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ABSTRACT
Materials are a vital part of human life, as such it is important that the precursors to these
materials are sustainable. Currently, these precursors are synthesized by the oxidation of
petroleum derived hydrocarbons. Petroleum is not sustainable and is feared to deplete soon.
Derivatizing the currently available biomass-based building blocks will diversify and
increase the number of precursors for materials and gradually reduce our reliance on

petrochemicals.

The carboxylic dianhydride, CBDAN-1, a potential biomass-derived precursor for material
synthesis, was synthesized from the photodimerization of maleic anhydride or the
dehydration of CBTA-1. CBTA-1 was synthesized from the photodimerization of maleic
and fumaric acids using UV-C (254 nm). Other carboxylic dianhydrides; CBDAN-3,
CBDAN-4, and CBDAN-5, were synthesized from the photodimerization of citraconic
anhydride and 2,3-dimethylmaleic anhydride respectively using black light. The CBDANSs
showed good thermal stability, making them desirable to be used as precursors for material

synthesis.

To demonstrate the versatility of CBDANs, CBDAN-1 was used to synthesize eight
cyclobutane containing diacids using an amine, alcohol, or Grignard reagent as
nucleophiles. The TGA of the synthesized diacids showed that these molecules were
thermally stable enough to be incorporated as precursors in polymer synthesis. A

carboxylic dianhydride (CBDAN-2), synthesized from maleic anhydride and benzene was

xXii



used to synthesize polyimides with 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane,
2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane and hexane-1,6-diamine. The
polyimides showed desirable properties such as high Tq. Metal-organic materials
synthesized from the polytopic ligand CBTA-2, a derivative of CBDAN-2, showed good
thermal and interesting thermochromic behavior. CBDAN-2 was also used to synthesize

two dicarboxylic acids which can be used in the synthesis of polyesters.

Furanones share several features in common with the furanediones. The latter has been
shown to be a versatile precursor in material synthesis. We therefore hypothesized that
dimers of furanones could also be explored in the synthesis of precursors to materials.
Cyclobutane-containing dilactones (CBDL) were obtained from the photodimerization of
2(5H)-furanone, 3-methyl-2(5H)-furanone, and 5-hydroxy-2(5H)-furanone under UV-C
(254 nm). The thermal stability of these dilactones showed that they are stable enough to

be incorporated into polymers.

In conclusion, in this dissertation, the synthesis and characterization of several
cyclobutane-containing diacids, dianhydrides and dilactones have been shown. Also, one
of the synthesized dianhydride was used to synthesize polyimides and MOMs. All these
monomers and materials were synthesized from potential biomass-derived precursors

using simple, efficient, and ecofriendly methods.
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CHAPTER ONE

An Efficient and Concise Synthesis of Cyclobutane-1,2,3,4-dianhydride from
Maleic Anhydride, Maleic and Fumaric Acids Using ECO-UV

1.0.Introduction

Cyclobutane-1,2,3,4-dianhydride (CBDAN-1) is a versatile building block that can be
used in the synthesis of polyimides, metal-organic materials, diacids, etc. Little
attention has been paid to the synthesis of CBDAN-1 from biomass derived precursors.
Deriving this important building block from renewable sources would go a long way to
help in the quest to phaseout petrochemicals. CBDAN-1 can be synthesized by the
direct dimerization of maleic anhydride or the dehydration of cyclobutane-1,2,3,4-
tetracarboxylic acid (CBTA-1). CBTA-1 can be obtained from the direct dimerization

of fumaric and maleic acids.

Direct sensitization-excitation photochemical reactions in solid state are governed by
the molecule’s topochemical crystal lattice packing and the absorption properties of
reacting species.'® In this regard, reaction in solid-state will only occur if the
conformation of the reacting molecules and distance from the closest molecule in the
crystal lattice agree with the Schmidt principles.? 2 Moreover, the reacting species must
have absorbance in the wavelength of the exciting photons. Also, the photons must have
the right amount of energy to excite reacting species.* Designing these experiments not
only require finding olefins that have the appropriate crystal packing but also sorting

the photon source which will excite reacting species.> &7



Several light sources providing appropriate energy for molecular activation in
photochemistry have been described in literature with each having their unique
advantages.®® 1 Research in our group has largely been carried out using UV lamps,
which is nontraditional. These lamps, termed ECO-UV (Energy-efficient, Cost-
effective, and Operator-friendly) have been shown to be cost effective and
environmentally friendly. The goal of using ECO-UV is to efficiently manage energy

while reducing cost in the production process.

To find the appropriate lamps to use, the UV-Vis absorptions of maleic and fumaric
acids were explored to understand their absorption pattern in solid state. The data
obtained showed that maleic and fumaric acids have a high absorbance between 200
nm - 260 nm and 380 nm, respectively (Figure 1). In this regard, it was hypothesized
that low pressure mercury monochromatic lamps producing UV-C (254 nm) could
produce enough energy to excite both maleic and fumaric acid molecules, and upon

excitation, they would dimerize to CBTA-1.

Interestingly, individual maleic acid molecules in the crystal lattice packing are parallel
and 3.7 A apart, and therefore follow the Schmidt principle (Figure 2).2 ** 12 On the
other hand, individual fumaric acid molecules are unparallel, and the distance between
the olefins are 3.6 A and 4.7 A, respectively (Figure 3).” ** This packing limits clean
photodimerization of fumaric acid in solid state. To achieve photo reactivity in this

case, the crystal lattice packing must be altered.

The crystal packing of commercially available FA is incongruence with the Schmidt’s

principles governing photoreaction in solid state.’® Based on previous work in our

2



laboratory, we hypothesized that there should be a crystalline form of fumaric acid that
would dimerize. To find this crystalline form, FA was melted and immediately
subjected to recrystallization at low or high temperatures to force recrystallization in
extreme conditions. This way we hypothesized that a new, less unfavorable, crystalline
form might be formed which could be photoreactive. It was found out that FA

molecules in sublime crystals were parallel and closely packed (Figure 3).
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Figure 1: UV-Vis absorbance of maleic and fumaric acids in solid state

Figure 2: Crystal structure of maleic acid showing: Right: Oak Ridge Thermal
Ellipsoid Plot (ORTEP). Left: the distance between adjacent maleic acid molecules



a) b) c)
Figure 3: Crystal structure of fumaric acid showing: (a) Oak Ridge Thermal Ellipsoid
Plot (ORTEP) representing 50% electron density. (b) the distance between adjacent
fumaric acid molecules in the commercialized form. (c) the distance between adjacent

fumaric acid molecules in the sublime form. The molecules become more organized,
parrallel and closely packed.

1.1.Synthesis and Applications of Maleic Anhydride, Fumaric and Maleic

Acids

Maleic acid is widely synthesized from the hydrolysis of maleic anhydride, the latter is
obtained from the catalytic oxidation of butane or benzene. Recently, attention has been
paid to the synthesis of maleic acid from biomass-based precursors. Maleic acid is a
versatile precursor used in the making of unsaturated polyester resins, lubricant
additives, surface coatings, textiles, photographic chemicals, plasticizers,
pharmaceutical products, and agricultural chemicals.* It is also used industrially as an
adhesion promoter for different substrates such as nylon and zinc coated metals, as a
corrosion inhibitor and anti-scaling agent. Both liquid and vapor phase oxidation routes
are currently being studied and improved for the synthesis of MA from furan, furfural

and 5-hydroxylmethylfurfural .5 16



Initial studies in this area began using Oz or H20> as oxidants over widely available
catalysts.?” Later studies to improve MA selectivity were conducted in liquid phase
using homogeneous HsPMo1,04 and VO(acac), catalysts.”® & 1 Heterogeneous
catalysis has also been reported with the vapor phase oxidation of furfural and 5-
hydroxylmethylfurfural using vanadium oxide or vanadium-molybdenum mixed oxides
supported on Al>Os. Recent studies have focused on the improvement of yield and
selectivity via solvent and catalytic system optimizations.?> Shi and co-workers
exploited a liquid phase oxidation of furfural using combination of the copper nitrate
with phosphomolybdic acid as a catalyst to selectively convert furfural to maleic acid

with a 49.2% yield and 51.7% selectivity respectively.?

Yu and co-workers reported the direct synthesis of maleic acid from xylose based on
the use of deep eutectic solvents following a standard H>O> dehydration of xylose. They
obtained a maleic acid yield of 20.8%, along with 5.0% of fumaric acid.?? Yang and co-
workers developed a method for the synthesis of MA from furfural using a combination
of H202 and KBr/graphitic carbon nitride (g-CsN4) as a catalyst in an aqueous phase
reaction system. They obtained optimal yields of 70% with good selectivity.® Recently,
Thiyagarajan and co-workers reported an efficient way to combine photochemistry and
electro- or biochemistry to oxidize furfural to MA.23 The optimal overall yield obtained

in their study was 97% with almost 100% conversion in certain conditions.

Maleic anhydride is the third most important anhydride for industrial uses trailing
phthalic and acetic anhydrides.?* It has a wide variety of industrial applications such as

it is used in the synthesis of fumaric, malic, tartaric, maleic acids, succinic acid, and its



anhydride. It is used in the polymer industry, for making coatings, polyesters, alkyd
resins, BDO, manufacturing of paints, varnishes, and lube oil additives. It is also used
as a feedstock in the production of tetrahydrophthalic anhydride, THF and
butyrolactone.? Recently, there has been increasing reports on the production of MAn
from biomass-derived feedstocks as concerns on the exploitation of fossil fuels

looms.26-28

The earliest proposals in this area came from Yedur and co-workers who reported the
production of MAnN from biomass-derived succinic acid via succinic anhydride. In their
work, molybdenum oxide-based catalysts were used for the dehydration reactions.?® In
recent years many successes have been achieved with the gas or liquid phase oxidation
of furfural and levulinic acid. Chatzidimitrioua and Bond, recently reported a catalytic
pathway for the synthesis of maleic anhydride (MAnN) via oxidative cleavage of the
methyl carbon in levulinic acid over supported various vanadates with MAn yields as
high as 71 %.2° Agirre and co-workers reported an industrial scale production route in
the synthesis of MAnN from furfural. They demonstrated the production of MAn from
furfural via aqueous phase oxidation, using H20O. as oxidant, and via gas phase

oxidation, using molecular oxygen.?*

Fumaric acid (FA) has wide applications in food additives, food acidulants, unsaturated
polyester resins (UPR), alkyd resins, paper resins, plasticizers, lubricating oils, oil field
fluids, inks, dermatological formulations, local therapeutics, and other
pharmaceuticals.’* % The FA market share is expected to reach USD 974.4 million by

2027. FA production began in 1932 using an acid-catalyzed isomerization of maleic



acid. It is current produced from fermentation.®® 3! The deprotonated form of fumaric
acid, fumarate, is an intermediate metabolite in the citric acid and urea cycles used by
living organisms, making this molecule very attractive as a fermentation product.3? Xu
and co-workers reported on the synthesis of FA by the direct fermentation of biomass
feedstock using metabolically engineered Saccharomyces cerevisiae.®? The final
engineered S. cerevisiae strain could produce FA up to a concentration of 1675£52 mg

! without a change in microbial growth at optimal output in fed-batch culture.

Swart and co-workers developed a method of producing fumarate from Rhizopus oryzae
using the Crabtree effect to reduce ethanol by-product formation. They reported a
fumarate production rate of 0.150 g L™* h™? per glucose addition at a rate of 0.197 g L™*
h™* with a resulting yield of 0.802 g g fumarate.®® Recent studies have focused on the
improvement of the microbial strain, elimination of by-product and production cost
reduction. Recombinant strains of the microorganisms, Rhizopus oryzae, Escherichia
coli, Saccharomyces cerevisiae, and Torulopsis glabrata and their mutants are currently

used in the production of fumarate.®*

1.2. Results and Discussion

1.2.1 Synthesis of CBDAN-1 from CBTA-1 and Maleic Anhydride

CBDAN-1 was synthesized from either the dimerization of maleic anhydride (MAn) or
the dehydration of CBTA-1. X-ray crystallography revealed the structure of CBDAN-
1 to be consistent with the cis, trans, cis conformation.® 3 3 In the synthesis of

CBDAN-1 from maleic anhydride, crystals started precipitating from solution at about



3 hours and reached a 70 % reaction yield at about 72 hours. Higher yield was not

attained since the reaction takes place in the solution phase.

After 72 hours, the solvent was evaporated, and the residue dried. *H NMR analysis of
the residue showed it contained maleic acid from hydrolysis of maleic anhydride,
residual CBDAN-1, and residual maleic anhydride. This residue was dissolved in ethyl
acetate and irradiated with blacklight, and more CBDAN-1 was formed from
unhydrolyzed maleic anhydride increasing yield by 5 %. In the solution phase, some of
the MAn is hydrolyzed to maleic acid (MA) and fumaric acid (FA), which do not
dimerize under these conditions (Table 1). The reaction was faster when the solvent
was dried with molecular sieves and ran under nitrogen. Saturation of the ethyl acetate
solution with MAnN does not increase the yield under these conditions probably because
more photons are needed to drive the reaction, which could not be provided by the four

bulbs used.

Table 1: Optimization of the synthesis of CBDAN-1 from MAn

S/IN Solvent Condition Time Yield (%) | Component of
(hours) Residue
1 Ethyl acetate Under N2 | 72 68 MAnN, MA, FA,
+ impurities
2 Ethyl acetate (Dried n/a 60 70 MAnN +
with molecular sieves) impurities
3 Ethyl acetate (Dried Under N> | 72 75 MAnN +
with molecular sieves) impurities
4 Chloroform n/a 72 40 MAnN, MA, FA,
+ impurities
5 Acetone n/a 72 n/a MAnN, MA, FA,
+ impurities
6 Acetonitrile n/a 72 n/a MAnN, MA, FA,
+ impurities




Dehydration of CBTA-1 in acetic anhydride also yielded CBDAN-1. Acetic anhydride
was used as both a solvent and as a component in the reaction. The water released from
CBTA-1 hydrolyzes acetic anhydride to acetic acid thereby promoting the formation of
product. The product was obtained with a greater than 93 % yield. CBDAN-1 was also
synthesized from CBTA-1 by heating CBTA-1 to 230 °C in an oven for 24 hours. From
the TGA analysis of CBTA-1, we observed a 7.3 % loss in weight around 250 °C and
no further weight drop until around 300 °C (Figure 6). This loss in weight is consistent
with the loss of a water molecule. The sample was then analyzed by heating CBTA-1
to between 220 °C (with an increment of 5 °C) and 250 °C, holding for a few minutes
at each temperature to observe the chemical transformation in the molecule. This
change was monitored through *H NMR spectroscopy. *H NMR spectroscopy showed
that there was the conversion of CBTA-1 to CBDAN-1 at temperatures between 225
°C and 230 °C. Further work showed that heating CBTA-1 to 230 °C and holding at this
temperature for 24 hours was optimal for the reaction. Therefore, this method offers a
simple and solvent free method of synthesizing CBDAN-1 from CBTA-1. Moreover,
given the fact that CBTA-1 can be synthesized from maleic and fumaric acids, which
are easily obtained from the biomass, this solvent free route of synthesizing CBDAN-

1 could offer a competitive advantage to synthesis from maleic anhydride.

1.2.2. Synthesis of CBTA-1 from Maleic Anhydride, Fumaric and Maleic Acids
CBTA-1 was synthesized from the dimerization of MA or FA. X-ray crystallography
revealed the structure of the product to be consistent with the cis, trans, cis

conformation.® *® The crystal packing and hydrogen bonding interactions of CBTA



have been well studied and they present incredible features in building MOFs.>’ CBTA-
1 was readily synthesized from commercially available MA through a [2+2]
photodimerization in the solid-state under UV-C. The UV-Vis absorption spectra of
MA showed high absorption between 200 to 260 nm (Figure 1) explaining why lamps
producing UV-C were the most appropriate to drive the reaction. This solvent-free
photocycloaddition is possible because the distance between complementary m—m
interactions in adjacent MA molecules is less than 4.2 A (Figure 2), which agrees with
the Schmidt principle and hence should dimerize. The reaction begins at about 2 hours
of exposure and completes within 24 hours with > 98 % conversion of MA to CBTA-1
(Figure 3). The current procedure to dimerize MA was established after several reaction

conditions were tried and optimized for the synthesis of CBTA-1 (Table 1).
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Table 2: Optimization of reaction conditions of photodimerization of maleic acid

SN Irradiation Method of Solvent  Temp Time Outcome
Source Irradiation (hours)
1 UV-B  Solution  Acetonitrile  rt 2 FA?
2 uUvVv-B Solution Acetone rt 72 FA?
3 UV-B Solution ~ CHCls rt 2 FA?
4 uvVv-B Solution Benzene rt 72 FA?
5 UV-B  Solution ~ Water rt 72 FA?
6 uv-B Solution HCI (aq) rt 72 MA
7 UV-B  Solution  NaCl (aq) rt 72 FA?
8 uvVv-B Solid-state na rt 72 MA
9 UV-C  Solution  Acetonitrile  rt 2 MA
10 Uv-C Solution Acetone rt 72 MA
11 UV-C  Solution  CHCIs rt 2 MA
12 uv-C Solution Benzene rt 72 MA
13 UV-C  Solution  Water rt 72 MA
14 uv-C Solution HCI (aq) rt 72 MA
15 UV-C  Solid-state NaCl(ag)  rt 24 MA
16 Uv-C Solid-state na rt 24 CBTA-1
17 Hg Solid-state na rt 72 CBTA-1+FA +
impurities
18 Hg Solid-state KBr rt 72 CBTA-1+FA +
impurities
19 Hg Solid-state NaCl rt 72 CBTA-1+FA +
impurities

2 FA is fumaric acid; UV-A, UV-B and Hg isomerizes MA to FA

CBTA-1 was also readily synthesized from FA through a [2+2] photodimerization in
the solid-state under UV-C. The crystal packing of the commercially available form of
FA shows that individual FA molecules are unparallel, and the distance between the
olefins are 3.6 A and 4.7 A respectively (Figure 5).” %3 This form, though photoreactive,
produces multiple products. However, when the commercial form of FA is heated to its

sublimation temperature at about 220 °C, crystals are formed on the sides of the reaction

11



vessel. These crystals called sublime crystals can dimerize to CBTA-1 upon irradiation
with germicidal lamps producing UV-C. The dimerization of sublime crystals of FA
also occurred after the crystals had been subjected to grinding. This suggests that the
photo reactive crystalline form created by heating is stable upon grinding. Intriguingly,
the crystal packing of FA molecules in the sublime form has individual FA molecules

that are parallel, but the distance between the olefins is 4.4 A (Figure 3).

Contrary to the Schmidt principle, this crystalline form dimerized upon photo
irradiation in solid state. The UV-Vis absorption spectra of FA showed high absorption
between 200 to 380 nm (Figure 1) explaining why lamps producing UV-C were the
most appropriate to drive the reaction. The reaction begins at about 2 hours of exposure
and completes within 24 hours with > 98 % conversion of FA to CBTA-1 (Figure 5).
The reaction product was characterized using H, 3C, NMR, FT-IR spectroscopy, and

X-ray crystallography.
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Figure 4: The 1H NMR spectra (DMSO-d6) as the reaction proceeds at times, 0, 12
and 24 hours, respectively. The maleic acid characteristic olefin peak at 6.27 ppm
completely disappears while the characteristic methine peak of the cyclobutane ring of
the CBTA-1 at 3.44 ppm emerges.
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Figure 5: The *H NMR spectra (DMSO-ds) as the reaction proceeds at times, 0, 12 and
24 hours, respectively. The fumaric acid characteristic olefin peak at 6.68 ppm
completely disappears while the characteristic methine peak of the cyclobutane ring of
the CBTA-1 at 3.44 ppm emerges.

1.2.3. Initial thermal studies on the stability of CBDAN-1 and CBTA-1

Though CBDAN-1 and CBTA-1 were first synthesized long time ago, there have been
limited studies on their thermal properties. These thermal property studies provide data
which give insight into the applicability of these intermediates in the synthesis of
polymeric materials. TGA showed that CBTA-1 had its Ts, Tioand Tq at 259 °C, 306
°C and 330 °C, respectively. CBTA-1 starts rapidly losing weight at 242 °C and at 330
°C, 50 % of its weight was lost (Figure 6). On the other hand, CBDAN-1 had its Ts, T1o

and Tq at 315 °C, 342 °C and 368 °C, respectively. CBDAN-1 starts rapidly losing
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weight at 290 °C and at 368 °C, 50 % of its weight was lost. This shows that CBDAN-
1 and CBTA-1 are thermally stable, and the DSC data confirms the results (Figure 7).
This comes as no surprise since the cyclobutane ring has previously been shown to
possess good thermal, physical and chemical properties.®? This explains why CBTA-
1 has been used in the synthesis of MOFs and CBDAN-1 in the synthesis of
polyimides.***° In both applications, the precursors must be thermally stable. This
initial thermal and physical evaluation shows that the cyclobutane ring in these
monomers has stability comparable to other existing CBDA monomers.*" %6 It also
shows that CBDAN-1 is thermally stable enough and could therefore serve as a

precursor in material synthesis.*> 4
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Figure 6: TGA and DTG curves of CBDAN-1 and CBTA-1 a) TGA curves of
CBDAN-1 and CBTA-1 recorded from 50 °C to 600 °C with a heating rate of 20 °C-min
L under N2 atmosphere, b) DTG curves of CBDAN-1 and CBTA-1 recorded from 50
°C to 600 °C with a heating rate of 20 “C-min’* under N, atmosphere
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Figure 7: The first heating DSC curve of CBTA-1 recorded from 50 °C to 280 °C with
a heating rate of 10 “°C-min! under N.

1.3. Photoreaction of Maleic Anhydride Derivatives

1.3.1. Synthesis of CBDAN-3, CBDAN-4, CBTA-3, and CBTA-4

CBDAN-3 and CBDAN-4 were synthesized from citraconic anhydride using low
energy black light. Citraconic anhydride can be obtained from the distillation of
fermentation derived itaconic acid. The photodimerization of citraconic anhydride
occurred in solution phase and no visible crystals or precipitate was formed. However,
after 72 hours, when the solvent was evaporated using a rotavapor, CBDAN-3 and
CBDAN-4 separated out as a mixture with a greater than 98% yield for the combined
product. *H NMR shows that the two products are formed with a 1:1 ratio. No other
side products were observed for this reaction. It is possible that there are two ways in
which CiAn dimerization can be achieved, giving rise to the two products vis-a-vis

head-to-tail and head-to-head products. However, after the reaction is complete, if the
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vial is set opened for solvent to evaporate gradually, one isomer crystalizes and the

other remains as an oil.

'H NMR showed that the crystal is a single product, CBDAN-4, while the oil contains
two products, CBDAN-3, and CBDAN-4. Saturation of the ethyl acetate solution with
MAn does not increase the yield under this setup, probably because more photons are
needed to drive the reaction, which could not be provided by the four bulbs used.
Synthesis of CBTA-3 and CBTA-4 was conducted by hydrolyzing CBDAN-3 and
CBDAN-4 in a like manner like CBDAN-1. Hydrolysis of the mixture of CBDAN-3
and CBDAN-4 to CBTA-3 and CBTA-4 completed within 2 hours when the mixture
was heated to reflux in a solution of water/ethyl acetate (3:1) to give a mixture of

CBTA-3 and CBTA-4.

1.3.2. Synthesis of CBDAN-5

CBDAN-5 was readily synthesized from 2,3-dimethylmaleic anhydride using low
energy black light. 2,3-Dimethylmaleic anhydride can be isolated from the roots of the
plant species Colocasia esculenta.® CBDAN-5 crystals started precipitating from
solution in about 3 hours and reached a 95 % reaction yield in about 4 days. After 4
days, the solvent was evaporated and the residue dried. Analysis of the residue using
'H NMR showed that the only compound found in the residue is unreacted 2,3-
dimethylmaleic anhydride. This showed that no side products were produced in this
reaction. This analysis also showed that residual water in the solvent did not hydrolyze
2,3-dimethylmaleic anhydride to 2,3-dimethylmaleic acid as was the case in the

synthesis of CBDAN-1. This is probably because the two methyl substituents make it
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difficult for the ring to open. Also, with only one product formed, it indicates there is
only one possible way for this molecule to react in the solution. This is in contrast with
the photodimerization of citraconic anhydride whereby an almost equal amount of two
isomers is formed. This result is, however, consistent with the photodimerization of

MAnN, which forms only one product in solution.

Conclusion can also be drawn that a substitution of the proton with a methyl group in
the cyclobutane ring makes it difficult for the molecule to be hydrolyzed, presumably
due to the steric hinderance or electron donation from the methyl groups. This might
explain why no hydrolyzed products are found in the case of citraconic anhydride
photodimerization. Saturation of the ethyl acetate solution with 2,3-dimethylmaleic
anhydride does not increase the yield under these experimental conditions probably
because more photons are needed to drive the reaction, which could not be provided by

the four bulbs used.

1.3.3. Thermal Studies on CBDANSs

Like CBDAN-1, the carboxylic dianhydrides showed good thermal stabilities
establishing the potential of these precursors to be used as monomers for materials
synthesis. The Ts, Tioand Tq of the various CBDANS have been summarized in Table
2. For comparison, the data for CBDAN-1 has been included in the table. None of the
CBDANSs lost weight until about 200 °C (Figure 8). This initial study shows that the
cyclobutane ring in the CBDAN:S is stable and they could therefore serve as a precursor
in material synthesis.® 3° Since the CBDANSs have already been used in the synthesis

of polyimides, they can however be converted into their CBTAs and exploited in the
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synthesis of MOMSs, or they can be hydrolyzed with various nucleophiles to make
diacids, which can be used in material synthesis.*> 6 It was interesting to know that

CBDAN-1 is the most thermally stable. Attempts to hydrolyze CBDAN-5 were

unsuccessful.
Table 3: Thermogravimetric analysis data for CBDAN-1, CBDAN-3, and CBDAN-5

Thermogravimetric analysis (TGA)

Sample Ts T1o T4
CBDAN-1 316 340 365
CBDAN-3 240 261 410
CBDAN-5 281 300 345

20



a
) 100
80
*
= 60
ol CBDAN-1
=
40 —— CBDAN-3
——CBDAN-5
20
0
50 150 250 350 450 550
Temperature (°C)
3.5 r 60
3 - 50
Bas B
g - 40
g - CBDAN-1 £
£ —— CBDAN-3 30 2
F 15 3
B ——CBDAN-5 - 20 E
z 1 T
a a
0.5 10
0 0
50 150 250 350 450 550
Temperature (°C)

Figure 8: TGA and DTG curves of CBDAN-1, CBDAN-3 and CBDAN-5 a) TGA
curves of CBDAN-1, CBDAN-3 and CBDAN-5 recorded from 50 °C to 600 °C with a
heating rate of 20 °C-min? under N, atmosphere, b) DTG curves of CBDAN-1
CBDAN-3 and CBDAN-5 recorded from 50 °C to 600 °C with a heating rate of 20
°C-min’t under N2 atmosphere
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1.4. Conclusion

This work showed simple, efficient, and ecofriendly methods to synthesize CBDAN-1,
a molecule with potential to become a platform for the synthesis of several cyclobutane-
containing diacids (CBDAs). CBDAN-1 was synthesized through direct dimerization
of maleic anhydride or dehydration of CBTA-1. CBTA-1 was synthesized by direct
dimerization of fumaric and maleic acids in the solid state using germicidal lamps.
CBTA-1 was converted to CBDAN-1 by heating for 24 hours at 230 °C or through
acetic anhydride assisted dehydration. Initials thermal studies on CBDAN-1 and
CBTA-1 showed that these molecules were thermally stable to be incorporated into
polymers or MOMs. Based on these promising results, the photoreaction of derivatives
of maleic acid were studied. Citraconic anhydride and 1,2-dimethyl maleic anhydride
also dimerized under irradiation with blacklights. However, photodimerization of
citraconic acid resulted in the formation of two isomers. The derivatives also showed
the desired thermal stability. These dianhydrides could be exploited further to
synthesize MOMs, polyimides or undergo ring opening reactions with various amine,

alcohol, or Grignard bases via nucleophilic reactions to make diacids.
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1.5. Experimental Section
1.5.1. Materials and Procedures

All chemicals were purchased from Alfa Aesar, Sigma-Aldrich, or Acros, and used
without further purification. Blacklight used in the photoreaction was Fiet Electric 7-
watt LED bulb or 15W Eiko EK15526 F15T8/BL. Germicidal lamps used in the
photoreaction was Germicidal lamp T5 G5 39/ 41W ozone free Sankyo Denki Co., Itd.
The solution phase nuclear magnetic resonance spectra (NMR) were recorded with
Bruker AVANCE (*H: 500 MHz, 3C: 125 MHz). Proton and carbon chemical shifts
were reported in ppm downfield from tetramethylsilane (TMS). Spectra were recorded
in DMSO-ds unless otherwise stated. Single crystal X-ray data were collected on a
Bruker Kappa Apex Il Duo X-Ray Diffractometer with Cu Ko (A= 1.54178 A). Infrared
spectroscopy (IR) was recorded on Thermo Scientific Nicolet iS5 FT-IR spectrometer.
Differential scanning calorimetry (DSC) was recorded with a Perkin EImer Jade DSC
with a ramping rate of 20 °C -min! under nitrogen protection. Heat flow was recorded
from both the first heating and cooling curve. Thermogravimetric analysis (TGA) was
carried out with a Hi-Res TGA Q500 from TA Instruments using alumina pans at a
heating rate of 20 “°C-min’t under nitrogen with a sample weight of about 10.0 mg. UV-
Vis spectra were recorded on a Beckman DU400 UV-Vis spectrometer.

1.5.2. Synthesis of Cyclobutane-1,2,3,4-tetracarboxylic Dianhydride (CBDAN-1)
from Maleic Anhydride

Cyclobutane-1,2,3,4-tetracarboxylic dianhydride was prepared by dissolving 1.02 g

(10.0 mmol) of maleic anhydride (MAN) in 20.0 mL of ethyl acetate (EtOAC) in a 20
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mL cornil vial and irradiated between four black lights, two on each side, for 72 hours.
Crystals of the product precipitated to the bottom of the vial as the reaction proceeded.
After 72 hours, the crystals were filtered out, washed with ethyl acetate, and dried at
room temperature for residual solvent to evaporate. About 0.71 g of CBDAN-1 (71 %)
was obtained. The product was analyzed using *H and **C NMR, FT-IR spectroscopy,
and X-ray crystallography. The melting point was shown to be 398°C. 'H NMR ¢
(ppm): 4.11 (s, 4H, CH-cyclobutane); **C NMR (Acetone-ds, 125 MHz) ¢ (ppm): 171
(C=0), 41 (CH-cyclobutane). FT-IR (solid) Vmax (cm™): 3011 (Caliph-H),

1845/1776/1715 (acid anhydride C=0).

O O\ O
hv e
| O 0] O
Blacklights, e
72 hours /
O O o)
Maleic Anhydride CBDAN-1

Scheme 1: Dimerization of maleic anhydride

1.5.3. Synthesis of Cyclobutane-1,2,3,4-tetracarboxylic acid (CBTA-1) from

Maleic Acid (MA)

OH o O
_
o . HO—%., OH
OH Germicidal j -
lamps, 24 hours o\\\\\\ O
o OH HO
Maleic Acid CBTA-1

Scheme 2: Dimerization of maleic acid
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Ground MA powder (102 mg, 0.86 mmol) was placed on a quartz glass slide and evenly
distributed to form a thin layer. The sample on the quartz slide was irradiated with two
germicidal lamps (UV-C) placed at about 2.0 mm from the sample. The reaction
proceeded in the solid state and the powder was mixed every two hours to ensure that
all powder is exposed to the light source. The reaction was completed after 24 hours
with a greater than 99 % conversion rate. The product was analyzed using *H and *3C
NMR, FT-IR spectroscopy, and crystallography. To scale up the reaction, 1.01 g (8.60
mmol) of ground MA powder was placed on a 12.0 cm x 12.0 cm quartz glass slide and
evenly distributed to form a thin layer. The quartz slide was placed between four
germicidal lamps (UV-C) with the lower back part touching one lamp, the upper one
being at about 2.0 mm from the second lamp. The MA powder was irradiated with
stirring every five hours for 3 days. After 3 days, the MA was completely converted to
CBTA-1. The melting point was shown to be 239.4 —241.6 °C. *H NMR § (ppm): 12.59
(s, 4H, COOH) 3.44 (s, 4H, CH-cyclobutane). *3C NMR ¢ (ppm): 172 (COOH), 41
(CH-cyclobutane). FT-IR (solid) vmax (cm™): 3330/2840 (carboxylic acid OH), 2974

(Caliph-H), 1708/1664 (carboxylic acid C=0).
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1.5.4. Synthesis of Cyclobutane-1,2,3,4-tetracarboxylic acid (CBTA-1) from

Fumaric Acid

O OH j’ Q
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OH HO
Fumaric Acid CBTA-1

Scheme 3: Dimerization of fumaric acid

Fumaric acid was heated in a 20 mL scintillation vial to about 200 °C, which caused
recrystallization via sublimation. Sublimed crystals of FA (1.01 g, 8.60 mmol) were
measured and placed on a 12.0 cm x 12.0 cm quartz glass slide and evenly distributed
to form a thin layer. The quartz slide was placed between four germicidal lamps (UV-
C) with the lower back part touching one lamp, the upper one being at about 2.0 mm
from the second lamp. The reaction proceeded in the solid state and the crystals were
mixed every five hours to ensure complete exposure to the light source. The reaction
was completed after 24 hours with a greater than 99 % conversion rate. The product
was characterized using *H and ¥C NMR, FT-IR spectroscopy, and X-ray
crystallography. The melting point was shown to be 239.4 — 241.6 °C. *H NMR ¢
(ppm): 12.59 (s, 4H, COOH) 3.44 (s, 4H, CH-cyclobutane). 3C NMR & (ppm): 172
(COOH), 41 (CH-cyclobutane). FT-IR (solid) Vmax (cm™): 3330/2840 (carboxylic acid

OH), 2974 (Caliph-H), 1708/1664 (carboxylic acid C=0).
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1.5.5. Synthesis of Cyclobutane-1,2,3,4-tetracarboxylic Dianhydride from

(CBTA-1)
Jf/i) O O O
HO— . OH Acetic Acid, >\r -
| Reflux, 02r4 hou:rs 0O O
O O v
\\ Heat, 230 °C for >/
OH HO 24 hours 0) O
CBTA-1 CBDAN-1

Scheme 4: Dehydration of CBTA-1 to CBDAN-1
CBTA-1(1.02g, 4.30 mmol) powder was dissolved in 30.0 mL of acetic anhydride. The

mixture was refluxed for 12 hours. After 12 hours, the acetic anhydride was evaporated
out under vacuum in a rotavapor. The resulting oil left in the round bottom flask was
washed by adding 40.0 mL of a 1:1 mixture of hexane and anhydrous diethyl ether to
the flask and stirred overnight. The following day, a brown precipitate was formed at
the bottom of the flask. This precipitate was washed three times, (4 hours each) with a
1:1 mixture of hexane and anhydrous diethyl ether resulting in a white precipitate. The
precipitate was ascertained to be CBDAN-1 and was essentially pure, requiring no
further purification. The product was characterized using *H and *C NMR, FT-IR
spectroscopy, and X-ray crystallography. The melting point was shown to be 398°C.
!H NMR 6 (ppm): 4.11 (s, 4H, CH-cyclobutane).3C NMR (Acetone-ds, 125 MHz) 6
(ppm): 171 (C=0), 41 (CH-cyclobutane). FT-IR (solid) Vmax (cm™): 3011 (Caliph-H),

1845/1776/1715 (acid anhydride C=0).
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1.5.6. Synthesis of 1,2 and 1,3-dimethyl-cyclobutane-1,2,3,4-tetracarboxylic
dianhydride (CBDAN-3, and CBDAN-4) from citraconic anhydride CiAn
CBDAN-3 was prepared by dissolving 1.01 g (8.90 mmol) of CiAn in 20.0 mL of ethyl
acetate in a 20 mL cornil vial and irradiated between four blacklights, two on each side,
for 72 hours. After 72 hours, ethyl acetate was slowly evaporated in the fume hood and
CBDAN-3 crystallized out. The crystals were washed with chloroform and residual
solvent was evaporated. About 1.00 g of CBDAN-3 (> 98 %) was obtained. The product
was characterized using H and *C NMR, FT-IR spectroscopy, and X-ray

crystallography. The melting point of CBDAN-4 was measured to be 307 °C.

CBDAN-4: *H NMR ¢ (ppm): 3.89 (s, 4H, CH-cyclobutane), 1.37 (s, 6H, CHs). 3C
NMR: 168 (C=0), 44 (CH-cyclobutane), 16 (CHs). FT-IR (solid) Vmax (cm™): 3013

(Caliph-H), 1834/1774 (acid anhydride C=0)

O o] O
Blacklights (hv) >\u,, )(
| o ----- > O 0
EtOAc, 72 hours >/\“‘ :
0O O -0
CBDAN-3
Citraconic Anhydride +
0O ., O
= .-\\/<
0 @)
' ,\<
@)
CBDAN-4

CBDAN-3 & CBDAN-4 =98 %

Scheme 5: Dimerization of citraconic anhydride
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1.5.7. Synthesis of 1,2 and 1,3-dimethyl-cyclobutane-1,2,3,4-tetracarboxylic acid
(CBTA-3 and CBTA-4) from CBDAN-3 and CBDAN-4

CBDAN-3 (1.02 g, 3.80 mmol) was added to a 50.0 mL mixture of water and ethyl
acetate (3:1) in a round bottom flask. The mixture was stirred under reflux for 6 hours.
CBDAN-2 dissolved in the water and was converted to CBTA-2. After 6 hours, the
solution was filtered, and the water/ ethyl acetate was evaporated using a rotavapor
leaving the white product which is essentially pure. About 1.09 g of CBTA-4 (> 98 %)
was obtained. The product was characterized using *H and *C NMR, FT-IR
spectroscopy, and X-ray crystallography. The melting point was measured to be 249.8

-251.2°C.

CBTA-4: 'H NMR § (ppm): 12.50 (s, 4H, COOH), 3.74 (s, 4H, CH-cyclobutane), 1.37
(s, 6H, 2XCH3). 3C NMR ¢ (ppm): 168 (COOH), 44 (CH-cyclobutane), 16 (CHs). FTIR
(solid) Vmax (cm™): 3330/2840 (carboxylic acid OH), 3010 (Caliph-H), 1840/1772 (acid

anhydride C=0).
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Scheme 6: Hydrolysis of CBDAN-3 and CBDAN-4
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1.5.8. Synthesis of 1,2,34-tetramethyl-cyclobutane-1,2,3,4-tetracarboxylic
anhydride (CBDAN-5) from 2,3-dimethymaleic anhydride (DMMAN)

CBDAN-5 was prepared by dissolving 2.00 g (7.90 mmol) of DMMAn in 20.0 mL of
ethyl acetate in a 20 mL cornil vial and irradiated between four black lights for 4 days.
The bulbs were placed two on each side of the cornil flask. Crystals of the product
precipitated to the bottom of the vial as the reaction proceeded. After 4 days hours, the
crystals were filtered out, washed with ethyl acetate, and dried at room temperature for
residual solvent to evaporate. About 1.91 g of CBDAN-5 (95%) was obtained. The
product was characterized using *H and 3C NMR, FT-IR spectroscopy, and X-ray
crystallography. The melting point was shown to be 388 °C. *H NMR 6 (ppm): 1.26 (s,
12H, 4xCHs). 3C NMR § (ppm): 171 (C=0), 50 (CH-cyclobutane), 12 (CHs). FTIR

(solid) Vmax (cm™): 2990 (Caliph-H), 1843/1783 (acid anhydride C=0).

0 O _ 0
EtOAc, hv >\’ 1, ’ E
| 0 . O @)
Blacklights, ) T
4 days / \ =
0 o o)
2 3-Dimethylmaleic Anhydride CBDAN-5

95 %

Scheme 7: Dimerization of 2,3-dimethymaleic anhydride
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CHAPTER TWO

Cyclobutane-1,2,3,4-carboxylic Dianhydride: A Platform for the Synthesis of
Biomass Derived Dicarboxylic Acids for Polymeric Applications

2.0. Introduction

Biobased materials are increasingly becoming widely available due to their advantages
of being sustainable and renewable.*® %% %° Fossil fuels are gradually being alienated as
a source to obtain precursors for material synthesis. This is because of the
environmental concerns associated with their exploration and the huge fluctuations in
the price to obtain them.>™ 2 Petroleum-based precursors to materials are cheap,
versatile, and already overwhelm the materials industry.® > For there to be
competition, materials synthesized from renewable precursors must provide
advantageous attributes. Materials synthesized from building blocks containing
cyclobutane have already been reported to be stable, with good glass transition

temperatures and exhibiting semi-rigidity.3&42

This study was designed to evaluate CBDAN-1 as a platform in which a library of
cyclobutane-containing dicarboxylic acid precursor with several different backbones
could be made. These precursors with varying backbones could offer great material
properties to compete with their counterparts in the non-renewables. Cyclobutane-
1,2,3,4-tetracarboxylic dianhydride CBDAN-1, is a dianhydride that can be synthesized
from the dimerization of maleic anhydride or from the dehydration of cyclobutane-
1,2,3,4-tetracarboxylic acid (CBTA-1).>> CBDAN-1 can be readily derivatized via
reactions with nucleophiles. Upon nucleophilic reactions with various nucleophiles

containing the alcohol, amine functional groups or Grignard reagent, several
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dicarboxylic acids could be synthesized from CBDAN-1. For example, a completely
biobased cyclobutane diacid can be synthesized from furfural (one of the top value-
added chemicals per DOE)®® derived molecules.? 2 This diacid can be synthesized
from the reaction between CBDAN-1 and furfuryl amine, the latter is also obtained

from furfural %’

Maleic anhydride, fumaric and maleic acid are biobased molecules that are the
precursors to CBDAN-1 and can be obtained directly from lignocellulosic biomass via
furfural 16 17. 20. 24, 27, 29,51, 57-5% Fymaric acid offers another advantage in that it can be
obtained through fermentation.®> % These molecules can be used in the synthesis of
CBDAN-1. The goal of this study is to demonstrate that CBDAN-1 can be used to
synthesize a library of cyclobutane containing diacids. CBDAN-1 will be reacted with
various amine, alcohol, or Grignard reagent to generate a library of cyclobutane
containing dicarboxylic acids through nucleophilic reactions (Scheme 1). The
synthesized diacids will then be subjected to thermal studies to evaluate their suitability

for applications in polymeric synthesis.
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2.1. Results and Discussion

2.1.1. Synthesis of CBDAs from CBDAN-1

The synthesis of CBDAs from CBDAN-1 followed a general pattern. Briefly,
nucleophiles readily reacted with the dianhydride yielding the diacid with amines being
more reactive than alcohols. The order of reactivity of amines was 1° >2°>3°. The 1°
amines reacted upon addition to the mixture and the reaction was completed within
minutes. For alcohols, the reaction occurred only with primary aliphatic ones when
reacted in large excess. No reactivity was observed with any other class of alcohols.
Cyclohexanol, tert-butanol and phenol had no reactivity. The product of reaction of
CBDAN-1 with amines yielded both the 1,2- and 1,3- substituted product, the 1,3-

product formed in a larger proportion in all cases.

It was observed that the reaction is controlled by the solvent type such that solvents
where CBDAN-1 had lower solubility favored the 1,3-product. As such it was thought
that if the reaction process can be slowed, one of the products can be isolated. A solvent
in which CBDAN-1 had low solubility was selected for the reactions. The goal was to
reduce solubility and slow the reaction so that as soon as CBDAN-1 dissolves in the
solvent, the nucleophile reacts instantaneously and forms just the more favored 1,3-
product. There would be little time for the less favored 1,2-product to be formed. The
starting materials were added then the solvent added, and the reaction was stirred for
reaction to proceed. The 1,3-product was more favored, while the 1,2-product was not
observed in the precipitate formed. The reaction with isopropyl amine was difficult to
optimize to obtain a single product. However, when the temperature of the reaction
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mixture was dropped to zero, using an ice bath, more of the 1,3-product was formed.
The reaction was then washed with methylene chloride to wash away all the 1,2-

product.

It is worth noting that the 1,2-product has a higher solubility in organic solvents than
the 1,3-product. With piperidine, both 1,2- and 1,3-products were obtained in equal
proportion. Even at temperatures about 0 °C, both products were still formed in almost
equal proportions. When an ice bath made of dry ice and acetone was used to achieve
temperatures of - 80 °C, more of the 1,2-product was obtained. Still there was the 1,3-
product formed. Piperidine being a cyclic 2° amine, its reactivity was somewhat
different from that of isobutyl amine. The product with piperidine was soluble in most
organic solvents. Several attempts to recrystallize the reaction product still could not
achieve the separation of both products. Reaction of CBDAN-1 with benzylamine and
furfuryl amine were similar albeit the ratio of 1,2- and 1,3-product formed with the
latter was higher. However, running the reaction in an ice bath yielded mostly the 1,3-
product. The trace amounts of 1,2-product were removed when the isolated product was
washed with methanol. The CBDA were successfully isolated, and the results are

summarized below (Table 4).
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Table 4: Summary of CBDAX Synthesis

Monomer  Substrate Molecular Molar Mass Yield
Structure Formula (gmol?) (%)
CBDAx-1 @” NH; C22H22N206 410.42 91
CBDAXx-2 ©/NH2 C20H18N2Og 382.37 81.5
CBDAXx-3 O/NHZ C20H30N 2056 394.46 89.5
CBDAXx-4 /'tZ C16H26N206 342.18 86.7
CBDAXx-5 @/\NHZ C1gH1sN20Og 390.34 86.0
CBDAX-6 ~NOH C12H160s 288.25 82.0
CBDAXx-7 OH C22H200g 412.39 81.0
CBDAX-8 C26H2805 508.56 12.2

e

2.1.2. Description of the Structures of CBDAX

The spatial orientation of molecules is very crucial to determine their suitability in
polymeric applications.®! Syntheses of longer chain heavy molecular weight polymers
often occurs when the diacids are farther apart.52 53 Also, if cross-linking is the desired
outcome, orientation and short distances are important. The crystal structures of
CBDAX-1 through CBDAX-4 were obtained. From these, inferences can be made to the

other diacids from their NMR spectra.

2.1.2.1. CBDAX-1 Structure

Single crystals of CBDAXx-1 were unable to be grown directly probably because the
hydrogen bonds formed between individual molecules would not let it. However, an n-
butylamine salt of CBDAX-1 was able to form single crystals, this is probably because
of disruption of the hydrogen bonds formed between CBDAXx-1 molecules by the

butylamine. The short-chain flexible cation, butylammonium, does not destroy the
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structure of CBDA-1, but can be used to fill spaces in the crystal lattice reducing the
chance of disorder. CBDAX-1 crystals were monoclinic with a P21/c space group. The
two cyclobutane rings in each asymmetric unit are planar (Figure 9), indicating less

flexibility of the four-membered ring structure. %

The single crystal of the CBDAXx-1 salt showed that the four carbon atoms on the
cyclobutane ring adopted a coplanar conformation and had carbon-carbon bond
distances of around 1.55 A (Figure 9). The two carboxylic groups on the opposite sides
of the cyclobutane ring have a 180° angle between them. The distance between the two
carboxylic groups is 4.776 A. This distance is similar to the distance between two
carboxylic groups on furan-based building block 2,5-furandicarboxylic acid.®® The
spatial orientation and distance between the two carboxylic acid groups makes it
suitable for polymer synthesis.%® The cyclobutane ring has been shown to have two
exchangeable conformations, planar and puckered, with about 23° difference between
them.®: 67 The limited conformational flexibility of the cyclobutane ring is expected to

give CBDAX-1 a unique semi-rigid character.5” %
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Figure 9: Chemical and x-ray single-crystal structure of CBDAXx-1: (a) chemical
structure (b) One molecule shown as Oak Ridge Thermal Ellipsoid Plot (ORTEP)
representing 50% electron density; (b) The planar conformation adopted by
cyclobutane rings (the two methylene phenyl groups are omitted for clarity).

2.1.2.2. CBDAXx-2 1,2-diacid Structure

In the case of CBDAX-2, in addition to the 1,3- diacid, the 1,2-diacid was also isolated
and the crystal structure reported. The 1,2-diacid product was isolated by evaporating
the solvent that resulted from the reaction pot. This solvent contained a mixture of both
the 1,2- and 1,3-diacids. Their difference in solubility in methanol was exploited to
isolate the 1,2-diacid. The 1,2-diacid is very soluble in methanol, thus the powder
obtained from the filtrate was washed with methanol. Methanol was eventually
evaporated giving the pure 1,2-diacid. Single crystals of CBDAXx-2 1,2 diacid were
grown by slow evaporation in methanol. The crystal showed that methanol fills up
spaces in the crystal lattice reducing the chance of disorder. The crystals were triclinic
with a P-1 space group. The single crystal of the CBDAX-2 1,2 diacid also showed that
the four carbon atoms on the cyclobutane ring adopted a coplanar conformation and
have carbon-carbon bond distances of around 1.55 A (Figure 10). The two carboxylic

groups on the opposite sides of the cyclobutane ring have a 180 ° angle between them.
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The distance between the two carboxylic groups is 3.75 A. This distance is shorter than
the distance between two carboxylic groups on furan-based building block 2,5-
furandicarboxylic acid  and longer than that in phthalic acid.®® This makes CBDAX-2
a promising molecule to explore in polymer synthesis. The limited conformational
flexibility of the cyclobutane ring is expected to give CBDAX-2 a unique semi-rigid

character.®” 68
a) OH 0 b)
(o)
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N
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Figure 10: Chemical and x-ray single-crystal structure of CBDAX- 2 1,2-diacid: (a)
chemical structure (b) One molecule shown as Oak Ridge Thermal Ellipsoid Plot
(ORTEP) representing 50% electron density; (b) The planar conformation adopted by
cyclobutane rings (the two phenyl groups are omitted for clarity).

OH

2.1.2.3. CBDAX-3 Structure

Single crystals of CBDAX-3 were obtained by slow evaporation in methanol. The
crystals were monoclinic with a P21/c space group. The crystal showed that methanol
fills up spaces in the crystal lattice reducing the chance of disorder. The two
cyclobutane rings in each asymmetric unit adopted a planar conformation (Figure 11),
indicating less flexibility of the four-membered ring structure. The carbon-carbon bond
distances of the cyclobutane ring were around 1.55 A. The two carboxylic groups on

the opposite sides of the cyclobutane ring have a 180° angle between them. The distance
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between the two carboxylic groups is 4.74 A. This distance is like the distance between
two carboxylic groups on furan-based building block 2,5-furandicarboxylic acid.®® The
spatial orientation and distance of the two carboxylic acid groups makes it suitable for

polymer construction.

HN__O

wo Yo X
L 4

Figure 11: Chemical and x-ray single-crystal structure of CBDAXx-3: (a) chemical
structure (b) One molecule shown as Oak Ridge Thermal Ellipsoid Plot (ORTEP)
representing 50% electron density; (b) The planar conformation adopted by
cyclobutane rings (the two cyclohexyl groups are omitted for clarity).

2.1.2.4. CBDAXx-4 Structure

Single crystals of CBDAXx-4 were grown by slow evaporation in methanol. The crystal
showed that methanol fills up spaces in the crystal lattice reducing the chance of
disorder. The crystals were triclinic with a P-1 space group. The two cyclobutane rings
in each asymmetric unit adopted a planar configuration, indicating less flexibility of the
four-membered ring structure. The single crystal structure of the CBDAXx-4 shows that
the four carbon atoms on the cyclobutane ring adopted a coplanar conformation and
have carbon-carbon bond distances of around 1.55 A (Figure 12). The two carboxylic
groups on opposite sides of the cyclobutane ring have a 180° angle between them. The
distance between the two carboxylic groups is 4.72 A. This distance is like the distance
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between two carboxylic groups on furan-based building block 2,5-furandicarboxylic
acid.®® This makes this molecule a promising feedstock to be explored in polymer

synthesis.
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Figure 12: Chemical and x-ray single-crystal structure of CBDAXx-4: (a) chemical
structure (b) One molecule shown as Oak Ridge Thermal Ellipsoid Plot (ORTEP)
representing 50% electron density; (b) The planar conformation adopted by
cyclobutane rings (the two tert-butyl groups are omitted for clarity).

2.1.3. Initial thermal studies on the stability of CBDAXs

Thermal studies on potential monomers are important because they provide data which
give a suitable insight to the applicability of this intermediate in the synthesis of
polymeric materials. Polymer syntheses requires stable monomers to be effective,
therefore it is imperative that the initial thermal properties of the CBDAX monomers
are studied (Figures 13, 14 and 15). Table 5 summarizes the melting points of various
CBDAX. Table 6 summaries the Ts, T1oand Tq data for CBDAXx-1 through CBDAX-8.
This initial thermal evaluation showed that the cyclobutane ring in these monomers has
stability similar to other existing CBDA monomers. It also showed that these monomers
are thermally stable enough and could therefore serve as precursors in material
synthesis.
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Table 5: Melting point data for CBDAXx-1 through CBDAX-8

SN Compound Melting point (°C)
1 CBDAXx-1 287.1 —289.2
2 CBDAX-2 > 380 (decomposes)
3 CBDAXx-3 248.8 — 252.1
4 CBDAXx-4 256.8 — 258.0
5 CBDAX-5 262.8 — 264.0
6 CBDAX-6 n/a
7 CBDAX-7 115.6 —117.1
8 CBDAX-8 318.5-320.2

Table 6: Thermogravimetric analysis data for CBDAXx-1 through CBDAX-8

Thermogravimetric analysis (TGA)

Sample Ts T1o Td
CBDAXx-1 262 262 379
CBDAX-2 261 296 438
CBDAX-3 279 298 378
CBDAXx-4 278 297 368
CBDAXx-5 248 256 357
CBDAXx-6 240 271 330
CBDAX-7 301 329 390
CBDAXx-8 306 326 368

42



a)
100
80
< CBDAx 1
w60
= ——CBDAx 2
= X
= ——CBDAx 3
40
——CBDAx 4
20 ——CBDAx 5
0 | V— T
50 150 250 350 450 550
Temperature (°C)
b) 2.5
2 CBDAx 1
——CBDAx_2 ﬂﬂ
L5 ——CBDAx_3 /
£ ——CBDAx_4
= -
w 1 CBDAx 5
&
=
0.5
0 |
50 150 250 350 450 550
-0.5
Temperature (°C)

Figure 13: TGA and DTG curves of CBDAXx-1 via CBDAXx-5 a) TGA curves of
CBDAX-1 via CBDAX-5 recorded from 50 °C to 600 °C with a heating rate of 20
*C-min*t under N, atmosphere, b) DTG curves of CBDAXx-1 via CBDAX-5 recorded
from 50 °C to 600 °C with a heating rate of 20 “C-min! under N2 atmosphere
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Figure 14: TGA and DTG curves of CBDAXx-6 and CBDAX-7 recorded from 50 °C to
600 °C with a heating rate of 20 °C-min under N, atmosphere.
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Figure 15: TGA and DTG curves of CBDAX-8 recorded from 50 °C to 600 °C with a
heating rate of 20 °C-min‘! under N, atmosphere.

2.1.4. Synthesis of CBDExs from CBDAXs

Polyesters are synthesized via condensation reactions between a diacid and a diol.
Initial studies to evaluate if the CBDAXs are suitable for polyester synthesis were
hindered by the high melting points of the compounds and the ability of the compound
to cyclize to form an imide. Melt polymerization is the industrial method of choice in
polyester synthesis. This property of these diacids will pose a huge challenge to material
synthesis. To circumvent this barrier, esters were synthesized from the diacids.
CBDAX-1 through 5 were subjected to methyl ester synthesis. Syntheses of all methyl
esters were successful using two methods. The esters were synthesized either via
Fischer esterification or through their corresponding acyl chloride synthesized by
means of thionyl chloride. The methyl esters had melting temperatures similar to those

of the diacids making it challenging for them to be used in melt polymerization.
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2.1.5. Initial thermal studies on the stability of CBDEXs

Thermal studies on potential monomers are important because they provide data which
give insights into their applicability in the synthesis of polymeric materials. Polymer
syntheses requires stable monomers, therefore it is imperative that the initial thermal
properties of the CBDEX monomers are studied. Table 7 summaries the Ts, Tioand Tqg
data for CBDEx-1 through CBDEXx-5 respectively. This initial thermal evaluation
showed that the cyclobutane ring in these monomers has stability comparable to other
existing CBDA monomers (Figure 16). It also shows that these monomers are thermally

stable enough and could therefore serve as precursors in material synthesis.

Table 7: Thermogravimetric analysis data for CBDEXx-1 through CBDEX-5

Thermogravimetric analysis (TGA)

Sample Ts T1o T4
CBDEXx-1 285 311 353
CBDEXx-2 304 316 442
CBDEXx-3 304 316 353
CBDEx-4 233 242 279
CBDEXx-5 216 230 365
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Figure 16: TGA curves of CBDEx-1 through CBDAX-5 recorded from 0 °C to 600 °C
with a heating rate of 20 “°C-min under N, atmosphere, b) DTG curves of CBDEx-1
through CBDAX-5 recorded from 50 °C to 600 °C with a heating rate of 20 °C-min™*
under N2 atmosphere
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2.2. Conclusion

A platform molecule for the synthesis of several CBDAs was introduced in this work.
This work showed a simple, efficient, and ecofriendly novel method to add up to the
library of cyclobutane containing dicarboxylic acids precursors for polymer synthesis.
CBDAN-1 was used to synthesize a library of cyclobutane containing diacids.
CBDAN-1 was synthesized via direct dimerization of maleic anhydride or dehydration
of CBTA-1. A library of eight CBDAX was synthesized from CBDAN-1 by reaction
with various amine, alcohol, or Grignard bases via nucleophilic reactions. CBDAX-1
through CBDAX-8 had high decomposition temperatures comparable to other
monomers used in polymer synthesis. This initial thermal evaluation shows that these
diacids are thermally stable enough and could therefore be exploited in the synthesis of

desired polymeric materials.

2.3. Experimental Section

2.3.1. Materials and Procedures

All chemicals were purchased from Alfa Aesar, Sigma-Aldrich, or Acros, and used
without further purification. Blacklight used in the photoreaction was Fiet Electric 7-
watt LED bulb or 15W Eiko EK15526 F15T8/BL. Germicidal lamps used in the
photoreaction was Germicidal lamp T5 G5 39/ 41W ozone free Sankyo Denki Co., Itd.
The solution phase nuclear magnetic resonance spectra (NMR) were recorded with
Bruker AVANCE (*H: 500 MHz, $3C: 125 MHz). Proton and carbon chemical shifts

were reported in ppm downfield from tetramethylsilane (TMS). Spin-spin coupling
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constants, J, are given in Hz. Spectra were recorded in DMSO-ds unless otherwise
stated. Single crystal X-ray data were collected on a Bruker Kappa Apex Il Duo X-Ray
Diffractometer with Cu Ko (A = 1.54178 A). Infrared spectroscopy (IR) was recorded
on Thermo Scientific Nicolet iS5 FT-IR spectrometer. Thermogravimetric analysis
(TGA) was carried out with a Hi-Res TGA Q500 from TA Instruments using alumina
pans at a heating rate of 20 “C-min under nitrogen with a sample weight of about 10

mg. UV-Vis spectra were recorded on a Beckman DU400 UV-Vis spectrometer.

2.3.2. Synthesis of CBDAXx-1 from CBDAN-1

In an oven-dried round-bottom flask, cyclobutane-1,2,3,4-tetracarboxylic dianhydride
(2.02 g, 10.20 mmol) was added to 100 mL acetone. Benzylamine (2100 pL, 19.20
mmol), was dropwise added to the flask. The reaction mixture was stirred at room
temperature for one hour. The product precipitated out of solution as the reaction
proceeded and completion of reaction was checked by NMR of the solution. The pure
product was filtered out of the solvent and dried before characterization. The product
was characterized using *H NMR, ¥C NMR, FT-IR spectroscopy, and X-ray

crystallography.

CBDAX-1: 'H NMR § (ppm): 12.40 (s, 2H, COOH) 8.50 - 8.52 (t, J = 5, 2H, CONH)
7.21-7.32 (m, 10H, Ar-H) (dd, J = 10, 5, 2H, CONH-CH,-Ar), 4.21 (dd, J = 10, 5, 2H,
CONH-CH»-Ar) 3.66 (dd, J =5, 10, 2H, cyclobutane-CH-CONH) 3.39 (dd, J =5, 10,
2H, cyclobutane-CH-COOH); *C NMR & (ppm): 173 (CONH) 170 (COOH) 139 128
127 127 (Ar) 42 (cyclobutane-CHCO) 42 (CO-CHa-Ar); FT-IR (solid) Vmax (cm™):

3284 (CONH), 2917 (carboxylic acid OH/aliphatic sp?> C-H) 1691/1642 (carbonyl
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C=0). HRMS (ESI/TOF): Calculated for [M + Na] *, C1sH2002Na*: 433.13; Found:

433.1375.
(0] o) HN 0
(o)
{TTp + (W — on
rt, 1 hour HO 0
0 0 07 NH
CBDAN-1 Benzyl Amine
CBDAx-1

Scheme 9: Synthesis of CBDAXx-1

2.3.3. Synthesis of CBDAX-2 from CBDAN-1

(o) o) NH, E\l; o
Reflux, 12 hours HO (o]
0] (o) (o} 5

CBDAN-1 Aniline

CBDAx-2

Scheme 10: Synthesis of CBDAX-2

In an oven-dried round-bottom flask, cyclobutane-1,2,3,4-tetracarboxylic dianhydride
(2.01 g, 10.20 mmol), was placed in 100 mL acetone. Aniline (1800 pL, 19.20 mmol)
was dropwise added to the flask. The reaction mixture was stirred at reflux temperature

for 12 hours. The product precipitated out of solution as the reaction proceeded and
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completion of reaction was checked by *H NMR of the solution. The pure product was
filtered out of the solvent and dried before characterization. The product was
characterized using 'H NMR, *C NMR, FT-IR spectroscopy, and X-ray

crystallography.

CBDAX-2: 'H NMR & (ppm): 12.49 (s, 2H, COOH) 10.16 (s, 2H, CONH) 7.06 - 7.61
(m, 10H, Ar-H) 3.86 (dd, J =5, 10, 2H, CONH-CH-cyclobutane), 3.56 (dd, J = 5, 10,
2H, COOH-CH-cyclobutane); *C NMR § (ppm): 171 (CONH), 169 (COOH), 119 -
139 (Ar), 52 (cyclobutane-CH-COOH), 42 (cyclobutane-CH-CONH); FT-IR (solid)
Vmax (cm™): 3308 (CONH) 2929 (carboxylic acid OH/aliphatic sp?> C-H) 1702/1655
(carbonyl C=0). HRMS (ESI/TOF): Calculated for [M + Na] *, C1sH2002Na*: 405.10;

Found: 405.1063.

2.3.4. Synthesis of CBDAX-3 from CBDAN-1

(o) @) NH- HN O
o] OH
T QT
rt, 6 hours HO (o]
(o) 0) 0™ 'NH
CBDAN-1 Cyclohexamine ©

CBDAx-3

Scheme 11: Synthesis of CBDAX-3

In an oven-dried round-bottom flask, cyclobutane-1,2,3,4-tetracarboxylic dianhydride

(2.01 g, 10.20 mmol) was placed in 100 mL acetone. Cyclohexylamine (2200 uL, 19.20
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mmol) was dropwise added to the flask. The reaction mixture was stirred at room
temperature for six hours. The product precipitated out of solution as the reaction
proceeded and completion of reaction was checked by NMR of the solution. The pure
product was filtered out of the solvent and dried before characterization. The product
was characterized using *H NMR, ¥C NMR, FT-IR spectroscopy, and X-ray

crystallography.

CBDAX-3: 'H NMR & (ppm): 12.19 (s, 2H, COOH) 7.82 (d, J = 10, 2H) 3.49 (dd, J =
10, 20 2H, CONH-CH- cyclobutane), 3.31 (dd, J = 10, 10, 2H, COOH-CH-
cyclobutane), 1.04 - 1.71 (m, 22H, 2xcyclohexane); **C NMR § (ppm): 172 (CONH),
169 (COOH) 47 (CONH-CH-cyclobutane), 41 (COOH-CH-cyclobutane), 24 — 32
(cyclohexane); FT-IR (solid) Vmax (cm™): 3375 (CONH), 2922 (carboxylic OH), 2856
(aliphatic sp?-C-H), 1728/1604 (carbonyl C=0). HRMS (ESI/TOF): Calculated for [M

+ Na] ¥, C1gH2002Na™: 417.21; Found: 395.2128.

2.3.5. Synthesis of CBDAX-4 from CBDAN-1

~

@) (0] HN (0
>\\ NH> (o] OH
0] O + /\\ > >—<’ >—<
\\( rt, 6 hours HO (0]
0) (0) 0 NH
CBDAN-1 tert-Butylamine /j\
CBDAx-4

Scheme 12: Synthesis of CBDAX-4
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In an oven-dried round-bottom flask, cyclobutane-1,2,3,4-tetracarboxylic dianhydride
(2.00 g, 10.20 mmol) was placed in 100 mL acetone. Tert-butylamine (2020 pL, 19.20
mmol) was dropwise added to the flask. The reaction mixture was stirred at room
temperature for 6 hours. The product precipitated out of solution as the reaction
proceeded and completion of reaction was checked by NMR of the solution. The pure
product was filtered out of the solvent and dried in an oven before characterization. The
product was characterized using *H NMR, *C NMR, FT-IR spectroscopy, and X-ray

crystallography.

CBDAX-4: 'H NMR & (ppm): 12.19 (s, 2H, COOH) 7.50 (s, 2H, CONH) 3.49 (dd, J =
5, 10, 2H, CONH-CH-cyclobutane) 3.27 (dd, J = 5, 10, 2H, COOH-CH- cyclobutane)
1.20 (s, 18H, 2x3{CH3}); 3C NMR § (ppm): 172 (CONH), 169 (COOH), 49 (CONH-
CH- cyclobutane), 41 (COOH-CH- cyclobutane), 28 (3{CHs}); FT-IR (solid) vmax (cm"
1): 3418 (CONH), 2976 (carboxylic acid/aliphatic sp?-C-H), 1736/1721 (carbonyl
C=0). HRMS (ESI/TOF): Calculated for [M + Na] *, C1sH2002Na*: 365.16; Found:

365.1689.

2.3.6. Synthesis of CBDAXx-5 from CBDAN-1

In an oven-dried round-bottom flask, cyclobutane-1,2,3,4-tetracarboxylic dianhydride
(2.00 g, 10.20 mmol) was placed in 100 mL acetone. A solution of 1800 uL furfuryl
amine (19.20 mmol) was dropwise added to the flask. The reaction mixture was stirred
at room temperature for four hours. The product precipitated out of solution as the
reaction proceeded and completion of reaction was checked by NMR of the solution.

The product was washed with methanol, filtered out of the solvent and dried before
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characterization. The product was characterized using *H NMR, **C NMR, and FT-IR

spectroscopy.

CBDAX-5: 'H NMR & (ppm): 12.35 (s, 2H, COOH) 8.47 (t, J = 5, 2H, CONH) 6.22-
7.56 (m, 6H, furan) 4.26 (dd, J = 10, 15, 2H, CONH-CH,-furan), 4.19 (dd, dd, J = 5,
10, 2H, CONH-CH3-furan) 3.60 (g, 2H, J = 5, 10, CONH-CH-cyclobutane) 3.34 (q, J
=5, 10, 2H, COOH-CH-cyclobutane); 3C NMR & (ppm): 172 (CONH), 170 (COOH),
106 — 152 (furan), 41 (COONH-CHo>-furan), 35 (CH-cyclobutane); FT-IR (solid) Vmax
(cm™): 3288 (CONH), 2940 (carboxylic acid OH/aliphatic sp?-C-H), 1698/1640
(carbonyl C=0). HRMS (ESI/TOF): Calculated for [M + Na] *, C1sH2002Na*: 413.09;

Found: 413.0961.
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Scheme 13: Synthesis of CBDAX-5

2.3.7. Synthesis of CBDAX-6 from CBDAN-1
In an oven-dried round-bottom flask, cyclobutane-1,2,3,4-tetracarboxylic dianhydride
(2.02 g, 10.20 mmol), was refluxed in 50 mL of ethanol (0.90 mol). The reaction

mixture was stirred at room temperature for 8 hours. Completion of reaction was
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checked by TLC. The solvent was evaporated out. The solid formed was the pure
product which was washed and dried in an oven before characterization. The product

was characterized using *H NMR, *C NMR, and FT-IR spectroscopy.

CBDAX-6: *H NMR § (ppm): 12.79 (s, 2H, COOH) 4.01 - 4.07 (m, 4H, 2xCHy), 3.48
- 3.57 (m, 4H, CH-cyclobutane), 1.16 (t, J = 10, 6H, 2xCHz); *C NMR & (ppm): 172
(COOEt), 171 (COOH), 60 (CHa-CH2-COO), 41 (CH-cyclobutane), 14 (CHs); FT-IR

(solid) Vmax (cm™): 2981 (carboxylic acid OH), 1700 (carbonyl C=0).

\

o o 0] 0]
0 OH
Reflux, 24 hours HO (o)
o 0”0
CBDAN-1 Ethanol K
CBDAX-6

Scheme 14: Synthesis of CBDAX-6

2.3.8. Synthesis of CBDAX-7 from CBDAN-1

In an oven-dried round-bottom flask, cyclobutane-1,2,3,4-tetracarboxylic dianhydride
(2.02 g, 10.20 mmol), was refluxed in 50 mL of benzyl alcohol (0.50 mol). The reaction
mixture was stirred at room temperature for 8 hours. Completion of reaction was
checked by TLC. The solvent was evaporated out. The solid formed was the pure
product, which was washed and dried in an oven before characterization. The product

characterized using *H NMR, *C NMR, and FT-IR spectroscopy.
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CBDAX-7: 'H NMR § (ppm): 12.87 (s, 2H, COOH), 7.35 (m, 10H, Ar-H), 5.05 — 5.11
(m, 4H, CH»>-Bz), 3.71 (d, J = 10, 2H, BzOOC-CH-cyclobutane), 3.52 (d, J = 10, 2H,
HOOC-CH-cyclobutane); 3C NMR & (ppm): 171 (COOBZ), 171 (COOH), 128 — 136
(Ar), 66 (Ar-CH>), 40 (CH-cyclobutane); FT-IR (solid) Vmax (cm™): 3316 (carboxylic

acid OH), 2887 (aliphatic sp?-C-H), 1751/1725 (carbonyl C=0).

.
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CBDAx-7

Scheme 15: Synthesis of CBDAX-7

2.3.9. Synthesis of CBDAX-8 from CBDAN-1

Magnesium turnings (2.00 g, 83.33 mmol) and 10.0 mL of anhydrous diethyl ether were
added to a 100 mL round bottom flask. Then 8.0 mL of bromobenzene was added to
the mixture. The flask was shaken until it started to form a cloudy solution. Once
refluxing began, another 25.0 mL of anhydrous diethyl ether was slowly added. When
most of the magnesium had been consumed and refluxing ceased, the next step of the
reaction began. CBDAN-1 (1.02g, 5.20 mmol) was added directly into the flask. The
content was refluxed for 48 hours and then left at room temperature for another 24

hours. A 50% aqueous HCI solution was used to dissolve the salt formed. The organic
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layer was extracted twice with diethyl ether. The combined organic layer was washed
with brine and dried over anhydrous sodium sulfate. The solvent was evaporated, and
the crude product was recrystallized in ethanol. The product was characterized using

'H NMR, C NMR, and FT-IR spectroscopy.

CBDAX-8: 'H NMR & (ppm): 11.88 (s, 2H, COOH), 7.04 — 7.46 (m, 20H, Ar-H), 6.11
(s, 2H, OH), 4.05 (dd, J =5, 15, 2H, CH-cyclobutane) 3.63 (dd, J =5, 15, 2H, COOH-
CH-cyclobutane); 3C NMR & (ppm): 175 (COOH), 125 - 140 (Ar), 90 (2{Ar}-C-OH),
45 (CH-cyclobutane), 41 (COOH-CH-cyclobutane); FT-IR (solid) Vmax (cm™): 3468
(alcohol OH), 3051 (carboxylic acid OH), 2999 (aliphatic sp?> C-H), 1670 (carbonyl

C=0).
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Scheme 16: Synthesis of CBDAX-8

2.3.10. General Methods of Ester Synthesis

Esters were synthesized using two methods.

Method I:
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CBDAX (1.0 mol) was added to 20.0 mL of methanol. Then 4.0 mol equivalent of
thionyl chloride was added to the mixture dropwise. The mixture was stirred at room
temperature for 4 hours. In all cases no obvious dissolution of the CBDAX was
observed. After 4 hours the precipitate was diluted with more methanol and vacuum
filtered. The filtrate was the product, which was essentially pure. The product was oven
dried overnight before characterization. The product was characterized using *H NMR,

13C NMR, FT-IR spectroscopy, and X-ray crystallography.
Method II:

Fischer esterification was also used to synthesize the CBDEX. Briefly, 1.0 mol of
CBDAX was added to 20.0 mL of methanol. Large excess of H.SO4 (10.0 mL) was
dropwise added to the mixture. The mixture was stirred under under heating at 80 °C
for 12 hours. In all cases no obvious dissolution of the CBDAX was observed. After 12
hours the precipitate was vacuum filtered. The filtrate was the product, which was
essentially pure. The product was oven dried over night before characterization. The
product was characterized using *H NMR, ¥C NMR, FT-IR spectroscopy, and X-ray

crystallography.
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Scheme 17: General methods to the synthesis of CBDEXS

CBDEXx-1: Melting point; 244.5 °C. *H NMR § (ppm): 8.53 (t, J = 5, 10, 2H, CONH)
7.21-7.32 (m, 10H, Ar-H) 4.31 (dd, J = 10, 15, 2H, CONH-CH-Ar), 4.22 (dd, J = 5,
10, 2H, CONH-CH.-Ar) 3.67 3.66 3.65 3.63 (q, 1H) 3.41 3.38 3.37 3.36 (g, 1H) 3.35
(s, 1H); 3C NMR & (ppm): 171 (CONH), 170 (COOMe), 127 — 139 (Ar) 51 (OMe), 42
(CONH-CH3-Ar), 41 (CONH-CH-cyclobutane), 41 (COOMe-CH-cyclobutane); FT-IR

(solid) Vmax (cm™): 3294 (CONH), 2952 (aliphatic sp?-C-H), 1728 (carbonyl C=0).

CBDEXx-2: Melting point: 279.3 °C 'H NMR & (ppm): 10.23 (s, 2H, CONH), 7.35 -
7.39 (M, 4H, Ar)7.29 - 7.33 (m, 4H, Ar) 7.04 - 7.07 (m, 4H, Ar) 3.96 (dd, J = 5, 10, 2H,
CONH-CH-cyclobutane) 3.66 (dd, J = 0, 10, 2H, MeCOO-CH-cyclobutane) 3.51 (s,
6H, OCH3); 2*C NMR 5 (ppm): 171 (CONH), 168 (COOMe) 138 (Ar), 128 (Ar), 123
(Ar), 119 (Ar), 51 (OCHjs), 42 (CH-cyclobutane); FT-IR (solid) Vmax (cm™): 3293

(CONH), 2947 (aliphatic sp? C-H), 1733 (carbonyl C=0).

CBDEX-3: Melting point: 238.6 °C *H NMR § (ppm): 7.94 (s, 2H, CONH), 3.34 - 3.59
(m, 4H, CH-cyclobutane), 3.5 (s, 6H, OMe), 1.11 - 1.66 (m, 22H, CH»-cyclohexane);
13C NMR & (ppm): 171 (CONH), 169 (COOMe) 51 (OMe) 49 (NH-CH-cyclohexane),
41 (CH-cyclobutane), 28 (cyclohexane); FT-IR (solid) Vmax (cm™): 3283 (CONH), 2925

(aliphatic sp? C-H), 1728 (carbonyl C=0).

CBDEXx-4: Melting point: 232.8 °C *H NMR 5 (ppm): 7.68 (s, 2H, CONH) 3.62 (dd, J
= 5, 10 2H, NHOC-CH-cyclobutane) 3.52 (s, 3H, OMe) 3.34 (dd, J = 10, 15, 2H,

MeOOC-CH-cyclobutane) 1.20 (s, 18H, tert-butyl); *C NMR § (ppm): 171 (CONH),
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169 (COOMe) 51 (OMe) 49 (C-tert-butyl), 41 (CH-cyclobutane), 28 (tert-butyl); FT-
IR (solid) Vmax (cm™): 3370 (CONH), 2967 (aliphatic sp? C-H), 1715/1651 (carbonyl

C=0).

CBDEXx-5: Melting point: 206.2 °C *H NMR & (ppm): 8.57 (t, J = 5, 15, 2H, CONH)
7.58 (s, 2H, furan), 6.38 (d, J =5, 2H, furan) 6.22 (d, J =0, 2H, furan) 4.26 (dd, J = 10,
20, 2H, NHOC-CH,-furan), 4.18 (dd, J = 5, 20, 2H, NHOC-CH,-furan) 3.68 (dd, J = 5,
10 2H, NHOC-CH-cyclobutane) 3.45 (s, 6H, OMe) 3.42 (dd, J = 10, 10 2H, MeOOC-
CH-cyclobutane); 3C NMR § (ppm): ; FT-IR (solid) Vmax (cm™): 3295 (CONH), 2955

aliphatic sp? C-H () 1723/1634 (carbonyl C=0).
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CHAPTER THREE

A Cyclobutane Carboxylic Dianhydride (CBDAN-2) as a Building Block for
Metal-Organic and Polymeric Materials Introduction

3.0.Introduction

Cyclobutane-containing carboxylic dianhydrides (CBDANSs) are versatile building
blocks that have a wide variety of applications.®® 7> They are used in making
polyimide resins, metal-organic materials (MOMSs), as capping ligands in the
preparation of gold colloids, and in the synthesis of energetic materials.®” 43 47, 70. 7578
Carboxylic dianhydrides are best known for their wide variety of material applications
in the fields of aerospace, high-performance engineering materials, cosmonautics,
microelectronics, and medical devices.”> ™ Their applications come from their
characteristic attributes such as extreme thermal stability, excellent mechanical

properties, good chemical and irradiation resistance.’

Tetracarboxylic and dicarboxylic acids are a group of organic compounds with
applications where strong hydrogen bonding is involved, such as capillary
electrophoresis. They are widely used in the chiral separation of primary amines and
synthesis of polyesters.** 7 8 Recently, there has been increased interest in the use of

tetracarboxylic acids in the synthesis of coordination materials.

In this study, we introduce a cyclobutane containing carboxylic dianhydride with no
aromatic moieties. CBDAN-2 was synthesized from the direct photoreaction between
maleic anhydride and benzene using inexpensive and safe commercially available

blacklights. From previous works in our laboratory, it was realized that maleic
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anhydride can be activated by both UV-A and B lights. It was therefore hypothesized
that activated maleic anhydride could react with other olefin systems to form a

carboxylic dianhydride.

Benzene is produced by both natural processes such as volcanic eruptions and forest
fires and is a natural part of crude oil. It is widely used in the United States and ranks
in the top 20 chemicals by production volume. Benzene can be synthesized from long
chain fatty acids.®! It can also be synthesized from lignin using RUW/HY30 as the
multifunctional catalyst and water as the reaction medium.®? Maleic anhydride is
currently produced from the oxidation of benzene or butane. However, there has been
increased interest in its production from the biomass with great success.?4?" 2% 59
CBDAN-2 is potentially biomass derived. Phasing out nonrenewable sources for
materials is farfetched, therefore, to reduce our reliance on nonrenewable sources of
materials, we could begin with hybrid precursors consisting of both renewable and

nonrenewable components.

This aliphatic carboxylic dianhydride, CBDAN-2, presents a flexible molecule which
could be used to synthesize polyimides with increased solubility and processibility.3384
Moreover, polyimides synthesized from aromatic carboxylic dianhydrides usually are
colored, which has been attributed to the aromatic system.”> 3 This limits their
transparency and so they have limited uses in optical applications. CBDAN-2 has the
possibility to reduce this coloration and might serve as an important precursor in optical

materials applications.
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CBDAN-2 can also be used as a polytopic ligand to synthesize a 2D metal-organic
material using cobalt as the inorganic node. The metal-organic material synthesized
from Co?* and CBTA-2 could open a pathway for eventual utilization in the synthesis
of metal-organic frameworks.*% 8 8 Moreover, CBDAN-2 can be converted to its
dicarboxylic acid derivatives, which are important precursors in the synthesis of
polyesters and other materials. CBDAN-2 has the potential to be a versatile building
block in the synthesis of various materials. The goal of this study was to improve the
synthetic procedure, investigate the stability and evaluate CBDAN-2 as a versatile

precursor in material synthesis.

3.1. Results and Discussion

CBDAN-2 was synthesized from maleic anhydride and benzene using low energy
blacklights (Scheme 2). CBDAN-2 crystalized out from the solution reaching a 90 %
reaction yield within 72 hours. Multiple groups have reported the synthesis of this
molecule in literature, however, the previous methods have involved the use of high
power lamps or photosensitizers.®” 8 For example, Bryce-Smith used a Hanovia quartz
immersion reactor with a 450-watt lamp and acetophenone, acetone or benzophenone
as photosensitizers to synthesize photoreaction products using benzene or its
derivatives with maleic anhydride.2® Grovenstein and co-worker used a 1000-watt
Hanovia mercury-arc lamp with or without acetone as a photosensitizer and achieved

10 — 15 % yields.®
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Scheme 18: Synthesis and Applications of CBDAN-2 and its Derivatives
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Photochemical reactions are not uncommon with aromatic systems, in fact several cases
have been reported in literature such as in the production of photo dimer of anthracene
and the transannular additions of oxygen to anthracene and higher polycyclic aromatic
hydrocarbons to give e.g., photo-oxides.®? 9292 9 photoaddition of maleic anhydride to
anthracene promoted by ultraviolet irradiation has also been reported.® However, the
photoaddition of maleic anhydride to benzene has no close parallel in thermal
chemistry.®® The product is a very stable 2:1-adduct. One would think it is possible to
reverse the reaction via a reverse Diels-Alder. This is, however, not the case. As would

be shown shortly, this adduct is very thermally and chemically stable.8 %3

The mechanism involved in the reaction between maleic anhydride and benzene is
believed to occur via a two-step reaction.®® ®© The first [2+2] photoaddition forms the
cyclobutane ring and is followed by a Diels-Alder reaction forming the six-membered
ring. It is widely known that benzene isomerizes to fulvene via the first optical
transition, but it is believed that this isomerization is not associated with the mechanism
of this reaction. Hypothetically, the reactions of benzene here would tie more with

cyclohexatriene rather than a typical resonance stabilized benzene. 8%

No photocyclization reaction was observed in the reaction between MAn and
hexafluorobenzene. It is known that the substituents in olefins do not affect their [2+2]
cycloaddition reactions.®® Therefore, reaction between MAn and hexafluorobenzene
would be possible. Nonetheless, the highly electronegative fluorine groups on the
benzene, which forms a dienophile, would hinder a Diels-Alder reaction and so the

product formation would be hindered. This experiment shed some light to confirm that
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DA reaction is a possible mechanism for this reaction as has been previously thought.
From previous research it is known that MAnN can be sensitized using blacklights, and
it was hypothesized that it would dimerize with benzene upon irradiation. Upon MAn
sensitization, there would be a charge transfer to benzene, which in turn becomes
activated and completes the reaction. Though this CBDAN-2 has been reported in

literature, no application or further studies have been conducted on the molecule.

3.1.1. Description of CBDAN-2

Single crystal X-ray diffraction show that CBDAN-2 is monoclinic with the P 21/c
space group. The oxygen on the furan rings on the CBDAN-2 dianhydride lie trans on
the opposite site of the molecule and are 7.79 A apart. This molecule planar giving it
the potential to form linear chains of molecules, an attribute which makes it
advantageous in synthesizing long chain high molecular weight polymers. Figure 17
shows the crystal structures of CBDAN in Oak Ridge Thermal Ellipsoid Plot (ORTEP)

at the 50% probability level except for the hydrogen atoms and capped sticks style.

a)

»,,
>/" w /\/\/

Figure 17: Chemical and crystal structure of CBDAN-2 represented in black and red,
b) crystal structure of CBDAN-2 in Oak Ridge Thermal Ellipsoid Plot (ORTEP) at the
50% probability level except for the hydrogen atoms, ¢) CBDAN-2 shown in capped
sticks style to highlight the flat nature of the molecule
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3.1.2. Initial thermal studies on CBDAN-2 and CBTA-2

CBDAN-2 was stable on the laboratory bench for over a year. TGA showed that
CBDAN-2 had its Ts, Tioand Tq at 349 °C, 365 °C and 388 °C, respectively. CBDAN-
2 starts losing weight at 308 °C and at 388 °C just 50 % of its weight was lost. TGA
showed that CBTA-2 had its Ts, Tioand Tq at 231 °C, 254, °C and 363 °C (Figure 18).
CBTA-2 decomposes in two steps, the first decomposition corresponds to the loss of
water while the second results from the decomposition of the resulting dianhydride.
CBTA-2 starts showing a weight loss of about 218 °C due to removal of two molecules
of H2O (calcd.: 11.6 %). This shows that the cyclobutane ring in both CBDAN-2 and
CBTA-2 is thermally stable. These initial thermal studies show that both precursors are
thermally stable enough and could therefore, serve as precursors in synthesis polymers

and materials.®’

67



a) 100

80
=
=)
= 60
o0 CBTA-2
& -
= 40 CBDAN-2

20

0

50 150 250 350 450 550
Temperature (°C)
b) 3.6 1.6
31 1.4
2.6 12
= 1 B
E 2.1 5
=) —— CBDAN-2 0s £
SJ ]
g L6 CBTA-2 =
= 0.6 %
B B
= 1.1 =
X 0.4 X

0.6 \ 0.2

0.1 %, 0

50 150 250 350 450 550
-0.4 -0.2
Temperature (°C)

Figure 18: TGA and DTG curves of CBDAN-2 and CBTA-2; (a) TGA curves recorded
from 50 °C to 600 °C with a heating rate of 20 °C-min™* under N2 atmosphere. (b) DTG
curves recorded from 50 °C to 600 °C with a heating rate of 20 “C-min* under N

atmosphere.

3.1.3. Synthesis of Imide and Polyimides

The imide and polyimides were synthesized using the two-step traditional polyimide

synthesis method.” The first step involves the synthesis of the -amic (or -polyamic)
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acid (AA or PAA respectively) and the second step is the thermal cyclocondensation.**
% Upon reaction with the diamine, the anhydride carbonyl is attacked and the ring
opening occurs.”” A linear chain polymer is formed from the link between a diamine
and a dianhydride. The polyamic acid formed is usually a mixture of products, however,
upon ring closing in the cyclocondensation step, a singe polymer product is formed.®
The polyamic acids are usually more soluble and easily processible, nonetheless when
the ring is closed to form the polyimide, the solubility of the resulting polymer

decreases significantly.’®

The reaction between CBDAN-2 and n-butylamine was used as a model reaction to
understand the reaction to form the polyamic acid and subsequent cyclocondensation
(Scheme 3). Reaction of CBDAN-2 and n-butylamine formed a mixture of products as
shown by the *H NMR spectra. However, after this imide was cyclized by heating in an
oven first at 80 °C for 1 hour, then at 120 °C for 1 hour and finally 200 °C for 3 hours,
H NMR spectra showed a single product of the imide formed. X-ray crystals of the
imide were grown in methanol and the structure revealed a single product, imide, as
hypothesized. The rationale for developing this model compound was to show the
formation of the imide. The FT-IR absorption of the imide in the model compound will
be similar to that in polyimides synthesized from CBDAN-2. This can then be used to
compare to the synthesized insoluble polyimides thus helping in their characterization.
Also, the model reaction showed that CBDAN-2 could be used as a monomer for

polymer synthesis. This model reaction was also used to confirm the two-step
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polyimides synthesis. The IR spectra of synthesized polyimides with CBDAN-2 were

then compared to those of the model

The chemical structures of the polyimides were confirmed by FT-IR spectra (Figure
19). All the polyimides exhibited absorptions around 1712 and 1687 cm™ (imide C=0
asymmetric and symmetric stretching), 1765 cm™ (sp? C=C stretching) and 2931 cm™
(sp® C-H stretching). Moreover, the trifluoromethyl C-F stretching appeared at 1243
and 1248 cm™ in the FT-IR spectra of polymers P1 and PII, respectively. The results
demonstrated that the polyimides have the expected chemical structures. Molecular
weights of polyimides could not be obtained because of their insolubility in common
organic solvents. However, an oligomer of P-I was isolated, and the molecular weight
was measured to be 5127 gmol™? (Table 9). Figure 20 shows a thin film synthesized

from P-1 and P-I1I.
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Figure 20: Images of the synthesized P-1 and P-111 respectively.

3.1.4. Thermal Stability of Polyimides

The thermal properties of the polyimides were evaluated by TGA. The polyimides
exhibited excellent thermal stability with the onset decomposition temperatures, Tsand
the temperatures at 10 % of weight loss Tq in a range of 136 - 179 °C and 262 - 300 °C
in nitrogen, respectively (Figure 21). The polyimides did not show obvious weight loss
before the scanning temperature reached up to 400 °C in nitrogen, indicating that no
thermal decomposition occurred (Table 8). The residual weight retentions at 700 °C for
all but one of the polyimides were higher than 40 %. P-1I exhibited much higher
decomposition temperature than the other polyimides. The higher thermal stability of

P-I1 can be explained by its high rigidity.
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Figure 21: TGA and DTG curves of polymers made from CBDAN-2; (a) TGA curves
recorded from 50 °C to 600 °C with a heating rate of 20 “C-min’* under N, atmosphere.
(b) DTG curves recorded from 50 °C to 600 °C with a heating rate of 20 °C-min’ under
N2 atmosphere.
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Table 8: Thermogravimetric analysis of polymers

Thermogravimetric analysis (TGA)

Sample Ts Tio Td
P-1 384 397 740
P-11 380 397 591
P-111 380 397 486

Table 9: Molecular weight distribution of polyimides from GPC

Molecular Weight Distribution (GPC)
Sample Mn (g mol 1) | Mw (g mol 1) Polydispersity
Index (Mw/Mn)
P-1 2,858 5,127 1.794

3.1.5. Synthesis of CBTA-2

CBTA-2, the tetracarboxylic acid derivative of CBDAN-2 was synthesized to make
metal-organic materials thereof. The synthesis of CBTA-2 was carried out by
hydrolyzing CBDAN-2. Hydrolysis of CBDAN-2 to CBTA-2 was completed after 6
hours when CBDAN-2 was refluxed in a mixture of 3:1 water/ethyl acetate to give pure
CBTA-2 with a yield of > 96 %. The synthesis was also completed under reflux in a

1.0 M aqueous solution of NaOH after precipitation from the solution using HCI.

3.1.6. Synthesis of a Cobalt - CBTA-2 Coordination Complex

The several electron rich oxygen moieties on tetracarboxylic acids makes them suitable
multidentate ligands in coordination chemistry.%” 99 100, 44,76, 79, 101 Netal-organic
frameworks (MOFs) are a class of functional coordination nano-porous materials with

well-structured frameworks, large surface area, and high stability.%? Attention in MOF
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synthesis have increased in recent years due to the increased interest in gas capture and
storage, heterogeneous catalysis, proton conductivity, energy storage, and
environmental protection.%%: 82193 The multiple electron rich oxygens in CBTA-2 make

it attractive as a polytopic ligand in MOF synthesis.

To evaluate the potential of CBTA-2 for MOF synthesis, a metal-organic material was
synthesized with Co(NOz)2-6H20. The synthesized complex was characterized by FT-
IR and crystallography. The FT-IR spectra of CBTA-2 and Co-CBTA-2 complex is
shown in Figure 22. The spectra showed strong bands at 1575 cm™ and 1721 cm™in
the spectra of the complex and CBTA-2, respectively. This signal is characteristic to
the carbonyl stretching of the carboxylic acid in both molecules. The signals could be
explained by the fact that each of the two carbonyls trans to each other on CBTA-2,
coordinate with different metal centers while the other does not. The other two acid
groups in CBTA-2 ligand are deprotonated in the complex. The peaks at 1345 and 1437
cm? in the spectrum of the complex are attributed to symmetric and asymmetric
stretching of the carboxylate anion, respectively, since both carboxylic acid groups of

CBTA-2 are deprotonated in the complex.

In comparison, the signals at 1721 and 1406 cm™ in the CBTA-2 spectrum represent
the carbonyl and carboxylate stretching, respectively. The absorption at 1770 and 1738
cm?in CBTA-2 and the complex, respectively, represents the olefin bridge on the
cyclohexane ring. Meanwhile, the absorption at 3508 cm™ indicates the presence of

coordinated H20 molecules in the complex, which is consistent with its single crystal
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X-ray structure. Also, the broad absorption between 3300 and 2500 cm™ on CBTA-2

represents the carboxylic acid hydroxyl stretching.
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Figure 22: FT-IR spectra of CBTA-2 and Co-CBTA-2 complex (heated and unheated)

3.1.7. Description of Co-CBTA-2 Complex

The pink crystals of Co-CBTA-2 are monoclinic with the Pn space group. Single crystal
X-ray diffraction analysis revealed that the ratio of Co: CBTA-2: H20 in the Co-CBTA-
2 complex is 2:1:6. Figures 23 and 24 show the asymmetric unit of Co-CBTA-2

complex in Oak Ridge Thermal Ellipsoid Plot (ORTEP). It can be observed that a
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double stranded 2D coordination complex is formed between the Co?* and CBTA-2.
The Co?* forms the backbone of the complex while the CBTA-2 forms the connections
between two backbones. CBTA-2 links one backbone to the next and so the series
continues. The Co?" adopts an octahedral geometry with two CBTA-2 molecules
interacting with the metal cation in the equatorial basal plane while the three H.O
molecules occupy the two opposite axial and one equatorial positions. The O-Co?*-O
angle of Co?*, and H20 is 165.41 (10)° and the O-Co?* distances are 2.058(8) and 2.146
(7) A, respectively.

The two carbonyls trans to each other, coordinate with the metal occupying the
equatorial basal plane of the octahedral while the other does not. The two acid groups
in CBTA-2 ligand are deprotonated in the complex balancing the charges and occupy
the equatorial basal plane of the octahedral. The O™-Co?*-O" angel is 45.32(10)° and the

two O-Co?* bond distances are 2.058(8) and 2.146 (9) A, respectively.

Figure 23: Symmetric unit of Co-CBTA-2 Complex in Oak Ridge Thermal Ellipsoid
Plot (ORTEP) at the 50% probability level except for the hydrogen atoms; the
octahedral Co?* center interacts with two CBTA-2 molecules, and three H,O molecules.
Top, face, and side view of a single unit of Co-CBTA-2 complex shown.
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Figure 24: Side view of the Co-CBTA-2 complex shown in polyhedral style; b) Side
view of the 2D Co-CBTA-2 complex shown in capped sticks style.

3.1.8. Thermochromic Properties

The cobalt complex synthesized from CBTA-2 showed interesting thermochromic
properties. When heated to 200 °C for 1 hour in an oven, the pink colored complex
crystals turned into purple, probably due to the loss of water from the complex.'® A
comparison of the complex appearance at room temperature and after the thermal
exposure is shown in Figure 25. The purple color of the complex did not change when
the sample was exposed to room temperature and to air for a month. It is known that

color changes of metal complexes because of temperature variation are mainly caused
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by solid-solid phase transitions due to changes in metal coordination geometry,

coordination number, and/or the coordinated ligands.*6- 104

Heat in oven

>
200 °C for 1 hour

Figure 25: Thermochromic behavior of Co-CBTA-2 complex

3.1.9. Initial Thermal Properties of Co-CBTA-2 Complex

The thermogravimetric analysis of Co-CBTA-2 complex with or without a heating
pretreatment under a nitrogen atmosphere at a heating rate of 20 °C/min and the
corresponding DTG curves are shown in Figure 26. For comparison, the thermal
decomposition profile of CBTA-2 is reported in Figure 18. The thermal decomposition
of CBTA-2 shows no degradation below 220 °C. According to the TGA profile in
Figure 26a (pink curve), the complex undergoes decomposition in three stages. The
complex starts showing a weight loss of about 2.9 % due to removal of one molecule
of coordinated H>O (calcd.: 2.9 %) in the crystalline sample around 103 °C. The
complex then successively loses two more molecules of H20 at about 212 °C (calcd.:
7.2 %). At around 406 °C, the complex starts to lose weight in parallel with the heated

complex.
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The complex had its T1o and Tq at 262 °C and 543 °C, respectively. To experimentally
demonstrate the loss of water during heating, the purple crystals which were obtained
from heating the Co-CBTA-2 complex as previously described were subjected to TGA
analysis. The data is shown in Figure 26 (blue curve), where it shows that the complex
does not lose weight until 409 °C. At this temperature the unheated Co-CBTA-2
complex had lost the final water molecule and had a degradation pattern similar to the
heated sample. The DTG plot (Figure 26b) also shows a peak at this temperature where
the peaks of heated and unheated samples almost align. The thermal analysis results
indicated that Co-CBTA-2 has good thermal stability which is required for MOF

synthesis.*3 100
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Figure 26: TGA and DT

G curves of Co-CBTA-2 complex (heated and unheated); (a)
TGA curves recorded from 50 °C to 600 °C with a heating rate of 20 °C-min! under N
atmosphere. (b) DTG curves recorded from 50 °C to 600 °C with a heating rate of 20

*C-min’t under N2 atmosphere.

3.1.10. Synthesis of Cyclobutane-containing Diacids from CBDAN-2

CBDAN-2 has already

synthesis. To further show its potential in material synthesis, two cyclobutane-

been shown to be a versatile building block in material
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containing diacids (CBDAs) were synthesized from CBDAN-2. The CBDAs were
synthesized from the reaction of CBDAN-2 and benzylamine or aniline. The synthesis
of CBDAs from CBDAN-2 followed a general pattern. Briefly, nucleophiles readily
reacted with the dianhydride yielding the diacids. The order of reactivity of amines was
1°>2°. The 1° amines reacted upon addition to the mixture and the reaction completed
within minutes. Based on our previous knowledge, a solvent in which CBDAN-2 had
low solubility was selected for the reactions. The goal was to reduce solubility and slow
the reaction in such a way that as soon as CBDAN-1 dissolves in the solvent, the

nucleophile reacts instantaneously and the trans product is favored.

3.2. Conclusion

An aliphatic carboxylic dianhydride monomer with cyclobutane ring was synthesized
from biomass derived chemicals. This monomer was characterized and used to
synthesize cyclobutane containing polyimides with 2,2-bis[4-(4-
aminophenoxy)phenyl]hexafluoropropane, 2,2-bis(3-amino-4-
hydroxyphenyl)hexafluoropropane and hexane-1,6-diamine. Heavy molecular weight
polyimides were difficult to fully characterize due to their poor solubility in
conventional solvents, as such a model imide between CBDAN-2 and n-butylamine
was synthesized. The model imide was used to confirm the successful synthesis of the
polyimides and to confirm the presence of the cyclic imide bond. The imide was
synthesized using a typical two-step process of synthesizing polyimides, i.e., through a
polyamic acid and then cyclocondensation (imidization). The synthesized polyimides

showed interesting characteristics such as high thermal and chemical resistance.
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CBDAN-2 was shown to be a versatile intermediate in material synthesis. This was
done by making derivatives of CBDAN-2 with potential in material synthesis.
CBDAN-2 was successfully converted to CBTA-2. CBTA-2 was then used to
successfully synthesize a metal-organic material with Co (NOz)2:6H20. The metal-
organic material showed desired properties such as good thermal resistance and
interesting thermochromic attributes. To further emphasize the versatile nature of
CBDAN-2, a couple of cyclobutane-containing dicarboxylic acids (CBDAS) were
synthesized using aniline and benzylamine. These dicarboxylic acids could be used in

the synthesis of polyesters.

3.3. Experimental Section

3.3.1 Chemicals and measurements

All chemicals were purchased from Alfa Aesar, Sigma-Aldrich, or Acros, and used
without further purification. Blacklight used in the photoreaction was Fiet Electric 7-
watt LED bulb or 15W Eiko EK15526 F15T8/BL. The solution phase nuclear magnetic
resonance spectra (NMR) were recorded with Bruker AVANCE (*H: 500 MHz, C:
125 MHz). Proton and carbon chemical shifts were reported in ppm downfield from
tetramethyl silane (TMS) and were expressed in part per million. Spin-spin coupling
constants, J, are given in Hz. Spectra were recorded in DMSO-ds unless otherwise
stated. Single crystals of CBDAN-2 precipitated out of solution and were used as such
for x-ray analysis. Single crystals of CBTIM-2 were grown by dissolving it in methanol
and slowly evaporating the solvent. Single crystal X-ray data were collected on a

Bruker Kappa Apex 11 Duo X-Ray Diffractometer with Cu Ko (A= 1.54178 A). Infrared
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spectroscopy (IR) was conducted on a Thermo Scientific Nicolet iS5 FT-IR
spectrometer. Differential scanning calorimetry (DSC) was conducted on a Perkin
Elmer Jade DSC with a ramping rate of 20 °C min™ under nitrogen protection. Heat
flow was recorded from both the first heating and cooling curve. Thermogravimetric
analysis (TGA) was carried out with a Hi-Res TGA Q500 from TA Instruments using
alumina pans at a heating rate of 20 °C min’* under nitrogen with a sample weight of
about 10 mg. Gel Permeation Chromatography (GPC) samples were analyzed using a
GPC system (EcoSEC HLC-8320GPC, Tosoh Bioscience, Japan) with a differential
refractometer (DRI) detector. Separations were performed using two TSKgel
SuperH3000 6.00 mm IDx 15 cm columns with an eluent flow rate of 0.35 mL min™2.
The columns and detectors were thermostated at 40 °C. The eluent used was
tetrahydrofuran (THF). Samples were prepared at about 10 mg mL ™ in the eluent and
allowed to dissolve at ambient temperature for several hours. Samples were filtered
through 0.2 um filters and the injection volume was 40 pL for each sample. Calibration

was conducted using PS standards (Agilent EasiVial PS-H 4mL).

3.3.2.  Synthesis of tricyclo[4.2.2.02,5]dec-7-ene-3,4,9,10-tetracarboxylic
dianhydride (CBDAN-2) from benzene and maleic anhydride

CBDAN-2 was prepared by dissolving 0.5 g (5 mmol) of MAn in 20 mL of benzene in
a 20 mL cornil vial and irradiated between four black lights for 72 hours. The bulbs
were placed two on each side of the cornil flask. Crystals of CBDAN-2 grew in the vial
as the reaction proceeded. After 72 hours, the crystals were scrubbed out, washed with

ethyl acetate, and dried at room temperature for residual solvent to evaporate. About
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0.56 g of CBDAN-2 (41 %) were obtained. The product was characterized using *H
and *C NMR, FT-IR spectroscopy, and X-ray crystallography. The melting point was
shown to be 356 °C. *H NMR & (ppm): 6.45 (d, J = 5, 2H, CH=CH), 3.20 - 3.29 (m,
4H, CH-cyclobutane), 2.84 - 2.89, (m, 4H, CH-cyclobutane). 3C NMR ¢ (ppm): 174,
173 (C=0), 133 (C=C), 42, 42 (cyclobutane), 38, 34 (cyclohexane). FT-IR (solid) Vmax

(cm™): 2957 (aliphatic sp? C-H), 1849 (C=C), 1771 (acid anhydride C=0).
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Maleic Anhydride Benzene CBDAN-2
Scheme 20: Synthesis of CBDAN-2
3.3.3. Synthesis of 5,12-Dibutyl-5,12-

diazapentacyclo[7.5.2.02,8.03,7.010,14]hexadec-15-ene-4,6,11,13-tetrone

(CBTIM-2) from CBDAN-2.
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Scheme 21: Synthesis of CBDIM-2

CBTIM-2 was synthesized from CBDAN-2 and n-butylamine through a condensation

reaction. A paste of CBDAN-2 with a solid content 15 % wt was prepared by placing
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one gram of CBDAN-2 in 10 mL of acetone in a 100 mL three-neck flask equipped
with a nitrogen inlet/outlet, and a mechanical stirrer. A sample of 360 puL n-butylamine
was dropwise added to the flask. The reaction mixture was stirred at room temperature
for 12 h under N2 protection. The AA formed precipitated out of the solution. The
solvent was removed from the precipitate formed by heating at 80 °C for an hour. The
product obtained was essentially pure and needed no further purification. The
precipitate was heated at 100 °C for an hour then 120 °C for an hour and finally at 180
°C for 12 hour yielding pure CBTIM-2. *H NMR § (ppm): 6.22 (t, J = 5, 10, 2H,
CH=CH) 3.29 (g, J = 5, 15, 4H, CH-cyclobutane) 3.20 (g, J = 5, 15, 2H, CH-
cyclohexane) 2.44 - 2.77 (m, 2H) 1.37 - 1.43 (m, 2H) 1.28 - 1.31 (m, 2H) 1.26 - 1.27
(m, 2H) 1.20 - 1.22 (m, 2H) 1.09 - 1.16 (m, 6H, 2xCHz) ppm. 3C NMR & (ppm): 178.42
177.87 131 (C=C), 41, 40 (CH-cyclobutane) 37, 37, 34, (CH-cyclohexane), 29, 29
(CH), 19, 19 (CH>), 13, 13 (CHs). FT-IR (solid) Vmax (cm™): 2929 (aliphatic sp? C-H),

1760 (C=C), 1685 (carbonyl C=0).

3.3.4. General synthesis of polyimides from CBDAN-2.

Polyimides were synthesized from CBDAN-2 and diamines through a
polycondensation reaction. A paste of CBDAN-2 with a solid content 15 % wt was
prepared by placing 3.6 mmol of CBDAN-2 and 3.6 mmol of the appropriate diamine
in 8 mL of DMACc in a 100 mL three-neck flask equipped with a nitrogen inlet/outlet,
and a mechanical stirrer. The reaction mixture was stirred at room temperature for 24 h
under N2 protection for 2 hours and then vacuum until a viscous polyamic (PAA)

solution was formed. The viscous solution was cooled and added to methanol to
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precipitate the PAA formed. The precipitate was further washed three times in a 1:1
solution of methanol/water. The solvent was removed from the product by heating at
80 °C for an hour. The product was then heated at 120 °C for an hour then at 200 °C for
an hour and finally at 280 "C for 24 hours yielding the polyimide. The yield of this

polyimide was 82.2 %.
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/\ = DMAgc, 1t, N, /\\\"
H
0 0 0 n
CBDAN-2 Diamine Polyimide

Scheme 22: General method for synthesis of polyimides

3.3.5. Synthesis of tricyclo[4.2.2.02,5]dec-7-ene-3,4,9,10-tetracarboxylic acid

(CBTA-2) from CBDAN-2
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Scheme 23: Synthesis of CBTA-2

Method I:

CBDAN-2 (1.02g, 2.80 mmol) was added to a 50 mL mixture of water and ethyl acetate
(3:1) in a round bottom flask. The mixture was stirred under reflux for 6 hours.
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CBDAN-2 dissolves in water and was converted to CBTA-2. After 6 hours, the solution
was filtered, and the water/ ethyl acetate evaporated using a rotavapor leaving the white
product which is essentially pure. About 1.00 g of CBTA-2 (> 96 %) was obtained. The
product was characterized using *H and 3C NMR, FT-IR spectroscopy, and X-ray

crystallography.
Method II:

CBDAN-2 (1.00g, 2.80 mmol) was added to a 50 mL solution of 1.0 M NaOH in a
round bottom flask. The mixture was stirred under reflux for 2 hours. CBDAN-2
dissolves in the solution and is converted to CBTA-2. After 2 hours, the solution was
filtered, and HCI was added dropwise to precipitate the product out of solution. The
slightly brown product, which was essentially pure, was isolated with no further
purification needed. About 0.90 g of CBTA-2 (> 90 %) is obtained. The product was
characterized using *H and *C NMR, FT-IR spectroscopy, and X-ray crystallography.

The melting point was measured to be 242 °C.

IH NMR 6 (ppm): 12.01 (s, 4H, COOH) 6.31 (d, J = 5, 2H, CH=CH), 2.80 — 2.89 (m,
4H, CH-cyclobutane), 2.60 - 2.63 (m, 4H, CH-cyclohexane). $3C NMR & (ppm): 173,
173 (COOH), 132 (C=C), 45, 41 (CH-cyclobutane), 38, 36 (CH-cyclohexane). FT-IR
(solid) Vmax (cm™): 3300/2700 (carboxylic acid OH), 2966 (Caliph-H), 2364 (C=C

stretch), 1733/1704 (carboxylic acid C=0).

3.3.6. Synthesis of Co-CBTA-2 Complex
Pink colored crystals of Co-CBTA-2 complex were obtained from a methanol — water

solution (1:1 ratio). Briefly, 236 mg (1.30 mmol) of Co (NO3)2-6H20 and 100 mg (0.32
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mmol) of CBTA-2 were each separately dissolved in 10 mL of water and methanol,
respectively. The Co(NOz3).:6H.O solution was added dropwise to the CBTA-2
solution and stirred for 10 minutes to ensure complete homogenization. After
homogenization, a 1.0 M solution of NaOH was added dropwise to the reaction mixture.
Upon addition of the NaOH solution, little precipitates were formed which completely
disappeared upon stirring. The NaOH solution was added until a slight amount of
precipitate persisted after stirring for about 15 minutes. The precipitate was filtered out,
and the filtrate was kept at room temperature for several days to crystalize. The crystals
were washed with water and methanol, respectively, and allowed to be dried in vacuum

overnight. The yield of Co-CBTA-2 complex crystals was 52% based on the metal salt.
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Scheme 24: Synthesis of Co-CBTA-2 complex

3.3.7. Synthesis of Cyclobutane-containing Diacids from CBDAN-2

In an oven-dried round-bottom flask, CBDAN-2 (2.0 g, 7.3 mmol), was placed in 100.0
mL dichloromethane. A solution of aniline or benzylamine (2:1 ratio with CBDAN-2),
was slowly added to the flask. The reaction mixture was stirred at room temperature for

4 or 12 hours respectively. The product precipitated out of solution as the reaction
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proceeded and completion of reaction was checked by recording the *H NMR spectra
of the solution. The pure product was filtered out of the solvent and dried before

characterization.
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Scheme 25: General method for synthesis of CBDAXs
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CHAPTER FOUR

Preliminary Exploration of the Photoreactivity and Applications of Some 2(5H)-
Furanones

4.0. Introduction

Today, research in sustainable, and renewable sources of raw materials is gaining much
attention. This is because nonrenewable sources are feared to deplete soon and the cost
of their exploitation on our environment is devastating.1% 106 1% Manufacturing new
materials from biobased precursors is limited because there are only a few precursors
available.>* 1%7 Derivatizing the currently available biomass-based building blocks to
make a library of precursor chemicals will set the pathway to gradually reduce our
current reliance on petrochemicals, leading to the progressive transition to a full bio-
based future.>* 07 1% polymers derived from biomass-derived diacids and diols
containing cyclobutane rings have been shown to provide desired attributes such as
semi-rigidity and good glass-transition temperatures.'% %8 3 Inspired by the plethora of
possibilities from results of the previous study on the reactions of maleic anhydride and
its derivatives, it was thought that studies could be caried out using 2(5H)-furanone and
its derivatives. These olefinic furanones share several features in common with

furanediones and as such they might share some reactions in common.

Furanones are produced naturally by plants and used to inhibit bacterial
colonization.1%®11 They have significant applications in the pharmaceutical industries
to produce biofilms used to inhibit gram-negative bacteria.''?> Furanones have also
become known as promising anti-inflammatory, anti-cancer, analgesic, anticonvulsant,
antifungal, antioxidant, and antiulcer agents.!' 13 14 Thejr five-membered
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heteroatomic ring in biologically active compounds provides the motif involved in their
mechanism of action.''® They are synthesized from the biomass via furfural in some

cases utilizing photocatalysis and electrocatalysis.?® 11° 116

Their applications in the synthesis of polymers have however been overlooked. " 118
There has been some setback in this area with mostly five membered ring mono-
lactones in ring opening polymerization reactions.''” 119 Nonetheless, biodegradable
Gemini surfactants or twin-tail amphoteric surfactants have been synthesized from
2(5H)-furanone and fatty acid amines.*?122 Hydroxyl-furanones have also been used
in the synthesis of sulfonated surfactants.!'8 121123 Dilactones obtained via dimerization
of olefinic cyclic lactones have however not been explored. Moreover, hydrolysis of
these dilactones would yield diacids and diols, which are the precursors to polyester
synthesis. These diacids and diols, if they possess desired thermal properties for
polymeric precursors, will make them precursors for polymer synthesis. Also, some
might yield reactive dicarbonyl, which would make them intermediates in organic

synthesis.

The goal of this study was to explore the dimerization of biomass-derived 2(5H)-
furanone, 5-hydroxy-2(5H)-furanone, 4-methyl-2(5H)-furanone, and 3-methyl-2(5H)-
furanone. Also, the thermal stability of the dilactones formed was investigated using

thermal decomposition analysis.

4.0.1. Background, Hypothesis and Concept
2(5H)-Furanone was synthesized by the catalytic oxidation of furfural using H20,.1%
124,125 Even though both heterogeneous and homogeneous catalysis can be deployed,
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the latter had higher yields.*?* 125 Ongoing research in this area involves improving the
yields, for which biphasic systems have worked well. Difficulties in the recovery of the
homogeneous catalysts and separation of products has also attracted the deployment of
environmentally friendly and inexpensive oxidants using non-metallic catalytic
systems.'1% 124 5_Hydroxy-2(5H)-furanone, on the other hand, can be obtained from
photooxidation of furfural using singlet oxygen with a photosensitizer.1¢- 126 |t can also
be synthesized from furfural electrochemically using hydrogen peroxide as a
catalyst.*?” Other furanone derivatives can be synthesized from furfural using similar
methods. The biomass is an attractive source to obtain sustainable precursors to
materials. In the first and second chapter of this dissertation CBDAN-1 was shown to
represent a versatile platform for the synthesis of several diacids. The furanedione used
to synthesize CBDAN-1 shares several features in common with olefinic furanones.
We therefore hypothesized that some olefinic furanones will photo-dimerize to form
cyclobutane-containing difuranones. Scheme 4-1 shows the similarities of the previous

work to this current one.
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4.0.2. Study Design

The furanones chosen for this study are: 2(5H)-furanone, 5-hydroxy-2(5H)-furanone,
4-methyl-2(5H)-furanone, and 3-methyl-2(5H)-furanone. Photochemical reactions in
solid-state are governed by the molecule’s topochemical crystal lattice packing and the
light (energy) source providing photons to activate the reacting species. In this regard,
reaction in the solid state will only occur if the configuration of the molecules and
distance from the closest molecule in the crystal lattice agree with the Schmidt
principle.? Moreover, the light source must be producing photons with the sufficient
energy to activate reacting molecules. Finding olefins that have the appropriate crystal
packing and sorting the light source, which will activate the reacting molecules, is the
most important step for a successful photodimerization reaction design. However,
photosensitizers are sometimes used to circumvent such problems and activate reacting
species. This only adds to the complexity of the setup and is unsuccessful in many
cases. In this study, the starting materials are liquid therefore their direct crystal
structures cannot be obtained. To evaluate their photoreactivities, only screening

experiments can be validated.

To achieve this screening an appropriate UV source must be used for irradiation.
Therefore, the UV-Vis spectra of 2(5H)-furanone, 5-hydroxy-2(5H)-furanone, 4-
methyl-2(5H)-furanone, and 3-methyl-2(5H)-furanone were obtained (Figure 4-1). The
UV-vis showed that the compounds showed absorbance between 251 nm and 400 nm.
This region is contained within the region defined by ECO-UV in chapter one.

Therefore, lamps producing UV- A, B or C could be tested. Their absorption spectra
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also indicated that the maximum absorption occurred at 268 nm, 259 nm, 256 (291)
nm, and 280 nm for 4-methyl-2(5H)-furanone, 3-methyl-2(5H)-furanone, 2(5H)-
furanone, and 5-hydroxy-2(5H)-furanone, respectively. Lamps producing UV-A, B and
C were used to screen the various furanones. No obvious reaction was observed when
lamps producing UV-A, or B were used for photoreaction for either compound.
However, 2(5H)-furanone, 3-methyl-2(5H)-furanone, and 5-hydroxy-2(5H)-furanone
molecules were excited and dimerized when lamps producing UV-C (254 nm) were

used.

4.5

35 m

3 —— 4-Methyl-2(5H)-furanone
—— 3-Methyl-2(5H)-furanone
—— 4-Hydroxy-2(5H)-furanone
—— 2(5H)-furanone

25

Absorbance
[y]

1.5

0.5

200 300 400 500 600 700
Wavelength (nm)

Figure 27: UV-Vis absorbance of 5-hydroxy-2(5H)-furanone, 2(5H)-furanone, 3-
methyl-2(5H)-furanone, and 4-methyl-2(5H)-furanone in ethanol.
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4.1. Results and Discussion

4.1.1. Synthesis of Cyclobutane Dilactone-1&2 (CBDL-1&2) from 2(5H)-
Furanone

CBDL-1 and CBDL-2 were synthesized through a [2+2] photodimerization in the solid
state under UV-C of 2(5H)-furanone. Germicidal lamps (UV-C; 254 nm) excited
molecules of 2(5H)-furanone to react forming the dimer. Crystallography revealed the
structure of CBDL-1 and CBDL-2 to be consistent with the cis-trans-cis conformation
(Figure 28). In the synthesis of CBDL-1 and CBDL-2, the liquid 2(5H)-furanone was
placed on a quartz glass and irradiated with germicidal lamps. The reaction was
observed to occur because the liquid solidified during the experiment. The reaction was
completed within 24 hours reaching a 90 % conversion. The pure powder was obtained

after recrystallization in methanol.

The reaction product was characterized using *H NMR, *C NMR, FT-IR spectroscopic
and crystallography. This reaction is also possible in the solution phase. In the solution
phase reaction, 2(5H)-furanone was dissolved in acetone in a round bottom quartz glass
and irradiated between two germicidal lamps. A precipitate, which is the product, was
formed as the reaction proceeded. This precipitate was filtered and used for analysis
which showed the mixture of head-to-head and head to tail products. It is interesting to
note that in the solution phase reaction, the head-to-tail product dominate to give a ratio

of about 20:80 CBDL-1 and CBDL-2 respectively.
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4.1.2. Description of CBDL-1 and CBDL-2 Structure

The single crystals of CBDL-1 and CBDL-2 were grown directly by slow evaporation
in methanol. The crystals were monoclinic with a P 21/n space group. The crystal
structure revealed that two different products were formed, i.e., the head-to-head and
head-to-tail [2+2] photodimerized products in equal proportions. The cyclobutane ring
in each product adopts a different conformation. The head-to-tail product adopts a
planar configuration, while the head-to-head product adopts a puckered configuration.
This indicates that there is less flexibility between the four-membered ring structure.
The single crystal reveals a carbon-carbon bond distance of around 1.562 and 1.547 A
for the puckered and planar conformations, respectively (Figure 28). The lactone groups
on opposite sides of the cyclobutane ring have an angle between them of about 180°.
The distance between the two lactone groups is 5.295 and 5.247 A apart for the
puckered and planar conformations respectively. This distance is like the distance
between the two anhydride groups in the building block CBDAN-1, which is 5.297 A.
This makes this CBDL-1&2 an interesting molecule to explore in polymer and organic
synthesis. The limited conformational flexibility of the cyclobutane ring is expected to
give CBDL-1 and CBDL-2 a unique semi-rigid character like other cyclobutane-

containing monomers.5": 68
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Figure 28: Chemical and x-ray single-crystal structure of CBDL-1 and CBDL-2: One
molecule shown as Oak Ridge Thermal Ellipsoid Plot (ORTEP) representing 50%
electron density.

4.1.3. Synthesis of Cyclobutane Dilactone-3 (CBDL-3) from 5-Hydroxy-2(5H)-
Furanone

CBDL-3 was synthesized through a [2+2] photodimerization in the solid-state under
UV-C of 5-hydroxy-2(5H)-furanone. Germicidal lamps (UV-C; 254 nm) excited
molecules of 5-hydroxy-2(5H)-furanone to react forming the dimer. In the synthesis of
CBDL-3, powder 5-hydroxy-2(5H)-furanone was placed on a quartz glass plate and
sandwiched between four germicidal lamps. The progress of the reaction was monitored
through *H NMR, the appearance of the cyclobutane peak and the disappearance of the
olefin peaks indicated the reaction progress. The reaction was completed after about 24

hours reaching about a 98 % conversion. The pure powder obtained was recrystallized
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in methanol to obtain the pure product. This solvent free reaction is possible because
the crystal packing of the molecules follow the Schmid’s principle of
photodimerization. The reaction product was characterized using *H NMR, *C NMR,

FT-IR spectroscopic, and X-ray crystallography.

4.1.4. Synthesis of Cyclobutane Dilactone-4&5 (CBDL-4&5) from 3-methyl-
2(5H)-Furanone

CBDL-4 and CBDL-5 were synthesized through a [2+2] photodimerization in solution
under UV-C of 3-methyl-2(5H)-furanone. Germicidal lamps (UV-C; 254 nm) excited
molecules of 3-methyl-2(5H)-furanone to react forming the dimer. NMR analysis
revealed that both the head-head and head-tail product are formed in the ration of about
20:80 to give CBDL-4 and CBDL-5 respectively. In the synthesis of CBDL-1 and
CBDL-2, the liquid 3-methyl-2(5H)-furanone was dissolved in acetone in a quartz
round bottom flask and irradiated with germicidal lamps. The reaction was completed
after about 24 hours reaching about a 90 % conversion. The solvent was evaporated
giving a powder which is essentially pure after recrystallization in methanol. The
reaction product was analyzed using *H NMR, *C NMR, and FT-IR spectroscopy. It
is worth noting that in solid phase this reaction was not possible even though 3-methyl-

2(5H)-furanone is a liquid.

4.1.5. Initial Thermal Studies on CBLAC-1, CBDL-2, and CBLAC-3
Studies on the thermal properties of precursors to polymers often give insights in the
molecule’s stability during polymer synthesis because sometimes polymer synthetic

methods require high temperatures to maximize condensation. Thermogravimetric
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analysis showed that both CBDL-1, CBDL-2, and CBDL-3 have good stability (Table
10). This shows that the cyclobutane ring in CBDL-1, CBDL-2, and CBDL-3 is stable
to be incorporated in polymers. This comes as no surprise since the cyclobutane ring
has previously been shown to possess good thermal, physical and chemical
properties.®®#? CBDL-1 and CBDL-2 starts rapidly losing weight at temperatures
around 220 °C and at 257 °C, 50 % of its weight has been lost (Figure 29). This is
slightly lower than CBDAN-1 which had its Ts, Tioand Tq at 315 °C, 342 °C and 368
°C, respectively. This implies CBDL-1 and CBDL-2 are less stable than CBDAN-1. On
the other hand, CBDL-3 decomposes in two stages. It first starts losing weight at about
176 °C where its first decomposition cycle begins. The second decomposition cycle
begins at 260 “C where it remains stable and only loses weight slightly. At 600 °C about
30 % of the compound had not decomposed. At this temperature most organic
monomers would have completely lost their weight; only polymeric materials would be
expected to be undecomposed at this temperature. A possible explanation to this
observation is that there is a ring opening and possible polymerization of the carbonyl
functional group. The ring opening is possibly associated with decarboxylation. This is
because elimination of a CO> molecule will lead to a 22 % weight loss, but the TGA

has 20 % loss corresponding to the first decomposition.

Table 10: Thermogravimetric analysis of CBLAC-1 and CBDL-2 and CBLAC-3

SN Ts(°C) T10(°C) Ta("C)
CBLAC-1 and CBDL-2 235 257 311
CBLAC-3 180 200 389
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Figure 29: TGA and DTG curves of CBDL-1 and CBDL-2 recorded from 0 °C to 600
°C with a heating rate of 20 °C-min under N2 atmosphere, b) DTG curves of CBDL-1
and CBDL-2 recorded from 0 °C to 600 °C with a heating rate of 20 “C-min™ under N
atmosphere

4.2. Conclusion
Dimerization of 2(5H)-furanone, 5-hydroxy-2(5H)-furanone, and 3-methyl-2(5H)-

furanone was achieved. The initial thermal stability study of the dilactones formed
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showed that these precursors have high decomposition temperatures comparable to

other monomers used in polymer synthesis.

4.3. Experimental Section

4.3.1. Materials and Procedures

All chemicals were purchased from Alfa Aesar, Sigma-Aldrich, or Acros, and used
without further purification. Germicidal lamps used in the photoreaction was
Germicidal lamp T5 G5 39/ 41W ozone free Sankyo Denki Co., Itd. The solution phase
nuclear magnetic resonance spectra (NMR) were recorded with Bruker AVANCE (*H:
500 MHz, ¥C: 125 MHz). Proton and carbon chemical shifts were reported in ppm
downfield from tetramethylsilane (TMS). Single crystal X-ray data were collected on a
Bruker Kappa Apex Il Duo X-Ray Diffractometer with CuKa (A= 1.54178 A). Infrared
spectroscopy (IR) was recorded on Thermo Scientific Nicolet iS5 FT-IR spectrometer.
Thermogravimetric analysis (TGA) was carried out with a Hi-Res TGA Q500 from TA
Instruments using alumina pans at a heating rate of 20 “C-min! under nitrogen with a

sample weight of about 10 mg.

4.3.2. Synthesis of Cyclobutane Dilactone-1&2 from 2(5H)-Furanone

Method I:

One milliliter (14 mmol) of 2(5H)-furanone was placed on a quartz glass slide and
evenly distributed to form a thin layer. The quartz slide was sandwiched between two
germicidal lamps (UV-C) with the lower back part touching one lamps and the upper
at about 2 mm from the second lamps. The reaction proceeded in liquid state and the

liquid turned into solid as the reaction proceeded. The reaction completed after 48 hours
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with a greater than 90 % conversion rate. The product was characterized using *H NMR,

13C NMR and FT-IR spectroscopy.
Method II:

1.0 mL of 2(5H)-furanone (14.0 mmol) and 50.0 mL of acetone were placed in a 100.0
mL round bottom quartz flask. The flask was sandwiched between four germicidal
lamps (UV-C; 254 nm) and irradiated while stirring. The lamps were about 2 mm from
the flask and the irradiation lasted 24 hours. The product precipitated out of solution.
After 24 hours, the precipitate was filtered, and the resulting powder was the product,
which was recrystallized in ethanol. The reaction had a greater than 92 % vyield. The
product was analyzed using 'H NMR, ¥C NMR, FT-IR spectroscopy, and X-ray
crystallography.

CBDL-1: *H NMR § (ppm): 4.51 (m, 4H, OCH,) 3.15 - 3.26 (m, 4H, CH-cyclobutane).
13C NMR & (ppm): 171 (C=0), 41 (CH-cyclobutane). FT-IR (solid) Vmax (cm™): 2980
(aliphatic sp3 C-H), 1757 (carbonyl C=0).

CBDL-2: 'H NMR ¢ (ppm): 4.46 (m, 4H, OCH_) 3.25 3.17 (m, 4H, CH-cyclobutane).

13C NMR 6 (ppm): 172 (C=0), 41 (CH-cyclobutane). FT-IR (solid) Vmax (cm™): 2919

(aliphatic sp3 C-H), 1757 (carbonyl C=0).

hv (UV-C)
[ o —— . >\~ e
24 hours \\\\ \\‘
O

2(5H)-furanone CBDL-1 CBDL-2

Scheme 27: Synthesis of CBDL-1&2
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4.3.3. Synthesis of Cyclobutane Dilactone-3 from 5-Hydroxy-2(5H)-Furanone

5-Hydroxy-2(5H)-furanone powder (1.00 g, 1.00 mmol) was placed on a quartz glass
slide and evenly distributed to form a thin layer. The quartz slide was placed between
two germicidal lamps (UV-C) with the lower back part touching one lamp the upper at
about 2 mm from the second lamp. The reaction proceeded in the solid state and the
powder was mixed every six hours to ensure that all powder was exposed to the light
source. The reaction was completed after 48 hours with a greater than 99 % conversion

rate. The product was characterized using *H NMR, **C NMR and FT-IR spectroscopy.

'H NMR & (ppm): 6.56 (s, 2H, OH) 4.58 (d, J = 5, 2H, cyclobutane), 4.17 (d, J = 15,
2H, cyclobutane), 3.32 (s, 2H, CH-OH). *3C NMR § (ppm): 172 (C=0), 78 COOC-OH,

70, 54 (CH-cyclobutane). FT-IR (solid) Vmax (cm™): 3362 (alcohol-OH), 1734 (carbonyl

C=0).
O HO [0)
hv (UV-C) >\
| o . o) o)
48 hours
OH 0) OH
5-Hydroxy-2(5H)-furanone CBDL-3

Scheme 28: Synthesis of CBDL-3

4.3.4. Synthesis of Cyclobutane Dilactone- 4 and 5 from 3-Methyl-2(5H)-furanone
3-methyl-2(5H)-furanone (1.0 mL, 11.2 mmol) and 50 mL of acetone were placed in a
100 mL round bottom quartz flask. The flask was sandwiched between four germicidal

lamps (UV-C; 254 nm) and irradiated while stirring. The lamps were about 2 mm from
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the flask and the irradiation lasted 24 hours. After 24 hours, the solvent was evaporated
on a rotavapor. The resulting powder was the product, which was recrystallized in
methanol. The reaction had a greater than 92 % yield. The product was analyzed using

'H NMR, C NMR, FT-IR spectroscopy, and X-ray crystallography.

CBDL-4: 'H NMR § (ppm): 4.51 (m, 4H, OCH,) 3.15 - 3.26 (m, 4H, CH-cyclobutane).
13C NMR & (ppm): 171 (C=0), 41 (CH-cyclobutane). FT-IR (solid) Vmax (cm™): 2980

(aliphatic sp3 C-H), 1757 (carbonyl C=0).

CBDL-5: 'H NMR 6 (ppm): 4.46 (m, 4H, OCH_) 3.25 3.17 (m, 4H, CH-cyclobutane).
13C NMR 6 (ppm): 172 (C=0), 41 (CH-cyclobutane). FT-IR (solid) Vmax (cm™): 2919

(aliphatic sp3 C-H), 1757 (carbonyl C=0).
O //I,',‘ = o/fllu
v (UV-C) o o o
\ﬁo Acetone >/\\“ (Z/ \
(0

3-Methyl-2(5H)-furanone

4/!!!::::i

e,

CBDL-4 CBDL-5

Scheme 29: Synthesis of CBDL-4&5
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CHAPTER FIVE

Conclusions and Perspectives

Transitioning from fossil fuel-based chemicals to more environmentally favorable and
sustainable products require a thorough exploration of the available biomass precursors.
Considering that fossil fuels only provide us with hydrocarbons, oxygen must be
introduced into these molecules via very vigorous oxidative methods. The biomass
contains molecules with the essential functional groups we need to synthesis di- and
tetracarboxylic acids much easily. Tetracarboxylic acids and dicarboxylic acids are
very important molecules that can be used to make polyester, polyimides, polyamides
etc. The di- and tetraacids provided by fossil fuels already overwhelm current material
industry. There is therefore the need to look for new molecules or alternative methods

to obtain these molecules that are sustainable and safe.

This dissertation has shown examples of either totally biomass derived or semi biomass
derived molecules that can be optimized to provide us with interesting alternate
materials precursors. Figure 31 summarizes the several platform molecules that have
been synthesized from this work. These molecules could be exploited further as it was
in chapter two to synthesize many very interesting monomers. Also, CBDANSs and
CBDLs with great potential have been introduced and a new field has been opened
where the potentials of these molecules can be studied. In future work the library of
dicarboxylic acids will continue to be developed to obtain a huge repertoire. Also,

materials will be synthesized from these molecules and their properties studied.
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Ultimately the effects of backbone changes will give insights into which back bone will

provide desired properties.

Chapter three showed how these dianhydrides can be used to synthesize important
polyimides. For example, Figure 30 compares thin films of two polyimides synthesized
in chapter three to Kapton, Dupont’s commercial polyimide tape. Also, the carboxylic
acid derivative of CBDAN-2 was used to synthesize a MOM which could open the gate

way of their potential application in MOFs synthesis.

o o]
o @ ‘ W,
{ >\>;©;<« )\("OW\\_//_'_C}VO% {N)ﬁ"’ 3 N
o H 0
DuPont™ Kapton® Film Polyimide-I (P-I) Polyimide-III (P-III)

Figure 30: Comparison of Kapton and polyimides synthesized from CBDAN-2
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Table 11: Table A-1:

APPENDICES

Appendix A: Crystal Data

Crystal data of CBDAN-1, CBTA-1, sublime FA

c-C (A)

Crystal CBDAN-1 CBTA-1 Sublime FA CBTA-4
Formula CsH40s CsHsOs C4H404 C10H120s
FW 196.11 232.14 116.07 260.20
Crystal system orthorhombic | monoclinic | triclinic monoclinic
Space group Pbca P 21l/c P-1 P21/c
a(A) 6.3989 (2) 5.3746 (2) | 4.4012 (4) 10.8937(4)
b (A) 10.1449 (3) | 12.2527 (4) | 5.1740 (6) 7.7271(3)
¢ (A) 11.2883 (3) 6.4760 (2) 5.3469 (6) 13.7332(5)
o (A) 90 90 87.381 (7) 90
B (A) 90 93.797 (2) 70.636 (5) 104.657(2)
v (A) 90 90 85.305 (5) 90
V (A% 73279 (4) | 425.53(2) 114.46 (2) 1118.40(7)
Temp. (K) 110 111 273 104.99
pcalc (g.cm™) 1.778 1.812 1.684 1.545
g (mm?) 1.390 1.484 1.379 1.194
Radiation type CuK\a CuK\a CuK\a CuKa
F (000) 400 240.0 60.0 544.0
No of measured 648 758 394 9318
refl.
R (reflections) 0.0351 0.0307 0.0771 (389) 0.0368
(724)
wR2 (reflections) 0.0894 0.0803 0.2173 (394) 0.0917
(758)
Data 1.000 1.000 0.983 1.067
completeness
Bond precision 0.0091 0.0019 0.0035 0.0030
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Table 12: Crystal data of CBDAX-1 through CBDAX-4

Crystal CBDAXx-1 CBDAX-2 (cis) CBDAX-3 CBDAXx-4
Formula C30H44N40O6 Ca1H22N207 C20H30N206 C18H34N20s
FW 556.69 414.40 394.46 406.47
Crystal size 0.25 x 0.25 x 0.22 x 0.12 x 0.2x0.12x | 0.286 x 0.137
[mm] 0.04 0.1 0.06 x (0.112
Crystal system Monoclinic Triclinic Monoclinic Triclinic
Space group P2i/c P-1 P2i/c P-1
a (A) 13.8220(11) 9.1926(3) 15.1412(9) 6.4881(3)
b (A) 8.3125(5) 10.4784(4) 6.7366(4) 6.9934(3)
c(A) 12.5437(9) 10.8258(4) 9.7556(6) 12.0221(5)
a(A) 90 98.294(2) 90 81.038(2)
B (A) 95.130(6) 101.496(2) 104.188(4) 85.749(2)
v (A) 90 97.862(2) 90 81.9490(10)
V (A% 1435.44(18) 996.33(6) 964.72(10) 532.76(4)
Z 2 2 2 1
Temp. (K) 107.0 104.99 273.15 296.15
pcalc (g.cm™) 1.288 1.381 1.358 1.267
g (mm™) 0.730 0.878 0.827 0.829
Radiation type CuKa (A= CuKa (A= CuKoa (A= CuKa (A=
1.54178) 1.54178) 1.54178) 1.54178)
F (000) 600.0 436.0 424.0 220.0
No of 2542 3514 11383 11411
measured refl.
R 0.0589 (1778) 0.0454 (3187) | 0.0447 (1342) | 0.0346 (1842)
(reflections)
WR2 0.1624 (2526) 0.1309 (3514) | 0.1044 (1695) | 0.0923 (1892)
(reflections)
Data 0.994 0.995 0.998 0.996
completeness
Theta (max) 66.678 66.752 66.651 66.676
Npar 183 276 128 133
S 1.022 1.034 1.052 1.073
Bond precision 0.0041 A 0.0031 0.0030 0.0016
C-C (A)
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Table 13: Crystal data of CBDAN-2, CBTA-2_Co Complex and model compound

Crystal CBDAN-2 CBTA-2_Co Polyimide
Complex CBDAN-2 & n-
butylamine
Formula C14H100s6 C14H22C02014 Ca4H56N40s
FW 352.33 532.17 768.92
Crystal size [mm] n/a 0.192 x 0.088 x 0.208 x 0.166 x
0.06 0.075
Crystal system Monoclinic Monoclinic Monoclinic
Space group P2l/c Pn P21/c
a(A) 9.7689 (4) 6.4107(2) 16.4125(4)
b (A) 6.5782 (3) 6.9435(2) 6.38000(10)
c(A) 25.6077 (11) 22.5110(7) 18.8408(5)
o (A) 90 90 90
B (A) 95.804 (3) 92.383(2) 101.657(2)
v (A) 90 90 90
Theta (max) 66.841 66.646 66.728
V (A3 1637.16 (12) 1001.16(5) 1932.16(8)
Temp. (K) 110 104.99 273.15
pcalc (g.cm™) 1.429 1.765 1.322
i (mm) 0.888 13.650 0.737
Radiation type CuKa (A= CuKa (A =1.54178) CuKa (A=
1.54178) 1.54178)
F (000) 736.0 544.0 824.0
No of measured refl. 2913 11039 20692
R (reflections) 0.0383 (2367) 0.0543(2865) 0.0412(2754)
WR2 (reflections) 0.1006 (2879) 0.1489(3307) 0.1052(3420)
Data completeness 0.988 1.032 0.999
Bond precision C-C 0.0024 0.0196 0.0025 A

(R)
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Table 14: Crystal data of CBDLs

Crystal CBDL-1&2 CBDL-1 CBDL-4
(Mixture)
Formula Cs Hs O4 CsHgO4 C10H1204
FW 168.14 168.14 196.20
Space group P121/n1 P 2i/c P 21/n
a (A) 6.4138(4) 5.9890 (2) 6.4629 (2)
b (A) 16.0057(7) 11.1678 (4) 6.4707(2)
c (A) 10.1088(4) 5.2504 (2) 10.6364(4)
o (A) 90 90 90
B(A) 97.820(2) 108.433(3) 100.776(2)
v(A) 90 90 90
V (A3 1028.09(9) 333.15 (2) 436.96(3)
Temp. (K) 105 108.38 107.02
pcalc (g.cm™) 1.630 1.676 1.491
1 (mm?) 1.132 1.165 0.972
Radiation type CuKa (A= CuKoa (A= CuKoa (A=
1.54178) 1.54178) 1.54178)
F (000) 528.0 176.0 208.0
No of measured refl. 1817 2570 3768
R (reflections) 0.1074(1441) 0.0385 (551) 0.0512( 748)
WR2 (reflections) 0.3263(1809) 0.1081 (587) 0.1337(771)
Data completeness 0.996 1.000 0.999
Bond precision C-C (A) 0.0072 0.0023 0.0030
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Appendix B

Selected NMR and FT-IR Spectra of Synthesized Compounds
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Figure 49: FT-IR spectrum of CBDAN-5
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13C NMR spectrum of CBDAX-1 in DSMO-dg at room temperature

Figure 51

134



0'9LS

SIEHIWSUEI] %

Lo
L' 23l
_— CALED
2o O
(=gl =]
=L
o =
= =]
=
==
& LIGT
ratE
@ 5 8 % 8 5 & % 35 8 5 8 8 8 5 84

2000 1500 1000

Wavenumbers (cm-1)

2500

3000

3500

Figure 52: FT-IR spectrum of CBDAXx-1
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Figure 53: 'H NMR spectrum of CBDAX-2 in DSMO-ds at room temperature
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13C NMR spectrum of CBDAX-2 in DSMO-dg at room temperature
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Figure 55: FT-IR spectrum of CBDAX-2
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'H NMR spectrum of CBDAX-3 in DSMO-dg at room temperature
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13C NMR spectrum of CBDAX-3 in DSMO-dg at room temperature
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Figure 58: FT-IR spectrum of CBDAX-3
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'H NMR spectrum of CBDAX-4 in DSMO-ds at room temperature
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Figure 60: 13C NMR spectrum of CBDAXx-4 in DSMO-dg at room temperature
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Figure 61: FT-IR spectrum of CBDAXx-4
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'H NMR spectrum of CBDAX-5 in DSMO-dg at room temperature

Figure 62
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'H NMR spectrum of CBDAX-5 in DSMO-dg at room temperature
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Figure 64: FT-IR spectrum of CBDAX-5
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'H NMR spectrum of CBDAXx-6 in DSMO-dg at room temperature

Figure 65
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13C NMR spectrum of CBDAX-6 in DSMO-ds at room temperature

Figure 66
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Figure 67: FT-IR NMR spectrum of CBDAX-6
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'H NMR spectrum of CBDAX-7 in DSMO-ds at room temperature
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13C NMR spectrum of CBDAX-7 in DSMO-dg at room temperature
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Figure 70: FT-IR NMR spectrum of CBDAX-7
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Figure 71: *H NMR spectrum of CBDAX-8 in DSMO-ds at room temperature
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Figure 72: 13C NMR spectrum of CBDAX-8 in DSMO-dg at room temperature
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Figure 73: FT-IR NMR spectrum of CBDAX-8
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Figure 74: *H NMR spectrum of CBDEx-1 in DSMO-dg at room temperature
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13C NMR spectrum of CBDEXx-1 in DSMO-ds at room temperature

Figure 75

158



611
—_—
i,t“ﬂw
. 6EP)
34'0051
G59551
GREVIL
i._ ETOTLL
(]
X
=
o
?
- R R
- ~ v @D w
DIVEHIWSUBIL %

1000

2500 2000 1500
Wavenumbers {cm-1)

3000

3500

Figure 76: FT-IR NMR spectrum of CBDEx-1
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'H NMR spectrum of CBDEX-2 in DSMO-dg at room temperature
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13C NMR spectrum of CBDEXx-2 in DSMO-ds at room temperature
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Figure 79: FT-IR NMR spectrum of CBDEXx-2
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Figure 80: *H NMR spectrum of CBDEx-3 in DSMO-dg at room temperature
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Figure 81: 3C NMR spectrum of CBDEXx-3 in DSMO-ds at room temperature
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Figure 82: FT-IR NMR spectrum of CBDEX-3
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'H NMR spectrum of CBDEx-4 in DSMO-dg at room temperature

Figure 83
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13C NMR spectrum of CBDEx-4 in DSMO-ds at room temperature
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Figure 85: FT-IR NMR spectrum of CBDEx-4
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'H NMR spectrum of CBDEX-5 in DSMO-ds at room temperature
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Figure 87: 13C NMR spectrum of CBDEXx-5 in DSMO-ds at room temperature
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Figure 88: FT-IR NMR spectrum of CBDEx-5
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'H NMR spectrum of CBDAN-2 in DSMO-ds at room temperature
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Figure 90: 13C NMR spectrum of CBDAN-2 in DSMO-ds at room temperature
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Figure 91: FT-IR NMR spectrum of CBDAN-2
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'H NMR spectrum of CBTA-2 in DSMO-dg at room temperature
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Figure 93: 13C NMR spectrum of CBTA-2 in DSMO-dg at room temperature
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Figure 94: FT-IR NMR spectrum of CBTA-2
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'H NMR spectrum of CBDIM-2 in DSMO-dg at room temperature
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13C NMR spectrum of CBDIM-2 in DSMO-dg at room temperature
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Figure 97: FT-IR NMR spectrum of CBDIM-2
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Figure 100: FT-IR spectrum of Polyimide-I
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Figure 101: 'H NMR spectrum of CBDAXxx-1 in DMSO-ds at room temperature
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Figure 102: *H NMR spectrum of CBDAxx-2 in DMSO-ds at room temperature
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DSMO-ds at r.t.

in

'H NMR spectrum of mixture of CBDL-1&2
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Figure 103



Figure 104: 13C NMR spectrum of mixture of CBDL-1&2 in DSMO-dg at r.t.
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Figure 105: FT-IR NMR spectrum of mixture of CBDL-1&2 in DSMO-dg at r.t.
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Figure 106: *H NMR spectrum of CBDL-1 in DSMO-d6 at room temperature
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Figure 107: *3C NMR spectrum of CBDL-1 in DSMO-d6 at room temperature
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Figure 108: *H NMR spectrum of CBDL-3 in DSMO-dg at room temperature
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13C NMR spectrum of CBDL-3 in DSMO-ds at room temperature
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Figure 110: FT-IR NMR spectrum of CBDL-3
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Figure 111: 1H NMR spectrum of CBDL-4&5 in DSMO-d6 at room temperature
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Appendix C

High Resolution Mass Spectrometry Data of Synthesized Compounds
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Figure 112: HRMS spectrum of CBDAX-1
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HRMS spectrum of CBDAX-2.
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HRMS spectrum of CBDAX-3.
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HRMS spectrum of CBDAX-4.
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Figure 116: HRMS spectrum of CBDAX-5.
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Appendix D

Selected GPC traces

Header
. Data 2022/04/27
Title acquisition k.
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Peak start 0.374 Mw
11.160 23,973 5,127
Peak top Mz
13.412 86.410 5,282 7,232
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Mv

5,127
Height [mV] 85.024 Mp

5,244
[eta] 5127.24483 Mz+1/Mw

1.766

Figure 117: GPC chromatogram report of polyimide I (P-1).
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