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ABSTRACT 

At the present, the use of face masks is growing day by day and it is mandated in most places 

across the world. People are encouraged to cover their faces when in public areas to avoid the 

spread of infection which can minimize the transmission of Covid-19 by 65 percent (according to 

the public health officials). So, it is important to detect people not wearing face masks. 

Additionally, face recognition has been applied to a wide area for security verification purposes 

since its performance, accuracy, and reliability [15] are better than any other traditional techniques 

like fingerprints, passwords, PINs, and so on. In recent years, facial recognition is becoming a 

challenging task because of various occlusions or masks like the existence of sunglasses, scarves, 

hats, and the use of make-up or disguise ingredients. So, the face recognition accuracy rate is 

affected by these types of masks. Moreover, the use of face masks has made conventional facial 

recognition technology ineffective in many scenarios, such as face authentication, security check, 

tracking school, and unlocking phones and laptops. As a result, we proposed a solution, Masked 

Facial Recognition (MFR) which can identify masked and unmasked people so individuals 

wearing a face mask do not need to take it out to authenticate themselves. We used the Deep 

Learning model, Inception ResNet V1 to train our model. The CASIA dataset [17] is applied for 

training images and the LFW (Labeled Faces in the Wild) dataset [18] with artificial marked faces 

are used for model evaluation purposes. The training and testing masked datasets are created using 

a Computer Vision-based approach (Dlib). We received an accuracy of around 96 percent for our 

three different trained models. As a result, the purposed work could be utilized effortlessly for both 

masked and unmasked face recognition and detection systems that are designed for safety and 

security verification purposes without any challenges.  
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CHAPTER 1 

INTRODUCTION 

This chapter first introduces the background of the Facial Recognition System (FRS) and gives a 

description of the general problem. Section 1.2 shows the scope of the work. The scope of the 

work consists of a general methodology description. Section 1.3 presents the motivation of the 

research towards the use of Masked Facial Recognition (MFR) using deep learning. Lastly, section 

1.4 shows the approaches to solve the problem which is followed by expected results in section 

1.5.  

1.1 Problem Definition 

The use of face masks is growing rapidly with Covid-19. People are required to wear a face mask 

all the time when they are outside or at large indoor gatherings to minimize the spread of infection. 

So, it is important to detect those people with face masks for health safety reasons. Face recognition 

is the process of automatically identifying an individual from captured images or videos [4] and 

face detection is the process of identifying the face from the captured image or the specified image 

from the database. It is a significant key area of research today as its applications are becoming 

more important in various fields like ATM machines, criminal identification, access restriction, 

video conferencing, issuing drivers’ licenses & passports, and monitoring the public areas. 

Moreover, the use of face masks has made conventional facial recognition technology ineffective 

in many scenarios, such as face authentication, security check, tracking school, and office 

attendance, and unlocking phones and laptops. Furthermore, the different algorithms that succeed 

on unmasked faces have been unable to generalize such successes on masked faces. One of the 

advantages associated with detecting an unmasked face is that the deep learning models would use 
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the whole facial features/landmarks to identify someone. However, with a masked face, the nose 

and mouth are occluded. So, the problem of identifying individuals with just the eyes and 

sometimes, the forehead is more challenging [1]. Therefore, it is expected that the purposed 

solution could be utilized to recognize both masked and unmasked faces. 

Since the work of Schroff et al. [15] in 2015, the idea of the FaceNet model, a unified embedding 

for face recognition has been widely used for facial recognition. The researcher presented a 

FaceNet model, which learns directly from face images to calculate the Euclidean distances, and 

these distances are directly compared to measure the face matching. Additionally, once these 

FaceNet embeddings are created, they could easily be implemented for tasks such as face 

identification, validation, and clustering by calculating the Euclidean distances. So, we applied a 

similar embeddings technique in our Masked Facial Recognition (MFR) research. Although many 

works have been presented [26, 1, 13, 16, 25] in the past for masked face recognition, our proposed 

solution provides better accuracy and can recognize both masked and unmasked faces easily. 

1.2 Scope of work 

The scope of this work falls under the MFR (Masked Facial Recognition) system. The approach 

solution could be used for both masked and unmasked facial recognition systems with high 

accuracy. Especially in the current situation where everyone needs to wear a face mask to minimize 

the spread of Covid-19, this work helps to identify the public without a face mask and encourages 

them to wear masks which increases the safety of the public. Additionally, the purposed solution 

includes a masked facial recognition system so it can recognize the masked and unmasked people. 

As a result, people in enclosed spaces who need to verify their identity on mobile phones, laptops, 

or other devices, do not need to take off their face masks as the purposed solution can recognize 

masked faces easily. Moreover, we verified the robustness of the purposed solution for masked 
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and unmasked facial recognition under various conditions like gender, skin tone, age, types of 

masks, etc. Therefore, this work could be used for different purposes including security and safety 

of the people.  

1.3 Motivation 

In the present day, due to Covid-19, face masks have been mandated in most places across the 

world. People are encouraged to cover their faces when in public areas to avoid the spread of 

infection which can reduce the transmission of Covid-19 by 65% (according to the public health 

officials). Face recognition is widely used to secure any system because it is better than any other 

traditional techniques like PIN, password, fingerprint, and so on and is most reliable to identify a 

person efficiently. Additionally, facial recognition has been extensively applied for security 

verification purposes since its performance, accuracy, and reliability [15] are better than any other 

traditional techniques like fingerprints, passwords, tokens, and so on. Nowadays, it has become an 

arduous task due to various occlusions or masks such as scarves, sunglasses, hats, makeup, and 

other different types of disguise elements and they are causing a significant impact on the accuracy 

of facial recognition systems (FRS). As a result, we proposed a solution an MFR (Masked Facial 

Recognition) to solve this issue. 

1.4 Approach 

The main goal of our research paper is to perform real-time Masked Facial Recognition (MFR). 

The work is divided into three main parts to achieve the goal. The first part is data collection and 

preparation. We take the CASIA dataset [17] for training face images. The obtained images were 

not ready to use for training, so we performed various cleaning, alignment, and removal operation 

to make them ready for model training purposes. The CASIA dataset does not include masked 

faces, so we used the augmented method to generate masked faces for our dataset. Furthermore, 
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the second part involved training the face recognition model that would be used for MFR. The 

training is done using the deep learning (Inception ResNet V1) model. We applied different 

hyperparameter functions for training and the model is evaluated using the LFW (Labeled Faces 

in the Wild) dataset [18] with artificial masked face images. Similarly, the accuracy and loss 

functions were calculated in every epoch to validate the model. We evaluated the three different 

trained models with five, ten, and fifteen training images per class. Lastly, the real-time MFR is 

carried out using our trained model. All these three steps are explained in more detail in the 

methodology section.  

1.5 Expected outcomes 

The purpose of our research is to collect data and complete the data preparation, train the model 

for MFR and its evaluation, and perform real-time masked and unmasked facial recognition. It’s 

expected to receive the input image frame through a laptop camera. Moreover, it is anticipated that 

the purposed solution would be useful for masked and unmasked facial recognition under various 

conditions like gender, skin tone, age, types of masks, etc. As a result, this work could be utilized 

for different purposes including security and safety of the people. 

1.6 Thesis Structure 

The organization of the paper is as follows. Chapter II presents the theoretical background of the 

research. It introduces the Face Recognition System (FRS), Deep Learning (DP), Convolutions 

Neural Network (CNN), and their block diagrams with some details. We start chapter III by 

introducing the works that have been done in facial recognition, and masked facial recognition. 

Chapter IV outlines the different approaches we have applied to our work. There are data collection 

and preparation, model training, model evaluation, and real-time Masked Facial Recognition 

(MFR). Similarly, Chapter V describes the results of our work, experiment setup, performance 
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evaluation, limitation and advantages of the approach solution, performance Metrix, and 

comparisons of our solution against different methods. Lastly, chapter VI concludes with the 

conclusion along with some suggestions for future research.   



6 

 

CHAPTER 2 

BACKGROUND 

This chapter introduces facial recognition technology, workflow, and methods. Also, introduce 

deep learning (DP), convolutions neural network (CNN), and their concepts. Additionally, the 

importance of DP to build the recognition system and the development processes of face 

recognition and CNN are discussed briefly. 

2.1 Facial Recognition System 

Facial recognition is the process of automatically identifying an individual from captured images 

or videos [4]. It is a significant key area of research today. Its applications are becoming more 

important in various fields like ATM machines, criminal identification, access restriction, video 

conferencing, issuing drivers’ licenses and passports, and monitoring public areas. The imaging 

conditions, feature occlusion, inter-person similarity, and variance of faces are making the task of 

face recognition more challenging. Face recognition algorithms deal with a vast number of images, 

which leads to millions of operations, so it needs to have a specialized model for real-time 

implementation [3]. Moreover, various algorithms have been proposed for face recognition in the 

last few decades, with varying degrees of success. These algorithms analyze images and extract 

information such as shape, size, and location of facial features. So, the algorithms with the highest 

accuracy typically require intensive computation [4].   

2.2 Workflow of a Facial Recognition System 

The facial recognition process usually has five interrelated steps shown in figure 2.2 [30]. The first 

step is capturing the input image. The image is captured through a camera source, and it passes to 

the Face detection model. In this step, the face of the person is detected from the whole captured 
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image. Additionally, the third step is Features extraction, which extracts the specific and unique 

features from the detected face to match them with the corresponding images in the database. So, 

in this step, the face embeddings are generated. Similarly, face matching is done by calculating the 

Euclidian distance between the input image's embedding with the embeddings of database images. 

If the distance is less than the threshold value, then the identification of the person is accomplished. 

As a result, face recognition is completed by computing the distances between one input image 

with N number of database images. 

 

Figure 2.2 Workflow of facial recognition process 

2.3 Face Recognition Methods 

Many face recognition algorithms have been developed in the past. Some of the commonly used 

methods are Knowledge-based methods, Template matching, and appearance-based methods. All 

these methods are briefly explained below.  

2.3.1 Knowledge-Based Methods  

This method is also known as the rule-based method since the efforts are made to capture the 

knowledge of faces and then subsequently, they are translated into a set of rules. For example, 

there are facial features that are symmetrically located and areas on the face that differ in intensity. 

Deriving the appropriate set of rules is the major problem with knowledge-based methods, which 

should be neither too general nor too detailed. Additionally, a potential solution for overcoming 
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these problems is to create a hierarchical knowledge-based approach. This method is not able to 

work efficiently for complex images where the face invariant features are not visible, this method 

fails to work efficiently. As a result, a robust method should be employed to overcome this 

difficulty.  

2.3.2 Templating Matching  

Templating Matching is the process of identifying faces by considering only specific regions 

represented in templates. The pixels of the input image are compared against a template image 

using a metric measure such as Euclidean distance. In the first step, four features such as eyes, 

nose, mouth, and whole face are selected from a template and applied to all the available faces. 

The area of the input image is compared to the pictures in the database for each template. As a 

result, the face matching scores are calculated, and the identification decision is made based on it. 

Moreover, high accuracy rates of around 90% have been reported using this approach. The main 

advantage of this method is that the implementation is simple, however, it is inappropriate for 

variations in pose and illumination.  

2.3.3 Appear-based methods 

This approach is similar to template matching in which templates are taken from the set of 

examples in the images. Mainly, this method depends on techniques from statistics and machine 

learning to find the specific characteristics of face images. There are different algorithms for 

appear-based methods which are explained briefly below.   

Eigenface-based methods PCA algorithms: The most famous and widely accepted approach for 

facial recognition is known as the Karhunen–Loeve method. It is the most thoroughly studied 

method for face recognition, with its main usability being a reduction in the dimensionality of the 
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image. This method was first applied for face recognition and then subsequently used for facial 

reconstruction. The main advantage of this approach is that it minimizes the data by the 1000th 

time. Furthermore, this process is very quick, as it is utilized only for training the sample. While 

this approach demands a full-frontal image of the subject’s face, and in real-time situations, this 

rarely happens.  

Linear discriminant analysis: The Linear discriminant analysis (LDA) also known as Fisher’s 

discriminant analysis, is the dimensionality reduction technique. Among appearance-based 

approaches, LDA is utilized for feature selection. Among various appearance-based methods, 

LDA is applied for feature selection. This method overcomes the limitations of the PCA method. 

Among all the appearance-based approaches, LDA is the most Similar to PCA, it is based on 

Euclidean distance. Moreover, it is a supervised method, and unlike PCA, it uses label information 

for enhancing separability between different classes. Moreover, it also aims to reduce the variation 

within the class. In many LDA-dependent face-recognition techniques, initially, PCA is used for 

dimensionality reduction, and then LDA is used to maximize the discrimination power of feature 

selection  

Neural networks: The solution to the issues faced in linear methods was delivered by several 

nonlinear approaches such as neural networks. Normally, a net is considered with a neuron in every 

pixel. The feature extraction step is more efficient than linear methods because of the non-linearity 

of the network. Moreover, using this approach, an accuracy rate of 96.2% was noted. The training 

time is higher compared to the classification time. Neural networks have been combined with 

various models, such as Gabor filters and Hidden Markov Models (HMM). A semi-supervised 

method was used for identifying the human face. The researchers used unsupervised methods for 

feature extraction and supervised techniques for finding those features which can lower 
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classification error. Additionally, they utilized feed-forward neural networks for classification. The 

probabilistic decision-based neural network was modeled for three distinct aspects which are face 

detection, eye localization, and face recognition. The main advantage of the neural network is its 

capability to capture the tough class of face patterns. While the number of classes increases, it 

becomes difficult to implement neural networks. Also, this process is not suitable for a single 

model.  

Deep learning and artificial intelligence: In this technology era, the techniques of machine 

learning, deep learning, and artificial intelligence have subsequently influenced and impacted the 

broad area of daily services and logical functions. Nowadays facial recognition has been verified 

its indispensable impact in different applications. In a previous study, an algorithm to choose the 

experience of customers at a restaurant with no staff was developed. Based on expressions, the 

food and environment were rated. That system uses the pre-trained CNN (convolutional neural 

network) model. Similarly, using CNN models and applying deep-learning techniques, emotion 

recognition was achieved from audio-visual emotional big data.  

Support vector machine: The support vector machines (SVM) are the linear classifiers that 

extend the margin between the decision hyperplane and the training set. This is accomplished by 

finding a hyperplane that divides and maximizes the distance from any of the classes to the 

hyperplane, where a set of points belong to two distinct classes. Therefore, an optimal hyperplane 

should work by minimizing the classification error of the unseen test patterns. Additionally, first, 

the feature extraction is achieved using PCA (Principal Component Analysis), and then 

discrimination between the features is accomplished using SVMs. The main advantage of SVMs 

as compared to other classical methods is that they can achieve better performance.  
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2.4 Why Use the Face for Recognition 

There are many ways to authenticate a person, while biometric-based techniques have appeared as 

the most promising option for recognizing individuals in recent years. Other approaches like 

tokens, keys, passwords, and smart cards require the involvement of individuals in any way and 

have chances to be misplaced, stolen, forgotten, or forged. However, the biological traits of an 

individual cannot be misplaced or forgotten. Biometric-based recognition systems include the 

characteristics of the individual such as the face, palm, retina, voice, finger geometry, and so on. 

Among all the methods, face recognition offers many advantages, so it is preferred the most. Some 

of the advantages are mentioned here: however, all these techniques require some voluntary action 

by the user, and face recognition can be done passively without any explicit effort since face 

images can be received from a distance by a camera. This is useful for identification, security, and 

surveillance purposes. Similarly, some methods depend on the hands and fingers which can be 

affected useless if the epidermis tissue is harmed in some way. Retina identification requires costly 

equipment, and they are much too sensitive to body motion. Also, Voice recognition is susceptible 

to background noises in public areas and hearing fluctuations on a phone line or tape recording. 

On the other hand, facial images can be obtained easily with an affordable camera. Good facial 

recognition algorithms and appropriate image preprocessing can compensate for noise and slight 

changes in orientation, scale, and lighting.  

2.5 Problems with Face Recognition Algorithms 

Since the development of face recognition, it has often had to overcome various challenges. There 

are several factors that make facial recognition an arduous task. When the face image changes in 

illumination, expression, and pose, that makes identification problems much harder. Additionally, 

Age changes the facial texture and shape while occluded images left partial facial features for 
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processing, thus making the overall problem of face recognition much harder. The face recognition 

performance deteriorates significantly when variations are found in illumination, facial pose, and 

expression. Furthermore, other factors such as image resolution, orientation, blurring, and time 

delay also contribute to facing recognition obstacles.  

2.6 Deep Learning 

Deep learning is the pile of Convolutional Neural Network (CNN) layers and CNN is one of the 

most effective neural networks that has shown its superiority in a wide range of applications, 

including image classification, recognition, retrieval, and object detection. In addition, Neural 

Network (NN) is a sub-field and a key area of machine learning which are biological brain-inspired 

function approximators and have been successfully applied to various issues such as classification, 

regression, control, learning (online and offline), and robotics [2]. Furthermore, the neural network 

is an enormously powerful and robust classification technique that can be used for predicting not 

only the known data but also the unknown data. It works well for both linear and non-linear various 

datasets [19].   

The NN has been used in multiple areas such as object detection, speech recognition, face 

recognition, fingerprint recognition, forecasting, and so on [5]. A standard feed-forward neural 

network is made up of multiple input layers of neurons, some of them hidden, and an output layer 

of neurons. A neuron is a basic part of a neural network. It processes signals by accepting them as 

an input and then outputs a signal using a function. Moreover, the NN receives information on the 

environment as a normal signal from its input layer and then outputs a signal through the output 

layer of neurons [2]. The general workflow of Neural Networks is shown in figure 2.2. In our 

research, we applied the CNN layer to train the MFR (Masked Face Recognition) model. It is 

challenging to obtain all the facial characteristics from a single layer so multiple CNN layers are 
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utilized to extract various patterns of the face images. As a result, deep learning is significantly 

important to learn all the details of facial attributes.  

 

Figure 2.2 The workflow diagram of NN 

 

In figure 2.2, the input layer receives information in the form of a numeric expression and transfers 

it to the hidden layers, which calculate the weighted sum and weights. The information is displayed 

as activation values, where each layer has given a number, the higher the number greater the 

activation. Additionally, this information is then transferred throughout the network. Based on the 

strength of the connection which are weights, inhibition, and transfer functions, the activation 

value is transmitted from layer to layer. Individual layers sum up the activation values it collects; 

then transform the value based on its transfer function [5]. Similarly, the Activation value goes via 

hidden layers through the network until it makes the output layer. The output layer then reflects 

the meaning. The neural network could have many inputs, hidden, and output layers. There are 

several types of neural networks (NN) and some of them are recurrent neural network (RNN), 
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convolutional neural network (CNN), and deep convolutional Network (DCN). The NN is applied 

in various fields such as computer vision, time series prediction, pattern recognition, robot control, 

anomaly detection, object detection, and so on.   
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CHAPTER 3 

LITERATURE REVIEW 

This chapter discusses the related work and identifies what aspects of previous work will be 

applied. These studies focus on a few selected research that contributes to the use of facial 

recognition with and without face masks and how it can be implemented using different 

approaches. This chapter’s primary goal is to provide a review of the literature and present an 

overview of the current research that contributes to the use of MFR (Masked Facial Recognition). 

Moreover, it describes some of the challenges in the development of facial recognition systems, a 

summary of the related works and the approaches, their limitations and benefits, the research gap, 

and our contributions to solving the problems with existing approaches. 

3.1 Face Recognition Developing Stages 

The earliest pioneers of facial acknowledgment were Woody Bledsoe, Helen Chan Wolf, and 

Charles Bisson. In 1964 and 1965, Bledsoe began working with computers with Wolf and Bisson 

to identify the human face. Due to the financing of the project coming from an unnamed 

intelligence agency, much of their work was never made public. However, later it turned out that 

their initial work applied the manual marking of different facial landmarks on the faces, such as 

eyes centers, nose, and mouth. These were then statistically turned by a computer to compensate 

for pose variation. Then the distance between the landmarks was calculated and compared between 

images to determine identity automatically [7].    

These earliest steps into Facial Recognition in a manner consistent with the Bledsoe, Wolf, and 

Bisson were severely hampered by the technology of the era, but it remains an important first step 

in proving that Facial Recognition was a practical biometric. Carrying on from Bledsoe's original 
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work, the baton was picked up in the 1970s by Goldstein, Harmon, and Lesk who expanded the 

work to include 21 specific subjective markers including hair color and lip thickness to automate 

the recognition. The National Institute of Standards and Technology (NIST) started Face 

Recognition Vendor Tests (FRVT) in the early 2000s. Building on FERET (Face Recognition 

Technology), FRVTs (Face Recognition Vendor Tests) were designed to provide independent 

government evaluations of commercially available facial recognition systems and prototype 

technologies. These assessments were designed to provide law enforcement agencies and the U.S. 

government with the information needed to determine the best ways to deploy facial recognition 

technology.  

Back in 2010, Facebook began implementing facial recognition features that helped identify 

people whose faces may feature in Facebook photos that users update daily. The feature was 

immediately controversial with the news media, triggering a slew of privacy-related articles. 

However, Facebook users did not seem to mind. Having no clear adverse effect on the Web site’s 

use or popularity, more than 350 million pictures are uploaded and tagged using face recognition 

every day. Facial Recognition technology has advanced rapidly from 2010 onwards and September 

12, 2017, was another significant breakthrough for the integration of facial recognition into our 

day-to-day lives. This was the date that Apple launched the iPhone X, which was the first iPhone 

users could unlock with Face ID – Apple’s marketing term for facial recognition. So, in this way, 

the development of facial recognition took place from past to present.    

3.2 Masked Facial Recognition 

Masked face recognition refers to techniques in which the system needs to recognize the individual 

whose face is occluded. Masked facial recognition is one of the most difficult problems because 

masks cover more than half of the face, and it is difficult to identify someone with just eyes, 
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eyebrows, and forehead areas. Therefore, masked face recognition often requires large datasets, 

and huge calculations to train the best model which can help to recognize the person accurately.  

In 2021 Vu et al. [31] presented Masked face recognition with convolutional neural networks and 

local binary patterns. The researcher proposed the combination of deep learning and local binary 

pattern features approach to identify the masked faces by using RetinaFace. A RetinaFace is a face 

detector, which is a combination of self-supervised and extra-supervised multi-task learning that 

can deal with various scales of faces. Moreover, they extracted the local binary pattern features 

from the eye, forehead, and eyebrow areas of masked faces and joined them with features learned 

from RetinaFace into a unified framework for recognizing masked faces. Additionally, they used 

the 300-subject dataset collected from their institution named COMASK20. The researcher 

mentioned that they compared their system with the published Essex dataset also and they received 

98% and 87% f1 scores for COMASK20 and Essex datasets, respectively. These showed that their 

system has shown effectiveness and suitability as compared to other methods like Dlib and 

InsightFace.  

In 2021 Ullah et al. [1] presented a novel DeepMaskNet model for face mask detection and masked 

facial recognition. Testing people who are not wearing face masks manually in public places is a 

challenging task. Moreover, using face masks makes traditional face recognition techniques 

ineffective, typically designed for unveiled faces. Therefore, the researcher introduced a reliable 

system that can detect people who do not wear face masks and recognize different people while 

wearing face masks. In this paper, they proposed a novel DeepMasknet framework capable of both 

face mask detection and masked facial recognition. Moreover, presently there is an absence of a 

unified and diverse dataset that can be used to evaluate both face mask detection and masked facial 

recognition. For this purpose, they also developed a largescale and diverse unified mask detection 
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and masked facial recognition (MDMFR) dataset to measure the performance of both the face 

mask detection and masked facial recognition methods. The proposed work has two main phases. 

The first phase includes the data collection and dataset preparation, while the second phase 

presents a novel Deepmasknet model construction for face mask detection and masked facial 

recognition. They got an accuracy of 100% for face detection and 93.33% for masked facial 

recognition. Researchers said that their experimental results on multiple datasets including the 

cross-dataset setting showed the superiority of their DeepMasknet framework over the 

contemporary models.     

In 2020 Mundial et al. [14] presented a paper on facial recognition problems in the covid-19 

pandemic. The researchers proposed a methodology that can improve the existing facial 

recognition technology capabilities with masked faces. They used a supervised learning method to 

recognize masked faces together with in-depth neural network-based facial features. A dataset of 

masked faces was collected to train the Support Vector Machine classifier on a state-of-the-art 

Facial Recognition Feature vector. Their proposed methodology gave recognition accuracy of up 

to 97% with masked faces. They mentioned that this model performed better than existing devices 

not trained to handle masked faces.     

In 2019 Ejaz et al. [16] presented the implementation of principal component (PCA) analysis on 

masked and non-masked face recognition. In this paper, a statistical procedure was selected that is 

applied in the recognition of the non-masked face and applied in the masked facial recognition 

technique. This method achieved an accuracy of masked face image recognition on average of 

72% whereas non-masked face was on average 95%. PCA gave a poor recognition rate for masked 

face images rather than non-masked faces. It was found that extracting facial features from a 

masked face is less than a non-masked face because of missing features from masked faces. As a 
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result, the researcher concluded that the PCA Analysis is better for normal face recognition but 

not for masked face recognition.     

In 2020 Anwar et al. [12] presented masked face recognition for secure authentication. With the 

recent worldwide COVID-19, face masks have become an important part of our lives. People are 

encouraged to cover their faces when in public areas to avoid the spread of infection which can 

reduce the transmission of Covid-19. Face recognition system is commonly used for security 

verification purposes and the use of face masks has made conventional facial recognition 

technology ineffective in many scenarios, such as face authentication, security check, community 

visit check-in, tracking school, office attendance, and unlocking phones and laptops. Because of 

Covid-19, people in closed spaces must wear face masks to verify their identity on their mobile 

phones or laptops. Many organizations use facial recognition as a means of authentication and 

have already developed the necessary datasets in-house to be able to deploy such a system. 

Unfortunately, masked faces make it difficult to be detected and recognized, thereby threatening 

to make the in-house datasets invalid and making such facial recognition systems inoperable. As 

a result, the researcher addressed a methodology to use the current facial datasets by augmenting 

them with tools that enable masked faces to be recognized with low false-positive rates and high 

overall accuracy, without requiring the user dataset to be recreated by taking new pictures for 

authentication. They presented an open-source tool, MaskTheFace to mask faces effectively 

creating a large dataset of masked faces. The dataset generated with this tool is then used towards 

training an effective facial recognition system with target accuracy for masked faces. They 

received an increase of around 38% in the true positive rate for the Facenet system. Additionally, 

the researcher tested the accuracy of the re-trained system on a custom real-world dataset MFR2 

and report similar accuracy.  
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In 2021 Mandal et al. [13] proposed masked face recognition using ResNet-50. Over the last 

twenty years, there have seen several outbreaks of different coronavirus diseases across the world. 

These outbreaks often led to respiratory tract diseases and have proved to be fatal sometimes. 

Currently, we are facing an elusive health problem with the arrival of the COVID-19 disease of 

the coronavirus family. Airborne transmission is one of the modes of transmission of COVID- 19 

and it transfers when humans breathe, speak, sing, cough, or sneeze in droplets released by an 

infected person. As a result, public health officials have prescribed the use of face masks that can 

reduce disease transmission by 65% [13]. Facial recognition systems are used for security 

verification purposes and the use of face masks presents a difficult challenge since these systems 

were typically trained with human faces without masks but now due to the onset of the Covid-19 

pandemic, they are forced to identify faces with masks. Therefore, the researcher studied the same 

problem by developing a deep learning model capable of accurately identifying face masks. In this 

paper, the authors trained a ResNet-50-based architecture that performs well at recognizing 

masked faces. The results of this study could be seamlessly integrated into existing facial 

recognition programs designed to detect faces for safety verification purposes.    

3.3 Unmasked Face Recognition 

Facial recognition is the process of automatically identifying an individual from captured images 

or videos [4]. It is a significant key area of research today. Its applications are becoming more 

important in various fields like ATM machines, criminal identification, access restriction, video 

conferencing, issuing drivers’ licenses and passports, and monitoring the public areas. Moreover, 

the imaging conditions, feature occlusion, inter-person similarity, and variance of faces are making 

the task of face recognition more challenging. The facial recognition process usually has five 
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interrelated steps: image capturing, face detection, feature extraction, database matching, and 

person identification.  

In 2015 Schroff et al. [15] proposed the FaceNet model, a unified embedding for face recognition 

and clustering. Despite significant recent progress in face recognition, implementation of face 

verification and recognition effectively poses serious challenges to current approaches. The 

researcher presented a FaceNet model, which learns directly from face images to calculate the 

Euclidean distances, and these distances are directly compared to measure the face matching. 

Additionally, once these FaceNet embeddings are created, they could easily be implemented for 

tasks such as face identification, validation, and clustering by calculating the Euclidean distances. 

Their method applied a deep convolution network trained to optimize the facial embedding, while 

the previous methods of deep learning used an intermediate layer of a bottleneck. A new triplet 

mining approach generated the non-matching and matching face patches to train. The main 

advantage of their approach was greater representation efficiency where they used only 128 

bytes/face and obtained state-of-the-art facial recognition performance. In the massively used 

Labeled Faces in the Wild (LFW) dataset, their system reached the accuracy of 99.63%, a new 

record high. On the YouTube Faces database, it received 95.12%. Furthermore, their system 

shortened the error rate by 30% on both datasets as compared to the top published result of other 

papers [24]. Also, the researcher presented the notion of harmonic embeddings and a harmonic 

triplet loss, which represented various versions of face embeddings that were compatible with each 

other and authorized for direct comparison.  

In 2015 Simonyan et al. [11] proposed very deep convolutional networks for large-scale image 

recognition. In this work, they studied the effect of the depth of the convolutional network on its 

accuracy in a large-scale image recognition environment. Their main contribution was a thorough 
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evaluation of networks of increasing depth using an architecture with exceedingly small (3×3) 

convolution filters, which showed that a significant improvement on the prior-art configurations 

can be achieved by pushing the depth to 16–19 weight layers. These results were the basis of their 

2014 ImageNet Challenge submission, where the research team secured first and second place in 

localization and classification tracks, respectively. They also showed that their representations 

generalize well to other datasets, where they achieve state-of-the-art results. To promote further 

research on the use of deep visual representations in computer vision, the researchers made two of 

the most powerful ConvNet models public.   

In 2013 Jindal et al. [28] proposed PCA (Principal Component Analysis) with the Artificial Neural 

Network (ANN) method which identified features of the face images extracted using the PCA 

method. PCA is a dimensionality reduction method and keeps most of the variations present in the 

data set. It captures the variations in the dataset and uses this information to convert the face 

images. It calculates the functional vectors for various face points and forms a column matrix of 

these vectors. In this paper, the mathematical function Log-sigmoid was applied for the eigenfaces 

of the same person, the specific neural network gave the output as one and for the eigenfaces of 

another person, it gave the output as 0. After that, only the recognized faces were found as output 

one. Therefore, Neural Network forms an Identity matrix for different face images using the 

outputs 1s and 0s. The errors in the output layer were sent back to the earlier layers and refresh the 

weights of these layers which reduced the error. If the minimum distance between the tested 

eigenface image and the trained input eigenface image is less than the threshold value, then the 

output of the network is one and the trained eigenface image is chosen from the Identity matrix as 

an output image and further identified as a resulted face image otherwise the test face image is 
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denied as a non-human or unknown face image. The purposed face recognition system worked 

with high accuracy and provided better success rates even for noisy face images [5].  

In 2015 Yooa et al. [27] introduced a hybrid method of face recognition by using face region 

information taken from the detected face region. The researcher designed the hybrid approach 

based on the ASM (Active Shape Model) and PCA (Principal Component Analysis) methods for 

the image preprocessing part. At this step, they used a Charge Coupled Device camera to obtain 

facial images using AdaBoost, and then Histogram Equalization was applied to enhance the image 

quality. In the formation of the state part of the fuzzy rules, the input space was divided with the 

use of Fuzzy C-Means clustering. In the summary part of the fuzzy rules, the connection weights 

of the RBF NNs were represented by four types of polynomials such as linear, quadratic, constant, 

and reduced square. An advised Polynomial-based RBF NNs were implemented for facial 

recognition and their performance was quantified from the perspective of the performance and 

recognition rate. This enhancement can be attributed to the fact that the unnecessary parts of the 

image were removed with the use of the ASM [6].  

3.4 Summary of the Related Works 

All the previous work that has been done in facial recognition has its own techniques, model, 

advantages, and disadvantages. Different research was carried out with varying rates of success in 

the past. In table 3.4, we have provided the summary of existing masked and unmasked systems 

in terms of their approach, model, accuracy, dataset, advantages, disadvantages, and so on.  
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Table 3.4 Summary of the related work for masked facial recognition   

Research  Model/Method  

  

Dataset/Accuracy  Advantages/Disadvantages  

  

[1]  

  

Presented a novel 

DeepMaskNet model using 

CNN  

  

Dataset: MDMFR, Kaggle  

Accuracy: 93.33%  

• This system can detect the face 

mask and also recognize the masked 

faces  

• Verified the model under diverse 

conditions like age, gender, type of 

masks, illumination, face angles, 

etc.  

[12]  Proposed a model for 

masked face recognition 

using FaceNet  

Dataset: VGGFace2, MFR2  

Accuracy: 38% higher true 

positive for FaceNet system  

• Provided low-false positive rates 

and overall high accuracy  

• Created a large dataset for masked 

faces  

[13]  Masked face recognition 

using ResNet-50, and 

applied transfer learning 

technique  

Dataset: RWMFD  

Accuracy: 89.70% 

(masked), 47.91% 

(unmasked)  

• Applied different hyperparameters 

turning to identify the masked faces  

• Use of imbalanced data 

significantly reduced the accuracy 

of masked face recognition  

[14]  Used supervised learning 

approach with in-depth 

neural network based facial 

feature for masked face 

recognition  

Dataset: VGGFACE2, LFW  

Accuracy: up to 97%  

• Trained the Support Vector 

Machine classifier on a state-of-the-

art facial recognition feature vector  

  

[15]  

  

Presented the unified 

embedding concept using 

FaceNet model for face 

recognition  

  

Dataset: LFW, YouTube  

Accuracy: 99.63% (LFW), 

95.12% (YouTube)  

  

• The system cuts the error rate by 

30% as compared to other systems 

on both datasets,   

• This approach could be easily 

implemented for identification, 

validation, and clustering  

  

[16]  

  

PCA for masked and 

unmasked face recognition, 

used statistical procedure 

technique, and performed 

experiment using 

MATLAB  

  

Dataset: ORL, Own created 

datasets  

Accuracy: 72% (masked), 

95% (unmarked)  

• This method is used to minimize a 

big dataset to a small dataset with all 

the information  

• PCA provided a poor recognition 

rate for masked faces than 

unmasked faces  

• Concluded that this method is only 

better for normal face recognition  

[25]  Masked face recognition 

using Face-eye-based 

method  

Dataset: SMFRD, RMFRD  

Accuracy: 95%  

• Built the face mask dataset, used 

both real and artificial masked face 

dataset to train the model  

[31]  Masked face recognition 

using deep learning and 

LBP  

Dataset: COMASK20, 

Essex  

Accuracy: 87% 

(COMASK20), 98% 

(Essex)  

• This approach outperformed other 

methods like Dlib and InsightFace,   
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Table 3.4 shows the summary of different works that have been done in the masked and unmasked 

facial recognition system. It is noticed that research [15] shows the best accuracy for unmasked 

facial recognition. It provided an accuracy of 99.63% for the LFW dataset. Whereas other research 

such as [1, 12, 14, 16, 25, 31] provide better accuracy for masked face recognition.   

3.4.1 Limitation of the Existing Work, Research Gaps, and our Contributions 

We reviewed the previous related works that have been done in our research fields to get more 

ideas. In the work of Schroff et al. [15] in 2015, the idea of the FaceNet model, a unified embedding 

for unmasked face recognition has been widely used for facial recognition. This approach is based 

on learning a Euclidean embedding per image using a deep convolution network. As a result, we 

applied a similar embeddings technique in our Masked Facial Recognition (MFR) research. The 

work [15] generated a large training model size and took a long time to train the model so we focus 

to solve this issue in our work. The small model can run on mobile devices and is compatible with 

a large server-side model.    

Moreover, the researcher [13] did get better accuracy for masked face recognition using ResNet-

50, however, this method worked well for unmasked faces. They used the imbalanced data to train 

the model which significantly reduced the accuracy of masked face recognition. We trained our 

model using Inception ResNet V1, which is the combination of the Inception model and Residual 

Network. So, we applied the balanced images per identity, performed face alignment to select only 

the facial part, and removed the mislabeled images from each class. As a result, all these operations 

helped to boost the accuracy significantly of our trained model. 

Additionally, there are many systems that apply statistical procedures, Cosine, or Euclidean 

techniques to perform face matching. Our research focused on the Euclidean distance function to 
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calculate the distance using face embeddings. Among all the Euclidean distance function methods, 

our system received better accuracy for masked face recognition. The face embeddings are useful 

for face matching as compared to other methods [13, 16, 25]. Although many works have been 

done [26, 1, 13, 16, 25] in the past for Masked Facial Recognition, we proposed a system that 

provides better accuracy for MFR and built a single system that can identify both masked and 

unmasked faces. Also, we trained a small face recognition model which helped to increase the 

recognition rate. Inception ResNet V1 [20] with training dataset is applied to train our MFR 

(Masked Facial Recognition) model. The previous work utilized real face mask images for 

training, whereas we generated artificial face mask images for our model training and received 

better recognition accuracy. As compared to the previous approaches, we used balanced images 

per class for model training. As a result, we received significantly high recognition accuracy even 

if we utilized a small number (5, 10, and 15) of images per identity.    

Similarly, we applied the artificial way to create a masked face dataset for training and testing 

using the computer vision method. Additionally, we selected the fixed number of images per class 

from the CASIA dataset, and for each selected image we augmented that image four times with a 

different look for better diversity of training datasets. This means two masked faces and two 

normal faces are generated from a single image using image processing. So, all these images are 

applied for model training. Overall, all these approaches helped to improve the accuracy and 

performance of our Masked Facial Recognition system. More information about our model, 

approach, work, contributions, datasets, and results are presented in the methodology section. 
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CHAPTER 4 

METHODOLOGY 

This section describes the three main parts: the first is data collection and preparation, the second 

is training the MFR (Masked Facial Recognition) model and its evaluation, and the last one is real-

time masked facial recognition using our trained model. All three steps are explained in detail 

below.  

4.1 Data Collection and Preparation 

The overall process for data collection and preparation is shown in figure 4.1. The following 

sections provide more information on data collection and preparation.  

 

Figure 4.1 Data preparation process  

4.1.1 Training Dataset 

The first step of this research paper is to collect the dataset so that we can prepare the face images 

to train the model. For that, we used the CASIA dataset [17] which has 10585 classes, and each 

class has less than ten to more than one hundred images of the same person. The training images 

of type PNG, JPG, and VMP are only taken for data preparation. We only required the facial part 

of each image, however, the CASIA dataset has images with other attributes like hair, neck, and 

shoulder. Therefore, image alignment is taken as the first step to crop only the facial part of the 
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images. As table 4.1.1 shows, we created three different datasets to train three different models 

with different numbers of training images.   

Table 4.1.1 Summary of our three datasets used for training  
 

CASIA 

Dataset  
# Class  # Images 

per class  
Augmented 

by  
# Masked 

images per 

class  

# Unmasked 

images per 

class  

Total  

Images 

Dataset - 1  10,585  5  4  10  10  211,700  
Dataset - 2  10,585  10  4  20  20  423,400  
Dataset - 3  10,585  15  4  30  30  635,100  

 

4.1.2 Face Alignment 

Face alignment is a process of cropping the face part from images and the cropped image represents 

the facial features. It is performed by using face detection. Face detection is the process of 

identifying the face from the captured image or the specified image from the database. So here, 

image alignment is carried out by using the SSD (Single Shot Detector) [10] face detection model. 

There are various methods for face detection like MTCNN (Multi-Task Cascaded Convolutional 

Neural Networks), Dlib, and OpenCV but we preferred the SSD method for image alignment since 

it is faster and easy to implement. At first, it detected the face from each CASIA class then we 

cropped the detected face part and saved it to the respective class folder. The margin of cropped 

image is set to 20 in all four directions so that the cropped face would have all the facial characters 

and fewer background images. Similarly, we resized all the images to [112,112,3] format where 

the first two numbers (112) represent the height, and width respectively, and the last value 3 

denotes the number of channels. Our training images have three channels Red, Green, and Blue 

(RGB) format. As a result, image alignment allowed us to reduce the size of each image which 

helped to improve the performance and accuracy of the training model. The sample images after 
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face alignment are shown in figure 4.1.2. Also, the source code for the face alignment is given in 

section A.2.  

 

Figure 4.1.2 Sample images after face alignment  

4.1.3 Data Cleaning 

The CASIA classes might include mislabeled images from other classes. For example, if the class 

has faces that do not belong to that class, our aim is to remove those images which affect the 

accuracy of the training model. The process is shown in figure 4.1.3. It is not possible to remove 

mislabeled images from each folder by us, since it takes a lot of time. So, this is done by using 

FaceNet pre-trained weights [29]. First, we selected the images one by one in the same class as the 

target images, and the others are regarded as reference images. So, we get the 128-dimensions of 

embeddings for the target image, and reference images by using the FaceNet model and then 

calculated the average Euclidean distance between the target image and reference images. The 

formula to calculate the Euclidean distance is shown in the equation below. If the average distance 

surpasses the threshold value (0.8), then we removed that target image from the class. That means 

we could say that the target image does not belong to this class. Additionally, if two faces are 

similar, then their average Euclidean distance always should be near zero. We set the threshold 

value of 0.8 to remove the outlier images.   
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Euclidean distance (d) = √(𝑥1 − 𝑦1 )
2 +  (𝑥2 − 𝑦2 )

2 + (𝑥3 − 𝑦3 )
2 + ⋯ +  (𝑥128 − 𝑦128 )

2        (4-1) 

Where x and y represent the embeddings of the target and reference images respectively. The size 

of the embedding is 128 dimensions, so it starts with the 1st value and goes up to the 128th value 

to calculate the Euclidean distance. 

 

Figure 4.1.3 Process to calculate the distance between target and reference images  

4.1.4 Create Masked Faces 

The masked face datasets are created using a computer vision-based approach (Dlib). Dlib is useful 

to locate the mask key position on the face using facial landmarks. It has 68 facial landmarks, and 

the mouth is represented by points 48 to 68. So, these regions of interest (ROI) of the face are 

replaced by a random mask temple out of 16 mask images to generate the masked face images. 

Additionally, we resized the face mask template according to the size of mouth ROI, so it helped 

to fix the mask perfectly on a face image. Additionally, all the mask templates are saved in PNG 

files since it has four-channel, and the fourth channel is used to describe the transparency. We 

applied sixteen mask templates, and a random mask is selected at a time. The mask template 

images are shown in figure 4.1.4 (b). As a result, this approach helped to convert the CASIA 

dataset to a masked face dataset to train our Masked Facial Recognition model. It is difficult to 
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collect the same person's images with a face mask and without a face mask, so this approach helps 

to convert any existing face dataset to a masked face dataset. The process to create a masked face 

dataset is shown in figure 4.1.4 (a).   

 

Figure 4.1.4 (a) Process to create masked face dataset  
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Figure 4.1.4 (b) Mask template images  

4.1.5 Create Balance Dataset 

The CASIA dataset has many classes, and each class has less than ten to more than 100 images of 

the same identity. Data imbalance is a big issue since it affects the accuracy of the trained model 

[13]. So, to solve this problem we selected an equal number of images for each class as shown in 

table 4.1.1. We randomly took a fixed number of images (5, 10, and 15) from each class at a time 

and created more images of the same individual with different looks using the image processing 

method. For each selected image we augmented each image four times. That means two masked 

faces and two normal faces are generated from a single image. This process utilizes random masks, 

random crops, random blur, random angles, random flip, and random brightness methods. All these 

operations were performed by using OpenCV [9] and Dlib [8]. So, this method helps to create a 

balanced number of images for each class. As a result, we used these balanced images to train our 

model. Table 4.1.1 shows how we created three different datasets to train three models with 

different sizes of training images. Also, it shows the number of masked and unmasked images that 

we used for each training model. Figure 4.4.5 shows the sample augmented images used for 
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training. Similarly, the image processing and images argumentation source code is given in section 

A.3.  

 

Figure 4.1.5 Sample augmented images from induvial selected images 

4.2 Model Training and Evaluation 

All the information on training details, training parameters, model training for masked face 

recognition, model evaluation, model improvement, and architecture of Inception Resnet V1 are 

discussed in the following section.   

4.2.1 Training and Testing Details 

Our model training environment includes TensorFlow 2.1, Python 3.7, OpenCV 4.5, Matplotlib 

3.5, Dlib 19.23, and NumPy 1.21 of versions. The training images of size 112*112 height and 
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width with 3 channels are used. The smaller image size can make the inference much faster to 

perform real-time masked face recognition, so a small image size is adopted for training. In 

addition, a previously prepared CASIA dataset was used for training the model. The three training 

datasets information is presented in table 4.1.1. We selected a fixed number of images per class, 

and for each face image, we created four different images. Two were masked images with 

distinctive looks, and two were different looks without a face mask as shown in figure 4.1.5. 

Overall, two masked and two unmasked images are applied per image for model training. The real-

world LFW [18] dataset was tested to evaluate the model for unmasked faces using the same and 

different face pairs. On the other hand, we created masked faces using Microsoft celebrity face 

images and applied those images to evaluate the model for masked faces. The images that the 

trained model never learned are applied to test its performance. The testing datasets information is 

presented in table 4.2.1.    

Table 4.2.1 Summary of masked and unmarked datasets used for model evaluation  

Dataset  Type  # Class  # Images  # Images 

per class  

Testing pair  

LFW  Real-world 

unmasked 

images  

5,749  64,973  11.3  Same face and different 

face pairs - 6,000  

Microsoft Celebrity 

face database  

Artificial masked 

images   
85,744  85,744  1  2,000  

 

4.2.2 Model Training   

In the first step of figure 4.2.2, the training dataset includes both masked and unmasked images. 

For unmasked faces, whole facial features are used for model training, whereas eyes, eyebrows, 

and forehead areas are utilized for masked faces to extract the features. Masked faces occluded the 

nose, mouth, and cheeks areas so uncovered areas would only be used for feature extraction. 

Moreover, Inception ResNet V1 [20] with a training dataset is applied to train the MFR (Masked 
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Facial Recognition) model. Inception ResNet V1 has many CNN (Convolutional Neural Network) 

layers to perform massive calculations and store all the image features. More information about 

our AI model is given in the following septate section. Moreover, training loops include the 

different epoch operations, where we set the epoch size and perform the training loop repeatedly 

to optimize the model. While training the model, in each epoch the accuracy and loss function are 

calculated using testing images and the Cross-Entropy function, respectively. The value of the 

epoch is set as a fixed number, and, in each epoch, we optimized the training model weights 

repeatedly and calculated the accuracy and loss function of the training model. It is noted that the 

accuracy was increased with the increase of epoch size in training. Furthermore, accuracy is 

calculated by using a total number of correct predictions divided by a total number of predictions. 

Also, the average loss of the training model is calculated using Cross-Entropy and which is the 

difference between output probabilities and answers. While training the model, it was always 

expected to get higher accuracy and lower loss value. The process involved in the modeling 

training is shown in figure 4.2.2. The formula to calculate the accuracy and loss function is shown 

in the equations below. 

Accuracy = 
Number of correct predictions

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                                                 (4-2) 

The loss (Cross-Entropy) = - ∑ 𝑦𝑖,𝑐
𝑀
𝑐=1  log(𝑝𝑖,𝑐)                                 (4-3)  

Where y and p represent the label and prediction, respectively. 

If the prediction is equal to the answer, then the face matching is correct, and we increase the 

correct prediction by one. As a result, we used this value to calculate the accuracy of the trained 

model in each epoch. Even though we get the prediction probability from our trained model, we 

do not utilize that for face matching. Instead of predictions, we used embeddings for face matching. 
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Our trained model generated the embeddings for any input images so that would be applied to 

calculate the Euclidean distance. Embedding is a facial feature that is transformed into a sequence 

of numbers, and these are used to describe facial characteristics. We can generate embeddings of 

lengths 64, 128, 256, or 512, but we used 128-d embeddings size to represent the facial feature. 

The smaller size of the embedding might not include all the facial features, whereas the larger size 

will take more computation time. So, 128-d embeddings are used to represent the facial feature in 

our research. It is expected to run the training loop until it reaches the set epoch value, and we 

would expect to get higher accuracy and less loss function. After the training epoch is done, the 

fixed model is saved in a local folder, and we utilize that fixed model to perform real-time Masked 

Facial Recognition. The training model will be saved in the PB (Protocol Buffer) file, and it 

includes prediction and embeddings.  

 

Figure 4.2.2 Model training process for MFR  

 



37 

 

4.2.3 Model Improvement 

In each epoch, we optimized our training model by providing the same images with a distinctive 

look. So, it is done by applying random masks, random crops, random blur, random angles, random 

flip, and random brightness using image processing and computer vision approach. Also, our 

training dataset has more than 10,000 unique classes with different ages, races, and genders so we 

passed all those images which helped to learn our model from diverse face images. Additionally, 

we performed image alignment for both training and testing images which allowed us to reduce 

the size of each image and only included the facial part. That helped to improve the performance 

and accuracy of the training model. Also, the removal of the mislabeled image from each class 

helped to maximize the accuracy of the system since our model will not learn from the wrong 

images. From the research [13], we comprehended that the imbalanced images affect the accuracy 

of the training model, so we selected the balance number of images from each class for our three 

different trained models. Furthermore, we applied the smaller batch size (96, or 192 images per 

iteration) which improved the training time of our model. As a result, our three different models 

only took on average 30 hours to get the maximum accuracy. Similarly, we utilized small training 

images with height and width 112*112 respectively and reduced the filter size by half so that 

helped to reduce the size of our training model. Small training models are important since it takes 

less time for inference and increases the performance of recognition. Also, the small model can 

run on mobile devices and is compatible with a larger server-side model.    

4.2.4 Architecture of our AI Model  

4.2.4.1 Why this architecture  

The normal classification model only outputs the probabilities of trained class numbers, and it is 

impossible to train different faces all over the world. The very deep convolutional networks 
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(Inception model) have been applied for facial recognition systems in the past and it has shown 

better performance and low computational cost [21]. The combination of Inception architecture 

[22] and residual network [23] (Inception ResNet V1) provides better recognition performance 

since training with residual connections accelerates the training of Inception networks. Therefore, 

Inception ResNet V1 architecture is proposed to use, and this model provides the embeddings 

which are applied to perform face matching. The block diagram of the Inception model and 

Residual network are shown in figures 4.2.4.1 (a), and 4.2.4.1 (b) respectively.  

 

Figure 4.2.4.1 (a) Inception module  

From figure 4.2.4.1 (a), the Inception module is the combination of 1*1, 3*3, and 5*5 convolutions 

layers and 3*3 max pooling. Here, 1*1 convolutions are applied to modify the channel numbers, 

and the final goal is to decrease the model weights. The smaller model means fewer calculations 

and makes the inference much faster.  
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Figure 4.2.4.1 (b) Residual learning: a building block 

From figure 4.2.4.1 (a), the Residual learning includes the weights of size 3*3, and filter size 64. 

The activation function, relu is applied for calculation. More information on the architecture is 

provided in the following section.  

4.2.4.2 Architecture of Inception ResNet V1   

The prepared input images are fed to the AI (Artificial Intelligence) model for model training. 

Inception ResNet V1 has weight layers, CNN (Convolutional Neural Network) layers, average 

pooling, stem, reduction, fully connection (FC), and softmax. Different parameters are applied to 

Inception ResNet architecture such as filter size of 32, 64, 80, 192, or 256, 3*3 kernel size, the 

activation function (ReLU), batch size of 32, 96, or 192, the learning rate is 0.0005, optimization 

method (Adam), strides, fix epoch number, model size, and balance images from every 10585 

classes.  Batch size is helpful to improve the training performance. We can’t feed all the training 

images at one time, so we pass the fixed batch number of images for each iteration. The total 

number of training images divided by batch size is the total number of iterations per epoch. The 

training parameters for our three training models are presented in table 4.2.4.2.  
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Table 4.2.4.2 Parameters for three different training models  

Parameters  Values  

Model 1 Model 2 Model 3 

Feature number 128-d 128-d 128-d 

Learning rate 0.005 0.005 0.005 

Maximum epoch 38 50 61 

Batch size 192 96 96 

Loss Cross Entropy Cross Entropy Cross Entropy 

Optimizer Adam Adam Adam 

Model shape [112,112,3] [112,112,3] [112,112,3] 

Masked images 317,550 211,700 105,850 

Unmasked images 317,550 211,700 105,850 

 

 

Figure 4.2.4.2 Architecture of Inception ResNet V1 model 
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Inception ResNet [20] is a combination of the Inception and ResNet models where it has ten 

different steps to train the model. As figure 4.2.1 shows in the first step, the input images are passed 

through the stem. The stem has five 3*3 convolutions of different filter sizes 32, 64, 80, 192, and 

256, respectively. It has one 3*3 MaxPool of stride 2. Also, it includes 1*1 Convolution. The 1*1 

is applied to modify the channel numbers, and the final goal is to decrease the model weights. The 

smaller model means fewer calculations and makes the inference much faster. The weights are 

calculated by multiplying kernel size, filter size, and the number of channels. Similarly, the second 

step is 5 times Inception ResNet-A. It contains three 3*3 convolutions of filter size 32, and four 

1*1 convolutions of filter size 32, and 256. Moreover, the third step is Reduction-A which includes 

the convolutions of 1*1, 3*3, and MaxPool of size 3*3. Additionally, it is followed by 10 times of 

Inception ResNet-B, Reduction-B, 5 times Inception ResNet-C, Average Pooling, Dropout, and 

the last one is Softmax. Average Pooling computes the average value of each feature map and 

returns that value. The embeddings of size 128 dimensions are received from Dropout once the 

normalization is done on it. Dropouts passed through the Softmax to get the prediction value. The 

value of prediction will be 10585 since our CASIA dataset has that number of classes. We get the 

prediction value from Softmax whose output ranges from 0 to 1. Softmax can make the bigger 

number become a larger ratio and make the smaller numbers even smaller. As a result, our trained 

model includes embeddings and predictions. The source code of the Inception ResNet V1 model 

is given in section A.1.   

4.2.4.3 How to generate embeddings  

The face embeddings are the numeric values of facial features which are used to recognize the 

person by calculating the Euclidean distance between the target and reference images. Moreover, 

we can generate embeddings of lengths 64, 128, 256, or 512, but we used 128-d embeddings size 
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to represent the facial feature. The smaller size of the embedding might not include all the facial 

features, whereas the larger size will take more computation time. So, 128-d embeddings are used 

to represent the facial feature in our research. In our model, the embeddings of size 128-d are 

received from Dropout once the normalization is done on it. The process to get the embeddings is 

shown in figure 4.2.4.3.  

 

Figure 4.2.4.3 Process to get the embeddings  

The source code to generate embeddings is given below:  

prelogits, _ = inception_resnet_v1(tf_input, tf_keep_prob, phase_train=tf_phase_train,  

bottleneck_layer_size=embed_length, weight_decay=0.0, reuse=None)  

prelogits = tf.identity(prelogits,name='prelogits')  

embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')  

 

4.2.4.4 How to use embeddings to perform face matching  

First, calculate the embeddings of input images and face database. Then compute the Euclidean 

distances between the input embeddings with all the face database embeddings. As shown in figure 

4.2.4.4, the input image is the target image, and the face database is the reference image. Similarly, 

we calculated the Euclidian distance between target images with each reference image as shown 

in figure 4.2.4.4 using face embeddings. Among all the distances, we find out the smallest distance, 

and if the smallest distance is even smaller than the threshold value (0.8), then that would be an 

answer. Therefore, the smallest Euclidean distance is compared with the threshold value to make 
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the final face matching decision. The formula to calculate the Euclidean distance is shown in the 

equation below.  

Euclidean distance (d) = √(𝑥1 − 𝑦1 )
2 +  (𝑥2 − 𝑦2 )

2 + (𝑥3 − 𝑦3 )
2 + ⋯ +  (𝑥128 − 𝑦128 )

2        (4-4) 

 

Figure 4.2.4.4 Calculate Euclidean distance between target and reference images  

4.2.5 Model Evaluation  

We used LFW face images and artificial masked faces that the model never learned to evaluate its 

real ability. LFW images are mainly used for unmasked faces, whereas artificial masked images 

are utilized for the evaluation of masked images. The Microsoft celebrity face database is utilized 

to generate masked faces using the computer vision approach. The summary of the testing dataset 

is provided in table 4.2.1. As a result, we prepared both types of masked and unmasked faces to 

evaluate our trained model.  

4.2.5.1 Unmasked face evaluation flowchart  

As shown in figure 4.2.5.1, we selected 3,000 same face pairs and 3,000 different face pairs from 

the LFW dataset. Overall, 6000 face pairs are used to evaluate the model. Our trained model named 

“Fixed model” is applied to calculate the embedding of each pair. Then the Euclidean distance is 

calculated using those embeddings pairs. Additionally, for the same face pair, the distance is 
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compared to the threshold value (0.8), and if only the distance is less than the threshold value then 

the counter of correct prediction is increased by one. On the other hand, for different face pairs, 

the calculated distance is compared to the threshold value (0.8), and if only the distance is greater 

than equal to the threshold value then the counter of correct prediction is increased by one. 

Similarly, the accuracy is computed by diving the total number of correct predictions by a total 

number of face pairs (6,000). In this way, we evaluated our trained model using unmasked face 

images. The overall flowchart of unmasked face evaluation is shown in figure 4.2.5.1.  

 

Figure 4.2.5.1 Unmasked face evaluation flowchart  

4.2.5.2 Masked face evaluation flowchart  

As shown in figure 4.2.5.2 (b), we selected artificial masked images (tar_images) and a face 

database (ref_images) to evaluate our model. We created artificial masked faces using a computer 

vision approach as mentioned in section 4.1.4. For both artificial masked faces and real-world face 

databases, we used the Microsoft celebrity face database to create our dataset. More information 
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about the testing data is provided in table 4.2.1. Moreover, our trained model named “Fixed model” 

is utilized to generate the embedding for both tar_images and ref_images. Once we get the target 

embeddings (tar_embeddings) and reference embeddings (ref_embeddings) for both target and 

reference images. The Euclidean distances are calculated for each tar_embeddings with all the 

ref_embeddings as shown in figure 4.2.5.2 (a). Among all the distances, we find out the smallest 

distance, and if the smallest distance is even smaller than the threshold value (0.8), and the name 

of the target face is equal to the name of the reference face, then the counter of correct prediction 

is increased by one. Similarly, all the target images are compared with the reference images by 

calculating the Euclidean distance. Additionally, the accuracy is computed by diving the total 

number of correct predictions by total number of predictions (2,000). We received the accuracy of 

our trained model at around 97% for masked face evaluation. In this way, we evaluated our trained 

model using masked faces. The overall flowchart of masked face evaluation is shown in figure 

4.2.5.2 (b).  

 

Figure 4.2.5.2 (a) Calculate distance between one tar_embedding to many ref_embedding  
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Figure 4.2.5.2 (b) Unmasked face evaluation flowchart  

4.2.5.3 Accuracy comparison with FaceNet model using the same dataset 

We passed the same masked faces for both models: one is our trained model (Fixed model), and 

another is FaceNet [15] pre-trained model. It was studied that our model worked really well for 

masked face images, however, the FaceNet model did not work well for masked faces. Table 

4.2.5.3 shows the accuracy comparisons between the three models. 

FaceNet model is a prominent model for normal face recognition (99% accuracy), however, this 

trained model did not work well for masked face recognition. As we can see from table 4.2.5.3, 

our trained model and FaceNet model used the same training dataset, testing dataset and same 

architecture, but our model achieved around 97% accuracy for Masked Face Recognition (MFR). 

So, we can say that our model worked better for masked face recognition.  
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Table 4.2.5.3 Accuracy comparisons between the three different models  
 

Model name Accuracy 
(Threshold – 0.8) 

Testing dataset Training 

dataset 
Architecture 

Fixed model (our)  96.9%  Artificial masked face  CASIA  Inception ResNet 

V1  

20180408-102900 

[15]  

45.11%  Artificial masked face  CASIA  Inception ResNet 

V1  

  

20180402-114759 

[15]  

60.49%  Artificial masked face  VGGFace2  Inception ResNet 

V1  

 

4.3 Real-Time Masked Facial Recognition using our Trained Model 

First, as shown in figure 4.3, our system loads all the face database images and computes the 

embeddings of each face image using a Fixed model. The Fixed model is our trained model for 

MFR. We performed the face alignment for the face database also so that it removed the 

unnecessary part from the face images. This makes the system ready to perform the facial matching 

once the system reads the input images. We utilized the Microsoft celebrity face images that our 

model never learned for the face database. Our face image was also included in the face database 

for the experiment. The Microsoft celebrity images consist of a total of 85744 pictures but in our 

experiment, we only used 2000 images for testing purposes. All those images were real-world 

unmasked faces.  

Secondly, the input image is read from the real-time video streaming using a laptop camera and 

we used the high-resolution input images to achieve better performance. The SSD (Single Shot 

Detector) model detected the face and face mask of each input frame. Then the facial part is 

cropped from the image frame and resized to the [112, 112, 3] format. Additionally, our trained 

model, the Fixed model is applied to find out the embeddings of an input image. Embeddings 

https://drive.google.com/open?id=1R77HmFADxe87GmoLwzfgMu_HY0IhcyBz
https://drive.google.com/open?id=1EXPBSXwTaqrSC0OhUdXNmKSh9qJUQ55-
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represent the facial feature in the numeric format of size 128- dimensions. And these embeddings 

are used to calculate the Euclidean distance.  

Finally, the Euclidean distances are calculated by using the embedding of the input face with 

preloaded embeddings of all the face databases. This is a one-to-many calculation as shown in 

figure 4.2.5.2 (b). Preloading the embedding to the system makes facial recognition much faster 

since the input image does not need to wait to calculate the Euclidean distance. Moreover, the 

distance should be around zero if two images belong to the same person. Among all the distances, 

we find out the smallest distance, and if the smallest distance is even smaller than the threshold 

value (0.8), then that would be an answer. Therefore, the smallest Euclidean distance is compared 

with the threshold value to make the final facial recognition decision. If the distance is less than 

the threshold value (face matched), then the name of the person will be printed on the input image 

frame, otherwise, an unknown message is printed. Similarly, if the person is wearing a face mask, 

this system shows the “Mask” message, else “No Mask” message is displayed. The overall process 

of real-time Masked Facial Recognition (MFR) is shown in figure 4.3. Hence in this way, we built 

a single system that can recognize both masked and unmasked faces with high accuracy. This has 

indicated the effectiveness and suitability of the proposed method. The result of real-time masked 

facial recognition is shown in figure 5.7. Also, the source code for real-time masked face recognition 

is given in section A.5. 
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Figure 4.3 Real-time masked facial recognition process 
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CHAPTER 5 

RESULTS AND DISCUSSION 

This chapter describes the output of the experiments carried out on MFR (Masked Facial 

Recognition). It presents an in-depth explanation of various experiments meant to assess the 

effectiveness of our solution. Also, it highlights additional information about our experimental 

setup, training, and testing dataset, comparisons of our approach against other methods, limitations 

and advantages of our approach, performance metric, training parameters, and performance 

evaluation for different setups of environments.  

5.1 Experiment Setup 

Our experiments were carried out on a computer with an Intel Core i7 vPro processor, 16 GB of 

RAM, 500 GB SSD (Solid-State Drive) Hard disk, Windows 10 OS (operating system), and Nvidia 

GPU (Graphics processing units) card. Additionally, we used Python as a programming language, 

and tools such as OpenCV, TensorFlow, CUDA, NumPy, and Matplotlib for image processing and 

model training, whereas Jupyter and PyCharm were utilized as an IDE (Integrated Development 

Environment). Furthermore, TensorFlow is significantly important to perform the massive math 

calculations for building the model, and GPU helps to do the operation much faster. GPU has 

thousands of cores which can finish many calculations faster than CPU which normally has 8 

cores. TensorFlow offers many models and relative functions and helps to communicate with GPU 

to do the task. Whereas OpenCV has rich image processing functions like reading, saving, resizing, 

displaying, cropping, transforming, and changing the color format of the images so it was applied 

for data preparation, image processing, and model training for Masked Facial Recognition (MFR).  
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5.2 Dataset 

We had to have both masked and unmasked face images to train our model. CASIA [17] datasets 

are applied for unmasked images after image preprocessing, and we generated artificial masked 

images from the CASIA dataset using the mask augmentation method (Dlib). LFW (Labeled Faces 

in the Wild) [18] datasets with artificial masked faces were used for testing. We created artificial 

test masked images from the Microsoft face database. The process to create masked faces is given 

in section 4.1.4. All the datasets are open-source images that are easily accessible online. The 

training and testing dataset information is given in tables 4.1.1, and 4.2.1 respectively. The training 

and testing faces are used in size [112, 112, 3] format. Moreover, we implemented the image 

processing method to make the same face images with different looks that utilized random crops, 

random noise, random angle, random flip, and random brightness methods. Also, we performed 

face alignment, and data cleaning to make the dataset ready for the training. The sample training 

and testing faces are shown in figures 5.2 (a), and 5.2 (b) respectively.  
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Figure 5.2 (a) Sample masked and unmasked training images  

 

Figure 5.2 (b) Sample masked and unmasked testing images  
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5.3 Performance Evaluation of our Trained models 

We trained the three different models with five, ten, and fifteen training images from each class 

and augmented each image four times to create more images with different looks. The training 

parameters that we used and the performance evaluation of the three different trained models are 

presented in table 5.3. More information on training and testing datasets is given in tables 4.1.1, 

and 4.2.1 respectively.  

Table 5.3 Performance evaluation of three different models  

 

Table 5.3 shows that the first trained model selected only 15*4 images from each class and this 

model received the best accuracy of 96.9% in the 34th epoch. Similarly, the second trained model 

received only 10*4 images for each class, and the third trained model selected only 5*4 images 

per class and obtained the best accuracy of 96.6% and 96.9% respectively. We trained the model 

with the imbalanced and balanced dataset, and it is studied that the significant improvement in the 

accuracy is with the balanced dataset, so we applied an equal number of training images for each 

class of our training model.  
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Moreover, the Inception ResNet V1 deep learning model is applied for all three training models. 

Each input face is augmented four times to generate more training images and Nvidia GPU 

(Graphics Processing Units) made the training process much faster since all the trained models 

received the best accuracy in 30 hours on average. It is observed that even if we used a smaller 

number of training images, we have achieved significantly better testing accuracy for the LFW 

dataset. It is because we focused the training image more on face alignment, removed mislabeled 

images, and took the balanced images per class which helped to improve the accuracy of our 

trained model. Additionally, if we select a smaller number of training images, it would also be 

easy to train the AI (Artificial Intelligence) model with normal GPU cards such as GTX 1660.  

5.4 Evaluation Metrix 

To analyze the performance of the trained models, we used the following metrics:  

• Accuracy: Accuracy is calculated by using a total number of correct predictions divided 

by a total number of predictions.   

• The loss: The average loss of the training model is calculated using Cross-Entropy and 

which is the difference between output probabilities and answers.  

   Accuracy = 
Number of correct predictions

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                                                    (5-1) 

The loss (Cross-Entropy) = - ∑ 𝑦𝑖,𝑐
𝑀
𝑐=1  log(𝑝𝑖,𝑐)                                     (5-2) 

Where y and p represent the label and prediction, respectively.  
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5.5 Comparison of Current Approach Against Other Methods 

Table 5.5 shows the comparison of our work with other different methods. Based on these results, 

we studied that our MFR (Masked Facial Recognition) method significantly outperforms the five 

other models. Additionally, we achieved an accuracy of 1.9 percent higher than the second-best 

performing model (Attention-based) and around 49 percent more than the worst performing model 

(ResNet-50) for masked and unmasked facial recognition. Our purposed model (Inception ResNet 

V1) is the combination of Inception architecture [22] and residual network [23] and it provides 

better recognition performance since training with residual connections accelerates the training of 

Inception networks. This has indicated the effectiveness and suitability of the proposed method.  

Table 5.5 Comparison of current approach against other methods 

 

5.6 Limitations and Advantages 

The limitations of our MFR system are the input masked face should have at least eyes and 

forehead parts visible for recognition, it might not work for more tilted masked images toward left 

or right and setting the model training environment might be challenging since it requires GPU 

setup, at least i5 processor, 16 GB of RAM, and 500 GB SSD (Single Shot Detector) Hard disk 

for better performance. Also, our approach required a lot of work for data collection and 

preparation, and it could be difficult to get masked faces for more than 10,000 identities to train 

our model.   
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The advantages of our MFR system are it supports multiple mask types for face recognition, and 

it works for diverse types of faces, ages, and genders. Also, our model supports both single and 

multi-face images for recognition and can convert any face datasets to masked face datasets. From 

our model evaluation, it works better for both masked and unmasked faces so the probability of 

giving the right recognition decision is around 97%. Our single system can identify faces with and 

without face masks. We improved the model training time and decreased the size of the trained 

model as compared to other methods [12, 13, 15]. So, all these advantages indicate the 

effectiveness and suitability of the proposed method for masked facial recognition.  

5.7 Result Analysis 

We have created a system that can recognize both masked and unmasked face images. Our trained 

model generates the embeddings for any given input image, and that embedding is applied for face 

matching. Embedding represents the facial feature in the numeric format, and it has the size of 

128-dimensions. In our research, we implemented a new augmented way to create a masked face 

dataset and performed the image alignment and data cleaning using Dlib, OpenCV, and SSD 

(Single Shot Detector) model. Similarly, we applied the balanced face images from each class and 

received significantly better results than the model trained with imbalanced images. Balanced 

images include an equal number of masked and unmasked face images. LFW and face mask 

datasets were tested for evaluation, and they showed superiority over any contemporary models 

[1, 13, 16, 25, 26]. Our evaluation model included the LFW dataset and artificial masked images 

which were not used to learn the training model. LFW images after preprocessing are applied for 

unmasked face evaluation, while artificial masked images are used for masked face evaluation. 

We generated artificial masked images from celebrity images from the Microsoft face database. It 
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has more than 8500 unique faces. The training and testing dataset information is given in tables 

4.1.1, and 4.2.1 respectively.   

Furthermore, we verified the robustness of our purposed model for masked and unmasked facial 

recognition under various conditions like gender, skin tone, age, types of masks, etc. As a result, 

we achieved the MFR (Masked Facial Recognition) of around 97% accuracy for our three different 

trained models. The training and testing faces are used in size [112, 112, 3] format. The 

effectiveness of our trained model is evaluated for both masked and unmasked faces. The eyes, 

eyebrows, and forehead areas are utilized for masked faces to extract the facial feature, whereas 

the whole face is used for unmasked faces. The accuracy and loss function are calculated to test 

the model while training it. Also, we compared the accuracy by using the same masked faces for 

our model and pre-trained FaceNet model in section 4.2.5.3. Our model worked really well for 

masked faces as compared to the FaceNet model. Additionally, we built a single system that can 

identify both masked and unmasked faces, and also it can recognize more than one face at a time.  

On top of that, we trained the small training model of a size of around 96 MB for our three different 

trained models which provided a better recognition rate. We applied the small training image size, 

performed the face alignment, and used the smaller filter size which helped to minimize the size 

of our training model. In model training, 1*1 convolutions are applied to modify the channel 

numbers, and the final goal was to decrease the model weights. The smaller model means fewer 

calculations and makes the inference much faster. Similarly, we speed up our training model by 

dividing the training images into different batch sizes and also GPU helped to do the operation 

much faster. As a result, we train three different models in 30 hours on average time. The results 

of our real-time masked face recognition are shown in figure 5.7.  
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Figure 5.7 Real-time masked facial recognition results 
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CHAPTER 6 

CONCLUSION 

6.1 Conclusions 

In conclusion, this research paper has presented a solution to identify the masked and unmasked 

faces accurately. The proposed approach provided around 97% accuracy for MFR (Masked Facial 

Recognition). Furthermore, the masked face dataset was created using a computer vision 

technique. CASIA datasets were used to train the model after performing image preparation and 

the LFW (Labeled Faces in the Wild) dataset and artificial masked faces were tested to evaluate 

the performance of our model. Also, the performance of three different models has been studied 

for MFR. Additionally, we verified the robustness of our purposed model for masked and 

unmasked facial recognition under various conditions like gender, skin tone, age, types of masks, 

etc. As a result, the purposed solution could be seamlessly integrated for both masked and 

unmasked face recognition and detection systems that are designed for safety and security 

verification purposes without any challenges. 

6.2 Future work 

In the future, we intend to use the real-time mask face dataset since some of our generated masked 

images do not perfectly fit the rotated faces, so using the real-world masked images could increase 

the recognition accuracy of the system. Also, it is expected to increase the number of balanced 

images for each class to train the model for better quality and diversity (we applied a maximum of 

60 faces per class in our experiment). Additionally, we would try to build a small facial recognition 

model which could improve the overall recognition rate of the system.   
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APPENDICES A 

A.1 Inception ResNet V1 Architecture Python Code 

#Inception-ResNet-V1 Architecture 

def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None): 

    """Builds the 35x35 resnet block.""" 

    with tf.variable_scope(scope, 'Block35', [net], reuse=reuse): 

        with tf.variable_scope('Branch_0'): 

            tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1') 

        with tf.variable_scope('Branch_1'): 

            tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1') 

            tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3') 

        with tf.variable_scope('Branch_2'): 

            tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1') 

            tower_conv2_1 = slim.conv2d(tower_conv2_0, 32, 3, scope='Conv2d_0b_3x3') 

            tower_conv2_2 = slim.conv2d(tower_conv2_1, 32, 3, scope='Conv2d_0c_3x3') 

        mixed = tf.concat([tower_conv, tower_conv1_1, tower_conv2_2], 3) 

        up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None, 

                         activation_fn=None, scope='Conv2d_1x1') 

        net += scale * up 

        if activation_fn: 

            net = activation_fn(net) 

    return net 

# Inception-Resnet-B 

def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None): 
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    """Builds the 17x17 resnet block.""" 

    with tf.variable_scope(scope, 'Block17', [net], reuse=reuse): 

        with tf.variable_scope('Branch_0'): 

            tower_conv = slim.conv2d(net, 128, 1, scope='Conv2d_1x1') 

        with tf.variable_scope('Branch_1'): 

            tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1') 

            tower_conv1_1 = slim.conv2d(tower_conv1_0, 128, [1, 7], 

                                        scope='Conv2d_0b_1x7') 

            tower_conv1_2 = slim.conv2d(tower_conv1_1, 128, [7, 1], 

                                        scope='Conv2d_0c_7x1') 

        mixed = tf.concat([tower_conv, tower_conv1_2], 3) 

        up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None, 

                         activation_fn=None, scope='Conv2d_1x1') 

        net += scale * up 

        if activation_fn: 

            net = activation_fn(net) 

    return net 

# Inception-Resnet-C 

def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None): 

    """Builds the 8x8 resnet block.""" 

    with tf.variable_scope(scope, 'Block8', [net], reuse=reuse): 

        with tf.variable_scope('Branch_0'): 

            tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1') 

        with tf.variable_scope('Branch_1'): 

            tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1') 
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            tower_conv1_1 = slim.conv2d(tower_conv1_0, 192, [1, 3], 

                                        scope='Conv2d_0b_1x3') 

            tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [3, 1], 

                                        scope='Conv2d_0c_3x1') 

        mixed = tf.concat([tower_conv, tower_conv1_2], 3) 

        up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None, 

                         activation_fn=None, scope='Conv2d_1x1') 

        net += scale * up 

        if activation_fn: 

            net = activation_fn(net) 

    return net 

def reduction_a(net, k, l, m, n): 

    with tf.variable_scope('Branch_0'): 

        tower_conv = slim.conv2d(net, n, 3, stride=2, padding='VALID', 

                                 scope='Conv2d_1a_3x3') 

    with tf.variable_scope('Branch_1'): 

        tower_conv1_0 = slim.conv2d(net, k, 1, scope='Conv2d_0a_1x1') 

        tower_conv1_1 = slim.conv2d(tower_conv1_0, l, 3, 

                                    scope='Conv2d_0b_3x3') 

        tower_conv1_2 = slim.conv2d(tower_conv1_1, m, 3, 

                                    stride=2, padding='VALID', 

                                    scope='Conv2d_1a_3x3') 

    with tf.variable_scope('Branch_2'): 

        tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID', 

                                     scope='MaxPool_1a_3x3') 



63 

 

    net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3) 

    return net 

def reduction_b(net): 

    with tf.variable_scope('Branch_0'): 

        tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') 

        tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2, 

                                   padding='VALID', scope='Conv2d_1a_3x3') 

    with tf.variable_scope('Branch_1'): 

        tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') 

        tower_conv1_1 = slim.conv2d(tower_conv1, 256, 3, stride=2, 

                                    padding='VALID', scope='Conv2d_1a_3x3') 

    with tf.variable_scope('Branch_2'): 

        tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') 

        tower_conv2_1 = slim.conv2d(tower_conv2, 256, 3, 

                                    scope='Conv2d_0b_3x3') 

        tower_conv2_2 = slim.conv2d(tower_conv2_1, 256, 3, stride=2, 

                                    padding='VALID', scope='Conv2d_1a_3x3') 

    with tf.variable_scope('Branch_3'): 

        tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID', 

                                     scope='MaxPool_1a_3x3') 

    net = tf.concat([tower_conv_1, tower_conv1_1, 

                        tower_conv2_2, tower_pool], 3) 

    return net 

def inference(images, keep_probability, phase_train=True,  

              bottleneck_layer_size=128, weight_decay=0.0, reuse=None): 
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    batch_norm_params = { 

        # Decay for the moving averages. 

        'decay': 0.995, 

        # epsilon to prevent 0s in variance. 

        'epsilon': 0.001, 

        # force in-place updates of mean and variance estimates 

        'updates_collections': None, 

        # Moving averages ends up in the trainable variables collection 

        'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ], 

    } 

    with slim.arg_scope([slim.conv2d, slim.fully_connected], 

                        weights_initializer=slim.initializers.xavier_initializer(),  

                        weights_regularizer=slim.l2_regularizer(weight_decay), 

                        normalizer_fn=slim.batch_norm, 

                        normalizer_params=batch_norm_params): 

        return inception_resnet_v1(images, is_training=phase_train, 

              dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, 

reuse=reuse) 

 

def inception_resnet_v1(inputs, is_training=True, 

                        dropout_keep_prob=0.8, 

                        bottleneck_layer_size=128, 

                        reuse=None,  

                        scope='InceptionResnetV1'): 

 

    end_points = {} 
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    with tf.variable_scope(scope, 'InceptionResnetV1', [inputs], reuse=reuse): 

        with slim.arg_scope([slim.batch_norm, slim.dropout], 

                            is_training=is_training): 

            with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], 

                                stride=1, padding='SAME'): 

       

                # 149 x 149 x 32 

                net = slim.conv2d(inputs, 32, 3, stride=2, padding='VALID', 

                                  scope='Conv2d_1a_3x3') 

                end_points['Conv2d_1a_3x3'] = net 

                # 147 x 147 x 32 

                net = slim.conv2d(net, 32, 3, padding='VALID', 

                                  scope='Conv2d_2a_3x3') 

                end_points['Conv2d_2a_3x3'] = net 

                # 147 x 147 x 64 

                net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3') 

                end_points['Conv2d_2b_3x3'] = net 

                # 73 x 73 x 64 

                net = slim.max_pool2d(net, 3, stride=2, padding='VALID', 

                                      scope='MaxPool_3a_3x3') 

                end_points['MaxPool_3a_3x3'] = net 

                # 73 x 73 x 80 

                net = slim.conv2d(net, 80, 1, padding='VALID', 

                                  scope='Conv2d_3b_1x1') 

                end_points['Conv2d_3b_1x1'] = net 
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                # 71 x 71 x 192 

                net = slim.conv2d(net, 192, 3, padding='VALID', 

                                  scope='Conv2d_4a_3x3') 

                end_points['Conv2d_4a_3x3'] = net 

                # 35 x 35 x 256 

                net = slim.conv2d(net, 256, 3, stride=2, padding='VALID', 

                                  scope='Conv2d_4b_3x3') 

                end_points['Conv2d_4b_3x3'] = net 

                 # 5 x Inception-resnet-A 

                net = slim.repeat(net, 5, block35, scale=0.17) 

                end_points['Mixed_5a'] = net 

                # Reduction-A 

                with tf.variable_scope('Mixed_6a'): 

                    net = reduction_a(net, 192, 192, 256, 384) 

                end_points['Mixed_6a'] = net 

                # 10 x Inception-Resnet-B 

                net = slim.repeat(net, 10, block17, scale=0.10) 

                end_points['Mixed_6b'] = net 

                # Reduction-B 

                with tf.variable_scope('Mixed_7a'): 

                    net = reduction_b(net) 

                end_points['Mixed_7a'] = net 

                # 5 x Inception-Resnet-C 

                net = slim.repeat(net, 5, block8, scale=0.20) 

                end_points['Mixed_8a'] = net 
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                net = block8(net, activation_fn=None) 

                end_points['Mixed_8b'] = net 

                with tf.variable_scope('Logits'): 

                    end_points['PrePool'] = net 

                    #pylint: disable=no-member 

                    net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID', 

                                          scope='AvgPool_1a_8x8') 

                    net = slim.flatten(net) 

                    print("flatten shape:",net.shape) 

                    net = slim.dropout(net, dropout_keep_prob, is_training=is_training, 

                                       scope='Dropout') 

                    end_points['PreLogitsFlatten'] = net 

                net = slim.fully_connected(net, bottleneck_layer_size, activation_fn=None,  

                        scope='Bottleneck', reuse=False) 

    return net, end_points 

 

A.2 Image Alignment Python Code 

#Image Alignment Source Code 

import numpy as np 

import os, time, cv2 

import matplotlib.pyplot as plt 

def model_restore_from_pb(pb_path, node_dict,GPU_ratio=None): 

    tf_dict = dict() 

    with tf.Graph().as_default(): 

        config = tf.ConfigProto(log_device_placement=True,  #print out GPU or CPU is adopted 



68 

 

                                allow_soft_placement=True,  #allow tf to use alternative devices  

                                ) 

        if GPU_ratio is None: 

            config.gpu_options.allow_growth = True  # The program can access as much resource as 

possible 

        else: 

            config.gpu_options.per_process_gpu_memory_fraction = GPU_ratio  # limit the GPU 

resource 

        sess = tf.Session(config=config) 

        with gfile.FastGFile(pb_path, 'rb') as f: 

            graph_def = tf.GraphDef() 

            graph_def.ParseFromString(f.read()) 

            sess.graph.as_default() 

            tf.import_graph_def(graph_def, name='')  # import the calculation graph 

        sess.run(tf.global_variables_initializer()) 

        for key, value in node_dict.items(): 

            try: 

                node = sess.graph.get_tensor_by_name(value) 

                tf_dict[key] = node 

            except: 

                print("node:{} does not exist in the graph") 

        return sess, tf_dict 

class FaceMaskDetection(): 

    def __init__(self,pb_path,margin=44,GPU_ratio=0.1): 

        # ----var 

        node_dict = {'input': 'data_1:0', 
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                     'detection_bboxes': 'loc_branch_concat_1/concat:0', 

                     'detection_scores': 'cls_branch_concat_1/concat:0'} 

        conf_thresh = 0.8 

        iou_thresh = 0.7 

        # ====anchors config 

        feature_map_sizes = [[33, 33], [17, 17], [9, 9], [5, 5], [3, 3]] 

        anchor_sizes = [[0.04, 0.056], [0.08, 0.11], [0.16, 0.22], [0.32, 0.45], [0.64, 0.72]] 

        anchor_ratios = [[1, 0.62, 0.42]] * 5 

        id2class = {0: 'Mask', 1: 'NoMask'} 

        # ----model init 

        # ====generate anchors 

        anchors = self.generate_anchors(feature_map_sizes, anchor_sizes, anchor_ratios) 

        # for inference , the batch size is 1, the model output shape is [1, N, 4], 

        # so we expand dim for anchors to [1, anchor_num, 4] 

        anchors_exp = np.expand_dims(anchors, axis=0) 

        # ====model restore from pb file 

        sess, tf_dict = model_restore_from_pb(pb_path, node_dict,GPU_ratio = GPU_ratio) 

        tf_input = tf_dict['input'] 

        model_shape = tf_input.shape  # [N,H,W,C] 

        print("model_shape = ", model_shape) 

        img_size = (tf_input.shape[2].value,tf_input.shape[1].value) 

        detection_bboxes = tf_dict['detection_bboxes'] 

        detection_scores = tf_dict['detection_scores'] 

        # ----local var to global 

        self.model_shape = model_shape 
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        self.img_size = img_size 

        self.sess = sess 

        self.tf_input = tf_input 

        self.detection_bboxes = detection_bboxes 

        self.detection_scores = detection_scores 

        self.anchors_exp = anchors_exp 

        self.conf_thresh = conf_thresh 

        self.iou_thresh = iou_thresh 

        self.id2class = id2class 

        self.margin = margin 

    def generate_anchors(self,feature_map_sizes, anchor_sizes, anchor_ratios, offset=0.5): 

        ''' 

        generate anchors. 

        :param feature_map_sizes: list of list, for example: [[40,40], [20,20]] 

        :param anchor_sizes: list of list, for example: [[0.05, 0.075], [0.1, 0.15]] 

        :param anchor_ratios: list of list, for example: [[1, 0.5], [1, 0.5]] 

        :param offset: default to 0.5 

        :return: 

        ''' 

        anchor_bboxes = [] 

        for idx, feature_size in enumerate(feature_map_sizes): 

            cx = (np.linspace(0, feature_size[0] - 1, feature_size[0]) + 0.5) / feature_size[0] 

            cy = (np.linspace(0, feature_size[1] - 1, feature_size[1]) + 0.5) / feature_size[1] 

            cx_grid, cy_grid = np.meshgrid(cx, cy) 

            cx_grid_expend = np.expand_dims(cx_grid, axis=-1) 
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            cy_grid_expend = np.expand_dims(cy_grid, axis=-1) 

            center = np.concatenate((cx_grid_expend, cy_grid_expend), axis=-1) 

            num_anchors = len(anchor_sizes[idx]) + len(anchor_ratios[idx]) - 1 

            center_tiled = np.tile(center, (1, 1, 2 * num_anchors)) 

            anchor_width_heights = [] 

            # different scales with the first aspect ratio 

            for scale in anchor_sizes[idx]: 

                ratio = anchor_ratios[idx][0]  # select the first ratio 

                width = scale * np.sqrt(ratio) 

                height = scale / np.sqrt(ratio) 

                anchor_width_heights.extend([-width / 2.0, -height / 2.0, width / 2.0, height / 2.0]) 

            # the first scale, with different aspect ratios (except the first one) 

            for ratio in anchor_ratios[idx][1:]: 

                s1 = anchor_sizes[idx][0]  # select the first scale 

                width = s1 * np.sqrt(ratio) 

                height = s1 / np.sqrt(ratio) 

                anchor_width_heights.extend([-width / 2.0, -height / 2.0, width / 2.0, height / 2.0]) 

            bbox_coords = center_tiled + np.array(anchor_width_heights) 

            bbox_coords_reshape = bbox_coords.reshape((-1, 4)) 

            anchor_bboxes.append(bbox_coords_reshape) 

        anchor_bboxes = np.concatenate(anchor_bboxes, axis=0) 

        return anchor_bboxes 

    def decode_bbox(self,anchors, raw_outputs, variances=[0.1, 0.1, 0.2, 0.2]): 

        ''' 

        Decode the actual bbox according to the anchors. 
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        the anchor value order is:[xmin,ymin, xmax, ymax] 

        :param anchors: numpy array with shape [batch, num_anchors, 4] 

        :param raw_outputs: numpy array with the same shape with anchors 

        :param variances: list of float, default=[0.1, 0.1, 0.2, 0.2] 

        :return: 

        ''' 

        anchor_centers_x = (anchors[:, :, 0:1] + anchors[:, :, 2:3]) / 2 

        anchor_centers_y = (anchors[:, :, 1:2] + anchors[:, :, 3:]) / 2 

        anchors_w = anchors[:, :, 2:3] - anchors[:, :, 0:1] 

        anchors_h = anchors[:, :, 3:] - anchors[:, :, 1:2] 

        raw_outputs_rescale = raw_outputs * np.array(variances) 

        predict_center_x = raw_outputs_rescale[:, :, 0:1] * anchors_w + anchor_centers_x 

        predict_center_y = raw_outputs_rescale[:, :, 1:2] * anchors_h + anchor_centers_y 

        predict_w = np.exp(raw_outputs_rescale[:, :, 2:3]) * anchors_w 

        predict_h = np.exp(raw_outputs_rescale[:, :, 3:]) * anchors_h 

        predict_xmin = predict_center_x - predict_w / 2 

        predict_ymin = predict_center_y - predict_h / 2 

        predict_xmax = predict_center_x + predict_w / 2 

        predict_ymax = predict_center_y + predict_h / 2 

        predict_bbox = np.concatenate([predict_xmin, predict_ymin, predict_xmax, predict_ymax], 

axis=-1) 

        return predict_bbox 

    def single_class_non_max_suppression(self,bboxes, confidences, conf_thresh=0.2, 

iou_thresh=0.5, keep_top_k=-1): 

        ''' 

        do nms on single class. 
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        Hint: for the specific class, given the bbox and its confidence, 

        1) sort the bbox according to the confidence from top to down, we call this a set 

        2) select the bbox with the highest confidence, remove it from set, and do IOU calculate 

with the rest bbox 

        3) remove the bbox whose IOU is higher than the iou_thresh from the set, 

        4) loop step 2 and 3, util the set is empty. 

        :param bboxes: numpy array of 2D, [num_bboxes, 4] 

        :param confidences: numpy array of 1D. [num_bboxes] 

        :param conf_thresh: 

        :param iou_thresh: 

        :param keep_top_k: 

        :return: 

        ''' 

        if len(bboxes) == 0: return [] 

        conf_keep_idx = np.where(confidences > conf_thresh)[0] 

        bboxes = bboxes[conf_keep_idx] 

        confidences = confidences[conf_keep_idx] 

        pick = [] 

        xmin = bboxes[:, 0] 

        ymin = bboxes[:, 1] 

        xmax = bboxes[:, 2] 

        ymax = bboxes[:, 3] 

        area = (xmax - xmin + 1e-3) * (ymax - ymin + 1e-3) 

        idxs = np.argsort(confidences) 

        while len(idxs) > 0: 

            last = len(idxs) - 1 
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            i = idxs[last] 

            pick.append(i) 

            # keep top k 

            if keep_top_k != -1: 

                if len(pick) >= keep_top_k: 

                    break 

            overlap_xmin = np.maximum(xmin[i], xmin[idxs[:last]]) 

            overlap_ymin = np.maximum(ymin[i], ymin[idxs[:last]]) 

            overlap_xmax = np.minimum(xmax[i], xmax[idxs[:last]]) 

            overlap_ymax = np.minimum(ymax[i], ymax[idxs[:last]]) 

            overlap_w = np.maximum(0, overlap_xmax - overlap_xmin) 

            overlap_h = np.maximum(0, overlap_ymax - overlap_ymin) 

            overlap_area = overlap_w * overlap_h 

            overlap_ratio = overlap_area / (area[idxs[:last]] + area[i] - overlap_area) 

            need_to_be_deleted_idx = np.concatenate(([last], np.where(overlap_ratio > 

iou_thresh)[0])) 

            idxs = np.delete(idxs, need_to_be_deleted_idx) 

 

        # if the number of final bboxes is less than keep_top_k, we need to pad it. 

        # TODO 

        return conf_keep_idx[pick] 

    def inference(self,img_4d,ori_height,ori_width): 

        # ----var 

        re_boxes = list() 

        re_confidence = list() 

        re_classes = list() 
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        re_mask_id = list() 

        y_bboxes_output, y_cls_output = self.sess.run([self.detection_bboxes, 

self.detection_scores], 

                                                      feed_dict={self.tf_input: img_4d}) 

        # remove the batch dimension, for batch is always 1 for inference. 

        y_bboxes = self.decode_bbox(self.anchors_exp, y_bboxes_output)[0] 

        y_cls = y_cls_output[0] 

        # To speed up, do single class NMS, not multiple classes NMS. 

        bbox_max_scores = np.max(y_cls, axis=1) 

        bbox_max_score_classes = np.argmax(y_cls, axis=1) 

        # keep_idx is the alive bounding box after nms. 

        keep_idxs = self.single_class_non_max_suppression(y_bboxes, 

bbox_max_scores,  conf_thresh=self.conf_thresh, 

                                                          iou_thresh=self.iou_thresh ) 

        # ====draw bounding box 

        for idx in keep_idxs: 

            conf = float(bbox_max_scores[idx]) 

            #print("conf = ",conf) 

            class_id = bbox_max_score_classes[idx] 

            bbox = y_bboxes[idx] 

            #print(bbox) 

            xmin = np.maximum(0, int(bbox[0] * ori_width - self.margin / 2)) 

            ymin = np.maximum(0, int(bbox[1] * ori_height - self.margin / 2)) 

            xmax = np.minimum(int(bbox[2] * ori_width + self.margin / 2), ori_width) 

            ymax = np.minimum(int(bbox[3] * ori_height + self.margin / 2), ori_height) 

            re_boxes.append([xmin, ymin, xmax - xmin, ymax - ymin]) 
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            re_confidence.append(conf) 

            re_classes.append('face') 

            re_mask_id.append(class_id) 

        return re_boxes, re_confidence, re_classes, re_mask_id 

def img_alignment(root_dir,output_dir,margin=44,GPU_ratio = 

0.1,img_show=False,dataset_range=None): 

    # ----record the start time 

    d_t = time.time() 

    # ----var 

    face_mask_model_path = r'face_mask_detection.pb' 

    img_format = {'png','bmp','jpg'} 

    width_threshold = 100 + margin // 2 

    height_threshold = 100 + margin // 2 

    quantity = 0 

    # ----collect all folders 

    dirs = [obj.path for obj in os.scandir(root_dir) if obj.is_dir()] 

    if len(dirs) == 0: 

        print("No sub folders in ",root_dir) 

    else: 

        dirs.sort() 

        print("Total class number: ", len(dirs)) 

        if dataset_range is not None: 

            dirs = dirs[dataset_range[0]:dataset_range[1]] 

            print("Working classes: {} to {}".format(dataset_range[0], dataset_range[1])) 

        else: 

            print("Working classes:All") 
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        #----init of face detection model 

        fmd = FaceMaskDetection(face_mask_model_path,margin,GPU_ratio) 

        # ----handle images of each dir 

        for dir_path in dirs: 

            paths = [file.path for file in os.scandir(dir_path) if file.name.split(".")[-1] in img_format] 

            if len(paths) == 0: 

                print("No images in ",dir_path) 

            else: 

                #----create the save dir 

                save_dir = os.path.join(output_dir,dir_path.split("\\")[-1]) 

                if not os.path.exists(save_dir): 

                    os.makedirs(save_dir) 

                #---- 

                quantity += len(paths) 

                for idx,path in enumerate(paths): 

                    img = cv2.imread(path) 

                    if img is None: 

                        print("Read failed:",path) 

                    else: 

                        ori_height,ori_width = img.shape[:2] 

                        img_ori = img.copy() 

                        img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) 

                        img = cv2.resize(img,fmd.img_size) 

                        img = img.astype(np.float32) 

                        img /= 255 
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                        img_4d = np.expand_dims(img,axis=0) 

                        bboxes, re_confidence, re_classes, re_mask_id = 

fmd.inference(img_4d,ori_height,ori_width) 

 

                        for num,bbox in enumerate(bboxes): 

                            if bbox[2] > width_threshold and bbox[3] > height_threshold: 

                                img_crop = img_ori[bbox[1]:bbox[1] + bbox[3],bbox[0]:bbox[0] + bbox[2], 

:] 

                                save_path = os.path.join(save_dir,str(idx) + '_' + str(num) + ".png") 

                                # print("save_path:",save_path) 

                                cv2.imwrite(save_path,img_crop) 

                                #----display images 

                                if img_show is True: 

                                    plt.subplot(1,2,1) 

                                    plt.imshow(img_ori[:,:,::-1]) 

                                    plt.subplot(1,2,2) 

                                    plt.imshow(img_crop[:,:,::-1]) 

                                    plt.show() 

    # ----statistics(to know the average process time of each image) 

    if quantity != 0: 

        d_t = time.time() - d_t 

        print("ave process time of each image:", d_t / quantity) 

 

A.3 Image Processing and Augmentation Python Code 

#Image Process and augmentation 
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import numpy as np 

import os,cv2,dlib,sys 

import matplotlib.pyplot as plt 

mask_img_dir = r"C:\Users\saroj.mishra\mask_img" 

# ----read mask png images 

mask_files = [file.path for file in os.scandir(mask_img_dir) if file.name.split(".")[-1] == 'png'] 

mask_paths = list() 

len_mask = len(mask_files) 

if len_mask == 0: 

    print("Error: no face mask PNG images in  ", mask_img_dir)     

# ----face detection init 

detector = dlib.get_frontal_face_detector() 

predictor = 

dlib.shape_predictor(r'C:\Users\saroj.mishra\shape_predictor_68_face_landmarks.dat') 

# ----Detect mouth coordinates  

def detect_mouth(img,detector,predictor): 

    x_min = None 

    x_max = None 

    y_min = None 

    y_max = None 

    size = None 

    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

    faces = detector(img, 0) 

    #print("len of faces = ",len(faces)) 

    if len(faces): 

        for coor in (faces):#coordinate format:[(left,top), (right,bottom)] 
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            x = list() 

            y = list() 

            height = coor.bottom() - coor.top() 

            width = coor.right() - coor.left() 

            # shape = predictor(img_gray, d) 

            landmark = predictor(img, coor) 

            #----get the mouth part 

            for i in range(48, 68): 

                x.append(landmark.part(i).x) 

                y.append(landmark.part(i).y) 

            y_max = np.minimum(max(y) + height // 3, img.shape[0]) 

            y_min = np.maximum(min(y) - height // 3, 0) 

            x_max = np.minimum(max(x) + width // 3, img.shape[1]) 

            x_min = np.maximum(min(x) - width // 3, 0) 

            size = ((x_max-x_min),(y_max-y_min))#(width,height) 

    return x_min, x_max, y_min, y_max, size 

root_dir = r"C:\Users\saroj.mishra\CASIA-WebFace-aligned" 

paths = list() 

img_format = {'png', 'jpg'} 

for dir_name, sub_dirname, filenames in os.walk(root_dir): 

    if len(filenames): 

        for filename in filenames: 

            if filename[-3:] in img_format: 

                paths.append(os.path.join(dir_name,filename)) 
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def get_4D_data(paths,img_shape,process_dict=None): 

    #----var 

    re_array = [] 

    processing_enable = False 

    x_range = 10 

    y_range = 20 

    flip_list = [1, 0] 

    kernel_list = [1,3,5,7] 

    #----check process_dict 

    if isinstance(process_dict,dict): 

        if len(process_dict) > 0: 

            processing_enable = True#image processing is enabled           

    for path in paths: 

        img = cv2.imread(path) 

        if img is None: 

            print("read failed:",path) 

        else: 

            #----image processing 

            if processing_enable is True: 

                if 'rdm_crop' in process_dict.keys(): 

                    if process_dict['rdm_crop'] is True: 

#img = cv2.resize(img,(width_rdm_crop,height_rdm_crop)) 

                        # ----Find a random point 

                        x_start = np.random.randint(x_range) 

                        y_start = np.random.randint(y_range) 
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                        # ----From the random point, crop the image 

                        img = img[y_start:, x_start:, :] 

                if 'rdm_br' in process_dict.keys(): 

                    if process_dict['rdm_br'] is True: 

                        mean_br = np.mean(img) 

                        br_factor = np.random.randint(mean_br * 0.7, mean_br * 1.3) 

                        img = np.clip(img / mean_br * br_factor, 0, 255)#the multification makes the 

numeric type become floating 

                        img = img.astype(np.uint8)#transform the numeric type to unsigned integer 

8(UINT8) 

                if 'rdm_mask' in process_dict.keys(): 

                    if process_dict['rdm_mask'] is True: 

                        x_min, x_max, y_min, y_max, size = detect_mouth(img, detector, predictor) 

                        if size is not None: 

                            # ----random selection of face mask 

                            which = np.random.randint(0, len_mask - 1) 

                            #print(which) 

                            item_name = mask_files[which] 

                            # ----face mask process 

                            item_img = cv2.imread(item_name, cv2.IMREAD_UNCHANGED) 

                            #item_img = mask_paths[which] 

                            print(item_img.shape) 

                            item_img = cv2.resize(item_img, size) 

                            item_img_rgb = item_img[:, :, :3] 

                            #item_img_rgb = item_img_rgb[:,:,::-1]#transform the color format to RGB 



83 

 

                            item_alpha_ch = item_img[:, :, 3] 

                            _, item_mask = cv2.threshold(item_alpha_ch, 220, 255, 

cv2.THRESH_BINARY) 

                            img_item = cv2.bitwise_and(item_img_rgb, item_img_rgb, mask=item_mask) 

                            # ----mouth part process 

                            roi = img[y_min:y_min + size[1], x_min:x_min + size[0]] 

                            item_mask_inv = cv2.bitwise_not(item_mask) 

                            roi = cv2.bitwise_and(roi, roi, mask=item_mask_inv) 

                            # ----addition of mouth and face mask 

                            dst = cv2.add(roi, img_item) 

                            img[y_min: y_min + size[1], x_min:x_min + size[0]] = dst            

                if 'rdm_blur' in process_dict.keys(): 

                    if process_dict['rdm_blur'] is True: 

                        kernel = tuple(np.random.choice(kernel_list,size=2)) 

                        print("kernel:",kernel) 

                        img = cv2.GaussianBlur(img,kernel,0,0) 

                if 'rdm_flip' in process_dict.keys(): 

                    if process_dict['rdm_flip'] is True: 

                        flip_type = np.random.choice(flip_list) 

                        if flip_type == 1: 

                            img = cv2.flip(img, flip_type) 

                if 'rdm_noise' in process_dict.keys(): 

                    if process_dict['rdm_noise'] is True: 

                        uniform_noise = np.empty((img.shape[0], img.shape[1]), dtype=np.uint8) 

                        cv2.randu(uniform_noise, 0, 255) 



84 

 

                        ret, impulse_noise = cv2.threshold(uniform_noise, 240, 255, 

cv2.THRESH_BINARY_INV) 

                        img = cv2.bitwise_and(img, img, mask=impulse_noise) 

                if 'rdm_angle' in process_dict.keys(): 

                    if process_dict['rdm_angle'] is True: 

                        angle = np.random.randint(-15, 15) 

                        img = cv2.resize(img,(img_shape[1],img_shape[0])) 

                        print(img.shape) 

                        h, w = img.shape[:2] 

                        M = cv2.getRotationMatrix2D((w // 2, h // 2), angle, 1.0) 

                        img = cv2.warpAffine(img, M, (h, w)) 

            #---- 

            img = cv2.resize(img,(img_shape[1],img_shape[0])) 

            img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) 

            img = img.astype(np.float32) 

            img /= 255 

            re_array.append(img) 

    re_array = np.array(re_array) 

    return re_array 

aug_times = 4 

path = [np.random.choice(paths)] 

img_shape = [112,112,3] 

batch_data_shape = [aug_times] 

batch_data_shape.extend(img_shape) 

batch_data = np.zeros(batch_data_shape,dtype=np.float32) 
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p_dict_1 = 

{'rdm_mask':False,'rdm_crop':True,'rdm_br':True,'rdm_blur':True,'rdm_flip':True,'rdm_noise':Fal

se,'rdm_angle':True} 

p_dict_2 = 

{'rdm_mask':True,'rdm_crop':True,'rdm_br':True,'rdm_blur':True,'rdm_flip':True,'rdm_noise':Fal

se,'rdm_angle':True} 

p_dict_3 = 

{'rdm_mask':True,'rdm_crop':True,'rdm_br':True,'rdm_blur':True,'rdm_flip':True,'rdm_noise':Fal

se,'rdm_angle':True} 

 

for i in range(aug_times): 

    if i == 0: 

        temp = get_4D_data(path,img_shape,process_dict=None) 

    elif i == 1: 

        temp = get_4D_data(path,img_shape,process_dict=p_dict_1) 

    elif i == 2: 

        temp = get_4D_data(path,img_shape,process_dict=p_dict_2) 

    elif i == 3: 

        temp = get_4D_data(path,img_shape,process_dict=p_dict_3) 

    batch_data[i] = temp[0] 

plt.figure(figsize=(15,15)) 

for i in range(aug_times): 

    plt.subplot(1,aug_times,i+1) 

    plt.imshow(batch_data[i]) 

    plt.axis('off') 

plt.show() 
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A.4 Images Processing and Augmentation Results 

 

 

Figure A.4 Image processing and augmentation results 
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A.5 Real Time Masked Face Recognition Python Code 

import cv2, os, time, math 

import numpy as np 

from face_alignment import FaceMaskDetection 

from tools import model_restore_from_pb 

img_format = {'png','jpg','bmp'} 

def video_init(camera_source=0,resolution="480",to_write=False,save_dir=None): 

    #----var 

    writer = None 

    resolution_dict = {"480":[480,640],"720":[720,1280],"1080":[1080,1920]} 

    #----camera source connection 

    cap = cv2.VideoCapture(camera_source) 

    #----resolution decision 

    if resolution_dict.get(resolution) is not None: 

    # if resolution in resolution_dict.keys(): 

        width = resolution_dict[resolution][1] 

        height = resolution_dict[resolution][0] 

        cap.set(cv2.CAP_PROP_FRAME_WIDTH, width) 

        cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height) 

    else: 

        height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)#default 480 

        width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)#default 640 

        print("video size is auto set") 

    if to_write is True: 

        #fourcc = cv2.VideoWriter_fourcc('x', 'v', 'i', 'd') 
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        #fourcc = cv2.VideoWriter_fourcc('X', 'V', 'I', 'D') 

        fourcc = cv2.VideoWriter_fourcc(*'XVID') 

        save_path = 'demo.avi' 

        if save_dir is not None: 

            save_path = os.path.join(save_dir,save_path) 

        writer = cv2.VideoWriter(save_path, fourcc, 30, (int(width), int(height))) 

    return cap,height,width,writer 

def stream(pb_path, 

node_dict,ref_dir,camera_source=0,resolution="480",to_write=False,save_dir=None): 

    #----var 

    frame_count = 0 

    FPS = "loading" 

    face_mask_model_path = r'face_mask_detection.pb' 

    margin = 40 

    id2class = {0: 'Mask', 1: 'NoMask'} 

    batch_size = 32 

    threshold = 0.8 

    #----Video streaming initialization 

    cap,height,width,writer = video_init(camera_source=camera_source, resolution=resolution, 

to_write=to_write, save_dir=save_dir) 

    # ----face detection init 

    fmd = FaceMaskDetection(face_mask_model_path, margin, GPU_ratio=None) 

    # ----face recognition init 

    sess, tf_dict = model_restore_from_pb(pb_path, node_dict, GPU_ratio=None) 

    tf_input = tf_dict['input'] 

    tf_embeddings = tf_dict['embeddings'] 
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    #----get the model shape 

    if tf_input.shape[1].value is None: 

        model_shape = (None, 160, 160, 3) 

    else: 

        model_shape = (None, tf_input.shape[1].value, tf_input.shape[2].value, 3) 

    print("The mode shape of face recognition:",model_shape) 

    #----set the feed_dict 

    feed_dict = dict() 

    if 'keep_prob' in tf_dict.keys(): 

        tf_keep_prob = tf_dict['keep_prob'] 

        feed_dict[tf_keep_prob] = 1.0 

    if 'phase_train' in tf_dict.keys(): 

        tf_phase_train = tf_dict['phase_train'] 

        feed_dict[tf_phase_train] = False 

    #----read images from the database 

    d_t = time.time() 

    paths = [file.path for file in os.scandir(ref_dir) if file.name[-3:] in img_format] 

    len_ref_path = len(paths) 

    if len_ref_path == 0: 

        print("No images in ", ref_dir) 

    else: 

        ites = math.ceil(len_ref_path / batch_size) 

        embeddings_ref = np.zeros([len_ref_path, tf_embeddings.shape[-1]], dtype=np.float32) 

        for i in range(ites): 

            num_start = i * batch_size 
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            num_end = np.minimum(num_start + batch_size, len_ref_path) 

            batch_data_dim =[num_end - num_start] 

            batch_data_dim.extend(model_shape[1:]) 

            batch_data = np.zeros(batch_data_dim,dtype=np.float32) 

            for idx,path in enumerate(paths[num_start:num_end]): 

                # img = cv2.imread(path) 

                img = cv2.imdecode(np.fromfile(path, dtype=np.uint8), 1) 

                if img is None: 

                    print("read failed:",path) 

                else: 

                    #print("model_shape:",model_shape[1:3]) 

                    img = cv2.resize(img,(model_shape[2],model_shape[1])) 

                    img = img[:,:,::-1]#change the color format 

                    batch_data[idx] = img 

            batch_data /= 255 

            feed_dict[tf_input] = batch_data 

            embeddings_ref[num_start:num_end] = sess.run(tf_embeddings,feed_dict=feed_dict) 

        d_t = time.time() - d_t 

        print("ref embedding shape",embeddings_ref.shape) 

        print("It takes {} secs to get {} embeddings".format(d_t, len_ref_path)) 

    # ----tf setting for calculating distance 

    if len_ref_path > 0: 

        with tf.Graph().as_default(): 

            tf_tar = tf.placeholder(dtype=tf.float32, shape=tf_embeddings.shape[-1]) 

            tf_ref = tf.placeholder(dtype=tf.float32, shape=tf_embeddings.shape) 
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            tf_dis = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(tf_ref, tf_tar)), axis=1)) 

            # ----GPU setting 

            config = tf.ConfigProto(log_device_placement=True, 

                                    allow_soft_placement=True, 

                                    ) 

            config.gpu_options.allow_growth = True 

            sess_cal = tf.Session(config=config) 

            sess_cal.run(tf.global_variables_initializer()) 

        feed_dict_2 = {tf_ref: embeddings_ref} 

    #----Get an image 

    while(cap.isOpened()): 

        ret, img = cap.read()#img is the original image with BGR format. It's used to be shown by 

opencv 

        if ret is True: 

            #----image processing 

            img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

            img_rgb = img_rgb.astype(np.float32) 

            img_rgb /= 255 

            #----face detection 

            img_fd = cv2.resize(img_rgb, fmd.img_size) 

            img_fd = np.expand_dims(img_fd, axis=0) 

            bboxes, re_confidence, re_classes, re_mask_id = fmd.inference(img_fd, height, width) 

            if len(bboxes) > 0: 

                for num, bbox in enumerate(bboxes): 

                    class_id = re_mask_id[num] 

                    if class_id == 0: 
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                        color = (0, 255, 0)  # (B,G,R) --> Green(with masks) 

                    else: 

                        color = (0, 0, 255)  # (B,G,R) --> Red(without masks) 

                    cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0] + bbox[2], bbox[1] + bbox[3]), 

color, 2) 

                    # cv2.putText(img, "%s: %.2f" % (id2class[class_id], re_confidence[num]), 

(bbox[0] + 2, bbox[1] - 2), 

                    #             cv2.FONT_HERSHEY_SIMPLEX, 0.8, color) 

                    # ----face recognition 

                    name = "" 

                    if len_ref_path > 0: 

                        img_fr = img_rgb[bbox[1]:bbox[1] + bbox[3], bbox[0]:bbox[0] + bbox[2], :]  # 

crop 

                        img_fr = cv2.resize(img_fr, (model_shape[2], model_shape[1]))  # resize 

                        img_fr = np.expand_dims(img_fr, axis=0)  # make 4 dimensions 

                        feed_dict[tf_input] = img_fr 

                        embeddings_tar = sess.run(tf_embeddings, feed_dict=feed_dict) 

                        feed_dict_2[tf_tar] = embeddings_tar[0] 

                        distance = sess_cal.run(tf_dis, feed_dict=feed_dict_2) 

                        arg = np.argmin(distance)  # index of the smallest distance 

                        if distance[arg] < threshold: 

                            name = paths[arg].split("\\")[-1].split(".")[0] 

                    cv2.putText(img, "{},{}".format(id2class[class_id], name), (bbox[0] + 2, bbox[1] - 

2), 

                                cv2.FONT_HERSHEY_SIMPLEX, 0.8, color) 

            #----FPS calculation 

            if frame_count == 0: 
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                t_start = time.time() 

            frame_count += 1 

            if frame_count >= 10: 

                FPS = "FPS=%1f" % (10 / (time.time() - t_start)) 

                frame_count = 0 

            # cv2.putText(img, text, coor, font, size, color, line thickness, line type) 

            cv2.putText(img, FPS, (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3) 

 

            #----image display 

            cv2.imshow("Demo by Saroj", img) 

            #----image writing 

            if writer is not None: 

                writer.write(img) 

            #----keys handle 

            key = cv2.waitKey(1) & 0xFF 

            if key == ord('q'): 

                break 

            elif key == ord('s'): 

                if len(bboxes) > 0: 

                    img_temp = img[bbox[1]:bbox[1] + bbox[3], bbox[0]:bbox[0] + bbox[2], :] 

                    save_path = "img_crop.jpg" 

                    save_path = os.path.join(ref_dir,save_path) 

                    cv2.imwrite(save_path,img_temp) 

                    print("An image is saved to ",save_path) 

        else: 
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            print("get images failed") 

            break 

    #----release 

    cap.release() 

    cv2.destroyAllWindows() 

    if writer is not None: 

        writer.release() 

Results of real-time MFR (Masked Facial Recognition) are shown in figure 5.7. 

  



95 

 

REFERENCES 

[1]  Ullah, Naeem, et al. "A novel DeepMaskNet model for face mask detection and masked 

facial     recognition." Journal of King Saud University-Computer and Information 

Sciences (2022).   

[2]  Mason, Karl, Jim Duggan, and Enda Howley. "A multi-objective neural network trained 

with differential evolution for dynamic economic emission dispatch." International Journal 

of Electrical Power & Energy Systems 100 (2018): 201-221.  

[3]  Kumar, A. Pavan, V. Kamakoti, and Sukhendu Das. "An Architecture for Real Time Face 

Recognition Using WMPCA." ICVGIP. 2004.   

[4]  Soyata, Tolga, et al. "Cloud-vision: Real-time face recognition using a mobile-cloudlet-

cloud acceleration architecture." 2012 IEEE symposium on computers and 

communications (ISCC). IEEE, 2012.   

[5]  Kasar, Manisha M., Debnath Bhattacharyya, and T. H. Kim. "Face recognition using neural 

network: a review." International Journal of Security and Its Applications 10.3 (2016): 81-

100.   

[6]  Agagu, T. T., and B. A. Akinnuwesi. "Automated students' attendance taking in tertiary 

institution using hybridized facial recognition algorithm." Journal of Computer Science 

and Its Application 19.2 (2012): 1-13.   

[7]  de Leeuw, Karl Maria Michael, and Jan Bergstra, eds. The history of information security: 

a comprehensive handbook. Elsevier, 2007.   

[8]  Dlib: https://github.com/davisking/dlib   

[9]  OpenCV: https://github.com/opencv/opencv  

[10]  Liu, Wei, et al. "Ssd: Single shot multibox detector." European conference on computer 

vision. Springer, Cham, 2016.  

https://github.com/davisking/dlib
https://github.com/opencv/opencv


96 

 

[11]  Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-

scale image recognition." arXiv preprint arXiv:1409.1556 (2014).  

[12]  Anwar, Aqeel, and Arijit Raychowdhury. "Masked face recognition for secure 

authentication." arXiv preprint arXiv:2008.11104 (2020).  

[13]  Mandal, Bishwas, Adaeze Okeukwu, and Yihong Theis. "Masked face recognition using 

resnet-50." arXiv preprint arXiv:2104.08997 (2021).  

[14]    Mundial, Imran Qayyum, et al. "Towards facial recognition problem in COVID-19 

pandemic." 2020 4rd International Conference on Electrical, Telecommunication and 

Computer Engineering (ELTICOM). IEEE, 2020.  

[15]  Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding 

for face recognition and clustering." Proceedings of the IEEE conference on computer 

vision and pattern recognition. 2015.  

[16]  Ejaz, Md Sabbir, et al. "Implementation of principal component analysis on masked and 

non-masked face recognition." 2019 1st international conference on advances in science, 

engineering and robotics technology (ICASERT). IEEE, 2019.  

[17]  CASIA dataset: https://github.com/SamYuen101234/Masked_Face_Recognition  

[18]  LFW dataset: http://vis-www.cs.umass.edu/lfw/  

[19] Alzu’bi, Ahmad, et al. "Masked Face Recognition Using Deep Learning: A Review." 

Electronics 10.21 (2021): 2666.  

[20]  Szegedy, Christian, et al. "Inception-v4, inception-resnet and the impact of residual 

connections on learning." Thirty-first AAAI conference on artificial intelligence. 2017.  

[21]  Rath, Subrat Kumar, and Siddharth Swarup Rautaray. "A survey on face detection and 

recognition techniques in different application domain." International Journal of Modern 

Education and Computer Science 6.8 (2014): 34.  

https://github.com/SamYuen101234/Masked_Face_Recognition
http://vis-www.cs.umass.edu/lfw/


97 

 

[22]  Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision." 

Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.  

[23]  He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the 

IEEE conference on computer vision and pattern recognition. 2016.  

[24]  Sun, Yi, Xiaogang Wang, and Xiaoou Tang. "Deeply learned face representations are 

sparse, selective, and robust." Proceedings of the IEEE conference on computer vision and 

pattern recognition. 2015.  

[25]  Wang, Zhongyuan, et al. "Masked face recognition dataset and application." arXiv preprint 

arXiv:2003.09093 (2020).  

[26]  Golwalkar, Rucha, and Ninad Mehendale. "Masked-face recognition using deep metric 

learning and FaceMaskNet-21." Applied Intelligence (2022): 1-12.  

[27]  S-H Yooa, S-K Oha, Witold Pedrycz,” Optimized face recognition algorithm using radial 

basis function neural networks and its practical applications”, International journal on 

Neural Networks, volume 69, (2015), pp. 111-125. 

[28]  N Jindal, V Kumar,” Enhanced Face Recognition Algorithm using PCA with Artificial 

Neural Networks”, International Journal of Advanced Research in Computer Science and 

Software Engineering, Volume 3, Issue 6, (2013),pp. 864-872. 

[29]  FaceNet Pretrained Model: https://github.com/davidsandberg/facenet 

[30]  Kaur, Paramjit, et al. "Facial-recognition algorithms: A literature review." Medicine, 

 Science and the Law 60.2 (2020): 131-139.  

[31]  Vu, Hoai Nam, Mai Huong Nguyen, and Cuong Pham. "Masked face recognition with 

 convolutional  neural networks and local binary patterns." Applied Intelligence 52.5 

 (2022): 5497-5512.  

 

https://github.com/davidsandberg/facenet

	A Face Recognition Method Using Deep Learning To Identify Mask And Unmask Objects
	Recommended Citation

	tmp.1663364522.pdf.UF8wb

