by the wellbore schematic in Fig. 7.10. 

The  laminated nature of the formation can act as a catalyst in creating fracture complexity as 

layers with relatively weak bonding such as the one with highly contrasting moduli may not 

only facilitate formation of horizontal component but also promote slippage along a dipped 

formation bed as was the case here. 

 

 

Fig. 7.10: Wellbore trajectory, along with MS event and casing failure depth – Case 1. 

 

The wellbore survey sketch in Fig. 7.10 shows the undulating well (in a laterally compressed 

scale) and marks the measured perforation depth for the final stage at 10,236 ft (3,119.9 m) 

(9,942 ft TVD) as below the base of the limestone formation and into the underlying shale 

layer. The TVD of the base of limestone at this point in the wellbore is 9,915 ft (3,022.1 m). A 

high intensity mircoseismic signal was recorded at a location nearly 900 ft (274.3 m) south of 

the wellbore heel and at a TVD of 9,945 ft (3,031.2 m) around 37 minutes into the treatment. 

This depth is in the vicinity of the projected limestone/shale bed boundary at that location as 

illustrated on the bottom left of Fig. 7.10 with a red cross-shaped marker. Given the prevalent 

conditions of higher than overburden injection pressures, possible weak cohesion between 

materials of high YM contrast and varying material properties, and a potential to form complex 

fractures in presence of discrete collinear cracks as simulated by the model, a physical event of 
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slippage along bedding plane cannot be ruled out and may explain the casing shear failure at 

the depth that coincided with the limestone and shale bed boundary. 

  

 

Fig. 7.11: History match of net pressure and explanation of  fracture extension – Case 1. 

 

The net pressure from the treatment was history matched with the help of the model (Pandey 

and Rasouli 2022a) and the results are shown in Fig. 7.11. The match predicts a fracture height  

of nearly 150 ft (45.72 m) during the treatment which agrees with the MS data. The fracture  

half-length is restricted to 375 ft (117.3 m) once the fracture pressures exceed the overburden; 

the half-length is nearly the same as that inferred from MS survey (not shown here). The  

possibility of a horizontal component at this point which also manifests in a “flat” net pressure 

response (Nolte 1979) due to enhanced fluid leakoff cannot be ruled out. The event of high 

seismicity occurs around the same time when the critical net pressures are reached. The actual 

damage to the casing coincided with another event triggered after the rate drop at 49 minutes 

which was followed by a sudden perturbation in surface pressure (see Fig. 7.7). With the rate 

drops and as the net pressure recedes, an increasing trend in simulated fracture half-length is 

observed. This combined solid mechanics and fluid dependent lubrication model (Pandey and 

Rasouli 2021b) predicts a maximum width of 0.466 inch (12.0 mm) compared to a higher value 

of 0.6 inch (15.2 mm) obtained from stress and mechanical property model alone (Fig. 7.11). 

Pfrac > Povb as net pressures 
exceed 525 psi. 

Xf  does not extend in presence of  
horizontal fracture component.  

Injection Rate 

Fracture Height 

Fracture Width (mm) 

Overburden 
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7.9.2. Case – II: Exceeding Overburden Pressure in Deeper Wells 

As evinced from pressure data of several fracturing treatments pumped in deep ultra-low 

permeability unconventional reservoirs, the bottom hole injection pressures at the inlet of the 

fracture often exceeds the overburden during the treatment. This case history relates to a 

horizontal well completion in a source rock reservoir characterized as highly laminated, 

organic-rich, ultra-low permeability calcareous shale where higher than overburden pressures 

were interpreted from the recorded bottomhole pressures. For the treatment, a 30 lbm/Mgal 

(3.6 kg/m3) cross-linked fluid was used to pump intermediate strength proppant with maximum 

concentration of 3.5 PPA (419.4 kg/m3)  down a 5 ½ casing at 70 bbl/min (0.185 m3/s) with 8 

perforation sets spread across 200 ft (60.1 m) laterally. The mechanical properties of the 

formation that included Young’s Modulus and Poisson’s ratio were generated with the help of 

sonic logs and later calibrated with the field data. On average, the YM was determined to be 

3.0 MMpsi (2.1 × 104 MPa) whereas the Poisson’s ratio was nearly 0.24. Given the low 

permeability formation the effective fluid leakoff was nearly 0.00011 ft/min0.5 (4.3 × 10-6 

m/s0.5) from data analysis. The effective formation face pressures were calculated with the help 

of data obtained from downhole memory pressure gauge following the procedures outlines by 

Pandey et al. (2020) and were found to be exceeding the overburden of 12,800 psi (88.3 MPa) 

during the treatment. Despite high bottomhole injection pressures of nearly 13,500 psi (93.1 

MPa) which is inclusive of perforation friction, the net pressures were calculated in the range 

of around 450 psi (3.1 MPa). 

 

Fig. 7.12: Predicted growth and complexity compared with measured data – Case 2. 

 

The spread of initial MS events recorded during the treatment is shown in the middle plot of 

Fig. 7.12. It can be inferred from the event log that a rapid fracture height growth occurs in the 

first few minutes of the treatment. This behavior is also noted in some of previous case histories 

discussed in earlier chapters, where the height growth rate appeared to be resulting from the 
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steep increase in injection rates at the start of the treatment shown in the treatment plot of Fig. 

7.12. The modeled fracture heights shown by vertical bars align well with MS data. A fracture 

height growth of 200 ft (61.0 m) is observed which is per expectations from the distance versus 

net pressure plot illustrated in the left.  

Although the solid mechanics based net pressure mapping (extreme left sketch in Fig. 7.12) 

suggests that it is possible to vertically grow the fractures even beyond 200 ft if additional net 

pressures were available, in real world if horizontal fracture components form, then the further 

vertical propagation of the fracture will be limited or not occur at all. The width profile in the 

extreme right shows that in the late time as the fracture growth reaches nearly 200 ft, the 

possibility of generating collinear fractures that are connected or remain discrete is high and 

can lead to complexity like giving rise to a horizontal component that can limit the vertical 

growth of the fracture around the depths shown and supported by MS data in the middle plot. 

The vertical bars in the middle plot designate various fracture heights for the modeling run. 

 

 

Fig. 7.13: History match of net pressure and other simulated fracture parameters – Case 2. 

 

The bottomhole injection pressures exceeds the overburden pressure as the net pressure 

increases to 460 psi (3.2 MPa) around 75 min. into the treatment; the pressure history plot of 

Fig. 7.13 shows the fracture height reaching nearly 200 ft, whereas the fracture half-length 

extension rate slows down due to possible increase in fracturing fluid leakoff. There is little 
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gain in fracture height during the remainder of the treatment. The rightmost width plot in Fig. 

7.12 shows multiple sites where conditions favorable to formation of horizontal components 

exists, especially at a depth of 12,110 ft. The bottom of the fracture is contained by high stress 

layers starting at 12,300 ft (3,749.0 m) shown in the stress profile in the middle plot.  

7.10. Predicting Fracture Complexity During the Treatment 

Some of the interesting observations made during the model application on case histories 

include the simulated data analysis using specialized diagnostic plots. These plots can be used 

in predicting the likelihood and timing where the fracture complexity can peak. These plots are 

shown in Fig. 7.14 and Fig. 7.15 where the frequency of number of counts of non-zero and 

zero widths are shown along with the corresponding modified stress intensity factors that were 

superposed on the basic solution. The superposition process tends to influence the outcome of 

the simulator that favors fracture truncation if suitable conditions are met. The model identifies 

the occurrences when fracture width profiles are generated for a given height input and 

incrementation of the overall SIFs only if at least three non-zero widths are identified, prior to 

resetting the input matrix to the original values input.  

 

 

Fig. 7.14: Count of zero width occurrences during height growth simulations – Case 1. 
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The simulator behavior is noteworthy and varies from case-to-case basis mostly because of the 

input parameters that can dictate the outcome especially when the additional SIFs are to be 

applied selectively only when the preset criteria is met. 

  

Fig. 7.15: Count of zero width occurrences during height growth simulations – Case 2. 

 

There are fewer occurrences of zero-width for smaller facture heights in the first case shown 

by Fig. 7.14 in comparison to the second case history represented by Fig. 7.15. In both cases, 

the initial fracture gradient is greater than or equal to 0.94 psi/ft (21.3 kPa/m) and changes in 

net pressure can tilt the balance in favor of generating horizontal component or enhancing 

fracture complexity.  

As seen in Fig. 7.14, representing the first case history, once the fracture height exceeds a 

threshold value, e.g., 110 ft (33.53 m) there is large increase in the number of such occurrences 

as depicted by the blue vertical bars. For the second case this occurs around 55 ft (16.80 m) 

presented in Fig. 7.15. Hence, with increasing net pressures, which lead to increased fracture 

heights (see Fig. 7.11 and Fig. 7.13), the 3D crack scenario begins to emerge which can lead 

to complex fracturing and only a little additional gain from fracture geometry can be extracted, 

because Xf, hf and 𝑤ഥ  are nearly constant. The increased forecasted occurrences of zero width 

thus are an indication of higher probability of fracture complexity and the corresponding 
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fracture heights can then be related to the net pressure to predict the critical pumping 

parameters that could cause such an event to occur.  

Attempts to close the horizontal components by reducing the rates may not be practical in 

the actual treatment (especially in proppant stages) and hence it is more advantageous to 

prevent them from forming during the treatment by redesigning the treatment sizes. If the 

diagnostics are done in real-time, early termination of the treatment may be advised.  

7.11. Nomenclature 

Ac  = area of an elliptical crack, M0L2t0, ft2 (m2) 

b = distance to crack tip in Fig. 7.5, M0L1t0, ft (m) 

c = major axis - elliptical crack in Eq. (7.1); crack tip distance (Fig. 7.5), M0L1t0, ft (m) 

E’ = plane strain modulus, M1L-1t-2, psi (Pa) 

E(k) = elliptical integral of the second kind, mathematical operator 

F =  average force, M1L1t-2, lbf (N) 

K(k) = elliptical integral of the first kind, mathematical operator 

G =  average strain energy release rate, M1L0t-2, J/m2 

k = geometric factor used in Elliptical Integral, dimensionless 

KI =  stress intensity factor, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5) 

KI
s =  SIFs at s = c, b and l, various Equations, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5) 

KIc =  critical stress intensity factor (fracture toughness), M1L-0.5t-2, psi-in.0.5 (Pa.m0.5) 

𝐾ூ
௧௜௣ =  stress intensity factor at the tip, M1L-0.5t-2, psi-in.0.5 (Pa.m0.5) 

l = distance to the tip of the crack in Fig. 7.5, M0L1t0, ft (m) 

L = distance in Eq. (7.3), M0L1t0, ft (m) 

p = pressure in the crack, M1L-1t-2, psi (Pa) 

p(y) = pressure in the crack in vertical direction, M1L-1t-2, psi (Pa) 

p() = pressure in the crack at elemental distance, M1L-1t-2, psi (Pa) 

p(0,1) = pressure distribution in the crack along transformed distance, M1L-1t-2, psi (Pa) 

r = number of degrees in Chebyshev polynomials, unitless 

t =  transformation parameter in Eq. (7.5), dimensionless 

t0, t1 =  values of t for given elemental displacements, dimensionless 

uy(x) = displacement distance (width) along crack-axis x, , M0L1t0, inch (mm) 

w =  crack half-length, distance in Eq. (7.3), M0L1t0, ft (m) 

y = half-gap between two fractures in Eq. (7.3), M0L1t0, in. (m) 

0,r = coefficients of Chebyshev polynomials, M1L-1t-2, psi (Pa) 
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 = uniaxial stress normal to the elliptical crack, M1L-1t-2, psi (Pa)  

1,2,3 = tri-axial stresses, Fig. 7.4, M1L-1t-2, psi (Pa) 

𝜉 =  elemental distance in Eq. (7.5), M1L1t0, ft (m)
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Chapter 8 

Summary and Conclusions 

The performance from a fracturing treatment can be maximized if the treatment results in a 

desired geometry, i.e., where the effective fracture half-length reaches the designed value and 

the conductive fracture adequately covers but remains bound within the payzone. To 

accomplish this goal, the height growth is often modeled based on various numerical schemes 

that account for various critical parameters such as stress distribution in the formation and rock 

mechanical properties. The accuracy of prediction however depends on the workings of the 

model, and it is not uncommon to see variation in outcomes from various simulators and an 

overall mismatch of predicted and observed data. This shortcoming often results in unfavorable 

treatment outcomes which negatively effects the well performance.  

A new model to accurately predict the fracture height growth in various cases was 

developed in this study. The model was then extended to incorporate additional features to 

expand its application to cases that are difficult to model with typical simulators. The key 

highlights and conclusions from the study are provided in the text below where the new height 

growth prediction model is referred to as “model”. 

8.1. Base Model Construction and Application 

1) The underlying theory related to fracture height growth modeling is presented in 

Chapter 2 which also provides an insight into the existing body of literature. 

2) The height growth model construction steps are provided in Chapter 3. The 

mathematical semi-analytical model developed using Excel VBA coding script, 

employs new and unique approach to develop a fracture height and location versus net 

pressure map to assist in fracture growth predictions.  

8.1.1. Base Model Development Steps 

a. Developed a layered mathematical model set up that uses array tables to store 

input formation depths, layer thicknesses, layered stresses and formation 

mechanical properties, and formation layer leakoff characteristics as inputs. 

b. Develop codes to solves non-linear equations for multiple layers of input data 

by employing Bisection, Newton-Raphson (NR), or a combination to determine 

the location of input height for given stress and mechanical property 

distribution. 
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c. Calculate net pressures and fracture width for every fracture height where the 

solution could be obtained. 

8.1.2. Base Model Features 

a. In default calculations, the fracture location is not force fed into the simulator 

as is the case in some of the current simulators, though the simulator does 

provide such an option if so desired. Instead, the model determines the best 

location for a given input height which makes it more realistic and often moves 

the center of the fracture away from the point where the fracture initiates. 

b. To speed up the calculations, the calculation engine employs a unique algorithm 

to arrive at the root in minimum number of steps.  

c. Solutions for a 100-layered model can be obtained within 3 minutes. The error 

for NR method is around 10-7 % and that from Bisection is 10-5 %.  

d. Fracture height versus net pressure mapping can be developed for two modes:  

i. for cases where the height increases proportionally to the net pressure 

owing the defined stress profile and, 

ii. for cases where an alternate height-net-pressure pair solution is possible 

where a taller fracture may be obtained for lower net pressure. This 

condition will arise if a certain stress barrier is overcome and the stresses 

above the barrier are significantly lower.  

8.1.3. Base Model Testing 

a. The model was successfully tested and benchmarked with industry data prior to 

applying on real world cases. During the development phase other models such 

as those described in Chapter 2, were also constructed, and tested to ensure that 

the current model can satisfactorily repeat the published data.  

b. The model was accurately able to replicate the  published data in both solution 

modes mentioned in item 2.d above as is shown in Chapter 3.  

8.1.4. Application of Base Model to Case Histories 

a. The model was employed to evaluate height growth in several real-world cases 

that conformed to equilibrium model approach where the fracture advancement 

was at a slower pace and fluid leakoff could be ignored. Also, in these cases, 

the fracture pressure was near uniform due to slow injection rates ranging from 
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8 to 12.0 bbl/min in fracture heights that were reasonably contained.  

i. In majority of cases, the model predicted results were within 5% of the 

field observed fracture height obtained from Radioactive (RA) survey 

conducted on vertical wells. 

ii. The model was able to accurately forecast fracture height growth in case 

of offshore frac pack application where the treatment was pumped at 

30.0 bbl/min.  

b. Apart from accurately predicting the total extent of fracture height growth as a 

function of net pressure, the model was also able to accurately predict the 

migration of the center of the fracture with respect to vertical depth, which was 

based on the distribution of stress in the formation and the associated 

mechanical properties such as fracture toughness and elastic moduli. 

8.2. Model Enhancements 

8.2.1. Modification: Non-Uniform Fracture Pressures  

8.2.1.1. Enhancement 

The model predicted height did not match with the ones observed in the field for cases that 

were pumped with foamed fluid where higher net pressures than those predicted by solid 

mechanics solution were observed which led to mismatch of up to 30% from the predicted 

versus observed data. The model was modified by adding possible effects of non-uniform 

pressure distribution to match the observed results.  

8.2.1.2. Application 

The enhancement was successfully tested by using a calibration constant which is simple to 

determine using initial boundary conditions. A double nested loop was also introduced to allow 

for model carrying out simultaneous calculations for height for a given net pressure. The results 

are shared in Chapter 4.  

8.2.2. Modification: New Method of Fracture Toughness Calculations 

8.2.2.1. Enhancement 

Fracture height growth model was improved to allow generation of fracture toughness values 

with the help of a fracture tip velocity-based relationship developed in the study by combining 

the lubrication equation with solids mechanics solution. The new relation accounts for power 

law fluid indices and addresses the concerns of dependence of fracture toughness on fracture 

geometry and other rock mechanical properties. 
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8.2.2.2. Features  

The model develops a dynamic library of fracture toughness for several inputs of fracture tip 

or fluid velocity ranging from 0.1 to 1125 ft/s for input apparent viscosity and power law fluid 

indices and subsequently generates net pressures for each case. These are stored in virtual 

memory to assist in pressure history matching. 

8.2.2.3. Application 

The new feature was routinely used in most of the simulations or wherever there the input 

fracture toughness values were not reliable. The results of some of the simulations are provided 

in Chapter 5.  

8.2.3. Modification: Pressure History Matching 

8.2.3.1. Enhancement 

To evaluate the fracture height growth evaluation based on pressure data, the model was 

enhanced to carry out net pressure history matching of rate and pressure data recorded during 

a hydraulic fracturing treatment. The simulator uses fluid rheology values such as n and K, and 

fluid leakoff for the purpose of history matching and in essence, combines the equilibrium 

model with non-equilibrium approach where fracture tip velocity is an important parameter.  

8.2.3.2. Features 

The pressure history match features allow input of per second data that describes injection rate, 

wellhead density and net pressure data. The time stamped data output includes net pressure, 

fracture height, fracture half-length, fracture width, fluid efficiency, fluid shear rate, fracture 

velocity, fracture tip pressures, calibration values, fracture compliance, viscous component of 

net pressure, and several such parameters.  

8.2.3.3. Application 

The pressure history match feature was applied on several treatments and the results are 

provided in Chapters 5 to 7. 

8.2.4. Modification: Width Induced Net Stresses 

8.2.4.1. Enhancement 

Using the principles of induced stresses normal to the body of the main fracture with width 

generation, a method that employs local fracture compliance was used to temporarily increase 

layered stresses for mathematical modeling purposes to predict fracture height growth 

truncation across layers that facilitated larger widths. The increase in stresses was confined to 

a local site where higher widths were calculated and were treated as an apparent value for 
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calculation purposes only. The induced stresses however showed an ability to limit fracture 

growth across susceptible layers of low strength, both moduli and stress wise. 

8.2.4.2. Features 

With this enhancement, a library of enhances stresses was generated for every fracture input 

height. The arrays were stored in virtual memory and published as desired, thus providing the 

history of evolution of apparent net stresses. The result of this feature is shown Chapter 6.  

8.2.4.3. Application 

The width induced net-stress feature was used on three case studies that included shallow 

vertical wells completed in coals and a deep horizontal well completed in shales. In all cases 

an abrupt fracture growth truncation was observed, which was successfully replicated by the 

model as detailed in Chapter 6.  

8.2.5. Modification: Fracture Complexity as Height Growth Constraint 

8.2.5.1. Enhancement 

Using a 2D approximation of 3D fracture growth, the height growth model was enhanced to 

detect the presence of non-continuous discrete collinear fractures at the fracture tips which 

allowed determining the layer interfaces where a horizontal fracture can develop. The presence 

of horizontal fractures can deter or slow down fracture vertical growth and explain some of the 

fracture truncation observed in the field measurements likes MS surveys or RA tracer surveys.  

8.2.5.2. Features 

Similar to other enhancements, if the model detects the presence of discrete triple collinear 

cracks or presence of fine hairline fracture widths between seemingly disconnected fracture it 

revaluates the SIF and applies them to next iteration which is reasonable for a slowly advancing 

fracture.  The output string of data is stored in virtual arrays that are used as necessary to 

compute fracture height growth. The library can be printed to spreadsheet if necessary.  

8.2.5.3. Application 

The new enhancement and features were applied to the cases histories including the one where 

casing shear was observed. The model was able to predict the probable depth where the incident 

occurred. In other examples there was good agreement between the observed and predicted 

total fracture heights.  

8.3. Summary of General Observations 

1) A good agreement between the modeled and observed fracture height was seen in all 

the cases where the treatments were placed at low rates limited to 12.0 bbl/min (1.91 
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m3/s) that promote a contained fracture.  

2) There could be high mismatch of up to 30% in cases where fluid friction in the fracture 

dominates the pressure behavior. However, if properly accounted for, accurate 

predictions of height growth can be made. 

3) The uncertainty in fracture toughness can results in inaccurate prediction of fracture 

height and hence other more accurate semi-analytical methods proposed in this study 

are recommended.  

4) Observations and Recommendations from Pressure History Matching  

a. The pressure history match of several field case studies shows that in most 

cases, nearly 65% of fracture height is generated in the first few minutes of the 

treatment and is influenced by the injection rate and net pressure rate.  

b. The output from this model was successfully compared to that from a well-

known commercial stimulator for majority of the treatment, though the current 

model outperformed the numerical simulator when evaluating early time  

fracture growth.  

c. To limit fracture height growth a gradual increase in injection rates at the start 

of fracturing treatment is recommended. 

d. The pressure history match shows that with increase in fluid  viscosity the 

simulated net pressure increases and could lead to higher vertical growth if other 

factors allow, whereas the fracture half-length tends to stay the same or even 

recede if there is high leakoff. 

e. Increased leakoff results in limited fracture geometry (height and length). 

f. With a drop in apparent fluid viscosity, the fracture growth may recede, but the 

fracture length will increase unless the drop in fluid viscosity also results in 

enhanced fluid leakoff. 

g. In general, high viscosity and low leakoff tend to stabilize the numerical 

simulations and helps in better convergence as compared to low viscosity fluids 

with higher leakoff values.  

5) The inclusion of width induced net stress in the height growth calculation procedure 

constraints the fracture growth; the simulator may limit the number of fracture height 

inputs for which the solutions would be available and in doing so may position them 

differently in the vertical stress field when compared to the simulation when the net 

stress feature is not used.  

6) Fracture containment can be predicted with reasonable accuracy for cases where the 
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fracture complexity is suspected owing to the prevalent stresses in the layered 

formations of contrasting material properties. 

7) The diagnostic plot comprising the count and frequency of non-zero widths occurrences 

can help in prediction of likelihood of horizontal fracture components in real time. 

The problem of modeling fracture height is a complex one given the uncertainties in the process 

and several variables that are at play. However, this study shows that with a concerted effort, 

and adopting models developed in the study, the wide gap between the predicted and observed 

results can be narrowed. The evaluation of several case studies shows that the model after 

accounting for all critical inputs can predict the fracture growth accurately. 
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APPENDIX A 

Solution to Simonson et al. (1978) 3-layered asymmetric stress model is presented here. The 
stress intensity factor at the upper tip of the fracture, is given as follows (Rice 1968): 

𝐾ூ
௧௢௣ =

1

ඥ𝜋𝑙
∫ 𝑝(𝑦)ට

𝑙+𝑦

𝑙−𝑦

+𝑙
−𝑙

𝑑𝑦 = 𝐼 .................................................................................(A1) 

To obtain stress intensity factor at the bottom tip of the fracture, the term under the square root 
is expressed as  ඥ(𝑙 − 𝑦) (𝑙 + 𝑦)⁄ . Furthermore, following boundary conditions are applicable 
for a 3-layered system shown in Fig. 4.  
𝑝(𝑦) = (𝑝 − 𝜎௖) for − 𝑙 < 𝑦 < −𝐿  ......................................................................(A2a) 
𝑝(𝑦) = (𝑝 − 𝜎௔) for − 𝐿 < 𝑦 < 𝐿  ........................................................................(A2b) 
𝑝(𝑦) = (𝑝 − 𝜎௕) for     𝐿 < 𝑦 < 𝑙  .........................................................................(A2c) 
 
Thus, 

I =
ଵ

√గ௟
൬∫ 𝑝(𝑦)ට

௟ା௬

௟ି௬

ି௅

ି௟
𝑑𝑦 + ∫ 𝑝(𝑦)ට

௟ା௬

௟ି௬

௅

ି௅
𝑑𝑦 + ∫ 𝑝(𝑦)ට

௟ା௬

௟ି௬

௟

௅
𝑑𝑦൰ .............(A3) 

where, each of the integral on can be denoted as I1, I2 and I3. Multiplying the integral by 

ඥ𝑙 + 𝑦 ඥ𝑙 + 𝑦ൗ , the following form is obtained: 

I√𝜋𝑙 = ∫ 𝑝(𝑦)
௟ା௬

ඥ௟మି௬మ
𝑑𝑦

ି௅

ି௟
 + ∫ 𝑝(𝑦) 

௟ା௬

ඥ௟మି௬మ
𝑑𝑦

௅

ି௅
+ ∫ 𝑝(𝑦)

௟ା௬

ඥ௟మି௬మ
𝑑𝑦

௟

௅
  .....(A4a) 

Or, 

I√𝜋𝑙 = 𝐼ଵ + 𝐼ଶ + 𝐼ଷ  ....................................................................................................(A4b) 
By using the integration rules, 

∫
௟

ඥ௟మି௬మ
𝑑𝑦 = 𝑙 sinିଵ ቀ

௬

௟
ቁ  and ∫

௬

ඥ௟మି௬మ
𝑑𝑦 =  −ඥ𝑙ଶ − 𝑦ଶ ...........................(A5) 

the individual definite integral components of  (A4) can be expanded and solved as follows: 

Iଵ = (𝑝 − 𝜎௖) ቂ−𝑙 sinିଵ ቀ
௅

௟
ቁ − √𝑙ଶ − 𝐿ଶ + 𝑙 sinିଵ(1) + √𝑙ଶ − 𝑙ଶቃ ...............(A6a) 

which results in the following form after simplification: 

Iଵ = (𝑝 − 𝜎௖) ቂ
గ

ଶ
𝑙 −𝑙 sinିଵ ቀ

௅

௟
ቁ − √𝑙ଶ − 𝑙ଶቃ.........................................................(A6b) 

Similarly, I2 and I3 can be solved to obtain the following: 

Iଶ = 2(𝑝 − 𝜎௔)𝑙 sinିଵ ቀ
௅

௟
ቁ ........................................................................................(A7) 

Iଷ = (𝑝 − 𝜎௕) ቂ
గ

ଶ
𝑙 −𝑙 sinିଵ ቀ

௅

௟
ቁ − √𝑙ଶ − 𝑙ଶቃ ........................................................(A8) 

For final solution, I1, I2 and I3 are added, and the various terms are grouped after rearrangement. 
The final solution is shown in Eq. (A9) below and in Eq. (2.11) in the main text.    

𝐾ூ
௧௢௣

=
√గ௟

ଶ
(2𝑝 − 𝜎௕ − 𝜎௖) +

ଵ
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௟

గ
sinିଵ ቀ

௅

௟
ቁ (𝜎௖ + 𝜎௕ − 2𝜎௔) (A9) 

The stress intensity factor near the bottom tip of the fracture can be derived using a similar 
procedure. If the barrier strengths are identical (c = b), the stress intensity factor can be 
obtained with the following equation:  

𝐾ூ = (𝜎௕ − 𝜎௔)ට
௟

గ
ቄ2 sinିଵ ቀ

௅

௟
ቁቅ + (𝑝 − 𝜎௕)√𝜋𝑙 ...............................................(A10) 
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APPENDIX B 

The solution to the Mack et al. (1992) model that takes after Fung et al. (1987) model, for stress 

intensity factor at the bottom tip of the fracture is presented below because of its relevance to 

the approach adopted in this study. The stress intensity factor at the bottom tip of the fracture 

is defined as follows by Rice (1968): 

𝐾ூ
௕௢௧ =

ଵ

√గ௔
∫ [𝑝 − 𝜎(𝑧)]ට

௔ି௭

௔ା௭

௔

ି௔
𝑑𝑧  .......................................................................(B1) 

Substituting p with 𝑝௖௣ + 𝜌௙𝑔൫ℎ௖௣ − 𝑧൯ to account for gravity, and rearranging results in: 
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For a multi-layered set up of – a to a comprising 5 layers such as Fig. 2.3 and Fig. 2.4, (B2) 

can be expanded as: 
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𝑎 − 𝑧

𝑎 + 𝑧

௛రି௔

௛యି௔

𝑑𝑧  

− ∫ 𝑌𝑧ට
௔ି௭

௔ା௭

௛రି௔

௛యି௔
𝑑𝑧 +  ∫ [𝑋 − 𝑆ହ]ට

௔ି௭

௔ା௭

௔

௛రି௔
𝑑𝑧 − ∫ 𝑌𝑧ට

௔ି௭

௔ା௭

௔

௛రି௔
𝑑𝑧  ............(B3) 

where,  𝑋 = 𝑝௖௣ + 𝜌௙𝑔ℎ௖௣ , 𝑌 = 𝜌௙𝑔 and Si denotes the corresponding stresses in layers 1 to 

n. Also, for sake of convenience the expression defining the stress intensity factor for a 5-

layered problem may be expressed as a sum of integrals I1 to I5, where each integral is a part 

of Eq. (B3), with I1 described in Eq. (B5). 

𝐾ூ
௕௢௧ = I = Iଵ + Iଶ + Iଷ + Iସ + Iହ .........................................................................(B4) 

In the solution process, the integrals are first multiplied by √𝑎 − 𝑧 √𝑎 + 𝑧⁄  which results in the 

following format, shown for the first pair of integrals on the RHS of (B3) with limits from -a 

to h1-a.  

I1 = ∫ [𝑋 − 𝑆ଵ]
௔ି௭

√௔మି௭మ

௛భି௔

ି௔
𝑑𝑧 −  ∫ 𝑌𝑧

௔ି௭

√௔మି௭మ

௛భି௔

ି௔
𝑑𝑧  ......................................(B5) 
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Applying the rules of integration as shown in Eq. (A5) and substituting sin-1(z/a) with cos-1(-

z/a), the integral I1 is expanded as follows:  

Iି௔
௛భି௔

= (𝑋 − 𝑆1) ቂ𝑎 cos−1 ቀ
−𝑧

𝑎
ቁ + √𝑎2 − 𝑧2 +

1

2
𝑧√𝑎2 − 𝑧2 − 𝑎√𝑎2 − 𝑧2 −

𝑎2

2
cos−1 ቀ

−𝑧

𝑎
ቁቃ ..................................................................................................................(B6) 

Now substituting z = -a and z = h1-a for the limits of I1 and solving this first pair, the following 

expression is obtained after simplification: 

𝐴 = 𝑎𝑋 cosିଵ ቀ
௛ିଶ௛భ

௛
ቁ + 𝑋ඥℎଵ(ℎ − ℎଵ) − 𝑎𝑆ଵ cosିଵ ቀ

௛ିଶ௛భ

௛
ቁ −

𝑆ଵඥℎଵ(ℎ − ℎଵ) ........................................................................................................................ 

−𝑎𝑌ඥℎଵ(ℎ − ℎଵ) −
௔మ

ଶ
𝑌 cosିଵ ቀ

௛ିଶ௛భ

௛
ቁ +

௒

ଶ
(ℎଵ − 𝑎)ඥℎଵ(ℎ − ℎଵ) .............(B7) 

where is A is the interim solution to I1. Similarly, the solutions to the remainder of integration 

terms  of Eq. (B3) are shown below, where B, C, D and E represent the solution to every pair 

of Eq. (B3).  

𝐵 = 𝑎𝑋 cosିଵ ൬
ℎ − 2ℎଶ

ℎ
൰ + 𝑋ඥℎଶ(ℎ − ℎଶ)

− 𝑎𝑋 cosିଵ ൬
ℎ − 2ℎଵ

ℎ
൰ − 𝑋ඥℎଵ(ℎ − ℎଵ) 

−𝑎𝑆ଶ cosିଵ ൬
ℎ − 2ℎଶ

ℎ
൰ − 𝑆ଶඥℎଶ(ℎ − ℎଶ) + 𝑎𝑆ଶ cosିଵ ൬

ℎ − 2ℎଵ

ℎ
൰

+ 𝑆ଶඥℎଵ(ℎ − ℎଵ) 

−𝑎𝑌ටℎ2(ℎ − ℎ2) −
𝑎2

2
𝑌 cos−1 ቆ

ℎ − 2ℎ2

ℎ
ቇ +

𝑌
2

(ℎ2 − 𝑎)ටℎ2(ℎ − ℎ2)

+ 𝑎𝑌ටℎ1(ℎ − ℎ1) 

+
௔మ

ଶ
𝑌 cosିଵ ቀ

௛ିଶ௛భ

௛
ቁ −

௒

ଶ
(ℎଵ − 𝑎)ඥℎଵ(ℎ − ℎଵ) ................................................(B8) 

𝐶 = 𝑎𝑋 cosିଵ ൬
ℎ − 2ℎଷ

ℎ
൰ + 𝑋ඥℎଷ(ℎ − ℎଷ)

− 𝑎𝑋 cosିଵ ൬
ℎ − 2ℎଶ

ℎ
൰ − 𝑋ඥℎଶ(ℎ − ℎଶ) 
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−𝑎𝑆ଷ cosିଵ ൬
ℎ − 2ℎଷ

ℎ
൰ − 𝑆ଷඥℎଷ(ℎ − ℎଷ) + 𝑎𝑆ଷ cosିଵ ൬

ℎ − 2ℎଶ

ℎ
൰

+ 𝑆ଷඥℎଶ(ℎ − ℎଶ) 

−𝑎𝑌ටℎ3(ℎ − ℎ3) −
𝑎2

2
𝑌 cos−1 ቆ

ℎ − 2ℎ3

ℎ
ቇ +

𝑌
2

(ℎ3 − 𝑎)ටℎ3(ℎ − ℎ3)

+ 𝑎𝑌ටℎ2(ℎ − ℎ2) 

+
௔మ

ଶ
𝑌 cosିଵ ቀ

௛ିଶ௛మ

௛
ቁ −

௒

ଶ
(ℎଶ − 𝑎)ඥℎଶ(ℎ − ℎଶ) ................................................(B9) 

𝐷 = 𝑎𝑋 cosିଵ ൬
ℎ − 2ℎସ

ℎ
൰ + 𝑋ඥℎସ(ℎ − ℎସ)

− 𝑎𝑋 cosିଵ ൬
ℎ − 2ℎଷ

ℎ
൰ − 𝑋ඥℎଷ(ℎ − ℎଷ) 

−𝑎𝑆ସ cosିଵ ൬
ℎ − 2ℎସ

ℎ
൰ − 𝑆ସඥℎସ(ℎ − ℎସ) + 𝑎𝑆ସ cosିଵ ൬

ℎ − 2ℎଷ

ℎ
൰

+ 𝑆ସඥℎଷ(ℎ − ℎଷ) 

−𝑎𝑌ටℎ4(ℎ − ℎ4) −
𝑎2

2
𝑌 cos−1 ቆ

ℎ − 2ℎ4

ℎ
ቇ +

𝑌
2

(ℎ4 − 𝑎)ටℎ4(ℎ − ℎ4)

+ 𝑎𝑌ටℎ3(ℎ − ℎ3) 

+
௔మ

ଶ
𝑌 cosିଵ ቀ

௛ିଶ௛య

௛
ቁ −

௒

ଶ
(ℎଷ − 𝑎)ඥℎଷ(ℎ − ℎଷ) ................................................(B10) 

𝐸 = 𝑎𝑋 cosିଵ(−1) + 𝑋ඥ𝑎ଶ − 𝑎ଶ − 𝑎𝑋 cosିଵ ൬
ℎ − 2ℎସ

ℎ
൰ − 𝑋ඥℎସ(ℎ − ℎସ) 

−𝑎𝑆ହ cosିଵ(−1) − 𝑆ହඥ𝑎ଶ − 𝑎ଶ − 𝑎𝑆ହ cosିଵ ൬
ℎ − 2ℎସ

ℎ
൰ + 𝑆ହඥℎସ(ℎ − ℎସ) 

−𝑎𝑌ඥ𝑎2 − 𝑎2 −
𝑎2

2
𝑌 cos−1(−1) +

𝑌
2

(𝑎)ඥ𝑎2 − 𝑎2 + 𝑎𝑌ඥ𝑎2 − 𝑎2 

+
௔మ

ଶ
𝑌 cosିଵ ቀ

௛ିଶ௛ర

௛
ቁ −

௒

ଶ
(ℎସ − 𝑎)ඥℎସ(ℎ − ℎସ) ................................................(B11) 

The final solution to stress intensity factor at the lower tip of the fracture is obtained after 

summing the individual solutions presented in equations  (B7) to (B11) and substituting the 

values of X, Y and a.  After simplification and rearrangement of the terms, the solution can be 

expressed as follows, which is the same as Eq. (2.18) in the main text:  
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𝐾ூ
௕௢௧ = ට

గ௛

ଶ
ቂ𝑝௖௣ − 𝜎௡ + 𝜌௙𝑔 ቄℎ௖௣ −

௛

ସ
ቅቃ + ට

ଶ

గ௛
∑ (𝜎௜ାଵ −௡ିଵ

௜ୀଵ

𝜎௜) ቂ
௛

ଶ
cosିଵ ቀ

௛ିଶ௛೔

௛
ቁ + ඥℎ௜(ℎ − ℎ௜)ቃ  ....................................................................(B12) 

where, the term Si in solution is substituted by i. The solution to the stress intensity factor at 

the upper tip of the fracture can be obtained similarly. 
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APPENDIX C  

Solution to functions F(t) and G(t): 

Example solution to the function F(t) for a 4-layer case is provided below: 

𝐹(𝑡) =
ି௧

ଶగ
ቂ∫

௣భ

√௧మି௨మ

ௗభ

଴
𝑑𝑢 + ∫

௣మ

√௧మି௨మ

ௗమ

ௗభ
𝑑𝑢 + ∫

௣య

√௧మି௨మ

ௗయ

ௗమ
𝑑𝑢 + ∫

௣ర

√௧మି௨మ

௧

ௗయ
𝑑𝑢ቃ  .............(C1) 

where p1 to pk are solutions to even function f(y) that can be obtained from Eq. (6.11) and d1 to 

d2 denote elevation to the interfaces that the fracture crosses to reach point the tip t. Now using 

the rule  ∫ 𝑑𝑢 √𝑡ଶ − 𝑢ଶ =  sinିଵ(𝑢 𝑡⁄ )⁄  , each term can be solved and regrouped after 

expansion as follows: 

𝐹(𝑡) =
ି௧

ଶగ
ቂ(𝑝ଵ − 𝑝ଶ) sinିଵ ቀ

ௗభ

௧
ቁ + (𝑝ଶ − 𝑝ଷ) sinିଵ ቀ

ௗమ

௧
ቁ + (𝑝ଷ − 𝑝ସ) sinିଵ ቀ

ௗయ

௧
ቁቃ −

௣ర௧

ସ
 .........(C2) 

which can be further simplified to the form shown below which is same as Eq. (19). 

𝐹(𝑡) =
ି௧

ଶగ
∫

௣

√௧మି௨మ

௧

଴
𝑑𝑢 =

ି௧

ଶగ
ቂ∑ (𝑝௡ିଵ − 𝑝௡)௞

௡ୀଵ sinିଵ ቀ
ௗ೙

௧
ቁቃ −

௣ೖ௧

ସ
 ..............(C3) 

The solution for G(t), can be obtained by first expanding the integral shown in Eq. (6.10) as 

follows:  

𝐺(𝑡) =
ିଵ

ଶగ௧
ቂ∫

௨ ௤భ

√௧మି௨మ

ௗభ

଴
𝑑𝑢 + ∫

௨ ௤మ

√௧మି௨మ

ௗమ

ௗభ
𝑑𝑢 + ∫

௨ ௤య

√௧మି௨మ

ௗయ

ௗమ
𝑑𝑢 + ∫

௨ ௤ర

√௧మି௨మ

௧

ௗయ
𝑑𝑢 ቃ ...........(C4) 

Now, and employing the rule ∫ 𝑢 𝑑𝑢 √𝑡ଶ − 𝑢ଶ =  −√𝑡ଶ − 𝑢ଶ  ⁄  on Eq. (A4) the following 

expression is obtained after expanding and grouping the common terms: 

𝐺(𝑡) =
ିଵ

ଶగ௧
ቂ(𝑞ଶ − 𝑞ଵ) ඥ𝑡ଶ − 𝑑ଵ

ଶ +(𝑞ଷ − 𝑞ଶ) ඥ𝑡ଶ − 𝑑ଶ
ଶ +(𝑞ସ − 𝑞ଷ)ඥ𝑡ଶ − 𝑑ଷ

ଶቃ  ............(C5) 

After summing up the terms and applying the appropriate signage, the following final 

expression is obtained which is same as Eq. (6.15).  

𝐺(𝑡) =
ିଵ

ଶగ௧
∫

௨ ௤

√௧మି௨మ

௧

଴
𝑑𝑢 =

ଵ

ଶగ
ቂ∑ (𝑞௡ିଵ − 𝑞௡)௞

௡ୀଵ ඥ𝑡2 − 𝑑𝑛
2  ቃ .........................(C6) 

 

Solution to England and Green width Equation:  

The general solution for F(t) in Eq. (6.9) can be expressed as the sum of two integrals as shown 

below: 

∫
ி(௧)

ඥ௧మି௬మ

௔

|௬|
𝑑𝑡 = 𝐼 =

ିଵ

ଶగ
∫

௣௧ ୱ୧୬షభቀ
೏೙

೟
ቁ

ඥ௧మି௬మ

௔

|௬|
𝑑𝑡 −  

ଵ

ସ
∫

௣௧

ඥ௧మି௬మ

௔

|௬|
𝑑𝑡  ...........................(C7) 

where p is the solution to even function, and  pk is the value of even function at the last interface 

that the fracture has crossed. This integral is of the form I = ‒I1 ‒ I2 where for Eq. (C7), I is the 

integral on left-hand side (LHS) , I1 is the first term on the RHS, and I2 represents the second. 

The solution is given as: 
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−𝐼ଵ =
ଵ

ଶగ
൜𝑝√𝑡ଶ − 𝑑ଶ ൬𝑑ඥ𝑡ଶ − 𝑦ଶ sinhିଵ ൬

√௧మିௗమ

ඥௗమି௬మ
൰ − 𝑦ඥ𝑡ଶ − 𝑦ଶ tanhିଵ ൬

௬

௕

√௧మିௗమ

ඥ௧మି௬మ
൰൰ൠ ÷

√𝑡ଶ − 𝑑ଶඥ𝑡ଶ − 𝑦ଶ  +  𝑝ඥ𝑡ଶ − 𝑦ଶ sinିଵ ቀ
ௗ

௧
ቁ + 𝑐 ...........................................................(C8) 

where c is the constant of integration. The solution to integral I2 can be expressed as follows: 

−𝐼ଶ =  
ଵ

ସ
∫

௣௧

ඥ௧మି௬మ

௔

|௬|
𝑑𝑡 =

௣

ସ
ඥ𝑎ଶ − 𝑦ଶ ..............................................................................(C9) 

Using the known relationships: 

sinhିଵ(𝑥) = ln൫1 + √𝑥ଶ + 1൯ 𝑎𝑛𝑑 tanhିଵ(𝑥) =
ଵ

ଶ
ln ቀ

ଵା௫

ଵି௫
ቁ   .......................................(C10) 

Eq. (C8) can be simplified further to result in the following form:  

−𝐼ଵ =
ଵ

ଶగ
൜𝑝 ൬𝑑 ln ൬

√௧మିௗమାඥ௧మି௬మ

ඥௗమି௬మ
൰ −

௬

ଶ
ln ൬

ௗඥ௧మି௬మା௬√௧మିௗమ

ௗඥ௧మି௬మି௬√௧మିௗమ
൰൰ + ඥ𝑡ଶ − 𝑦ଶ sinିଵ ቀ

ௗ

௧
ቁൠ  + 𝑐  ..(C11) 

Applying the definite integral when incrementally integrating from points yb to yt, the generic 

solution  shown below where the placeholder variable t and integration constant c vanish: 

−𝐼ଵ|௬ౘ

௬౪ =
ଵ

ଶగ
ቐ𝑝 ቌ𝑑 ln ቌ

ට௬౪
మିௗమାට௬౪

మି௬మ

ඥௗమି௬మ
ቍ −

௬

ଶ
ln ቌ

ௗට௬౪
మି௬మା௬ට௬౪

మିௗమ

ௗට௬౪
మି௬మି௬ට௬౪

మିௗమ
ቍ +

ඥ𝑦୲
ଶ − 𝑦ଶ sinିଵ ቀ

ௗ

௬౪
ቁቍቑ −

ଵ

ଶగ
ቐ𝑝 ቌ𝑑 ln ቌ

ට௬ౘ
మିௗమାට௬ౘ

మି௬మ

ඥௗమି௬మ
ቍ −

௬

ଶ
ln ቌ

ௗට௬ౘ
మି௬మା௬ට௬ౘ

మିௗమ

ௗට௬ౘ
మି௬మି௬ට௬ౘ

మିௗమ
ቍ +

ට𝑦ୠ
ଶ − 𝑦ଶ sinିଵ ቀ

ௗ

௬ౘ
ቁቍቑ...................................................................................................(C12) 

Further simplification with the help of known relation ln(x)-ln(y) = ln(x/y) leads to: 

−𝐼ଵ − 𝐼ଶ =
ଵ

ଶగ
ቐ𝑝 ቌ𝑑 ln ቌ

ට௬౪
మିௗమାට௬౪

మି௬మ

ට௬್
మିௗమାට௬್

మି௬మ
ቍ −

௬

ଶ
ln ቌ

ௗට௬౪
మି௬మା ௬ට௬౪

మିௗమ

ௗට௬౪
మି௬మି௬ට௬౪

మିௗమ
×

ௗට௬ౘ
మି௬మି௬ට௬ౘ

మିௗమ

ௗට௬ౘ
మି௬మା௬ට௬ౘ

మିௗమ
ቍ +

ቈඥ𝑦୲
ଶ − 𝑦ଶ sinିଵ ቀ

ௗ

௬౪
ቁ − ට𝑦ୠ

ଶ − 𝑦ଶ sinିଵ ቀ
ௗ

௬ౘ
ቁ቉ቍቑ +

௣

ସ
ඥ𝑎ଶ − 𝑦ଶ  .................................(C13) 

Equation (C13) can be used to obtain the value of F(t) for the crack between the incremental 

points yt and yb, across the various interfaces that the fracture has crossed, for the points of 

interest y in vertical direction, and elevations of the interfaces d from the mid-points of the 

fracture. In a similar manner, the solution to the G(t) term in Eq. (6.9) can also be obtained as 

shown below. 

∫
௬ ீ(௧)

ඥ௧మି௬మ

௔

|௬|
𝑑𝑡 = 𝐼 =  

ଵ

ଶగ
∫

 ௬௤√௧మିௗమ

௧ඥ௧మି௬మ

௧

଴
𝑑𝑡  ................................................................(C14) 
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The general solution to the above integral is as follows, where q is the solution to the odd 

function: 

𝐼 = −
௤

ଶగ
൜𝑑ln ൬

ඥ௧మି௬మି√௧మିௗమ

√௧మିௗమ
൰ − 𝑙𝑛 ൬

ඥ௧మି௬మା√௧మିௗమ

√௧మିௗమ
൰ + 𝑦ln ൬

ඥ௧మି௬మି√௧మିௗమ

ඥ௧మି௬మା√௧మିௗమ
൰ൠ .............(C15) 

As in Eq. (C13) above is the integration is carried across point yb and yt, then we get the 

following form after simplification and using the relation ln(x)-ln(y) = ln(x/y)  : 

−𝐼|௬ౘ

௬౪ = −
௤

ଶగ
ቐ𝑑 ln ቌ

ௗට௬౪
మି௬మା௬ට௬౪

మିௗమ

ௗට௬౪
మି௬మି௬ට௬౪

మିௗమ
×

ௗට௬ౘ
మି௬మି௬ට௬ౘ

మିௗమ

ௗට௬ౘ
మି௬మା௬ට௬ౘ

మିௗమ
ቍ + 𝑦ln ቌ

ට௬౪
మି௬మିට௬౪

మିௗమ

ට௬౪
మି௬మାට௬౪

మିௗమ
×

ට௬ౘ
మି௬మାට௬ౘ

మିௗమ

ට௬ౘ
మି௬మିට௬ౘ

మିௗమ
ቍቑ ............................................................................................................(C16) 

Since yt = -yb because the points are equidistant from the center of the fracture, the expression 

can be simplified further after substitution to result in the following expression for G(t): 

−𝐼|௬ౘ

௬౪ = −
௤

ଶగ
ቐ𝑑 ln ቌ

ௗට௬౪
మି௬మା௬ට௬౪

మିௗమ

ௗට௬౪
మି௬మି௬ට௬౪

మିௗమ
×

ௗට௬ౘ
మି௬మି௬ට௬ౘ

మିௗమ

ௗට௬ౘ
మି௬మା௬ට௬ౘ

మିௗమ
ቍ + 𝑦ln ቌ

ට௬ౘ
మି௬మାට௬ౘ

మିௗమ

ට௬౪
మି௬మାට௬౪

మିௗమ
ቍቑ ......(C17) 

On integration across the entire fracture height and accounting for various interfaces and layers, 

the solution to Eq.(C17) yields to Eq. (6.17). 
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APPENDIX D 

(A) Input Screen: Example Height Growth Model Input 

43 Layer Model. Perforation Depth at Layer No. 22.  
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(B) Input Screen: Simulator Control Screen  
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