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Abstract 

 The theory of general relativity is currently the best description of gravity.  

However, the equations in general relativity are highly nonlinear and only the simplest of 

cases can hope to be solved analytically. As a result, the field of numerical relativity was 

created to solve some of these issues and to model more complicated dynamical 

situations. This thesis sets out to give the reader a basic understanding of general 

relativity, numerical relativity, as well as an understanding of some of the programs that 

are used in numerical relativity research such as Lorene and the Einstein Toolkit and 

concludes with a brief set of simulations of binary neutron stars with various masses. 
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1. Introduction 

1.1.  Motivation 

In 1915, Albert Einstein formulated a theory of gravity that was consistent with 

his special theory of relativity (Einstein 1918). This theory is currently our best 

understanding of gravity. To better comprehend gravity in a strong field environment, the 

field of numerical relativity was created (Hahn & Lindquist 1964). Numerical relativity 

deals with the evolution of gravitational systems and the distortions of spacetime under 

conditions that cannot be solved analytically. An example of such a system is the motion 

of massive, compact binaries, orbiting each other at extreme speeds. These bodies should 

emit gravitational waves as their orbits decay and objects eventually merge (Einstein 

1918). 

 This decay was first indirectly observed in 1974 with the observation of orbits of 

binary neutron stars decaying and the system losing energy through these gravitational 

waves (Taylor & Weisberg 1982). This led to the Nobel Prize in physics in 1993 being 

awarded to Russel Hulse and Joseph Taylor Jr. for the first indirect evidence for 

gravitational waves. The field then made another step forward in 2015 with the first 

direct detection of gravitational waves from the inspiral and merging of two compact 

objects made by the Laser Interferometer Gravitational-Wave Observatory (LIGO) 

(Abbott et al. 2016). In the case of this first detection, the compact objects orbiting each 

other and eventually merging were black holes of masses 36−4
+5 𝑀☉ and 29−4

+4 𝑀☉ , 

although in principle any massive object experiencing acceleration should create 

gravitational waves, it is these extremely massive, high speed objects who’s gravitational 

waves can be observed at the moment (Schutz 1999). This observation has ushered in a 
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new age of gravitational wave astronomy, a field that is extremely promising due to the 

characteristics of gravitational waves, namely that they interact with matter so weakly 

that there is little obstruction in the signal (Schutz 1999). To fully utilize the detection of 

gravitational waves from astronomical sources and participate in the new age of 

gravitational wave astronomy, a more complete understanding of Einstein’s theory of 

general relativity in extreme environments is needed to be obtained. This includes the 

development of tools using numerical approximations and simulations to better match 

observations with known physics. 

 It is the goal of this thesis to present an introduction to general relativity, as well 

as give the reader a basic understanding of numerical relativity and its applications to 

simulations that describe the inspiral and merger of binary neutron star systems. The 

main method for creating these simulations is the Einstein Toolkit, which is based on the 

ADM and BSSN formulation of numerical relativity (Löffler et al. 2012), all of which 

will be discussed in more detail later. The Einstein Toolkit suite of computational tools 

(Löffler et al. 2012) are used to perform high-level numerical relativity and relativistic 

astrophysical simulations on a modest computational machine. An important output 

product from these numerical simulations is the waveform of the gravitational waves that 

are emitted during the coalescence phase of the merger of compact objects. Waveforms 

generated using different masses of binary objects can be compared to LIGO detections 

to better understand the progenitors of the gravitational waves sources that are detected. 

 This thesis will delve into four cases of binary neutron star systems with various 

mass values, as well as different parameter files to better understand the importance of 

the usage of different thorns within the Einstein Toolkit to create meaningful simulations 
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with realistic data. These test cases include; 1) two neutron stars each having the 

maximum observed mass value for a neutron star of 2.08 solar masses (Mazzali et al. 

2007), 2 ) the minimum mass value of 1.4 solar masses, which is the Chandrasekar limit 

(Fonseca et al. 2021), 3) an intermediate value between the Chandrasekar value and the 

maximum observed mass, which is taken to be 1.74 solar masses, and 4) a case where 

one neutron star has the minimum value of 1.4 solar masses and the companion object 

has a mass of 1.74 solar masses. Although these cases are limited in their scope, they do 

provide a proving ground in which simulations can be tested and the input of relevant 

physics explored. 

1.2.  Convention  

The sign convention that will be used in this thesis will be the (−,+,+,+) sign 

convention. Some consider this sign convention to be more cumbersome to use in some 

applications. However, we feel that it makes the most physical sense and will be the 

convention adopted throughout this thesis. This thesis will also make liberal use of the 

Einstein summation convention to denote addition over repeated indices, e.g. 

𝑎𝑖𝑏𝑖 =∑𝑎𝑖𝑏𝑖

3

𝑖=1

= 𝑎1𝑏1 + 𝑎
2𝑏2 + 𝑎

3𝑏3. (1.2.1) 

Additionally, the use of Latin indices will be used to denote values that may range over 

the spatial components, e.g.  

𝑎𝑖𝑏𝑖 = 𝑎1𝑏1 + 𝑎
2𝑏2 + 𝑎

3𝑏3. (1.2.2) 

The use of Greek indices will be used to indicate values that may range over the temporal 

and spatial components, e.g. 
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𝑎𝜇𝑏𝜇 = 𝑎
0𝑏0 + 𝑎

1𝑏1 + 𝑎
2𝑏2 + 𝑎

3𝑏3. (1.2.3)

At times it will also be useful to refer to a tensor as a whole and not by each component. 

In these cases, I will use the notation || ||, to refer to the whole tensor and not an 

individual component, e.g. 

𝑇 = ‖𝑇𝑖𝑗‖. (1.2.4) 

A convenient shorthand that will be used throughout this thesis will be the use of the 

symbol , used in the indices that will be used to denote the partial derivative of the object 

with respect to the thing that follows in the indices, e.g. 

𝜕𝑆

𝜕𝑥𝑖
= 𝜕𝑖 = 𝑆,𝑖. (1.2.7) 

Finally, this thesis will use the convention of 𝐺 = 𝑐 = 𝑀☉ = 1, meaning that any number 

given will be expressed in solar masses unless otherwise stated. 

1.3.  Primer on General Relativity 

 Before describing the research presented in this thesis, an introduction to general 

relativity is provided. The following derivation follows closely to that found in Misner et 

al. (2017). 

1.3.1. The Metric 

 To have an understanding of general relativity, one needs at least a basic 

understanding of the metric tensor. The metric tensor is the object that general relativity 

is constructed from, and it fully describes the way that coordinate systems are defined. In 

order to understand the metric, one first needs a coordinate system to work with. The 
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coordinate system will be made up of the coordinate basis �̂�𝑖, which is defined by the 

relationship 

�̂�𝑖 =
𝜕𝑟

𝜕𝑥𝑖
, (1.3.1.1) 

where 𝑟 is an abstract notion of a position vector and is not a vector that depends on the 

actual coordinates. Also, 𝜕𝑥𝑖 is an infinitesimal displacement in a direction used to define 

the basis. A familiar example of a vector depending on position is a vector in polar 

coordinates 

�⃗�(𝑟, 𝜃) = 𝑣𝑟(𝑟, 𝜃)�̂�(𝑟, 𝜃) + 𝑣𝜃(𝑟, 𝜃)𝜃(𝑟, 𝜃). (1.3.1.2) 

This explicitly shows that the basis vectors �̂�(𝑟, 𝜃) and 𝜃(𝑟, 𝜃), depend on the coordinates 

used. With the basis now defined, it is possible to define the metric tensor. The metric 

tensor is defined by the relationship 

𝑔𝑖𝑗 = �̂�𝑖 ∙ �̂�𝑗. (1.3.1.3) 

From this definition of the metric, it should be symmetric, thus 

𝑔𝑖𝑗 = 𝑔𝑗𝑖. (1.3.1.4) 

In general relativity the metric is an important object that describes how spacetime is 

deformed, and it is the natural generalization of the Minkowski metric that is used in 

special relativity (Einstein 1905). In general relativity it looks like the metric should be 

made up of 16 independent components. However, equation (1.3.1.4) brings the total 

number of independent components down to 10. 
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 Another important property of the metric is the definition of the inner product. 

Consider the generic vectors �⃗⃗� and �⃗� defined by 

�⃗⃗� = 𝑢𝑖�̂�𝑖, (1.3.1.5𝑎) 

�⃗� = 𝑣𝑗�̂�𝑗 . (1.3.1.5𝑏) 

Taking the inner product of these vectors gives 

�⃗⃗� ∙ �⃗� = 𝑢𝑖�̂�𝑖 ∙ 𝑣
𝑗�̂�𝑗, 

�⃗⃗� ∙ �⃗� = 𝑔𝑖𝑗𝑢
𝑖𝑣𝑗 . (1.3.1.6) 

From this it is a natural extension to see that the line element is also based off the metric 

since the line element is defined by 

𝑑𝑠2 = 𝑑𝑟 ∙ 𝑑𝑟. (1.3.1.7) 

This generalizes to 

𝑑𝑠2 = 𝑑𝑥𝑖�̂�𝑖 ∙ 𝑑𝑥
𝑗�̂�𝑗 = 𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 . (1.3.1.8) 

 With this definition of the metric tensor, it is helpful to have a version of the 

metric that it contravariant in addition to the covariant version of the metric. The key 

feature of the contravariant version of the metric is that it should be the matrix inverse of 

the covariant version of the metric, i.e. 

‖𝑔𝑖𝑗‖ ≡ ‖𝑔𝑖𝑗‖
−1
. (1.3.1.9) 

This leads to the important relationship that 

𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑘
𝑖 , (1.3.1.10) 
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with 𝛿𝑘
𝑖  being the standard Kronecker delta. The last property of the metric is that it 

should raise or lower indices of a tensor. This can be seen by recalling the definition of 

the general vector used above, �⃗�. To get the 𝑣𝑖 component of the vector, take the inner 

product of the vector with the basis vector in that direction i.e. 

𝑣𝑖 = �⃗� ∙ �̂�𝑖. (1.3.1.10) 

Expanding this expression gives 

𝑣𝑖 = 𝑣𝑗�̂�𝑗 ∙ �̂�𝑖, 

𝑣𝑖 = 𝑔𝑖𝑗𝑣
𝑗 . (1.3.1.11) 

The contravariant version of the tensor is then able to raise the indices of a tensor from 

being a covariant component to being a contravariant component 

𝑣𝑖 = 𝑔𝑖𝑗𝑣𝑗 . (1.3.1.12) 

With a basic understanding of the metric, it is now possible to journey farther into the 

depths of general relativity with the covariant derivative. 

1.3.2. Covariant Derivative 

 To begin, it is helpful to define a derivative that will work in all reference frames 

because, as seen in Einstein’s special theory of relativity (Einstein 1905), no one observer 

has a preferred reference frame over any other. This derivative, defined below, is known 

as the covariant derivative. For this task it is necessary to use the generic vector 

�⃗� = 𝑣𝑖�̂�𝑖. (1.3.2.1) 

Differentiating equation (1.3.2.1) gives 
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𝑑�⃗� = �̂�𝑖𝑑𝑣
𝑖 + 𝑣𝑖𝑑�̂�𝑖, (1.3.2.2) 

since this differentiation follows the Leibniz rule, where 𝑑𝑣𝑖 is defined to be 

𝑑𝑣𝑖 =
𝜕𝑣𝑖

𝜕𝑥𝑗
𝑑𝑥𝑗 , (1.3.2.3) 

and 𝑑�̂�𝑖 is given by 

𝑑�̂�𝑖 = Γ𝑖𝑗
𝑘𝑑𝑥𝑗�̂�𝑘, (1.3.2.4) 

with Γ𝑖𝑘
𝑗

being known as the connection coefficient, the formula of which will be 

determined later. It should be noted at this point that the connection coefficient is 

symmetric with respect to the two covariant indices. This can be seen by writing equation 

(1.3.2.4) in the form 

𝜕�̂�𝑖
𝜕𝑥𝑗

= Γ𝑖𝑗
𝑘�̂�𝑘, 

𝜕

𝜕𝑥𝑗
𝜕𝑟

𝜕𝑥𝑖
= Γ𝑖𝑗

𝑘�̂�𝑘. (1.3.2.5) 

The left-hand side is normal partial differentiation, which follows Clairaut’s theorem, 

showing that the connection coefficient is symmetric in the two covariant indices. This 

makes the covariant derivative 

𝑑�⃗� =
𝜕𝑣𝑖

𝜕𝑥𝑗
𝑑𝑥𝑗�̂�𝑖 + 𝑣

𝑖Γ𝑖𝑗
𝑘𝑑𝑥𝑗�̂�𝑘. (1.3.2.6) 

This is the basis in which the covariant derivative is defined. Rearranging and changing 

the indices, the covariant derivative will be defined as 
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∇𝑗�⃗� =
𝑑�⃗�

𝑑𝑥𝑗
= (

𝜕𝑣𝑖

𝜕𝑥𝑗
+ Γ𝑖𝑗

𝑘𝑣𝑖) �̂�𝑘. (1.3.2.7) 

With the definition of the covariant derivative firmly established, it is important to know 

the properties of this derivative and how to use it properly.  

The first important thing to note about the covariant derivative is that it does not 

satisfy Clairaut’s theorem. To show this, first consider the covariant derivative taken with 

respect to 𝑥𝑗 . This gives 

∇𝑗�⃗� = (
𝜕𝑣𝑖

𝜕𝑥𝑗
+ Γ𝑖𝑗

𝑘𝑣𝑖) �̂�𝑘. (1.3.2.8) 

Taking the covariant derivative of this result with respect to 𝑥𝑚 gives 

∇𝑚𝑗�⃗� = ∇𝑚 (
𝜕𝑣𝑖

𝜕𝑥𝑗
+ Γ𝑖𝑗

𝑘𝑣𝑖) �̂�𝑘, 

∇𝑚𝑗�⃗� = (
𝜕2𝑣𝑖

𝜕𝑥𝑚𝜕𝑥𝑗
+
𝜕𝑣𝑖

𝜕𝑥𝑚
Γ𝑖𝑗
𝑘 + Γ𝑖𝑚

𝑘 𝜕𝑣𝑖

𝜕𝑥𝑗
+ 𝑣𝑖

𝜕

𝜕𝑥𝑚
Γ𝑖𝑗
𝑘 + 𝑣𝑖Γ𝑖𝑚

𝑛 Γ𝑛𝑗
𝑘 ) �̂�𝑘. (1.3.2.9) 

Repeating the same process except interchanging the order of the differentiation between 

𝑥𝑚 and 𝑥𝑗  gives 

∇𝑗𝑚�⃗� = (𝑣,𝑗𝑚
𝑖 + 𝑣,𝑗

𝑖 Γ𝑖𝑚
𝑘 + Γ𝑖𝑗

𝑘𝑣,𝑚
𝑖 + 𝑣𝑖Γ𝑖𝑚,𝑗

𝑘 + 𝑣𝑖Γ𝑖𝑗
𝑛Γ𝑛𝑚

𝑘 )�̂�𝑘. (1.3.2.10) 

Finding the difference between these expressions gives 

∇𝑚𝑗�⃗� − ∇𝑗𝑚�⃗� = (Γ𝑖𝑗,𝑚
𝑘 − Γ𝑖𝑚,𝑗

𝑘 + Γ𝑖𝑚
𝑛 Γ𝑛𝑗

𝑘 − Γ𝑖𝑗
𝑛Γ𝑛𝑚

𝑘 )𝑣𝑖�̂�𝑘. (1.3.2.11) 

The first terms cancel because they only involve partial derivatives, which interchange 

via Clairaut’s theorem. Finally, the term in parentheses can be defined as  
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Γ𝑖𝑗,𝑚
𝑘 − Γ𝑖𝑚,𝑗

𝑘 + Γ𝑖𝑚
𝑛 Γ𝑛𝑗

𝑘 − Γ𝑖𝑗
𝑛Γ𝑛𝑚

𝑘 = 𝑅𝑖𝑚𝑗
𝑘 , (1.3.2.12) 

which is the Riemann Tensor. The Riemann Tensor and some of its properties will be 

discussed in further detail later. 

 The next question is how does the covariant derivative act on tensor of rank two 

or higher? First, consider the case of a rank two doubly contravariant tensor. By 

definition, a tensor of this type must transform in the same way as the product of two 

contravariant vectors so that the tensor can be substituted as the product of two 

contravariant vectors. The covariant derivative will be 

∇𝑖𝑇
𝑗𝑘 = ∇𝑖(𝑢

𝑗𝑣𝑘). (1.3.2.13) 

However, since this is a derivative, the Leibnitz rule still applies so the derivative 

becomes 

∇𝑖(𝑢
𝑗𝑣𝑘) = 𝑢,𝑖

𝑗
𝑣𝑘 + 𝑢𝑗𝑣,𝑖

𝑘 + Γ𝑖𝑙
𝑗
𝑢𝑙𝑣𝑘 + Γ𝑖𝑙

𝑘𝑢𝑗𝑣𝑙 . (1.3.2.14) 

Combining the first two terms as a single partial derivative and replacing the vectors with 

the original tensor gives 

∇𝑖(𝑇
𝑗𝑘) = 𝑇,𝑖

𝑗𝑘
+ Γ𝑖𝑙

𝑗
𝑇𝑙𝑘 + Γ𝑖𝑙

𝑘𝑇𝑗𝑙. (1.3.2.15) 

This demonstrates that the way to take the contravariant derivative of a rank two doubly 

contravariant vector is to have two connection coefficients, one for each of the indices. 

This can be generalized to higher rank contravariant vectors, with one connection 

coefficient in the covariant derivative for each of the indices. 
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 The final property of the covariant derivative that will be important is how to take 

the covariant derivative of a covariant tensor. To understand this, consider the scalar, 

which will be made up of the tensors, 𝑇 = 𝑢𝑗𝑣𝑗 . The covariant derivative of this scalar is 

∇𝑖𝑇 = ∇𝑖(𝑢
𝑗𝑣𝑗) = (∇𝑖𝑢

𝑗)𝑣𝑗 + 𝑢
𝑗(∇𝑖𝑣𝑗). (1.3.2.16) 

The covariant derivative of a scalar is the partial derivative of the scalar since the scalar 

does not depend on the coordinate basis. So, equation (1.3.2.16) can also be written as 

∇𝑖𝑇 = 𝜕𝑖(𝑢
𝑗𝑣𝑗) = (𝜕𝑖𝑢

𝑗)𝑣𝑗 + 𝑢
𝑗(𝜕𝑖𝑣𝑗). (1.3.2.17) 

Equating these equations and taking the covariant derivative of 𝑢𝑗 gives 

(𝜕𝑖𝑢
𝑗)𝑣𝑗 + 𝑢

𝑗(𝜕𝑖𝑣𝑗) = (𝑢,𝑖
𝑗
+ Γ𝑖𝑙

𝑗
𝑢𝑙)𝑣𝑗 + 𝑢

𝑗(∇𝑖𝑣𝑗). (1.3.2.18) 

Which can be rewritten as 

(∇𝑖𝑣𝑗)𝑢
𝑗 = (𝜕𝑖𝑣𝑗 − Γ𝑗𝑖

𝑙𝑣𝑙)𝑢
𝑗 . (1.3.2.19) 

Meaning that the way the covariant derivative acts on a covariant tensor is given by 

∇𝑖𝑣𝑗 = 𝜕𝑖𝑣𝑗 − Γ𝑖𝑗
𝑙 𝑣𝑙 . (1.3.2.20) 

Which is the same way that the covariant acts on a contravariant tensor except that the 

connection coefficient has a negative sign instead of a positive sign. This can be 

generalized and combined with the result of equation (1.3.2.16) to find the covariant 

derivative of any tensor. This generalization is given by 

∇𝑖𝑇𝑚𝑛...
𝑗𝑘...

= 𝑇𝑚𝑛...,𝑖
𝑗𝑘...

+ Γ𝑖𝑙
𝑗
𝑇𝑚𝑛...
𝑙𝑘... + Γ𝑖𝑙

𝑘𝑇𝑚𝑛...
𝑗𝑙...

+⋯− Γ𝑖𝑚
𝑙 𝑇𝑙𝑛...

𝑗𝑘...
− Γ𝑖𝑛

𝑙 𝑇𝑚𝑙...
𝑗𝑘...

−⋯ . (1.3.2.21) 
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The rule is to take the covariant derivative of a tensor is to first take the partial derivative 

of the tensor with respect to 𝑥𝑖, then each index gets a connection coefficient with the 

contravariant indices getting a positive connection coefficient and the covariant indices 

getting a negative connection coefficient. 

1.3.3. Christoffel Symbols 

 Now that the definition and some of the properties of the covariant derivative 

have been firmly established, it is time to determine how to find the connection 

coefficient which is also called the Christoffel symbol. To begin with recall the definition 

of the line element which is 

𝑑𝑠2 = 𝑑𝑟 ∙ 𝑑𝑟. (1.3.3.1) 

Expressing this in an arbitrary basis gives the equation 

𝑑𝑠2 = 𝑑𝑥𝑖�̂�𝑖 ∙ 𝑑𝑥
𝑗�̂�𝑗 = 𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 . (1.3.3.2) 

From this expression it is obvious that the metric can be defined by the dot product of the 

coordinate basis 

�̂�𝑖 ∙ �̂�𝑗 = 𝑔𝑖𝑗. (1.3.3.3) 

Taking the partial derivative of this definition of the metric in the direction of 𝑥𝑖 gives 

𝜕𝑖𝑔𝑗𝑘 = 𝜕𝑖(�̂�𝑗 ∙ �̂�𝑘), 

𝜕𝑖𝑔𝑗𝑘 = Γ𝑖𝑗
𝑙 𝑔𝑙𝑘 + Γ𝑖𝑘

𝑙 𝑔𝑗𝑙. 

Interchanging indices give the three relationships 

𝜕𝑖𝑔𝑗𝑘 = Γ𝑖𝑗
𝑙 𝑔𝑙𝑘 + Γ𝑖𝑘

𝑙 𝑔𝑗𝑙, 



 

21 

 

𝜕𝑗𝑔𝑘𝑖 = Γ𝑗𝑘
𝑙 𝑔𝑙𝑖 + Γ𝑗𝑖

𝑙𝑔𝑘𝑙, 

𝜕𝑘𝑔𝑖𝑗 = Γ𝑗𝑘
𝑙 𝑔𝑙𝑖 + Γ𝑘𝑖

𝑙 𝑔𝑗𝑙 . (1.3.3.4) 

Adding the second expression to the first and subtracting the third gives 

∂𝑖𝑔𝑗𝑘 + ∂𝑗𝑔𝑘𝑖 − ∂𝑘𝑔𝑖𝑗 = Γ𝑖𝑗
𝑙 𝑔𝑙𝑘 + Γ𝑖𝑘

𝑙 𝑔𝑗𝑙 + Γ𝑗𝑘
𝑙 𝑔𝑙𝑖 + Γ𝑗𝑖

𝑙𝑔𝑘𝑙 − Γ𝑗𝑘
𝑙 𝑔𝑙𝑖 − Γ𝑘𝑖

𝑙 𝑔𝑗𝑙, 

∂𝑖𝑔𝑗𝑘 + ∂𝑗𝑔𝑘𝑖 − ∂𝑘𝑔𝑖𝑗 = 2Γ𝑖𝑗
𝑙 𝑔𝑙𝑘. (1.3.3.5) 

Combining these equations together in this way gives an expression for the Christoffel 

symbol which is 

Γ𝑖𝑗
𝑙 =

1

2
𝑔𝑙𝑘(∂𝑖𝑔𝑗𝑘 + ∂𝑗𝑔𝑘𝑖 − ∂𝑘𝑔𝑖𝑗). (1.3.3.6) 

Now that it is possible to write the Christoffel symbol in terms of the metric, it is also 

possible to write the Riemann tensor in terms of the metric as well. 

1.3.4. Riemann Tensor, Ricci Tensor, and Ricci Scalar 

 Now that the connection has been made that the Christoffel symbol depends on 

the coordinates, it is now possible to think about the Riemann tensor in terms of the 

metric as well. Recall that the definition of the Riemann tensor as described above is 

𝑅𝑗𝑘𝑙
𝑖 = Γ𝑗𝑙,𝑘

𝑖 − Γ𝑗𝑘,𝑙
𝑖 + Γ𝑗𝑘

𝑚Γ𝑚𝑙
𝑖 − Γ𝑗𝑙

𝑛Γ𝑛𝑘
𝑖 . (1.3.4.1) 

Lowering the upper index makes it easier to see some of the properties that will be used 

later. The Riemann tensor in this form looks like 

𝑅𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑜(Γ𝑗𝑙,𝑘
𝑜 − Γ𝑗𝑘,𝑙

𝑜 + Γ𝑗𝑘
𝑚Γ𝑚𝑙

𝑜 − Γ𝑗𝑙
𝑛Γ𝑛𝑘

𝑜 ). (1.3.4.2) 
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In this form it is obvious that the Riemann tensor is antisymmetric in the first and second 

indices as well in the third and fourth indices. The Riemann tensor is also symmetric if 

the first and second indices are interchanged with the third and fourth. So, one can see 

that 

𝑅𝑖𝑗𝑘𝑙 = 𝑅𝑗𝑖𝑘𝑙 = 𝑅𝑖𝑗𝑙𝑘 = 𝑅𝑘𝑙𝑖𝑗. (1.3.4.3) 

Using these properties, it can be verified that 

𝑅𝑖𝑗𝑘𝑙 + 𝑅𝑖𝑘𝑙𝑗 + 𝑅𝑖𝑙𝑗𝑘 = 0. (1.3.4.4) 

Taking the covariant derivative of the Riemann tensor gives 

∇𝑚𝑅𝑖𝑗𝑘𝑙 = ∇𝑚 (𝑔𝑖𝑜(Γ𝑗𝑙,𝑘
𝑜 − Γ𝑗𝑘,𝑙

𝑜 + Γ𝑗𝑘
𝑚Γ𝑚𝑙

𝑜 − Γ𝑗𝑙
𝑛Γ𝑛𝑘

𝑜 )) . (1.3.4.5) 

However, the covariant derivative of the metric tensor is zero (Misner et al. 2017), so this 

becomes 

∇𝑚𝑅𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑜∇𝑚(Γ𝑗𝑙,𝑘
𝑜 − Γ𝑗𝑘,𝑙

𝑜 + Γ𝑗𝑘
𝑚Γ𝑚𝑙

𝑜 − Γ𝑗𝑙
𝑛Γ𝑛𝑘

𝑜 ). (1.3.4.6) 

This is simplified in a locally geodesic coordinate system since the Christoffel symbol 

vanishes, then the covariant derivative can be replaced by a partial derivative. This results 

in 

∇𝑚𝑅𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑜(Γ𝑗𝑙,𝑘𝑚
𝑜 − Γ𝑗𝑘,𝑙𝑚

𝑜 ). (1.3.4.7𝑎) 

Interchanging indices it is also true that 

∇𝑘𝑅𝑖𝑗𝑙𝑚 = 𝑔𝑖𝑜(Γ𝑗𝑚,𝑙𝑘
𝑜 − Γ𝑗𝑙,𝑚𝑘

𝑜 ), (1.3.4.7𝑏) 

∇𝑙𝑅𝑖𝑗𝑚𝑘 = 𝑔𝑖𝑜(Γ𝑗𝑘,𝑚𝑙
𝑜 − Γ𝑗𝑚,𝑘𝑙

𝑜 ). (1.3.4.7𝑐) 
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Combining these three equations gives 

∇𝑚𝑅𝑖𝑗𝑘𝑙 + ∇𝑘𝑅𝑖𝑗𝑙𝑚 + ∇𝑙𝑅𝑖𝑗𝑚𝑘 = 0, (1.3.4.8) 

which is the Bianchi identity. 

 Another tensor that is important in general relativity is the Ricci tensor. The Ricci 

tensor is a tensor that is formed by summing over the upper and the middle lower indices 

to form a second rank tensor 

𝑅𝑖𝑗 = 𝑅𝑖𝑘𝑗
𝑘 = Γ𝑖𝑗,𝑘

𝑘 − Γ𝑖𝑘,𝑗
𝑘 + Γ𝑖𝑘

𝑚Γ𝑚𝑗
𝑘 − Γ𝑖𝑗

𝑛Γ𝑛𝑘
𝑘 . (1.3.4.9) 

From this form it is also clear that the Ricci tensor must be symmetric in both of its 

indices as well. The final value that will be necessary before the derivation of the Einstein 

Field Equations is the Ricci scalar. The Ricci scalar is found by taking the trace of the 

Ricci tensor. It is given by 

𝑅 = 𝑔𝑖𝑗𝑅𝑖𝑗 = 𝑔𝑖𝑗(Γ𝑖𝑗,𝑘
𝑘 − Γ𝑖𝑘,𝑗

𝑘 + Γ𝑖𝑘
𝑚Γ𝑚𝑗

𝑘 − Γ𝑖𝑗
𝑛Γ𝑛𝑘

𝑘 ). (1.3.4.10) 

With this final equation it is now time to move onto the Einstein Field Equations. 

1.3.5. The Einstein Equations 

 The Einstein Field Equations will be assumed to take the form 

𝐺𝜇𝜈 = 𝜅𝑇𝜇𝜈 , (1.3.5.1) 

with 𝑇𝜇𝜈 being the stress-energy tensor and 𝐺𝜇𝜈 is the Einstein tensor. This equation 

assumes that the stress-energy tensor is the source of the gravitational field, and they are 

related through a proportionality constant, 𝜅, which will be determined later. To 
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determine how to construct the Einstein tensor, one must start with some leading 

assumptions: 

1. The Einstein tensor must vanish when spacetime is flat, i.e., when the stress-

energy tensor is zero. 

2. The Einstein tensor must be constructed from the Riemann tensor and the metric 

tensor and nothing else. 

3. The Einstein Tensor is distinguished from other tensors which can be built from 

the Riemann tensor and metric tensor from the demands that: 

a. The Einstein tensor be linear in Riemann, as befits any natural measure of 

curvature. 

b.  Like the stress-energy tensor, the Einstein tensor should be symmetric and 

second rank. 

c. The Einstein tensor should naturally have a vanishing divergence 

∇𝜇𝐺𝜇𝜈 ≡ 0. (1.3.5.2) 

Applying conditions 2, 3a, and 3b, the most general Einstein tensor is 

𝐺𝜇𝜈 = 𝑅𝜇𝜈 + 𝑏𝑅𝑔𝜇𝜈 + Λ𝑔𝜇𝜈 , (1.3.5.3) 

where 𝑏 and Λ are scalar constants, and technically 𝑅𝜇𝜈 should have a scalar constant that 

would get absorbed into 𝜅 in equation (1.3.5.1). Considering condition 1, one needs to 

know how the Riemann tensor behaves when spacetime is taken to be flat. Rewriting the 

definition of the Riemann tensor gives 

𝑅βγδ
α = Γβδ,γ

α − Γβγ,δ
α + Γβγ

ϵ Γϵδ
α − Γβδ

η
Γηγ
α . (1.3.5.4) 
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To begin, it is useful to look at how the Christoffel symbol behaves in a flat spacetime. 

The Christoffel symbol is 

Γ𝛽𝛾
𝛼 =

1

2
𝑔𝛼𝜀(𝑔𝛾𝜀,𝛽 + 𝑔𝜀𝛽,𝛾 − 𝑔𝛽𝛾,𝜖). (1.3.5.5) 

The metric in flat spacetime is 

‖𝑔𝜇𝜈‖ = [

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] . (1.3.5.6) 

Since none of these components depend on coordinates, the partial derivative of the 

metric is zero, meaning the Christoffel symbol is zero in all its entries as well. This also 

makes the Riemann tensor, Ricci tensor, and Ricci scalar all zero. So, in a flat spacetime 

the Einstein equation reduces to 

Λ𝑔𝜇𝜈 = 0. (1.3.5.7) 

For this equation to hold Λ must go to zero. To determine b, recall the Bianchi identity 

∇𝑚𝑅𝑖𝑗𝑘𝑙 + ∇𝑘𝑅𝑖𝑗𝑙𝑚 + ∇𝑙𝑅𝑖𝑗𝑚𝑘 = 0. (1.3.5.8) 

Multiplying through by 𝑔𝑛𝑚𝑔𝑖𝑘𝑔𝑗𝑙 yields 

∇𝑚𝑔
𝑛𝑚𝑔𝑖𝑘𝑔𝑗𝑙𝑅𝑖𝑗𝑘𝑙 + ∇𝑘𝑔

𝑛𝑚𝑔𝑖𝑘𝑔𝑗𝑙𝑅𝑖𝑗𝑙𝑚 + ∇𝑙𝑔
𝑛𝑚𝑔𝑖𝑘𝑔𝑗𝑙𝑅𝑖𝑗𝑚𝑘 = 0. (1.3.5.9) 

This simplifies to 

∇𝑚𝑔
𝑛𝑚𝑅 − ∇𝑘𝑅

𝑘𝑛 − ∇𝑙𝑅
𝑙𝑛 = 0. (1.3.5.10) 

Renaming indices gives 

∇𝑚(𝑔
𝑛𝑚𝑅 − 2𝑅𝑚𝑛) = 0. (1.3.5.11) 
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Or 

∇𝑚 (𝑅
𝑚𝑛 −

1

2
𝑔𝑛𝑚𝑅) = 0. (1.3.5.12) 

So, it is clear that 𝑏 must be 
1

2
. So, the Einstein field equations become 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 𝜅𝑇𝜇𝜈 . (1.3.5.13) 

To determine the value for 𝜅 one needs to compare to the weak field limit of Newtonian 

gravitation. 

 In the case of weak gravitation general relativity needs to reduce to the Newtonian 

limit. The following is an informal derivation of the constant 𝜅, following Pe’er (2020). 

The Newtonian potential for gravitation is 

∇2Φ = 4𝜋𝜌. (1.3.5.14) 

In the Newtonian limit the time-time component of the metric is given by 

𝑔00 = −(1 + 2Φ), (1.3.5.15) 

and the density is equal to the time-time component of the stress-energy tensor, 𝑇00 = 𝜌. 

Additionally, in the weak field approximation the metric is assumed to be 

𝑔00 = 𝛾00 + ℎ00 = −1 + ℎ00. (1.3.5.16) 

Using this and equation (1.3.5.15), equation (1.3.5.14) becomes 

∇2ℎ00 = −8𝜋𝜌. (1.3.5.17) 

Another valid way of writing the Einstein field equations is in the form 
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𝑅𝜇𝜈 = 𝜅 (𝑇𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑇) . (1.3.5.18) 

In the weak-field limit it will be assumed that the solution is time independent, and all 

particles will be slow moving. Additionally, the 𝑇00 component will be much larger than 

any other component so it shall be the only component considered. In the weak-field limit 

spacetime is approximately flat so the covariant and contravariant versions of the metric 

will be assumed to be 

𝑔00 = 𝛾00 + ℎ00, 

𝑔00 = 𝛾00 − ℎ00, (1.3.5.19) 

with 𝛾00 being the time-time component of the Minkowski metric and ℎ00 being the time-

time component of a small perturbation. The trace of the energy-momentum tensor, 

ignoring small terms, is approximately 

𝑇 = 𝑔00𝑇00 = −𝑇00. (1.3.5.20) 

The next piece to consider is the time-time component of the Ricci tensor. Recall that the 

Ricci tensor is the trace of the Riemann tensor, so it can be written as 

𝑅00 = 𝑅0𝜇0
𝜇

= 𝜕𝜇Γ00
𝜇
− 𝜕0Γ𝜇0

𝜇
+ Γ𝜇𝜈

𝜇
Γ00
𝜈 − Γ0𝜈

𝜇
Γ𝜇0
𝜈 . (1.3.5.21) 

However, since the second term contains a time derivative, it is zero for static fields. 

Additionally, since the metric is flat with a small perturbation, the Christoffel symbol 

itself is small and the third and fourth terms are of the form Γ2 and they are also 

approximately zero. So, the time-time component of the Ricci tensor is approximately 

𝑅00 = 𝑅0𝜇0
𝜇

= 𝜕𝜇Γ00
𝜇
, 
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= 𝜕𝜇 (
1

2
𝑔𝜇𝜈(𝜕0𝑔𝜈0 + 𝜕0𝑔0𝜈 − 𝜕𝜈𝑔00)) , 

= −
1

2
𝛾𝜇𝜈𝜕𝜇𝜕𝜈ℎ00, 

= −
1

2
∇2ℎ00. (1.3.5.22) 

Combining this with equation (1.3.5.18) gives 

−
1

2
∇2ℎ00 = 𝜅 (𝑇00 −

1

2
𝑔00𝑇), 

∇2ℎ00 = −𝜅𝑇00. (1.3.5.23) 

Comparing this with equation (1.3.5.17), it can be seen that 𝜅 = 8𝜋. So, the Einstein field 

equations become 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 8𝜋𝑇𝜇𝜈 . (1.3.5.24) 

Reinserting 𝐺 and 𝑐, the Einstein field equations become 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 =

8𝜋𝐺

𝑐4
𝑇𝜇𝜈 . (1.3.5.24) 

With this form of the Einstein field equations, it is possible to begin to look for solutions. 

1.3.6. TOV Equations  

 The TOV equations are a solution to the Einstein field equations that describe a 

spherically symmetric, isotropic body. One such object is a neutron star in which gravity 

is the force binding the object together and neutron degeneracy is the force that is 

keeping the object from collapsing further. The derivation of the TOV equations will 
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follow along with the original papers (Oppenheimer & Volkoff 1939; Tolman 1939). To 

begin with, consider the line element of a spherically symmetric object which is given by 

𝑑𝑠2 = −𝑒𝜈𝑑𝑡2 + 𝑒𝜆𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2. (1.3.6.1) 

Here 

𝜆 = 𝜆(𝑟), 𝜈 = 𝜈(𝑟). 

If there is no transverse stresses and no mass motion, then the stress-energy tensor is 

given by 

𝑇11 = 𝑇22 = 𝑇33 = 𝑃,  𝑇11 = −𝜌, 

with 𝑃 and 𝜌 the pressure and the energy density measured in proper coordinates. 

Considering these equations, the Einstein field equations reduce to 

8𝜋𝜌 = 𝑒−𝜆 (
𝜆′

𝑟
−
1

𝑟2
) +

1

𝑟2
, (1.3.6.2) 

8𝜋𝑃 = 𝑒−𝜆 (
𝑣′

𝑟
+
1

𝑟2
) −

1

𝑟2
, (1.3.6.3) 

𝑑𝑃

𝑑𝑟
= −

(𝑃 + 𝜌)

2
𝜈′. (1.3.6.4) 

The primes above denote derivatives with respect to 𝑟. The last equation follows from the 

continuity equation and demanding that the pressure and density be static and isotropic. 

These equations along with the equation of state (EOS) will determine the equilibrium of 

the star. At the boundary of the star, 𝑟 = 𝑟𝑏 , there is no matter so 𝑃 = 0. As well as for 

𝑟 < 𝑟𝑏 , the solution is dependent on the EOS to connect the pressure with the density, and 

it must be the case that 𝑃 > 0.  
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In empty space surrounding the body, the metric should reduce to 

Schwarzschild’s exterior solution, which gives 

𝑒−𝜆(𝑟) = 1 +
𝐴

𝑟
, (1.3.6.5) 

𝑒𝜈(𝑟) = 𝐵 (1 +
𝐴

𝑟
) . (1.3.6.6) 

The constants 𝐴 and 𝐵 can be found using the weak-field approximation far from the 

object and are found to be 𝐴 = −2𝑚, 𝐵 = 1, 𝑚 being the mass of the object that a distant 

observer would measure. Placing these substitutions into equation (1.3.6.3) gives 

𝑣′ =
1

𝑟
(1 −

2𝑚

𝑟
)
−1

(
2𝑚

𝑟
+ 8𝜋𝑟2𝑃) . (1.3.6.7) 

This combined with equation (1.3.6.4) gives 

𝑑𝑃

𝑑𝑟
= −

1

𝑟2
(𝜌 + 𝑃)(𝑚 + 4𝜋𝑟3𝑃) (1 −

2𝑚

𝑟
)
−1

, (1.3.6.8) 

which is the TOV equation. This result along with the EOS, which will be described later, 

is all that is needed to fully describe the matter distribution around a spherically 

symmetric body. 

1.3.7. Gravitational Waves 

 With a basic understanding of Einstein’s general theory of relativity, one can 

begin with creating a description of waves propagating though spacetime. These waves 

are the gravitational waves that are seen to propagate outward in numerical simulations, 

as well as the waves detected by LIGO (Abbott et al. 2016). Because the sources of these 
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gravitational waves are far away, these waves will be approximated as plane waves. The 

derivation of these plane waves will follow along with Eddington (1922). 

 To begin this derivation, we start with the metric 

𝑔𝜇𝜈 = 𝛾𝜇𝜈 + ℎ𝜇𝜈 . (1.3.7.1) 

As defined before, 𝛾𝜇𝜈 is the Minkowski flat spacetime metric and ℎ𝜇𝜈 is the small 

perturbation representing gravitational waves. Consider plane waves proceeding with 

velocity 𝑉 in the negative x1-direction, so that ℎ𝜇𝜈 are periodic functions of the argument 

(𝑥1 + 𝑉𝑥0). Denoting differentiating with respect to this argument by an apostrophe, and 

differentiating equation (1.3.7.1) twice, gives 

𝜕2𝑔𝜇𝜈

𝜕𝑥1
2 = ℎ𝜇𝜈’’, (1.3.7.2𝑎) 

𝜕2𝑔𝜇𝜈

𝜕𝑥1𝜕𝑥0
= 𝑉ℎ𝜇𝜈’’, (1.3.7.2𝑏) 

𝜕2𝑔𝜇𝜈

𝜕𝑥0
2 = 𝑉

2ℎ𝜇𝜈’’, (1.3.7.2𝑐) 

with all other second derivatives being zero. Recalling the definition of the Riemann 

tensor in terms of the metric 

𝑅𝜇𝜌𝜈𝜎 =
1

2
(
𝜕2𝑔𝜇𝜈

𝜕𝑥𝜎𝜕𝑥𝜌
+
𝜕2𝑔𝜎𝜌

𝜕𝑥𝜇𝜕𝑥𝜈
−
𝜕2𝑔𝜇𝜎

𝜕𝑥𝜈𝜕𝑥𝜌
−

𝜕2𝑔𝜈𝜌

𝜕𝑥𝜇𝜕𝑥𝜎
). 

Substituting equations (1.3.7.2a-c), gives 
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𝑅0101 =
1

2
𝑉2ℎ11′′ − 𝑉 ℎ01′′ +

1

2
ℎ00′′, 

𝑅0102 =
1

2
𝑉2ℎ21′′ −

1

2
𝑉 ℎ02′′, 

𝑅0103 =
1

2
𝑉2ℎ31′′ −

1

2
𝑉 ℎ03′′, 

𝑅0112 =
1

2
𝑉 ℎ21′′ −

1

2
ℎ02′′, 

𝑅0113 =
1

2
𝑉 ℎ31′′ −

1

2
ℎ03′′, 

(1.3.7.3) 

 

𝑅0123 = 0 

𝑅0212 =
1

2
𝑉 ℎ22′′ 

𝑅0303 =
1

2
𝑉2ℎ33

′′  

𝑅0323 = 0 

𝑅1223 = 0 

𝑅0202 =
1

2
𝑉2ℎ22′′ 

𝑅0213 =
1

2
𝑉 ℎ32′′ 

𝑅0312 =
1

2
𝑉 ℎ23′′ 

𝑅1212 =
1

2
ℎ22′′ 

𝑅1313 =
1

2
ℎ33′′ 

𝑅2323 = 0. 

𝑅0203 =
1

2
𝑉2ℎ32

′′  

𝑅0223 = 0 

𝑅0313 =
1

2
𝑉 ℎ33′′ 

𝑅1213 =
1

2
ℎ32′′ 

𝑅1323 = 0 

To a first order approximation for small quantities, the Einstein tensor is given by 

𝐺𝜇𝜈 = 𝑔𝜎𝜌𝑅𝜇𝜈𝜎𝜌. (1.3.7.4) 

Taking this and the antisymmetric properties of the tensor give 

𝐺00 = −𝑅1010 − 𝑅2020 + 𝑅3030 = 0, 

𝐺11 = −𝑅1212 − 𝑅1313 + 𝑅1010 = 0, 

𝐺22 = −𝑅1212 − 𝑅2323 + 𝑅2020 = 0, 

𝐺33 = −𝑅1313 − 𝑅2323 + 𝑅3030 = 0, 
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𝐺10 = 𝑅1220 + 𝑅1330 = 0, 

𝐺12 = −𝑅1323 + 𝑅1020 = 0, 

𝐺13 = 𝑅1223 + 𝑅1030 = 0, 

𝐺20 = −𝑅1214 + 𝑅2334 = 0, 

𝐺23 = −𝑅1213 + 𝑅2030 = 0, 

𝐺30 = −𝑅1210 − 𝑅2320 = 0. (1.3.7.5) 

Substituting in equation (1.3.7.3), gives 

−(𝑉2ℎ11
′′ − 2𝑉ℎ10

′′ + ℎ00
′′ ) − 𝑉2(ℎ22

′′ + ℎ33
′′ ) = 0, 

−(ℎ22
′′ + ℎ33

′′ ) + 𝑉2ℎ11
′′ − 2𝑉ℎ10

′′ + ℎ00
′′ = 0, 

−ℎ22
′′ + 𝑉2ℎ22

′′ = 0, 

−ℎ33
′′ + 𝑉2ℎ33

′′ = 0, 

−𝑉(ℎ22
′′ + ℎ33

′′ ) = 0, 

𝑉2ℎ12
′′ − 𝑉ℎ20

′′ = 0, 

𝑉2ℎ13
′′ − 𝑉ℎ30

′′ = 0, 

−ℎ20
′′ + 𝑉ℎ12

′′ = 0, 

−ℎ23
′′ + 𝑉2ℎ23

′′ = 0, 

−ℎ30
′′ + 𝑉ℎ13

′′ = 0. (1.3.5.6) 

Integrating these equations, which in this case, since ℎ𝜇𝜈 are periodic functions, is akin to 

removing the apostrophes, gives the following conditions 

ℎ22 + ℎ33 = 0, 

(1 − 𝑉2)ℎ22 = 0, 

(1 − 𝑉2)ℎ33 = 0, 
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(1 − 𝑉2)ℎ23 = 0, 

ℎ20 = 𝑉ℎ12, 

ℎ30 = 𝑉ℎ13, 

ℎ00 − 2𝑉ℎ10 + 𝑉
2ℎ11 = 0. (1.3.5.7) 

These can be separated into different types of waves 

 Transverse-transverse (TT) ℎ22, ℎ33, ℎ23  

 Longitudinal-transverse (LT) ℎ12, ℎ13, ℎ20, ℎ30  

 Longitudinal-longitudinal (LL) ℎ00, ℎ10, ℎ11.  

For a transverse-transverse wave, ℎ22, ℎ33, and ℎ23 cannot vanish so it must be the case 

that 

1 − 𝑉2 = 0. (1.3.5.8) 

Which dictates that TT waves must propagate with a velocity of 1, i.e., the speed of light. 

 For LL and LT waves ℎ22, ℎ33, and ℎ23 must be zero so there is no equation to 

determine 𝑉 independent of the coefficients of the disturbance. Additionally, taking the 

conditions of equation (1.3.5.7) into account, the Riemann tensor only contains 

components depending on ℎ22, ℎ33, and ℎ23. So, for LL and LT waves, the Riemann 

tensor vanishes so the spacetime is flat and waves seem to completely vanish. This shows 

that the only type of waves that should propagate through spacetime are transverse-

transverse waves, with the wave travelling in the x-direction and oscillations in the y and 

z-directions of the same amplitude that are 180° out of phase with each other. These are 

the same type of waves that have been detected by LIGO (Abbott et al. 2016), as well as 

the type of waves detected by the thorn WeylScal4 (Zilhão & Löffler 2013). 
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1.4.  Numerical Relativity 

 In most cases it is not possible to solve the Einstein field equations analytically. 

The cases where an analytical solution exists, it is in simple cases like the Schwarzschild 

solution which describes an eternal, static, rotation-free black hole (Schwarzschild 1916). 

To see solutions that could physically exist, it is usually necessary to solve the Einstein 

equations numerically and to step that solution in time to approximate how that system 

will evolve; this section deals with that topic through the Arnowitt, Deser, Misner (ADM) 

and the Baumgarte, Shapiro, Shibata, Nakamura (BSSN) formalisms of numerical 

relativity. 

1.4.1. ADM Formulation 

 To have a numerical formalism of general relativity, first it is necessary to be able 

to split the four dimensions of spacetime into a 3+1 formalism with three spatial 

dimensions and one temporal dimension. The slices of space at a given time will be 

denoted by Σ𝑡, which are three-dimensional slices of space threaded together through a 

dimension of time. It is important to have a way to determine which direction the flow of 

time is facing, i.e., which direction is normal to the three dimensions of space, to have a 

way to flow from one slice Σ𝑡 to a later slice Σ𝑡+𝑑𝑡. For that, define the 1-form 

Ω𝜇 = ∇𝜇𝑡. (1.4.1.1) 

This is a vector that is normal to the three spatial dimensions since it contains a derivative 

of time. To normalize this vector, it will be multiplied by the normalization factor 𝛼 to 

get the normal unit vector 

𝑛𝜇 = 𝛼Ω𝜇, (1.4.1.2) 
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where 𝛼 can be shown to be related to the metric via 

𝛼2 =
1

𝑔00
, (1.4.1.3) 

meaning that 𝛼 describes how time evolves for each point of the three-dimensional slice. 

This normalization constant, 𝛼, is known as the lapse function and it is a vital component 

in evolving a system forward in time. Using this normal vector, it is possible to introduce 

the time projection operator 

𝑁𝜈
𝜇
= 𝑛𝜇𝑛𝜈 . (1.4.1.4) 

In addition to the time projection operator, a space projection operator can be formed 

from this normal vector, which takes the form 

𝑃𝜈
𝜇
= 𝛿𝜈

𝜇
+ 𝑛𝜇𝑛𝜈 . (1.4.1.4) 

With these projection operators, another valuable tool in the 3+1 formalism of numerical 

relativity is what is known as the shift vector 𝛽. Using the lapse function and the shift 

vector, the time vector can be written as 

𝑡𝜇 = 𝛼𝑛𝜇 + 𝛽𝜇. (1.4.1.5) 

With this definition of a time vector, 𝛼 describes the temporal distance between the two 

slices and 𝛽 describes how the spatial coordinates vary from slice to slice. 

 With the lapse function, shift vector, and projection operators as described, it is 

possible to look at two different curvatures, the intrinsic and extrinsic curvature. The 

intrinsic curvature is the space-space components of the metric tensor, and they are 

related through 
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𝛾𝜇𝜈 = 𝑃𝜈
𝛿𝑃𝜇

𝜀𝑔𝛿𝜀 = 𝑔𝜇𝜈 + 𝑛𝜇𝑛𝜈 . (1.4.1.6) 

The extrinsic curvature is related to the normal vector and is given by 

𝐾𝜇𝜈 = −𝑃𝜇
𝛼∇𝛼𝑛𝜈 = −∇𝜇𝑛𝜈 − 𝑛𝜇𝑛

𝛼∇𝛼𝑛𝜈 . (1.4.1.7) 

Taking the Lie derivative of the spatial metric along the normal vector gives 

ℒ�⃗⃗�𝛾𝜇𝜈 = 𝑛𝜎∇𝜎𝛾𝜇𝜈 + 𝛾𝜎𝜈∇𝜇𝑛
𝜎 + 𝛾𝜇𝜎∇𝜈𝑛

𝜎, 

= 𝑛𝜎∇𝜎(𝑛𝜇𝑛𝜈) + 𝛾𝜎𝜈∇𝜇𝑛
𝜎 + 𝛾𝜇𝜎∇𝜈𝑛

𝜎, 

= 𝑛𝜎𝑛𝜈∇𝜎𝑛𝜇 + 𝑛
𝜎𝑛𝜇∇𝜎𝑛𝜈 + 𝛾𝜎𝜈∇𝜇𝑛

𝜎 + 𝛾𝜇𝜎∇𝜈𝑛
𝜎, 

ℒ�⃗⃗�𝛾𝜇𝜈 = −2𝐾𝜇𝜈 . (1.4.1.8) 

To get this in a form that is more useful, it is important to create a basis, 𝑒(𝑖)
𝑗

 with 𝑖 =

1,2,3 in the spatial slices. The basis is defined such that 

Ω𝑗𝑒(𝑖)
𝑗
= 0. (1.4.1.9) 

Inserting equation (1.4.1.2) gives 

Ω𝜇𝑒(𝑖)
𝜇
= −

1

𝛼
𝑛𝜇𝑒(𝑖)

𝜇
⇒ 𝑛𝑖 = 0. (1.4.1.10) 

The time basis was defined above in equation (1.4.1.5), which gives 

𝑡𝜇Ω𝜇 = 𝛼𝑛𝜇Ω𝜇 + 𝛽
𝜇Ω𝜇 = 1 ⇒ ‖𝑡𝜇‖ = (1,0,0,0). (1.4.1.11) 

This gives 

ℒ𝑡 = 𝜕𝑡 . (1.4.1.12) 

With this new information, equation (1.4.1.5) can now be written as 
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𝑛𝜇 =
1

𝛼
(𝑡𝜇 − 𝛽𝜇). (1.4.1.13) 

Now the metric can be written as 

‖𝑔𝜇𝜈‖ = (
−𝛼 + 𝛽𝑙𝛽

𝑙 𝛽𝑖
𝛽𝑗 𝛾𝑖𝑗

) . (1.4.1.14) 

Taking into consideration equation (1.4.1.13), the Lie derivative of the spatial metric 

becomes 

ℒ�⃗⃗�𝛾𝑖𝑗 =
1

𝛼
(ℒ𝑡 − ℒ�⃗⃗⃗�) 𝛾𝑖𝑗, (1.4.1.15) 

and the Lie derivative of the spatial metric with respect to the shift vector is 

ℒ
�⃗⃗⃗�
𝛾𝑖𝑗 = 𝛽𝑘𝜕𝑘𝛾𝑖𝑗 + 𝛾𝑘𝑗𝜕𝑖𝛽

𝑘 + 𝛾𝑖𝑘𝜕𝑗𝛽
𝑘. (1.4.1.16) 

This can be generalized by replacing the partial derivatives with covariant derivatives 

with respect to the spatial metric, which will be denoted by 𝐷𝑖. Then the Lie derivative of 

the spatial metric becomes 

ℒ
�⃗⃗⃗�
𝛾𝑖𝑗 = 𝛽

𝑘𝐷𝑘𝛾𝑖𝑗 + 𝛾𝑘𝑗𝐷𝑖𝛽
𝑘 + 𝛾𝑖𝑘𝐷𝑗𝛽

𝑘, 

= 𝐷𝑖𝛾𝑘𝑗𝛽
𝑘 + 𝐷𝑗𝛾𝑖𝑘𝛽

𝑘, 

= 𝐷𝑖𝛽𝑗 + 𝐷𝑗𝛽𝑖. (1.4.1.17) 

Combining this with equations (1.4.1.15) and (1.4.1.8), gives 

𝐾𝑖𝑗 =
1

2𝛼
(−𝜕𝑡𝛾𝑖𝑗 +𝐷𝑖𝛽𝑗 + 𝐷𝑗𝛽𝑖). (1.4.1.18) 

Taking only the spatial components of this gives an equation for how the spatial metric 

will evolve in time 



 

39 

 

𝜕𝑡𝛾𝑖𝑗 = −2𝛼𝐾𝑖𝑗 + 𝐷𝑖𝛽𝑗 + 𝐷𝑗𝛽𝑖. (1.4.1.19) 

To get the other evolution equations, one would start applying the projection operators on 

the Einstein equation. To begin, consider the three unique projections of the Riemann 

tensor 

𝑃𝛼
𝜎𝑃𝛽

𝜏𝑃𝜇
𝛾
𝑃𝜈
𝛿 𝑅𝜎𝜏𝛾𝛿 
(4) , 

𝑛𝛿𝑃𝛼
𝜎𝑃𝛽

𝜏𝑃𝜇
𝛾

𝑅𝜎𝜏𝛾𝛿 
(4) , 

𝑛𝜏𝑛𝛿𝑃𝛼
𝜎𝑃𝛽

𝛾
𝑅𝜎𝜏𝛾𝛿 

(4) . 

Here 𝑅𝜎𝜏𝛾𝛿 
(4)  is used to denote the four-dimensional Riemann tensor versus the three-

dimensional Riemann tensor that will be used in the 3+1 equations. These three equations 

simplify to 

𝑃𝛼
𝜎𝑃𝛽

𝜏𝑃𝜇
𝛾
𝑃𝜈
𝛿 𝑅𝜎𝜏𝛾𝛿 
(4) = 𝑅𝜎𝜏𝛾𝛿 

(3) + 𝐾𝛼𝜇𝐾𝛽𝜈 + 𝐾𝛼𝜈𝐾𝛽𝜇, (1.4.1.20) 

𝑛𝛿𝑃𝛼
𝜎𝑃𝛽

𝜏𝑃𝜇
𝛾

𝑅𝜎𝜏𝛾𝛿 
(4) = 𝐷𝛽𝐾𝛼𝜇 − 𝐷𝛼𝐾𝛽𝜇, (1.4.1.21) 

𝑛𝜏𝑛𝛿𝑃𝛼
𝜎𝑃𝛽

𝛾
𝑅𝜎𝜏𝛾𝛿 

(4) = ℒ�⃗⃗�𝐾𝛼𝛽 +
1

𝛼
𝐷𝛼𝐷𝛽𝛼 + 𝐾

𝜎𝛽𝐾𝛼𝜎. (1.4.1.22) 

Multiplying the first equation twice by the spatial metric gives 

𝛾𝛼𝜇𝛾𝛽𝜈𝑃𝛼
𝜎𝑃𝛽

𝜏𝑃𝜇
𝛾
𝑃𝜈
𝛿 𝑅𝜎𝜏𝛾𝛿 
(4) = 𝛾𝜎𝛾𝛾𝜏𝛿 𝑅𝜎𝜏𝛾𝛿 

(4) , 

= 𝑅 
(3) + 𝐾2 − 𝐾𝜇𝜈𝐾

𝜇𝜈 . (1.4.1.23) 

The first equation’s right-hand side can also be written as 

𝛾𝜎𝛾𝛾𝜏𝛿 𝑅𝜎𝜏𝛾𝛿 
(4) = (𝑔𝜎𝛾 + 𝑛𝜎𝑛𝛾)(𝑔𝜏𝛿 + 𝑛𝜏𝑛𝛿) 𝑅𝜎𝜏𝛾𝛿 

(4) , 

= 2𝑛𝜇𝑛𝜈 𝑅𝜇𝜈 
(4) + 𝑅 

(4) . (1.4.1.24) 
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These expressions will be used later. Similarly, the stress-energy tensor can be projected 

into 

𝑛𝜇𝑛𝜈𝑇𝜇𝜈 = 𝜌, (1.4.1.25) 

𝑃𝜇
𝑖𝑛𝜈𝑇

𝜇𝜈 = 𝑗𝑖, (1.4.1.26) 

𝑃𝜇
𝑖𝑃𝜈

𝑗
𝑇𝜇𝜈 = 𝑆𝑖𝑗 . (1.4.1.27) 

Multiplying the Einstein tensor by 2𝑛𝜇𝑛𝜈 gives 

2𝑛𝜇𝑛𝜈𝐺𝜇𝜈 = 2𝑛
𝜇𝑛𝜈 ( 𝑅𝜇𝜈 

(4) −
1

2
𝑅 

(4) 𝑔𝜇𝜈) , 

= 2𝑛𝜇𝑛𝜈 𝑅𝜇𝜈 
(4) + 𝑅 

(4) . (1.4.1.28) 

Combining this with equation (1.4.1.23) gives 

2𝑛𝜇𝑛𝜈𝐺𝜇𝜈 = 𝑅 
(3) + 𝐾2 − 𝐾𝜇𝜈𝐾

𝜇𝜈 . (1.4.1.29) 

Recall the Einstein field equations are 𝐺𝜇𝜈 = 8𝜋𝑇𝜇𝜈, and with the time-time projection of 

the stress-energy tensor, equation (1.4.1.29) becomes 

𝑅 
(3) + 𝐾2 − 𝐾𝜇𝜈𝐾

𝜇𝜈 = 16𝜋𝜌. (1.4.1.30) 

This is not a time evolution equation but is a conservation equation that is known as the 

Hamiltonian Constraint. 

 Repeating the same procedure with equations (1.4.1.21) and (1.4.1.22) gives 

another constraint equation, the momentum constraint, as well as another evolution 

equation 

𝐷𝑖𝐾 − 𝐷𝑗𝐾𝑖
𝑗
= 8𝜋𝑗𝑖, (1.4.1.31) 
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𝜕𝑡𝐾𝑖𝑗 = −𝐷𝑖𝐷𝑗𝛼 + 𝛼( 𝑅𝑖𝑗 
(3) − 2𝐾𝑖𝑘𝐾𝑗

𝑘 + 𝐾𝐾𝑖𝑗) − 8𝜋𝛼 (𝑆𝑖𝑗 −
1

2
(𝑆 − 𝜌)) 

+𝛽𝑘𝐷𝑘𝐾𝑖𝑗 + 𝐾𝑖𝑘𝐷𝑖𝛽
𝑘 +𝐾𝑘𝑗𝐷𝑗𝛽

𝑘. (1.4.1.32) 

This is the last of the evolution equations. To recap, the evolution equations are 

𝜕𝑡𝛾𝑖𝑗 = −2𝛼𝐾𝑖𝑗 + 𝐷𝑖𝛽𝑗 +𝐷𝑗𝛽𝑖, 

𝜕𝑡𝐾𝑖𝑗 = −𝐷𝑖𝐷𝑗𝛼 + 𝛼( 𝑅𝑖𝑗 
(3) − 2𝐾𝑖𝑘𝐾𝑗

𝑘 + 𝐾𝐾𝑖𝑗) − 8𝜋𝛼 (𝑆𝑖𝑗 −
1

2
(𝑆 − 𝜌)) + 𝛽𝑘𝐷𝑘𝐾𝑖𝑗

+ 𝐾𝑖𝑘𝐷𝑖𝛽
𝑘 + 𝐾𝑘𝑗𝐷𝑗𝛽

𝑘. 

Along with the Hamiltonian constraint and the momentum constraint 

𝑅 
(3) + 𝐾2 − 𝐾𝑖𝑗𝐾

𝑖𝑗 = 16𝜋𝜌, 

8𝜋𝑗𝑖 = 𝐷𝑖𝐾 − 𝐷𝑗𝐾𝑖
𝑗
, 

these make up the ADM formulation of numerical relativity. However, these are unstable 

and as such do not make a particularly good method for creating numerical relativistic 

simulations. A better formulation to create simulations is the BSSN formulation 

discussed in the next section. 

1.4.2. BSSN Formulation 

 The BSSN formulism of numerical relativity is based on the ADM formalism. 

The necessity of this formalism stems from the fact that the evolution equations as well 

as the constraint equations both contain second derivatives of the metric. To begin to 

derive the equations of the BSSN formalism it is useful to rewrite the extrinsic curvature 

as a sum of its trace and its traceless parts 
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𝐾𝑖𝑗 = 𝐴𝑖𝑗 +
1

3
𝛾𝑖𝑗𝐾. (1.4.2.1) 

Taking the determinants of equations (1.4.1.19) and (1.4.1.32) gives 

𝜕𝑡𝛾
1
2 = −𝛼𝐾 + 𝐷𝑖𝛽

𝑖, (1.4.2.2) 

𝜕𝑡 = −𝐷2𝛼 + 𝛼 (𝐾𝑖𝑗𝐾𝑖𝑗 + 4𝜋(𝜌 + 𝑆)) + 𝛽
𝑖𝐷𝑖𝐾. (1.4.2.3) 

The spatial metric is rewritten as 

�̅�𝑖𝑗 = 𝑒
−4Φ𝛾𝑖𝑗, (1.4.2.4) 

where Φ is the conformal factor and �̅�𝑖𝑗 is the conformal metric, with the requirement 

that �̅� = 1. The same can be done with the trace-free part of the extrinsic curvature 

�̅�𝑖𝑗 = 𝑒
−4Φ𝐴𝑖𝑗 . (1.4.2.5) 

Another object that will be useful later is the connection coefficient in terms of the 

conformal transformation. Substituting equation (1.4.2.4) into the definition of the 

connection coefficient equation (1.3.3.6), shows that, in three dimensions, the connection 

coefficient must transform according to  

Γ𝑗𝑘
𝑖 = Γ̅𝑗𝑘

𝑖 + 2(𝛿𝑗
𝑖�̅�𝑘Φ+ 𝛿𝑘

𝑖 �̅�𝑗Φ− �̅�𝑗𝑘�̅�
𝑖𝑙�̅�𝑙Φ), (1.4.2.6) 

with �̅� being the three-dimensional conformal covariant derivative. This can be inserted 

into the definition of the Ricci tensor, equation (1.3.4.9), to give 

𝑅𝑖𝑗 = �̅�𝑖𝑗 − 2(�̅�𝑖�̅�𝑗Φ+ �̅�𝑖𝑗�̅�
𝑙𝑚�̅�𝑙�̅�𝑚Φ) + 4 ((�̅�𝑖Φ)(�̅�𝑗Φ) − �̅�𝑖𝑗�̅�

𝑙𝑚(�̅�𝑙Φ)(�̅�𝑚Φ)) . (1.4.2.7) 

Taking the trace of equations (1.4.2.2) and (1.4.2.3) gives the expressions 
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𝜕𝑡Φ = −
1

6
𝛼𝐾 +

1

6
𝛽𝑖𝜕𝑖Φ+

1

6
𝜕𝑖𝛽

𝑖, (1.4.2.8) 

𝜕𝑡𝐾 = −𝛾𝑖𝑗𝐷𝑖𝐷𝑗𝛼 + 𝛼 (�̅�𝑖𝑗�̅�
𝑖𝑗 +

1

3
𝐾2) + 4𝜋𝛼(𝜌 + 𝑆) + 𝛽𝑖𝜕𝑖𝐾. (1.4.2.9) 

Subtracting these equations from the evolution equations (1.4.1.19) and (1.4.1.32) leaves 

the trace-free part of the evolution equations for �̅�𝑖𝑗 and �̅�𝑖𝑗 

𝜕𝑡�̅�𝑖𝑗 = −2𝛼�̅�𝑖𝑗 + 𝛽
𝑘𝜕𝑘�̅�𝑖𝑗 + �̅�𝑖𝑘𝜕𝑗𝛽

𝑘 + �̅�𝑘𝑗𝜕𝑖𝛽
𝑘 −

2

3
�̅�𝑖𝑗𝜕𝑘𝛽

𝑘, (1.4.2.10) 

𝜕𝑡�̅�𝑖𝑗 = 𝑒
−4Φ (−(𝐷𝑖𝐷𝑗𝛼)

𝑇𝐹
+ 𝛼(𝑅𝑖𝑗

𝑇𝐹 − 8𝜋𝑆𝑖𝑗
𝑇𝐹)) + 𝛼(𝐾�̅�𝑖𝑗 − 2�̅�𝑖𝑙�̅�𝑗

𝑙) 

+𝛽𝑘𝜕𝑘�̅�𝑖𝑗 + �̅�𝑖𝑘𝜕𝑗𝛽
𝑘 + �̅�𝑘𝑗𝜕𝑖𝛽

𝑘 −
2

3
�̅�𝑖𝑗𝜕𝑘𝛽

𝑘, (1.4.2.11) 

where the superscript 𝑇𝐹 indicates the trace-free part of the tensor, e.g., 𝑅𝑖𝑗
𝑇𝐹 = 𝑅𝑖𝑗 −

1

3
𝛾𝑖𝑗𝑅.  Additionally, a new variable can be defined, which is the conformal connection 

coefficient 

Γ̅𝑖 ≡ �̅�𝑗𝑘Γ̅𝑗𝑘
𝑖 = −𝜕𝑗�̅�

𝑖𝑗, (1.4.2.12) 

where the last part of the equality holds in Cartesian coordinates when �̅� = 1. With this 

definition of the conformal connection coefficient, the conformal Ricci tensor can be 

written as 

�̅�𝑖𝑗 = −
1

2
�̅�𝑙𝑚𝜕𝑚𝜕𝑙�̅�𝑖𝑗 + �̅�𝑘𝑖𝜕𝑗Γ̅

𝑘 + �̅�𝑘𝑗𝜕𝑖Γ̅
𝑘 + Γ̅𝑘Γ̅𝑖𝑗𝑘 + Γ̅

𝑘Γ̅𝑗𝑖𝑘 

+�̅�𝑙𝑚(2Γ̅𝑙𝑖
𝑘Γ̅𝑗𝑘𝑚 + 2Γ̅𝑙𝑗

𝑘Γ̅𝑖𝑘𝑚 + Γ̅𝑖𝑚
𝑘 Γ̅𝑘𝑙𝑗). (1.4.2.13) 
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Taking the time derivative of equation (1.4.2.12) and using equation (1.4.2.10), one 

arrives at 

𝜕𝑡Γ̅
𝑖 = −𝜕𝑗 (2𝛼�̅�

𝑖𝑗 − 2�̅�𝑚𝑗𝜕𝑚𝛽
𝑖 − 2�̅�𝑚𝑖𝜕𝑚𝛽

𝑗 +
2

3
�̅�𝑖𝑗𝜕𝑙𝛽

𝑙 + 𝛽𝑙𝜕𝑙�̅�
𝑖𝑗) . (1.4.2.14) 

Taking this along with equation (1.4.1.31) gives 

𝜕𝑡Γ̅
𝑖 = −2�̅�𝑖𝑗𝜕𝑗𝛼 + 2𝛼 (Γ̅𝑗𝑘

𝑖 �̅�𝑘𝑗 −
2

3
�̅�𝑖𝑗𝜕𝑗𝐾 − 8𝜋�̅�

𝑖𝑗𝑆𝑗 + 6�̅�
𝑖𝑗Φ) + 𝛽𝑗𝜕𝑗Γ̅

𝑖 − Γ̅𝑖𝜕𝑗𝛽
𝑗 

+
2

3
Γ̅𝑖𝜕𝑗𝛽

𝑗 +
1

3
�̅�𝑙𝑖𝜕𝑙𝜕𝑗𝛽

𝑗 + �̅�𝑙𝑗𝜕𝑗𝜕𝑙𝛽
𝑖. (1.4.2.15) 

With this, the evolution equations for the BSSN formulation are 

𝜕𝑡Φ = −
1

6
𝛼𝐾 +

1

6
𝛽𝑖𝜕𝑖Φ+

1

6
𝜕𝑖𝛽

𝑖, 

𝜕𝑡𝐾 = −𝛾
𝑖𝑗𝐷𝑖𝐷𝑗𝛼 + 𝛼 (�̅�𝑖𝑗�̅�

𝑖𝑗 +
1

3
𝐾2) + 4𝜋𝛼(𝜌 + 𝑆) + 𝛽𝑖𝜕𝑖𝐾, 

𝜕𝑡�̅�𝑖𝑗 = −2𝛼�̅�𝑖𝑗 + 𝛽
𝑘𝜕𝑘�̅�𝑖𝑗 + �̅�𝑖𝑘𝜕𝑗𝛽

𝑘 + �̅�𝑘𝑗𝜕𝑖𝛽
𝑘 −

2

3
�̅�𝑖𝑗𝜕𝑘𝛽

𝑘, 

𝜕𝑡�̅�𝑖𝑗 = 𝑒
−4Φ (−(𝐷𝑖𝐷𝑗𝛼)

𝑇𝐹
+ 𝛼(𝑅𝑖𝑗

𝑇𝐹 − 8𝜋𝑆𝑖𝑗
𝑇𝐹)) + 𝛼(𝐾�̅�𝑖𝑗 − 2�̅�𝑖𝑙�̅�𝑗

𝑙) + 𝛽𝑘𝜕𝑘�̅�𝑖𝑗

+ �̅�𝑖𝑘𝜕𝑗𝛽
𝑘 + �̅�𝑘𝑗𝜕𝑖𝛽

𝑘 −
2

3
�̅�𝑖𝑗𝜕𝑘𝛽

𝑘, 

𝜕𝑡Γ̅
𝑖 = −2�̅�𝑖𝑗𝜕𝑗𝛼 + 2𝛼 (Γ̅𝑗𝑘

𝑖 �̅�𝑘𝑗 −
2

3
�̅�𝑖𝑗𝜕𝑗𝐾 − 8𝜋�̅�

𝑖𝑗𝑆𝑗 + 6�̅�
𝑖𝑗Φ) + 𝛽𝑗𝜕𝑗Γ̅

𝑖 − Γ̅𝑖𝜕𝑗𝛽
𝑗

+
2

3
Γ̅𝑖𝜕𝑗𝛽

𝑗 +
1

3
�̅�𝑙𝑖𝜕𝑙𝜕𝑗𝛽

𝑗 + �̅�𝑙𝑗𝜕𝑗𝜕𝑙𝛽
𝑖. 

These equations are much more stable than the regular ADM equations and these form 

the basis of most numerical simulations of general relativity. 
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1.5.  Neutron Stars 

 Neutron stars are remnants of stars that have exhausted their fuel supply and have 

reached the end of their lives. Neutron stars are among the densest objects in the universe 

with mass on the order of 1 𝑀☉ and a size on the order of 10 𝑘𝑚 (Lattimer & Prakash 

2004). These objects are formed when a star of moderate size stops fusing material and 

gravitation is left unmatched and the object collapses down until the degenerate pressure 

of neutrons is able to halt the collapse. These objects are massive enough and compact 

enough that when they are orbiting in tight orbits around each other, they should create 

gravitational waves that are able to be detected. Gravitational waves from BNS were 

confirmed to exist with the detection of GW170817A (Pian 2021). To model the 

gravitational waves from an event like this, a relativistic simulation must be used, but 

before that can be done it is necessary to review some properties of neutron stars. 

1.5.1. Equations of State 

 Along with the TOV equations from section 1.3.6, the EOS is all that is needed to 

describe the equilibrium of matter inside a neutron star (Oppenheimer & Volkoff 1939). 

For an EOS to be useful, the number of parameters in the equation needs to be smaller 

than the number of properties that are related to the EOS, but large enough to provide an 

accurate approximation to the body as a whole. The best type of EOS that fits these 

criteria is a piecewise polytrope. Since the temperature of a neutron star is below the 

Fermi temperature of neutrons, the star can be treated as a cold body (Read et al. 2009a). 

The EOS will take the form 

𝑃(𝜌) = 𝐾𝜌Γ, (1.5.1.1) 
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with 𝑃 being the pressure, 𝐾 being a constant of proportionality, 𝜌 being the density, and 

Γ being the adiabatic index. For this thesis, the overall EOS will be a piecewise polytrope 

made up of seven pieces, four for the crust of the neutron star, and three for the core 

(Read et al. 2009a). An example of values used in the EOS is given in section 2.1 in the 

included par_eos1.d file. Additionally, a graph of the piecewise polytropic EOS can be 

seen below in figure 1. 

 

Figure 1: Piecewise polytropic equation of state with seven pieces used in the cases studied. 

1.5.2. Bounds of Mass 

 As stated above, the mass of neutron stars is on the order of 1 𝑀☉ with the lower 

bound on the mass being the Chandrasekhar limit of 1.40 𝑀☉ (Mazzali et al. 2007) and 

the highest observed mass being 2.08 𝑀☉ (Fonseca et al. 2021). These are the lower and 

upper bounds of the neutron stars used in this thesis, as well as an additional mass of 

1.74 𝑀☉ used as an intermediate mass. 
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1.5.3. Binary Neutron Stars 

 Neutron stars have two primary methods to form binaries like those studied for 

this thesis. The first is explored in Renzo et al. (2019) and consists of binary neutron stars 

(BNS) that formed from massive stars that have exhausted their fuel and have left behind 

the neutron star remnants that remained locked in a binary throughout this process. High 

mass stars are likely to be found in binary systems (Sana et al. 2012), so it would be 

natural to assume that a large fraction of these systems evolve into BNS. 

 Another possibility is explored in Ye et al. (2019), which looked at the formation 

of neutron stars in globular clusters where one star is ejected during the first supernova 

blast and a binary pair is formed later via tidal capture. This process of tidal capture of 

neutron stars that formed in globular clusters is explored in Lee et al. (2010). Although 

the process by which BNS form is not completely understood, for the purpose of this 

thesis it is more important to understand how they evolve and eventually merge. 

1.6.  Lorene 

 The Lorene software package, which stands for Langage Object pour la RElativité 

NumériquE, is a set of C++ classes that are used to solve various problems in numerical 

relativity. This program is used to create the initial conditions of BNS that is then inserted 

into the Einstein Toolkit for further evolution. Lorene is a system that provides tools to 

solve partial differential equations (PDEs) though multi-domain spectral methods 

(Grandclément & Novak 2009). To understand how Lorene can solve PDEs via spectral 

methods, it is first important to go over spectral methods. 
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1.6.1. Spectral Methods 

 To get a basic understanding of spectral methods, consider a function 𝑓 that lies 

within the domain 𝔻. The most straight forward approximation of the function’s 

derivative is through finite-difference methods, where first a grid is defined with  

{𝑥𝑖}𝑖=0,1,...,𝑁 ⊂ 𝔻, (1.6.1.1) 

that is composed of 𝑁 + 1 points in an interval and the function 𝑓 is defined by its 𝑁 + 1 

values on the grid points 

{𝑓𝑖 = 𝑓(𝑥𝑖)}𝑖=0,1,...,𝑁. (1.6.1.2) 

With this way of defining the function 𝑓, the derivative of the function is approximated 

by 

𝑓𝑖
′ = 𝑓′(𝑥𝑖) ≃

𝑓𝑖+1 − 𝑓𝑖
𝑥𝑖+1 − 𝑥𝑖

. (1.6.1.3) 

This is the method of finite-differences. An alternative way of approximating a solution 

to a PDE is through spectral methods. In this method the function 𝑓 is not represented by 

its values on a finite number of grid points, but instead it is defined by using coefficients 

{𝑐𝑖}𝑖=0,1,...,𝑁 in a basis of known functions {Φ𝑖}𝑖=0,1,...,𝑁. The function can be 

approximated by 

𝑓(𝑥) ≃∑𝑐𝑖Φ𝑖(𝑥)

𝑁

𝑖=0

. (1.6.1.4) 

For spectral methods, the trial functions are globally smooth over the entire domain 𝔻. 

Different choices of test functions can be used within spectral methods with the most 
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common being truncated Fourier series, spherical harmonics, or orthogonal families of 

polynomials. 

1.6.2. Compact Binaries 

 For the way that Lorene handles compact binaries, in this case BNS, a few 

approximations need to be made. First, systems containing compact binaries are known to 

emit gravitational waves, so no closed orbits can exist, and objects will follow spiral-like 

trajectories. However, in the regime where objects are still relatively far apart, the real 

trajectory can be approximated with a series of closed orbits. To avoid any diverging 

quantities, an additional demand must be put into place − the spatial metric must be 

conformally flat. However, even in the case of a single rotating black hole this condition 

is not true, but comparisons with post-Newtonian results or non-conformally-flat results 

show this approximation is relatively good (Grandclément & Novak 2009). However, the 

conformally flat assumption discards all reference to gravitational waves, so this 

assumption cannot be used during evolution, only during the setup of initial conditions. 

 With these conditions in place Einstein’s equations reduce to a set of five elliptic 

equations for the lapse, the conformal factor, and the shift vector, with the motion of the 

fluid being described by another elliptic function for the potential of the flow. These 

combined with an EOS gives the evolutionary sequence. 

 In the case of a system with two neutron stars, two sets of domains are used, each 

centered on one of the stars. Each set consists of sphere-like domains that extend from the 

surface of the star to infinity, and the functions are expanded in terms of spherical 

harmonics with respect to the angles (𝜃,𝜙) and Chebyshev polynomials with respect to 
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the radial coordinates. For a more in-depth description of the iterative process to generate 

data used in Lorene, refer to Gourgoulhon et al. (2001). 

 Additionally, in the case of a compact binary it is useful to split some of the 

quantities that are of interest to create two local versions that are centered on each body 

and can then be recombined to create a global quantity (Grandclément et al. 2002; Löffler 

et al. 2012). Some of these quantities that will be useful at a later point are 

𝛼 = 1 + 𝛼(1) + 𝛼(2), (1.6.2.1) 

𝜙 = 1 + 𝜙(1) + 𝜙(2), (1.6.2.2) 

𝛽𝑖 = 𝛽(1)
𝑖 + 𝛽(2)

𝑖 , (1.6.2.3) 

𝐾𝑖𝑗 = 𝐾(1)
𝑖𝑗
+ 𝐾(2)

𝑖𝑗
, (1.6.2.4) 

with the subscript (1) denoting the quantity around the first star and (2) denoting the 

quantity around the second star. 

1.7.  Einstein Toolkit 

 The Einstein Toolkit (Löffler et al. 2012) is a community driven program used to 

perform relativistic simulations that are too complex for an analytical solution to exist. 

Simulations that are ran within the Einstein Toolkit are based on the ADM and BSSN 

formulations of numerical relativity (Löffler et al. 2012).  

1.7.1. Cactus 

 The Einstein Toolkit is built upon the Cactus framework (Löffler et al. 2012), 

which means that it is built to be completely modular, giving the user the ability to 

customize how much of the program is used in each simulation. The Cactus framework 
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consists of two main parts, the ‘flesh’ which provides the infrastructure to build 

simulations out of independently developed modules and to facilitate communication 

between these modules. In this framework the modules are referred to as ‘thorns’ and 

make up the bulk of any simulation. 

1.7.2. Thorns 

 In addition to the ‘flesh’ of the Cactus framework, built on top of it are a variety 

of thorns (Allen et al.). There are many thorns that the Einstein Toolkit relies upon and 

many more that add a variety of physics to the numerical system being simulated. This 

section focuses on a few of the thorns that are important for the binary neutron star 

simulations that were explored for this thesis. 

1.7.2.1. ADMBase 

 The thorn ADMBase provides the basic ADM variables that are used in the 3+1 

formalism that the Einstein Toolkit is familiar with. These basic variables consist of: 

Quantity Symbol Variable Name 

3-metric tensor 𝑔𝑖𝑗 gxx, gxy, gxz, gyy, gyz, 

gzz 

Extrinsic curvature tensor 𝐾𝑖𝑗 kxx, kxy, kxz, kyy, kyz, 

kzz 

Lapse function 𝛼 alp 

Shift vector 𝛽𝑖 betax, betay, betaz 

Table 1: ADMBase defined variables 

This thorn provides the core infrastructure for thorns implementing general relativity on a 

3D grid in the 3+1 formalism. These variables are used to communicate between thorns 
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providing the initial data, evolution methods, and analysis routines for the 3+1 formalism. 

Additionally, the variables can be used as a mechanism to interact with alternative 

formalisms, as long as the routines can be written to transform the alternative variables 

into these 3+1 variables (Goodale). 

1.7.2.2. ADMCoupling 

 The thorn ADMCoupling allows for seamless coupling of evolution and analysis 

thorns to any thorns which contribute matter terms to the stress-energy tensor, 𝑇𝜇𝜈. By 

making a spacetime thorn compatible with this thorn, it can know about the variables in 

all matter thorns that are also compatible with ADMCoupling. This avoids explicit 

dependencies between the spacetime and matter evolution thorns (Hawke & Rideout). 

1.7.2.3. AHFinderDirect 

 The thorn AHFinderDirect locates apparent horizons in a numerically 

computed slice using a direct method. This direct method uses the fact that in terms of the 

usual 3+1 variables, an apparent horizon satisfies the equation 

𝜃 ≡ D𝑖𝑛
𝑖 + 𝐾𝑖𝑗𝑛

𝑖𝑛𝑗 − 𝐾 = 0, (1.7.2.3.1) 

where 𝑛𝑖 is the outward-pointing unit normal to the apparent horizon, and D𝑖 is the 

covariant derivative associated with the 3-metric 𝛾𝑖𝑗 in the slice. As such, this thorn 

requires the usual Cactus 3-metric, 𝛾𝑖𝑗, and the extrinsic curvature tensor, 𝐾𝑖𝑗. However, 

there may be several such surfaces, some nested inside others. In that case the apparent 

horizon is an outermost marginally trapped surface (Thornburg). 
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1.7.2.4. Carpet 

 Carpet is a fixed mesh refinement (FMR) driver for Cactus. FMR, also known 

as box-in-box, is a way to increase the local resolution in unigrid applications, while 

retaining the unigrid character of an application. Several grids of varying sizes are 

overlaid upon each other, where the coarsest grid has the largest extent. The way this 

works is by creating a coarse grid that encloses the entire domain with successively finer 

grids which overlay the coarse grid at the locations where a higher resolution is needed. 

The coarser grids then provide the boundary conditions to the finer grids. 

This allows the application to benefit from the higher resolution of the smaller 

grids where more interesting physics is taking place, while keeping the outer boundary 

far out at the same time. The biggest advantage of FMR is that it needs far fewer 

resources than globally increasing the resolution. To increase the resolution in a unigrid 

application by a factor of two requires a factor of eight more storage in three dimensions, 

so with this mesh refinement system there is the possibility of finer resolution without the 

full cost of globally increasing the resolution (Schnetter). 

1.7.2.5. EOS_Omni 

 The EOS_Omni thorn provides a unified EOS and implements multiple analytic 

EOSs. The EOSs that are used in this thorn are the polytropic EOS, the gamma-law EOS, 

and a hybrid EOS consisting of a n-piece piecewise-polytrope with a thermal gamma-law 

component. Additionally, the EOS_Omni assumes nuclear statical equilibrium with rest-

mass density 𝜌, a specific internal energy 𝜖, and electron fraction 𝑌𝑒 being the 

independent variables (Ott & Schnetter 2013). 
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1.7.2.6. GRHydro 

 The GRHydro thorn is a general-relativistic three-dimensional hydrodynamics 

code. This thorn uses the hydro variables defined in HydroBase and provides its own 

“conserved” hydro variables and methods to solve them. However, it does not provide 

any information about initial a data or the equations of state, so other thorns are needed. 

 The equations of general relativistic hydrodynamics can be written in the flux 

conservative form 

𝜕𝑡𝑞 + 𝜕𝑖𝑓
𝑖(𝑞) = 𝑠(𝑞), (1.7.2.6.1) 

where 𝑞 is a set of conserved variables, 𝑓𝑖(𝑞) are the fluxes, and 𝑠(𝑞) is the source term. 

The eight conserved variables are labeled as: 𝐷, the generalized particle number density; 

𝑆𝑖, the generalized momenta in each direction; 𝜏, an internal energy term; and ℬ𝑘, the 

densitized magnetic field. These conserved variables are composed from a set of 

primitive variables: 𝜌, the rest-mass density; 𝑃, the pressure; 𝑣𝑖, the fluid 3-velocities; 𝜖, 

the specific internal energy; 𝐵𝑘, the magnetic field in the lab frame; and 𝑊, the Lorentz 

factor. The conserved variables are related to the primitive variables through 

𝐷 = √𝛾𝑊𝜌, (1.7.2.6.2) 

𝑆𝑖 = √𝛾(𝜌ℎ ∗ 𝑊
2𝑣𝑗 − 𝛼𝑏

0𝑏𝑗), (1.7.2.6.3) 

𝜏 = √𝛾(𝜌ℎ ∗ 𝑊2 − 𝑃 ∗ −(𝛼𝑏0)) − 𝐷, (1.7.2.6.4) 

ℬ𝑘 = √𝛾𝐵𝑘, (1.7.2.6.5) 

where 𝛾 is the determinant of the spatial 3-metric 𝛾𝑖𝑗, ℎ ∗≡ 1 + 𝜖 +
(𝑃+𝑏2)

𝜌
, 𝑃 ∗≡ 𝑃 +

𝑏2

2
, 

and 𝑏𝜇 is the magnetic field in the fluid’s rest frame and is related to 𝐵𝑘 by 
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𝑏0 =
𝑊𝐵𝑘𝑣𝑘
𝛼

, (1.7.2.6.6) 

𝑏𝑖 =
𝐵𝑖

𝑊
+𝑤(𝐵𝑘𝑣𝑘) (𝑣

𝑖 −
𝛽𝑖

𝛼
) , (1.7.2.6.7) 

𝑏2 =
𝐵𝑖𝐵𝑖
𝑊2

+ (𝐵𝑖𝑣𝑖)
2
. (1.7.2.6.8) 

However, only five of the primitive fluid variables are independent. This is because the 

Lorentz factor is defined in terms of the velocities and the metric as 𝑊 =

(1 − 𝛾𝑖𝑗𝑣
𝑖𝑣𝑗)

−1 2⁄
, and the pressure, rest-mass density, and specific internal energy are 

related through the EOS. 

 The fluxes are usually defined in terms of both the conserved variables and the 

primitive variables: 

𝐹𝑖(𝑈) =

{
 
 

 
 

𝐷(𝛼𝑣𝑖 − 𝛽𝑖)

𝑆𝑗(𝛼𝑣
𝑖 − 𝛽𝑖) + 𝑃𝛿𝑗

𝑖

𝜏(𝛼𝑣𝑖 − 𝛽𝑖) + 𝑃𝑣𝑖

ℬ𝑘(𝛼𝑣𝑖 − 𝛽𝑖) − ℬ𝑖(𝛼𝑣𝑘 − 𝛽𝑘)

. (1.7.2.6.9) 

The source terms are 

𝑠(𝑈) =

{
 

 
0

𝑇𝜇𝜈(𝜕𝜇𝑔𝜈𝑗 + Γ𝜇𝜈
𝛿 𝑔𝛿𝑗)

𝛼(𝑇𝜇0𝜕𝜇 ln 𝛼 − 𝑇
𝜇𝜈Γ𝜈𝜇

0 )

0

, (1.7.2.6.10) 

and the stress-energy tensor is given by 

𝑇𝜇𝜈 = (𝜌 + 𝜌𝜖 + 𝑃 + 𝑏2)𝑢𝜇𝑢𝜈 + (𝑃 +
𝑏2

2
)𝑔𝜇𝜈 − 𝑏𝜇𝑏𝜈 . (1.7.2.6.11) 
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With these equations in place, the Einstein Toolkit is able to handle these continuity 

equations and able to make sure that the system will remain physical for the duration of 

the simulation (Baiotti et al. 2007; Mösta et al. 2014). 

1.7.2.7. Hydro_Analysis 

 The Hydro_Analysis thorn is responsible for providing the basic hydro 

analysis routines and quantities that are used during the simulation (Löffler 2022). 

1.7.2.8. HydroBase 

 The HydroBase thorn extends the Cactus framework to include an interface for 

magnetohydrodynamics to work within. This thorn’s main function is to store the 

primitive variables, common among hydrodynamic simulations, commonly needed 

parameters and schedule groups for the main functions of a hydrodynamics code. The 

prime variables defined in this thorn are: 

Quantity Symbol Variable Name Definition 

Rest mass density 𝜌 rho  

Pressure 𝑃 press  

Specific internal 

energy 

𝜖 eps  

Contravariant fluid 

three velocity 

𝑣𝑖 vel[3] 
𝑣𝑖 =

𝑢𝑖

𝛼𝑢0
+
𝛽𝑖

𝛼
 

Electron fraction 𝑌𝑒 Y_e  

Temperature 𝑇 temperature  
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Specific Entropy 

per particle 

𝑠 entropy  

Contravariant 

magnetic field 

vector 

𝐵𝑖 Bvec[3] 
𝐵𝑖 =

1

√4𝜋
𝑛𝜈𝐹

∗𝜈𝑖 

Table 2: HydroBase defined variables 

Where the dual to the Faraday tensor is, 𝐹∗𝜇𝜈 =
1

2
𝜀𝜇𝜈𝛼𝛽𝐹𝛼𝛽. These variables are then 

used in any other thorn that is needed to call them (Bode & Löffler 2010). 

1.7.2.9. Meudon_Bin_NS 

 The thorn Meudon_Bin_NS is responsible for reading in the initial conditions 

from Lorene. The initial conditions represent solutions to the equations (Löffler et al. 

2012) 

D̅2𝑣(𝑚) = 4𝜋𝜙4(𝐸(𝑚) + 𝑆(𝑚)) + 𝜙
4𝐾𝑖𝑗𝐾(𝑚)

𝑖𝑗
− D̅𝑖𝑣(𝑚)D̅

𝑖𝛽, (1.7.2.9.1) 

D̅2𝛽(𝑚) = 4𝜋𝜙4𝑆(𝑚) +
3

4
𝜙4𝐾𝑖𝑗𝐾(𝑚)

𝑖𝑗
−
1

2
(D̅𝑖𝑣(𝑚)D̅

𝑖𝑣 + D̅𝑖𝛽(𝑚)D̅
𝑖𝛽), (1.7.2.9.2) 

D̅2𝛽(𝑚)
𝑖 +

1

3
D̅𝑖D̅𝑗𝛽(𝑚)

𝑗
= −16𝜋𝛼𝜙4(𝐸(𝑚) + 𝑃(𝑚))𝑣(𝑚)

𝑖 + 2𝛼𝜙4𝐾(𝑚)
𝑖𝑗
D̅𝑗(3𝛽 − 4𝑣), (1.7.2.9.3) 

with D̅2 = D̅𝑖D̅𝑖 being the Laplacian with respect to the conformal metric, 𝑣(𝑚)
𝑖  the 

special components of the 4-velocity of star 𝑚, and 𝑣 and 𝛽 being defined by 

𝑣 ≡ log 𝛼,  𝛽 ≡ ln 𝛼𝜙2. 

 Equations (1.7.2.9.1) and (1.7.2.9.2) are from the trace of the spatial part of the 

Einstein equations combined with the Hamiltonian constraint, and equation (1.7.2.9.3) is 
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from the trace of the Einstein equations with the momentum constraint (Gourgoulhon et 

al. 2001). 

1.7.2.10. NaNChecker 

 The NaNChecker thorn is used to analyze Cactus grid variables of real or 

complex data type for Not-a-Number (NaN) and infinite values. If this thorn finds a NaN, 

the actions it can perform are to display a warning about where and how many NaN’s 

were found, to gracefully terminate the simulation, or to immediately terminate Cactus 

(Radke). 

1.7.2.11. NSTracker 

 The thorn NSTracker is responsible for tracking the neutron stars during the 

simulation and shifting the grid so that the finest resolution of the grid will move along 

with the neutron stars to maximize the resolution where the material from the binary is 

located (Löffler et al. 2012). 

1.7.2.12. TmunuBase 

 The thorn TmunuBase provides core infrastructure for thorns implementing 

some kind of energy or matter in general relativity. This thorn provides the basic 

variables in the stress-energy tensor, 𝑇𝜇𝜈, to be communicated between thorns 

contributing to the stress-energy content of the spacetime as well as thorns needed to 

evaluate the stress-energy tensor as the spacetime evolves. The variables defined in the 

3+1 formulism are: 

Quantity Symbol Variable Name 
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“scalar” time-time 

component 

𝑇00 eTtt 

“vector” time-space 

components 

𝑇0𝑖 eTtx, eTty, eTtz 

“tensor” space-space 

components 

𝑇𝑖𝑗 eTxx, eTxy, eTxz, eTyy, 

eTyz, eTzz 

Table 3: TmunuBase defined variables 

These components have a prefix 𝑒 to avoid naming conflicts with existing variables. 

These variables are then able to be used in any thorn that calls them during the simulation 

(Schnetter 2007). 

1.7.2.13. VolumeIntergral_GRMHD 

 The thorn VolumeIntergal_GRMHD allows for integration of spacetime 

quantities. To do this the authors of the thorn start by defining the “densitised density” 

which is given by 

𝜌∗ ≡ 𝛼√𝛾𝜌𝑏𝑢
0 = 𝑊𝜌𝑏√𝛾, (1.7.2.17.1) 

where 𝛼 is the lapse function, 𝛾 is the determinant of the physical spatial metric 𝛾𝑖𝑗, 𝜌𝑏 is 

the baryonic density, 𝑢𝜇 is the fluid four-velocity, and 𝑊 ≡ 𝛼𝑢0 is the Lorentz factor. 

The rest mass integral is then given by 

𝑀0 = ∫𝑑𝑉𝜌∗ = ∫𝑑𝑉(𝑊𝜌𝑏√𝛾) . (1.7.2.17.2) 

Similar integrals are defined in similar ways (Etieene & Werneck 2021). 
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1.7.2.14. WeylScal4 

 The thorn WeylScal4 uses the methods described in Newman & Renrose 

(1962) to calculate the portion of the Weyl tensor that is associated with gravitational 

waves and outputs that into a plottable ASCII file (Löffler et al. 2012). 
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2. Process 

2.1. Lorene 

 For Lorene to find a binary neutron star configuration, a few things must first be 

specified. These being (Gourgoulhon et al. 2001): 

1. The EOS of each neutron star. 

2. The rotation state, either being rigidly rotating or irrotational flow. 

3. The distance between the stellar cores. 

4. The central enthalpy of each star. 

Once these parameters have been set, Lorene is able to create the initial data to be used in 

the Einstein Toolkit. An example of the EOS used in Lorene follows. 

110    Type of the EOS (cf. documentation of 

Eos::eos_from_file) 

Star 1  EOS  

7    number of polytropes 

1.58425   array of adiabatic index 

1.28733 

0.62223 

1.35692 

3.005 

2.988 

2.851 

6.8011e-09 kappa value for the lowest density 

region i.e., the crust of the 

neutron star 

3.53623 log10 pressure along first 

boundary, in natural units 
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7.3875 array of the exponent of fiducial 

densities logRho 

11.5779 

12.4196 

14.165 

14.7 

15 

0.                      array of percentage 

0. 

0. 

0. 

0. 

0. 

 

The number of polytropes used within the piecewise function is specified along with the 

adiabatic index for each piece, the constant of proportionality at the crust of the neutron 

star, the pressure at the boundary between piece one and two, and an array of fiducial 

densities for each piece. Initial data in this form is needed for each of the neutron stars. 

In each case the neutron star was said to be irrotational, this assumption is made 

because although neutron stars rotate rapidly, they can be assumed to not rotate compared 

to the time span of the simulation. For each case the distance was taken to be 40 

kilometers, because this was assumed to be far enough to give a good understanding of 

the system but close enough to conform to the computational limitations presented. The 

central enthalpy, calculated using Lorene to find a desired baryonic mass, is given in 

Table 4. 

Baryonic Mass (𝑀☉) Central Enthalpy (Log base 10) 
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1.40 0.1246 

1.74 0.1894 

2.08 0.3081 

Table 4: Central Enthalpy Log10 based on baryonic mass 

2.2. Parameter File 

 To get a clear understanding of the Einstein Toolkit and how it takes the input 

from Lorene and the parameter file, and creates an output, it will be useful to take the 

example of the parameter file for case 1, which consists of two 2.08 solar mass BNS, and 

go through the parameter file. The complete parameter file is included in Appendix B. 

2.2.1. Cactus Parameters 

 The first section of the parameter file are the Cactus parameters. These contain 

basic information about the simulation. 

#----------------------------------------------------- 

# Cactus parameters: 

#----------------------------------------------------- 

Cactus::cctk_run_title     = "May23-

MagneticFieldVolumeCase1" 

Cactus::cctk_full_warnings = "yes" 

Cactus::highlight_warning_messages = "no" 

 

Cactus::terminate       = "time" 

Cactus::cctk_final_time = 2000.0 

 

This section tells Einstein Toolkit what the name of the run is, in this case it is called 

“May23-MagneticFieldVolumeCase1”, as well as telling the Einstein Toolkit how long 
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the simulation should run, in this case it was told to run for 2000 hours. Although it did 

not run for that whole time, a time larger than the expected run time was selected, and the 

simulation was stopped manually. 

2.2.2. Active Thorns 

 Next, the Einstein Toolkit needs to know which thorns are available at its 

disposal. That is taken care of in the Active Thorns section: 

#----------------------------------------------------- 

# Activate all necessary thorns: 

#----------------------------------------------------- 

 

ActiveThorns = "Boundary CartGrid3D CoordBase Fortran 

InitBase IOUtil LocalReduce SymBase Time" 

ActiveThorns = "AEILocalInterp" 

ActiveThorns = "MoL Slab SpaceMask SphericalSurface" 

ActiveThorns = "Carpet CarpetInterp CarpetInterp2 

CarpetIOASCII CarpetIOHDF5 CarpetIOScalar CarpetLib 

CarpetIOBasic CarpetReduce CarpetRegrid2 CarpetSlab 

CarpetTracker CarpetMask LoopControl" 

ActiveThorns = "Formaline" 

ActiveThorns = "NaNChecker TerminationTrigger 

TimerReport" 

ActiveThorns = "ADMbase ADMcoupling ADMmacros 

CoordGauge StaticConformal" 

ActiveThorns = "RotatingSymmetry180 

ReflectionSymmetry" 

ActiveThorns = "Constants TmunuBase HydroBase" 

ActiveThorns = "QuasiLocalMeasures" 

ActiveThorns = "EOS_Omni" 

ActiveThorns = "GRHydro" 

ActiveThorns = "SummationByParts" 
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ActiveThorns = "GenericFD NewRad" 

ActiveThorns = "ML_BSSN ML_BSSN_Helper 

ML_ADMConstraints" 

ActiveThorns = "Hydro_Analysis NSTracker" 

ActiveThorns = "Dissipation" 

ActiveThorns = "SystemStatistics SystemTopology" 

ActiveThorns = "VolumeIntegrals_GRMHD" 

# Wave extraction (Psi4) 

ActiveThorns = "WeylScal4 Multipole" 

ActiveThorns = "AHFinderDirect" 

 

This section is responsible for telling the Einstein Toolkit which thorns should be used by 

writing all the active thorns in a list to let the Einstein Toolkit know what thorns are 

available. Since some of the more important thorns have been covered above, thorns that 

need more detail are covered further below. 

2.2.3. Diagnostic Parameters 

 The next section of the parameter file is the Diagnostic Parameters. This section 

deals with simulation output during run-time such as logging by the timer indicating how 

long the simulation has been running and communicating with thorns to output 

commands that are currently executing. 

#----------------------------------------------------- 

# Diagnostic parameters: 

#----------------------------------------------------- 

 

Carpet::output_timers_every = 0 

Carpet::storage_verbose   = "no" 
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Carpet::verbose           = "no" 

Carpet::veryverbose       = "no" 

Carpet::grid_structure_filename   = "carpet-grid-

structure" 

Carpet::grid_coordinates_filename = "carpet-grid-

coordinates" 

 

CarpetLib::output_bboxes  = "no" 

 

CarpetMask::verbose    = "no" 

CarpetReduce::verbose  = "no" 

CarpetRegrid2::verbose = "no" 

CarpetRegrid2::veryverbose    = "no" 

CarpetTracker::verbose = "no" 

 

 

TimerReport::out_every    = 4096 

TimerReport::out_filename = "TimerReport" 

TimerReport::output_all_timers          = "yes" 

TimerReport::output_all_timers_together = "yes" 

TimerReport::output_all_timers_readable = "yes" 

TimerReport::n_top_timers               = 40 

 

 

QuasiLocalMeasures::verbose   = "no" 

SphericalSurface::verbose   = "no" 

 

As seen above, many of the quantities are set to ‘verbose= “no”’ which tells the Einstein 

Toolkit not to print the command that it is executing.  
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2.2.4. Utility Parameters 

 The utility parameter is set up to allow for NaNChecker to check different 

variables for imaginary or infinite values and stopping the simulation if any are found.  

#----------------------------------------------------- 

# Utility parameters: 

#----------------------------------------------------- 

 

NaNChecker::check_every    =  128 # twice for 

every_coarse 

NaNChecker::check_vars = " 

            ADMBase::curv  

            ADMBase::metric  

            ADMBase::lapse  

            ADMBase::shift  

            HydroBase::rho  

            HydroBase::eps  

            HydroBase::press  

            HydroBase::vel 

" 

NaNChecker::action_if_found   =  "terminate" 

 

As can be seen in the parameter file above, NaNChecker will check variables defined in 

the ADMBase and the HydroBase thorns every 128 iterations for imaginary or infinite 

values. The setting is to terminate instead of ‘just warn’ or ‘abort’. 



 

68 

 

2.2.5. Run Parameters 

 The next section of the parameter file is dedicated to the run parameters which are 

made up of the grid, the model, the EOS, as well as the numerics and evolution sections. 

2.2.5.1. Grid 

 In the grid section, the size and refinement of the grid is specified along with 

symmetries that the system may use to simplify the calculations, as well as the regrid size 

that is used around the neutron stars. 

#------ 

# Grid: 

#------ 

 

MoL::ODE_Method             = "rk4" 

MoL::MoL_Intermediate_Steps = 4 

MoL::MoL_Num_Scratch_Levels = 1 

# use dt = 0.4 dx (works for core collapse) 

Time::dtfac = 0.35 

 

CoordBase::domainsize = "minmax" 

CoordBase::xmin =    0.00 

CoordBase::ymin = -960.00 

CoordBase::zmin =    0.00 

CoordBase::xmax = +960.00 

CoordBase::ymax = +960.00 

CoordBase::zmax = +960.00 

CoordBase::dx   =  10.00  

CoordBase::dy   =  10.00 

CoordBase::dz   =  10.00 
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CoordBase::boundary_size_x_lower     = 3 

CoordBase::boundary_size_y_lower     = 3 

CoordBase::boundary_size_z_lower     = 3 

CoordBase::boundary_size_x_upper     = 3 

CoordBase::boundary_size_y_upper     = 3 

CoordBase::boundary_size_z_upper     = 3 

 

CoordBase::boundary_shiftout_x_lower = 1 

CoordBase::boundary_shiftout_y_lower = 0 

CoordBase::boundary_shiftout_z_lower = 1 

 

reflectionsymmetry::avoid_origin_x       = no 

reflectionsymmetry::avoid_origin_y       = no 

reflectionsymmetry::avoid_origin_z       = no 

reflectionsymmetry::reflection_x         = no 

reflectionsymmetry::reflection_y         = no 

reflectionsymmetry::reflection_z         = yes  

 

CartGrid3D::type = "coordbase" 

Carpet::domain_from_coordbase = "yes" 

 

Driver::ghost_size                      = 3 

 

# General Carpet parameters: 

Carpet::enable_all_storage       = "no" 

Carpet::use_buffer_zones         = "yes" 

Carpet::schedule_barriers        = "no" 

 

Carpet::poison_new_timelevels    = "yes" 
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Carpet::check_for_poison         = "no" 

 

Carpet::init_3_timelevels        = "no" 

Carpet::init_fill_timelevels     = "yes" 

 

CarpetLib::poison_new_memory         = "yes" 

CarpetLib::poison_value              = 114 

CarpetLib::check_bboxes              = "no" 

CarpetLib::interleave_communications = "yes" 

CarpetLib::combine_sends             = "yes" 

 

CarpetInterp::tree_search = "yes" 

CarpetInterp::check_tree_search = "no" 

 

CarpetRegrid2::freeze_unaligned_levels = "yes" 

CarpetRegrid2::freeze_unaligned_parent_levels = "yes" 

CarpetRegrid2::ensure_proper_nesting   = "yes" 

CarpetRegrid2::snap_to_coarse          = "yes" 

CarpetRegrid2::symmetry_rotating180    = "yes" 

 

# System specific Carpet parameters: 

Carpet::max_refinement_levels    = 8  

Carpet::prolongation_order_space = 5 

Carpet::prolongation_order_time  = 2 

 

Carpet::refinement_centering     = "vertex" 

 

CarpetRegrid2::regrid_every = 64 # as often as 

required  

CarpetRegrid2::num_centres  = 3 
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CarpetRegrid2::min_distance = 0 

 

CarpetRegrid2::num_levels_1 = 7 

CarpetRegrid2::position_x_1 = 0 

CarpetRegrid2::radius_1[1]  = 960 

CarpetRegrid2::radius_1[2]  = 228 

CarpetRegrid2::radius_1[3]  = 114 

CarpetRegrid2::radius_1[4]  = 66 

CarpetRegrid2::radius_x_1[5]  = 35 

carpetregrid2::radius_y_1[5]  = 35 

carpetregrid2::radius_z_1[5]  = 24 

CarpetRegrid2::radius_1[6]  = 13    

CarpetRegrid2::radius_1[7]  = 6.5 

 

CarpetRegrid2::num_levels_2 = 7  

CarpetRegrid2::position_x_2 = -15 

CarpetRegrid2::radius_2[1]  = 320 

CarpetRegrid2::radius_2[2]  = 164 

CarpetRegrid2::radius_2[3]  = 96 

CarpetRegrid2::radius_2[4]  = 48 

CarpetRegrid2::radius_2[5]  = 18 

CarpetRegrid2::radius_2[6]  = 11 

CarpetRegrid2::radius_2[7]  = 5.5 

 

CarpetRegrid2::num_levels_3 = 7  

CarpetRegrid2::radius_3[1]  = 320 

CarpetRegrid2::radius_3[2]  = 164 

CarpetRegrid2::radius_3[3]  = 96 

CarpetRegrid2::radius_3[4]  = 48 

CarpetRegrid2::radius_3[5]  = 18  
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CarpetRegrid2::radius_3[6]  = 11 

CarpetRegrid2::radius_3[7]  =  5.5 

 

carpetmask::excluded_surface[0]          = 0 

carpetmask::excluded_surface[1]          = 1 

carpetmask::excluded_surface_factor[0]   = 1 

carpetmask::excluded_surface_factor[1]   = 1 

 

CarpetTracker::surface_name[0] = "Righthand NS" 

CarpetTracker::surface_name[1] = "Lefthand NS" 

 

As seen above in the parameter file, the size of the grid used in the simulations is 960 by 

960 in the x and z directions and from −960 to 960 in the y-direction. The first level of 

refinement is 10 in each direction and progressively gets finer closer to the neutron star. 

Also specified in this section is the symmetries that are used like reflection symmetry 

about the x and y-axes. 

2.2.5.2. Model 

 This section of the parameter file is dedicated to the loading of the initial 

conditions from Lorene using the thorn Meudon_Bin_NS.  

#------ 

# MODEL: 

#------ 

 

ActiveThorns = "Meudon_Bin_NS" 

HydroBase::initial_hydro         = "Meudon_Bin_NS" 

ADMBase::initial_data            = "Meudon_Bin_NS" 
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ADMBase::initial_lapse           = "Meudon_Bin_NS" 

ADMBase::initial_shift           = "zero" 

ADMBase::initial_dtlapse         = "zero" 

ADMBase::initial_dtshift         = "zero" 

 

Meudon_Bin_NS::filename ="case208208.d" 

 

As can be seen above, the initial data is taken from the Meudon_Bin_NS thorn, which 

gets the data from "case208208.d", which is the initial data that is generated by 

Loren for case1. 

2.2.5.3. Equation of State 

 In this section of the parameter file, the EOS is specified again to model how the 

material evolves in each star throughout the run-time of the simulation. 

#------------------EOS----------------------------- 

 

EOS_Omni::poly_K = 123.613314525753 

 

EOS_Omni::hybrid_gamma_th       = 1.8 #gamma thermal 

from Hotokezaka et al. 2013 (arxiv.org/abs/1307.5888) 

 

EOS_Omni::n_pieces              = 7 #3 for the core + 

4 for the crust (Read et al 2009) 

 

##k0=6.8011e-09 in cgs units and Kcu = 

k0_cgs*(cu_to_cgs**(gamma-1)) where 

cu_to_cgs=6.1762691458861658e+17 converts from CU to 

g/cm^3 

 

EOS_Omni::hybrid_k0             = 168.58190246577206 
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EOS_Omni::hybrid_gamma[0]       = 1.58425 

EOS_Omni::hybrid_gamma[1]       = 1.28733 

EOS_Omni::hybrid_gamma[2]       = 0.62223 

EOS_Omni::hybrid_gamma[3]       = 1.35692 

EOS_Omni::hybrid_gamma[4]       = 3.005 

EOS_Omni::hybrid_gamma[5]       = 2.988 

EOS_Omni::hybrid_gamma[6]       = 2.851 

 

EOS_Omni::hybrid_rho[0]         = 3.95160737e-11 

EOS_Omni::hybrid_rho[1]         = 6.12595478e-07 

EOS_Omni::hybrid_rho[2]         = 4.25474745e-06 

EOS_Omni::hybrid_rho[3]         = 2.36741168e-04 

EOS_Omni::hybrid_rho[4]         = 8.11472463e-04 

EOS_Omni::hybrid_rho[5]         = 1.61910043e-03 

 

The model used in Lorene to generate the initial state consists of seven parts to the 

piecewise function with three for the core and four for the crust of the neutron star (Read 

et al. 2009b), with the same values for the constants as used in the polytropic equations. 

2.2.5.4. Numerics 

 This section of the parameter file is dedicated to the thorns TmunuBase and 

SphericalSurface. Both thorns define variables that other thorns are then allowed 

to use. 

#---------- 

# Numerics: 

#---------- 
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InitBase::initial_data_setup_method = 

"init_some_levels" 

 

TmunuBase::stress_energy_storage = "yes" 

TmunuBase::stress_energy_at_RHS  = "yes" 

TmunuBase::timelevels            =  1 

TmunuBase::prolongation_type     = "none" 

TmunuBase::support_old_CalcTmunu_mechanism = "no" 

 

HydroBase::timelevels            = 3 

 

SpaceMask::use_mask      = "yes" 

 

SphericalSurface::nsurfaces = 5 

SphericalSurface::maxntheta = 39 

SphericalSurface::maxnphi = 76 

 

SphericalSurface::ntheta      [0] = 39 

SphericalSurface::nphi        [0] = 76 

SphericalSurface::nghoststheta[0] = 2 

SphericalSurface::nghostsphi  [0] = 2 

SphericalSurface::name        [0] = "Righthand NS" 

 

SphericalSurface::ntheta      [1] = 39 

SphericalSurface::nphi        [1] = 76 

SphericalSurface::nghoststheta[1] = 2 

SphericalSurface::nghostsphi  [1] = 2 

SphericalSurface::name        [1] = "Lefthand NS" 
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SphericalSurface::ntheta      [3] = 39 

SphericalSurface::nphi        [3] = 76 

SphericalSurface::nghoststheta[3] = 2 

SphericalSurface::nghostsphi  [3] = 2 

SphericalSurface::set_spherical[3] = yes 

SphericalSurface::radius      [3] = 100 

SphericalSurface::name        [3] = "waveextract 

surface at 100" 

 

SphericalSurface::ntheta      [4] = 39 

SphericalSurface::nphi        [4] = 76 

SphericalSurface::nghoststheta[4] = 2 

SphericalSurface::nghostsphi  [4] = 2 

SphericalSurface::set_spherical[4] = yes 

SphericalSurface::radius      [4] = 250 

SphericalSurface::name        [4] = "waveextract 

surface at 250" 

 

2.2.5.5. Evolution 

 The evolution section of the parameter file is dedicated to the evolution of the 

system. It specifies the process in which the system is evolved during each time step. The 

defaults of this section are based on Colella & Sekora (2008) and Mccorquodale & 

Colella (2011). 

#----------- 

# Evolution: 

#----------- 

 

# test 
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HydroBase::initial_Bvec = "zero" 

Hydrobase::Bvec_evolution_method   = "GRHydro" 

GRHydro::transport_constraints = yes 

 

HydroBase::evolution_method      = "GRHydro" 

 

ADMMacros::spatial_order = 4 

GRHydro::sources_spatial_order = 4 

 

GRHydro::riemann_solver            = "HLLE" 

GRHydro::recon_method              = "ppm" 

GRHydro::GRHydro_stencil            = 3 

GRHydro::bound                     = "flat" 

GRHydro::rho_abs_min               = 1.e-11 

GRHydro::GRHydro_atmo_tolerance    = 0.01 

 

GRHydro::c2p_reset_pressure        = "yes" 

 

GRHydro::GRHydro_eos_type           = "General" 

GRHydro::GRHydro_eos_table          = "Ideal_Fluid" 

 

GRHydro::GRHydro_MaxNumSandRVars = 0 

 

GRHydro::use_enhanced_ppm            = "yes" 

GRHydro::sync_conserved_only     = "yes" 

GRHydro::reconstruct_Wv          = "yes" 

GRHydro::c2p_resort_to_bisection = "yes" 

GRHydro::use_cxx_code            = "yes" 
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# MacLachlan evolution parameters 

 

ADMBase::metric_type                    = physical 

ADMBase::evolution_method               = ML_BSSN 

ADMBase::lapse_evolution_method         = ML_BSSN 

ADMBase::shift_evolution_method         = ML_BSSN 

ADMBase::dtlapse_evolution_method       = ML_BSSN 

ADMBase::dtshift_evolution_method       = ML_BSSN 

 

ML_BSSN::timelevels                     = 3 

 

ML_BSSN::initial_boundary_condition  = "extrapolate-

gammas" 

ML_BSSN::rhs_boundary_condition       = "NewRad" 

Boundary::radpower                      = 2 

 

ML_BSSN::harmonicN           = 1      # 1+log 

ML_BSSN::harmonicF           = 2.0    # 1+log 

ML_BSSN::ShiftGammaCoeff     = 0.75 

ML_BSSN::AlphaDriver         = 0.0 

ML_BSSN::BetaDriver          = 1.0 

ML_BSSN::advectLapse         = 1.0 

ML_BSSN::advectShift         = 1.0 

 

ML_BSSN::MinimumLapse = 1.0e-8 

ML_BSSN::ML_log_confac_bound = "none" 

ML_BSSN::ML_metric_bound     = "none" 

ML_BSSN::ML_Gamma_bound      = "none" 

ML_BSSN::ML_trace_curv_bound = "none" 

ML_BSSN::ML_curv_bound       = "none" 
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ML_BSSN::ML_lapse_bound      = "none" 

ML_BSSN::ML_dtlapse_bound    = "none" 

ML_BSSN::ML_shift_bound      = "none" 

ML_BSSN::ML_dtshift_bound    = "none" 

 

ML_BSSN::UseSpatialBetaDriver = 1 

ML_BSSN::SpatialBetaDriverRadius = 50 

 

#ML_BSSN::apply_dissipation   = "never" 

 

ML_BSSN::epsDiss              =0.0 

 

Dissipation::epsdis = 0.1 

Dissipation::order = 5 

Dissipation::vars                       = " 

        ML_BSSN::ML_log_confac 

        ML_BSSN::ML_metric 

        ML_BSSN::ML_trace_curv 

        ML_BSSN::ML_curv 

        ML_BSSN::ML_Gamma 

        ML_BSSN::ML_lapse 

        ML_BSSN::ML_shift 

        ML_BSSN::ML_dtlapse 

        ML_BSSN::ML_dtshift 

" 
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2.2.6. Output 

 This section of the parameter file is designated to create the output for the thorns 

that have a value that the user would like saved. These outputs usually take the form of a 

HDF5, or the ASCII file formats. 

#----------------------------------------------------- 

# Output: 

#----------------------------------------------------- 

 

IOBasic::outInfo_every = 1 

IOBasic::outInfo_reductions = "maximum" 

IOBasic::outInfo_vars  = " 

 Carpet::physical_time_per_hour 

 HydroBase::rho 

 ML_ADMConstraints::ML_Ham 

 SystemStatistics::maxrss_mb 

 GRHydro::dens{reductions = 'sum maximum'} 

 HydroBase::w_lorentz 

" 

 

IOScalar::outScalar_every      = 256 # every_coarse 

IOScalar::all_reductions_in_one_file = "yes" 

IOScalar::one_file_per_group   = "yes" 

IOScalar::outScalar_reductions = "minimum maximum 

average norm1 norm2" 

IOScalar::outScalar_vars       = " 

 ADMBase::lapse 

 ADMBase::shift 

 ADMBase::metric 

 ADMBase::curv 
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 HydroBase::rho 

 HydroBase::vel 

 HydroBase::w_lorentz 

 GRHydro::dens{reductions = 'minimum maximum average 

norm1 norm2 sum'} 

 SystemStatistics::process_memory_mb 

 SphericalSurface::sf_radius 

 ML_ADMConstraints::ML_Ham 

" 

 

IOASCII::one_file_per_group     = "yes" 

IOASCII::compact_format  = "yes" 

 

IOASCII::out0D_every     = 256 # every_coarse 

IOASCII::out0D_vars      = " 

 Carpet::timing 

 QuasiLocalMeasures::qlm_scalars 

 SphericalSurface::sf_active 

 SphericalSurface::sf_valid 

 SphericalSurface::sf_info 

 SphericalSurface::sf_radius 

 SphericalSurface::sf_origin 

 SphericalSurface::sf_coordinate_descriptors 

 Hydro_Analysis::Hydro_Analysis_rho_max_loc 

 

Hydro_Analysis::Hydro_Analysis_rho_max_origin_distance 

" 

 

#Set these IOASCII options for initial data only: 

IOASCII::out1D_every     = 0 

IOASCII::out1D_d         = "no" 
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IOASCII::out1D_vars      = " 

 HydroBase::rho 

 HydroBase::vel 

 ADMBase::lapse 

 ADMBase::shift 

 ADMBase::metric 

 ADMBase::curv 

 ML_ADMConstraints::ML_Ham 

" 

 

CarpetIOHDF5::one_file_per_group             = "no"   

# this is required by multipatch 

CarpetIOHDF5::open_one_input_file_at_a_time  = "yes" 

CarpetIOHDF5::out2D_every                    = 1536   

# 6*every coarse 

CarpetIOHDF5::out2D_xy                       = "yes" 

CarpetIOHDF5::out2D_xz                       = "no" 

CarpetIOHDF5::out2D_yz                       = "no" 

CarpetIOHDF5::out2D_xyplane_z                = 0.0 

CarpetIOHDF5::out2D_vars      = " 

  CarpetReduce::weight 

  Grid::coordinates 

  HydroBase::rho 

  HydroBase::vel 

  HydroBase::entropy 

  HydroBase::press 

  HydroBase::eps 

  ADMBase::lapse 

  ADMBase::shift 

  ADMBase::metric 

  ML_ADMConstraints::ML_Ham 
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 " 

 

IOHDF5::out3D_every = 8192 # = 32*every_coarse 

IOHDF5::out3D_vars  = " 

 CarpetReduce::weight 

 HydroBase::rho 

 HydroBase::vel 

 HydroBase::eps 

 ADMBase::lapse 

 ADMBase::shift 

 ML_ADMConstraints::ML_Ham 

 grid::coordinates 

" 

 

2.2.7. Analysis 

 The analysis section of the parameter file is dedicated to specifying details for the 

thorns: Hydro_Analysis, NSTracker, and QuasiLocalMeasures. 

#----------------------------------------------------- 

# Analysis: 

#----------------------------------------------------- 

Hydro_Analysis::Hydro_Analysis_comp_rho_max = "true" 

Hydro_Analysis::Hydro_Analysis_rho_max_loc_only_positi

ve_x = "true" 

Hydro_Analysis::Hydro_Analysis_comp_rho_max_origin_dis

tance = "yes" 

Hydro_Analysis::Hydro_Analysis_average_multiple_maxima

_locations = "yes" 

Hydro_Analysis::Hydro_Analysis_interpolator_name = 

"Lagrange polynomial interpolation (tensor product)" 
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NSTracker::NSTracker_SF_Name          = "Righthand NS" 

NSTracker::NSTracker_SF_Name_Opposite = "Lefthand NS" 

NSTracker::NSTracker_max_distance = 10  

NSTracker::NSTracker_verbose = "yes" 

NSTracker::NSTracker_tracked_location = 

"Hydro_Analysis::Hydro_Analysis_rho_max_loc" 

 

QuasiLocalMeasures::num_surfaces   = 2 

QuasiLocalMeasures::spatial_order  = 4 

QuasiLocalMeasures::interpolator = "Lagrange 

polynomial interpolation" 

QuasiLocalMeasures::interpolator_options = "order=4" 

QuasiLocalMeasures::surface_name[0] = "waveextract 

surface at 100" 

QuasiLocalMeasures::surface_name[1] = "waveextract 

surface at 250" 

 

2.2.8. Wave Extraction 

 This section of the parameter file is designated for calculating the fourth Weyl 

scalar which is associated with gravitational waves at various distances for various 

multipole modes ranging from 𝑙 = 0 to 𝑙 = 6. 

###################################################### 

###################################################### 

# Wave extraction 

###################################################### 

###################################################### 

 

WeylScal4::offset                    = 1e-8  
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WeylScal4::fd_order                  = "4th"  

WeylScal4::verbose                   = 0  

 

Multipole::nradii = 8 

Multipole::out_every = 128 

Multipole::radius[0] = 45 

Multipole::radius[1] = 70 

Multipole::radius[2] = 100 

Multipole::radius[3] = 125 

Multipole::radius[4] = 150 

Multipole::radius[5] = 200 

Multipole::radius[6] = 250 

Multipole::radius[7] = 300 

Multipole::variables = "WeylScal4::Psi4r{sw=-2 

cmplx='WeylScal4::Psi4i' name='Psi4'}" 

Multipole::l_max = 6 

 

2.2.9. Checkpoint/Recovery 

 The Checkpoint section is responsible for making backups of the simulation that 

can be restarted if the system experiences some type of failure that cancels the 

simulation. 

#----------------------------------------------------- 

# Checkpoint/Recovery: 

#----------------------------------------------------- 

IOHDF5::checkpoint                  = "yes" 

IO::checkpoint_dir                  = "../checkpoint"  

IO::checkpoint_ID                   = "yes" 

IO::checkpoint_every_walltime_hours = 6.0  
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CarpetIOHDF5::checkpoint_every_divisor = 55552 

IO::checkpoint_keep=2 

IO::checkpoint_on_terminate         = "yes" 

 

IO::recover     = "autoprobe" 

IO::recover_dir = "../checkpoint" 

 

The parameter settings listed above informs the simulation to create a checkpoint every 

six hours of simulation time and to save the two most-recent checkpoints. 

2.2.10. AHFinderDirect 

 The AHFinderDirect section of the parameter file is dedicated to how the 

thorn AHFinderDirect is used during the simulation. 

#----------------------------------------------------- 

# AHFinderDirect: 

#----------------------------------------------------- 

 

AHFinderDirect::find_every = 0  

 

AHFinderDirect::run_at_CCTK_POST_RECOVER_VARIABLES = 

no 

 

AHFinderDirect::move_origins            = yes 

AHFinderDirect::reshape_while_moving    = yes 

AHFinderDirect::predict_origin_movement = yes 

 

AHFinderDirect::geometry_interpolator_name = "Lagrange 

polynomial interpolation" 

AHFinderDirect::geometry_interpolator_pars = "order=4" 
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AHFinderDirect::surface_interpolator_name  = "Lagrange 

polynomial interpolation" 

AHFinderDirect::surface_interpolator_pars  = "order=4" 

 

AHFinderDirect::output_h_every = 128 

 

AHFinderDirect::N_horizons = 1 

 

AHFinderDirect::which_surface_to_store_info          

[1] = 0 

AHFinderDirect::reset_horizon_after_not_finding      

[1] = no 

AHFinderDirect::initial_guess__coord_sphere__radius  

[1] = 1.3528 

 

This section tells the AHFinderDirect thorn to look for an apparent horizon at the 

origin every 128 iterations. This is necessary to allow the simulation to run smoothly 

once the merger of the BNS has taken place and the resultant object collapses down into a 

black hole. If this thorn is not implemented properly, the mass will be concentrated in an 

area that is smaller than the resolution of the simulation and the simulation will fail. 

2.2.11. Control 

 This section of the parameter file is designated for the turning on and off specific 

thorns at either a set time or iteration of the simulation. For example, as seen below there 

is a point where the lapse value falls below a specific value, 𝛼 < 0.2. This causes the 

thorn AHFinderDirect to activate and begin searching for an apparent horizon. 

#----------------------------------------------------- 

# Control 
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#----------------------------------------------------- 

 

ActiveThorns = "Trigger" 

 

Trigger::Trigger_Number = 3 

 

# Check for lapse < 0.5, and if so, set this trigger 

to 'once' 

Trigger::Trigger_Once            [0] = 0 

Trigger::Trigger_Checked_Variable[0] = "ADMBase::alp" 

Trigger::Trigger_Reduction       [0] = "minimum" 

Trigger::Trigger_Relation        [0] = "<" 

Trigger::Trigger_Checked_Value   [0] = 0.5 

Trigger::Trigger_Reaction               [0] = 

"steerparam" 

Trigger::Trigger_Steered_Parameter_Thorn[0] = 

"Trigger" 

Trigger::Trigger_Steered_Parameter_Name [0] = 

"Trigger_Once[0]" 

Trigger::Trigger_Steered_Parameter_Value[0] = "1" 

 

# if lapse < 0.2 enable AHFinder 

Trigger::Trigger_Once            [1] = 1 

Trigger::Trigger_Checked_Variable[1] = "ADMBase::alp" 

Trigger::Trigger_Reduction       [1] = "minimum" 

Trigger::Trigger_Relation        [1] = "<" 

Trigger::Trigger_Checked_Value   [1] = 0.3 

Trigger::Trigger_Reaction               [1] = 

"steerparam" 

Trigger::Trigger_Steered_Parameter_Thorn[1] = 

"AHFinderDirect" 
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Trigger::Trigger_Steered_Parameter_Name [1] = 

"find_every" 

Trigger::Trigger_Steered_Parameter_Value[1] = "128" 

 

# if trigger 0 was set 'once' (lapse < 0.5) 

# add refinement level 

Trigger::Trigger_Once                   [2] = 1 

Trigger::Trigger_Checked_Variable       [2] = "param" 

Trigger::Trigger_Checked_Parameter_Thorn[2] = 

"Trigger" 

Trigger::Trigger_Checked_Parameter_Name [2] = 

"Trigger_Once[0]" 

Trigger::Trigger_Relation               [2] = "==" 

Trigger::Trigger_Checked_Value          [2] = 1 

Trigger::Trigger_Reduction              [2] = "" 

Trigger::Trigger_Reaction               [2] = 

"steerscalar" 

Trigger::Trigger_Steered_Scalar         [2] = 

"CarpetRegrid2::num_levels[0]" 

Trigger::Trigger_Steered_Scalar_Value   [2] = "7" 

 

2.2.12. VolumeIntegrals_GRMHD 

 This section of the parameter file is designated for setting up the 

VolumeIntegrals_GRMHD thorn. Recall from above that this thorn is used for the 

volume integration of specific scalar quantities such as the rest mass and other such 

scalars. 

#-------VolumeIntegrals_GRMHD---------------- 

 

VolumeIntegrals_GRMHD::NumIntegrals = 6 
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VolumeIntegrals_GRMHD::VolIntegral_out_every = 64 

VolumeIntegrals_GRMHD::enable_file_output = 1 

VolumeIntegrals_GRMHD::outVolIntegral_dir = 

"volume_integration" 

VolumeIntegrals_GRMHD::verbose = 1 

 

## The AMR centre will only track the first referenced 

integration quantities that track said centre. 

##   Thus, centeroflapse output will not feed back 

into the AMR centre positions. 

 

VolumeIntegrals_GRMHD::Integration_quantity_keyword[1] 

= "one" 

VolumeIntegrals_GRMHD::Integration_quantity_keyword[2] 

= "centerofmass" 

VolumeIntegrals_GRMHD::Integration_quantity_keyword[3] 

= "one" 

VolumeIntegrals_GRMHD::Integration_quantity_keyword[4] 

= "centerofmass" 

VolumeIntegrals_GRMHD::Integration_quantity_keyword[5] 

= "one" 

VolumeIntegrals_GRMHD::Integration_quantity_keyword[6] 

= "restmass" 

 

#Use output from volume integral to move AMR box 

centre 2 

 

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial         [2] = -15.0 

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us            [2] =  10.0 

VolumeIntegrals_GRMHD::amr_centre__tracks__volintegral

_inside_sphere[2] =  1 

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial         [3] = -15.0 
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VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us            [3] =  10.0 

 

#Use output from volume integral to move AMR box 

centre 3 

 

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial         [4] =  15.0 

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us            [4] =  10.0 

VolumeIntegrals_GRMHD::amr_centre__tracks__volintegral

_inside_sphere[4] =  2 

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial         [5] =  15.0 

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us            [5] =  10.0 
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3. Data 

3.1. Case 1: 2.08 and 2.08 𝑀☉ 

 The first case that was simulated was the case of two maximum mass neutron 

stars that were observed by Mazzali et al. (2007) at 2.08 𝑀☉ each. At the start of the 

simulation the stars were separated by a distance of 40 km from each other using Lorene 

to create the initial conditions. Unfortunately, this simulation failed a number of times, all 

at approximately the same point. This indicates that there is something wrong with either 

the initial conditions that are generated by Lorene, the way the Einstein Toolkit handles 

the evolution for a system this massive, or the computational power (e.g., memory) that 

was dedicated to this task was insufficient to handle a simulation of this size, with the 

latter being most likely. To fully test the simulation, more computational resources would 

need to be dedicated to this task. 

3.1.1. Matter Distribution 

 During the evolution of the binary neutron star system, one of the best ways to see 

how matter is behaving is through watching how the density distribution changes over 

time. Given below is the density distribution of the evolution of case1 at various points 

along the simulation, indicated at each step. As can be seen below, the matter distribution 

starts as two concentrated areas of mass that slightly expand over time and orbit around 

each other.  
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Figure 2: Density distribution during case 1 merger 
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 As can be seen above, the bodies orbit around each for approximately one-quarter 

of an orbit before the simulation fails at producing any further iterations. The time for this 

simulation is approximately 132.3 𝑀☉ or 6.518 × 10−4 𝑠. 

3.1.2. Gravitational Waves 

 Like described above during the inspiral of the BNS, gravitational waves should 

be produced and be the driving factor behind the dissipation of energy that eventually 

causes neutron stars to coalesce. Various modes of gravitational waves follow, each 

measured at 45 𝑀☉ or approximately 67 km. 
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Figure 3: Gravitational wave strength of different rotation modes during case 1 merger 
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 As seen above, for the majority of the rotational modes there are no gravitational 

waves produced. The waves that are being produced begin around 40 𝑀☉, which is 

approximately the distance at which the gravitational waves are being measured from. 

The initial ripples when the simulation starts is presumably from the metric being 

conformally flat in the Lorene initial data to being allowed to change shape in the 

Einstein Toolkit. 

3.2. Case 2: 1.40 and 1.74 𝑀☉ 

 The second case consists of a neutron star of the minimum mass, 1.40 𝑀☉, and an 

intermediate mass of 1.74 𝑀☉ starting at a separation distance of 40 km. This simulation 
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was more successful than case1 being that it resulted in the merger of the neutron stars 

and the subsequence collapse into a black hole. For this case to be stable, the thorn 

AHFinderDirect needs to be implemented otherwise, the simulation would halt once 

the distribution of mass was in a region smaller than the finest grid size. Since the 

AHFinderDirect thorn is implemented, it is possible to find the mass of the resultant 

black hole, which is found to be 2.23 𝑀☉. 

3.2.1. Matter Distribution 

 During the simulations, it was seen that neutron stars start at their intial positions 

and material expands filling the sourounding area as the stars begin to orbit each other. 

Below it can be seen that the stars complete approximately half an orbit before they lose 

enough energy to graviational waves that they begin to merge. 
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Figure 4: Density distribution during case 2 merger 
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 It is at approximately 250 𝑀☉ or 1.2 × 10−3 𝑠 when the neutron stars being to 

coalesce and collapse into a black hole. The system then evolves further until most of the 

material is within the event horizon of the resultant black hole but stopped before the 

black hole can clear anything within its vicinity. 

3.2.2. Gravitational Waves 

 During the inspiral of the BNS, gravitational waves of various modes are 

produced. What follows is the release of gravitational waves of various modes produced 

during the inspiral of neutron stars measured at 45 𝑀☉ or approximately 67 km. 
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Figure 5: Gravitational wave strength of different rotation modes during case 2 merger 
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 As seen above, most of the modes of gravitational waves are zero with the Ψ4
2,2

 

mode being the most prevalent and usually it is the only mode that is considered. What is 

seen is that each of the modes is approximately zero until approximately 40 𝑀☉, which is 

when any gravitational wave that is produced at the start of the simulation would reach 

the radius where the gravitational waves are being measured. Then many of the modes 

will experience a perturbation of some kind, presumably from the metric becoming non-

conformal. Only a few modes are nonzero once the simulation has started, and the initial 

wave dissipates away, namely the Ψ4
2,2

 mode. However, it can also be seen that the 

simulation was stopped too soon since the gravitational waves never completely return to 
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zero in any of the modes. This is due to the travel time of the wave not being considered 

and further evolution of the system would need to be done to see the gravitational waves 

that are produced from the final merger of the system. 

3.3. Case 3: 1.40 and 1.40 𝑀☉ 

 The third case consists of two neutron stars with each containing the minimum 

mass of 1.40 𝑀☉ starting at a separation of 40 km. This case gives a better understanding 

of the evolution of the system with a longer run-time, allowing for a better look at the end 

product. 

3.3.1. Matter Distribution 

 During the simulation of case 3, the neutron stars can be seen to start at their 

initial points and orbit around each other several times until they eventually merge. This 

simulation was able to run for a long enough time to give a good understanding of the 

evolution of this system as well as the final product that was produced during the merger. 
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Figure 6: Density distribution during case 3 merger 
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 This case resulted in a longer running simulation, 1974 𝑀☉ or about 

9.73 × 10−3 𝑠, with the formation of a hyper-massive neutron star (Ciolfi et al. 2017). A 

hyper-massive neutron star is a neutron star that has a greater mass than the theoretically 

allowed mass, the TOV mass (Sarracino & Eccles 1996), because it has enough angular 

momentum to counteract the collapse of the system into a black hole. This system will 

remain stable until it dissipates enough of the angular momentum through gravitational 

waves to collapse into a black hole. The lifetime of a hyper-massive neutron star is on the 

scale of about 1 𝑠 (Ciolfi et al. 2017).  
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3.3.2. Gravitational Waves 

 During the process of the inspiral of the BNS, gravitational waves of various 

modes are produced. What follows are the various modes of gravitational waves as a 

radius of 45 𝑀☉ or approximately 67 km. 

Figure 7: Gravitational wave strength of different rotation modes during case 4 merger 
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 As seen above, most of the gravitational modes are zero except for around the 

point where the metric becomes non-conformal, and from that point onward the 

prominent gravitational wave mode is Ψ4
2,2

. 

3.4. Case 4: 1.74 and 1.74 𝑀☉ 

 The simulation considered in case 4 is the case of two intermediate mass neutron 

stars each of 1.74 𝑀☉ starting at a separation of 40 km. This being the longest run 

simulation, it gives the best view of gravitational waves. 
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3.4.1. Matter Distribution 

 In this case, the neutron stars can be seen at their initial points and begin to orbit 

around each other and eventually coalescing into a single body. Not visible in the pictures 

is that the system orbited around each other approximately five times until they became 

close enough that they were indistinguishable by eye. It is difficult to conclude at what 

point the bodies become one elongated body versus two distinct stars barely touching 

surfaces. 

Figure 8: Density distribution during case 4 merger 
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 This is the longest simulation running for about 5141 𝑀☉ or 2.53 × 10−2 𝑠. The 

neutron stars in this simulation orbit each other about five time before they merge. Once 

they merge, they form an object that is still elongated and emitting gravitational waves. 

3.4.2. Gravitational Waves 

 As the neutron stars in the binary inspiral to eventually merge into a final object, 

they emit gravitational that carry away energy and allow for the orbits to decay. What 

follows is gravitational waves of various modes during the inspiral of case 4 measured 

from 45 𝑀☉ or approximately 67 km. 
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Figure 9: Gravitational wave strength of different rotation modes during case 4 merger 
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 This being the longest run simulation allows for some good long-term behavior of 

gravitational waves to be observed. In this case, as with the other cases, most of the 

gravitational wave modes are zero with the Ψ4
2,2

 mode being the most prominent. The 

Ψ4
2,2

 mode exhibits some type of pulsing in addition to the expected gravitational waves. 

As can be seen from the Ψ4
2,2

 mode, the system is still not spherically symmetric, and has 

not fully collapsed into a black hole, although the mass should be above the point at 

which a black hole would form. 
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4. Conclusion and Future Work

 As seen, there is much that goes into the simulation of the merger of neutron stars 

or system of compact bodies. Starting from a foundation of general relativity that can be 

adapted into the ADM and BSSN formulations, numerical relativity can be used to solve 

problems that are far too complicated for an analytic solution to exist. This process is still 

computationally intensive with a steep learning curve with many failed simulations. The 

Einstein Toolkit, being an open-source collaborative program, lends itself to being a 

fantastic tool for numerical relativistic simulations. However, since it is community 

driven, the scope of the Toolkit is beyond any one person and at times it acts like a ‘black 

box’ in which initial data is input. There are many more ways to interpret the data that is 

produced during each of the simulations, with this thesis only covering the basics of the 

matter distribution and gravitational waves produced during the inspiral. 

There are many areas that are still available to be explored in the field of 

gravitational astronomy. The field of gravitational wave astronomy is still in the 

beginning stages and has many possibilities within it. Refinement of the tools of 

numerical relativity will lead to better simulations that will allow for more accurate 

predictions. Improvement of gravitational wave detection tools, like Advanced LIGO, 

will allow for more refined measurements of observed gravitational waves. 

In addition to the field of gravitational wave detection still at the beginning stage, 

I am personally still in the early phase of understanding numerical relativity simulations 

and gravitational waves. Our first goal is to complete the case 1 simulation successfully 

so that the complete merger of the 2.08 𝑀☉ neutron stars may be studied. Additionally, 

we have started an effort to simulate the merger of binary black holes in order to 
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reproduce the gravitation wave event GW150914. This type of research will be extended 

to use the high-performance computing facility available at the University of North 

Dakota.  
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Appendix A – List of Abbreviations 

ADM – Arnowitt Deser Misner 

AMR – Adaptive Mesh Refinement 

BNS – Binary Neutron Stars 

BSSN – Baumgarte, Shapiro, Shibata, Nakamura 

EOS – Equation of State 

FMR – Fixed Mesh Refinement 

GRMHD – General-Relativistic MagnetoHydroDynamics 

LORENE – Langage Objet pour la RElativité NumériquE 

LIGO –Laser Interferometer Gravitational-Wave Observatory 

NaN – Not a Number 

PDE – Partial Differential Equations 

  



 

153 

 

Appendix B – Unit Conversions 

For the purpose of this thesis, the following definitions and constants of nature are 

defined as: 

Constant Value Reference 

𝑐 299 792 458 𝑚 ∙ 𝑠−1 (The International 

Astronomical Union 2012) 

𝐺 6.674 28 × 10−11 𝑚3 ∙ 𝑘𝑔−1 ∙ 𝑠−1 (Xue et al. 2020) 

𝑀☉ 1.988 92 × 1030 𝑘𝑔 (The International Astronomical 

Union 2012) 

Table 5: Physical constants of nature 

Additionally, the units for mass, length, time, and magnetic field then become 

[𝑀] = 𝑀☉, 

[𝐿] = [𝑀]
𝐺

𝑐2
, 

[𝑇] =
[𝐿]

𝑐
. 

This corresponds to a unit conversion of 

[𝐿] = 1 𝑀☉ = 1.477 × 10
3 𝑚, 

[𝑇] = 1 𝑀☉ =  4.92673 × 10−6 𝑠. 
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Appendix C – Parameter File 

# Carpet parameter file for binary Neutron star system 

# physical ID is LORENE 

# 

 

#----------------------------------------------------- 

# Cactus parameters: 

#----------------------------------------------------- 

Cactus::cctk_run_title     = "May23-

MagneticFieldVolumeCase1" 

Cactus::cctk_full_warnings = "yes" 

Cactus::highlight_warning_messages = "no" 

 

Cactus::terminate       = "time" 

Cactus::cctk_final_time = 2000.0 

 

#----------------------------------------------------- 

# Activate all necessary thorns: 

#----------------------------------------------------- 

 

ActiveThorns = "Boundary CartGrid3D CoordBase Fortran 

InitBase IOUtil LocalReduce SymBase Time" 

ActiveThorns = "AEILocalInterp" 

ActiveThorns = "MoL Slab SpaceMask SphericalSurface" 

ActiveThorns = "Carpet CarpetInterp CarpetInterp2 

CarpetIOASCII CarpetIOHDF5 CarpetIOScalar CarpetLib 

CarpetIOBasic CarpetReduce CarpetRegrid2 CarpetSlab 

CarpetTracker CarpetMask LoopControl" 

ActiveThorns = "Formaline" 

ActiveThorns = "NaNChecker TerminationTrigger 

TimerReport" 
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ActiveThorns = "ADMbase ADMcoupling ADMmacros 

CoordGauge StaticConformal" 

ActiveThorns = "RotatingSymmetry180 

ReflectionSymmetry" 

ActiveThorns = "Constants TmunuBase HydroBase" 

ActiveThorns = "QuasiLocalMeasures" 

ActiveThorns = "EOS_Omni" 

ActiveThorns = "GRHydro" 

ActiveThorns = "SummationByParts" 

ActiveThorns = "GenericFD NewRad" 

ActiveThorns = "ML_BSSN ML_BSSN_Helper 

ML_ADMConstraints" 

ActiveThorns = "Hydro_Analysis NSTracker" 

ActiveThorns = "Dissipation" 

ActiveThorns = "SystemStatistics SystemTopology" 

ActiveThorns = "VolumeIntegrals_GRMHD" 

# Wave extraction (Psi4) 

ActiveThorns = "WeylScal4 Multipole" 

ActiveThorns = "AHFinderDirect" 

 

#----------------------------------------------------- 

# Diagnostic parameters: 

#----------------------------------------------------- 

 

Carpet::output_timers_every = 0 

Carpet::storage_verbose   = "no" 

Carpet::verbose           = "no" 

Carpet::veryverbose       = "no" 

Carpet::grid_structure_filename   = "carpet-grid-

structure" 

Carpet::grid_coordinates_filename = "carpet-grid-

coordinates" 
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CarpetLib::output_bboxes  = "no" 

 

CarpetMask::verbose    = "no" 

CarpetReduce::verbose  = "no" 

CarpetRegrid2::verbose = "no" 

CarpetRegrid2::veryverbose    = "no" 

CarpetTracker::verbose = "no" 

 

 

TimerReport::out_every    = 4096 

TimerReport::out_filename = "TimerReport" 

TimerReport::output_all_timers          = "yes" 

TimerReport::output_all_timers_together = "yes" 

TimerReport::output_all_timers_readable = "yes" 

TimerReport::n_top_timers               = 40 

 

 

QuasiLocalMeasures::verbose   = "no" 

SphericalSurface::verbose   = "no" 

 

#----------------------------------------------------- 

# Utility parameters: 

#----------------------------------------------------- 

 

NaNChecker::check_every    =  128 # twice for 

every_coarse 

NaNChecker::check_vars = " 

            ADMBase::curv  

            ADMBase::metric  
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            ADMBase::lapse  

            ADMBase::shift  

            HydroBase::rho  

            HydroBase::eps  

            HydroBase::press  

            HydroBase::vel 

" 

NaNChecker::action_if_found   =  "terminate" 

#NaNChecker::action_if_found = "just warn" 

#"terminate", "just warn", "abort" 

 

#----------------------------------------------------- 

# Run parameters: 

#----------------------------------------------------- 

 

#------ 

# Grid: 

#------ 

 

MoL::ODE_Method             = "rk4" 

MoL::MoL_Intermediate_Steps = 4 

MoL::MoL_Num_Scratch_Levels = 1 

# use dt = 0.4 dx (works for core collapse) 

Time::dtfac = 0.35 

 

CoordBase::domainsize = "minmax" 

CoordBase::xmin =    0.00 

CoordBase::ymin = -960.00 

CoordBase::zmin =    0.00 

CoordBase::xmax = +960.00 



 

158 

 

CoordBase::ymax = +960.00 

CoordBase::zmax = +960.00 

CoordBase::dx   =  10.00  

CoordBase::dy   =  10.00 

CoordBase::dz   =  10.00 

 

CoordBase::boundary_size_x_lower     = 3 

CoordBase::boundary_size_y_lower     = 3 

CoordBase::boundary_size_z_lower     = 3 

CoordBase::boundary_size_x_upper     = 3 

CoordBase::boundary_size_y_upper     = 3 

CoordBase::boundary_size_z_upper     = 3 

 

CoordBase::boundary_shiftout_x_lower = 1 

CoordBase::boundary_shiftout_y_lower = 0 

CoordBase::boundary_shiftout_z_lower = 1 

 

reflectionsymmetry::avoid_origin_x       = no 

reflectionsymmetry::avoid_origin_y       = no 

reflectionsymmetry::avoid_origin_z       = no 

reflectionsymmetry::reflection_x         = no 

reflectionsymmetry::reflection_y         = no 

reflectionsymmetry::reflection_z         = yes  

 

CartGrid3D::type = "coordbase" 

Carpet::domain_from_coordbase = "yes" 

 

Driver::ghost_size                      = 3 

 

# General Carpet parameters: 
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Carpet::enable_all_storage       = "no" 

Carpet::use_buffer_zones         = "yes" 

Carpet::schedule_barriers        = "no" 

 

Carpet::poison_new_timelevels    = "yes" 

Carpet::check_for_poison         = "no" 

 

Carpet::init_3_timelevels        = "no" 

Carpet::init_fill_timelevels     = "yes" 

 

CarpetLib::poison_new_memory         = "yes" 

CarpetLib::poison_value              = 114 

CarpetLib::check_bboxes              = "no" 

CarpetLib::interleave_communications = "yes" 

CarpetLib::combine_sends             = "yes" 

 

CarpetInterp::tree_search = "yes" 

CarpetInterp::check_tree_search = "no" 

 

CarpetRegrid2::freeze_unaligned_levels = "yes" 

CarpetRegrid2::freeze_unaligned_parent_levels = "yes" 

CarpetRegrid2::ensure_proper_nesting   = "yes" 

CarpetRegrid2::snap_to_coarse          = "yes" 

CarpetRegrid2::symmetry_rotating180    = "yes" 

 

# System specific Carpet parameters: 

Carpet::max_refinement_levels    = 8  

Carpet::prolongation_order_space = 5 

Carpet::prolongation_order_time  = 2 
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Carpet::refinement_centering     = "vertex" 

 

CarpetRegrid2::regrid_every = 64 # as often as 

required  

CarpetRegrid2::num_centres  = 3 

CarpetRegrid2::min_distance = 0 

 

# box sizes are given by: 

# * the stars seem to puff up to about 13M during the 

initial phase of the evolution 

# * I need 12 buffer points (RK4, 3 ghost zones) 

# * need three coarse points for interpolation onto 

last fine buffer point 

# these boxes are minimal in this sense. The coarser 

grid are completely 

# covered by the finer grids and their buffers. 

# add 4 coarse grid points in between to have some 

leeway against roundoff 

# grid step sizes are for coarsest anticipated 

simulation dx = 1.5M 

 

CarpetRegrid2::num_levels_1 = 7 

CarpetRegrid2::position_x_1 = 0 

CarpetRegrid2::radius_1[1]  = 960 

CarpetRegrid2::radius_1[2]  = 228 

CarpetRegrid2::radius_1[3]  = 114 

CarpetRegrid2::radius_1[4]  = 66 

CarpetRegrid2::radius_x_1[5]  = 35 

carpetregrid2::radius_y_1[5]  = 35 

carpetregrid2::radius_z_1[5]  = 24 

CarpetRegrid2::radius_1[6]  = 13    

CarpetRegrid2::radius_1[7]  = 6.5 
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CarpetRegrid2::num_levels_2 = 7  

CarpetRegrid2::position_x_2 = -15 

CarpetRegrid2::radius_2[1]  = 320 

CarpetRegrid2::radius_2[2]  = 164 

CarpetRegrid2::radius_2[3]  = 96 

CarpetRegrid2::radius_2[4]  = 48 

CarpetRegrid2::radius_2[5]  = 18 

CarpetRegrid2::radius_2[6]  = 11 

CarpetRegrid2::radius_2[7]  = 5.5 

 

CarpetRegrid2::num_levels_3 = 7  

CarpetRegrid2::radius_3[1]  = 320 

CarpetRegrid2::radius_3[2]  = 164 

CarpetRegrid2::radius_3[3]  = 96 

CarpetRegrid2::radius_3[4]  = 48 

CarpetRegrid2::radius_3[5]  = 18  

CarpetRegrid2::radius_3[6]  = 11 

CarpetRegrid2::radius_3[7]  =  5.5 

 

carpetmask::excluded_surface[0]          = 0 

carpetmask::excluded_surface[1]          = 1 

carpetmask::excluded_surface_factor[0]   = 1 

carpetmask::excluded_surface_factor[1]   = 1 

 

CarpetTracker::surface_name[0] = "Righthand NS" 

CarpetTracker::surface_name[1] = "Lefthand NS" 

 

#------ 

# MODEL: 
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#------ 

 

ActiveThorns = "Meudon_Bin_NS" 

HydroBase::initial_hydro         = "Meudon_Bin_NS" 

ADMBase::initial_data            = "Meudon_Bin_NS" 

ADMBase::initial_lapse           = "Meudon_Bin_NS" 

ADMBase::initial_shift           = "zero" 

ADMBase::initial_dtlapse         = "zero" 

ADMBase::initial_dtshift         = "zero" 

 

# change this to be the full path to the initial data 

file 

Meudon_Bin_NS::filename ="case208208.d" 

 

 

#------------------EOS----------------------------- 

 

EOS_Omni::poly_K = 123.613314525753 

 

EOS_Omni::hybrid_gamma_th       = 1.8 #gamma thermal 

from Hotokezaka et al. 2013 (arxiv.org/abs/1307.5888) 

 

EOS_Omni::n_pieces              = 7 #3 for the core + 

4 for the crust (Read et al 2009) 

 

##k0=6.8011e-09 in cgs units and Kcu = 

k0_cgs*(cu_to_cgs**(gamma-1)) where 

cu_to_cgs=6.1762691458861658e+17 converts from CU to 

g/cm^3 

 

EOS_Omni::hybrid_k0             = 168.58190246577206 
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EOS_Omni::hybrid_gamma[0]       = 1.58425 

EOS_Omni::hybrid_gamma[1]       = 1.28733 

EOS_Omni::hybrid_gamma[2]       = 0.62223 

EOS_Omni::hybrid_gamma[3]       = 1.35692 

EOS_Omni::hybrid_gamma[4]       = 3.005 

EOS_Omni::hybrid_gamma[5]       = 2.988 

EOS_Omni::hybrid_gamma[6]       = 2.851 

 

EOS_Omni::hybrid_rho[0]         = 3.95160737e-11 

EOS_Omni::hybrid_rho[1]         = 6.12595478e-07 

EOS_Omni::hybrid_rho[2]         = 4.25474745e-06 

EOS_Omni::hybrid_rho[3]         = 2.36741168e-04 

EOS_Omni::hybrid_rho[4]         = 8.11472463e-04 

EOS_Omni::hybrid_rho[5]         = 1.61910043e-03 

 

 

#---------- 

# Numerics: 

#---------- 

 

InitBase::initial_data_setup_method = 

"init_some_levels" 

 

TmunuBase::stress_energy_storage = "yes" 

TmunuBase::stress_energy_at_RHS  = "yes" 

TmunuBase::timelevels            =  1 

TmunuBase::prolongation_type     = "none" 

TmunuBase::support_old_CalcTmunu_mechanism = "no" 

 

HydroBase::timelevels            = 3 
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SpaceMask::use_mask      = "yes" 

 

SphericalSurface::nsurfaces = 5 

SphericalSurface::maxntheta = 39 

SphericalSurface::maxnphi = 76 

 

SphericalSurface::ntheta      [0] = 39 

SphericalSurface::nphi        [0] = 76 

SphericalSurface::nghoststheta[0] = 2 

SphericalSurface::nghostsphi  [0] = 2 

SphericalSurface::name        [0] = "Righthand NS" 

 

SphericalSurface::ntheta      [1] = 39 

SphericalSurface::nphi        [1] = 76 

SphericalSurface::nghoststheta[1] = 2 

SphericalSurface::nghostsphi  [1] = 2 

SphericalSurface::name        [1] = "Lefthand NS" 

 

SphericalSurface::ntheta      [3] = 39 

SphericalSurface::nphi        [3] = 76 

SphericalSurface::nghoststheta[3] = 2 

SphericalSurface::nghostsphi  [3] = 2 

SphericalSurface::set_spherical[3] = yes 

SphericalSurface::radius      [3] = 100 

SphericalSurface::name        [3] = "waveextract 

surface at 100" 

 

SphericalSurface::ntheta      [4] = 39 

SphericalSurface::nphi        [4] = 76 
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SphericalSurface::nghoststheta[4] = 2 

SphericalSurface::nghostsphi  [4] = 2 

SphericalSurface::set_spherical[4] = yes 

SphericalSurface::radius      [4] = 250 

SphericalSurface::name        [4] = "waveextract 

surface at 250" 

 

#----------- 

# Evolution: 

#----------- 

 

# test 

 

HydroBase::initial_Bvec = "zero" 

Hydrobase::Bvec_evolution_method   = "GRHydro" 

GRHydro::transport_constraints = yes 

 

HydroBase::evolution_method      = "GRHydro" 

 

ADMMacros::spatial_order = 4 

GRHydro::sources_spatial_order = 4 

 

GRHydro::riemann_solver            = "HLLE"   # 

Marquina is currently not supported by MP 

GRHydro::recon_method              = "ppm" 

GRHydro::GRHydro_stencil            = 3 

GRHydro::bound                     = "flat" 

GRHydro::rho_abs_min               = 1.e-11 

GRHydro::GRHydro_atmo_tolerance    = 0.01 

 

GRHydro::c2p_reset_pressure        = "yes" 
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GRHydro::GRHydro_eos_type           = "General" 

GRHydro::GRHydro_eos_table          = "Ideal_Fluid" 

 

# these can save some memory since they prevent MoL 

from allocating unnecessary 

# scratch space for saveandrestore variables 

GRHydro::GRHydro_MaxNumSandRVars = 0 

 

GRHydro::use_enhanced_ppm            = "yes" 

# Parameters are defaults, which in turn are from 

Colella & Sekora 2008 and 

# McCorquodale & Colella 2011 

GRHydro::sync_conserved_only     = "yes" 

GRHydro::reconstruct_Wv          = "yes" 

GRHydro::c2p_resort_to_bisection = "yes" 

GRHydro::use_cxx_code            = "yes" 

 

# MacLachlan evolution parameters 

 

ADMBase::metric_type                    = physical 

ADMBase::evolution_method               = ML_BSSN 

ADMBase::lapse_evolution_method         = ML_BSSN 

ADMBase::shift_evolution_method         = ML_BSSN 

ADMBase::dtlapse_evolution_method       = ML_BSSN 

ADMBase::dtshift_evolution_method       = ML_BSSN 

 

ML_BSSN::timelevels                     = 3 

 

ML_BSSN::initial_boundary_condition  = "extrapolate-

gammas" 



 

167 

 

ML_BSSN::rhs_boundary_condition       = "NewRad" 

Boundary::radpower                      = 2 # not 

really needed I think but who knows what NewRad uses 

 

ML_BSSN::harmonicN           = 1      # 1+log 

ML_BSSN::harmonicF           = 2.0    # 1+log 

ML_BSSN::ShiftGammaCoeff     = 0.75 

ML_BSSN::AlphaDriver         = 0.0 

ML_BSSN::BetaDriver          = 1.0 

ML_BSSN::advectLapse         = 1.0 

ML_BSSN::advectShift         = 1.0 

 

ML_BSSN::MinimumLapse = 1.0e-8 

ML_BSSN::ML_log_confac_bound = "none" 

ML_BSSN::ML_metric_bound     = "none" 

ML_BSSN::ML_Gamma_bound      = "none" 

ML_BSSN::ML_trace_curv_bound = "none" 

ML_BSSN::ML_curv_bound       = "none" 

ML_BSSN::ML_lapse_bound      = "none" 

ML_BSSN::ML_dtlapse_bound    = "none" 

ML_BSSN::ML_shift_bound      = "none" 

ML_BSSN::ML_dtshift_bound    = "none" 

 

ML_BSSN::UseSpatialBetaDriver = 1 

ML_BSSN::SpatialBetaDriverRadius = 50 

 

#ML_BSSN::apply_dissipation   = "never" 

 

ML_BSSN::epsDiss              =0.0 
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Dissipation::epsdis = 0.1 

Dissipation::order = 5 

Dissipation::vars                       = " 

        ML_BSSN::ML_log_confac 

        ML_BSSN::ML_metric 

        ML_BSSN::ML_trace_curv 

        ML_BSSN::ML_curv 

        ML_BSSN::ML_Gamma 

        ML_BSSN::ML_lapse 

        ML_BSSN::ML_shift 

        ML_BSSN::ML_dtlapse 

        ML_BSSN::ML_dtshift 

" 

 

#----------------------------------------------------- 

# Output: 

#----------------------------------------------------- 

 

IOBasic::outInfo_every = 1 

IOBasic::outInfo_reductions = "maximum" 

IOBasic::outInfo_vars  = " 

 Carpet::physical_time_per_hour 

 HydroBase::rho 

 ML_ADMConstraints::ML_Ham 

 SystemStatistics::maxrss_mb 

 GRHydro::dens{reductions = 'sum maximum'} 

 HydroBase::w_lorentz 

" 

 

IOScalar::outScalar_every      = 256 # every_coarse 
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IOScalar::all_reductions_in_one_file = "yes" 

IOScalar::one_file_per_group   = "yes" 

IOScalar::outScalar_reductions = "minimum maximum 

average norm1 norm2" 

IOScalar::outScalar_vars       = " 

 ADMBase::lapse 

 ADMBase::shift 

 ADMBase::metric 

 ADMBase::curv 

 HydroBase::rho 

 HydroBase::vel 

 HydroBase::w_lorentz 

 GRHydro::dens{reductions = 'minimum maximum average 

norm1 norm2 sum'} 

 SystemStatistics::process_memory_mb 

 SphericalSurface::sf_radius 

 ML_ADMConstraints::ML_Ham 

" 

 

IOASCII::one_file_per_group     = "yes" 

IOASCII::compact_format  = "yes" 

 

IOASCII::out0D_every     = 256 # every_coarse 

IOASCII::out0D_vars      = " 

 Carpet::timing 

 QuasiLocalMeasures::qlm_scalars 

 SphericalSurface::sf_active 

 SphericalSurface::sf_valid 

 SphericalSurface::sf_info 

 SphericalSurface::sf_radius 

 SphericalSurface::sf_origin 
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 SphericalSurface::sf_coordinate_descriptors 

 Hydro_Analysis::Hydro_Analysis_rho_max_loc 

 

Hydro_Analysis::Hydro_Analysis_rho_max_origin_distance 

" 

 

#Set these IOASCII options for initial data only: 

IOASCII::out1D_every     = 0 

IOASCII::out1D_d         = "no" 

IOASCII::out1D_vars      = " 

 HydroBase::rho 

 HydroBase::vel 

 ADMBase::lapse 

 ADMBase::shift 

 ADMBase::metric 

 ADMBase::curv 

 ML_ADMConstraints::ML_Ham 

" 

 

CarpetIOHDF5::one_file_per_group             = "no"   

# this is required by multipatch 

CarpetIOHDF5::open_one_input_file_at_a_time  = "yes" 

CarpetIOHDF5::out2D_every                    = 1536   

# 6*every coarse 

CarpetIOHDF5::out2D_xy                       = "yes" 

CarpetIOHDF5::out2D_xz                       = "no" 

CarpetIOHDF5::out2D_yz                       = "no" 

CarpetIOHDF5::out2D_xyplane_z                = 0.0 

CarpetIOHDF5::out2D_vars      = " 

  CarpetReduce::weight 

  Grid::coordinates 
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  HydroBase::rho 

  HydroBase::vel 

  HydroBase::entropy 

  HydroBase::press 

  HydroBase::eps 

  ADMBase::lapse 

  ADMBase::shift 

  ADMBase::metric 

  ML_ADMConstraints::ML_Ham 

 " 

 

IOHDF5::out3D_every = 8192 # = 32*every_coarse 

IOHDF5::out3D_vars  = " 

 CarpetReduce::weight 

 HydroBase::rho 

 HydroBase::vel 

 HydroBase::eps 

 ADMBase::lapse 

 ADMBase::shift 

 ML_ADMConstraints::ML_Ham 

 grid::coordinates 

" 

 

#----------------------------------------------------- 

# Analysis: 

#----------------------------------------------------- 

Hydro_Analysis::Hydro_Analysis_comp_rho_max = "true" 

Hydro_Analysis::Hydro_Analysis_rho_max_loc_only_positi

ve_x = "true" 

Hydro_Analysis::Hydro_Analysis_comp_rho_max_origin_dis

tance = "yes" 
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Hydro_Analysis::Hydro_Analysis_average_multiple_maxima

_locations = "yes" 

Hydro_Analysis::Hydro_Analysis_interpolator_name = 

"Lagrange polynomial interpolation (tensor product)" 

 

NSTracker::NSTracker_SF_Name          = "Righthand NS" 

NSTracker::NSTracker_SF_Name_Opposite = "Lefthand NS" 

NSTracker::NSTracker_max_distance = 10  

NSTracker::NSTracker_verbose = "yes" 

NSTracker::NSTracker_tracked_location = 

"Hydro_Analysis::Hydro_Analysis_rho_max_loc" 

 

QuasiLocalMeasures::num_surfaces   = 2 

QuasiLocalMeasures::spatial_order  = 4 

QuasiLocalMeasures::interpolator = "Lagrange 

polynomial interpolation" 

QuasiLocalMeasures::interpolator_options = "order=4" 

QuasiLocalMeasures::surface_name[0] = "waveextract 

surface at 100" 

QuasiLocalMeasures::surface_name[1] = "waveextract 

surface at 250" 

 

 

###################################################### 

###################################################### 

# Wave extraction 

###################################################### 

###################################################### 

 

 

WeylScal4::offset                    = 1e-8  

WeylScal4::fd_order                  = "4th"  
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WeylScal4::verbose                   = 0  

 

Multipole::nradii = 8 

Multipole::out_every = 128 

Multipole::radius[0] = 45 

Multipole::radius[1] = 70 

Multipole::radius[2] = 100 

Multipole::radius[3] = 125 

Multipole::radius[4] = 150 

Multipole::radius[5] = 200 

Multipole::radius[6] = 250 

Multipole::radius[7] = 300 

Multipole::variables = "WeylScal4::Psi4r{sw=-2 

cmplx='WeylScal4::Psi4i' name='Psi4'}" 

Multipole::l_max = 6 

 

#----------------------------------------------------- 

# Checkpoint/Recovery: 

#----------------------------------------------------- 

IOHDF5::checkpoint                  = "yes" 

IO::checkpoint_dir                  = "../checkpoint"  

IO::checkpoint_ID                   = "yes" 

IO::checkpoint_every_walltime_hours = 6.0  

CarpetIOHDF5::checkpoint_every_divisor = 55552 

IO::checkpoint_keep=2 

IO::checkpoint_on_terminate         = "yes" 

 

IO::recover     = "autoprobe" 

IO::recover_dir = "../checkpoint"  
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#----------------------------------------------------- 

# AHFinderDirect: 

#----------------------------------------------------- 

 

AHFinderDirect::find_every = 0  

 

AHFinderDirect::run_at_CCTK_POST_RECOVER_VARIABLES = 

no 

 

AHFinderDirect::move_origins            = yes 

AHFinderDirect::reshape_while_moving    = yes 

AHFinderDirect::predict_origin_movement = yes 

 

AHFinderDirect::geometry_interpolator_name = "Lagrange 

polynomial interpolation" 

AHFinderDirect::geometry_interpolator_pars = "order=4" 

AHFinderDirect::surface_interpolator_name  = "Lagrange 

polynomial interpolation" 

AHFinderDirect::surface_interpolator_pars  = "order=4" 

 

AHFinderDirect::output_h_every = 128 

 

AHFinderDirect::N_horizons = 1 

 

AHFinderDirect::which_surface_to_store_info          

[1] = 0 

AHFinderDirect::reset_horizon_after_not_finding      

[1] = no 

AHFinderDirect::initial_guess__coord_sphere__radius  

[1] = 1.3528 

 

#----------------------------------------------------- 



 

175 

 

# Control 

#----------------------------------------------------- 

 

ActiveThorns = "Trigger" 

 

Trigger::Trigger_Number = 3 

 

# Check for lapse < 0.5, and if so, set this trigger 

to 'once' 

Trigger::Trigger_Once            [0] = 0 

Trigger::Trigger_Checked_Variable[0] = "ADMBase::alp" 

Trigger::Trigger_Reduction       [0] = "minimum" 

Trigger::Trigger_Relation        [0] = "<" 

Trigger::Trigger_Checked_Value   [0] = 0.5 

Trigger::Trigger_Reaction               [0] = 

"steerparam" 

Trigger::Trigger_Steered_Parameter_Thorn[0] = 

"Trigger" 

Trigger::Trigger_Steered_Parameter_Name [0] = 

"Trigger_Once[0]" 

Trigger::Trigger_Steered_Parameter_Value[0] = "1" 

 

# if lapse < 0.2 enable AHFinder 

Trigger::Trigger_Once            [1] = 1 

Trigger::Trigger_Checked_Variable[1] = "ADMBase::alp" 

Trigger::Trigger_Reduction       [1] = "minimum" 

Trigger::Trigger_Relation        [1] = "<" 

Trigger::Trigger_Checked_Value   [1] = 0.3 

Trigger::Trigger_Reaction               [1] = 

"steerparam" 

Trigger::Trigger_Steered_Parameter_Thorn[1] = 

"AHFinderDirect" 
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Trigger::Trigger_Steered_Parameter_Name [1] = 

"find_every" 

Trigger::Trigger_Steered_Parameter_Value[1] = "128" 

 

# if trigger 0 was set 'once' (lapse < 0.5) 

# add refinement level 

Trigger::Trigger_Once                   [2] = 1 

Trigger::Trigger_Checked_Variable       [2] = "param" 

Trigger::Trigger_Checked_Parameter_Thorn[2] = 

"Trigger" 

Trigger::Trigger_Checked_Parameter_Name [2] = 

"Trigger_Once[0]" 

Trigger::Trigger_Relation               [2] = "==" 

Trigger::Trigger_Checked_Value          [2] = 1 

Trigger::Trigger_Reduction              [2] = "" 

Trigger::Trigger_Reaction               [2] = 

"steerscalar" 

Trigger::Trigger_Steered_Scalar         [2] = 

"CarpetRegrid2::num_levels[0]" 

Trigger::Trigger_Steered_Scalar_Value   [2] = "7" 

 

#-------VolumeIntegrals_GRMHD---------------- 

# We use this to track the NS movement 

# Uncomment the following lines to have moving boxes 

# also increase by one the value of 

carpetregrid2::num_levels_2 and 

carpetregrid2::num_levels_3 

 

VolumeIntegrals_GRMHD::NumIntegrals = 6 

VolumeIntegrals_GRMHD::VolIntegral_out_every = 64 

VolumeIntegrals_GRMHD::enable_file_output = 1 

VolumeIntegrals_GRMHD::outVolIntegral_dir = 

"volume_integration" 
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VolumeIntegrals_GRMHD::verbose = 1 

 

## The AMR centre will only track the first referenced 

integration quantities that track said centre. 

##   Thus, centeroflapse output will not feed back 

into the AMR centre positions. 

 

VolumeIntegrals_GRMHD::Integration_quantity_keyword[1] 

= "one" 

VolumeIntegrals_GRMHD::Integration_quantity_keyword[2] 

= "centerofmass" 

VolumeIntegrals_GRMHD::Integration_quantity_keyword[3] 

= "one" 

VolumeIntegrals_GRMHD::Integration_quantity_keyword[4] 

= "centerofmass" 

VolumeIntegrals_GRMHD::Integration_quantity_keyword[5] 

= "one" 

VolumeIntegrals_GRMHD::Integration_quantity_keyword[6] 

= "restmass" 

 

#Use output from volume integral to move AMR box 

centre 2 

 

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial         [2] = -15.0 

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us            [2] =  10.0 

VolumeIntegrals_GRMHD::amr_centre__tracks__volintegral

_inside_sphere[2] =  1 

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial         [3] = -15.0 

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us            [3] =  10.0 
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#Use output from volume integral to move AMR box 

centre 3 

 

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial         [4] =  15.0 

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us            [4] =  10.0 

VolumeIntegrals_GRMHD::amr_centre__tracks__volintegral

_inside_sphere[4] =  2 

VolumeIntegrals_GRMHD::volintegral_sphere__center_x_in

itial         [5] =  15.0 

VolumeIntegrals_GRMHD::volintegral_inside_sphere__radi

us            [5] =  10.0 
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