
University of North Dakota University of North Dakota

UND Scholarly Commons UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2022

An Introduction To Numerical Relativity And Simulations Of Binary An Introduction To Numerical Relativity And Simulations Of Binary

Neutron Stars Neutron Stars

Hayden Dale Drown

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation Recommended Citation
Drown, Hayden Dale, "An Introduction To Numerical Relativity And Simulations Of Binary Neutron Stars"
(2022). Theses and Dissertations. 4335.
https://commons.und.edu/theses/4335

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND
Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator
of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/4335
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F4335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/4335?utm_source=commons.und.edu%2Ftheses%2F4335&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu

An Introduction to Numerical Relativity and Simulations of Binary Neutron Stars

By

Hayden Dale Drown

Bachelor of Science, University of North Dakota, 2020

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

for the degree of

Master of Science

Grand Forks, North Dakota

2

August

2022

iii

This thesis, submitted by Hayden Drown in partial fulfillment of the requirements

for the Degree of Master of Science from the University of North Dakota, has been read

by the Faculty Advisory Committee under whom the work has been done and is hereby

approved.

______________________________ _________

Wayne Barkhouse, Committee Chair Date

______________________________ _________

Yen Lee Loh, Committee Member Date

______________________________ _________

Tim Young, Committee, Member Date

This thesis is being submitted by the appointed advisory committee as having met

all of the requirements of the School of Graduate Studies at the University of North

Dakota and is hereby approved.

____________________________________ _________

Chris Nelson, Dean of Graduate Studies Date

iv

PERMISSIONS

Title AN INTRODUCTION TO NUMERICAL RELATIVTY AND

SIMULATIONS OF BINARY NEUTRON STARS

Department Physics and Astrophysics

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate

degree from the University of North Dakota, I agree that the library of this University

shall make it freely available for inspection. I further agree that permission for extensive

copying for scholarly purposes may be granted by the professor who supervised my

thesis work or, is his absence, by the Chairperson of the department or the dean of the

School of Graduate Studies. It is understood that any copying or publication or other use

of this thesis or part thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of North Dakota in any scholarly use which may be made of any material in

my thesis.

Hayden Drown

Date

v

Table of Contents

Table of Figures ... ix

List of Tables .. x

Abstract .. viii

1. Introduction ... 9

1.1. Motivation .. 9

1.2. Convention ... 11

1.3. Primer on General Relativity ... 12

1.3.1. The Metric ... 12

1.3.2. Covariant Derivative ... 15

1.3.3. Christoffel Symbols .. 20

1.3.4. Riemann Tensor, Ricci Tensor, and Ricci Scalar 21

1.3.5. The Einstein Equations ... 23

1.3.6. TOV Equations ... 28

1.3.7. Gravitational Waves.. 30

1.4. Numerical Relativity .. 35

1.4.1. ADM Formulation .. 35

vi

1.4.2. BSSN Formulation .. 41

1.5. Neutron Stars .. 45

1.5.1. Equations of State ... 45

1.5.2. Bounds of Mass... 46

1.5.3. Binary Neutron Stars... 47

1.6. Lorene... 47

1.6.1. Spectral Methods .. 48

1.6.2. Compact Binaries .. 49

1.7. Einstein Toolkit .. 50

1.7.1. Cactus .. 50

1.7.2. Thorns ... 51

2. Process ... 61

2.1. Lorene... 61

2.2. Parameter File .. 63

2.2.1. Cactus Parameters ... 63

2.2.2. Active Thorns.. 64

2.2.3. Diagnostic Parameters .. 65

2.2.4. Utility Parameters ... 67

vii

2.2.5. Run Parameters ... 68

2.2.6. Output ... 80

2.2.7. Analysis... 83

2.2.8. Wave Extraction.. 84

2.2.9. Checkpoint/Recovery .. 85

2.2.10. AHFinderDirect ... 86

2.2.11. Control ... 87

2.2.12. VolumeIntegrals_GRMHD ... 89

3. Data .. 92

3.1. Case 1: 2.08 and 2.08 𝑀☉ ... 92

3.1.1. Matter Distribution.. 92

3.1.2. Gravitational Waves.. 94

3.2. Case 2: 1.04 and 1.74 𝑀☉ ... 104

3.2.1. Matter Distribution.. 105

3.2.2. Gravitational Waves.. 107

3.3. Case 3: 1.40 and 1.40 𝑀☉ ... 118

3.3.1. Matter Distribution.. 118

3.3.2. Gravitational Waves.. 123

viii

3.4. Case 4: 1.74 and 1.74 𝑀☉ ... 132

3.4.1. Matter Distribution.. 133

3.4.2. Gravitational Waves.. 135

4. Conclusion and Future Work ... 146

References ... 148

Appendix A – List of Abbreviations ... 152

Appendix B – Unit Conversions ... 153

Appendix C – Parameter File .. 154

ix

Table of Figures

FIGURE 1: PIECEWISE POLYTROPIC EQUATION OF STATE WITH SEVEN PIECES USED IN THE

CASES STUDIED. 46

FIGURE 2: DENSITY DISTRIBUTION DURING CASE 1 MERGER 93

FIGURE 3: GRAVITATIONAL WAVE STRENGTH OF DIFFERENT ROTATION MODES DURING

CASE 1 MERGER 95

FIGURE 4: DENSITY DISTRIBUTION DURING CASE 2 MERGER 106

FIGURE 5: GRAVITATIONAL WAVE STRENGTH OF DIFFERENT ROTATION MODES DURING

CASE 2 MERGER 108

FIGURE 6: DENSITY DISTRIBUTION DURING CASE 3 MERGER 119

FIGURE 7: GRAVITATIONAL WAVE STRENGTH OF DIFFERENT ROTATION MODES DURING

CASE 4 MERGER 123

FIGURE 8: DENSITY DISTRIBUTION DURING CASE 4 MERGER 133

FIGURE 9: GRAVITATIONAL WAVE STRENGTH OF DIFFERENT ROTATION MODES DURING

CASE 4 MERGER 136

x

List of Tables

TABLE 1: ADMBASE DEFINED VARIABLES 51

TABLE 2: HYDROBASE DEFINED VARIABLES 57

TABLE 3: TMUNUBASE DEFINED VARIABLES 59

TABLE 4: CENTRAL ENTHALPY LOG10 BASED ON BARYONIC MASS 63

TABLE 5: PHYSICAL CONSTANTS OF NATURE 153

xi

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to the members of my advisory

Committee for their guidance and support during my time in the master’s program at the

University of North Dakota.

To my parents and girlfriend.

Without their support this wouldn’t have been possible.

viii

Abstract

 The theory of general relativity is currently the best description of gravity.

However, the equations in general relativity are highly nonlinear and only the simplest of

cases can hope to be solved analytically. As a result, the field of numerical relativity was

created to solve some of these issues and to model more complicated dynamical

situations. This thesis sets out to give the reader a basic understanding of general

relativity, numerical relativity, as well as an understanding of some of the programs that

are used in numerical relativity research such as Lorene and the Einstein Toolkit and

concludes with a brief set of simulations of binary neutron stars with various masses.

9

1. Introduction

1.1. Motivation

In 1915, Albert Einstein formulated a theory of gravity that was consistent with

his special theory of relativity (Einstein 1918). This theory is currently our best

understanding of gravity. To better comprehend gravity in a strong field environment, the

field of numerical relativity was created (Hahn & Lindquist 1964). Numerical relativity

deals with the evolution of gravitational systems and the distortions of spacetime under

conditions that cannot be solved analytically. An example of such a system is the motion

of massive, compact binaries, orbiting each other at extreme speeds. These bodies should

emit gravitational waves as their orbits decay and objects eventually merge (Einstein

1918).

 This decay was first indirectly observed in 1974 with the observation of orbits of

binary neutron stars decaying and the system losing energy through these gravitational

waves (Taylor & Weisberg 1982). This led to the Nobel Prize in physics in 1993 being

awarded to Russel Hulse and Joseph Taylor Jr. for the first indirect evidence for

gravitational waves. The field then made another step forward in 2015 with the first

direct detection of gravitational waves from the inspiral and merging of two compact

objects made by the Laser Interferometer Gravitational-Wave Observatory (LIGO)

(Abbott et al. 2016). In the case of this first detection, the compact objects orbiting each

other and eventually merging were black holes of masses 36−4
+5 𝑀☉ and 29−4

+4 𝑀☉ ,

although in principle any massive object experiencing acceleration should create

gravitational waves, it is these extremely massive, high speed objects who’s gravitational

waves can be observed at the moment (Schutz 1999). This observation has ushered in a

10

new age of gravitational wave astronomy, a field that is extremely promising due to the

characteristics of gravitational waves, namely that they interact with matter so weakly

that there is little obstruction in the signal (Schutz 1999). To fully utilize the detection of

gravitational waves from astronomical sources and participate in the new age of

gravitational wave astronomy, a more complete understanding of Einstein’s theory of

general relativity in extreme environments is needed to be obtained. This includes the

development of tools using numerical approximations and simulations to better match

observations with known physics.

 It is the goal of this thesis to present an introduction to general relativity, as well

as give the reader a basic understanding of numerical relativity and its applications to

simulations that describe the inspiral and merger of binary neutron star systems. The

main method for creating these simulations is the Einstein Toolkit, which is based on the

ADM and BSSN formulation of numerical relativity (Löffler et al. 2012), all of which

will be discussed in more detail later. The Einstein Toolkit suite of computational tools

(Löffler et al. 2012) are used to perform high-level numerical relativity and relativistic

astrophysical simulations on a modest computational machine. An important output

product from these numerical simulations is the waveform of the gravitational waves that

are emitted during the coalescence phase of the merger of compact objects. Waveforms

generated using different masses of binary objects can be compared to LIGO detections

to better understand the progenitors of the gravitational waves sources that are detected.

 This thesis will delve into four cases of binary neutron star systems with various

mass values, as well as different parameter files to better understand the importance of

the usage of different thorns within the Einstein Toolkit to create meaningful simulations

11

with realistic data. These test cases include; 1) two neutron stars each having the

maximum observed mass value for a neutron star of 2.08 solar masses (Mazzali et al.

2007), 2) the minimum mass value of 1.4 solar masses, which is the Chandrasekar limit

(Fonseca et al. 2021), 3) an intermediate value between the Chandrasekar value and the

maximum observed mass, which is taken to be 1.74 solar masses, and 4) a case where

one neutron star has the minimum value of 1.4 solar masses and the companion object

has a mass of 1.74 solar masses. Although these cases are limited in their scope, they do

provide a proving ground in which simulations can be tested and the input of relevant

physics explored.

1.2. Convention

The sign convention that will be used in this thesis will be the (−,+,+,+) sign

convention. Some consider this sign convention to be more cumbersome to use in some

applications. However, we feel that it makes the most physical sense and will be the

convention adopted throughout this thesis. This thesis will also make liberal use of the

Einstein summation convention to denote addition over repeated indices, e.g.

𝑎𝑖𝑏𝑖 =∑𝑎𝑖𝑏𝑖

3

𝑖=1

= 𝑎1𝑏1 + 𝑎
2𝑏2 + 𝑎

3𝑏3. (1.2.1)

Additionally, the use of Latin indices will be used to denote values that may range over

the spatial components, e.g.

𝑎𝑖𝑏𝑖 = 𝑎1𝑏1 + 𝑎
2𝑏2 + 𝑎

3𝑏3. (1.2.2)

The use of Greek indices will be used to indicate values that may range over the temporal

and spatial components, e.g.

12

𝑎𝜇𝑏𝜇 = 𝑎
0𝑏0 + 𝑎

1𝑏1 + 𝑎
2𝑏2 + 𝑎

3𝑏3. (1.2.3)

At times it will also be useful to refer to a tensor as a whole and not by each component.

In these cases, I will use the notation || ||, to refer to the whole tensor and not an

individual component, e.g.

𝑇 = ‖𝑇𝑖𝑗‖. (1.2.4)

A convenient shorthand that will be used throughout this thesis will be the use of the

symbol , used in the indices that will be used to denote the partial derivative of the object

with respect to the thing that follows in the indices, e.g.

𝜕𝑆

𝜕𝑥𝑖
= 𝜕𝑖 = 𝑆,𝑖. (1.2.7)

Finally, this thesis will use the convention of 𝐺 = 𝑐 = 𝑀☉ = 1, meaning that any number

given will be expressed in solar masses unless otherwise stated.

1.3. Primer on General Relativity

 Before describing the research presented in this thesis, an introduction to general

relativity is provided. The following derivation follows closely to that found in Misner et

al. (2017).

1.3.1. The Metric

 To have an understanding of general relativity, one needs at least a basic

understanding of the metric tensor. The metric tensor is the object that general relativity

is constructed from, and it fully describes the way that coordinate systems are defined. In

order to understand the metric, one first needs a coordinate system to work with. The

13

coordinate system will be made up of the coordinate basis �̂�𝑖, which is defined by the

relationship

�̂�𝑖 =
𝜕𝑟

𝜕𝑥𝑖
, (1.3.1.1)

where 𝑟 is an abstract notion of a position vector and is not a vector that depends on the

actual coordinates. Also, 𝜕𝑥𝑖 is an infinitesimal displacement in a direction used to define

the basis. A familiar example of a vector depending on position is a vector in polar

coordinates

�⃗�(𝑟, 𝜃) = 𝑣𝑟(𝑟, 𝜃)�̂�(𝑟, 𝜃) + 𝑣𝜃(𝑟, 𝜃)𝜃(𝑟, 𝜃). (1.3.1.2)

This explicitly shows that the basis vectors �̂�(𝑟, 𝜃) and 𝜃(𝑟, 𝜃), depend on the coordinates

used. With the basis now defined, it is possible to define the metric tensor. The metric

tensor is defined by the relationship

𝑔𝑖𝑗 = �̂�𝑖 ∙ �̂�𝑗. (1.3.1.3)

From this definition of the metric, it should be symmetric, thus

𝑔𝑖𝑗 = 𝑔𝑗𝑖. (1.3.1.4)

In general relativity the metric is an important object that describes how spacetime is

deformed, and it is the natural generalization of the Minkowski metric that is used in

special relativity (Einstein 1905). In general relativity it looks like the metric should be

made up of 16 independent components. However, equation (1.3.1.4) brings the total

number of independent components down to 10.

14

 Another important property of the metric is the definition of the inner product.

Consider the generic vectors �⃗⃗� and �⃗� defined by

�⃗⃗� = 𝑢𝑖�̂�𝑖, (1.3.1.5𝑎)

�⃗� = 𝑣𝑗�̂�𝑗 . (1.3.1.5𝑏)

Taking the inner product of these vectors gives

�⃗⃗� ∙ �⃗� = 𝑢𝑖�̂�𝑖 ∙ 𝑣
𝑗�̂�𝑗,

�⃗⃗� ∙ �⃗� = 𝑔𝑖𝑗𝑢
𝑖𝑣𝑗 . (1.3.1.6)

From this it is a natural extension to see that the line element is also based off the metric

since the line element is defined by

𝑑𝑠2 = 𝑑𝑟 ∙ 𝑑𝑟. (1.3.1.7)

This generalizes to

𝑑𝑠2 = 𝑑𝑥𝑖�̂�𝑖 ∙ 𝑑𝑥
𝑗�̂�𝑗 = 𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 . (1.3.1.8)

 With this definition of the metric tensor, it is helpful to have a version of the

metric that it contravariant in addition to the covariant version of the metric. The key

feature of the contravariant version of the metric is that it should be the matrix inverse of

the covariant version of the metric, i.e.

‖𝑔𝑖𝑗‖ ≡ ‖𝑔𝑖𝑗‖
−1
. (1.3.1.9)

This leads to the important relationship that

𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑘
𝑖 , (1.3.1.10)

15

with 𝛿𝑘
𝑖 being the standard Kronecker delta. The last property of the metric is that it

should raise or lower indices of a tensor. This can be seen by recalling the definition of

the general vector used above, �⃗�. To get the 𝑣𝑖 component of the vector, take the inner

product of the vector with the basis vector in that direction i.e.

𝑣𝑖 = �⃗� ∙ �̂�𝑖. (1.3.1.10)

Expanding this expression gives

𝑣𝑖 = 𝑣𝑗�̂�𝑗 ∙ �̂�𝑖,

𝑣𝑖 = 𝑔𝑖𝑗𝑣
𝑗 . (1.3.1.11)

The contravariant version of the tensor is then able to raise the indices of a tensor from

being a covariant component to being a contravariant component

𝑣𝑖 = 𝑔𝑖𝑗𝑣𝑗 . (1.3.1.12)

With a basic understanding of the metric, it is now possible to journey farther into the

depths of general relativity with the covariant derivative.

1.3.2. Covariant Derivative

 To begin, it is helpful to define a derivative that will work in all reference frames

because, as seen in Einstein’s special theory of relativity (Einstein 1905), no one observer

has a preferred reference frame over any other. This derivative, defined below, is known

as the covariant derivative. For this task it is necessary to use the generic vector

�⃗� = 𝑣𝑖�̂�𝑖. (1.3.2.1)

Differentiating equation (1.3.2.1) gives

16

𝑑�⃗� = �̂�𝑖𝑑𝑣
𝑖 + 𝑣𝑖𝑑�̂�𝑖, (1.3.2.2)

since this differentiation follows the Leibniz rule, where 𝑑𝑣𝑖 is defined to be

𝑑𝑣𝑖 =
𝜕𝑣𝑖

𝜕𝑥𝑗
𝑑𝑥𝑗 , (1.3.2.3)

and 𝑑�̂�𝑖 is given by

𝑑�̂�𝑖 = Γ𝑖𝑗
𝑘𝑑𝑥𝑗�̂�𝑘, (1.3.2.4)

with Γ𝑖𝑘
𝑗

being known as the connection coefficient, the formula of which will be

determined later. It should be noted at this point that the connection coefficient is

symmetric with respect to the two covariant indices. This can be seen by writing equation

(1.3.2.4) in the form

𝜕�̂�𝑖
𝜕𝑥𝑗

= Γ𝑖𝑗
𝑘�̂�𝑘,

𝜕

𝜕𝑥𝑗
𝜕𝑟

𝜕𝑥𝑖
= Γ𝑖𝑗

𝑘�̂�𝑘. (1.3.2.5)

The left-hand side is normal partial differentiation, which follows Clairaut’s theorem,

showing that the connection coefficient is symmetric in the two covariant indices. This

makes the covariant derivative

𝑑�⃗� =
𝜕𝑣𝑖

𝜕𝑥𝑗
𝑑𝑥𝑗�̂�𝑖 + 𝑣

𝑖Γ𝑖𝑗
𝑘𝑑𝑥𝑗�̂�𝑘. (1.3.2.6)

This is the basis in which the covariant derivative is defined. Rearranging and changing

the indices, the covariant derivative will be defined as

17

∇𝑗�⃗� =
𝑑�⃗�

𝑑𝑥𝑗
= (

𝜕𝑣𝑖

𝜕𝑥𝑗
+ Γ𝑖𝑗

𝑘𝑣𝑖) �̂�𝑘. (1.3.2.7)

With the definition of the covariant derivative firmly established, it is important to know

the properties of this derivative and how to use it properly.

The first important thing to note about the covariant derivative is that it does not

satisfy Clairaut’s theorem. To show this, first consider the covariant derivative taken with

respect to 𝑥𝑗 . This gives

∇𝑗�⃗� = (
𝜕𝑣𝑖

𝜕𝑥𝑗
+ Γ𝑖𝑗

𝑘𝑣𝑖) �̂�𝑘. (1.3.2.8)

Taking the covariant derivative of this result with respect to 𝑥𝑚 gives

∇𝑚𝑗�⃗� = ∇𝑚 (
𝜕𝑣𝑖

𝜕𝑥𝑗
+ Γ𝑖𝑗

𝑘𝑣𝑖) �̂�𝑘,

∇𝑚𝑗�⃗� = (
𝜕2𝑣𝑖

𝜕𝑥𝑚𝜕𝑥𝑗
+
𝜕𝑣𝑖

𝜕𝑥𝑚
Γ𝑖𝑗
𝑘 + Γ𝑖𝑚

𝑘 𝜕𝑣𝑖

𝜕𝑥𝑗
+ 𝑣𝑖

𝜕

𝜕𝑥𝑚
Γ𝑖𝑗
𝑘 + 𝑣𝑖Γ𝑖𝑚

𝑛 Γ𝑛𝑗
𝑘) �̂�𝑘. (1.3.2.9)

Repeating the same process except interchanging the order of the differentiation between

𝑥𝑚 and 𝑥𝑗 gives

∇𝑗𝑚�⃗� = (𝑣,𝑗𝑚
𝑖 + 𝑣,𝑗

𝑖 Γ𝑖𝑚
𝑘 + Γ𝑖𝑗

𝑘𝑣,𝑚
𝑖 + 𝑣𝑖Γ𝑖𝑚,𝑗

𝑘 + 𝑣𝑖Γ𝑖𝑗
𝑛Γ𝑛𝑚

𝑘)�̂�𝑘. (1.3.2.10)

Finding the difference between these expressions gives

∇𝑚𝑗�⃗� − ∇𝑗𝑚�⃗� = (Γ𝑖𝑗,𝑚
𝑘 − Γ𝑖𝑚,𝑗

𝑘 + Γ𝑖𝑚
𝑛 Γ𝑛𝑗

𝑘 − Γ𝑖𝑗
𝑛Γ𝑛𝑚

𝑘)𝑣𝑖�̂�𝑘. (1.3.2.11)

The first terms cancel because they only involve partial derivatives, which interchange

via Clairaut’s theorem. Finally, the term in parentheses can be defined as

18

Γ𝑖𝑗,𝑚
𝑘 − Γ𝑖𝑚,𝑗

𝑘 + Γ𝑖𝑚
𝑛 Γ𝑛𝑗

𝑘 − Γ𝑖𝑗
𝑛Γ𝑛𝑚

𝑘 = 𝑅𝑖𝑚𝑗
𝑘 , (1.3.2.12)

which is the Riemann Tensor. The Riemann Tensor and some of its properties will be

discussed in further detail later.

 The next question is how does the covariant derivative act on tensor of rank two

or higher? First, consider the case of a rank two doubly contravariant tensor. By

definition, a tensor of this type must transform in the same way as the product of two

contravariant vectors so that the tensor can be substituted as the product of two

contravariant vectors. The covariant derivative will be

∇𝑖𝑇
𝑗𝑘 = ∇𝑖(𝑢

𝑗𝑣𝑘). (1.3.2.13)

However, since this is a derivative, the Leibnitz rule still applies so the derivative

becomes

∇𝑖(𝑢
𝑗𝑣𝑘) = 𝑢,𝑖

𝑗
𝑣𝑘 + 𝑢𝑗𝑣,𝑖

𝑘 + Γ𝑖𝑙
𝑗
𝑢𝑙𝑣𝑘 + Γ𝑖𝑙

𝑘𝑢𝑗𝑣𝑙 . (1.3.2.14)

Combining the first two terms as a single partial derivative and replacing the vectors with

the original tensor gives

∇𝑖(𝑇
𝑗𝑘) = 𝑇,𝑖

𝑗𝑘
+ Γ𝑖𝑙

𝑗
𝑇𝑙𝑘 + Γ𝑖𝑙

𝑘𝑇𝑗𝑙. (1.3.2.15)

This demonstrates that the way to take the contravariant derivative of a rank two doubly

contravariant vector is to have two connection coefficients, one for each of the indices.

This can be generalized to higher rank contravariant vectors, with one connection

coefficient in the covariant derivative for each of the indices.

19

 The final property of the covariant derivative that will be important is how to take

the covariant derivative of a covariant tensor. To understand this, consider the scalar,

which will be made up of the tensors, 𝑇 = 𝑢𝑗𝑣𝑗 . The covariant derivative of this scalar is

∇𝑖𝑇 = ∇𝑖(𝑢
𝑗𝑣𝑗) = (∇𝑖𝑢

𝑗)𝑣𝑗 + 𝑢
𝑗(∇𝑖𝑣𝑗). (1.3.2.16)

The covariant derivative of a scalar is the partial derivative of the scalar since the scalar

does not depend on the coordinate basis. So, equation (1.3.2.16) can also be written as

∇𝑖𝑇 = 𝜕𝑖(𝑢
𝑗𝑣𝑗) = (𝜕𝑖𝑢

𝑗)𝑣𝑗 + 𝑢
𝑗(𝜕𝑖𝑣𝑗). (1.3.2.17)

Equating these equations and taking the covariant derivative of 𝑢𝑗 gives

(𝜕𝑖𝑢
𝑗)𝑣𝑗 + 𝑢

𝑗(𝜕𝑖𝑣𝑗) = (𝑢,𝑖
𝑗
+ Γ𝑖𝑙

𝑗
𝑢𝑙)𝑣𝑗 + 𝑢

𝑗(∇𝑖𝑣𝑗). (1.3.2.18)

Which can be rewritten as

(∇𝑖𝑣𝑗)𝑢
𝑗 = (𝜕𝑖𝑣𝑗 − Γ𝑗𝑖

𝑙𝑣𝑙)𝑢
𝑗 . (1.3.2.19)

Meaning that the way the covariant derivative acts on a covariant tensor is given by

∇𝑖𝑣𝑗 = 𝜕𝑖𝑣𝑗 − Γ𝑖𝑗
𝑙 𝑣𝑙 . (1.3.2.20)

Which is the same way that the covariant acts on a contravariant tensor except that the

connection coefficient has a negative sign instead of a positive sign. This can be

generalized and combined with the result of equation (1.3.2.16) to find the covariant

derivative of any tensor. This generalization is given by

∇𝑖𝑇𝑚𝑛...
𝑗𝑘...

= 𝑇𝑚𝑛...,𝑖
𝑗𝑘...

+ Γ𝑖𝑙
𝑗
𝑇𝑚𝑛...
𝑙𝑘... + Γ𝑖𝑙

𝑘𝑇𝑚𝑛...
𝑗𝑙...

+⋯− Γ𝑖𝑚
𝑙 𝑇𝑙𝑛...

𝑗𝑘...
− Γ𝑖𝑛

𝑙 𝑇𝑚𝑙...
𝑗𝑘...

−⋯ . (1.3.2.21)

20

The rule is to take the covariant derivative of a tensor is to first take the partial derivative

of the tensor with respect to 𝑥𝑖, then each index gets a connection coefficient with the

contravariant indices getting a positive connection coefficient and the covariant indices

getting a negative connection coefficient.

1.3.3. Christoffel Symbols

 Now that the definition and some of the properties of the covariant derivative

have been firmly established, it is time to determine how to find the connection

coefficient which is also called the Christoffel symbol. To begin with recall the definition

of the line element which is

𝑑𝑠2 = 𝑑𝑟 ∙ 𝑑𝑟. (1.3.3.1)

Expressing this in an arbitrary basis gives the equation

𝑑𝑠2 = 𝑑𝑥𝑖�̂�𝑖 ∙ 𝑑𝑥
𝑗�̂�𝑗 = 𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 . (1.3.3.2)

From this expression it is obvious that the metric can be defined by the dot product of the

coordinate basis

�̂�𝑖 ∙ �̂�𝑗 = 𝑔𝑖𝑗. (1.3.3.3)

Taking the partial derivative of this definition of the metric in the direction of 𝑥𝑖 gives

𝜕𝑖𝑔𝑗𝑘 = 𝜕𝑖(�̂�𝑗 ∙ �̂�𝑘),

𝜕𝑖𝑔𝑗𝑘 = Γ𝑖𝑗
𝑙 𝑔𝑙𝑘 + Γ𝑖𝑘

𝑙 𝑔𝑗𝑙.

Interchanging indices give the three relationships

𝜕𝑖𝑔𝑗𝑘 = Γ𝑖𝑗
𝑙 𝑔𝑙𝑘 + Γ𝑖𝑘

𝑙 𝑔𝑗𝑙,

21

𝜕𝑗𝑔𝑘𝑖 = Γ𝑗𝑘
𝑙 𝑔𝑙𝑖 + Γ𝑗𝑖

𝑙𝑔𝑘𝑙,

𝜕𝑘𝑔𝑖𝑗 = Γ𝑗𝑘
𝑙 𝑔𝑙𝑖 + Γ𝑘𝑖

𝑙 𝑔𝑗𝑙 . (1.3.3.4)

Adding the second expression to the first and subtracting the third gives

∂𝑖𝑔𝑗𝑘 + ∂𝑗𝑔𝑘𝑖 − ∂𝑘𝑔𝑖𝑗 = Γ𝑖𝑗
𝑙 𝑔𝑙𝑘 + Γ𝑖𝑘

𝑙 𝑔𝑗𝑙 + Γ𝑗𝑘
𝑙 𝑔𝑙𝑖 + Γ𝑗𝑖

𝑙𝑔𝑘𝑙 − Γ𝑗𝑘
𝑙 𝑔𝑙𝑖 − Γ𝑘𝑖

𝑙 𝑔𝑗𝑙,

∂𝑖𝑔𝑗𝑘 + ∂𝑗𝑔𝑘𝑖 − ∂𝑘𝑔𝑖𝑗 = 2Γ𝑖𝑗
𝑙 𝑔𝑙𝑘. (1.3.3.5)

Combining these equations together in this way gives an expression for the Christoffel

symbol which is

Γ𝑖𝑗
𝑙 =

1

2
𝑔𝑙𝑘(∂𝑖𝑔𝑗𝑘 + ∂𝑗𝑔𝑘𝑖 − ∂𝑘𝑔𝑖𝑗). (1.3.3.6)

Now that it is possible to write the Christoffel symbol in terms of the metric, it is also

possible to write the Riemann tensor in terms of the metric as well.

1.3.4. Riemann Tensor, Ricci Tensor, and Ricci Scalar

 Now that the connection has been made that the Christoffel symbol depends on

the coordinates, it is now possible to think about the Riemann tensor in terms of the

metric as well. Recall that the definition of the Riemann tensor as described above is

𝑅𝑗𝑘𝑙
𝑖 = Γ𝑗𝑙,𝑘

𝑖 − Γ𝑗𝑘,𝑙
𝑖 + Γ𝑗𝑘

𝑚Γ𝑚𝑙
𝑖 − Γ𝑗𝑙

𝑛Γ𝑛𝑘
𝑖 . (1.3.4.1)

Lowering the upper index makes it easier to see some of the properties that will be used

later. The Riemann tensor in this form looks like

𝑅𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑜(Γ𝑗𝑙,𝑘
𝑜 − Γ𝑗𝑘,𝑙

𝑜 + Γ𝑗𝑘
𝑚Γ𝑚𝑙

𝑜 − Γ𝑗𝑙
𝑛Γ𝑛𝑘

𝑜). (1.3.4.2)

22

In this form it is obvious that the Riemann tensor is antisymmetric in the first and second

indices as well in the third and fourth indices. The Riemann tensor is also symmetric if

the first and second indices are interchanged with the third and fourth. So, one can see

that

𝑅𝑖𝑗𝑘𝑙 = 𝑅𝑗𝑖𝑘𝑙 = 𝑅𝑖𝑗𝑙𝑘 = 𝑅𝑘𝑙𝑖𝑗. (1.3.4.3)

Using these properties, it can be verified that

𝑅𝑖𝑗𝑘𝑙 + 𝑅𝑖𝑘𝑙𝑗 + 𝑅𝑖𝑙𝑗𝑘 = 0. (1.3.4.4)

Taking the covariant derivative of the Riemann tensor gives

∇𝑚𝑅𝑖𝑗𝑘𝑙 = ∇𝑚 (𝑔𝑖𝑜(Γ𝑗𝑙,𝑘
𝑜 − Γ𝑗𝑘,𝑙

𝑜 + Γ𝑗𝑘
𝑚Γ𝑚𝑙

𝑜 − Γ𝑗𝑙
𝑛Γ𝑛𝑘

𝑜)) . (1.3.4.5)

However, the covariant derivative of the metric tensor is zero (Misner et al. 2017), so this

becomes

∇𝑚𝑅𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑜∇𝑚(Γ𝑗𝑙,𝑘
𝑜 − Γ𝑗𝑘,𝑙

𝑜 + Γ𝑗𝑘
𝑚Γ𝑚𝑙

𝑜 − Γ𝑗𝑙
𝑛Γ𝑛𝑘

𝑜). (1.3.4.6)

This is simplified in a locally geodesic coordinate system since the Christoffel symbol

vanishes, then the covariant derivative can be replaced by a partial derivative. This results

in

∇𝑚𝑅𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑜(Γ𝑗𝑙,𝑘𝑚
𝑜 − Γ𝑗𝑘,𝑙𝑚

𝑜). (1.3.4.7𝑎)

Interchanging indices it is also true that

∇𝑘𝑅𝑖𝑗𝑙𝑚 = 𝑔𝑖𝑜(Γ𝑗𝑚,𝑙𝑘
𝑜 − Γ𝑗𝑙,𝑚𝑘

𝑜), (1.3.4.7𝑏)

∇𝑙𝑅𝑖𝑗𝑚𝑘 = 𝑔𝑖𝑜(Γ𝑗𝑘,𝑚𝑙
𝑜 − Γ𝑗𝑚,𝑘𝑙

𝑜). (1.3.4.7𝑐)

23

Combining these three equations gives

∇𝑚𝑅𝑖𝑗𝑘𝑙 + ∇𝑘𝑅𝑖𝑗𝑙𝑚 + ∇𝑙𝑅𝑖𝑗𝑚𝑘 = 0, (1.3.4.8)

which is the Bianchi identity.

 Another tensor that is important in general relativity is the Ricci tensor. The Ricci

tensor is a tensor that is formed by summing over the upper and the middle lower indices

to form a second rank tensor

𝑅𝑖𝑗 = 𝑅𝑖𝑘𝑗
𝑘 = Γ𝑖𝑗,𝑘

𝑘 − Γ𝑖𝑘,𝑗
𝑘 + Γ𝑖𝑘

𝑚Γ𝑚𝑗
𝑘 − Γ𝑖𝑗

𝑛Γ𝑛𝑘
𝑘 . (1.3.4.9)

From this form it is also clear that the Ricci tensor must be symmetric in both of its

indices as well. The final value that will be necessary before the derivation of the Einstein

Field Equations is the Ricci scalar. The Ricci scalar is found by taking the trace of the

Ricci tensor. It is given by

𝑅 = 𝑔𝑖𝑗𝑅𝑖𝑗 = 𝑔𝑖𝑗(Γ𝑖𝑗,𝑘
𝑘 − Γ𝑖𝑘,𝑗

𝑘 + Γ𝑖𝑘
𝑚Γ𝑚𝑗

𝑘 − Γ𝑖𝑗
𝑛Γ𝑛𝑘

𝑘). (1.3.4.10)

With this final equation it is now time to move onto the Einstein Field Equations.

1.3.5. The Einstein Equations

 The Einstein Field Equations will be assumed to take the form

𝐺𝜇𝜈 = 𝜅𝑇𝜇𝜈 , (1.3.5.1)

with 𝑇𝜇𝜈 being the stress-energy tensor and 𝐺𝜇𝜈 is the Einstein tensor. This equation

assumes that the stress-energy tensor is the source of the gravitational field, and they are

related through a proportionality constant, 𝜅, which will be determined later. To

24

determine how to construct the Einstein tensor, one must start with some leading

assumptions:

1. The Einstein tensor must vanish when spacetime is flat, i.e., when the stress-

energy tensor is zero.

2. The Einstein tensor must be constructed from the Riemann tensor and the metric

tensor and nothing else.

3. The Einstein Tensor is distinguished from other tensors which can be built from

the Riemann tensor and metric tensor from the demands that:

a. The Einstein tensor be linear in Riemann, as befits any natural measure of

curvature.

b. Like the stress-energy tensor, the Einstein tensor should be symmetric and

second rank.

c. The Einstein tensor should naturally have a vanishing divergence

∇𝜇𝐺𝜇𝜈 ≡ 0. (1.3.5.2)

Applying conditions 2, 3a, and 3b, the most general Einstein tensor is

𝐺𝜇𝜈 = 𝑅𝜇𝜈 + 𝑏𝑅𝑔𝜇𝜈 + Λ𝑔𝜇𝜈 , (1.3.5.3)

where 𝑏 and Λ are scalar constants, and technically 𝑅𝜇𝜈 should have a scalar constant that

would get absorbed into 𝜅 in equation (1.3.5.1). Considering condition 1, one needs to

know how the Riemann tensor behaves when spacetime is taken to be flat. Rewriting the

definition of the Riemann tensor gives

𝑅βγδ
α = Γβδ,γ

α − Γβγ,δ
α + Γβγ

ϵ Γϵδ
α − Γβδ

η
Γηγ
α . (1.3.5.4)

25

To begin, it is useful to look at how the Christoffel symbol behaves in a flat spacetime.

The Christoffel symbol is

Γ𝛽𝛾
𝛼 =

1

2
𝑔𝛼𝜀(𝑔𝛾𝜀,𝛽 + 𝑔𝜀𝛽,𝛾 − 𝑔𝛽𝛾,𝜖). (1.3.5.5)

The metric in flat spacetime is

‖𝑔𝜇𝜈‖ = [

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] . (1.3.5.6)

Since none of these components depend on coordinates, the partial derivative of the

metric is zero, meaning the Christoffel symbol is zero in all its entries as well. This also

makes the Riemann tensor, Ricci tensor, and Ricci scalar all zero. So, in a flat spacetime

the Einstein equation reduces to

Λ𝑔𝜇𝜈 = 0. (1.3.5.7)

For this equation to hold Λ must go to zero. To determine b, recall the Bianchi identity

∇𝑚𝑅𝑖𝑗𝑘𝑙 + ∇𝑘𝑅𝑖𝑗𝑙𝑚 + ∇𝑙𝑅𝑖𝑗𝑚𝑘 = 0. (1.3.5.8)

Multiplying through by 𝑔𝑛𝑚𝑔𝑖𝑘𝑔𝑗𝑙 yields

∇𝑚𝑔
𝑛𝑚𝑔𝑖𝑘𝑔𝑗𝑙𝑅𝑖𝑗𝑘𝑙 + ∇𝑘𝑔

𝑛𝑚𝑔𝑖𝑘𝑔𝑗𝑙𝑅𝑖𝑗𝑙𝑚 + ∇𝑙𝑔
𝑛𝑚𝑔𝑖𝑘𝑔𝑗𝑙𝑅𝑖𝑗𝑚𝑘 = 0. (1.3.5.9)

This simplifies to

∇𝑚𝑔
𝑛𝑚𝑅 − ∇𝑘𝑅

𝑘𝑛 − ∇𝑙𝑅
𝑙𝑛 = 0. (1.3.5.10)

Renaming indices gives

∇𝑚(𝑔
𝑛𝑚𝑅 − 2𝑅𝑚𝑛) = 0. (1.3.5.11)

26

Or

∇𝑚 (𝑅
𝑚𝑛 −

1

2
𝑔𝑛𝑚𝑅) = 0. (1.3.5.12)

So, it is clear that 𝑏 must be
1

2
. So, the Einstein field equations become

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 𝜅𝑇𝜇𝜈 . (1.3.5.13)

To determine the value for 𝜅 one needs to compare to the weak field limit of Newtonian

gravitation.

 In the case of weak gravitation general relativity needs to reduce to the Newtonian

limit. The following is an informal derivation of the constant 𝜅, following Pe’er (2020).

The Newtonian potential for gravitation is

∇2Φ = 4𝜋𝜌. (1.3.5.14)

In the Newtonian limit the time-time component of the metric is given by

𝑔00 = −(1 + 2Φ), (1.3.5.15)

and the density is equal to the time-time component of the stress-energy tensor, 𝑇00 = 𝜌.

Additionally, in the weak field approximation the metric is assumed to be

𝑔00 = 𝛾00 + ℎ00 = −1 + ℎ00. (1.3.5.16)

Using this and equation (1.3.5.15), equation (1.3.5.14) becomes

∇2ℎ00 = −8𝜋𝜌. (1.3.5.17)

Another valid way of writing the Einstein field equations is in the form

27

𝑅𝜇𝜈 = 𝜅 (𝑇𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑇) . (1.3.5.18)

In the weak-field limit it will be assumed that the solution is time independent, and all

particles will be slow moving. Additionally, the 𝑇00 component will be much larger than

any other component so it shall be the only component considered. In the weak-field limit

spacetime is approximately flat so the covariant and contravariant versions of the metric

will be assumed to be

𝑔00 = 𝛾00 + ℎ00,

𝑔00 = 𝛾00 − ℎ00, (1.3.5.19)

with 𝛾00 being the time-time component of the Minkowski metric and ℎ00 being the time-

time component of a small perturbation. The trace of the energy-momentum tensor,

ignoring small terms, is approximately

𝑇 = 𝑔00𝑇00 = −𝑇00. (1.3.5.20)

The next piece to consider is the time-time component of the Ricci tensor. Recall that the

Ricci tensor is the trace of the Riemann tensor, so it can be written as

𝑅00 = 𝑅0𝜇0
𝜇

= 𝜕𝜇Γ00
𝜇
− 𝜕0Γ𝜇0

𝜇
+ Γ𝜇𝜈

𝜇
Γ00
𝜈 − Γ0𝜈

𝜇
Γ𝜇0
𝜈 . (1.3.5.21)

However, since the second term contains a time derivative, it is zero for static fields.

Additionally, since the metric is flat with a small perturbation, the Christoffel symbol

itself is small and the third and fourth terms are of the form Γ2 and they are also

approximately zero. So, the time-time component of the Ricci tensor is approximately

𝑅00 = 𝑅0𝜇0
𝜇

= 𝜕𝜇Γ00
𝜇
,

28

= 𝜕𝜇 (
1

2
𝑔𝜇𝜈(𝜕0𝑔𝜈0 + 𝜕0𝑔0𝜈 − 𝜕𝜈𝑔00)) ,

= −
1

2
𝛾𝜇𝜈𝜕𝜇𝜕𝜈ℎ00,

= −
1

2
∇2ℎ00. (1.3.5.22)

Combining this with equation (1.3.5.18) gives

−
1

2
∇2ℎ00 = 𝜅 (𝑇00 −

1

2
𝑔00𝑇),

∇2ℎ00 = −𝜅𝑇00. (1.3.5.23)

Comparing this with equation (1.3.5.17), it can be seen that 𝜅 = 8𝜋. So, the Einstein field

equations become

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 8𝜋𝑇𝜇𝜈 . (1.3.5.24)

Reinserting 𝐺 and 𝑐, the Einstein field equations become

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 =

8𝜋𝐺

𝑐4
𝑇𝜇𝜈 . (1.3.5.24)

With this form of the Einstein field equations, it is possible to begin to look for solutions.

1.3.6. TOV Equations

 The TOV equations are a solution to the Einstein field equations that describe a

spherically symmetric, isotropic body. One such object is a neutron star in which gravity

is the force binding the object together and neutron degeneracy is the force that is

keeping the object from collapsing further. The derivation of the TOV equations will

29

follow along with the original papers (Oppenheimer & Volkoff 1939; Tolman 1939). To

begin with, consider the line element of a spherically symmetric object which is given by

𝑑𝑠2 = −𝑒𝜈𝑑𝑡2 + 𝑒𝜆𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2. (1.3.6.1)

Here

𝜆 = 𝜆(𝑟), 𝜈 = 𝜈(𝑟).

If there is no transverse stresses and no mass motion, then the stress-energy tensor is

given by

𝑇11 = 𝑇22 = 𝑇33 = 𝑃, 𝑇11 = −𝜌,

with 𝑃 and 𝜌 the pressure and the energy density measured in proper coordinates.

Considering these equations, the Einstein field equations reduce to

8𝜋𝜌 = 𝑒−𝜆 (
𝜆′

𝑟
−
1

𝑟2
) +

1

𝑟2
, (1.3.6.2)

8𝜋𝑃 = 𝑒−𝜆 (
𝑣′

𝑟
+
1

𝑟2
) −

1

𝑟2
, (1.3.6.3)

𝑑𝑃

𝑑𝑟
= −

(𝑃 + 𝜌)

2
𝜈′. (1.3.6.4)

The primes above denote derivatives with respect to 𝑟. The last equation follows from the

continuity equation and demanding that the pressure and density be static and isotropic.

These equations along with the equation of state (EOS) will determine the equilibrium of

the star. At the boundary of the star, 𝑟 = 𝑟𝑏 , there is no matter so 𝑃 = 0. As well as for

𝑟 < 𝑟𝑏 , the solution is dependent on the EOS to connect the pressure with the density, and

it must be the case that 𝑃 > 0.

30

In empty space surrounding the body, the metric should reduce to

Schwarzschild’s exterior solution, which gives

𝑒−𝜆(𝑟) = 1 +
𝐴

𝑟
, (1.3.6.5)

𝑒𝜈(𝑟) = 𝐵 (1 +
𝐴

𝑟
) . (1.3.6.6)

The constants 𝐴 and 𝐵 can be found using the weak-field approximation far from the

object and are found to be 𝐴 = −2𝑚, 𝐵 = 1, 𝑚 being the mass of the object that a distant

observer would measure. Placing these substitutions into equation (1.3.6.3) gives

𝑣′ =
1

𝑟
(1 −

2𝑚

𝑟
)
−1

(
2𝑚

𝑟
+ 8𝜋𝑟2𝑃) . (1.3.6.7)

This combined with equation (1.3.6.4) gives

𝑑𝑃

𝑑𝑟
= −

1

𝑟2
(𝜌 + 𝑃)(𝑚 + 4𝜋𝑟3𝑃) (1 −

2𝑚

𝑟
)
−1

, (1.3.6.8)

which is the TOV equation. This result along with the EOS, which will be described later,

is all that is needed to fully describe the matter distribution around a spherically

symmetric body.

1.3.7. Gravitational Waves

 With a basic understanding of Einstein’s general theory of relativity, one can

begin with creating a description of waves propagating though spacetime. These waves

are the gravitational waves that are seen to propagate outward in numerical simulations,

as well as the waves detected by LIGO (Abbott et al. 2016). Because the sources of these

31

gravitational waves are far away, these waves will be approximated as plane waves. The

derivation of these plane waves will follow along with Eddington (1922).

 To begin this derivation, we start with the metric

𝑔𝜇𝜈 = 𝛾𝜇𝜈 + ℎ𝜇𝜈 . (1.3.7.1)

As defined before, 𝛾𝜇𝜈 is the Minkowski flat spacetime metric and ℎ𝜇𝜈 is the small

perturbation representing gravitational waves. Consider plane waves proceeding with

velocity 𝑉 in the negative x1-direction, so that ℎ𝜇𝜈 are periodic functions of the argument

(𝑥1 + 𝑉𝑥0). Denoting differentiating with respect to this argument by an apostrophe, and

differentiating equation (1.3.7.1) twice, gives

𝜕2𝑔𝜇𝜈

𝜕𝑥1
2 = ℎ𝜇𝜈’’, (1.3.7.2𝑎)

𝜕2𝑔𝜇𝜈

𝜕𝑥1𝜕𝑥0
= 𝑉ℎ𝜇𝜈’’, (1.3.7.2𝑏)

𝜕2𝑔𝜇𝜈

𝜕𝑥0
2 = 𝑉

2ℎ𝜇𝜈’’, (1.3.7.2𝑐)

with all other second derivatives being zero. Recalling the definition of the Riemann

tensor in terms of the metric

𝑅𝜇𝜌𝜈𝜎 =
1

2
(
𝜕2𝑔𝜇𝜈

𝜕𝑥𝜎𝜕𝑥𝜌
+
𝜕2𝑔𝜎𝜌

𝜕𝑥𝜇𝜕𝑥𝜈
−
𝜕2𝑔𝜇𝜎

𝜕𝑥𝜈𝜕𝑥𝜌
−

𝜕2𝑔𝜈𝜌

𝜕𝑥𝜇𝜕𝑥𝜎
).

Substituting equations (1.3.7.2a-c), gives

32

𝑅0101 =
1

2
𝑉2ℎ11′′ − 𝑉 ℎ01′′ +

1

2
ℎ00′′,

𝑅0102 =
1

2
𝑉2ℎ21′′ −

1

2
𝑉 ℎ02′′,

𝑅0103 =
1

2
𝑉2ℎ31′′ −

1

2
𝑉 ℎ03′′,

𝑅0112 =
1

2
𝑉 ℎ21′′ −

1

2
ℎ02′′,

𝑅0113 =
1

2
𝑉 ℎ31′′ −

1

2
ℎ03′′,

(1.3.7.3)

𝑅0123 = 0

𝑅0212 =
1

2
𝑉 ℎ22′′

𝑅0303 =
1

2
𝑉2ℎ33

′′

𝑅0323 = 0

𝑅1223 = 0

𝑅0202 =
1

2
𝑉2ℎ22′′

𝑅0213 =
1

2
𝑉 ℎ32′′

𝑅0312 =
1

2
𝑉 ℎ23′′

𝑅1212 =
1

2
ℎ22′′

𝑅1313 =
1

2
ℎ33′′

𝑅2323 = 0.

𝑅0203 =
1

2
𝑉2ℎ32

′′

𝑅0223 = 0

𝑅0313 =
1

2
𝑉 ℎ33′′

𝑅1213 =
1

2
ℎ32′′

𝑅1323 = 0

To a first order approximation for small quantities, the Einstein tensor is given by

𝐺𝜇𝜈 = 𝑔𝜎𝜌𝑅𝜇𝜈𝜎𝜌. (1.3.7.4)

Taking this and the antisymmetric properties of the tensor give

𝐺00 = −𝑅1010 − 𝑅2020 + 𝑅3030 = 0,

𝐺11 = −𝑅1212 − 𝑅1313 + 𝑅1010 = 0,

𝐺22 = −𝑅1212 − 𝑅2323 + 𝑅2020 = 0,

𝐺33 = −𝑅1313 − 𝑅2323 + 𝑅3030 = 0,

33

𝐺10 = 𝑅1220 + 𝑅1330 = 0,

𝐺12 = −𝑅1323 + 𝑅1020 = 0,

𝐺13 = 𝑅1223 + 𝑅1030 = 0,

𝐺20 = −𝑅1214 + 𝑅2334 = 0,

𝐺23 = −𝑅1213 + 𝑅2030 = 0,

𝐺30 = −𝑅1210 − 𝑅2320 = 0. (1.3.7.5)

Substituting in equation (1.3.7.3), gives

−(𝑉2ℎ11
′′ − 2𝑉ℎ10

′′ + ℎ00
′′) − 𝑉2(ℎ22

′′ + ℎ33
′′) = 0,

−(ℎ22
′′ + ℎ33

′′) + 𝑉2ℎ11
′′ − 2𝑉ℎ10

′′ + ℎ00
′′ = 0,

−ℎ22
′′ + 𝑉2ℎ22

′′ = 0,

−ℎ33
′′ + 𝑉2ℎ33

′′ = 0,

−𝑉(ℎ22
′′ + ℎ33

′′) = 0,

𝑉2ℎ12
′′ − 𝑉ℎ20

′′ = 0,

𝑉2ℎ13
′′ − 𝑉ℎ30

′′ = 0,

−ℎ20
′′ + 𝑉ℎ12

′′ = 0,

−ℎ23
′′ + 𝑉2ℎ23

′′ = 0,

−ℎ30
′′ + 𝑉ℎ13

′′ = 0. (1.3.5.6)

Integrating these equations, which in this case, since ℎ𝜇𝜈 are periodic functions, is akin to

removing the apostrophes, gives the following conditions

ℎ22 + ℎ33 = 0,

(1 − 𝑉2)ℎ22 = 0,

(1 − 𝑉2)ℎ33 = 0,

34

(1 − 𝑉2)ℎ23 = 0,

ℎ20 = 𝑉ℎ12,

ℎ30 = 𝑉ℎ13,

ℎ00 − 2𝑉ℎ10 + 𝑉
2ℎ11 = 0. (1.3.5.7)

These can be separated into different types of waves

 Transverse-transverse (TT) ℎ22, ℎ33, ℎ23

 Longitudinal-transverse (LT) ℎ12, ℎ13, ℎ20, ℎ30

 Longitudinal-longitudinal (LL) ℎ00, ℎ10, ℎ11.

For a transverse-transverse wave, ℎ22, ℎ33, and ℎ23 cannot vanish so it must be the case

that

1 − 𝑉2 = 0. (1.3.5.8)

Which dictates that TT waves must propagate with a velocity of 1, i.e., the speed of light.

 For LL and LT waves ℎ22, ℎ33, and ℎ23 must be zero so there is no equation to

determine 𝑉 independent of the coefficients of the disturbance. Additionally, taking the

conditions of equation (1.3.5.7) into account, the Riemann tensor only contains

components depending on ℎ22, ℎ33, and ℎ23. So, for LL and LT waves, the Riemann

tensor vanishes so the spacetime is flat and waves seem to completely vanish. This shows

that the only type of waves that should propagate through spacetime are transverse-

transverse waves, with the wave travelling in the x-direction and oscillations in the y and

z-directions of the same amplitude that are 180° out of phase with each other. These are

the same type of waves that have been detected by LIGO (Abbott et al. 2016), as well as

the type of waves detected by the thorn WeylScal4 (Zilhão & Löffler 2013).

35

1.4. Numerical Relativity

 In most cases it is not possible to solve the Einstein field equations analytically.

The cases where an analytical solution exists, it is in simple cases like the Schwarzschild

solution which describes an eternal, static, rotation-free black hole (Schwarzschild 1916).

To see solutions that could physically exist, it is usually necessary to solve the Einstein

equations numerically and to step that solution in time to approximate how that system

will evolve; this section deals with that topic through the Arnowitt, Deser, Misner (ADM)

and the Baumgarte, Shapiro, Shibata, Nakamura (BSSN) formalisms of numerical

relativity.

1.4.1. ADM Formulation

 To have a numerical formalism of general relativity, first it is necessary to be able

to split the four dimensions of spacetime into a 3+1 formalism with three spatial

dimensions and one temporal dimension. The slices of space at a given time will be

denoted by Σ𝑡, which are three-dimensional slices of space threaded together through a

dimension of time. It is important to have a way to determine which direction the flow of

time is facing, i.e., which direction is normal to the three dimensions of space, to have a

way to flow from one slice Σ𝑡 to a later slice Σ𝑡+𝑑𝑡. For that, define the 1-form

Ω𝜇 = ∇𝜇𝑡. (1.4.1.1)

This is a vector that is normal to the three spatial dimensions since it contains a derivative

of time. To normalize this vector, it will be multiplied by the normalization factor 𝛼 to

get the normal unit vector

𝑛𝜇 = 𝛼Ω𝜇, (1.4.1.2)

36

where 𝛼 can be shown to be related to the metric via

𝛼2 =
1

𝑔00
, (1.4.1.3)

meaning that 𝛼 describes how time evolves for each point of the three-dimensional slice.

This normalization constant, 𝛼, is known as the lapse function and it is a vital component

in evolving a system forward in time. Using this normal vector, it is possible to introduce

the time projection operator

𝑁𝜈
𝜇
= 𝑛𝜇𝑛𝜈 . (1.4.1.4)

In addition to the time projection operator, a space projection operator can be formed

from this normal vector, which takes the form

𝑃𝜈
𝜇
= 𝛿𝜈

𝜇
+ 𝑛𝜇𝑛𝜈 . (1.4.1.4)

With these projection operators, another valuable tool in the 3+1 formalism of numerical

relativity is what is known as the shift vector 𝛽. Using the lapse function and the shift

vector, the time vector can be written as

𝑡𝜇 = 𝛼𝑛𝜇 + 𝛽𝜇. (1.4.1.5)

With this definition of a time vector, 𝛼 describes the temporal distance between the two

slices and 𝛽 describes how the spatial coordinates vary from slice to slice.

 With the lapse function, shift vector, and projection operators as described, it is

possible to look at two different curvatures, the intrinsic and extrinsic curvature. The

intrinsic curvature is the space-space components of the metric tensor, and they are

related through

37

𝛾𝜇𝜈 = 𝑃𝜈
𝛿𝑃𝜇

𝜀𝑔𝛿𝜀 = 𝑔𝜇𝜈 + 𝑛𝜇𝑛𝜈 . (1.4.1.6)

The extrinsic curvature is related to the normal vector and is given by

𝐾𝜇𝜈 = −𝑃𝜇
𝛼∇𝛼𝑛𝜈 = −∇𝜇𝑛𝜈 − 𝑛𝜇𝑛

𝛼∇𝛼𝑛𝜈 . (1.4.1.7)

Taking the Lie derivative of the spatial metric along the normal vector gives

ℒ�⃗⃗�𝛾𝜇𝜈 = 𝑛𝜎∇𝜎𝛾𝜇𝜈 + 𝛾𝜎𝜈∇𝜇𝑛
𝜎 + 𝛾𝜇𝜎∇𝜈𝑛

𝜎,

= 𝑛𝜎∇𝜎(𝑛𝜇𝑛𝜈) + 𝛾𝜎𝜈∇𝜇𝑛
𝜎 + 𝛾𝜇𝜎∇𝜈𝑛

𝜎,

= 𝑛𝜎𝑛𝜈∇𝜎𝑛𝜇 + 𝑛
𝜎𝑛𝜇∇𝜎𝑛𝜈 + 𝛾𝜎𝜈∇𝜇𝑛

𝜎 + 𝛾𝜇𝜎∇𝜈𝑛
𝜎,

ℒ�⃗⃗�𝛾𝜇𝜈 = −2𝐾𝜇𝜈 . (1.4.1.8)

To get this in a form that is more useful, it is important to create a basis, 𝑒(𝑖)
𝑗

 with 𝑖 =

1,2,3 in the spatial slices. The basis is defined such that

Ω𝑗𝑒(𝑖)
𝑗
= 0. (1.4.1.9)

Inserting equation (1.4.1.2) gives

Ω𝜇𝑒(𝑖)
𝜇
= −

1

𝛼
𝑛𝜇𝑒(𝑖)

𝜇
⇒ 𝑛𝑖 = 0. (1.4.1.10)

The time basis was defined above in equation (1.4.1.5), which gives

𝑡𝜇Ω𝜇 = 𝛼𝑛𝜇Ω𝜇 + 𝛽
𝜇Ω𝜇 = 1 ⇒ ‖𝑡𝜇‖ = (1,0,0,0). (1.4.1.11)

This gives

ℒ𝑡 = 𝜕𝑡 . (1.4.1.12)

With this new information, equation (1.4.1.5) can now be written as

38

𝑛𝜇 =
1

𝛼
(𝑡𝜇 − 𝛽𝜇). (1.4.1.13)

Now the metric can be written as

‖𝑔𝜇𝜈‖ = (
−𝛼 + 𝛽𝑙𝛽

𝑙 𝛽𝑖
𝛽𝑗 𝛾𝑖𝑗

) . (1.4.1.14)

Taking into consideration equation (1.4.1.13), the Lie derivative of the spatial metric

becomes

ℒ�⃗⃗�𝛾𝑖𝑗 =
1

𝛼
(ℒ𝑡 − ℒ�⃗⃗⃗�) 𝛾𝑖𝑗, (1.4.1.15)

and the Lie derivative of the spatial metric with respect to the shift vector is

ℒ
�⃗⃗⃗�
𝛾𝑖𝑗 = 𝛽𝑘𝜕𝑘𝛾𝑖𝑗 + 𝛾𝑘𝑗𝜕𝑖𝛽

𝑘 + 𝛾𝑖𝑘𝜕𝑗𝛽
𝑘. (1.4.1.16)

This can be generalized by replacing the partial derivatives with covariant derivatives

with respect to the spatial metric, which will be denoted by 𝐷𝑖. Then the Lie derivative of

the spatial metric becomes

ℒ
�⃗⃗⃗�
𝛾𝑖𝑗 = 𝛽

𝑘𝐷𝑘𝛾𝑖𝑗 + 𝛾𝑘𝑗𝐷𝑖𝛽
𝑘 + 𝛾𝑖𝑘𝐷𝑗𝛽

𝑘,

= 𝐷𝑖𝛾𝑘𝑗𝛽
𝑘 + 𝐷𝑗𝛾𝑖𝑘𝛽

𝑘,

= 𝐷𝑖𝛽𝑗 + 𝐷𝑗𝛽𝑖. (1.4.1.17)

Combining this with equations (1.4.1.15) and (1.4.1.8), gives

𝐾𝑖𝑗 =
1

2𝛼
(−𝜕𝑡𝛾𝑖𝑗 +𝐷𝑖𝛽𝑗 + 𝐷𝑗𝛽𝑖). (1.4.1.18)

Taking only the spatial components of this gives an equation for how the spatial metric

will evolve in time

39

𝜕𝑡𝛾𝑖𝑗 = −2𝛼𝐾𝑖𝑗 + 𝐷𝑖𝛽𝑗 + 𝐷𝑗𝛽𝑖. (1.4.1.19)

To get the other evolution equations, one would start applying the projection operators on

the Einstein equation. To begin, consider the three unique projections of the Riemann

tensor

𝑃𝛼
𝜎𝑃𝛽

𝜏𝑃𝜇
𝛾
𝑃𝜈
𝛿 𝑅𝜎𝜏𝛾𝛿
(4) ,

𝑛𝛿𝑃𝛼
𝜎𝑃𝛽

𝜏𝑃𝜇
𝛾

𝑅𝜎𝜏𝛾𝛿
(4) ,

𝑛𝜏𝑛𝛿𝑃𝛼
𝜎𝑃𝛽

𝛾
𝑅𝜎𝜏𝛾𝛿

(4) .

Here 𝑅𝜎𝜏𝛾𝛿
(4) is used to denote the four-dimensional Riemann tensor versus the three-

dimensional Riemann tensor that will be used in the 3+1 equations. These three equations

simplify to

𝑃𝛼
𝜎𝑃𝛽

𝜏𝑃𝜇
𝛾
𝑃𝜈
𝛿 𝑅𝜎𝜏𝛾𝛿
(4) = 𝑅𝜎𝜏𝛾𝛿

(3) + 𝐾𝛼𝜇𝐾𝛽𝜈 + 𝐾𝛼𝜈𝐾𝛽𝜇, (1.4.1.20)

𝑛𝛿𝑃𝛼
𝜎𝑃𝛽

𝜏𝑃𝜇
𝛾

𝑅𝜎𝜏𝛾𝛿
(4) = 𝐷𝛽𝐾𝛼𝜇 − 𝐷𝛼𝐾𝛽𝜇, (1.4.1.21)

𝑛𝜏𝑛𝛿𝑃𝛼
𝜎𝑃𝛽

𝛾
𝑅𝜎𝜏𝛾𝛿

(4) = ℒ�⃗⃗�𝐾𝛼𝛽 +
1

𝛼
𝐷𝛼𝐷𝛽𝛼 + 𝐾

𝜎𝛽𝐾𝛼𝜎. (1.4.1.22)

Multiplying the first equation twice by the spatial metric gives

𝛾𝛼𝜇𝛾𝛽𝜈𝑃𝛼
𝜎𝑃𝛽

𝜏𝑃𝜇
𝛾
𝑃𝜈
𝛿 𝑅𝜎𝜏𝛾𝛿
(4) = 𝛾𝜎𝛾𝛾𝜏𝛿 𝑅𝜎𝜏𝛾𝛿

(4) ,

= 𝑅
(3) + 𝐾2 − 𝐾𝜇𝜈𝐾

𝜇𝜈 . (1.4.1.23)

The first equation’s right-hand side can also be written as

𝛾𝜎𝛾𝛾𝜏𝛿 𝑅𝜎𝜏𝛾𝛿
(4) = (𝑔𝜎𝛾 + 𝑛𝜎𝑛𝛾)(𝑔𝜏𝛿 + 𝑛𝜏𝑛𝛿) 𝑅𝜎𝜏𝛾𝛿

(4) ,

= 2𝑛𝜇𝑛𝜈 𝑅𝜇𝜈
(4) + 𝑅

(4) . (1.4.1.24)

40

These expressions will be used later. Similarly, the stress-energy tensor can be projected

into

𝑛𝜇𝑛𝜈𝑇𝜇𝜈 = 𝜌, (1.4.1.25)

𝑃𝜇
𝑖𝑛𝜈𝑇

𝜇𝜈 = 𝑗𝑖, (1.4.1.26)

𝑃𝜇
𝑖𝑃𝜈

𝑗
𝑇𝜇𝜈 = 𝑆𝑖𝑗 . (1.4.1.27)

Multiplying the Einstein tensor by 2𝑛𝜇𝑛𝜈 gives

2𝑛𝜇𝑛𝜈𝐺𝜇𝜈 = 2𝑛
𝜇𝑛𝜈 (𝑅𝜇𝜈

(4) −
1

2
𝑅

(4) 𝑔𝜇𝜈) ,

= 2𝑛𝜇𝑛𝜈 𝑅𝜇𝜈
(4) + 𝑅

(4) . (1.4.1.28)

Combining this with equation (1.4.1.23) gives

2𝑛𝜇𝑛𝜈𝐺𝜇𝜈 = 𝑅
(3) + 𝐾2 − 𝐾𝜇𝜈𝐾

𝜇𝜈 . (1.4.1.29)

Recall the Einstein field equations are 𝐺𝜇𝜈 = 8𝜋𝑇𝜇𝜈, and with the time-time projection of

the stress-energy tensor, equation (1.4.1.29) becomes

𝑅
(3) + 𝐾2 − 𝐾𝜇𝜈𝐾

𝜇𝜈 = 16𝜋𝜌. (1.4.1.30)

This is not a time evolution equation but is a conservation equation that is known as the

Hamiltonian Constraint.

 Repeating the same procedure with equations (1.4.1.21) and (1.4.1.22) gives

another constraint equation, the momentum constraint, as well as another evolution

equation

𝐷𝑖𝐾 − 𝐷𝑗𝐾𝑖
𝑗
= 8𝜋𝑗𝑖, (1.4.1.31)

41

𝜕𝑡𝐾𝑖𝑗 = −𝐷𝑖𝐷𝑗𝛼 + 𝛼(𝑅𝑖𝑗
(3) − 2𝐾𝑖𝑘𝐾𝑗

𝑘 + 𝐾𝐾𝑖𝑗) − 8𝜋𝛼 (𝑆𝑖𝑗 −
1

2
(𝑆 − 𝜌))

+𝛽𝑘𝐷𝑘𝐾𝑖𝑗 + 𝐾𝑖𝑘𝐷𝑖𝛽
𝑘 +𝐾𝑘𝑗𝐷𝑗𝛽

𝑘. (1.4.1.32)

This is the last of the evolution equations. To recap, the evolution equations are

𝜕𝑡𝛾𝑖𝑗 = −2𝛼𝐾𝑖𝑗 + 𝐷𝑖𝛽𝑗 +𝐷𝑗𝛽𝑖,

𝜕𝑡𝐾𝑖𝑗 = −𝐷𝑖𝐷𝑗𝛼 + 𝛼(𝑅𝑖𝑗
(3) − 2𝐾𝑖𝑘𝐾𝑗

𝑘 + 𝐾𝐾𝑖𝑗) − 8𝜋𝛼 (𝑆𝑖𝑗 −
1

2
(𝑆 − 𝜌)) + 𝛽𝑘𝐷𝑘𝐾𝑖𝑗

+ 𝐾𝑖𝑘𝐷𝑖𝛽
𝑘 + 𝐾𝑘𝑗𝐷𝑗𝛽

𝑘.

Along with the Hamiltonian constraint and the momentum constraint

𝑅
(3) + 𝐾2 − 𝐾𝑖𝑗𝐾

𝑖𝑗 = 16𝜋𝜌,

8𝜋𝑗𝑖 = 𝐷𝑖𝐾 − 𝐷𝑗𝐾𝑖
𝑗
,

these make up the ADM formulation of numerical relativity. However, these are unstable

and as such do not make a particularly good method for creating numerical relativistic

simulations. A better formulation to create simulations is the BSSN formulation

discussed in the next section.

1.4.2. BSSN Formulation

 The BSSN formulism of numerical relativity is based on the ADM formalism.

The necessity of this formalism stems from the fact that the evolution equations as well

as the constraint equations both contain second derivatives of the metric. To begin to

derive the equations of the BSSN formalism it is useful to rewrite the extrinsic curvature

as a sum of its trace and its traceless parts

42

𝐾𝑖𝑗 = 𝐴𝑖𝑗 +
1

3
𝛾𝑖𝑗𝐾. (1.4.2.1)

Taking the determinants of equations (1.4.1.19) and (1.4.1.32) gives

𝜕𝑡𝛾
1
2 = −𝛼𝐾 + 𝐷𝑖𝛽

𝑖, (1.4.2.2)

𝜕𝑡 = −𝐷2𝛼 + 𝛼 (𝐾𝑖𝑗𝐾𝑖𝑗 + 4𝜋(𝜌 + 𝑆)) + 𝛽
𝑖𝐷𝑖𝐾. (1.4.2.3)

The spatial metric is rewritten as

�̅�𝑖𝑗 = 𝑒
−4Φ𝛾𝑖𝑗, (1.4.2.4)

where Φ is the conformal factor and �̅�𝑖𝑗 is the conformal metric, with the requirement

that �̅� = 1. The same can be done with the trace-free part of the extrinsic curvature

�̅�𝑖𝑗 = 𝑒
−4Φ𝐴𝑖𝑗 . (1.4.2.5)

Another object that will be useful later is the connection coefficient in terms of the

conformal transformation. Substituting equation (1.4.2.4) into the definition of the

connection coefficient equation (1.3.3.6), shows that, in three dimensions, the connection

coefficient must transform according to

Γ𝑗𝑘
𝑖 = Γ̅𝑗𝑘

𝑖 + 2(𝛿𝑗
𝑖�̅�𝑘Φ+ 𝛿𝑘

𝑖 �̅�𝑗Φ− �̅�𝑗𝑘�̅�
𝑖𝑙�̅�𝑙Φ), (1.4.2.6)

with �̅� being the three-dimensional conformal covariant derivative. This can be inserted

into the definition of the Ricci tensor, equation (1.3.4.9), to give

𝑅𝑖𝑗 = �̅�𝑖𝑗 − 2(�̅�𝑖�̅�𝑗Φ+ �̅�𝑖𝑗�̅�
𝑙𝑚�̅�𝑙�̅�𝑚Φ) + 4 ((�̅�𝑖Φ)(�̅�𝑗Φ) − �̅�𝑖𝑗�̅�

𝑙𝑚(�̅�𝑙Φ)(�̅�𝑚Φ)) . (1.4.2.7)

Taking the trace of equations (1.4.2.2) and (1.4.2.3) gives the expressions

43

𝜕𝑡Φ = −
1

6
𝛼𝐾 +

1

6
𝛽𝑖𝜕𝑖Φ+

1

6
𝜕𝑖𝛽

𝑖, (1.4.2.8)

𝜕𝑡𝐾 = −𝛾𝑖𝑗𝐷𝑖𝐷𝑗𝛼 + 𝛼 (�̅�𝑖𝑗�̅�
𝑖𝑗 +

1

3
𝐾2) + 4𝜋𝛼(𝜌 + 𝑆) + 𝛽𝑖𝜕𝑖𝐾. (1.4.2.9)

Subtracting these equations from the evolution equations (1.4.1.19) and (1.4.1.32) leaves

the trace-free part of the evolution equations for �̅�𝑖𝑗 and �̅�𝑖𝑗

𝜕𝑡�̅�𝑖𝑗 = −2𝛼�̅�𝑖𝑗 + 𝛽
𝑘𝜕𝑘�̅�𝑖𝑗 + �̅�𝑖𝑘𝜕𝑗𝛽

𝑘 + �̅�𝑘𝑗𝜕𝑖𝛽
𝑘 −

2

3
�̅�𝑖𝑗𝜕𝑘𝛽

𝑘, (1.4.2.10)

𝜕𝑡�̅�𝑖𝑗 = 𝑒
−4Φ (−(𝐷𝑖𝐷𝑗𝛼)

𝑇𝐹
+ 𝛼(𝑅𝑖𝑗

𝑇𝐹 − 8𝜋𝑆𝑖𝑗
𝑇𝐹)) + 𝛼(𝐾�̅�𝑖𝑗 − 2�̅�𝑖𝑙�̅�𝑗

𝑙)

+𝛽𝑘𝜕𝑘�̅�𝑖𝑗 + �̅�𝑖𝑘𝜕𝑗𝛽
𝑘 + �̅�𝑘𝑗𝜕𝑖𝛽

𝑘 −
2

3
�̅�𝑖𝑗𝜕𝑘𝛽

𝑘, (1.4.2.11)

where the superscript 𝑇𝐹 indicates the trace-free part of the tensor, e.g., 𝑅𝑖𝑗
𝑇𝐹 = 𝑅𝑖𝑗 −

1

3
𝛾𝑖𝑗𝑅. Additionally, a new variable can be defined, which is the conformal connection

coefficient

Γ̅𝑖 ≡ �̅�𝑗𝑘Γ̅𝑗𝑘
𝑖 = −𝜕𝑗�̅�

𝑖𝑗, (1.4.2.12)

where the last part of the equality holds in Cartesian coordinates when �̅� = 1. With this

definition of the conformal connection coefficient, the conformal Ricci tensor can be

written as

�̅�𝑖𝑗 = −
1

2
�̅�𝑙𝑚𝜕𝑚𝜕𝑙�̅�𝑖𝑗 + �̅�𝑘𝑖𝜕𝑗Γ̅

𝑘 + �̅�𝑘𝑗𝜕𝑖Γ̅
𝑘 + Γ̅𝑘Γ̅𝑖𝑗𝑘 + Γ̅

𝑘Γ̅𝑗𝑖𝑘

+�̅�𝑙𝑚(2Γ̅𝑙𝑖
𝑘Γ̅𝑗𝑘𝑚 + 2Γ̅𝑙𝑗

𝑘Γ̅𝑖𝑘𝑚 + Γ̅𝑖𝑚
𝑘 Γ̅𝑘𝑙𝑗). (1.4.2.13)

44

Taking the time derivative of equation (1.4.2.12) and using equation (1.4.2.10), one

arrives at

𝜕𝑡Γ̅
𝑖 = −𝜕𝑗 (2𝛼�̅�

𝑖𝑗 − 2�̅�𝑚𝑗𝜕𝑚𝛽
𝑖 − 2�̅�𝑚𝑖𝜕𝑚𝛽

𝑗 +
2

3
�̅�𝑖𝑗𝜕𝑙𝛽

𝑙 + 𝛽𝑙𝜕𝑙�̅�
𝑖𝑗) . (1.4.2.14)

Taking this along with equation (1.4.1.31) gives

𝜕𝑡Γ̅
𝑖 = −2�̅�𝑖𝑗𝜕𝑗𝛼 + 2𝛼 (Γ̅𝑗𝑘

𝑖 �̅�𝑘𝑗 −
2

3
�̅�𝑖𝑗𝜕𝑗𝐾 − 8𝜋�̅�

𝑖𝑗𝑆𝑗 + 6�̅�
𝑖𝑗Φ) + 𝛽𝑗𝜕𝑗Γ̅

𝑖 − Γ̅𝑖𝜕𝑗𝛽
𝑗

+
2

3
Γ̅𝑖𝜕𝑗𝛽

𝑗 +
1

3
�̅�𝑙𝑖𝜕𝑙𝜕𝑗𝛽

𝑗 + �̅�𝑙𝑗𝜕𝑗𝜕𝑙𝛽
𝑖. (1.4.2.15)

With this, the evolution equations for the BSSN formulation are

𝜕𝑡Φ = −
1

6
𝛼𝐾 +

1

6
𝛽𝑖𝜕𝑖Φ+

1

6
𝜕𝑖𝛽

𝑖,

𝜕𝑡𝐾 = −𝛾
𝑖𝑗𝐷𝑖𝐷𝑗𝛼 + 𝛼 (�̅�𝑖𝑗�̅�

𝑖𝑗 +
1

3
𝐾2) + 4𝜋𝛼(𝜌 + 𝑆) + 𝛽𝑖𝜕𝑖𝐾,

𝜕𝑡�̅�𝑖𝑗 = −2𝛼�̅�𝑖𝑗 + 𝛽
𝑘𝜕𝑘�̅�𝑖𝑗 + �̅�𝑖𝑘𝜕𝑗𝛽

𝑘 + �̅�𝑘𝑗𝜕𝑖𝛽
𝑘 −

2

3
�̅�𝑖𝑗𝜕𝑘𝛽

𝑘,

𝜕𝑡�̅�𝑖𝑗 = 𝑒
−4Φ (−(𝐷𝑖𝐷𝑗𝛼)

𝑇𝐹
+ 𝛼(𝑅𝑖𝑗

𝑇𝐹 − 8𝜋𝑆𝑖𝑗
𝑇𝐹)) + 𝛼(𝐾�̅�𝑖𝑗 − 2�̅�𝑖𝑙�̅�𝑗

𝑙) + 𝛽𝑘𝜕𝑘�̅�𝑖𝑗

+ �̅�𝑖𝑘𝜕𝑗𝛽
𝑘 + �̅�𝑘𝑗𝜕𝑖𝛽

𝑘 −
2

3
�̅�𝑖𝑗𝜕𝑘𝛽

𝑘,

𝜕𝑡Γ̅
𝑖 = −2�̅�𝑖𝑗𝜕𝑗𝛼 + 2𝛼 (Γ̅𝑗𝑘

𝑖 �̅�𝑘𝑗 −
2

3
�̅�𝑖𝑗𝜕𝑗𝐾 − 8𝜋�̅�

𝑖𝑗𝑆𝑗 + 6�̅�
𝑖𝑗Φ) + 𝛽𝑗𝜕𝑗Γ̅

𝑖 − Γ̅𝑖𝜕𝑗𝛽
𝑗

+
2

3
Γ̅𝑖𝜕𝑗𝛽

𝑗 +
1

3
�̅�𝑙𝑖𝜕𝑙𝜕𝑗𝛽

𝑗 + �̅�𝑙𝑗𝜕𝑗𝜕𝑙𝛽
𝑖.

These equations are much more stable than the regular ADM equations and these form

the basis of most numerical simulations of general relativity.

45

1.5. Neutron Stars

 Neutron stars are remnants of stars that have exhausted their fuel supply and have

reached the end of their lives. Neutron stars are among the densest objects in the universe

with mass on the order of 1 𝑀☉ and a size on the order of 10 𝑘𝑚 (Lattimer & Prakash

2004). These objects are formed when a star of moderate size stops fusing material and

gravitation is left unmatched and the object collapses down until the degenerate pressure

of neutrons is able to halt the collapse. These objects are massive enough and compact

enough that when they are orbiting in tight orbits around each other, they should create

gravitational waves that are able to be detected. Gravitational waves from BNS were

confirmed to exist with the detection of GW170817A (Pian 2021). To model the

gravitational waves from an event like this, a relativistic simulation must be used, but

before that can be done it is necessary to review some properties of neutron stars.

1.5.1. Equations of State

 Along with the TOV equations from section 1.3.6, the EOS is all that is needed to

describe the equilibrium of matter inside a neutron star (Oppenheimer & Volkoff 1939).

For an EOS to be useful, the number of parameters in the equation needs to be smaller

than the number of properties that are related to the EOS, but large enough to provide an

accurate approximation to the body as a whole. The best type of EOS that fits these

criteria is a piecewise polytrope. Since the temperature of a neutron star is below the

Fermi temperature of neutrons, the star can be treated as a cold body (Read et al. 2009a).

The EOS will take the form

𝑃(𝜌) = 𝐾𝜌Γ, (1.5.1.1)

46

with 𝑃 being the pressure, 𝐾 being a constant of proportionality, 𝜌 being the density, and

Γ being the adiabatic index. For this thesis, the overall EOS will be a piecewise polytrope

made up of seven pieces, four for the crust of the neutron star, and three for the core

(Read et al. 2009a). An example of values used in the EOS is given in section 2.1 in the

included par_eos1.d file. Additionally, a graph of the piecewise polytropic EOS can be

seen below in figure 1.

Figure 1: Piecewise polytropic equation of state with seven pieces used in the cases studied.

1.5.2. Bounds of Mass

 As stated above, the mass of neutron stars is on the order of 1 𝑀☉ with the lower

bound on the mass being the Chandrasekhar limit of 1.40 𝑀☉ (Mazzali et al. 2007) and

the highest observed mass being 2.08 𝑀☉ (Fonseca et al. 2021). These are the lower and

upper bounds of the neutron stars used in this thesis, as well as an additional mass of

1.74 𝑀☉ used as an intermediate mass.

47

1.5.3. Binary Neutron Stars

 Neutron stars have two primary methods to form binaries like those studied for

this thesis. The first is explored in Renzo et al. (2019) and consists of binary neutron stars

(BNS) that formed from massive stars that have exhausted their fuel and have left behind

the neutron star remnants that remained locked in a binary throughout this process. High

mass stars are likely to be found in binary systems (Sana et al. 2012), so it would be

natural to assume that a large fraction of these systems evolve into BNS.

 Another possibility is explored in Ye et al. (2019), which looked at the formation

of neutron stars in globular clusters where one star is ejected during the first supernova

blast and a binary pair is formed later via tidal capture. This process of tidal capture of

neutron stars that formed in globular clusters is explored in Lee et al. (2010). Although

the process by which BNS form is not completely understood, for the purpose of this

thesis it is more important to understand how they evolve and eventually merge.

1.6. Lorene

 The Lorene software package, which stands for Langage Object pour la RElativité

NumériquE, is a set of C++ classes that are used to solve various problems in numerical

relativity. This program is used to create the initial conditions of BNS that is then inserted

into the Einstein Toolkit for further evolution. Lorene is a system that provides tools to

solve partial differential equations (PDEs) though multi-domain spectral methods

(Grandclément & Novak 2009). To understand how Lorene can solve PDEs via spectral

methods, it is first important to go over spectral methods.

48

1.6.1. Spectral Methods

 To get a basic understanding of spectral methods, consider a function 𝑓 that lies

within the domain 𝔻. The most straight forward approximation of the function’s

derivative is through finite-difference methods, where first a grid is defined with

{𝑥𝑖}𝑖=0,1,...,𝑁 ⊂ 𝔻, (1.6.1.1)

that is composed of 𝑁 + 1 points in an interval and the function 𝑓 is defined by its 𝑁 + 1

values on the grid points

{𝑓𝑖 = 𝑓(𝑥𝑖)}𝑖=0,1,...,𝑁. (1.6.1.2)

With this way of defining the function 𝑓, the derivative of the function is approximated

by

𝑓𝑖
′ = 𝑓′(𝑥𝑖) ≃

𝑓𝑖+1 − 𝑓𝑖
𝑥𝑖+1 − 𝑥𝑖

. (1.6.1.3)

This is the method of finite-differences. An alternative way of approximating a solution

to a PDE is through spectral methods. In this method the function 𝑓 is not represented by

its values on a finite number of grid points, but instead it is defined by using coefficients

{𝑐𝑖}𝑖=0,1,...,𝑁 in a basis of known functions {Φ𝑖}𝑖=0,1,...,𝑁. The function can be

approximated by

𝑓(𝑥) ≃∑𝑐𝑖Φ𝑖(𝑥)

𝑁

𝑖=0

. (1.6.1.4)

For spectral methods, the trial functions are globally smooth over the entire domain 𝔻.

Different choices of test functions can be used within spectral methods with the most

49

common being truncated Fourier series, spherical harmonics, or orthogonal families of

polynomials.

1.6.2. Compact Binaries

 For the way that Lorene handles compact binaries, in this case BNS, a few

approximations need to be made. First, systems containing compact binaries are known to

emit gravitational waves, so no closed orbits can exist, and objects will follow spiral-like

trajectories. However, in the regime where objects are still relatively far apart, the real

trajectory can be approximated with a series of closed orbits. To avoid any diverging

quantities, an additional demand must be put into place − the spatial metric must be

conformally flat. However, even in the case of a single rotating black hole this condition

is not true, but comparisons with post-Newtonian results or non-conformally-flat results

show this approximation is relatively good (Grandclément & Novak 2009). However, the

conformally flat assumption discards all reference to gravitational waves, so this

assumption cannot be used during evolution, only during the setup of initial conditions.

 With these conditions in place Einstein’s equations reduce to a set of five elliptic

equations for the lapse, the conformal factor, and the shift vector, with the motion of the

fluid being described by another elliptic function for the potential of the flow. These

combined with an EOS gives the evolutionary sequence.

 In the case of a system with two neutron stars, two sets of domains are used, each

centered on one of the stars. Each set consists of sphere-like domains that extend from the

surface of the star to infinity, and the functions are expanded in terms of spherical

harmonics with respect to the angles (𝜃,𝜙) and Chebyshev polynomials with respect to

50

the radial coordinates. For a more in-depth description of the iterative process to generate

data used in Lorene, refer to Gourgoulhon et al. (2001).

 Additionally, in the case of a compact binary it is useful to split some of the

quantities that are of interest to create two local versions that are centered on each body

and can then be recombined to create a global quantity (Grandclément et al. 2002; Löffler

et al. 2012). Some of these quantities that will be useful at a later point are

𝛼 = 1 + 𝛼(1) + 𝛼(2), (1.6.2.1)

𝜙 = 1 + 𝜙(1) + 𝜙(2), (1.6.2.2)

𝛽𝑖 = 𝛽(1)
𝑖 + 𝛽(2)

𝑖 , (1.6.2.3)

𝐾𝑖𝑗 = 𝐾(1)
𝑖𝑗
+ 𝐾(2)

𝑖𝑗
, (1.6.2.4)

with the subscript (1) denoting the quantity around the first star and (2) denoting the

quantity around the second star.

1.7. Einstein Toolkit

 The Einstein Toolkit (Löffler et al. 2012) is a community driven program used to

perform relativistic simulations that are too complex for an analytical solution to exist.

Simulations that are ran within the Einstein Toolkit are based on the ADM and BSSN

formulations of numerical relativity (Löffler et al. 2012).

1.7.1. Cactus

 The Einstein Toolkit is built upon the Cactus framework (Löffler et al. 2012),

which means that it is built to be completely modular, giving the user the ability to

customize how much of the program is used in each simulation. The Cactus framework

51

consists of two main parts, the ‘flesh’ which provides the infrastructure to build

simulations out of independently developed modules and to facilitate communication

between these modules. In this framework the modules are referred to as ‘thorns’ and

make up the bulk of any simulation.

1.7.2. Thorns

 In addition to the ‘flesh’ of the Cactus framework, built on top of it are a variety

of thorns (Allen et al.). There are many thorns that the Einstein Toolkit relies upon and

many more that add a variety of physics to the numerical system being simulated. This

section focuses on a few of the thorns that are important for the binary neutron star

simulations that were explored for this thesis.

1.7.2.1. ADMBase

 The thorn ADMBase provides the basic ADM variables that are used in the 3+1

formalism that the Einstein Toolkit is familiar with. These basic variables consist of:

Quantity Symbol Variable Name

3-metric tensor 𝑔𝑖𝑗 gxx, gxy, gxz, gyy, gyz,

gzz

Extrinsic curvature tensor 𝐾𝑖𝑗 kxx, kxy, kxz, kyy, kyz,

kzz

Lapse function 𝛼 alp

Shift vector 𝛽𝑖 betax, betay, betaz

Table 1: ADMBase defined variables

This thorn provides the core infrastructure for thorns implementing general relativity on a

3D grid in the 3+1 formalism. These variables are used to communicate between thorns

52

providing the initial data, evolution methods, and analysis routines for the 3+1 formalism.

Additionally, the variables can be used as a mechanism to interact with alternative

formalisms, as long as the routines can be written to transform the alternative variables

into these 3+1 variables (Goodale).

1.7.2.2. ADMCoupling

 The thorn ADMCoupling allows for seamless coupling of evolution and analysis

thorns to any thorns which contribute matter terms to the stress-energy tensor, 𝑇𝜇𝜈. By

making a spacetime thorn compatible with this thorn, it can know about the variables in

all matter thorns that are also compatible with ADMCoupling. This avoids explicit

dependencies between the spacetime and matter evolution thorns (Hawke & Rideout).

1.7.2.3. AHFinderDirect

 The thorn AHFinderDirect locates apparent horizons in a numerically

computed slice using a direct method. This direct method uses the fact that in terms of the

usual 3+1 variables, an apparent horizon satisfies the equation

𝜃 ≡ D𝑖𝑛
𝑖 + 𝐾𝑖𝑗𝑛

𝑖𝑛𝑗 − 𝐾 = 0, (1.7.2.3.1)

where 𝑛𝑖 is the outward-pointing unit normal to the apparent horizon, and D𝑖 is the

covariant derivative associated with the 3-metric 𝛾𝑖𝑗 in the slice. As such, this thorn

requires the usual Cactus 3-metric, 𝛾𝑖𝑗, and the extrinsic curvature tensor, 𝐾𝑖𝑗. However,

there may be several such surfaces, some nested inside others. In that case the apparent

horizon is an outermost marginally trapped surface (Thornburg).

53

1.7.2.4. Carpet

 Carpet is a fixed mesh refinement (FMR) driver for Cactus. FMR, also known

as box-in-box, is a way to increase the local resolution in unigrid applications, while

retaining the unigrid character of an application. Several grids of varying sizes are

overlaid upon each other, where the coarsest grid has the largest extent. The way this

works is by creating a coarse grid that encloses the entire domain with successively finer

grids which overlay the coarse grid at the locations where a higher resolution is needed.

The coarser grids then provide the boundary conditions to the finer grids.

This allows the application to benefit from the higher resolution of the smaller

grids where more interesting physics is taking place, while keeping the outer boundary

far out at the same time. The biggest advantage of FMR is that it needs far fewer

resources than globally increasing the resolution. To increase the resolution in a unigrid

application by a factor of two requires a factor of eight more storage in three dimensions,

so with this mesh refinement system there is the possibility of finer resolution without the

full cost of globally increasing the resolution (Schnetter).

1.7.2.5. EOS_Omni

 The EOS_Omni thorn provides a unified EOS and implements multiple analytic

EOSs. The EOSs that are used in this thorn are the polytropic EOS, the gamma-law EOS,

and a hybrid EOS consisting of a n-piece piecewise-polytrope with a thermal gamma-law

component. Additionally, the EOS_Omni assumes nuclear statical equilibrium with rest-

mass density 𝜌, a specific internal energy 𝜖, and electron fraction 𝑌𝑒 being the

independent variables (Ott & Schnetter 2013).

54

1.7.2.6. GRHydro

 The GRHydro thorn is a general-relativistic three-dimensional hydrodynamics

code. This thorn uses the hydro variables defined in HydroBase and provides its own

“conserved” hydro variables and methods to solve them. However, it does not provide

any information about initial a data or the equations of state, so other thorns are needed.

 The equations of general relativistic hydrodynamics can be written in the flux

conservative form

𝜕𝑡𝑞 + 𝜕𝑖𝑓
𝑖(𝑞) = 𝑠(𝑞), (1.7.2.6.1)

where 𝑞 is a set of conserved variables, 𝑓𝑖(𝑞) are the fluxes, and 𝑠(𝑞) is the source term.

The eight conserved variables are labeled as: 𝐷, the generalized particle number density;

𝑆𝑖, the generalized momenta in each direction; 𝜏, an internal energy term; and ℬ𝑘, the

densitized magnetic field. These conserved variables are composed from a set of

primitive variables: 𝜌, the rest-mass density; 𝑃, the pressure; 𝑣𝑖, the fluid 3-velocities; 𝜖,

the specific internal energy; 𝐵𝑘, the magnetic field in the lab frame; and 𝑊, the Lorentz

factor. The conserved variables are related to the primitive variables through

𝐷 = √𝛾𝑊𝜌, (1.7.2.6.2)

𝑆𝑖 = √𝛾(𝜌ℎ ∗ 𝑊
2𝑣𝑗 − 𝛼𝑏

0𝑏𝑗), (1.7.2.6.3)

𝜏 = √𝛾(𝜌ℎ ∗ 𝑊2 − 𝑃 ∗ −(𝛼𝑏0)) − 𝐷, (1.7.2.6.4)

ℬ𝑘 = √𝛾𝐵𝑘, (1.7.2.6.5)

where 𝛾 is the determinant of the spatial 3-metric 𝛾𝑖𝑗, ℎ ∗≡ 1 + 𝜖 +
(𝑃+𝑏2)

𝜌
, 𝑃 ∗≡ 𝑃 +

𝑏2

2
,

and 𝑏𝜇 is the magnetic field in the fluid’s rest frame and is related to 𝐵𝑘 by

55

𝑏0 =
𝑊𝐵𝑘𝑣𝑘
𝛼

, (1.7.2.6.6)

𝑏𝑖 =
𝐵𝑖

𝑊
+𝑤(𝐵𝑘𝑣𝑘) (𝑣

𝑖 −
𝛽𝑖

𝛼
) , (1.7.2.6.7)

𝑏2 =
𝐵𝑖𝐵𝑖
𝑊2

+ (𝐵𝑖𝑣𝑖)
2
. (1.7.2.6.8)

However, only five of the primitive fluid variables are independent. This is because the

Lorentz factor is defined in terms of the velocities and the metric as 𝑊 =

(1 − 𝛾𝑖𝑗𝑣
𝑖𝑣𝑗)

−1 2⁄
, and the pressure, rest-mass density, and specific internal energy are

related through the EOS.

 The fluxes are usually defined in terms of both the conserved variables and the

primitive variables:

𝐹𝑖(𝑈) =

{

𝐷(𝛼𝑣𝑖 − 𝛽𝑖)

𝑆𝑗(𝛼𝑣
𝑖 − 𝛽𝑖) + 𝑃𝛿𝑗

𝑖

𝜏(𝛼𝑣𝑖 − 𝛽𝑖) + 𝑃𝑣𝑖

ℬ𝑘(𝛼𝑣𝑖 − 𝛽𝑖) − ℬ𝑖(𝛼𝑣𝑘 − 𝛽𝑘)

. (1.7.2.6.9)

The source terms are

𝑠(𝑈) =

{

0

𝑇𝜇𝜈(𝜕𝜇𝑔𝜈𝑗 + Γ𝜇𝜈
𝛿 𝑔𝛿𝑗)

𝛼(𝑇𝜇0𝜕𝜇 ln 𝛼 − 𝑇
𝜇𝜈Γ𝜈𝜇

0)

0

, (1.7.2.6.10)

and the stress-energy tensor is given by

𝑇𝜇𝜈 = (𝜌 + 𝜌𝜖 + 𝑃 + 𝑏2)𝑢𝜇𝑢𝜈 + (𝑃 +
𝑏2

2
)𝑔𝜇𝜈 − 𝑏𝜇𝑏𝜈 . (1.7.2.6.11)

56

With these equations in place, the Einstein Toolkit is able to handle these continuity

equations and able to make sure that the system will remain physical for the duration of

the simulation (Baiotti et al. 2007; Mösta et al. 2014).

1.7.2.7. Hydro_Analysis

 The Hydro_Analysis thorn is responsible for providing the basic hydro

analysis routines and quantities that are used during the simulation (Löffler 2022).

1.7.2.8. HydroBase

 The HydroBase thorn extends the Cactus framework to include an interface for

magnetohydrodynamics to work within. This thorn’s main function is to store the

primitive variables, common among hydrodynamic simulations, commonly needed

parameters and schedule groups for the main functions of a hydrodynamics code. The

prime variables defined in this thorn are:

Quantity Symbol Variable Name Definition

Rest mass density 𝜌 rho

Pressure 𝑃 press

Specific internal

energy

𝜖 eps

Contravariant fluid

three velocity

𝑣𝑖 vel[3]
𝑣𝑖 =

𝑢𝑖

𝛼𝑢0
+
𝛽𝑖

𝛼

Electron fraction 𝑌𝑒 Y_e

Temperature 𝑇 temperature

57

Specific Entropy

per particle

𝑠 entropy

Contravariant

magnetic field

vector

𝐵𝑖 Bvec[3]
𝐵𝑖 =

1

√4𝜋
𝑛𝜈𝐹

∗𝜈𝑖

Table 2: HydroBase defined variables

Where the dual to the Faraday tensor is, 𝐹∗𝜇𝜈 =
1

2
𝜀𝜇𝜈𝛼𝛽𝐹𝛼𝛽. These variables are then

used in any other thorn that is needed to call them (Bode & Löffler 2010).

1.7.2.9. Meudon_Bin_NS

 The thorn Meudon_Bin_NS is responsible for reading in the initial conditions

from Lorene. The initial conditions represent solutions to the equations (Löffler et al.

2012)

D̅2𝑣(𝑚) = 4𝜋𝜙4(𝐸(𝑚) + 𝑆(𝑚)) + 𝜙
4𝐾𝑖𝑗𝐾(𝑚)

𝑖𝑗
− D̅𝑖𝑣(𝑚)D̅

𝑖𝛽, (1.7.2.9.1)

D̅2𝛽(𝑚) = 4𝜋𝜙4𝑆(𝑚) +
3

4
𝜙4𝐾𝑖𝑗𝐾(𝑚)

𝑖𝑗
−
1

2
(D̅𝑖𝑣(𝑚)D̅

𝑖𝑣 + D̅𝑖𝛽(𝑚)D̅
𝑖𝛽), (1.7.2.9.2)

D̅2𝛽(𝑚)
𝑖 +

1

3
D̅𝑖D̅𝑗𝛽(𝑚)

𝑗
= −16𝜋𝛼𝜙4(𝐸(𝑚) + 𝑃(𝑚))𝑣(𝑚)

𝑖 + 2𝛼𝜙4𝐾(𝑚)
𝑖𝑗
D̅𝑗(3𝛽 − 4𝑣), (1.7.2.9.3)

with D̅2 = D̅𝑖D̅𝑖 being the Laplacian with respect to the conformal metric, 𝑣(𝑚)
𝑖 the

special components of the 4-velocity of star 𝑚, and 𝑣 and 𝛽 being defined by

𝑣 ≡ log 𝛼, 𝛽 ≡ ln 𝛼𝜙2.

 Equations (1.7.2.9.1) and (1.7.2.9.2) are from the trace of the spatial part of the

Einstein equations combined with the Hamiltonian constraint, and equation (1.7.2.9.3) is

58

from the trace of the Einstein equations with the momentum constraint (Gourgoulhon et

al. 2001).

1.7.2.10. NaNChecker

 The NaNChecker thorn is used to analyze Cactus grid variables of real or

complex data type for Not-a-Number (NaN) and infinite values. If this thorn finds a NaN,

the actions it can perform are to display a warning about where and how many NaN’s

were found, to gracefully terminate the simulation, or to immediately terminate Cactus

(Radke).

1.7.2.11. NSTracker

 The thorn NSTracker is responsible for tracking the neutron stars during the

simulation and shifting the grid so that the finest resolution of the grid will move along

with the neutron stars to maximize the resolution where the material from the binary is

located (Löffler et al. 2012).

1.7.2.12. TmunuBase

 The thorn TmunuBase provides core infrastructure for thorns implementing

some kind of energy or matter in general relativity. This thorn provides the basic

variables in the stress-energy tensor, 𝑇𝜇𝜈, to be communicated between thorns

contributing to the stress-energy content of the spacetime as well as thorns needed to

evaluate the stress-energy tensor as the spacetime evolves. The variables defined in the

3+1 formulism are:

Quantity Symbol Variable Name

59

“scalar” time-time

component

𝑇00 eTtt

“vector” time-space

components

𝑇0𝑖 eTtx, eTty, eTtz

“tensor” space-space

components

𝑇𝑖𝑗 eTxx, eTxy, eTxz, eTyy,

eTyz, eTzz

Table 3: TmunuBase defined variables

These components have a prefix 𝑒 to avoid naming conflicts with existing variables.

These variables are then able to be used in any thorn that calls them during the simulation

(Schnetter 2007).

1.7.2.13. VolumeIntergral_GRMHD

 The thorn VolumeIntergal_GRMHD allows for integration of spacetime

quantities. To do this the authors of the thorn start by defining the “densitised density”

which is given by

𝜌∗ ≡ 𝛼√𝛾𝜌𝑏𝑢
0 = 𝑊𝜌𝑏√𝛾, (1.7.2.17.1)

where 𝛼 is the lapse function, 𝛾 is the determinant of the physical spatial metric 𝛾𝑖𝑗, 𝜌𝑏 is

the baryonic density, 𝑢𝜇 is the fluid four-velocity, and 𝑊 ≡ 𝛼𝑢0 is the Lorentz factor.

The rest mass integral is then given by

𝑀0 = ∫𝑑𝑉𝜌∗ = ∫𝑑𝑉(𝑊𝜌𝑏√𝛾) . (1.7.2.17.2)

Similar integrals are defined in similar ways (Etieene & Werneck 2021).

60

1.7.2.14. WeylScal4

 The thorn WeylScal4 uses the methods described in Newman & Renrose

(1962) to calculate the portion of the Weyl tensor that is associated with gravitational

waves and outputs that into a plottable ASCII file (Löffler et al. 2012).

61

2. Process

2.1. Lorene

 For Lorene to find a binary neutron star configuration, a few things must first be

specified. These being (Gourgoulhon et al. 2001):

1. The EOS of each neutron star.

2. The rotation state, either being rigidly rotating or irrotational flow.

3. The distance between the stellar cores.

4. The central enthalpy of each star.

Once these parameters have been set, Lorene is able to create the initial data to be used in

the Einstein Toolkit. An example of the EOS used in Lorene follows.

110 Type of the EOS (cf. documentation of

Eos::eos_from_file)

Star 1 EOS

7 number of polytropes

1.58425 array of adiabatic index

1.28733

0.62223

1.35692

3.005

2.988

2.851

6.8011e-09 kappa value for the lowest density

region i.e., the crust of the

neutron star

3.53623 log10 pressure along first

boundary, in natural units

62

7.3875 array of the exponent of fiducial

densities logRho

11.5779

12.4196

14.165

14.7

15

0. array of percentage

0.

0.

0.

0.

0.

The number of polytropes used within the piecewise function is specified along with the

adiabatic index for each piece, the constant of proportionality at the crust of the neutron

star, the pressure at the boundary between piece one and two, and an array of fiducial

densities for each piece. Initial data in this form is needed for each of the neutron stars.

In each case the neutron star was said to be irrotational, this assumption is made

because although neutron stars rotate rapidly, they can be assumed to not rotate compared

to the time span of the simulation. For each case the distance was taken to be 40

kilometers, because this was assumed to be far enough to give a good understanding of

the system but close enough to conform to the computational limitations presented. The

central enthalpy, calculated using Lorene to find a desired baryonic mass, is given in

Table 4.

Baryonic Mass (𝑀☉) Central Enthalpy (Log base 10)

63

1.40 0.1246

1.74 0.1894

2.08 0.3081

Table 4: Central Enthalpy Log10 based on baryonic mass

2.2. Parameter File

 To get a clear understanding of the Einstein Toolkit and how it takes the input

from Lorene and the parameter file, and creates an output, it will be useful to take the

example of the parameter file for case 1, which consists of two 2.08 solar mass BNS, and

go through the parameter file. The complete parameter file is included in Appendix B.

2.2.1. Cactus Parameters

 The first section of the parameter file are the Cactus parameters. These contain

basic information about the simulation.

#---

Cactus parameters:

#---

Cactus::cctk_run_title = "May23-

MagneticFieldVolumeCase1"

Cactus::cctk_full_warnings = "yes"

Cactus::highlight_warning_messages = "no"

Cactus::terminate = "time"

Cactus::cctk_final_time = 2000.0

This section tells Einstein Toolkit what the name of the run is, in this case it is called

“May23-MagneticFieldVolumeCase1”, as well as telling the Einstein Toolkit how long

64

the simulation should run, in this case it was told to run for 2000 hours. Although it did

not run for that whole time, a time larger than the expected run time was selected, and the

simulation was stopped manually.

2.2.2. Active Thorns

 Next, the Einstein Toolkit needs to know which thorns are available at its

disposal. That is taken care of in the Active Thorns section:

#---

Activate all necessary thorns:

#---

ActiveThorns = "Boundary CartGrid3D CoordBase Fortran

InitBase IOUtil LocalReduce SymBase Time"

ActiveThorns = "AEILocalInterp"

ActiveThorns = "MoL Slab SpaceMask SphericalSurface"

ActiveThorns = "Carpet CarpetInterp CarpetInterp2

CarpetIOASCII CarpetIOHDF5 CarpetIOScalar CarpetLib

CarpetIOBasic CarpetReduce CarpetRegrid2 CarpetSlab

CarpetTracker CarpetMask LoopControl"

ActiveThorns = "Formaline"

ActiveThorns = "NaNChecker TerminationTrigger

TimerReport"

ActiveThorns = "ADMbase ADMcoupling ADMmacros

CoordGauge StaticConformal"

ActiveThorns = "RotatingSymmetry180

ReflectionSymmetry"

ActiveThorns = "Constants TmunuBase HydroBase"

ActiveThorns = "QuasiLocalMeasures"

ActiveThorns = "EOS_Omni"

ActiveThorns = "GRHydro"

ActiveThorns = "SummationByParts"

65

ActiveThorns = "GenericFD NewRad"

ActiveThorns = "ML_BSSN ML_BSSN_Helper

ML_ADMConstraints"

ActiveThorns = "Hydro_Analysis NSTracker"

ActiveThorns = "Dissipation"

ActiveThorns = "SystemStatistics SystemTopology"

ActiveThorns = "VolumeIntegrals_GRMHD"

Wave extraction (Psi4)

ActiveThorns = "WeylScal4 Multipole"

ActiveThorns = "AHFinderDirect"

This section is responsible for telling the Einstein Toolkit which thorns should be used by

writing all the active thorns in a list to let the Einstein Toolkit know what thorns are

available. Since some of the more important thorns have been covered above, thorns that

need more detail are covered further below.

2.2.3. Diagnostic Parameters

 The next section of the parameter file is the Diagnostic Parameters. This section

deals with simulation output during run-time such as logging by the timer indicating how

long the simulation has been running and communicating with thorns to output

commands that are currently executing.

#---

Diagnostic parameters:

#---

Carpet::output_timers_every = 0

Carpet::storage_verbose = "no"

66

Carpet::verbose = "no"

Carpet::veryverbose = "no"

Carpet::grid_structure_filename = "carpet-grid-

structure"

Carpet::grid_coordinates_filename = "carpet-grid-

coordinates"

CarpetLib::output_bboxes = "no"

CarpetMask::verbose = "no"

CarpetReduce::verbose = "no"

CarpetRegrid2::verbose = "no"

CarpetRegrid2::veryverbose = "no"

CarpetTracker::verbose = "no"

TimerReport::out_every = 4096

TimerReport::out_filename = "TimerReport"

TimerReport::output_all_timers = "yes"

TimerReport::output_all_timers_together = "yes"

TimerReport::output_all_timers_readable = "yes"

TimerReport::n_top_timers = 40

QuasiLocalMeasures::verbose = "no"

SphericalSurface::verbose = "no"

As seen above, many of the quantities are set to ‘verbose= “no”’ which tells the Einstein

Toolkit not to print the command that it is executing.

67

2.2.4. Utility Parameters

 The utility parameter is set up to allow for NaNChecker to check different

variables for imaginary or infinite values and stopping the simulation if any are found.

#---

Utility parameters:

#---

NaNChecker::check_every = 128 # twice for

every_coarse

NaNChecker::check_vars = "

 ADMBase::curv

 ADMBase::metric

 ADMBase::lapse

 ADMBase::shift

 HydroBase::rho

 HydroBase::eps

 HydroBase::press

 HydroBase::vel

"

NaNChecker::action_if_found = "terminate"

As can be seen in the parameter file above, NaNChecker will check variables defined in

the ADMBase and the HydroBase thorns every 128 iterations for imaginary or infinite

values. The setting is to terminate instead of ‘just warn’ or ‘abort’.

68

2.2.5. Run Parameters

 The next section of the parameter file is dedicated to the run parameters which are

made up of the grid, the model, the EOS, as well as the numerics and evolution sections.

2.2.5.1. Grid

 In the grid section, the size and refinement of the grid is specified along with

symmetries that the system may use to simplify the calculations, as well as the regrid size

that is used around the neutron stars.

#------

Grid:

#------

MoL::ODE_Method = "rk4"

MoL::MoL_Intermediate_Steps = 4

MoL::MoL_Num_Scratch_Levels = 1

use dt = 0.4 dx (works for core collapse)

Time::dtfac = 0.35

CoordBase::domainsize = "minmax"

CoordBase::xmin = 0.00

CoordBase::ymin = -960.00

CoordBase::zmin = 0.00

CoordBase::xmax = +960.00

CoordBase::ymax = +960.00

CoordBase::zmax = +960.00

CoordBase::dx = 10.00

CoordBase::dy = 10.00

CoordBase::dz = 10.00

69

CoordBase::boundary_size_x_lower = 3

CoordBase::boundary_size_y_lower = 3

CoordBase::boundary_size_z_lower = 3

CoordBase::boundary_size_x_upper = 3

CoordBase::boundary_size_y_upper = 3

CoordBase::boundary_size_z_upper = 3

CoordBase::boundary_shiftout_x_lower = 1

CoordBase::boundary_shiftout_y_lower = 0

CoordBase::boundary_shiftout_z_lower = 1

reflectionsymmetry::avoid_origin_x = no

reflectionsymmetry::avoid_origin_y = no

reflectionsymmetry::avoid_origin_z = no

reflectionsymmetry::reflection_x = no

reflectionsymmetry::reflection_y = no

reflectionsymmetry::reflection_z = yes

CartGrid3D::type = "coordbase"

Carpet::domain_from_coordbase = "yes"

Driver::ghost_size = 3

General Carpet parameters:

Carpet::enable_all_storage = "no"

Carpet::use_buffer_zones = "yes"

Carpet::schedule_barriers = "no"

Carpet::poison_new_timelevels = "yes"

70

Carpet::check_for_poison = "no"

Carpet::init_3_timelevels = "no"

Carpet::init_fill_timelevels = "yes"

CarpetLib::poison_new_memory = "yes"

CarpetLib::poison_value = 114

CarpetLib::check_bboxes = "no"

CarpetLib::interleave_communications = "yes"

CarpetLib::combine_sends = "yes"

CarpetInterp::tree_search = "yes"

CarpetInterp::check_tree_search = "no"

CarpetRegrid2::freeze_unaligned_levels = "yes"

CarpetRegrid2::freeze_unaligned_parent_levels = "yes"

CarpetRegrid2::ensure_proper_nesting = "yes"

CarpetRegrid2::snap_to_coarse = "yes"

CarpetRegrid2::symmetry_rotating180 = "yes"

System specific Carpet parameters:

Carpet::max_refinement_levels = 8

Carpet::prolongation_order_space = 5

Carpet::prolongation_order_time = 2

Carpet::refinement_centering = "vertex"

CarpetRegrid2::regrid_every = 64 # as often as

required

CarpetRegrid2::num_centres = 3

71

CarpetRegrid2::min_distance = 0

CarpetRegrid2::num_levels_1 = 7

CarpetRegrid2::position_x_1 = 0

CarpetRegrid2::radius_1[1] = 960

CarpetRegrid2::radius_1[2] = 228

CarpetRegrid2::radius_1[3] = 114

CarpetRegrid2::radius_1[4] = 66

CarpetRegrid2::radius_x_1[5] = 35

carpetregrid2::radius_y_1[5] = 35

carpetregrid2::radius_z_1[5] = 24

CarpetRegrid2::radius_1[6] = 13

CarpetRegrid2::radius_1[7] = 6.5

CarpetRegrid2::num_levels_2 = 7

CarpetRegrid2::position_x_2 = -15

CarpetRegrid2::radius_2[1] = 320

CarpetRegrid2::radius_2[2] = 164

CarpetRegrid2::radius_2[3] = 96

CarpetRegrid2::radius_2[4] = 48

CarpetRegrid2::radius_2[5] = 18

CarpetRegrid2::radius_2[6] = 11

CarpetRegrid2::radius_2[7] = 5.5

CarpetRegrid2::num_levels_3 = 7

CarpetRegrid2::radius_3[1] = 320

CarpetRegrid2::radius_3[2] = 164

CarpetRegrid2::radius_3[3] = 96

CarpetRegrid2::radius_3[4] = 48

CarpetRegrid2::radius_3[5] = 18

72

CarpetRegrid2::radius_3[6] = 11

CarpetRegrid2::radius_3[7] = 5.5

carpetmask::excluded_surface[0] = 0

carpetmask::excluded_surface[1] = 1

carpetmask::excluded_surface_factor[0] = 1

carpetmask::excluded_surface_factor[1] = 1

CarpetTracker::surface_name[0] = "Righthand NS"

CarpetTracker::surface_name[1] = "Lefthand NS"

As seen above in the parameter file, the size of the grid used in the simulations is 960 by

960 in the x and z directions and from −960 to 960 in the y-direction. The first level of

refinement is 10 in each direction and progressively gets finer closer to the neutron star.

Also specified in this section is the symmetries that are used like reflection symmetry

about the x and y-axes.

2.2.5.2. Model

 This section of the parameter file is dedicated to the loading of the initial

conditions from Lorene using the thorn Meudon_Bin_NS.

#------

MODEL:

#------

ActiveThorns = "Meudon_Bin_NS"

HydroBase::initial_hydro = "Meudon_Bin_NS"

ADMBase::initial_data = "Meudon_Bin_NS"

73

ADMBase::initial_lapse = "Meudon_Bin_NS"

ADMBase::initial_shift = "zero"

ADMBase::initial_dtlapse = "zero"

ADMBase::initial_dtshift = "zero"

Meudon_Bin_NS::filename ="case208208.d"

As can be seen above, the initial data is taken from the Meudon_Bin_NS thorn, which

gets the data from "case208208.d", which is the initial data that is generated by

Loren for case1.

2.2.5.3. Equation of State

 In this section of the parameter file, the EOS is specified again to model how the

material evolves in each star throughout the run-time of the simulation.

#------------------EOS-----------------------------

EOS_Omni::poly_K = 123.613314525753

EOS_Omni::hybrid_gamma_th = 1.8 #gamma thermal

from Hotokezaka et al. 2013 (arxiv.org/abs/1307.5888)

EOS_Omni::n_pieces = 7 #3 for the core +

4 for the crust (Read et al 2009)

##k0=6.8011e-09 in cgs units and Kcu =

k0_cgs*(cu_to_cgs**(gamma-1)) where

cu_to_cgs=6.1762691458861658e+17 converts from CU to

g/cm^3

EOS_Omni::hybrid_k0 = 168.58190246577206

74

EOS_Omni::hybrid_gamma[0] = 1.58425

EOS_Omni::hybrid_gamma[1] = 1.28733

EOS_Omni::hybrid_gamma[2] = 0.62223

EOS_Omni::hybrid_gamma[3] = 1.35692

EOS_Omni::hybrid_gamma[4] = 3.005

EOS_Omni::hybrid_gamma[5] = 2.988

EOS_Omni::hybrid_gamma[6] = 2.851

EOS_Omni::hybrid_rho[0] = 3.95160737e-11

EOS_Omni::hybrid_rho[1] = 6.12595478e-07

EOS_Omni::hybrid_rho[2] = 4.25474745e-06

EOS_Omni::hybrid_rho[3] = 2.36741168e-04

EOS_Omni::hybrid_rho[4] = 8.11472463e-04

EOS_Omni::hybrid_rho[5] = 1.61910043e-03

The model used in Lorene to generate the initial state consists of seven parts to the

piecewise function with three for the core and four for the crust of the neutron star (Read

et al. 2009b), with the same values for the constants as used in the polytropic equations.

2.2.5.4. Numerics

 This section of the parameter file is dedicated to the thorns TmunuBase and

SphericalSurface. Both thorns define variables that other thorns are then allowed

to use.

#----------

Numerics:

#----------

75

InitBase::initial_data_setup_method =

"init_some_levels"

TmunuBase::stress_energy_storage = "yes"

TmunuBase::stress_energy_at_RHS = "yes"

TmunuBase::timelevels = 1

TmunuBase::prolongation_type = "none"

TmunuBase::support_old_CalcTmunu_mechanism = "no"

HydroBase::timelevels = 3

SpaceMask::use_mask = "yes"

SphericalSurface::nsurfaces = 5

SphericalSurface::maxntheta = 39

SphericalSurface::maxnphi = 76

SphericalSurface::ntheta [0] = 39

SphericalSurface::nphi [0] = 76

SphericalSurface::nghoststheta[0] = 2

SphericalSurface::nghostsphi [0] = 2

SphericalSurface::name [0] = "Righthand NS"

SphericalSurface::ntheta [1] = 39

SphericalSurface::nphi [1] = 76

SphericalSurface::nghoststheta[1] = 2

SphericalSurface::nghostsphi [1] = 2

SphericalSurface::name [1] = "Lefthand NS"

76

SphericalSurface::ntheta [3] = 39

SphericalSurface::nphi [3] = 76

SphericalSurface::nghoststheta[3] = 2

SphericalSurface::nghostsphi [3] = 2

SphericalSurface::set_spherical[3] = yes

SphericalSurface::radius [3] = 100

SphericalSurface::name [3] = "waveextract

surface at 100"

SphericalSurface::ntheta [4] = 39

SphericalSurface::nphi [4] = 76

SphericalSurface::nghoststheta[4] = 2

SphericalSurface::nghostsphi [4] = 2

SphericalSurface::set_spherical[4] = yes

SphericalSurface::radius [4] = 250

SphericalSurface::name [4] = "waveextract

surface at 250"

2.2.5.5. Evolution

 The evolution section of the parameter file is dedicated to the evolution of the

system. It specifies the process in which the system is evolved during each time step. The

defaults of this section are based on Colella & Sekora (2008) and Mccorquodale &

Colella (2011).

#-----------

Evolution:

#-----------

test

77

HydroBase::initial_Bvec = "zero"

Hydrobase::Bvec_evolution_method = "GRHydro"

GRHydro::transport_constraints = yes

HydroBase::evolution_method = "GRHydro"

ADMMacros::spatial_order = 4

GRHydro::sources_spatial_order = 4

GRHydro::riemann_solver = "HLLE"

GRHydro::recon_method = "ppm"

GRHydro::GRHydro_stencil = 3

GRHydro::bound = "flat"

GRHydro::rho_abs_min = 1.e-11

GRHydro::GRHydro_atmo_tolerance = 0.01

GRHydro::c2p_reset_pressure = "yes"

GRHydro::GRHydro_eos_type = "General"

GRHydro::GRHydro_eos_table = "Ideal_Fluid"

GRHydro::GRHydro_MaxNumSandRVars = 0

GRHydro::use_enhanced_ppm = "yes"

GRHydro::sync_conserved_only = "yes"

GRHydro::reconstruct_Wv = "yes"

GRHydro::c2p_resort_to_bisection = "yes"

GRHydro::use_cxx_code = "yes"

78

MacLachlan evolution parameters

ADMBase::metric_type = physical

ADMBase::evolution_method = ML_BSSN

ADMBase::lapse_evolution_method = ML_BSSN

ADMBase::shift_evolution_method = ML_BSSN

ADMBase::dtlapse_evolution_method = ML_BSSN

ADMBase::dtshift_evolution_method = ML_BSSN

ML_BSSN::timelevels = 3

ML_BSSN::initial_boundary_condition = "extrapolate-

gammas"

ML_BSSN::rhs_boundary_condition = "NewRad"

Boundary::radpower = 2

ML_BSSN::harmonicN = 1 # 1+log

ML_BSSN::harmonicF = 2.0 # 1+log

ML_BSSN::ShiftGammaCoeff = 0.75

ML_BSSN::AlphaDriver = 0.0

ML_BSSN::BetaDriver = 1.0

ML_BSSN::advectLapse = 1.0

ML_BSSN::advectShift = 1.0

ML_BSSN::MinimumLapse = 1.0e-8

ML_BSSN::ML_log_confac_bound = "none"

ML_BSSN::ML_metric_bound = "none"

ML_BSSN::ML_Gamma_bound = "none"

ML_BSSN::ML_trace_curv_bound = "none"

ML_BSSN::ML_curv_bound = "none"

79

ML_BSSN::ML_lapse_bound = "none"

ML_BSSN::ML_dtlapse_bound = "none"

ML_BSSN::ML_shift_bound = "none"

ML_BSSN::ML_dtshift_bound = "none"

ML_BSSN::UseSpatialBetaDriver = 1

ML_BSSN::SpatialBetaDriverRadius = 50

#ML_BSSN::apply_dissipation = "never"

ML_BSSN::epsDiss =0.0

Dissipation::epsdis = 0.1

Dissipation::order = 5

Dissipation::vars = "

 ML_BSSN::ML_log_confac

 ML_BSSN::ML_metric

 ML_BSSN::ML_trace_curv

 ML_BSSN::ML_curv

 ML_BSSN::ML_Gamma

 ML_BSSN::ML_lapse

 ML_BSSN::ML_shift

 ML_BSSN::ML_dtlapse

 ML_BSSN::ML_dtshift

"

80

2.2.6. Output

 This section of the parameter file is designated to create the output for the thorns

that have a value that the user would like saved. These outputs usually take the form of a

HDF5, or the ASCII file formats.

#---

Output:

#---

IOBasic::outInfo_every = 1

IOBasic::outInfo_reductions = "maximum"

IOBasic::outInfo_vars = "

 Carpet::physical_time_per_hour

 HydroBase::rho

 ML_ADMConstraints::ML_Ham

 SystemStatistics::maxrss_mb

 GRHydro::dens{reductions = 'sum maximum'}

 HydroBase::w_lorentz

"

IOScalar::outScalar_every = 256 # every_coarse

IOScalar::all_reductions_in_one_file = "yes"

IOScalar::one_file_per_group = "yes"

IOScalar::outScalar_reductions = "minimum maximum

average norm1 norm2"

IOScalar::outScalar_vars = "

 ADMBase::lapse

 ADMBase::shift

 ADMBase::metric

 ADMBase::curv

81

 HydroBase::rho

 HydroBase::vel

 HydroBase::w_lorentz

 GRHydro::dens{reductions = 'minimum maximum average

norm1 norm2 sum'}

 SystemStatistics::process_memory_mb

 SphericalSurface::sf_radius

 ML_ADMConstraints::ML_Ham

"

IOASCII::one_file_per_group = "yes"

IOASCII::compact_format = "yes"

IOASCII::out0D_every = 256 # every_coarse

IOASCII::out0D_vars = "

 Carpet::timing

 QuasiLocalMeasures::qlm_scalars

 SphericalSurface::sf_active

 SphericalSurface::sf_valid

 SphericalSurface::sf_info

 SphericalSurface::sf_radius

 SphericalSurface::sf_origin

 SphericalSurface::sf_coordinate_descriptors

 Hydro_Analysis::Hydro_Analysis_rho_max_loc

Hydro_Analysis::Hydro_Analysis_rho_max_origin_distance

"

#Set these IOASCII options for initial data only:

IOASCII::out1D_every = 0

IOASCII::out1D_d = "no"

82

IOASCII::out1D_vars = "

 HydroBase::rho

 HydroBase::vel

 ADMBase::lapse

 ADMBase::shift

 ADMBase::metric

 ADMBase::curv

 ML_ADMConstraints::ML_Ham

"

CarpetIOHDF5::one_file_per_group = "no"

this is required by multipatch

CarpetIOHDF5::open_one_input_file_at_a_time = "yes"

CarpetIOHDF5::out2D_every = 1536

6*every coarse

CarpetIOHDF5::out2D_xy = "yes"

CarpetIOHDF5::out2D_xz = "no"

CarpetIOHDF5::out2D_yz = "no"

CarpetIOHDF5::out2D_xyplane_z = 0.0

CarpetIOHDF5::out2D_vars = "

 CarpetReduce::weight

 Grid::coordinates

 HydroBase::rho

 HydroBase::vel

 HydroBase::entropy

 HydroBase::press

 HydroBase::eps

 ADMBase::lapse

 ADMBase::shift

 ADMBase::metric

 ML_ADMConstraints::ML_Ham

83

 "

IOHDF5::out3D_every = 8192 # = 32*every_coarse

IOHDF5::out3D_vars = "

 CarpetReduce::weight

 HydroBase::rho

 HydroBase::vel

 HydroBase::eps

 ADMBase::lapse

 ADMBase::shift

 ML_ADMConstraints::ML_Ham

 grid::coordinates

"

2.2.7. Analysis

 The analysis section of the parameter file is dedicated to specifying details for the

thorns: Hydro_Analysis, NSTracker, and QuasiLocalMeasures.

#---

Analysis:

#---

Hydro_Analysis::Hydro_Analysis_comp_rho_max = "true"

Hydro_Analysis::Hydro_Analysis_rho_max_loc_only_positi

ve_x = "true"

Hydro_Analysis::Hydro_Analysis_comp_rho_max_origin_dis

tance = "yes"

Hydro_Analysis::Hydro_Analysis_average_multiple_maxima

_locations = "yes"

Hydro_Analysis::Hydro_Analysis_interpolator_name =

"Lagrange polynomial interpolation (tensor product)"

84

NSTracker::NSTracker_SF_Name = "Righthand NS"

NSTracker::NSTracker_SF_Name_Opposite = "Lefthand NS"

NSTracker::NSTracker_max_distance = 10

NSTracker::NSTracker_verbose = "yes"

NSTracker::NSTracker_tracked_location =

"Hydro_Analysis::Hydro_Analysis_rho_max_loc"

QuasiLocalMeasures::num_surfaces = 2

QuasiLocalMeasures::spatial_order = 4

QuasiLocalMeasures::interpolator = "Lagrange

polynomial interpolation"

QuasiLocalMeasures::interpolator_options = "order=4"

QuasiLocalMeasures::surface_name[0] = "waveextract

surface at 100"

QuasiLocalMeasures::surface_name[1] = "waveextract

surface at 250"

2.2.8. Wave Extraction

 This section of the parameter file is designated for calculating the fourth Weyl

scalar which is associated with gravitational waves at various distances for various

multipole modes ranging from 𝑙 = 0 to 𝑙 = 6.

Wave extraction

WeylScal4::offset = 1e-8

85

WeylScal4::fd_order = "4th"

WeylScal4::verbose = 0

Multipole::nradii = 8

Multipole::out_every = 128

Multipole::radius[0] = 45

Multipole::radius[1] = 70

Multipole::radius[2] = 100

Multipole::radius[3] = 125

Multipole::radius[4] = 150

Multipole::radius[5] = 200

Multipole::radius[6] = 250

Multipole::radius[7] = 300

Multipole::variables = "WeylScal4::Psi4r{sw=-2

cmplx='WeylScal4::Psi4i' name='Psi4'}"

Multipole::l_max = 6

2.2.9. Checkpoint/Recovery

 The Checkpoint section is responsible for making backups of the simulation that

can be restarted if the system experiences some type of failure that cancels the

simulation.

#---

Checkpoint/Recovery:

#---

IOHDF5::checkpoint = "yes"

IO::checkpoint_dir = "../checkpoint"

IO::checkpoint_ID = "yes"

IO::checkpoint_every_walltime_hours = 6.0

86

CarpetIOHDF5::checkpoint_every_divisor = 55552

IO::checkpoint_keep=2

IO::checkpoint_on_terminate = "yes"

IO::recover = "autoprobe"

IO::recover_dir = "../checkpoint"

The parameter settings listed above informs the simulation to create a checkpoint every

six hours of simulation time and to save the two most-recent checkpoints.

2.2.10. AHFinderDirect

 The AHFinderDirect section of the parameter file is dedicated to how the

thorn AHFinderDirect is used during the simulation.

#---

AHFinderDirect:

#---

AHFinderDirect::find_every = 0

AHFinderDirect::run_at_CCTK_POST_RECOVER_VARIABLES =

no

AHFinderDirect::move_origins = yes

AHFinderDirect::reshape_while_moving = yes

AHFinderDirect::predict_origin_movement = yes

AHFinderDirect::geometry_interpolator_name = "Lagrange

polynomial interpolation"

AHFinderDirect::geometry_interpolator_pars = "order=4"

87

AHFinderDirect::surface_interpolator_name = "Lagrange

polynomial interpolation"

AHFinderDirect::surface_interpolator_pars = "order=4"

AHFinderDirect::output_h_every = 128

AHFinderDirect::N_horizons = 1

AHFinderDirect::which_surface_to_store_info

[1] = 0

AHFinderDirect::reset_horizon_after_not_finding

[1] = no

AHFinderDirect::initial_guess__coord_sphere__radius

[1] = 1.3528

This section tells the AHFinderDirect thorn to look for an apparent horizon at the

origin every 128 iterations. This is necessary to allow the simulation to run smoothly

once the merger of the BNS has taken place and the resultant object collapses down into a

black hole. If this thorn is not implemented properly, the mass will be concentrated in an

area that is smaller than the resolution of the simulation and the simulation will fail.

2.2.11. Control

 This section of the parameter file is designated for the turning on and off specific

thorns at either a set time or iteration of the simulation. For example, as seen below there

is a point where the lapse value falls below a specific value, 𝛼 < 0.2. This causes the

thorn AHFinderDirect to activate and begin searching for an apparent horizon.

#---

Control

88

#---

ActiveThorns = "Trigger"

Trigger::Trigger_Number = 3

Check for lapse < 0.5, and if so, set this trigger

to 'once'

Trigger::Trigger_Once [0] = 0

Trigger::Trigger_Checked_Variable[0] = "ADMBase::alp"

Trigger::Trigger_Reduction [0] = "minimum"

Trigger::Trigger_Relation [0] = "<"

Trigger::Trigger_Checked_Value [0] = 0.5

Trigger::Trigger_Reaction [0] =

"steerparam"

Trigger::Trigger_Steered_Parameter_Thorn[0] =

"Trigger"

Trigger::Trigger_Steered_Parameter_Name [0] =

"Trigger_Once[0]"

Trigger::Trigger_Steered_Parameter_Value[0] = "1"

if lapse < 0.2 enable AHFinder

Trigger::Trigger_Once [1] = 1

Trigger::Trigger_Checked_Variable[1] = "ADMBase::alp"

Trigger::Trigger_Reduction [1] = "minimum"

Trigger::Trigger_Relation [1] = "<"

Trigger::Trigger_Checked_Value [1] = 0.3

Trigger::Trigger_Reaction [1] =

"steerparam"

Trigger::Trigger_Steered_Parameter_Thorn[1] =

"AHFinderDirect"

89

Trigger::Trigger_Steered_Parameter_Name [1] =

"find_every"

Trigger::Trigger_Steered_Parameter_Value[1] = "128"

if trigger 0 was set 'once' (lapse < 0.5)

add refinement level

Trigger::Trigger_Once [2] = 1

Trigger::Trigger_Checked_Variable [2] = "param"

Trigger::Trigger_Checked_Parameter_Thorn[2] =

"Trigger"

Trigger::Trigger_Checked_Parameter_Name [2] =

"Trigger_Once[0]"

Trigger::Trigger_Relation [2] = "=="

Trigger::Trigger_Checked_Value [2] = 1

Trigger::Trigger_Reduction [2] = ""

Trigger::Trigger_Reaction [2] =

"steerscalar"

Trigger::Trigger_Steered_Scalar [2] =

"CarpetRegrid2::num_levels[0]"

Trigger::Trigger_Steered_Scalar_Value [2] = "7"

2.2.12. VolumeIntegrals_GRMHD

 This section of the parameter file is designated for setting up the

VolumeIntegrals_GRMHD thorn. Recall from above that this thorn is used for the

volume integration of specific scalar quantities such as the rest mass and other such

scalars.

#-------VolumeIntegrals_GRMHD----------------

VolumeIntegrals_GRMHD::NumIntegrals = 6

90

VolumeIntegrals_GRMHD::VolIntegral_out_every = 64

VolumeIntegrals_GRMHD::enable_file_output = 1

VolumeIntegrals_GRMHD::outVolIntegral_dir =

"volume_integration"

VolumeIntegrals_GRMHD::verbose = 1

The AMR centre will only track the first referenced

integration quantities that track said centre.

Thus, centeroflapse output will not feed back

into the AMR centre positions.

VolumeIntegrals_GRMHD::Integration_quantity_keyword[1]

= "one"

VolumeIntegrals_GRMHD::Integration_quantity_keyword[2]

= "centerofmass"

VolumeIntegrals_GRMHD::Integration_quantity_keyword[3]

= "one"

VolumeIntegrals_GRMHD::Integration_quantity_keyword[4]

= "centerofmass"

VolumeIntegrals_GRMHD::Integration_quantity_keyword[5]

= "one"

VolumeIntegrals_GRMHD::Integration_quantity_keyword[6]

= "restmass"

#Use output from volume integral to move AMR box

centre 2

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial [2] = -15.0

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us [2] = 10.0

VolumeIntegrals_GRMHD::amr_centre__tracks__volintegral

_inside_sphere[2] = 1

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial [3] = -15.0

91

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us [3] = 10.0

#Use output from volume integral to move AMR box

centre 3

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial [4] = 15.0

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us [4] = 10.0

VolumeIntegrals_GRMHD::amr_centre__tracks__volintegral

_inside_sphere[4] = 2

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial [5] = 15.0

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us [5] = 10.0

92

3. Data

3.1. Case 1: 2.08 and 2.08 𝑀☉

 The first case that was simulated was the case of two maximum mass neutron

stars that were observed by Mazzali et al. (2007) at 2.08 𝑀☉ each. At the start of the

simulation the stars were separated by a distance of 40 km from each other using Lorene

to create the initial conditions. Unfortunately, this simulation failed a number of times, all

at approximately the same point. This indicates that there is something wrong with either

the initial conditions that are generated by Lorene, the way the Einstein Toolkit handles

the evolution for a system this massive, or the computational power (e.g., memory) that

was dedicated to this task was insufficient to handle a simulation of this size, with the

latter being most likely. To fully test the simulation, more computational resources would

need to be dedicated to this task.

3.1.1. Matter Distribution

 During the evolution of the binary neutron star system, one of the best ways to see

how matter is behaving is through watching how the density distribution changes over

time. Given below is the density distribution of the evolution of case1 at various points

along the simulation, indicated at each step. As can be seen below, the matter distribution

starts as two concentrated areas of mass that slightly expand over time and orbit around

each other.

93

Figure 2: Density distribution during case 1 merger

94

 As can be seen above, the bodies orbit around each for approximately one-quarter

of an orbit before the simulation fails at producing any further iterations. The time for this

simulation is approximately 132.3 𝑀☉ or 6.518 × 10−4 𝑠.

3.1.2. Gravitational Waves

 Like described above during the inspiral of the BNS, gravitational waves should

be produced and be the driving factor behind the dissipation of energy that eventually

causes neutron stars to coalesce. Various modes of gravitational waves follow, each

measured at 45 𝑀☉ or approximately 67 km.

95

Figure 3: Gravitational wave strength of different rotation modes during case 1 merger

96

97

98

99

100

101

102

103

104

 As seen above, for the majority of the rotational modes there are no gravitational

waves produced. The waves that are being produced begin around 40 𝑀☉, which is

approximately the distance at which the gravitational waves are being measured from.

The initial ripples when the simulation starts is presumably from the metric being

conformally flat in the Lorene initial data to being allowed to change shape in the

Einstein Toolkit.

3.2. Case 2: 1.40 and 1.74 𝑀☉

 The second case consists of a neutron star of the minimum mass, 1.40 𝑀☉, and an

intermediate mass of 1.74 𝑀☉ starting at a separation distance of 40 km. This simulation

105

was more successful than case1 being that it resulted in the merger of the neutron stars

and the subsequence collapse into a black hole. For this case to be stable, the thorn

AHFinderDirect needs to be implemented otherwise, the simulation would halt once

the distribution of mass was in a region smaller than the finest grid size. Since the

AHFinderDirect thorn is implemented, it is possible to find the mass of the resultant

black hole, which is found to be 2.23 𝑀☉.

3.2.1. Matter Distribution

 During the simulations, it was seen that neutron stars start at their intial positions

and material expands filling the sourounding area as the stars begin to orbit each other.

Below it can be seen that the stars complete approximately half an orbit before they lose

enough energy to graviational waves that they begin to merge.

106

Figure 4: Density distribution during case 2 merger

107

 It is at approximately 250 𝑀☉ or 1.2 × 10−3 𝑠 when the neutron stars being to

coalesce and collapse into a black hole. The system then evolves further until most of the

material is within the event horizon of the resultant black hole but stopped before the

black hole can clear anything within its vicinity.

3.2.2. Gravitational Waves

 During the inspiral of the BNS, gravitational waves of various modes are

produced. What follows is the release of gravitational waves of various modes produced

during the inspiral of neutron stars measured at 45 𝑀☉ or approximately 67 km.

108

Figure 5: Gravitational wave strength of different rotation modes during case 2 merger

109

110

111

112

113

114

115

116

117

 As seen above, most of the modes of gravitational waves are zero with the Ψ4
2,2

mode being the most prevalent and usually it is the only mode that is considered. What is

seen is that each of the modes is approximately zero until approximately 40 𝑀☉, which is

when any gravitational wave that is produced at the start of the simulation would reach

the radius where the gravitational waves are being measured. Then many of the modes

will experience a perturbation of some kind, presumably from the metric becoming non-

conformal. Only a few modes are nonzero once the simulation has started, and the initial

wave dissipates away, namely the Ψ4
2,2

 mode. However, it can also be seen that the

simulation was stopped too soon since the gravitational waves never completely return to

118

zero in any of the modes. This is due to the travel time of the wave not being considered

and further evolution of the system would need to be done to see the gravitational waves

that are produced from the final merger of the system.

3.3. Case 3: 1.40 and 1.40 𝑀☉

 The third case consists of two neutron stars with each containing the minimum

mass of 1.40 𝑀☉ starting at a separation of 40 km. This case gives a better understanding

of the evolution of the system with a longer run-time, allowing for a better look at the end

product.

3.3.1. Matter Distribution

 During the simulation of case 3, the neutron stars can be seen to start at their

initial points and orbit around each other several times until they eventually merge. This

simulation was able to run for a long enough time to give a good understanding of the

evolution of this system as well as the final product that was produced during the merger.

119

Figure 6: Density distribution during case 3 merger

120

121

122

 This case resulted in a longer running simulation, 1974 𝑀☉ or about

9.73 × 10−3 𝑠, with the formation of a hyper-massive neutron star (Ciolfi et al. 2017). A

hyper-massive neutron star is a neutron star that has a greater mass than the theoretically

allowed mass, the TOV mass (Sarracino & Eccles 1996), because it has enough angular

momentum to counteract the collapse of the system into a black hole. This system will

remain stable until it dissipates enough of the angular momentum through gravitational

waves to collapse into a black hole. The lifetime of a hyper-massive neutron star is on the

scale of about 1 𝑠 (Ciolfi et al. 2017).

123

3.3.2. Gravitational Waves

 During the process of the inspiral of the BNS, gravitational waves of various

modes are produced. What follows are the various modes of gravitational waves as a

radius of 45 𝑀☉ or approximately 67 km.

Figure 7: Gravitational wave strength of different rotation modes during case 4 merger

124

125

126

127

128

129

130

131

132

 As seen above, most of the gravitational modes are zero except for around the

point where the metric becomes non-conformal, and from that point onward the

prominent gravitational wave mode is Ψ4
2,2

.

3.4. Case 4: 1.74 and 1.74 𝑀☉

 The simulation considered in case 4 is the case of two intermediate mass neutron

stars each of 1.74 𝑀☉ starting at a separation of 40 km. This being the longest run

simulation, it gives the best view of gravitational waves.

133

3.4.1. Matter Distribution

 In this case, the neutron stars can be seen at their initial points and begin to orbit

around each other and eventually coalescing into a single body. Not visible in the pictures

is that the system orbited around each other approximately five times until they became

close enough that they were indistinguishable by eye. It is difficult to conclude at what

point the bodies become one elongated body versus two distinct stars barely touching

surfaces.

Figure 8: Density distribution during case 4 merger

134

135

 This is the longest simulation running for about 5141 𝑀☉ or 2.53 × 10−2 𝑠. The

neutron stars in this simulation orbit each other about five time before they merge. Once

they merge, they form an object that is still elongated and emitting gravitational waves.

3.4.2. Gravitational Waves

 As the neutron stars in the binary inspiral to eventually merge into a final object,

they emit gravitational that carry away energy and allow for the orbits to decay. What

follows is gravitational waves of various modes during the inspiral of case 4 measured

from 45 𝑀☉ or approximately 67 km.

136

Figure 9: Gravitational wave strength of different rotation modes during case 4 merger

137

138

139

140

141

142

143

144

145

 This being the longest run simulation allows for some good long-term behavior of

gravitational waves to be observed. In this case, as with the other cases, most of the

gravitational wave modes are zero with the Ψ4
2,2

 mode being the most prominent. The

Ψ4
2,2

 mode exhibits some type of pulsing in addition to the expected gravitational waves.

As can be seen from the Ψ4
2,2

 mode, the system is still not spherically symmetric, and has

not fully collapsed into a black hole, although the mass should be above the point at

which a black hole would form.

146

4. Conclusion and Future Work

 As seen, there is much that goes into the simulation of the merger of neutron stars

or system of compact bodies. Starting from a foundation of general relativity that can be

adapted into the ADM and BSSN formulations, numerical relativity can be used to solve

problems that are far too complicated for an analytic solution to exist. This process is still

computationally intensive with a steep learning curve with many failed simulations. The

Einstein Toolkit, being an open-source collaborative program, lends itself to being a

fantastic tool for numerical relativistic simulations. However, since it is community

driven, the scope of the Toolkit is beyond any one person and at times it acts like a ‘black

box’ in which initial data is input. There are many more ways to interpret the data that is

produced during each of the simulations, with this thesis only covering the basics of the

matter distribution and gravitational waves produced during the inspiral.

There are many areas that are still available to be explored in the field of

gravitational astronomy. The field of gravitational wave astronomy is still in the

beginning stages and has many possibilities within it. Refinement of the tools of

numerical relativity will lead to better simulations that will allow for more accurate

predictions. Improvement of gravitational wave detection tools, like Advanced LIGO,

will allow for more refined measurements of observed gravitational waves.

In addition to the field of gravitational wave detection still at the beginning stage,

I am personally still in the early phase of understanding numerical relativity simulations

and gravitational waves. Our first goal is to complete the case 1 simulation successfully

so that the complete merger of the 2.08 𝑀☉ neutron stars may be studied. Additionally,

we have started an effort to simulate the merger of binary black holes in order to

147

reproduce the gravitation wave event GW150914. This type of research will be extended

to use the high-performance computing facility available at the University of North

Dakota.

148

References

Abbot B. P. et al., 2016, Phys Rev Lett, 116, 061102, DOI:

10.1103/PhysRevLett.116.061102

Allen G., Goodale T., Löffler F., Rideout D., Schnetter E., Seidel E., 2010, 11th

IEEE/ACM International Conference on Grid Computing, 2010, pp. 359-368, DOI:

10.1109/GRID.2010.5698008.

Baiotti L., Hawke I., Montero P., 2007,

https://einsteintoolkit.org/thornguide/EinsteinEvolve/GRHydro/documentation.html

Bode T., Löffler F., 2010,

https://einsteintoolkit.org/thornguide/EinsteinBase/HydroBase/documentation.html

Ciolfi R., Kastaun W., Giacomazzo B., Endrizzi A., Siegel D., Perna R., 2017, Phys Rev

D, 95, 063016, DOI: 10.1103/PhysRevD.95.063016

Colella P., Sekora M., 2008, Journal of Computaional Physics 227, 7069-7076, DOI:

10.1016/j.jcp.2008.03.034

Eddington A., 1922, Proc. R. Soc. Lond. A, 102, 268-282, DOI: 10.1098/rspa.1922.0085

Einstein A., 1905, Annalen Phys. 17, 891-921, 2005, Annalen Phys. 14, 194-224, DOI:

10.1002/andp.200590006

Lorentz, Einstein, Minkowski, 1913, Science, 39, 1017, DOI:

10.1126/science.39.1017.944.a

Etieene Z., Werneck L., 2021,

https://einsteintoolkit.org/thornguide/WVUThorns_Diagnostics/VolumeIntegrals_GRMH

https://einsteintoolkit.org/thornguide/EinsteinEvolve/GRHydro/documentation.html
https://einsteintoolkit.org/thornguide/EinsteinBase/HydroBase/documentation.html
https://einsteintoolkit.org/thornguide/WVUThorns_Diagnostics/VolumeIntegrals_GRMHD/documentation.html

149

D/documentation.html

Fonseca E., et al., ApJL, 915:L12, DOI: 10.3847/2041-8213/ac03b8

Goodale T.,

https://einsteintoolkit.org/thornguide/EinsteinBase/ADMBase/documentation.html

Gourgoulhon E., Grandclément P., Taniguchi K., Marck J., Bonazzola S., 2001 Phys Rev

D, 63, 064029, DOI: 10.1103/PhysRevD.63.064029

Grandclément P., Gourgoulhon E., Bonazzola S., 2002, Phys Rev D, 65, 044021, DOI:

10.1103/PhysRevD.65.044021

Grandclément P., Novak J., 2008, Living Rev. Relativity, 12, 1

Hahn S., Lindquist R., 1964, Annals of Physics, 29, 304-331

Hawke I., Rideout D.,

https://einsteintoolkit.org/thornguide/EinsteinBase/ADMCoupling/documentation.html

Lattimer J., Prakash M., 2004, Science, 304, 536, DOI: 10.1226/science.1090720

Lee W., Ramierez-Ruiz E., Van De Ven G., 2010, ApJ, 720:953-975, DOI:

10.1088/0004-637X/720/1/953

Löffler, F. 2022,

https://einsteintoolkit.org/thornguide/EinsteinAnalysis/Hydro_Analysis/documentation.ht

ml

Löffler F., et al., 2012, Class. Quantum Grav. 29, 115001, DOI: 10.1088/0264-

9381/29/11/115001

Mazzali P., Röpke F., Benetti S., Hillebrandt W., 2007, Science, 315, 825-828

McCorquodale P., Colella P., 2011, Communications in Applied Mathematics and

Computational Science, 6, 1

Misner, C. W., Wheeler, J. A., & Thorne, K. S. 2017, Gravitation (Second; Princeton

https://einsteintoolkit.org/thornguide/WVUThorns_Diagnostics/VolumeIntegrals_GRMHD/documentation.html
https://einsteintoolkit.org/thornguide/EinsteinBase/ADMBase/documentation.html
https://einsteintoolkit.org/thornguide/EinsteinBase/ADMCoupling/documentation.html
https://einsteintoolkit.org/thornguide/EinsteinAnalysis/Hydro_Analysis/documentation.html
https://einsteintoolkit.org/thornguide/EinsteinAnalysis/Hydro_Analysis/documentation.html

150

University Press)

Mösta P., et al., 2013, Class. Quantum Grav. 31, 015005, DOI: 10.1088/0264-

9381/31/1/015005

Newman E., Penrose R., 1962, J. Math. Phys. 3, 566, DOI: 10.1063/1.1724257

Oppenheimer J., Volkoff G., 1939, Phys Rev, 55, 374-381

Ott C., Schnetter E., 2013,

https://einsteintoolkit.org/thornguide/EinsteinEOS/EOS_Omni/documentation.html

Pe’er A., 2020, https://asafpeer2.ph.biu.ac.il/wp-content/uploads/2020/08/Einstein.pdf

Pian E., 2021, Frontiers in Astronomy and Space Sciences, 7:609460, DOI:

10.3389/fspas.2020.609460

Radke T.,

https://einsteintoolkit.org/thornguide/CactusUtils/NaNChecker/documentation.html

Read J., Lackey B., Owen B., Friedman J., 2009a, Phys Rev D, 79, 124032, DOI:

10.1103/PhysRevD.79.124032

Read J., Markakis C., Shibata M., Uryū K., Creighton J., Friedman J., 2009b, Phys Rev

D, 79, 124033, DOI: 10.1103/PhysRevD.79.124033

Renzo M., et al., 2019, A&A, 624, A66, DOI: 10.1051/0004-6361/201833297

Sana H., et al., 2012, Science, 337, 444-446

Sarracino R., Eccles, M., 1996, Astrophys Space Sci, 111, 375

Schnetter, E., https://einsteintoolkit.org/arrangementguide/Carpet/documentation.html

Schnetter, E. 2007,

https://einsteintoolkit.org/thornguide/EinsteinBase/TmunuBase/documentation.html

Schutz B., 1999, Class. Quantum Grav. 16 A131

Schwarzschild, K. 1916, Gen Relativ Gravit, 35, 951

Taylor J., Weisberg J., 1982, ApJ, 253:908-920

The International Astronomical Union. 2012,

https://asa.hmnao.com/static/files/2016/Astronomical_Constants_2016.pdf

Thornburg, J.,

https://einsteintoolkit.org/thornguide/EinsteinAnalysis/AHFinderDirect/documentatio

n.html

Tolman R., 1939 Phys Rev, 55, 364-373

Xue C., et al., 2020, National Science Review, 7:1803-1817, DOI: 10.1093/nsr/nwaa165

Ye C., Fong W., Kremer K., Rodriguez C., Chatterjee., Fragione G., Rasio F., 2020,

ApJL, 888:L10 DOI: 10.3847/2041-8213/ab5dc5

151

Zilhão M., Löffler F. 2013, Int J Mod Phys A, 28, 1340014, DOI:

10.1142/S0217751X13400149

152

Appendix A – List of Abbreviations

ADM – Arnowitt Deser Misner

AMR – Adaptive Mesh Refinement

BNS – Binary Neutron Stars

BSSN – Baumgarte, Shapiro, Shibata, Nakamura

EOS – Equation of State

FMR – Fixed Mesh Refinement

GRMHD – General-Relativistic MagnetoHydroDynamics

LORENE – Langage Objet pour la RElativité NumériquE

LIGO –Laser Interferometer Gravitational-Wave Observatory

NaN – Not a Number

PDE – Partial Differential Equations

153

Appendix B – Unit Conversions

For the purpose of this thesis, the following definitions and constants of nature are

defined as:

Constant Value Reference

𝑐 299 792 458 𝑚 ∙ 𝑠−1 (The International

Astronomical Union 2012)

𝐺 6.674 28 × 10−11 𝑚3 ∙ 𝑘𝑔−1 ∙ 𝑠−1 (Xue et al. 2020)

𝑀☉ 1.988 92 × 1030 𝑘𝑔 (The International Astronomical

Union 2012)

Table 5: Physical constants of nature

Additionally, the units for mass, length, time, and magnetic field then become

[𝑀] = 𝑀☉,

[𝐿] = [𝑀]
𝐺

𝑐2
,

[𝑇] =
[𝐿]

𝑐
.

This corresponds to a unit conversion of

[𝐿] = 1 𝑀☉ = 1.477 × 10
3 𝑚,

[𝑇] = 1 𝑀☉ = 4.92673 × 10−6 𝑠.

154

Appendix C – Parameter File

Carpet parameter file for binary Neutron star system

physical ID is LORENE

#---

Cactus parameters:

#---

Cactus::cctk_run_title = "May23-

MagneticFieldVolumeCase1"

Cactus::cctk_full_warnings = "yes"

Cactus::highlight_warning_messages = "no"

Cactus::terminate = "time"

Cactus::cctk_final_time = 2000.0

#---

Activate all necessary thorns:

#---

ActiveThorns = "Boundary CartGrid3D CoordBase Fortran

InitBase IOUtil LocalReduce SymBase Time"

ActiveThorns = "AEILocalInterp"

ActiveThorns = "MoL Slab SpaceMask SphericalSurface"

ActiveThorns = "Carpet CarpetInterp CarpetInterp2

CarpetIOASCII CarpetIOHDF5 CarpetIOScalar CarpetLib

CarpetIOBasic CarpetReduce CarpetRegrid2 CarpetSlab

CarpetTracker CarpetMask LoopControl"

ActiveThorns = "Formaline"

ActiveThorns = "NaNChecker TerminationTrigger

TimerReport"

155

ActiveThorns = "ADMbase ADMcoupling ADMmacros

CoordGauge StaticConformal"

ActiveThorns = "RotatingSymmetry180

ReflectionSymmetry"

ActiveThorns = "Constants TmunuBase HydroBase"

ActiveThorns = "QuasiLocalMeasures"

ActiveThorns = "EOS_Omni"

ActiveThorns = "GRHydro"

ActiveThorns = "SummationByParts"

ActiveThorns = "GenericFD NewRad"

ActiveThorns = "ML_BSSN ML_BSSN_Helper

ML_ADMConstraints"

ActiveThorns = "Hydro_Analysis NSTracker"

ActiveThorns = "Dissipation"

ActiveThorns = "SystemStatistics SystemTopology"

ActiveThorns = "VolumeIntegrals_GRMHD"

Wave extraction (Psi4)

ActiveThorns = "WeylScal4 Multipole"

ActiveThorns = "AHFinderDirect"

#---

Diagnostic parameters:

#---

Carpet::output_timers_every = 0

Carpet::storage_verbose = "no"

Carpet::verbose = "no"

Carpet::veryverbose = "no"

Carpet::grid_structure_filename = "carpet-grid-

structure"

Carpet::grid_coordinates_filename = "carpet-grid-

coordinates"

156

CarpetLib::output_bboxes = "no"

CarpetMask::verbose = "no"

CarpetReduce::verbose = "no"

CarpetRegrid2::verbose = "no"

CarpetRegrid2::veryverbose = "no"

CarpetTracker::verbose = "no"

TimerReport::out_every = 4096

TimerReport::out_filename = "TimerReport"

TimerReport::output_all_timers = "yes"

TimerReport::output_all_timers_together = "yes"

TimerReport::output_all_timers_readable = "yes"

TimerReport::n_top_timers = 40

QuasiLocalMeasures::verbose = "no"

SphericalSurface::verbose = "no"

#---

Utility parameters:

#---

NaNChecker::check_every = 128 # twice for

every_coarse

NaNChecker::check_vars = "

 ADMBase::curv

 ADMBase::metric

157

 ADMBase::lapse

 ADMBase::shift

 HydroBase::rho

 HydroBase::eps

 HydroBase::press

 HydroBase::vel

"

NaNChecker::action_if_found = "terminate"

#NaNChecker::action_if_found = "just warn"

#"terminate", "just warn", "abort"

#---

Run parameters:

#---

#------

Grid:

#------

MoL::ODE_Method = "rk4"

MoL::MoL_Intermediate_Steps = 4

MoL::MoL_Num_Scratch_Levels = 1

use dt = 0.4 dx (works for core collapse)

Time::dtfac = 0.35

CoordBase::domainsize = "minmax"

CoordBase::xmin = 0.00

CoordBase::ymin = -960.00

CoordBase::zmin = 0.00

CoordBase::xmax = +960.00

158

CoordBase::ymax = +960.00

CoordBase::zmax = +960.00

CoordBase::dx = 10.00

CoordBase::dy = 10.00

CoordBase::dz = 10.00

CoordBase::boundary_size_x_lower = 3

CoordBase::boundary_size_y_lower = 3

CoordBase::boundary_size_z_lower = 3

CoordBase::boundary_size_x_upper = 3

CoordBase::boundary_size_y_upper = 3

CoordBase::boundary_size_z_upper = 3

CoordBase::boundary_shiftout_x_lower = 1

CoordBase::boundary_shiftout_y_lower = 0

CoordBase::boundary_shiftout_z_lower = 1

reflectionsymmetry::avoid_origin_x = no

reflectionsymmetry::avoid_origin_y = no

reflectionsymmetry::avoid_origin_z = no

reflectionsymmetry::reflection_x = no

reflectionsymmetry::reflection_y = no

reflectionsymmetry::reflection_z = yes

CartGrid3D::type = "coordbase"

Carpet::domain_from_coordbase = "yes"

Driver::ghost_size = 3

General Carpet parameters:

159

Carpet::enable_all_storage = "no"

Carpet::use_buffer_zones = "yes"

Carpet::schedule_barriers = "no"

Carpet::poison_new_timelevels = "yes"

Carpet::check_for_poison = "no"

Carpet::init_3_timelevels = "no"

Carpet::init_fill_timelevels = "yes"

CarpetLib::poison_new_memory = "yes"

CarpetLib::poison_value = 114

CarpetLib::check_bboxes = "no"

CarpetLib::interleave_communications = "yes"

CarpetLib::combine_sends = "yes"

CarpetInterp::tree_search = "yes"

CarpetInterp::check_tree_search = "no"

CarpetRegrid2::freeze_unaligned_levels = "yes"

CarpetRegrid2::freeze_unaligned_parent_levels = "yes"

CarpetRegrid2::ensure_proper_nesting = "yes"

CarpetRegrid2::snap_to_coarse = "yes"

CarpetRegrid2::symmetry_rotating180 = "yes"

System specific Carpet parameters:

Carpet::max_refinement_levels = 8

Carpet::prolongation_order_space = 5

Carpet::prolongation_order_time = 2

160

Carpet::refinement_centering = "vertex"

CarpetRegrid2::regrid_every = 64 # as often as

required

CarpetRegrid2::num_centres = 3

CarpetRegrid2::min_distance = 0

box sizes are given by:

* the stars seem to puff up to about 13M during the

initial phase of the evolution

* I need 12 buffer points (RK4, 3 ghost zones)

* need three coarse points for interpolation onto

last fine buffer point

these boxes are minimal in this sense. The coarser

grid are completely

covered by the finer grids and their buffers.

add 4 coarse grid points in between to have some

leeway against roundoff

grid step sizes are for coarsest anticipated

simulation dx = 1.5M

CarpetRegrid2::num_levels_1 = 7

CarpetRegrid2::position_x_1 = 0

CarpetRegrid2::radius_1[1] = 960

CarpetRegrid2::radius_1[2] = 228

CarpetRegrid2::radius_1[3] = 114

CarpetRegrid2::radius_1[4] = 66

CarpetRegrid2::radius_x_1[5] = 35

carpetregrid2::radius_y_1[5] = 35

carpetregrid2::radius_z_1[5] = 24

CarpetRegrid2::radius_1[6] = 13

CarpetRegrid2::radius_1[7] = 6.5

161

CarpetRegrid2::num_levels_2 = 7

CarpetRegrid2::position_x_2 = -15

CarpetRegrid2::radius_2[1] = 320

CarpetRegrid2::radius_2[2] = 164

CarpetRegrid2::radius_2[3] = 96

CarpetRegrid2::radius_2[4] = 48

CarpetRegrid2::radius_2[5] = 18

CarpetRegrid2::radius_2[6] = 11

CarpetRegrid2::radius_2[7] = 5.5

CarpetRegrid2::num_levels_3 = 7

CarpetRegrid2::radius_3[1] = 320

CarpetRegrid2::radius_3[2] = 164

CarpetRegrid2::radius_3[3] = 96

CarpetRegrid2::radius_3[4] = 48

CarpetRegrid2::radius_3[5] = 18

CarpetRegrid2::radius_3[6] = 11

CarpetRegrid2::radius_3[7] = 5.5

carpetmask::excluded_surface[0] = 0

carpetmask::excluded_surface[1] = 1

carpetmask::excluded_surface_factor[0] = 1

carpetmask::excluded_surface_factor[1] = 1

CarpetTracker::surface_name[0] = "Righthand NS"

CarpetTracker::surface_name[1] = "Lefthand NS"

#------

MODEL:

162

#------

ActiveThorns = "Meudon_Bin_NS"

HydroBase::initial_hydro = "Meudon_Bin_NS"

ADMBase::initial_data = "Meudon_Bin_NS"

ADMBase::initial_lapse = "Meudon_Bin_NS"

ADMBase::initial_shift = "zero"

ADMBase::initial_dtlapse = "zero"

ADMBase::initial_dtshift = "zero"

change this to be the full path to the initial data

file

Meudon_Bin_NS::filename ="case208208.d"

#------------------EOS-----------------------------

EOS_Omni::poly_K = 123.613314525753

EOS_Omni::hybrid_gamma_th = 1.8 #gamma thermal

from Hotokezaka et al. 2013 (arxiv.org/abs/1307.5888)

EOS_Omni::n_pieces = 7 #3 for the core +

4 for the crust (Read et al 2009)

##k0=6.8011e-09 in cgs units and Kcu =

k0_cgs*(cu_to_cgs**(gamma-1)) where

cu_to_cgs=6.1762691458861658e+17 converts from CU to

g/cm^3

EOS_Omni::hybrid_k0 = 168.58190246577206

163

EOS_Omni::hybrid_gamma[0] = 1.58425

EOS_Omni::hybrid_gamma[1] = 1.28733

EOS_Omni::hybrid_gamma[2] = 0.62223

EOS_Omni::hybrid_gamma[3] = 1.35692

EOS_Omni::hybrid_gamma[4] = 3.005

EOS_Omni::hybrid_gamma[5] = 2.988

EOS_Omni::hybrid_gamma[6] = 2.851

EOS_Omni::hybrid_rho[0] = 3.95160737e-11

EOS_Omni::hybrid_rho[1] = 6.12595478e-07

EOS_Omni::hybrid_rho[2] = 4.25474745e-06

EOS_Omni::hybrid_rho[3] = 2.36741168e-04

EOS_Omni::hybrid_rho[4] = 8.11472463e-04

EOS_Omni::hybrid_rho[5] = 1.61910043e-03

#----------

Numerics:

#----------

InitBase::initial_data_setup_method =

"init_some_levels"

TmunuBase::stress_energy_storage = "yes"

TmunuBase::stress_energy_at_RHS = "yes"

TmunuBase::timelevels = 1

TmunuBase::prolongation_type = "none"

TmunuBase::support_old_CalcTmunu_mechanism = "no"

HydroBase::timelevels = 3

164

SpaceMask::use_mask = "yes"

SphericalSurface::nsurfaces = 5

SphericalSurface::maxntheta = 39

SphericalSurface::maxnphi = 76

SphericalSurface::ntheta [0] = 39

SphericalSurface::nphi [0] = 76

SphericalSurface::nghoststheta[0] = 2

SphericalSurface::nghostsphi [0] = 2

SphericalSurface::name [0] = "Righthand NS"

SphericalSurface::ntheta [1] = 39

SphericalSurface::nphi [1] = 76

SphericalSurface::nghoststheta[1] = 2

SphericalSurface::nghostsphi [1] = 2

SphericalSurface::name [1] = "Lefthand NS"

SphericalSurface::ntheta [3] = 39

SphericalSurface::nphi [3] = 76

SphericalSurface::nghoststheta[3] = 2

SphericalSurface::nghostsphi [3] = 2

SphericalSurface::set_spherical[3] = yes

SphericalSurface::radius [3] = 100

SphericalSurface::name [3] = "waveextract

surface at 100"

SphericalSurface::ntheta [4] = 39

SphericalSurface::nphi [4] = 76

165

SphericalSurface::nghoststheta[4] = 2

SphericalSurface::nghostsphi [4] = 2

SphericalSurface::set_spherical[4] = yes

SphericalSurface::radius [4] = 250

SphericalSurface::name [4] = "waveextract

surface at 250"

#-----------

Evolution:

#-----------

test

HydroBase::initial_Bvec = "zero"

Hydrobase::Bvec_evolution_method = "GRHydro"

GRHydro::transport_constraints = yes

HydroBase::evolution_method = "GRHydro"

ADMMacros::spatial_order = 4

GRHydro::sources_spatial_order = 4

GRHydro::riemann_solver = "HLLE" #

Marquina is currently not supported by MP

GRHydro::recon_method = "ppm"

GRHydro::GRHydro_stencil = 3

GRHydro::bound = "flat"

GRHydro::rho_abs_min = 1.e-11

GRHydro::GRHydro_atmo_tolerance = 0.01

GRHydro::c2p_reset_pressure = "yes"

166

GRHydro::GRHydro_eos_type = "General"

GRHydro::GRHydro_eos_table = "Ideal_Fluid"

these can save some memory since they prevent MoL

from allocating unnecessary

scratch space for saveandrestore variables

GRHydro::GRHydro_MaxNumSandRVars = 0

GRHydro::use_enhanced_ppm = "yes"

Parameters are defaults, which in turn are from

Colella & Sekora 2008 and

McCorquodale & Colella 2011

GRHydro::sync_conserved_only = "yes"

GRHydro::reconstruct_Wv = "yes"

GRHydro::c2p_resort_to_bisection = "yes"

GRHydro::use_cxx_code = "yes"

MacLachlan evolution parameters

ADMBase::metric_type = physical

ADMBase::evolution_method = ML_BSSN

ADMBase::lapse_evolution_method = ML_BSSN

ADMBase::shift_evolution_method = ML_BSSN

ADMBase::dtlapse_evolution_method = ML_BSSN

ADMBase::dtshift_evolution_method = ML_BSSN

ML_BSSN::timelevels = 3

ML_BSSN::initial_boundary_condition = "extrapolate-

gammas"

167

ML_BSSN::rhs_boundary_condition = "NewRad"

Boundary::radpower = 2 # not

really needed I think but who knows what NewRad uses

ML_BSSN::harmonicN = 1 # 1+log

ML_BSSN::harmonicF = 2.0 # 1+log

ML_BSSN::ShiftGammaCoeff = 0.75

ML_BSSN::AlphaDriver = 0.0

ML_BSSN::BetaDriver = 1.0

ML_BSSN::advectLapse = 1.0

ML_BSSN::advectShift = 1.0

ML_BSSN::MinimumLapse = 1.0e-8

ML_BSSN::ML_log_confac_bound = "none"

ML_BSSN::ML_metric_bound = "none"

ML_BSSN::ML_Gamma_bound = "none"

ML_BSSN::ML_trace_curv_bound = "none"

ML_BSSN::ML_curv_bound = "none"

ML_BSSN::ML_lapse_bound = "none"

ML_BSSN::ML_dtlapse_bound = "none"

ML_BSSN::ML_shift_bound = "none"

ML_BSSN::ML_dtshift_bound = "none"

ML_BSSN::UseSpatialBetaDriver = 1

ML_BSSN::SpatialBetaDriverRadius = 50

#ML_BSSN::apply_dissipation = "never"

ML_BSSN::epsDiss =0.0

168

Dissipation::epsdis = 0.1

Dissipation::order = 5

Dissipation::vars = "

 ML_BSSN::ML_log_confac

 ML_BSSN::ML_metric

 ML_BSSN::ML_trace_curv

 ML_BSSN::ML_curv

 ML_BSSN::ML_Gamma

 ML_BSSN::ML_lapse

 ML_BSSN::ML_shift

 ML_BSSN::ML_dtlapse

 ML_BSSN::ML_dtshift

"

#---

Output:

#---

IOBasic::outInfo_every = 1

IOBasic::outInfo_reductions = "maximum"

IOBasic::outInfo_vars = "

 Carpet::physical_time_per_hour

 HydroBase::rho

 ML_ADMConstraints::ML_Ham

 SystemStatistics::maxrss_mb

 GRHydro::dens{reductions = 'sum maximum'}

 HydroBase::w_lorentz

"

IOScalar::outScalar_every = 256 # every_coarse

169

IOScalar::all_reductions_in_one_file = "yes"

IOScalar::one_file_per_group = "yes"

IOScalar::outScalar_reductions = "minimum maximum

average norm1 norm2"

IOScalar::outScalar_vars = "

 ADMBase::lapse

 ADMBase::shift

 ADMBase::metric

 ADMBase::curv

 HydroBase::rho

 HydroBase::vel

 HydroBase::w_lorentz

 GRHydro::dens{reductions = 'minimum maximum average

norm1 norm2 sum'}

 SystemStatistics::process_memory_mb

 SphericalSurface::sf_radius

 ML_ADMConstraints::ML_Ham

"

IOASCII::one_file_per_group = "yes"

IOASCII::compact_format = "yes"

IOASCII::out0D_every = 256 # every_coarse

IOASCII::out0D_vars = "

 Carpet::timing

 QuasiLocalMeasures::qlm_scalars

 SphericalSurface::sf_active

 SphericalSurface::sf_valid

 SphericalSurface::sf_info

 SphericalSurface::sf_radius

 SphericalSurface::sf_origin

170

 SphericalSurface::sf_coordinate_descriptors

 Hydro_Analysis::Hydro_Analysis_rho_max_loc

Hydro_Analysis::Hydro_Analysis_rho_max_origin_distance

"

#Set these IOASCII options for initial data only:

IOASCII::out1D_every = 0

IOASCII::out1D_d = "no"

IOASCII::out1D_vars = "

 HydroBase::rho

 HydroBase::vel

 ADMBase::lapse

 ADMBase::shift

 ADMBase::metric

 ADMBase::curv

 ML_ADMConstraints::ML_Ham

"

CarpetIOHDF5::one_file_per_group = "no"

this is required by multipatch

CarpetIOHDF5::open_one_input_file_at_a_time = "yes"

CarpetIOHDF5::out2D_every = 1536

6*every coarse

CarpetIOHDF5::out2D_xy = "yes"

CarpetIOHDF5::out2D_xz = "no"

CarpetIOHDF5::out2D_yz = "no"

CarpetIOHDF5::out2D_xyplane_z = 0.0

CarpetIOHDF5::out2D_vars = "

 CarpetReduce::weight

 Grid::coordinates

171

 HydroBase::rho

 HydroBase::vel

 HydroBase::entropy

 HydroBase::press

 HydroBase::eps

 ADMBase::lapse

 ADMBase::shift

 ADMBase::metric

 ML_ADMConstraints::ML_Ham

 "

IOHDF5::out3D_every = 8192 # = 32*every_coarse

IOHDF5::out3D_vars = "

 CarpetReduce::weight

 HydroBase::rho

 HydroBase::vel

 HydroBase::eps

 ADMBase::lapse

 ADMBase::shift

 ML_ADMConstraints::ML_Ham

 grid::coordinates

"

#---

Analysis:

#---

Hydro_Analysis::Hydro_Analysis_comp_rho_max = "true"

Hydro_Analysis::Hydro_Analysis_rho_max_loc_only_positi

ve_x = "true"

Hydro_Analysis::Hydro_Analysis_comp_rho_max_origin_dis

tance = "yes"

172

Hydro_Analysis::Hydro_Analysis_average_multiple_maxima

_locations = "yes"

Hydro_Analysis::Hydro_Analysis_interpolator_name =

"Lagrange polynomial interpolation (tensor product)"

NSTracker::NSTracker_SF_Name = "Righthand NS"

NSTracker::NSTracker_SF_Name_Opposite = "Lefthand NS"

NSTracker::NSTracker_max_distance = 10

NSTracker::NSTracker_verbose = "yes"

NSTracker::NSTracker_tracked_location =

"Hydro_Analysis::Hydro_Analysis_rho_max_loc"

QuasiLocalMeasures::num_surfaces = 2

QuasiLocalMeasures::spatial_order = 4

QuasiLocalMeasures::interpolator = "Lagrange

polynomial interpolation"

QuasiLocalMeasures::interpolator_options = "order=4"

QuasiLocalMeasures::surface_name[0] = "waveextract

surface at 100"

QuasiLocalMeasures::surface_name[1] = "waveextract

surface at 250"

Wave extraction

WeylScal4::offset = 1e-8

WeylScal4::fd_order = "4th"

173

WeylScal4::verbose = 0

Multipole::nradii = 8

Multipole::out_every = 128

Multipole::radius[0] = 45

Multipole::radius[1] = 70

Multipole::radius[2] = 100

Multipole::radius[3] = 125

Multipole::radius[4] = 150

Multipole::radius[5] = 200

Multipole::radius[6] = 250

Multipole::radius[7] = 300

Multipole::variables = "WeylScal4::Psi4r{sw=-2

cmplx='WeylScal4::Psi4i' name='Psi4'}"

Multipole::l_max = 6

#---

Checkpoint/Recovery:

#---

IOHDF5::checkpoint = "yes"

IO::checkpoint_dir = "../checkpoint"

IO::checkpoint_ID = "yes"

IO::checkpoint_every_walltime_hours = 6.0

CarpetIOHDF5::checkpoint_every_divisor = 55552

IO::checkpoint_keep=2

IO::checkpoint_on_terminate = "yes"

IO::recover = "autoprobe"

IO::recover_dir = "../checkpoint"

174

#---

AHFinderDirect:

#---

AHFinderDirect::find_every = 0

AHFinderDirect::run_at_CCTK_POST_RECOVER_VARIABLES =

no

AHFinderDirect::move_origins = yes

AHFinderDirect::reshape_while_moving = yes

AHFinderDirect::predict_origin_movement = yes

AHFinderDirect::geometry_interpolator_name = "Lagrange

polynomial interpolation"

AHFinderDirect::geometry_interpolator_pars = "order=4"

AHFinderDirect::surface_interpolator_name = "Lagrange

polynomial interpolation"

AHFinderDirect::surface_interpolator_pars = "order=4"

AHFinderDirect::output_h_every = 128

AHFinderDirect::N_horizons = 1

AHFinderDirect::which_surface_to_store_info

[1] = 0

AHFinderDirect::reset_horizon_after_not_finding

[1] = no

AHFinderDirect::initial_guess__coord_sphere__radius

[1] = 1.3528

#---

175

Control

#---

ActiveThorns = "Trigger"

Trigger::Trigger_Number = 3

Check for lapse < 0.5, and if so, set this trigger

to 'once'

Trigger::Trigger_Once [0] = 0

Trigger::Trigger_Checked_Variable[0] = "ADMBase::alp"

Trigger::Trigger_Reduction [0] = "minimum"

Trigger::Trigger_Relation [0] = "<"

Trigger::Trigger_Checked_Value [0] = 0.5

Trigger::Trigger_Reaction [0] =

"steerparam"

Trigger::Trigger_Steered_Parameter_Thorn[0] =

"Trigger"

Trigger::Trigger_Steered_Parameter_Name [0] =

"Trigger_Once[0]"

Trigger::Trigger_Steered_Parameter_Value[0] = "1"

if lapse < 0.2 enable AHFinder

Trigger::Trigger_Once [1] = 1

Trigger::Trigger_Checked_Variable[1] = "ADMBase::alp"

Trigger::Trigger_Reduction [1] = "minimum"

Trigger::Trigger_Relation [1] = "<"

Trigger::Trigger_Checked_Value [1] = 0.3

Trigger::Trigger_Reaction [1] =

"steerparam"

Trigger::Trigger_Steered_Parameter_Thorn[1] =

"AHFinderDirect"

176

Trigger::Trigger_Steered_Parameter_Name [1] =

"find_every"

Trigger::Trigger_Steered_Parameter_Value[1] = "128"

if trigger 0 was set 'once' (lapse < 0.5)

add refinement level

Trigger::Trigger_Once [2] = 1

Trigger::Trigger_Checked_Variable [2] = "param"

Trigger::Trigger_Checked_Parameter_Thorn[2] =

"Trigger"

Trigger::Trigger_Checked_Parameter_Name [2] =

"Trigger_Once[0]"

Trigger::Trigger_Relation [2] = "=="

Trigger::Trigger_Checked_Value [2] = 1

Trigger::Trigger_Reduction [2] = ""

Trigger::Trigger_Reaction [2] =

"steerscalar"

Trigger::Trigger_Steered_Scalar [2] =

"CarpetRegrid2::num_levels[0]"

Trigger::Trigger_Steered_Scalar_Value [2] = "7"

#-------VolumeIntegrals_GRMHD----------------

We use this to track the NS movement

Uncomment the following lines to have moving boxes

also increase by one the value of

carpetregrid2::num_levels_2 and

carpetregrid2::num_levels_3

VolumeIntegrals_GRMHD::NumIntegrals = 6

VolumeIntegrals_GRMHD::VolIntegral_out_every = 64

VolumeIntegrals_GRMHD::enable_file_output = 1

VolumeIntegrals_GRMHD::outVolIntegral_dir =

"volume_integration"

177

VolumeIntegrals_GRMHD::verbose = 1

The AMR centre will only track the first referenced

integration quantities that track said centre.

Thus, centeroflapse output will not feed back

into the AMR centre positions.

VolumeIntegrals_GRMHD::Integration_quantity_keyword[1]

= "one"

VolumeIntegrals_GRMHD::Integration_quantity_keyword[2]

= "centerofmass"

VolumeIntegrals_GRMHD::Integration_quantity_keyword[3]

= "one"

VolumeIntegrals_GRMHD::Integration_quantity_keyword[4]

= "centerofmass"

VolumeIntegrals_GRMHD::Integration_quantity_keyword[5]

= "one"

VolumeIntegrals_GRMHD::Integration_quantity_keyword[6]

= "restmass"

#Use output from volume integral to move AMR box

centre 2

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial [2] = -15.0

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us [2] = 10.0

VolumeIntegrals_GRMHD::amr_centre__tracks__volintegral

_inside_sphere[2] = 1

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial [3] = -15.0

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us [3] = 10.0

178

#Use output from volume integral to move AMR box

centre 3

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial [4] = 15.0

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us [4] = 10.0

VolumeIntegrals_GRMHD::amr_centre__tracks__volintegral

_inside_sphere[4] = 2

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial [5] = 15.0

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us [5] = 10.0

	An Introduction To Numerical Relativity And Simulations Of Binary Neutron Stars
	Recommended Citation

	tmp.1663364522.pdf.hqU91

