
University of North Dakota University of North Dakota

UND Scholarly Commons UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2022

A Face Recognition Method Using Deep Learning To Identify Mask A Face Recognition Method Using Deep Learning To Identify Mask

And Unmask Objects And Unmask Objects

Saroj Mishra

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation Recommended Citation
Mishra, Saroj, "A Face Recognition Method Using Deep Learning To Identify Mask And Unmask Objects"
(2022). Theses and Dissertations. 4362.
https://commons.und.edu/theses/4362

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND
Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator
of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/4362
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F4362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/4362?utm_source=commons.und.edu%2Ftheses%2F4362&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu

A FACE RECOGNITION METHOD USING DEEP LEARNING TO

IDENTIFY MASK AND UNMASK OBJECTS

by

Saroj Mishra

Master of Science in Computer Science, University of North Dakota, 2022

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

August

2022

ii

Copyright 2022 Saroj Mishra

iii

iv

PERMISSION

Title A Face Recognition Method Using Deep Learning to Identify

Mask and Unmask Objects

Department School of Electrical Engineering and Computer Science

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate

degree from the University of North Dakota, I agree that the library of this University shall

make it freely available for inspection. I further agree that permission for extensive copying

for scholarly purposes may be granted by the professor who supervised my thesis work or,

in his absence, by the chairperson of the department or the dean of the School of Graduate

Studies. It is understood that any copying or publication or other use of this thesis or part

thereof for financial gain shall not be allowed without my written permission. It is also

understood that due recognition shall be given to me and to the University of North Dakota

in any scholarly use which may be made of any material in my thesis.

Saroj Mishra

07/26/2022

v

ACKNOWLEDGMENTS

First, I wish to express my sincere appreciation to my advisor, Dr. Hassan Reza, for his

continual guidance in my education and research. I have had the privilege of taking

multiple classes from him, and it can clearly be seen that he genuinely cares for his students.

I have thoroughly enjoyed each time I have had a meeting with Dr. Reza, he is always

personable, kind, and willing to help. Also, I would like to thank Dr. Wen-Chen Hu and

Dr. Eunjin Kim for all of their help and for agreeing to serve on my committee. I have had

the privilege of taking courses from both Dr. Hu and Dr. Kim during my time here, and I

thoroughly enjoyed them all. I am so thankful for their guidance and support during my

time in the master’s program at the University of North Dakota. Similarly, I would also

like to thank all the faculty and staff at the School of Electrical Engineering and Computer

Science for the help they provided during my graduate career. My mom and dad deserve

an extraordinary amount of thanks for all of their continual support and prayers. I would

especially like to thank my wonderful wife Rakshya Bista for all of her support and

encouragement throughout my graduate study. Finally, I would like to thank my friends

and other family members for their love and support while on this academic journey.

vi

 TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES .. x

ABSTRACT ... xi

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 Problem Definition .. 1

1.2 Scope of work ... 2

1.3 Motivation ... 3

1.4 Approach ... 3

1.5 Expected outcomes ... 4

1.6 Thesis Structure .. 4

CHAPTER 2 ... 6

BACKGROUND .. 6

2.1 Facial Recognition System.. 6

2.2 Workflow of a Facial Recognition System ... 6

2.3 Face Recognition Methods.. 7

2.3.1 Knowledge-Based Methods ... 7

2.3.2 Templating Matching ... 8

2.3.3 Appear-based methods ... 8

2.4 Why Use the Face for Recognition ... 11

2.5 Problems with Face Recognition Algorithms ... 11

2.6 Deep Learning ... 12

CHAPTER 3 ... 15

LITERATURE REVIEW ... 15

3.1 Face Recognition Developing Stages ... 15

vii

3.2 Masked Facial Recognition ... 16

3.3 Unmasked Face Recognition .. 20

3.4 Summary of the Related Works .. 23

3.4.1 Limitation of the Existing Work, Research Gaps, and our Contributions 25

CHAPTER 4 ... 27

METHODOLOGY ... 27

4.1 Data Collection and Preparation ... 27

4.1.1 Training Dataset ... 27

4.1.2 Face Alignment .. 28

4.1.3 Data Cleaning ... 29

4.1.4 Create Masked Faces ... 30

4.1.5 Create Balance Dataset .. 32

4.2 Model Training and Evaluation .. 33

4.2.1 Training and Testing Details .. 33

4.2.2 Model Training .. 34

4.2.3 Model Improvement ... 37

4.2.4 Architecture of our AI Model .. 37

4.2.4.1 Why this architecture ... 37

4.2.4.2 Architecture of Inception ResNet V1 ... 39

4.2.4.3 How to generate embeddings ... 41

4.2.4.4 How to use embeddings to perform face matching .. 42

4.2.5 Model Evaluation ... 43

4.2.5.1 Unmasked face evaluation flowchart ... 43

4.2.5.2 Masked face evaluation flowchart ... 44

4.2.5.3 Accuracy comparison with FaceNet model using the same dataset................................... 46

4.3 Real-Time Masked Facial Recognition using our Trained Model .. 47

viii

CHAPTER 5 ... 50

RESULTS AND DISCUSSION ... 50

5.1 Experiment Setup .. 50

5.2 Dataset... 51

5.3 Performance Evaluation of our Trained models ... 53

5.4 Evaluation Metrix ... 54

5.5 Comparison of Current Approach Against Other Methods .. 55

5.6 Limitations and Advantages.. 55

5.7 Result Analysis ... 56

CHAPTER 6 ... 59

CONCLUSION ... 59

6.1 Conclusions ... 59

6.2 Future work ... 59

APPENDICES A .. 60

A.1 Inception ResNet V1 Architecture Python Code ... 60

A.2 Image Alignment Python Code .. 67

A.3 Image Processing and Augmentation Python Code ... 78

A.4 Images Processing and Augmentation Results... 86

A.5 Real Time Masked Face Recognition Python Code... 87

REFERENCES ... 95

ix

LIST OF FIGURES

Figure 2.2 Workflow of facial recognition system 7

Figure 2.6 The workflow diagram of NN 13

Figure 4.1 Data preparation process 27

Figure 4.1.2 Sample images after face alignment 29

Figure 4. 1.3 Process to calculate the distance between target and reference images 30

Figure 4.1.4 (a) Process to create masked face dataset 31

Figure 4.1.4 (b) Mask template images 32

Figure 4.1.5 Sample augmented images from induvial selected images 33

Figure 4.2.2 Model training process for MFR 36

Figure 4.2.4.1 (a) Inception module 38

Figure 4.2.4.1 (b) Residual learning: a building block 39

Figure 4.2.4.2 Architecture of Inception ResNet V1 model 40

Figure 4.2.4.3 Process to get the embeddings 42

Figure 4.2.4.4 Calculate Euclidean distance between target and reference images 43

Figure 4.2.5.1 Unmasked face evaluation flowchart 44

Figure 4.2.5.2 (a) Calculate distance between one tar_embedding to many ref_embedding 45

Figure 4.2.5.2 (b) Unmasked face evaluation flowchart 46

Figure 4. 3 Real-time masked facial recognition process 23

Figure 5.2 (a) Sample masked and unmasked training images 55

Figure 5.2 (b) Sample masked and unmasked testing images 52

Figure 5.4 Real-time masked facial recognition results 58

Figure A.4 Image processing and augmentation results 86

x

LIST OF TABLES

Table 3.4 Summary of the related work for masked facial recognition 24

Table 4.1.1 Summary of our three datasets used for training 28

Table 4.2.1 Summary of masked and unmarked datasets used for model evaluation 34

Table 4.2.4.2 Parameters for three different training models 40

Table 4.2.5.3 Accuracy comparisons between the three different models 47

Table 5.3 Performance evaluation of three different models 53

Table 5.5 Comparison of current approach against other methods 55

xi

ABSTRACT

At the present, the use of face masks is growing day by day and it is mandated in most places

across the world. People are encouraged to cover their faces when in public areas to avoid the

spread of infection which can minimize the transmission of Covid-19 by 65 percent (according to

the public health officials). So, it is important to detect people not wearing face masks.

Additionally, face recognition has been applied to a wide area for security verification purposes

since its performance, accuracy, and reliability [15] are better than any other traditional techniques

like fingerprints, passwords, PINs, and so on. In recent years, facial recognition is becoming a

challenging task because of various occlusions or masks like the existence of sunglasses, scarves,

hats, and the use of make-up or disguise ingredients. So, the face recognition accuracy rate is

affected by these types of masks. Moreover, the use of face masks has made conventional facial

recognition technology ineffective in many scenarios, such as face authentication, security check,

tracking school, and unlocking phones and laptops. As a result, we proposed a solution, Masked

Facial Recognition (MFR) which can identify masked and unmasked people so individuals

wearing a face mask do not need to take it out to authenticate themselves. We used the Deep

Learning model, Inception ResNet V1 to train our model. The CASIA dataset [17] is applied for

training images and the LFW (Labeled Faces in the Wild) dataset [18] with artificial marked faces

are used for model evaluation purposes. The training and testing masked datasets are created using

a Computer Vision-based approach (Dlib). We received an accuracy of around 96 percent for our

three different trained models. As a result, the purposed work could be utilized effortlessly for both

masked and unmasked face recognition and detection systems that are designed for safety and

security verification purposes without any challenges.

xii

Keywords: Face Recognition, Masked Facial Recognition, Verification, Security, Accuracy,

CASSIA Dataset, LFW Dataset, Deep Learning, Dlib, Computer Vision

1

CHAPTER 1

INTRODUCTION

This chapter first introduces the background of the Facial Recognition System (FRS) and gives a

description of the general problem. Section 1.2 shows the scope of the work. The scope of the

work consists of a general methodology description. Section 1.3 presents the motivation of the

research towards the use of Masked Facial Recognition (MFR) using deep learning. Lastly, section

1.4 shows the approaches to solve the problem which is followed by expected results in section

1.5.

1.1 Problem Definition

The use of face masks is growing rapidly with Covid-19. People are required to wear a face mask

all the time when they are outside or at large indoor gatherings to minimize the spread of infection.

So, it is important to detect those people with face masks for health safety reasons. Face recognition

is the process of automatically identifying an individual from captured images or videos [4] and

face detection is the process of identifying the face from the captured image or the specified image

from the database. It is a significant key area of research today as its applications are becoming

more important in various fields like ATM machines, criminal identification, access restriction,

video conferencing, issuing drivers’ licenses & passports, and monitoring the public areas.

Moreover, the use of face masks has made conventional facial recognition technology ineffective

in many scenarios, such as face authentication, security check, tracking school, and office

attendance, and unlocking phones and laptops. Furthermore, the different algorithms that succeed

on unmasked faces have been unable to generalize such successes on masked faces. One of the

advantages associated with detecting an unmasked face is that the deep learning models would use

2

the whole facial features/landmarks to identify someone. However, with a masked face, the nose

and mouth are occluded. So, the problem of identifying individuals with just the eyes and

sometimes, the forehead is more challenging [1]. Therefore, it is expected that the purposed

solution could be utilized to recognize both masked and unmasked faces.

Since the work of Schroff et al. [15] in 2015, the idea of the FaceNet model, a unified embedding

for face recognition has been widely used for facial recognition. The researcher presented a

FaceNet model, which learns directly from face images to calculate the Euclidean distances, and

these distances are directly compared to measure the face matching. Additionally, once these

FaceNet embeddings are created, they could easily be implemented for tasks such as face

identification, validation, and clustering by calculating the Euclidean distances. So, we applied a

similar embeddings technique in our Masked Facial Recognition (MFR) research. Although many

works have been presented [26, 1, 13, 16, 25] in the past for masked face recognition, our proposed

solution provides better accuracy and can recognize both masked and unmasked faces easily.

1.2 Scope of work

The scope of this work falls under the MFR (Masked Facial Recognition) system. The approach

solution could be used for both masked and unmasked facial recognition systems with high

accuracy. Especially in the current situation where everyone needs to wear a face mask to minimize

the spread of Covid-19, this work helps to identify the public without a face mask and encourages

them to wear masks which increases the safety of the public. Additionally, the purposed solution

includes a masked facial recognition system so it can recognize the masked and unmasked people.

As a result, people in enclosed spaces who need to verify their identity on mobile phones, laptops,

or other devices, do not need to take off their face masks as the purposed solution can recognize

masked faces easily. Moreover, we verified the robustness of the purposed solution for masked

3

and unmasked facial recognition under various conditions like gender, skin tone, age, types of

masks, etc. Therefore, this work could be used for different purposes including security and safety

of the people.

1.3 Motivation

In the present day, due to Covid-19, face masks have been mandated in most places across the

world. People are encouraged to cover their faces when in public areas to avoid the spread of

infection which can reduce the transmission of Covid-19 by 65% (according to the public health

officials). Face recognition is widely used to secure any system because it is better than any other

traditional techniques like PIN, password, fingerprint, and so on and is most reliable to identify a

person efficiently. Additionally, facial recognition has been extensively applied for security

verification purposes since its performance, accuracy, and reliability [15] are better than any other

traditional techniques like fingerprints, passwords, tokens, and so on. Nowadays, it has become an

arduous task due to various occlusions or masks such as scarves, sunglasses, hats, makeup, and

other different types of disguise elements and they are causing a significant impact on the accuracy

of facial recognition systems (FRS). As a result, we proposed a solution an MFR (Masked Facial

Recognition) to solve this issue.

1.4 Approach

The main goal of our research paper is to perform real-time Masked Facial Recognition (MFR).

The work is divided into three main parts to achieve the goal. The first part is data collection and

preparation. We take the CASIA dataset [17] for training face images. The obtained images were

not ready to use for training, so we performed various cleaning, alignment, and removal operation

to make them ready for model training purposes. The CASIA dataset does not include masked

faces, so we used the augmented method to generate masked faces for our dataset. Furthermore,

4

the second part involved training the face recognition model that would be used for MFR. The

training is done using the deep learning (Inception ResNet V1) model. We applied different

hyperparameter functions for training and the model is evaluated using the LFW (Labeled Faces

in the Wild) dataset [18] with artificial masked face images. Similarly, the accuracy and loss

functions were calculated in every epoch to validate the model. We evaluated the three different

trained models with five, ten, and fifteen training images per class. Lastly, the real-time MFR is

carried out using our trained model. All these three steps are explained in more detail in the

methodology section.

1.5 Expected outcomes

The purpose of our research is to collect data and complete the data preparation, train the model

for MFR and its evaluation, and perform real-time masked and unmasked facial recognition. It’s

expected to receive the input image frame through a laptop camera. Moreover, it is anticipated that

the purposed solution would be useful for masked and unmasked facial recognition under various

conditions like gender, skin tone, age, types of masks, etc. As a result, this work could be utilized

for different purposes including security and safety of the people.

1.6 Thesis Structure

The organization of the paper is as follows. Chapter II presents the theoretical background of the

research. It introduces the Face Recognition System (FRS), Deep Learning (DP), Convolutions

Neural Network (CNN), and their block diagrams with some details. We start chapter III by

introducing the works that have been done in facial recognition, and masked facial recognition.

Chapter IV outlines the different approaches we have applied to our work. There are data collection

and preparation, model training, model evaluation, and real-time Masked Facial Recognition

(MFR). Similarly, Chapter V describes the results of our work, experiment setup, performance

5

evaluation, limitation and advantages of the approach solution, performance Metrix, and

comparisons of our solution against different methods. Lastly, chapter VI concludes with the

conclusion along with some suggestions for future research.

6

CHAPTER 2

BACKGROUND

This chapter introduces facial recognition technology, workflow, and methods. Also, introduce

deep learning (DP), convolutions neural network (CNN), and their concepts. Additionally, the

importance of DP to build the recognition system and the development processes of face

recognition and CNN are discussed briefly.

2.1 Facial Recognition System

Facial recognition is the process of automatically identifying an individual from captured images

or videos [4]. It is a significant key area of research today. Its applications are becoming more

important in various fields like ATM machines, criminal identification, access restriction, video

conferencing, issuing drivers’ licenses and passports, and monitoring public areas. The imaging

conditions, feature occlusion, inter-person similarity, and variance of faces are making the task of

face recognition more challenging. Face recognition algorithms deal with a vast number of images,

which leads to millions of operations, so it needs to have a specialized model for real-time

implementation [3]. Moreover, various algorithms have been proposed for face recognition in the

last few decades, with varying degrees of success. These algorithms analyze images and extract

information such as shape, size, and location of facial features. So, the algorithms with the highest

accuracy typically require intensive computation [4].

2.2 Workflow of a Facial Recognition System

The facial recognition process usually has five interrelated steps shown in figure 2.2 [30]. The first

step is capturing the input image. The image is captured through a camera source, and it passes to

the Face detection model. In this step, the face of the person is detected from the whole captured

7

image. Additionally, the third step is Features extraction, which extracts the specific and unique

features from the detected face to match them with the corresponding images in the database. So,

in this step, the face embeddings are generated. Similarly, face matching is done by calculating the

Euclidian distance between the input image's embedding with the embeddings of database images.

If the distance is less than the threshold value, then the identification of the person is accomplished.

As a result, face recognition is completed by computing the distances between one input image

with N number of database images.

Figure 2.2 Workflow of facial recognition process

2.3 Face Recognition Methods

Many face recognition algorithms have been developed in the past. Some of the commonly used

methods are Knowledge-based methods, Template matching, and appearance-based methods. All

these methods are briefly explained below.

2.3.1 Knowledge-Based Methods

This method is also known as the rule-based method since the efforts are made to capture the

knowledge of faces and then subsequently, they are translated into a set of rules. For example,

there are facial features that are symmetrically located and areas on the face that differ in intensity.

Deriving the appropriate set of rules is the major problem with knowledge-based methods, which

should be neither too general nor too detailed. Additionally, a potential solution for overcoming

8

these problems is to create a hierarchical knowledge-based approach. This method is not able to

work efficiently for complex images where the face invariant features are not visible, this method

fails to work efficiently. As a result, a robust method should be employed to overcome this

difficulty.

2.3.2 Templating Matching

Templating Matching is the process of identifying faces by considering only specific regions

represented in templates. The pixels of the input image are compared against a template image

using a metric measure such as Euclidean distance. In the first step, four features such as eyes,

nose, mouth, and whole face are selected from a template and applied to all the available faces.

The area of the input image is compared to the pictures in the database for each template. As a

result, the face matching scores are calculated, and the identification decision is made based on it.

Moreover, high accuracy rates of around 90% have been reported using this approach. The main

advantage of this method is that the implementation is simple, however, it is inappropriate for

variations in pose and illumination.

2.3.3 Appear-based methods

This approach is similar to template matching in which templates are taken from the set of

examples in the images. Mainly, this method depends on techniques from statistics and machine

learning to find the specific characteristics of face images. There are different algorithms for

appear-based methods which are explained briefly below.

Eigenface-based methods PCA algorithms: The most famous and widely accepted approach for

facial recognition is known as the Karhunen–Loeve method. It is the most thoroughly studied

method for face recognition, with its main usability being a reduction in the dimensionality of the

9

image. This method was first applied for face recognition and then subsequently used for facial

reconstruction. The main advantage of this approach is that it minimizes the data by the 1000th

time. Furthermore, this process is very quick, as it is utilized only for training the sample. While

this approach demands a full-frontal image of the subject’s face, and in real-time situations, this

rarely happens.

Linear discriminant analysis: The Linear discriminant analysis (LDA) also known as Fisher’s

discriminant analysis, is the dimensionality reduction technique. Among appearance-based

approaches, LDA is utilized for feature selection. Among various appearance-based methods,

LDA is applied for feature selection. This method overcomes the limitations of the PCA method.

Among all the appearance-based approaches, LDA is the most Similar to PCA, it is based on

Euclidean distance. Moreover, it is a supervised method, and unlike PCA, it uses label information

for enhancing separability between different classes. Moreover, it also aims to reduce the variation

within the class. In many LDA-dependent face-recognition techniques, initially, PCA is used for

dimensionality reduction, and then LDA is used to maximize the discrimination power of feature

selection

Neural networks: The solution to the issues faced in linear methods was delivered by several

nonlinear approaches such as neural networks. Normally, a net is considered with a neuron in every

pixel. The feature extraction step is more efficient than linear methods because of the non-linearity

of the network. Moreover, using this approach, an accuracy rate of 96.2% was noted. The training

time is higher compared to the classification time. Neural networks have been combined with

various models, such as Gabor filters and Hidden Markov Models (HMM). A semi-supervised

method was used for identifying the human face. The researchers used unsupervised methods for

feature extraction and supervised techniques for finding those features which can lower

10

classification error. Additionally, they utilized feed-forward neural networks for classification. The

probabilistic decision-based neural network was modeled for three distinct aspects which are face

detection, eye localization, and face recognition. The main advantage of the neural network is its

capability to capture the tough class of face patterns. While the number of classes increases, it

becomes difficult to implement neural networks. Also, this process is not suitable for a single

model.

Deep learning and artificial intelligence: In this technology era, the techniques of machine

learning, deep learning, and artificial intelligence have subsequently influenced and impacted the

broad area of daily services and logical functions. Nowadays facial recognition has been verified

its indispensable impact in different applications. In a previous study, an algorithm to choose the

experience of customers at a restaurant with no staff was developed. Based on expressions, the

food and environment were rated. That system uses the pre-trained CNN (convolutional neural

network) model. Similarly, using CNN models and applying deep-learning techniques, emotion

recognition was achieved from audio-visual emotional big data.

Support vector machine: The support vector machines (SVM) are the linear classifiers that

extend the margin between the decision hyperplane and the training set. This is accomplished by

finding a hyperplane that divides and maximizes the distance from any of the classes to the

hyperplane, where a set of points belong to two distinct classes. Therefore, an optimal hyperplane

should work by minimizing the classification error of the unseen test patterns. Additionally, first,

the feature extraction is achieved using PCA (Principal Component Analysis), and then

discrimination between the features is accomplished using SVMs. The main advantage of SVMs

as compared to other classical methods is that they can achieve better performance.

11

2.4 Why Use the Face for Recognition

There are many ways to authenticate a person, while biometric-based techniques have appeared as

the most promising option for recognizing individuals in recent years. Other approaches like

tokens, keys, passwords, and smart cards require the involvement of individuals in any way and

have chances to be misplaced, stolen, forgotten, or forged. However, the biological traits of an

individual cannot be misplaced or forgotten. Biometric-based recognition systems include the

characteristics of the individual such as the face, palm, retina, voice, finger geometry, and so on.

Among all the methods, face recognition offers many advantages, so it is preferred the most. Some

of the advantages are mentioned here: however, all these techniques require some voluntary action

by the user, and face recognition can be done passively without any explicit effort since face

images can be received from a distance by a camera. This is useful for identification, security, and

surveillance purposes. Similarly, some methods depend on the hands and fingers which can be

affected useless if the epidermis tissue is harmed in some way. Retina identification requires costly

equipment, and they are much too sensitive to body motion. Also, Voice recognition is susceptible

to background noises in public areas and hearing fluctuations on a phone line or tape recording.

On the other hand, facial images can be obtained easily with an affordable camera. Good facial

recognition algorithms and appropriate image preprocessing can compensate for noise and slight

changes in orientation, scale, and lighting.

2.5 Problems with Face Recognition Algorithms

Since the development of face recognition, it has often had to overcome various challenges. There

are several factors that make facial recognition an arduous task. When the face image changes in

illumination, expression, and pose, that makes identification problems much harder. Additionally,

Age changes the facial texture and shape while occluded images left partial facial features for

12

processing, thus making the overall problem of face recognition much harder. The face recognition

performance deteriorates significantly when variations are found in illumination, facial pose, and

expression. Furthermore, other factors such as image resolution, orientation, blurring, and time

delay also contribute to facing recognition obstacles.

2.6 Deep Learning

Deep learning is the pile of Convolutional Neural Network (CNN) layers and CNN is one of the

most effective neural networks that has shown its superiority in a wide range of applications,

including image classification, recognition, retrieval, and object detection. In addition, Neural

Network (NN) is a sub-field and a key area of machine learning which are biological brain-inspired

function approximators and have been successfully applied to various issues such as classification,

regression, control, learning (online and offline), and robotics [2]. Furthermore, the neural network

is an enormously powerful and robust classification technique that can be used for predicting not

only the known data but also the unknown data. It works well for both linear and non-linear various

datasets [19].

The NN has been used in multiple areas such as object detection, speech recognition, face

recognition, fingerprint recognition, forecasting, and so on [5]. A standard feed-forward neural

network is made up of multiple input layers of neurons, some of them hidden, and an output layer

of neurons. A neuron is a basic part of a neural network. It processes signals by accepting them as

an input and then outputs a signal using a function. Moreover, the NN receives information on the

environment as a normal signal from its input layer and then outputs a signal through the output

layer of neurons [2]. The general workflow of Neural Networks is shown in figure 2.2. In our

research, we applied the CNN layer to train the MFR (Masked Face Recognition) model. It is

challenging to obtain all the facial characteristics from a single layer so multiple CNN layers are

13

utilized to extract various patterns of the face images. As a result, deep learning is significantly

important to learn all the details of facial attributes.

Figure 2.2 The workflow diagram of NN

In figure 2.2, the input layer receives information in the form of a numeric expression and transfers

it to the hidden layers, which calculate the weighted sum and weights. The information is displayed

as activation values, where each layer has given a number, the higher the number greater the

activation. Additionally, this information is then transferred throughout the network. Based on the

strength of the connection which are weights, inhibition, and transfer functions, the activation

value is transmitted from layer to layer. Individual layers sum up the activation values it collects;

then transform the value based on its transfer function [5]. Similarly, the Activation value goes via

hidden layers through the network until it makes the output layer. The output layer then reflects

the meaning. The neural network could have many inputs, hidden, and output layers. There are

several types of neural networks (NN) and some of them are recurrent neural network (RNN),

14

convolutional neural network (CNN), and deep convolutional Network (DCN). The NN is applied

in various fields such as computer vision, time series prediction, pattern recognition, robot control,

anomaly detection, object detection, and so on.

15

CHAPTER 3

LITERATURE REVIEW

This chapter discusses the related work and identifies what aspects of previous work will be

applied. These studies focus on a few selected research that contributes to the use of facial

recognition with and without face masks and how it can be implemented using different

approaches. This chapter’s primary goal is to provide a review of the literature and present an

overview of the current research that contributes to the use of MFR (Masked Facial Recognition).

Moreover, it describes some of the challenges in the development of facial recognition systems, a

summary of the related works and the approaches, their limitations and benefits, the research gap,

and our contributions to solving the problems with existing approaches.

3.1 Face Recognition Developing Stages

The earliest pioneers of facial acknowledgment were Woody Bledsoe, Helen Chan Wolf, and

Charles Bisson. In 1964 and 1965, Bledsoe began working with computers with Wolf and Bisson

to identify the human face. Due to the financing of the project coming from an unnamed

intelligence agency, much of their work was never made public. However, later it turned out that

their initial work applied the manual marking of different facial landmarks on the faces, such as

eyes centers, nose, and mouth. These were then statistically turned by a computer to compensate

for pose variation. Then the distance between the landmarks was calculated and compared between

images to determine identity automatically [7].

These earliest steps into Facial Recognition in a manner consistent with the Bledsoe, Wolf, and

Bisson were severely hampered by the technology of the era, but it remains an important first step

in proving that Facial Recognition was a practical biometric. Carrying on from Bledsoe's original

16

work, the baton was picked up in the 1970s by Goldstein, Harmon, and Lesk who expanded the

work to include 21 specific subjective markers including hair color and lip thickness to automate

the recognition. The National Institute of Standards and Technology (NIST) started Face

Recognition Vendor Tests (FRVT) in the early 2000s. Building on FERET (Face Recognition

Technology), FRVTs (Face Recognition Vendor Tests) were designed to provide independent

government evaluations of commercially available facial recognition systems and prototype

technologies. These assessments were designed to provide law enforcement agencies and the U.S.

government with the information needed to determine the best ways to deploy facial recognition

technology.

Back in 2010, Facebook began implementing facial recognition features that helped identify

people whose faces may feature in Facebook photos that users update daily. The feature was

immediately controversial with the news media, triggering a slew of privacy-related articles.

However, Facebook users did not seem to mind. Having no clear adverse effect on the Web site’s

use or popularity, more than 350 million pictures are uploaded and tagged using face recognition

every day. Facial Recognition technology has advanced rapidly from 2010 onwards and September

12, 2017, was another significant breakthrough for the integration of facial recognition into our

day-to-day lives. This was the date that Apple launched the iPhone X, which was the first iPhone

users could unlock with Face ID – Apple’s marketing term for facial recognition. So, in this way,

the development of facial recognition took place from past to present.

3.2 Masked Facial Recognition

Masked face recognition refers to techniques in which the system needs to recognize the individual

whose face is occluded. Masked facial recognition is one of the most difficult problems because

masks cover more than half of the face, and it is difficult to identify someone with just eyes,

17

eyebrows, and forehead areas. Therefore, masked face recognition often requires large datasets,

and huge calculations to train the best model which can help to recognize the person accurately.

In 2021 Vu et al. [31] presented Masked face recognition with convolutional neural networks and

local binary patterns. The researcher proposed the combination of deep learning and local binary

pattern features approach to identify the masked faces by using RetinaFace. A RetinaFace is a face

detector, which is a combination of self-supervised and extra-supervised multi-task learning that

can deal with various scales of faces. Moreover, they extracted the local binary pattern features

from the eye, forehead, and eyebrow areas of masked faces and joined them with features learned

from RetinaFace into a unified framework for recognizing masked faces. Additionally, they used

the 300-subject dataset collected from their institution named COMASK20. The researcher

mentioned that they compared their system with the published Essex dataset also and they received

98% and 87% f1 scores for COMASK20 and Essex datasets, respectively. These showed that their

system has shown effectiveness and suitability as compared to other methods like Dlib and

InsightFace.

In 2021 Ullah et al. [1] presented a novel DeepMaskNet model for face mask detection and masked

facial recognition. Testing people who are not wearing face masks manually in public places is a

challenging task. Moreover, using face masks makes traditional face recognition techniques

ineffective, typically designed for unveiled faces. Therefore, the researcher introduced a reliable

system that can detect people who do not wear face masks and recognize different people while

wearing face masks. In this paper, they proposed a novel DeepMasknet framework capable of both

face mask detection and masked facial recognition. Moreover, presently there is an absence of a

unified and diverse dataset that can be used to evaluate both face mask detection and masked facial

recognition. For this purpose, they also developed a largescale and diverse unified mask detection

18

and masked facial recognition (MDMFR) dataset to measure the performance of both the face

mask detection and masked facial recognition methods. The proposed work has two main phases.

The first phase includes the data collection and dataset preparation, while the second phase

presents a novel Deepmasknet model construction for face mask detection and masked facial

recognition. They got an accuracy of 100% for face detection and 93.33% for masked facial

recognition. Researchers said that their experimental results on multiple datasets including the

cross-dataset setting showed the superiority of their DeepMasknet framework over the

contemporary models.

In 2020 Mundial et al. [14] presented a paper on facial recognition problems in the covid-19

pandemic. The researchers proposed a methodology that can improve the existing facial

recognition technology capabilities with masked faces. They used a supervised learning method to

recognize masked faces together with in-depth neural network-based facial features. A dataset of

masked faces was collected to train the Support Vector Machine classifier on a state-of-the-art

Facial Recognition Feature vector. Their proposed methodology gave recognition accuracy of up

to 97% with masked faces. They mentioned that this model performed better than existing devices

not trained to handle masked faces.

In 2019 Ejaz et al. [16] presented the implementation of principal component (PCA) analysis on

masked and non-masked face recognition. In this paper, a statistical procedure was selected that is

applied in the recognition of the non-masked face and applied in the masked facial recognition

technique. This method achieved an accuracy of masked face image recognition on average of

72% whereas non-masked face was on average 95%. PCA gave a poor recognition rate for masked

face images rather than non-masked faces. It was found that extracting facial features from a

masked face is less than a non-masked face because of missing features from masked faces. As a

19

result, the researcher concluded that the PCA Analysis is better for normal face recognition but

not for masked face recognition.

In 2020 Anwar et al. [12] presented masked face recognition for secure authentication. With the

recent worldwide COVID-19, face masks have become an important part of our lives. People are

encouraged to cover their faces when in public areas to avoid the spread of infection which can

reduce the transmission of Covid-19. Face recognition system is commonly used for security

verification purposes and the use of face masks has made conventional facial recognition

technology ineffective in many scenarios, such as face authentication, security check, community

visit check-in, tracking school, office attendance, and unlocking phones and laptops. Because of

Covid-19, people in closed spaces must wear face masks to verify their identity on their mobile

phones or laptops. Many organizations use facial recognition as a means of authentication and

have already developed the necessary datasets in-house to be able to deploy such a system.

Unfortunately, masked faces make it difficult to be detected and recognized, thereby threatening

to make the in-house datasets invalid and making such facial recognition systems inoperable. As

a result, the researcher addressed a methodology to use the current facial datasets by augmenting

them with tools that enable masked faces to be recognized with low false-positive rates and high

overall accuracy, without requiring the user dataset to be recreated by taking new pictures for

authentication. They presented an open-source tool, MaskTheFace to mask faces effectively

creating a large dataset of masked faces. The dataset generated with this tool is then used towards

training an effective facial recognition system with target accuracy for masked faces. They

received an increase of around 38% in the true positive rate for the Facenet system. Additionally,

the researcher tested the accuracy of the re-trained system on a custom real-world dataset MFR2

and report similar accuracy.

20

In 2021 Mandal et al. [13] proposed masked face recognition using ResNet-50. Over the last

twenty years, there have seen several outbreaks of different coronavirus diseases across the world.

These outbreaks often led to respiratory tract diseases and have proved to be fatal sometimes.

Currently, we are facing an elusive health problem with the arrival of the COVID-19 disease of

the coronavirus family. Airborne transmission is one of the modes of transmission of COVID- 19

and it transfers when humans breathe, speak, sing, cough, or sneeze in droplets released by an

infected person. As a result, public health officials have prescribed the use of face masks that can

reduce disease transmission by 65% [13]. Facial recognition systems are used for security

verification purposes and the use of face masks presents a difficult challenge since these systems

were typically trained with human faces without masks but now due to the onset of the Covid-19

pandemic, they are forced to identify faces with masks. Therefore, the researcher studied the same

problem by developing a deep learning model capable of accurately identifying face masks. In this

paper, the authors trained a ResNet-50-based architecture that performs well at recognizing

masked faces. The results of this study could be seamlessly integrated into existing facial

recognition programs designed to detect faces for safety verification purposes.

3.3 Unmasked Face Recognition

Facial recognition is the process of automatically identifying an individual from captured images

or videos [4]. It is a significant key area of research today. Its applications are becoming more

important in various fields like ATM machines, criminal identification, access restriction, video

conferencing, issuing drivers’ licenses and passports, and monitoring the public areas. Moreover,

the imaging conditions, feature occlusion, inter-person similarity, and variance of faces are making

the task of face recognition more challenging. The facial recognition process usually has five

21

interrelated steps: image capturing, face detection, feature extraction, database matching, and

person identification.

In 2015 Schroff et al. [15] proposed the FaceNet model, a unified embedding for face recognition

and clustering. Despite significant recent progress in face recognition, implementation of face

verification and recognition effectively poses serious challenges to current approaches. The

researcher presented a FaceNet model, which learns directly from face images to calculate the

Euclidean distances, and these distances are directly compared to measure the face matching.

Additionally, once these FaceNet embeddings are created, they could easily be implemented for

tasks such as face identification, validation, and clustering by calculating the Euclidean distances.

Their method applied a deep convolution network trained to optimize the facial embedding, while

the previous methods of deep learning used an intermediate layer of a bottleneck. A new triplet

mining approach generated the non-matching and matching face patches to train. The main

advantage of their approach was greater representation efficiency where they used only 128

bytes/face and obtained state-of-the-art facial recognition performance. In the massively used

Labeled Faces in the Wild (LFW) dataset, their system reached the accuracy of 99.63%, a new

record high. On the YouTube Faces database, it received 95.12%. Furthermore, their system

shortened the error rate by 30% on both datasets as compared to the top published result of other

papers [24]. Also, the researcher presented the notion of harmonic embeddings and a harmonic

triplet loss, which represented various versions of face embeddings that were compatible with each

other and authorized for direct comparison.

In 2015 Simonyan et al. [11] proposed very deep convolutional networks for large-scale image

recognition. In this work, they studied the effect of the depth of the convolutional network on its

accuracy in a large-scale image recognition environment. Their main contribution was a thorough

22

evaluation of networks of increasing depth using an architecture with exceedingly small (3×3)

convolution filters, which showed that a significant improvement on the prior-art configurations

can be achieved by pushing the depth to 16–19 weight layers. These results were the basis of their

2014 ImageNet Challenge submission, where the research team secured first and second place in

localization and classification tracks, respectively. They also showed that their representations

generalize well to other datasets, where they achieve state-of-the-art results. To promote further

research on the use of deep visual representations in computer vision, the researchers made two of

the most powerful ConvNet models public.

In 2013 Jindal et al. [28] proposed PCA (Principal Component Analysis) with the Artificial Neural

Network (ANN) method which identified features of the face images extracted using the PCA

method. PCA is a dimensionality reduction method and keeps most of the variations present in the

data set. It captures the variations in the dataset and uses this information to convert the face

images. It calculates the functional vectors for various face points and forms a column matrix of

these vectors. In this paper, the mathematical function Log-sigmoid was applied for the eigenfaces

of the same person, the specific neural network gave the output as one and for the eigenfaces of

another person, it gave the output as 0. After that, only the recognized faces were found as output

one. Therefore, Neural Network forms an Identity matrix for different face images using the

outputs 1s and 0s. The errors in the output layer were sent back to the earlier layers and refresh the

weights of these layers which reduced the error. If the minimum distance between the tested

eigenface image and the trained input eigenface image is less than the threshold value, then the

output of the network is one and the trained eigenface image is chosen from the Identity matrix as

an output image and further identified as a resulted face image otherwise the test face image is

23

denied as a non-human or unknown face image. The purposed face recognition system worked

with high accuracy and provided better success rates even for noisy face images [5].

In 2015 Yooa et al. [27] introduced a hybrid method of face recognition by using face region

information taken from the detected face region. The researcher designed the hybrid approach

based on the ASM (Active Shape Model) and PCA (Principal Component Analysis) methods for

the image preprocessing part. At this step, they used a Charge Coupled Device camera to obtain

facial images using AdaBoost, and then Histogram Equalization was applied to enhance the image

quality. In the formation of the state part of the fuzzy rules, the input space was divided with the

use of Fuzzy C-Means clustering. In the summary part of the fuzzy rules, the connection weights

of the RBF NNs were represented by four types of polynomials such as linear, quadratic, constant,

and reduced square. An advised Polynomial-based RBF NNs were implemented for facial

recognition and their performance was quantified from the perspective of the performance and

recognition rate. This enhancement can be attributed to the fact that the unnecessary parts of the

image were removed with the use of the ASM [6].

3.4 Summary of the Related Works

All the previous work that has been done in facial recognition has its own techniques, model,

advantages, and disadvantages. Different research was carried out with varying rates of success in

the past. In table 3.4, we have provided the summary of existing masked and unmasked systems

in terms of their approach, model, accuracy, dataset, advantages, disadvantages, and so on.

24

Table 3.4 Summary of the related work for masked facial recognition

Research Model/Method

Dataset/Accuracy Advantages/Disadvantages

[1]

Presented a novel

DeepMaskNet model using

CNN

Dataset: MDMFR, Kaggle

Accuracy: 93.33%

• This system can detect the face

mask and also recognize the masked

faces

• Verified the model under diverse

conditions like age, gender, type of

masks, illumination, face angles,

etc.

[12] Proposed a model for

masked face recognition

using FaceNet

Dataset: VGGFace2, MFR2

Accuracy: 38% higher true

positive for FaceNet system

• Provided low-false positive rates

and overall high accuracy

• Created a large dataset for masked

faces

[13] Masked face recognition

using ResNet-50, and

applied transfer learning

technique

Dataset: RWMFD

Accuracy: 89.70%

(masked), 47.91%

(unmasked)

• Applied different hyperparameters

turning to identify the masked faces

• Use of imbalanced data

significantly reduced the accuracy

of masked face recognition

[14] Used supervised learning

approach with in-depth

neural network based facial

feature for masked face

recognition

Dataset: VGGFACE2, LFW

Accuracy: up to 97%

• Trained the Support Vector

Machine classifier on a state-of-the-

art facial recognition feature vector

[15]

Presented the unified

embedding concept using

FaceNet model for face

recognition

Dataset: LFW, YouTube

Accuracy: 99.63% (LFW),

95.12% (YouTube)

• The system cuts the error rate by

30% as compared to other systems

on both datasets,

• This approach could be easily

implemented for identification,

validation, and clustering

[16]

PCA for masked and

unmasked face recognition,

used statistical procedure

technique, and performed

experiment using

MATLAB

Dataset: ORL, Own created

datasets

Accuracy: 72% (masked),

95% (unmarked)

• This method is used to minimize a

big dataset to a small dataset with all

the information

• PCA provided a poor recognition

rate for masked faces than

unmasked faces

• Concluded that this method is only

better for normal face recognition

[25] Masked face recognition

using Face-eye-based

method

Dataset: SMFRD, RMFRD

Accuracy: 95%

• Built the face mask dataset, used

both real and artificial masked face

dataset to train the model

[31] Masked face recognition

using deep learning and

LBP

Dataset: COMASK20,

Essex

Accuracy: 87%

(COMASK20), 98%

(Essex)

• This approach outperformed other

methods like Dlib and InsightFace,

25

Table 3.4 shows the summary of different works that have been done in the masked and unmasked

facial recognition system. It is noticed that research [15] shows the best accuracy for unmasked

facial recognition. It provided an accuracy of 99.63% for the LFW dataset. Whereas other research

such as [1, 12, 14, 16, 25, 31] provide better accuracy for masked face recognition.

3.4.1 Limitation of the Existing Work, Research Gaps, and our Contributions

We reviewed the previous related works that have been done in our research fields to get more

ideas. In the work of Schroff et al. [15] in 2015, the idea of the FaceNet model, a unified embedding

for unmasked face recognition has been widely used for facial recognition. This approach is based

on learning a Euclidean embedding per image using a deep convolution network. As a result, we

applied a similar embeddings technique in our Masked Facial Recognition (MFR) research. The

work [15] generated a large training model size and took a long time to train the model so we focus

to solve this issue in our work. The small model can run on mobile devices and is compatible with

a large server-side model.

Moreover, the researcher [13] did get better accuracy for masked face recognition using ResNet-

50, however, this method worked well for unmasked faces. They used the imbalanced data to train

the model which significantly reduced the accuracy of masked face recognition. We trained our

model using Inception ResNet V1, which is the combination of the Inception model and Residual

Network. So, we applied the balanced images per identity, performed face alignment to select only

the facial part, and removed the mislabeled images from each class. As a result, all these operations

helped to boost the accuracy significantly of our trained model.

Additionally, there are many systems that apply statistical procedures, Cosine, or Euclidean

techniques to perform face matching. Our research focused on the Euclidean distance function to

26

calculate the distance using face embeddings. Among all the Euclidean distance function methods,

our system received better accuracy for masked face recognition. The face embeddings are useful

for face matching as compared to other methods [13, 16, 25]. Although many works have been

done [26, 1, 13, 16, 25] in the past for Masked Facial Recognition, we proposed a system that

provides better accuracy for MFR and built a single system that can identify both masked and

unmasked faces. Also, we trained a small face recognition model which helped to increase the

recognition rate. Inception ResNet V1 [20] with training dataset is applied to train our MFR

(Masked Facial Recognition) model. The previous work utilized real face mask images for

training, whereas we generated artificial face mask images for our model training and received

better recognition accuracy. As compared to the previous approaches, we used balanced images

per class for model training. As a result, we received significantly high recognition accuracy even

if we utilized a small number (5, 10, and 15) of images per identity.

Similarly, we applied the artificial way to create a masked face dataset for training and testing

using the computer vision method. Additionally, we selected the fixed number of images per class

from the CASIA dataset, and for each selected image we augmented that image four times with a

different look for better diversity of training datasets. This means two masked faces and two

normal faces are generated from a single image using image processing. So, all these images are

applied for model training. Overall, all these approaches helped to improve the accuracy and

performance of our Masked Facial Recognition system. More information about our model,

approach, work, contributions, datasets, and results are presented in the methodology section.

27

CHAPTER 4

METHODOLOGY

This section describes the three main parts: the first is data collection and preparation, the second

is training the MFR (Masked Facial Recognition) model and its evaluation, and the last one is real-

time masked facial recognition using our trained model. All three steps are explained in detail

below.

4.1 Data Collection and Preparation

The overall process for data collection and preparation is shown in figure 4.1. The following

sections provide more information on data collection and preparation.

Figure 4.1 Data preparation process

4.1.1 Training Dataset

The first step of this research paper is to collect the dataset so that we can prepare the face images

to train the model. For that, we used the CASIA dataset [17] which has 10585 classes, and each

class has less than ten to more than one hundred images of the same person. The training images

of type PNG, JPG, and VMP are only taken for data preparation. We only required the facial part

of each image, however, the CASIA dataset has images with other attributes like hair, neck, and

shoulder. Therefore, image alignment is taken as the first step to crop only the facial part of the

28

images. As table 4.1.1 shows, we created three different datasets to train three different models

with different numbers of training images.

Table 4.1.1 Summary of our three datasets used for training

CASIA

Dataset
Class # Images

per class
Augmented

by
Masked

images per

class

Unmasked

images per

class

Total

Images

Dataset - 1 10,585 5 4 10 10 211,700
Dataset - 2 10,585 10 4 20 20 423,400
Dataset - 3 10,585 15 4 30 30 635,100

4.1.2 Face Alignment

Face alignment is a process of cropping the face part from images and the cropped image represents

the facial features. It is performed by using face detection. Face detection is the process of

identifying the face from the captured image or the specified image from the database. So here,

image alignment is carried out by using the SSD (Single Shot Detector) [10] face detection model.

There are various methods for face detection like MTCNN (Multi-Task Cascaded Convolutional

Neural Networks), Dlib, and OpenCV but we preferred the SSD method for image alignment since

it is faster and easy to implement. At first, it detected the face from each CASIA class then we

cropped the detected face part and saved it to the respective class folder. The margin of cropped

image is set to 20 in all four directions so that the cropped face would have all the facial characters

and fewer background images. Similarly, we resized all the images to [112,112,3] format where

the first two numbers (112) represent the height, and width respectively, and the last value 3

denotes the number of channels. Our training images have three channels Red, Green, and Blue

(RGB) format. As a result, image alignment allowed us to reduce the size of each image which

helped to improve the performance and accuracy of the training model. The sample images after

29

face alignment are shown in figure 4.1.2. Also, the source code for the face alignment is given in

section A.2.

Figure 4.1.2 Sample images after face alignment

4.1.3 Data Cleaning

The CASIA classes might include mislabeled images from other classes. For example, if the class

has faces that do not belong to that class, our aim is to remove those images which affect the

accuracy of the training model. The process is shown in figure 4.1.3. It is not possible to remove

mislabeled images from each folder by us, since it takes a lot of time. So, this is done by using

FaceNet pre-trained weights [29]. First, we selected the images one by one in the same class as the

target images, and the others are regarded as reference images. So, we get the 128-dimensions of

embeddings for the target image, and reference images by using the FaceNet model and then

calculated the average Euclidean distance between the target image and reference images. The

formula to calculate the Euclidean distance is shown in the equation below. If the average distance

surpasses the threshold value (0.8), then we removed that target image from the class. That means

we could say that the target image does not belong to this class. Additionally, if two faces are

similar, then their average Euclidean distance always should be near zero. We set the threshold

value of 0.8 to remove the outlier images.

30

Euclidean distance (d) = √(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2 + (𝑥3 − 𝑦3)
2 + ⋯ + (𝑥128 − 𝑦128)

2 (4-1)

Where x and y represent the embeddings of the target and reference images respectively. The size

of the embedding is 128 dimensions, so it starts with the 1st value and goes up to the 128th value

to calculate the Euclidean distance.

Figure 4.1.3 Process to calculate the distance between target and reference images

4.1.4 Create Masked Faces

The masked face datasets are created using a computer vision-based approach (Dlib). Dlib is useful

to locate the mask key position on the face using facial landmarks. It has 68 facial landmarks, and

the mouth is represented by points 48 to 68. So, these regions of interest (ROI) of the face are

replaced by a random mask temple out of 16 mask images to generate the masked face images.

Additionally, we resized the face mask template according to the size of mouth ROI, so it helped

to fix the mask perfectly on a face image. Additionally, all the mask templates are saved in PNG

files since it has four-channel, and the fourth channel is used to describe the transparency. We

applied sixteen mask templates, and a random mask is selected at a time. The mask template

images are shown in figure 4.1.4 (b). As a result, this approach helped to convert the CASIA

dataset to a masked face dataset to train our Masked Facial Recognition model. It is difficult to

31

collect the same person's images with a face mask and without a face mask, so this approach helps

to convert any existing face dataset to a masked face dataset. The process to create a masked face

dataset is shown in figure 4.1.4 (a).

Figure 4.1.4 (a) Process to create masked face dataset

32

Figure 4.1.4 (b) Mask template images

4.1.5 Create Balance Dataset

The CASIA dataset has many classes, and each class has less than ten to more than 100 images of

the same identity. Data imbalance is a big issue since it affects the accuracy of the trained model

[13]. So, to solve this problem we selected an equal number of images for each class as shown in

table 4.1.1. We randomly took a fixed number of images (5, 10, and 15) from each class at a time

and created more images of the same individual with different looks using the image processing

method. For each selected image we augmented each image four times. That means two masked

faces and two normal faces are generated from a single image. This process utilizes random masks,

random crops, random blur, random angles, random flip, and random brightness methods. All these

operations were performed by using OpenCV [9] and Dlib [8]. So, this method helps to create a

balanced number of images for each class. As a result, we used these balanced images to train our

model. Table 4.1.1 shows how we created three different datasets to train three models with

different sizes of training images. Also, it shows the number of masked and unmasked images that

we used for each training model. Figure 4.4.5 shows the sample augmented images used for

33

training. Similarly, the image processing and images argumentation source code is given in section

A.3.

Figure 4.1.5 Sample augmented images from induvial selected images

4.2 Model Training and Evaluation

All the information on training details, training parameters, model training for masked face

recognition, model evaluation, model improvement, and architecture of Inception Resnet V1 are

discussed in the following section.

4.2.1 Training and Testing Details

Our model training environment includes TensorFlow 2.1, Python 3.7, OpenCV 4.5, Matplotlib

3.5, Dlib 19.23, and NumPy 1.21 of versions. The training images of size 112*112 height and

34

width with 3 channels are used. The smaller image size can make the inference much faster to

perform real-time masked face recognition, so a small image size is adopted for training. In

addition, a previously prepared CASIA dataset was used for training the model. The three training

datasets information is presented in table 4.1.1. We selected a fixed number of images per class,

and for each face image, we created four different images. Two were masked images with

distinctive looks, and two were different looks without a face mask as shown in figure 4.1.5.

Overall, two masked and two unmasked images are applied per image for model training. The real-

world LFW [18] dataset was tested to evaluate the model for unmasked faces using the same and

different face pairs. On the other hand, we created masked faces using Microsoft celebrity face

images and applied those images to evaluate the model for masked faces. The images that the

trained model never learned are applied to test its performance. The testing datasets information is

presented in table 4.2.1.

Table 4.2.1 Summary of masked and unmarked datasets used for model evaluation

Dataset Type # Class # Images # Images

per class

Testing pair

LFW Real-world

unmasked

images

5,749 64,973 11.3 Same face and different

face pairs - 6,000

Microsoft Celebrity

face database

Artificial masked

images
85,744 85,744 1 2,000

4.2.2 Model Training

In the first step of figure 4.2.2, the training dataset includes both masked and unmasked images.

For unmasked faces, whole facial features are used for model training, whereas eyes, eyebrows,

and forehead areas are utilized for masked faces to extract the features. Masked faces occluded the

nose, mouth, and cheeks areas so uncovered areas would only be used for feature extraction.

Moreover, Inception ResNet V1 [20] with a training dataset is applied to train the MFR (Masked

35

Facial Recognition) model. Inception ResNet V1 has many CNN (Convolutional Neural Network)

layers to perform massive calculations and store all the image features. More information about

our AI model is given in the following septate section. Moreover, training loops include the

different epoch operations, where we set the epoch size and perform the training loop repeatedly

to optimize the model. While training the model, in each epoch the accuracy and loss function are

calculated using testing images and the Cross-Entropy function, respectively. The value of the

epoch is set as a fixed number, and, in each epoch, we optimized the training model weights

repeatedly and calculated the accuracy and loss function of the training model. It is noted that the

accuracy was increased with the increase of epoch size in training. Furthermore, accuracy is

calculated by using a total number of correct predictions divided by a total number of predictions.

Also, the average loss of the training model is calculated using Cross-Entropy and which is the

difference between output probabilities and answers. While training the model, it was always

expected to get higher accuracy and lower loss value. The process involved in the modeling

training is shown in figure 4.2.2. The formula to calculate the accuracy and loss function is shown

in the equations below.

Accuracy =
Number of correct predictions

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (4-2)

The loss (Cross-Entropy) = - ∑ 𝑦𝑖,𝑐
𝑀
𝑐=1 log(𝑝𝑖,𝑐) (4-3)

Where y and p represent the label and prediction, respectively.

If the prediction is equal to the answer, then the face matching is correct, and we increase the

correct prediction by one. As a result, we used this value to calculate the accuracy of the trained

model in each epoch. Even though we get the prediction probability from our trained model, we

do not utilize that for face matching. Instead of predictions, we used embeddings for face matching.

36

Our trained model generated the embeddings for any input images so that would be applied to

calculate the Euclidean distance. Embedding is a facial feature that is transformed into a sequence

of numbers, and these are used to describe facial characteristics. We can generate embeddings of

lengths 64, 128, 256, or 512, but we used 128-d embeddings size to represent the facial feature.

The smaller size of the embedding might not include all the facial features, whereas the larger size

will take more computation time. So, 128-d embeddings are used to represent the facial feature in

our research. It is expected to run the training loop until it reaches the set epoch value, and we

would expect to get higher accuracy and less loss function. After the training epoch is done, the

fixed model is saved in a local folder, and we utilize that fixed model to perform real-time Masked

Facial Recognition. The training model will be saved in the PB (Protocol Buffer) file, and it

includes prediction and embeddings.

Figure 4.2.2 Model training process for MFR

37

4.2.3 Model Improvement

In each epoch, we optimized our training model by providing the same images with a distinctive

look. So, it is done by applying random masks, random crops, random blur, random angles, random

flip, and random brightness using image processing and computer vision approach. Also, our

training dataset has more than 10,000 unique classes with different ages, races, and genders so we

passed all those images which helped to learn our model from diverse face images. Additionally,

we performed image alignment for both training and testing images which allowed us to reduce

the size of each image and only included the facial part. That helped to improve the performance

and accuracy of the training model. Also, the removal of the mislabeled image from each class

helped to maximize the accuracy of the system since our model will not learn from the wrong

images. From the research [13], we comprehended that the imbalanced images affect the accuracy

of the training model, so we selected the balance number of images from each class for our three

different trained models. Furthermore, we applied the smaller batch size (96, or 192 images per

iteration) which improved the training time of our model. As a result, our three different models

only took on average 30 hours to get the maximum accuracy. Similarly, we utilized small training

images with height and width 112*112 respectively and reduced the filter size by half so that

helped to reduce the size of our training model. Small training models are important since it takes

less time for inference and increases the performance of recognition. Also, the small model can

run on mobile devices and is compatible with a larger server-side model.

4.2.4 Architecture of our AI Model

4.2.4.1 Why this architecture

The normal classification model only outputs the probabilities of trained class numbers, and it is

impossible to train different faces all over the world. The very deep convolutional networks

38

(Inception model) have been applied for facial recognition systems in the past and it has shown

better performance and low computational cost [21]. The combination of Inception architecture

[22] and residual network [23] (Inception ResNet V1) provides better recognition performance

since training with residual connections accelerates the training of Inception networks. Therefore,

Inception ResNet V1 architecture is proposed to use, and this model provides the embeddings

which are applied to perform face matching. The block diagram of the Inception model and

Residual network are shown in figures 4.2.4.1 (a), and 4.2.4.1 (b) respectively.

Figure 4.2.4.1 (a) Inception module

From figure 4.2.4.1 (a), the Inception module is the combination of 1*1, 3*3, and 5*5 convolutions

layers and 3*3 max pooling. Here, 1*1 convolutions are applied to modify the channel numbers,

and the final goal is to decrease the model weights. The smaller model means fewer calculations

and makes the inference much faster.

39

Figure 4.2.4.1 (b) Residual learning: a building block

From figure 4.2.4.1 (a), the Residual learning includes the weights of size 3*3, and filter size 64.

The activation function, relu is applied for calculation. More information on the architecture is

provided in the following section.

4.2.4.2 Architecture of Inception ResNet V1

The prepared input images are fed to the AI (Artificial Intelligence) model for model training.

Inception ResNet V1 has weight layers, CNN (Convolutional Neural Network) layers, average

pooling, stem, reduction, fully connection (FC), and softmax. Different parameters are applied to

Inception ResNet architecture such as filter size of 32, 64, 80, 192, or 256, 3*3 kernel size, the

activation function (ReLU), batch size of 32, 96, or 192, the learning rate is 0.0005, optimization

method (Adam), strides, fix epoch number, model size, and balance images from every 10585

classes. Batch size is helpful to improve the training performance. We can’t feed all the training

images at one time, so we pass the fixed batch number of images for each iteration. The total

number of training images divided by batch size is the total number of iterations per epoch. The

training parameters for our three training models are presented in table 4.2.4.2.

40

Table 4.2.4.2 Parameters for three different training models

Parameters Values

Model 1 Model 2 Model 3

Feature number 128-d 128-d 128-d

Learning rate 0.005 0.005 0.005

Maximum epoch 38 50 61

Batch size 192 96 96

Loss Cross Entropy Cross Entropy Cross Entropy

Optimizer Adam Adam Adam

Model shape [112,112,3] [112,112,3] [112,112,3]

Masked images 317,550 211,700 105,850

Unmasked images 317,550 211,700 105,850

Figure 4.2.4.2 Architecture of Inception ResNet V1 model

41

Inception ResNet [20] is a combination of the Inception and ResNet models where it has ten

different steps to train the model. As figure 4.2.1 shows in the first step, the input images are passed

through the stem. The stem has five 3*3 convolutions of different filter sizes 32, 64, 80, 192, and

256, respectively. It has one 3*3 MaxPool of stride 2. Also, it includes 1*1 Convolution. The 1*1

is applied to modify the channel numbers, and the final goal is to decrease the model weights. The

smaller model means fewer calculations and makes the inference much faster. The weights are

calculated by multiplying kernel size, filter size, and the number of channels. Similarly, the second

step is 5 times Inception ResNet-A. It contains three 3*3 convolutions of filter size 32, and four

1*1 convolutions of filter size 32, and 256. Moreover, the third step is Reduction-A which includes

the convolutions of 1*1, 3*3, and MaxPool of size 3*3. Additionally, it is followed by 10 times of

Inception ResNet-B, Reduction-B, 5 times Inception ResNet-C, Average Pooling, Dropout, and

the last one is Softmax. Average Pooling computes the average value of each feature map and

returns that value. The embeddings of size 128 dimensions are received from Dropout once the

normalization is done on it. Dropouts passed through the Softmax to get the prediction value. The

value of prediction will be 10585 since our CASIA dataset has that number of classes. We get the

prediction value from Softmax whose output ranges from 0 to 1. Softmax can make the bigger

number become a larger ratio and make the smaller numbers even smaller. As a result, our trained

model includes embeddings and predictions. The source code of the Inception ResNet V1 model

is given in section A.1.

4.2.4.3 How to generate embeddings

The face embeddings are the numeric values of facial features which are used to recognize the

person by calculating the Euclidean distance between the target and reference images. Moreover,

we can generate embeddings of lengths 64, 128, 256, or 512, but we used 128-d embeddings size

42

to represent the facial feature. The smaller size of the embedding might not include all the facial

features, whereas the larger size will take more computation time. So, 128-d embeddings are used

to represent the facial feature in our research. In our model, the embeddings of size 128-d are

received from Dropout once the normalization is done on it. The process to get the embeddings is

shown in figure 4.2.4.3.

Figure 4.2.4.3 Process to get the embeddings

The source code to generate embeddings is given below:

prelogits, _ = inception_resnet_v1(tf_input, tf_keep_prob, phase_train=tf_phase_train,

bottleneck_layer_size=embed_length, weight_decay=0.0, reuse=None)

prelogits = tf.identity(prelogits,name='prelogits')

embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')

4.2.4.4 How to use embeddings to perform face matching

First, calculate the embeddings of input images and face database. Then compute the Euclidean

distances between the input embeddings with all the face database embeddings. As shown in figure

4.2.4.4, the input image is the target image, and the face database is the reference image. Similarly,

we calculated the Euclidian distance between target images with each reference image as shown

in figure 4.2.4.4 using face embeddings. Among all the distances, we find out the smallest distance,

and if the smallest distance is even smaller than the threshold value (0.8), then that would be an

answer. Therefore, the smallest Euclidean distance is compared with the threshold value to make

43

the final face matching decision. The formula to calculate the Euclidean distance is shown in the

equation below.

Euclidean distance (d) = √(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2 + (𝑥3 − 𝑦3)
2 + ⋯ + (𝑥128 − 𝑦128)

2 (4-4)

Figure 4.2.4.4 Calculate Euclidean distance between target and reference images

4.2.5 Model Evaluation

We used LFW face images and artificial masked faces that the model never learned to evaluate its

real ability. LFW images are mainly used for unmasked faces, whereas artificial masked images

are utilized for the evaluation of masked images. The Microsoft celebrity face database is utilized

to generate masked faces using the computer vision approach. The summary of the testing dataset

is provided in table 4.2.1. As a result, we prepared both types of masked and unmasked faces to

evaluate our trained model.

4.2.5.1 Unmasked face evaluation flowchart

As shown in figure 4.2.5.1, we selected 3,000 same face pairs and 3,000 different face pairs from

the LFW dataset. Overall, 6000 face pairs are used to evaluate the model. Our trained model named

“Fixed model” is applied to calculate the embedding of each pair. Then the Euclidean distance is

calculated using those embeddings pairs. Additionally, for the same face pair, the distance is

44

compared to the threshold value (0.8), and if only the distance is less than the threshold value then

the counter of correct prediction is increased by one. On the other hand, for different face pairs,

the calculated distance is compared to the threshold value (0.8), and if only the distance is greater

than equal to the threshold value then the counter of correct prediction is increased by one.

Similarly, the accuracy is computed by diving the total number of correct predictions by a total

number of face pairs (6,000). In this way, we evaluated our trained model using unmasked face

images. The overall flowchart of unmasked face evaluation is shown in figure 4.2.5.1.

Figure 4.2.5.1 Unmasked face evaluation flowchart

4.2.5.2 Masked face evaluation flowchart

As shown in figure 4.2.5.2 (b), we selected artificial masked images (tar_images) and a face

database (ref_images) to evaluate our model. We created artificial masked faces using a computer

vision approach as mentioned in section 4.1.4. For both artificial masked faces and real-world face

databases, we used the Microsoft celebrity face database to create our dataset. More information

45

about the testing data is provided in table 4.2.1. Moreover, our trained model named “Fixed model”

is utilized to generate the embedding for both tar_images and ref_images. Once we get the target

embeddings (tar_embeddings) and reference embeddings (ref_embeddings) for both target and

reference images. The Euclidean distances are calculated for each tar_embeddings with all the

ref_embeddings as shown in figure 4.2.5.2 (a). Among all the distances, we find out the smallest

distance, and if the smallest distance is even smaller than the threshold value (0.8), and the name

of the target face is equal to the name of the reference face, then the counter of correct prediction

is increased by one. Similarly, all the target images are compared with the reference images by

calculating the Euclidean distance. Additionally, the accuracy is computed by diving the total

number of correct predictions by total number of predictions (2,000). We received the accuracy of

our trained model at around 97% for masked face evaluation. In this way, we evaluated our trained

model using masked faces. The overall flowchart of masked face evaluation is shown in figure

4.2.5.2 (b).

Figure 4.2.5.2 (a) Calculate distance between one tar_embedding to many ref_embedding

46

Figure 4.2.5.2 (b) Unmasked face evaluation flowchart

4.2.5.3 Accuracy comparison with FaceNet model using the same dataset

We passed the same masked faces for both models: one is our trained model (Fixed model), and

another is FaceNet [15] pre-trained model. It was studied that our model worked really well for

masked face images, however, the FaceNet model did not work well for masked faces. Table

4.2.5.3 shows the accuracy comparisons between the three models.

FaceNet model is a prominent model for normal face recognition (99% accuracy), however, this

trained model did not work well for masked face recognition. As we can see from table 4.2.5.3,

our trained model and FaceNet model used the same training dataset, testing dataset and same

architecture, but our model achieved around 97% accuracy for Masked Face Recognition (MFR).

So, we can say that our model worked better for masked face recognition.

47

Table 4.2.5.3 Accuracy comparisons between the three different models

Model name Accuracy
(Threshold – 0.8)

Testing dataset Training

dataset
Architecture

Fixed model (our) 96.9% Artificial masked face CASIA Inception ResNet

V1

20180408-102900

[15]

45.11% Artificial masked face CASIA Inception ResNet

V1

20180402-114759

[15]

60.49% Artificial masked face VGGFace2 Inception ResNet

V1

4.3 Real-Time Masked Facial Recognition using our Trained Model

First, as shown in figure 4.3, our system loads all the face database images and computes the

embeddings of each face image using a Fixed model. The Fixed model is our trained model for

MFR. We performed the face alignment for the face database also so that it removed the

unnecessary part from the face images. This makes the system ready to perform the facial matching

once the system reads the input images. We utilized the Microsoft celebrity face images that our

model never learned for the face database. Our face image was also included in the face database

for the experiment. The Microsoft celebrity images consist of a total of 85744 pictures but in our

experiment, we only used 2000 images for testing purposes. All those images were real-world

unmasked faces.

Secondly, the input image is read from the real-time video streaming using a laptop camera and

we used the high-resolution input images to achieve better performance. The SSD (Single Shot

Detector) model detected the face and face mask of each input frame. Then the facial part is

cropped from the image frame and resized to the [112, 112, 3] format. Additionally, our trained

model, the Fixed model is applied to find out the embeddings of an input image. Embeddings

https://drive.google.com/open?id=1R77HmFADxe87GmoLwzfgMu_HY0IhcyBz
https://drive.google.com/open?id=1EXPBSXwTaqrSC0OhUdXNmKSh9qJUQ55-

48

represent the facial feature in the numeric format of size 128- dimensions. And these embeddings

are used to calculate the Euclidean distance.

Finally, the Euclidean distances are calculated by using the embedding of the input face with

preloaded embeddings of all the face databases. This is a one-to-many calculation as shown in

figure 4.2.5.2 (b). Preloading the embedding to the system makes facial recognition much faster

since the input image does not need to wait to calculate the Euclidean distance. Moreover, the

distance should be around zero if two images belong to the same person. Among all the distances,

we find out the smallest distance, and if the smallest distance is even smaller than the threshold

value (0.8), then that would be an answer. Therefore, the smallest Euclidean distance is compared

with the threshold value to make the final facial recognition decision. If the distance is less than

the threshold value (face matched), then the name of the person will be printed on the input image

frame, otherwise, an unknown message is printed. Similarly, if the person is wearing a face mask,

this system shows the “Mask” message, else “No Mask” message is displayed. The overall process

of real-time Masked Facial Recognition (MFR) is shown in figure 4.3. Hence in this way, we built

a single system that can recognize both masked and unmasked faces with high accuracy. This has

indicated the effectiveness and suitability of the proposed method. The result of real-time masked

facial recognition is shown in figure 5.7. Also, the source code for real-time masked face recognition

is given in section A.5.

49

Figure 4.3 Real-time masked facial recognition process

50

CHAPTER 5

RESULTS AND DISCUSSION

This chapter describes the output of the experiments carried out on MFR (Masked Facial

Recognition). It presents an in-depth explanation of various experiments meant to assess the

effectiveness of our solution. Also, it highlights additional information about our experimental

setup, training, and testing dataset, comparisons of our approach against other methods, limitations

and advantages of our approach, performance metric, training parameters, and performance

evaluation for different setups of environments.

5.1 Experiment Setup

Our experiments were carried out on a computer with an Intel Core i7 vPro processor, 16 GB of

RAM, 500 GB SSD (Solid-State Drive) Hard disk, Windows 10 OS (operating system), and Nvidia

GPU (Graphics processing units) card. Additionally, we used Python as a programming language,

and tools such as OpenCV, TensorFlow, CUDA, NumPy, and Matplotlib for image processing and

model training, whereas Jupyter and PyCharm were utilized as an IDE (Integrated Development

Environment). Furthermore, TensorFlow is significantly important to perform the massive math

calculations for building the model, and GPU helps to do the operation much faster. GPU has

thousands of cores which can finish many calculations faster than CPU which normally has 8

cores. TensorFlow offers many models and relative functions and helps to communicate with GPU

to do the task. Whereas OpenCV has rich image processing functions like reading, saving, resizing,

displaying, cropping, transforming, and changing the color format of the images so it was applied

for data preparation, image processing, and model training for Masked Facial Recognition (MFR).

51

5.2 Dataset

We had to have both masked and unmasked face images to train our model. CASIA [17] datasets

are applied for unmasked images after image preprocessing, and we generated artificial masked

images from the CASIA dataset using the mask augmentation method (Dlib). LFW (Labeled Faces

in the Wild) [18] datasets with artificial masked faces were used for testing. We created artificial

test masked images from the Microsoft face database. The process to create masked faces is given

in section 4.1.4. All the datasets are open-source images that are easily accessible online. The

training and testing dataset information is given in tables 4.1.1, and 4.2.1 respectively. The training

and testing faces are used in size [112, 112, 3] format. Moreover, we implemented the image

processing method to make the same face images with different looks that utilized random crops,

random noise, random angle, random flip, and random brightness methods. Also, we performed

face alignment, and data cleaning to make the dataset ready for the training. The sample training

and testing faces are shown in figures 5.2 (a), and 5.2 (b) respectively.

52

Figure 5.2 (a) Sample masked and unmasked training images

Figure 5.2 (b) Sample masked and unmasked testing images

53

5.3 Performance Evaluation of our Trained models

We trained the three different models with five, ten, and fifteen training images from each class

and augmented each image four times to create more images with different looks. The training

parameters that we used and the performance evaluation of the three different trained models are

presented in table 5.3. More information on training and testing datasets is given in tables 4.1.1,

and 4.2.1 respectively.

Table 5.3 Performance evaluation of three different models

Table 5.3 shows that the first trained model selected only 15*4 images from each class and this

model received the best accuracy of 96.9% in the 34th epoch. Similarly, the second trained model

received only 10*4 images for each class, and the third trained model selected only 5*4 images

per class and obtained the best accuracy of 96.6% and 96.9% respectively. We trained the model

with the imbalanced and balanced dataset, and it is studied that the significant improvement in the

accuracy is with the balanced dataset, so we applied an equal number of training images for each

class of our training model.

54

Moreover, the Inception ResNet V1 deep learning model is applied for all three training models.

Each input face is augmented four times to generate more training images and Nvidia GPU

(Graphics Processing Units) made the training process much faster since all the trained models

received the best accuracy in 30 hours on average. It is observed that even if we used a smaller

number of training images, we have achieved significantly better testing accuracy for the LFW

dataset. It is because we focused the training image more on face alignment, removed mislabeled

images, and took the balanced images per class which helped to improve the accuracy of our

trained model. Additionally, if we select a smaller number of training images, it would also be

easy to train the AI (Artificial Intelligence) model with normal GPU cards such as GTX 1660.

5.4 Evaluation Metrix

To analyze the performance of the trained models, we used the following metrics:

• Accuracy: Accuracy is calculated by using a total number of correct predictions divided

by a total number of predictions.

• The loss: The average loss of the training model is calculated using Cross-Entropy and

which is the difference between output probabilities and answers.

 Accuracy =
Number of correct predictions

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (5-1)

The loss (Cross-Entropy) = - ∑ 𝑦𝑖,𝑐
𝑀
𝑐=1 log(𝑝𝑖,𝑐) (5-2)

Where y and p represent the label and prediction, respectively.

55

5.5 Comparison of Current Approach Against Other Methods

Table 5.5 shows the comparison of our work with other different methods. Based on these results,

we studied that our MFR (Masked Facial Recognition) method significantly outperforms the five

other models. Additionally, we achieved an accuracy of 1.9 percent higher than the second-best

performing model (Attention-based) and around 49 percent more than the worst performing model

(ResNet-50) for masked and unmasked facial recognition. Our purposed model (Inception ResNet

V1) is the combination of Inception architecture [22] and residual network [23] and it provides

better recognition performance since training with residual connections accelerates the training of

Inception networks. This has indicated the effectiveness and suitability of the proposed method.

Table 5.5 Comparison of current approach against other methods

5.6 Limitations and Advantages

The limitations of our MFR system are the input masked face should have at least eyes and

forehead parts visible for recognition, it might not work for more tilted masked images toward left

or right and setting the model training environment might be challenging since it requires GPU

setup, at least i5 processor, 16 GB of RAM, and 500 GB SSD (Single Shot Detector) Hard disk

for better performance. Also, our approach required a lot of work for data collection and

preparation, and it could be difficult to get masked faces for more than 10,000 identities to train

our model.

56

The advantages of our MFR system are it supports multiple mask types for face recognition, and

it works for diverse types of faces, ages, and genders. Also, our model supports both single and

multi-face images for recognition and can convert any face datasets to masked face datasets. From

our model evaluation, it works better for both masked and unmasked faces so the probability of

giving the right recognition decision is around 97%. Our single system can identify faces with and

without face masks. We improved the model training time and decreased the size of the trained

model as compared to other methods [12, 13, 15]. So, all these advantages indicate the

effectiveness and suitability of the proposed method for masked facial recognition.

5.7 Result Analysis

We have created a system that can recognize both masked and unmasked face images. Our trained

model generates the embeddings for any given input image, and that embedding is applied for face

matching. Embedding represents the facial feature in the numeric format, and it has the size of

128-dimensions. In our research, we implemented a new augmented way to create a masked face

dataset and performed the image alignment and data cleaning using Dlib, OpenCV, and SSD

(Single Shot Detector) model. Similarly, we applied the balanced face images from each class and

received significantly better results than the model trained with imbalanced images. Balanced

images include an equal number of masked and unmasked face images. LFW and face mask

datasets were tested for evaluation, and they showed superiority over any contemporary models

[1, 13, 16, 25, 26]. Our evaluation model included the LFW dataset and artificial masked images

which were not used to learn the training model. LFW images after preprocessing are applied for

unmasked face evaluation, while artificial masked images are used for masked face evaluation.

We generated artificial masked images from celebrity images from the Microsoft face database. It

57

has more than 8500 unique faces. The training and testing dataset information is given in tables

4.1.1, and 4.2.1 respectively.

Furthermore, we verified the robustness of our purposed model for masked and unmasked facial

recognition under various conditions like gender, skin tone, age, types of masks, etc. As a result,

we achieved the MFR (Masked Facial Recognition) of around 97% accuracy for our three different

trained models. The training and testing faces are used in size [112, 112, 3] format. The

effectiveness of our trained model is evaluated for both masked and unmasked faces. The eyes,

eyebrows, and forehead areas are utilized for masked faces to extract the facial feature, whereas

the whole face is used for unmasked faces. The accuracy and loss function are calculated to test

the model while training it. Also, we compared the accuracy by using the same masked faces for

our model and pre-trained FaceNet model in section 4.2.5.3. Our model worked really well for

masked faces as compared to the FaceNet model. Additionally, we built a single system that can

identify both masked and unmasked faces, and also it can recognize more than one face at a time.

On top of that, we trained the small training model of a size of around 96 MB for our three different

trained models which provided a better recognition rate. We applied the small training image size,

performed the face alignment, and used the smaller filter size which helped to minimize the size

of our training model. In model training, 1*1 convolutions are applied to modify the channel

numbers, and the final goal was to decrease the model weights. The smaller model means fewer

calculations and makes the inference much faster. Similarly, we speed up our training model by

dividing the training images into different batch sizes and also GPU helped to do the operation

much faster. As a result, we train three different models in 30 hours on average time. The results

of our real-time masked face recognition are shown in figure 5.7.

58

Figure 5.7 Real-time masked facial recognition results

59

CHAPTER 6

CONCLUSION

6.1 Conclusions

In conclusion, this research paper has presented a solution to identify the masked and unmasked

faces accurately. The proposed approach provided around 97% accuracy for MFR (Masked Facial

Recognition). Furthermore, the masked face dataset was created using a computer vision

technique. CASIA datasets were used to train the model after performing image preparation and

the LFW (Labeled Faces in the Wild) dataset and artificial masked faces were tested to evaluate

the performance of our model. Also, the performance of three different models has been studied

for MFR. Additionally, we verified the robustness of our purposed model for masked and

unmasked facial recognition under various conditions like gender, skin tone, age, types of masks,

etc. As a result, the purposed solution could be seamlessly integrated for both masked and

unmasked face recognition and detection systems that are designed for safety and security

verification purposes without any challenges.

6.2 Future work

In the future, we intend to use the real-time mask face dataset since some of our generated masked

images do not perfectly fit the rotated faces, so using the real-world masked images could increase

the recognition accuracy of the system. Also, it is expected to increase the number of balanced

images for each class to train the model for better quality and diversity (we applied a maximum of

60 faces per class in our experiment). Additionally, we would try to build a small facial recognition

model which could improve the overall recognition rate of the system.

60

APPENDICES A

A.1 Inception ResNet V1 Architecture Python Code

#Inception-ResNet-V1 Architecture

def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):

 """Builds the 35x35 resnet block."""

 with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):

 with tf.variable_scope('Branch_0'):

 tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')

 with tf.variable_scope('Branch_1'):

 tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')

 tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')

 with tf.variable_scope('Branch_2'):

 tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')

 tower_conv2_1 = slim.conv2d(tower_conv2_0, 32, 3, scope='Conv2d_0b_3x3')

 tower_conv2_2 = slim.conv2d(tower_conv2_1, 32, 3, scope='Conv2d_0c_3x3')

 mixed = tf.concat([tower_conv, tower_conv1_1, tower_conv2_2], 3)

 up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,

 activation_fn=None, scope='Conv2d_1x1')

 net += scale * up

 if activation_fn:

 net = activation_fn(net)

 return net

Inception-Resnet-B

def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):

61

 """Builds the 17x17 resnet block."""

 with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):

 with tf.variable_scope('Branch_0'):

 tower_conv = slim.conv2d(net, 128, 1, scope='Conv2d_1x1')

 with tf.variable_scope('Branch_1'):

 tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')

 tower_conv1_1 = slim.conv2d(tower_conv1_0, 128, [1, 7],

 scope='Conv2d_0b_1x7')

 tower_conv1_2 = slim.conv2d(tower_conv1_1, 128, [7, 1],

 scope='Conv2d_0c_7x1')

 mixed = tf.concat([tower_conv, tower_conv1_2], 3)

 up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,

 activation_fn=None, scope='Conv2d_1x1')

 net += scale * up

 if activation_fn:

 net = activation_fn(net)

 return net

Inception-Resnet-C

def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):

 """Builds the 8x8 resnet block."""

 with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):

 with tf.variable_scope('Branch_0'):

 tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')

 with tf.variable_scope('Branch_1'):

 tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')

62

 tower_conv1_1 = slim.conv2d(tower_conv1_0, 192, [1, 3],

 scope='Conv2d_0b_1x3')

 tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [3, 1],

 scope='Conv2d_0c_3x1')

 mixed = tf.concat([tower_conv, tower_conv1_2], 3)

 up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,

 activation_fn=None, scope='Conv2d_1x1')

 net += scale * up

 if activation_fn:

 net = activation_fn(net)

 return net

def reduction_a(net, k, l, m, n):

 with tf.variable_scope('Branch_0'):

 tower_conv = slim.conv2d(net, n, 3, stride=2, padding='VALID',

 scope='Conv2d_1a_3x3')

 with tf.variable_scope('Branch_1'):

 tower_conv1_0 = slim.conv2d(net, k, 1, scope='Conv2d_0a_1x1')

 tower_conv1_1 = slim.conv2d(tower_conv1_0, l, 3,

 scope='Conv2d_0b_3x3')

 tower_conv1_2 = slim.conv2d(tower_conv1_1, m, 3,

 stride=2, padding='VALID',

 scope='Conv2d_1a_3x3')

 with tf.variable_scope('Branch_2'):

 tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',

 scope='MaxPool_1a_3x3')

63

 net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3)

 return net

def reduction_b(net):

 with tf.variable_scope('Branch_0'):

 tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')

 tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2,

 padding='VALID', scope='Conv2d_1a_3x3')

 with tf.variable_scope('Branch_1'):

 tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')

 tower_conv1_1 = slim.conv2d(tower_conv1, 256, 3, stride=2,

 padding='VALID', scope='Conv2d_1a_3x3')

 with tf.variable_scope('Branch_2'):

 tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')

 tower_conv2_1 = slim.conv2d(tower_conv2, 256, 3,

 scope='Conv2d_0b_3x3')

 tower_conv2_2 = slim.conv2d(tower_conv2_1, 256, 3, stride=2,

 padding='VALID', scope='Conv2d_1a_3x3')

 with tf.variable_scope('Branch_3'):

 tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',

 scope='MaxPool_1a_3x3')

 net = tf.concat([tower_conv_1, tower_conv1_1,

 tower_conv2_2, tower_pool], 3)

 return net

def inference(images, keep_probability, phase_train=True,

 bottleneck_layer_size=128, weight_decay=0.0, reuse=None):

64

 batch_norm_params = {

 # Decay for the moving averages.

 'decay': 0.995,

 # epsilon to prevent 0s in variance.

 'epsilon': 0.001,

 # force in-place updates of mean and variance estimates

 'updates_collections': None,

 # Moving averages ends up in the trainable variables collection

 'variables_collections': [tf.GraphKeys.TRAINABLE_VARIABLES],

 }

 with slim.arg_scope([slim.conv2d, slim.fully_connected],

 weights_initializer=slim.initializers.xavier_initializer(),

 weights_regularizer=slim.l2_regularizer(weight_decay),

 normalizer_fn=slim.batch_norm,

 normalizer_params=batch_norm_params):

 return inception_resnet_v1(images, is_training=phase_train,

 dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size,

reuse=reuse)

def inception_resnet_v1(inputs, is_training=True,

 dropout_keep_prob=0.8,

 bottleneck_layer_size=128,

 reuse=None,

 scope='InceptionResnetV1'):

 end_points = {}

65

 with tf.variable_scope(scope, 'InceptionResnetV1', [inputs], reuse=reuse):

 with slim.arg_scope([slim.batch_norm, slim.dropout],

 is_training=is_training):

 with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],

 stride=1, padding='SAME'):

 # 149 x 149 x 32

 net = slim.conv2d(inputs, 32, 3, stride=2, padding='VALID',

 scope='Conv2d_1a_3x3')

 end_points['Conv2d_1a_3x3'] = net

 # 147 x 147 x 32

 net = slim.conv2d(net, 32, 3, padding='VALID',

 scope='Conv2d_2a_3x3')

 end_points['Conv2d_2a_3x3'] = net

 # 147 x 147 x 64

 net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')

 end_points['Conv2d_2b_3x3'] = net

 # 73 x 73 x 64

 net = slim.max_pool2d(net, 3, stride=2, padding='VALID',

 scope='MaxPool_3a_3x3')

 end_points['MaxPool_3a_3x3'] = net

 # 73 x 73 x 80

 net = slim.conv2d(net, 80, 1, padding='VALID',

 scope='Conv2d_3b_1x1')

 end_points['Conv2d_3b_1x1'] = net

66

 # 71 x 71 x 192

 net = slim.conv2d(net, 192, 3, padding='VALID',

 scope='Conv2d_4a_3x3')

 end_points['Conv2d_4a_3x3'] = net

 # 35 x 35 x 256

 net = slim.conv2d(net, 256, 3, stride=2, padding='VALID',

 scope='Conv2d_4b_3x3')

 end_points['Conv2d_4b_3x3'] = net

 # 5 x Inception-resnet-A

 net = slim.repeat(net, 5, block35, scale=0.17)

 end_points['Mixed_5a'] = net

 # Reduction-A

 with tf.variable_scope('Mixed_6a'):

 net = reduction_a(net, 192, 192, 256, 384)

 end_points['Mixed_6a'] = net

 # 10 x Inception-Resnet-B

 net = slim.repeat(net, 10, block17, scale=0.10)

 end_points['Mixed_6b'] = net

 # Reduction-B

 with tf.variable_scope('Mixed_7a'):

 net = reduction_b(net)

 end_points['Mixed_7a'] = net

 # 5 x Inception-Resnet-C

 net = slim.repeat(net, 5, block8, scale=0.20)

 end_points['Mixed_8a'] = net

67

 net = block8(net, activation_fn=None)

 end_points['Mixed_8b'] = net

 with tf.variable_scope('Logits'):

 end_points['PrePool'] = net

 #pylint: disable=no-member

 net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID',

 scope='AvgPool_1a_8x8')

 net = slim.flatten(net)

 print("flatten shape:",net.shape)

 net = slim.dropout(net, dropout_keep_prob, is_training=is_training,

 scope='Dropout')

 end_points['PreLogitsFlatten'] = net

 net = slim.fully_connected(net, bottleneck_layer_size, activation_fn=None,

 scope='Bottleneck', reuse=False)

 return net, end_points

A.2 Image Alignment Python Code

#Image Alignment Source Code

import numpy as np

import os, time, cv2

import matplotlib.pyplot as plt

def model_restore_from_pb(pb_path, node_dict,GPU_ratio=None):

 tf_dict = dict()

 with tf.Graph().as_default():

 config = tf.ConfigProto(log_device_placement=True, #print out GPU or CPU is adopted

68

 allow_soft_placement=True, #allow tf to use alternative devices

)

 if GPU_ratio is None:

 config.gpu_options.allow_growth = True # The program can access as much resource as

possible

 else:

 config.gpu_options.per_process_gpu_memory_fraction = GPU_ratio # limit the GPU

resource

 sess = tf.Session(config=config)

 with gfile.FastGFile(pb_path, 'rb') as f:

 graph_def = tf.GraphDef()

 graph_def.ParseFromString(f.read())

 sess.graph.as_default()

 tf.import_graph_def(graph_def, name='') # import the calculation graph

 sess.run(tf.global_variables_initializer())

 for key, value in node_dict.items():

 try:

 node = sess.graph.get_tensor_by_name(value)

 tf_dict[key] = node

 except:

 print("node:{} does not exist in the graph")

 return sess, tf_dict

class FaceMaskDetection():

 def __init__(self,pb_path,margin=44,GPU_ratio=0.1):

 # ----var

 node_dict = {'input': 'data_1:0',

69

 'detection_bboxes': 'loc_branch_concat_1/concat:0',

 'detection_scores': 'cls_branch_concat_1/concat:0'}

 conf_thresh = 0.8

 iou_thresh = 0.7

 # ====anchors config

 feature_map_sizes = [[33, 33], [17, 17], [9, 9], [5, 5], [3, 3]]

 anchor_sizes = [[0.04, 0.056], [0.08, 0.11], [0.16, 0.22], [0.32, 0.45], [0.64, 0.72]]

 anchor_ratios = [[1, 0.62, 0.42]] * 5

 id2class = {0: 'Mask', 1: 'NoMask'}

 # ----model init

 # ====generate anchors

 anchors = self.generate_anchors(feature_map_sizes, anchor_sizes, anchor_ratios)

 # for inference , the batch size is 1, the model output shape is [1, N, 4],

 # so we expand dim for anchors to [1, anchor_num, 4]

 anchors_exp = np.expand_dims(anchors, axis=0)

 # ====model restore from pb file

 sess, tf_dict = model_restore_from_pb(pb_path, node_dict,GPU_ratio = GPU_ratio)

 tf_input = tf_dict['input']

 model_shape = tf_input.shape # [N,H,W,C]

 print("model_shape = ", model_shape)

 img_size = (tf_input.shape[2].value,tf_input.shape[1].value)

 detection_bboxes = tf_dict['detection_bboxes']

 detection_scores = tf_dict['detection_scores']

 # ----local var to global

 self.model_shape = model_shape

70

 self.img_size = img_size

 self.sess = sess

 self.tf_input = tf_input

 self.detection_bboxes = detection_bboxes

 self.detection_scores = detection_scores

 self.anchors_exp = anchors_exp

 self.conf_thresh = conf_thresh

 self.iou_thresh = iou_thresh

 self.id2class = id2class

 self.margin = margin

 def generate_anchors(self,feature_map_sizes, anchor_sizes, anchor_ratios, offset=0.5):

 '''

 generate anchors.

 :param feature_map_sizes: list of list, for example: [[40,40], [20,20]]

 :param anchor_sizes: list of list, for example: [[0.05, 0.075], [0.1, 0.15]]

 :param anchor_ratios: list of list, for example: [[1, 0.5], [1, 0.5]]

 :param offset: default to 0.5

 :return:

 '''

 anchor_bboxes = []

 for idx, feature_size in enumerate(feature_map_sizes):

 cx = (np.linspace(0, feature_size[0] - 1, feature_size[0]) + 0.5) / feature_size[0]

 cy = (np.linspace(0, feature_size[1] - 1, feature_size[1]) + 0.5) / feature_size[1]

 cx_grid, cy_grid = np.meshgrid(cx, cy)

 cx_grid_expend = np.expand_dims(cx_grid, axis=-1)

71

 cy_grid_expend = np.expand_dims(cy_grid, axis=-1)

 center = np.concatenate((cx_grid_expend, cy_grid_expend), axis=-1)

 num_anchors = len(anchor_sizes[idx]) + len(anchor_ratios[idx]) - 1

 center_tiled = np.tile(center, (1, 1, 2 * num_anchors))

 anchor_width_heights = []

 # different scales with the first aspect ratio

 for scale in anchor_sizes[idx]:

 ratio = anchor_ratios[idx][0] # select the first ratio

 width = scale * np.sqrt(ratio)

 height = scale / np.sqrt(ratio)

 anchor_width_heights.extend([-width / 2.0, -height / 2.0, width / 2.0, height / 2.0])

 # the first scale, with different aspect ratios (except the first one)

 for ratio in anchor_ratios[idx][1:]:

 s1 = anchor_sizes[idx][0] # select the first scale

 width = s1 * np.sqrt(ratio)

 height = s1 / np.sqrt(ratio)

 anchor_width_heights.extend([-width / 2.0, -height / 2.0, width / 2.0, height / 2.0])

 bbox_coords = center_tiled + np.array(anchor_width_heights)

 bbox_coords_reshape = bbox_coords.reshape((-1, 4))

 anchor_bboxes.append(bbox_coords_reshape)

 anchor_bboxes = np.concatenate(anchor_bboxes, axis=0)

 return anchor_bboxes

 def decode_bbox(self,anchors, raw_outputs, variances=[0.1, 0.1, 0.2, 0.2]):

 '''

 Decode the actual bbox according to the anchors.

72

 the anchor value order is:[xmin,ymin, xmax, ymax]

 :param anchors: numpy array with shape [batch, num_anchors, 4]

 :param raw_outputs: numpy array with the same shape with anchors

 :param variances: list of float, default=[0.1, 0.1, 0.2, 0.2]

 :return:

 '''

 anchor_centers_x = (anchors[:, :, 0:1] + anchors[:, :, 2:3]) / 2

 anchor_centers_y = (anchors[:, :, 1:2] + anchors[:, :, 3:]) / 2

 anchors_w = anchors[:, :, 2:3] - anchors[:, :, 0:1]

 anchors_h = anchors[:, :, 3:] - anchors[:, :, 1:2]

 raw_outputs_rescale = raw_outputs * np.array(variances)

 predict_center_x = raw_outputs_rescale[:, :, 0:1] * anchors_w + anchor_centers_x

 predict_center_y = raw_outputs_rescale[:, :, 1:2] * anchors_h + anchor_centers_y

 predict_w = np.exp(raw_outputs_rescale[:, :, 2:3]) * anchors_w

 predict_h = np.exp(raw_outputs_rescale[:, :, 3:]) * anchors_h

 predict_xmin = predict_center_x - predict_w / 2

 predict_ymin = predict_center_y - predict_h / 2

 predict_xmax = predict_center_x + predict_w / 2

 predict_ymax = predict_center_y + predict_h / 2

 predict_bbox = np.concatenate([predict_xmin, predict_ymin, predict_xmax, predict_ymax],

axis=-1)

 return predict_bbox

 def single_class_non_max_suppression(self,bboxes, confidences, conf_thresh=0.2,

iou_thresh=0.5, keep_top_k=-1):

 '''

 do nms on single class.

73

 Hint: for the specific class, given the bbox and its confidence,

 1) sort the bbox according to the confidence from top to down, we call this a set

 2) select the bbox with the highest confidence, remove it from set, and do IOU calculate

with the rest bbox

 3) remove the bbox whose IOU is higher than the iou_thresh from the set,

 4) loop step 2 and 3, util the set is empty.

 :param bboxes: numpy array of 2D, [num_bboxes, 4]

 :param confidences: numpy array of 1D. [num_bboxes]

 :param conf_thresh:

 :param iou_thresh:

 :param keep_top_k:

 :return:

 '''

 if len(bboxes) == 0: return []

 conf_keep_idx = np.where(confidences > conf_thresh)[0]

 bboxes = bboxes[conf_keep_idx]

 confidences = confidences[conf_keep_idx]

 pick = []

 xmin = bboxes[:, 0]

 ymin = bboxes[:, 1]

 xmax = bboxes[:, 2]

 ymax = bboxes[:, 3]

 area = (xmax - xmin + 1e-3) * (ymax - ymin + 1e-3)

 idxs = np.argsort(confidences)

 while len(idxs) > 0:

 last = len(idxs) - 1

74

 i = idxs[last]

 pick.append(i)

 # keep top k

 if keep_top_k != -1:

 if len(pick) >= keep_top_k:

 break

 overlap_xmin = np.maximum(xmin[i], xmin[idxs[:last]])

 overlap_ymin = np.maximum(ymin[i], ymin[idxs[:last]])

 overlap_xmax = np.minimum(xmax[i], xmax[idxs[:last]])

 overlap_ymax = np.minimum(ymax[i], ymax[idxs[:last]])

 overlap_w = np.maximum(0, overlap_xmax - overlap_xmin)

 overlap_h = np.maximum(0, overlap_ymax - overlap_ymin)

 overlap_area = overlap_w * overlap_h

 overlap_ratio = overlap_area / (area[idxs[:last]] + area[i] - overlap_area)

 need_to_be_deleted_idx = np.concatenate(([last], np.where(overlap_ratio >

iou_thresh)[0]))

 idxs = np.delete(idxs, need_to_be_deleted_idx)

 # if the number of final bboxes is less than keep_top_k, we need to pad it.

 # TODO

 return conf_keep_idx[pick]

 def inference(self,img_4d,ori_height,ori_width):

 # ----var

 re_boxes = list()

 re_confidence = list()

 re_classes = list()

75

 re_mask_id = list()

 y_bboxes_output, y_cls_output = self.sess.run([self.detection_bboxes,

self.detection_scores],

 feed_dict={self.tf_input: img_4d})

 # remove the batch dimension, for batch is always 1 for inference.

 y_bboxes = self.decode_bbox(self.anchors_exp, y_bboxes_output)[0]

 y_cls = y_cls_output[0]

 # To speed up, do single class NMS, not multiple classes NMS.

 bbox_max_scores = np.max(y_cls, axis=1)

 bbox_max_score_classes = np.argmax(y_cls, axis=1)

 # keep_idx is the alive bounding box after nms.

 keep_idxs = self.single_class_non_max_suppression(y_bboxes,

bbox_max_scores, conf_thresh=self.conf_thresh,

 iou_thresh=self.iou_thresh)

 # ====draw bounding box

 for idx in keep_idxs:

 conf = float(bbox_max_scores[idx])

 #print("conf = ",conf)

 class_id = bbox_max_score_classes[idx]

 bbox = y_bboxes[idx]

 #print(bbox)

 xmin = np.maximum(0, int(bbox[0] * ori_width - self.margin / 2))

 ymin = np.maximum(0, int(bbox[1] * ori_height - self.margin / 2))

 xmax = np.minimum(int(bbox[2] * ori_width + self.margin / 2), ori_width)

 ymax = np.minimum(int(bbox[3] * ori_height + self.margin / 2), ori_height)

 re_boxes.append([xmin, ymin, xmax - xmin, ymax - ymin])

76

 re_confidence.append(conf)

 re_classes.append('face')

 re_mask_id.append(class_id)

 return re_boxes, re_confidence, re_classes, re_mask_id

def img_alignment(root_dir,output_dir,margin=44,GPU_ratio =

0.1,img_show=False,dataset_range=None):

 # ----record the start time

 d_t = time.time()

 # ----var

 face_mask_model_path = r'face_mask_detection.pb'

 img_format = {'png','bmp','jpg'}

 width_threshold = 100 + margin // 2

 height_threshold = 100 + margin // 2

 quantity = 0

 # ----collect all folders

 dirs = [obj.path for obj in os.scandir(root_dir) if obj.is_dir()]

 if len(dirs) == 0:

 print("No sub folders in ",root_dir)

 else:

 dirs.sort()

 print("Total class number: ", len(dirs))

 if dataset_range is not None:

 dirs = dirs[dataset_range[0]:dataset_range[1]]

 print("Working classes: {} to {}".format(dataset_range[0], dataset_range[1]))

 else:

 print("Working classes:All")

77

 #----init of face detection model

 fmd = FaceMaskDetection(face_mask_model_path,margin,GPU_ratio)

 # ----handle images of each dir

 for dir_path in dirs:

 paths = [file.path for file in os.scandir(dir_path) if file.name.split(".")[-1] in img_format]

 if len(paths) == 0:

 print("No images in ",dir_path)

 else:

 #----create the save dir

 save_dir = os.path.join(output_dir,dir_path.split("\\")[-1])

 if not os.path.exists(save_dir):

 os.makedirs(save_dir)

 #----

 quantity += len(paths)

 for idx,path in enumerate(paths):

 img = cv2.imread(path)

 if img is None:

 print("Read failed:",path)

 else:

 ori_height,ori_width = img.shape[:2]

 img_ori = img.copy()

 img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

 img = cv2.resize(img,fmd.img_size)

 img = img.astype(np.float32)

 img /= 255

78

 img_4d = np.expand_dims(img,axis=0)

 bboxes, re_confidence, re_classes, re_mask_id =

fmd.inference(img_4d,ori_height,ori_width)

 for num,bbox in enumerate(bboxes):

 if bbox[2] > width_threshold and bbox[3] > height_threshold:

 img_crop = img_ori[bbox[1]:bbox[1] + bbox[3],bbox[0]:bbox[0] + bbox[2],

:]

 save_path = os.path.join(save_dir,str(idx) + '_' + str(num) + ".png")

 # print("save_path:",save_path)

 cv2.imwrite(save_path,img_crop)

 #----display images

 if img_show is True:

 plt.subplot(1,2,1)

 plt.imshow(img_ori[:,:,::-1])

 plt.subplot(1,2,2)

 plt.imshow(img_crop[:,:,::-1])

 plt.show()

 # ----statistics(to know the average process time of each image)

 if quantity != 0:

 d_t = time.time() - d_t

 print("ave process time of each image:", d_t / quantity)

A.3 Image Processing and Augmentation Python Code

#Image Process and augmentation

79

import numpy as np

import os,cv2,dlib,sys

import matplotlib.pyplot as plt

mask_img_dir = r"C:\Users\saroj.mishra\mask_img"

----read mask png images

mask_files = [file.path for file in os.scandir(mask_img_dir) if file.name.split(".")[-1] == 'png']

mask_paths = list()

len_mask = len(mask_files)

if len_mask == 0:

 print("Error: no face mask PNG images in ", mask_img_dir)

----face detection init

detector = dlib.get_frontal_face_detector()

predictor =

dlib.shape_predictor(r'C:\Users\saroj.mishra\shape_predictor_68_face_landmarks.dat')

----Detect mouth coordinates

def detect_mouth(img,detector,predictor):

 x_min = None

 x_max = None

 y_min = None

 y_max = None

 size = None

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 faces = detector(img, 0)

 #print("len of faces = ",len(faces))

 if len(faces):

 for coor in (faces):#coordinate format:[(left,top), (right,bottom)]

80

 x = list()

 y = list()

 height = coor.bottom() - coor.top()

 width = coor.right() - coor.left()

 # shape = predictor(img_gray, d)

 landmark = predictor(img, coor)

 #----get the mouth part

 for i in range(48, 68):

 x.append(landmark.part(i).x)

 y.append(landmark.part(i).y)

 y_max = np.minimum(max(y) + height // 3, img.shape[0])

 y_min = np.maximum(min(y) - height // 3, 0)

 x_max = np.minimum(max(x) + width // 3, img.shape[1])

 x_min = np.maximum(min(x) - width // 3, 0)

 size = ((x_max-x_min),(y_max-y_min))#(width,height)

 return x_min, x_max, y_min, y_max, size

root_dir = r"C:\Users\saroj.mishra\CASIA-WebFace-aligned"

paths = list()

img_format = {'png', 'jpg'}

for dir_name, sub_dirname, filenames in os.walk(root_dir):

 if len(filenames):

 for filename in filenames:

 if filename[-3:] in img_format:

 paths.append(os.path.join(dir_name,filename))

81

def get_4D_data(paths,img_shape,process_dict=None):

 #----var

 re_array = []

 processing_enable = False

 x_range = 10

 y_range = 20

 flip_list = [1, 0]

 kernel_list = [1,3,5,7]

 #----check process_dict

 if isinstance(process_dict,dict):

 if len(process_dict) > 0:

 processing_enable = True#image processing is enabled

 for path in paths:

 img = cv2.imread(path)

 if img is None:

 print("read failed:",path)

 else:

 #----image processing

 if processing_enable is True:

 if 'rdm_crop' in process_dict.keys():

 if process_dict['rdm_crop'] is True:

#img = cv2.resize(img,(width_rdm_crop,height_rdm_crop))

 # ----Find a random point

 x_start = np.random.randint(x_range)

 y_start = np.random.randint(y_range)

82

 # ----From the random point, crop the image

 img = img[y_start:, x_start:, :]

 if 'rdm_br' in process_dict.keys():

 if process_dict['rdm_br'] is True:

 mean_br = np.mean(img)

 br_factor = np.random.randint(mean_br * 0.7, mean_br * 1.3)

 img = np.clip(img / mean_br * br_factor, 0, 255)#the multification makes the

numeric type become floating

 img = img.astype(np.uint8)#transform the numeric type to unsigned integer

8(UINT8)

 if 'rdm_mask' in process_dict.keys():

 if process_dict['rdm_mask'] is True:

 x_min, x_max, y_min, y_max, size = detect_mouth(img, detector, predictor)

 if size is not None:

 # ----random selection of face mask

 which = np.random.randint(0, len_mask - 1)

 #print(which)

 item_name = mask_files[which]

 # ----face mask process

 item_img = cv2.imread(item_name, cv2.IMREAD_UNCHANGED)

 #item_img = mask_paths[which]

 print(item_img.shape)

 item_img = cv2.resize(item_img, size)

 item_img_rgb = item_img[:, :, :3]

 #item_img_rgb = item_img_rgb[:,:,::-1]#transform the color format to RGB

83

 item_alpha_ch = item_img[:, :, 3]

 _, item_mask = cv2.threshold(item_alpha_ch, 220, 255,

cv2.THRESH_BINARY)

 img_item = cv2.bitwise_and(item_img_rgb, item_img_rgb, mask=item_mask)

 # ----mouth part process

 roi = img[y_min:y_min + size[1], x_min:x_min + size[0]]

 item_mask_inv = cv2.bitwise_not(item_mask)

 roi = cv2.bitwise_and(roi, roi, mask=item_mask_inv)

 # ----addition of mouth and face mask

 dst = cv2.add(roi, img_item)

 img[y_min: y_min + size[1], x_min:x_min + size[0]] = dst

 if 'rdm_blur' in process_dict.keys():

 if process_dict['rdm_blur'] is True:

 kernel = tuple(np.random.choice(kernel_list,size=2))

 print("kernel:",kernel)

 img = cv2.GaussianBlur(img,kernel,0,0)

 if 'rdm_flip' in process_dict.keys():

 if process_dict['rdm_flip'] is True:

 flip_type = np.random.choice(flip_list)

 if flip_type == 1:

 img = cv2.flip(img, flip_type)

 if 'rdm_noise' in process_dict.keys():

 if process_dict['rdm_noise'] is True:

 uniform_noise = np.empty((img.shape[0], img.shape[1]), dtype=np.uint8)

 cv2.randu(uniform_noise, 0, 255)

84

 ret, impulse_noise = cv2.threshold(uniform_noise, 240, 255,

cv2.THRESH_BINARY_INV)

 img = cv2.bitwise_and(img, img, mask=impulse_noise)

 if 'rdm_angle' in process_dict.keys():

 if process_dict['rdm_angle'] is True:

 angle = np.random.randint(-15, 15)

 img = cv2.resize(img,(img_shape[1],img_shape[0]))

 print(img.shape)

 h, w = img.shape[:2]

 M = cv2.getRotationMatrix2D((w // 2, h // 2), angle, 1.0)

 img = cv2.warpAffine(img, M, (h, w))

 #----

 img = cv2.resize(img,(img_shape[1],img_shape[0]))

 img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

 img = img.astype(np.float32)

 img /= 255

 re_array.append(img)

 re_array = np.array(re_array)

 return re_array

aug_times = 4

path = [np.random.choice(paths)]

img_shape = [112,112,3]

batch_data_shape = [aug_times]

batch_data_shape.extend(img_shape)

batch_data = np.zeros(batch_data_shape,dtype=np.float32)

85

p_dict_1 =

{'rdm_mask':False,'rdm_crop':True,'rdm_br':True,'rdm_blur':True,'rdm_flip':True,'rdm_noise':Fal

se,'rdm_angle':True}

p_dict_2 =

{'rdm_mask':True,'rdm_crop':True,'rdm_br':True,'rdm_blur':True,'rdm_flip':True,'rdm_noise':Fal

se,'rdm_angle':True}

p_dict_3 =

{'rdm_mask':True,'rdm_crop':True,'rdm_br':True,'rdm_blur':True,'rdm_flip':True,'rdm_noise':Fal

se,'rdm_angle':True}

for i in range(aug_times):

 if i == 0:

 temp = get_4D_data(path,img_shape,process_dict=None)

 elif i == 1:

 temp = get_4D_data(path,img_shape,process_dict=p_dict_1)

 elif i == 2:

 temp = get_4D_data(path,img_shape,process_dict=p_dict_2)

 elif i == 3:

 temp = get_4D_data(path,img_shape,process_dict=p_dict_3)

 batch_data[i] = temp[0]

plt.figure(figsize=(15,15))

for i in range(aug_times):

 plt.subplot(1,aug_times,i+1)

 plt.imshow(batch_data[i])

 plt.axis('off')

plt.show()

86

A.4 Images Processing and Augmentation Results

Figure A.4 Image processing and augmentation results

87

A.5 Real Time Masked Face Recognition Python Code

import cv2, os, time, math

import numpy as np

from face_alignment import FaceMaskDetection

from tools import model_restore_from_pb

img_format = {'png','jpg','bmp'}

def video_init(camera_source=0,resolution="480",to_write=False,save_dir=None):

 #----var

 writer = None

 resolution_dict = {"480":[480,640],"720":[720,1280],"1080":[1080,1920]}

 #----camera source connection

 cap = cv2.VideoCapture(camera_source)

 #----resolution decision

 if resolution_dict.get(resolution) is not None:

 # if resolution in resolution_dict.keys():

 width = resolution_dict[resolution][1]

 height = resolution_dict[resolution][0]

 cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)

 cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)

 else:

 height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)#default 480

 width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)#default 640

 print("video size is auto set")

 if to_write is True:

 #fourcc = cv2.VideoWriter_fourcc('x', 'v', 'i', 'd')

88

 #fourcc = cv2.VideoWriter_fourcc('X', 'V', 'I', 'D')

 fourcc = cv2.VideoWriter_fourcc(*'XVID')

 save_path = 'demo.avi'

 if save_dir is not None:

 save_path = os.path.join(save_dir,save_path)

 writer = cv2.VideoWriter(save_path, fourcc, 30, (int(width), int(height)))

 return cap,height,width,writer

def stream(pb_path,

node_dict,ref_dir,camera_source=0,resolution="480",to_write=False,save_dir=None):

 #----var

 frame_count = 0

 FPS = "loading"

 face_mask_model_path = r'face_mask_detection.pb'

 margin = 40

 id2class = {0: 'Mask', 1: 'NoMask'}

 batch_size = 32

 threshold = 0.8

 #----Video streaming initialization

 cap,height,width,writer = video_init(camera_source=camera_source, resolution=resolution,

to_write=to_write, save_dir=save_dir)

 # ----face detection init

 fmd = FaceMaskDetection(face_mask_model_path, margin, GPU_ratio=None)

 # ----face recognition init

 sess, tf_dict = model_restore_from_pb(pb_path, node_dict, GPU_ratio=None)

 tf_input = tf_dict['input']

 tf_embeddings = tf_dict['embeddings']

89

 #----get the model shape

 if tf_input.shape[1].value is None:

 model_shape = (None, 160, 160, 3)

 else:

 model_shape = (None, tf_input.shape[1].value, tf_input.shape[2].value, 3)

 print("The mode shape of face recognition:",model_shape)

 #----set the feed_dict

 feed_dict = dict()

 if 'keep_prob' in tf_dict.keys():

 tf_keep_prob = tf_dict['keep_prob']

 feed_dict[tf_keep_prob] = 1.0

 if 'phase_train' in tf_dict.keys():

 tf_phase_train = tf_dict['phase_train']

 feed_dict[tf_phase_train] = False

 #----read images from the database

 d_t = time.time()

 paths = [file.path for file in os.scandir(ref_dir) if file.name[-3:] in img_format]

 len_ref_path = len(paths)

 if len_ref_path == 0:

 print("No images in ", ref_dir)

 else:

 ites = math.ceil(len_ref_path / batch_size)

 embeddings_ref = np.zeros([len_ref_path, tf_embeddings.shape[-1]], dtype=np.float32)

 for i in range(ites):

 num_start = i * batch_size

90

 num_end = np.minimum(num_start + batch_size, len_ref_path)

 batch_data_dim =[num_end - num_start]

 batch_data_dim.extend(model_shape[1:])

 batch_data = np.zeros(batch_data_dim,dtype=np.float32)

 for idx,path in enumerate(paths[num_start:num_end]):

 # img = cv2.imread(path)

 img = cv2.imdecode(np.fromfile(path, dtype=np.uint8), 1)

 if img is None:

 print("read failed:",path)

 else:

 #print("model_shape:",model_shape[1:3])

 img = cv2.resize(img,(model_shape[2],model_shape[1]))

 img = img[:,:,::-1]#change the color format

 batch_data[idx] = img

 batch_data /= 255

 feed_dict[tf_input] = batch_data

 embeddings_ref[num_start:num_end] = sess.run(tf_embeddings,feed_dict=feed_dict)

 d_t = time.time() - d_t

 print("ref embedding shape",embeddings_ref.shape)

 print("It takes {} secs to get {} embeddings".format(d_t, len_ref_path))

 # ----tf setting for calculating distance

 if len_ref_path > 0:

 with tf.Graph().as_default():

 tf_tar = tf.placeholder(dtype=tf.float32, shape=tf_embeddings.shape[-1])

 tf_ref = tf.placeholder(dtype=tf.float32, shape=tf_embeddings.shape)

91

 tf_dis = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(tf_ref, tf_tar)), axis=1))

 # ----GPU setting

 config = tf.ConfigProto(log_device_placement=True,

 allow_soft_placement=True,

)

 config.gpu_options.allow_growth = True

 sess_cal = tf.Session(config=config)

 sess_cal.run(tf.global_variables_initializer())

 feed_dict_2 = {tf_ref: embeddings_ref}

 #----Get an image

 while(cap.isOpened()):

 ret, img = cap.read()#img is the original image with BGR format. It's used to be shown by

opencv

 if ret is True:

 #----image processing

 img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 img_rgb = img_rgb.astype(np.float32)

 img_rgb /= 255

 #----face detection

 img_fd = cv2.resize(img_rgb, fmd.img_size)

 img_fd = np.expand_dims(img_fd, axis=0)

 bboxes, re_confidence, re_classes, re_mask_id = fmd.inference(img_fd, height, width)

 if len(bboxes) > 0:

 for num, bbox in enumerate(bboxes):

 class_id = re_mask_id[num]

 if class_id == 0:

92

 color = (0, 255, 0) # (B,G,R) --> Green(with masks)

 else:

 color = (0, 0, 255) # (B,G,R) --> Red(without masks)

 cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0] + bbox[2], bbox[1] + bbox[3]),

color, 2)

 # cv2.putText(img, "%s: %.2f" % (id2class[class_id], re_confidence[num]),

(bbox[0] + 2, bbox[1] - 2),

 # cv2.FONT_HERSHEY_SIMPLEX, 0.8, color)

 # ----face recognition

 name = ""

 if len_ref_path > 0:

 img_fr = img_rgb[bbox[1]:bbox[1] + bbox[3], bbox[0]:bbox[0] + bbox[2], :] #

crop

 img_fr = cv2.resize(img_fr, (model_shape[2], model_shape[1])) # resize

 img_fr = np.expand_dims(img_fr, axis=0) # make 4 dimensions

 feed_dict[tf_input] = img_fr

 embeddings_tar = sess.run(tf_embeddings, feed_dict=feed_dict)

 feed_dict_2[tf_tar] = embeddings_tar[0]

 distance = sess_cal.run(tf_dis, feed_dict=feed_dict_2)

 arg = np.argmin(distance) # index of the smallest distance

 if distance[arg] < threshold:

 name = paths[arg].split("\\")[-1].split(".")[0]

 cv2.putText(img, "{},{}".format(id2class[class_id], name), (bbox[0] + 2, bbox[1] -

2),

 cv2.FONT_HERSHEY_SIMPLEX, 0.8, color)

 #----FPS calculation

 if frame_count == 0:

93

 t_start = time.time()

 frame_count += 1

 if frame_count >= 10:

 FPS = "FPS=%1f" % (10 / (time.time() - t_start))

 frame_count = 0

 # cv2.putText(img, text, coor, font, size, color, line thickness, line type)

 cv2.putText(img, FPS, (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)

 #----image display

 cv2.imshow("Demo by Saroj", img)

 #----image writing

 if writer is not None:

 writer.write(img)

 #----keys handle

 key = cv2.waitKey(1) & 0xFF

 if key == ord('q'):

 break

 elif key == ord('s'):

 if len(bboxes) > 0:

 img_temp = img[bbox[1]:bbox[1] + bbox[3], bbox[0]:bbox[0] + bbox[2], :]

 save_path = "img_crop.jpg"

 save_path = os.path.join(ref_dir,save_path)

 cv2.imwrite(save_path,img_temp)

 print("An image is saved to ",save_path)

 else:

94

 print("get images failed")

 break

 #----release

 cap.release()

 cv2.destroyAllWindows()

 if writer is not None:

 writer.release()

Results of real-time MFR (Masked Facial Recognition) are shown in figure 5.7.

95

REFERENCES

[1] Ullah, Naeem, et al. "A novel DeepMaskNet model for face mask detection and masked

facial recognition." Journal of King Saud University-Computer and Information

Sciences (2022).

[2] Mason, Karl, Jim Duggan, and Enda Howley. "A multi-objective neural network trained

with differential evolution for dynamic economic emission dispatch." International Journal

of Electrical Power & Energy Systems 100 (2018): 201-221.

[3] Kumar, A. Pavan, V. Kamakoti, and Sukhendu Das. "An Architecture for Real Time Face

Recognition Using WMPCA." ICVGIP. 2004.

[4] Soyata, Tolga, et al. "Cloud-vision: Real-time face recognition using a mobile-cloudlet-

cloud acceleration architecture." 2012 IEEE symposium on computers and

communications (ISCC). IEEE, 2012.

[5] Kasar, Manisha M., Debnath Bhattacharyya, and T. H. Kim. "Face recognition using neural

network: a review." International Journal of Security and Its Applications 10.3 (2016): 81-

100.

[6] Agagu, T. T., and B. A. Akinnuwesi. "Automated students' attendance taking in tertiary

institution using hybridized facial recognition algorithm." Journal of Computer Science

and Its Application 19.2 (2012): 1-13.

[7] de Leeuw, Karl Maria Michael, and Jan Bergstra, eds. The history of information security:

a comprehensive handbook. Elsevier, 2007.

[8] Dlib: https://github.com/davisking/dlib

[9] OpenCV: https://github.com/opencv/opencv

[10] Liu, Wei, et al. "Ssd: Single shot multibox detector." European conference on computer

vision. Springer, Cham, 2016.

https://github.com/davisking/dlib
https://github.com/opencv/opencv

96

[11] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-

scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

[12] Anwar, Aqeel, and Arijit Raychowdhury. "Masked face recognition for secure

authentication." arXiv preprint arXiv:2008.11104 (2020).

[13] Mandal, Bishwas, Adaeze Okeukwu, and Yihong Theis. "Masked face recognition using

resnet-50." arXiv preprint arXiv:2104.08997 (2021).

[14] Mundial, Imran Qayyum, et al. "Towards facial recognition problem in COVID-19

pandemic." 2020 4rd International Conference on Electrical, Telecommunication and

Computer Engineering (ELTICOM). IEEE, 2020.

[15] Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding

for face recognition and clustering." Proceedings of the IEEE conference on computer

vision and pattern recognition. 2015.

[16] Ejaz, Md Sabbir, et al. "Implementation of principal component analysis on masked and

non-masked face recognition." 2019 1st international conference on advances in science,

engineering and robotics technology (ICASERT). IEEE, 2019.

[17] CASIA dataset: https://github.com/SamYuen101234/Masked_Face_Recognition

[18] LFW dataset: http://vis-www.cs.umass.edu/lfw/

[19] Alzu’bi, Ahmad, et al. "Masked Face Recognition Using Deep Learning: A Review."

Electronics 10.21 (2021): 2666.

[20] Szegedy, Christian, et al. "Inception-v4, inception-resnet and the impact of residual

connections on learning." Thirty-first AAAI conference on artificial intelligence. 2017.

[21] Rath, Subrat Kumar, and Siddharth Swarup Rautaray. "A survey on face detection and

recognition techniques in different application domain." International Journal of Modern

Education and Computer Science 6.8 (2014): 34.

https://github.com/SamYuen101234/Masked_Face_Recognition
http://vis-www.cs.umass.edu/lfw/

97

[22] Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision."

Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

[23] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the

IEEE conference on computer vision and pattern recognition. 2016.

[24] Sun, Yi, Xiaogang Wang, and Xiaoou Tang. "Deeply learned face representations are

sparse, selective, and robust." Proceedings of the IEEE conference on computer vision and

pattern recognition. 2015.

[25] Wang, Zhongyuan, et al. "Masked face recognition dataset and application." arXiv preprint

arXiv:2003.09093 (2020).

[26] Golwalkar, Rucha, and Ninad Mehendale. "Masked-face recognition using deep metric

learning and FaceMaskNet-21." Applied Intelligence (2022): 1-12.

[27] S-H Yooa, S-K Oha, Witold Pedrycz,” Optimized face recognition algorithm using radial

basis function neural networks and its practical applications”, International journal on

Neural Networks, volume 69, (2015), pp. 111-125.

[28] N Jindal, V Kumar,” Enhanced Face Recognition Algorithm using PCA with Artificial

Neural Networks”, International Journal of Advanced Research in Computer Science and

Software Engineering, Volume 3, Issue 6, (2013),pp. 864-872.

[29] FaceNet Pretrained Model: https://github.com/davidsandberg/facenet

[30] Kaur, Paramjit, et al. "Facial-recognition algorithms: A literature review." Medicine,

 Science and the Law 60.2 (2020): 131-139.

[31] Vu, Hoai Nam, Mai Huong Nguyen, and Cuong Pham. "Masked face recognition with

 convolutional neural networks and local binary patterns." Applied Intelligence 52.5

 (2022): 5497-5512.

https://github.com/davidsandberg/facenet

	A Face Recognition Method Using Deep Learning To Identify Mask And Unmask Objects
	Recommended Citation

	tmp.1663364522.pdf.UF8wb

