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ABSTRACT 

Hyperspectral imaging has proven to provide benefits in numerous application 

domains, including agriculture, biomedicine, remote sensing, and food quality 

management. Unlike standard color imagery composed of these broad wavelength bands, 

hyperspectral images are collected over numerous (possibly hundreds) of narrow 

wavelength bands, thereby offering vastly more information content than standard 

imagery. It is this higher information content which enables improved performance in 

complex classification and regression tasks. However, this successful technology is not 

without its disadvantages which include high cost, slow data capture, high data storage 

requirements, and computational complexity. This research seeks to overcome these 

disadvantages through the development of algorithms and methods to enable the benefits 

of hyperspectral imaging in inexpensive portable devices that collect spectral data at only 

a handful (i.e., 5-7) of wavelengths specifically selected for the application of interest. 

This dissertation focuses on two applications of practical interest: fish fillet 

species classification for the prevention of food fraud and tissue oxygenation estimation 

for wound monitoring. Genetic algorithm, self-organizing map, and simulated annealing 

approaches for wavelength selection are investigated for the first application, combined 

with common machine learning classifiers for species classification. The simulated 

annealing approach for wavelength selection is carried over to the wound monitoring 

application and is combined with the Extended Modified Lambert-Beer law, a tissue 

oxygenation method that has proven to be robust to differences in melanin 
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concentrations. Analyses for this second application included spectral convolutions to 

represent data collection with the envisioned inexpensive portable devices. 

Results of this research showed that high species classification accuracy (> 90%) 

and low tissue oxygenation error (< 1%) is achievable with just 5-7 selected wavelengths. 

Furthermore, the proposed wavelength selection and estimation algorithms for the wound 

monitoring application were found to be robust to variations in the peak wavelength and 

relatively wide bandwidths of the types of LEDs that may be featured in the designs of 

such devices. 
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CHAPTER I: INTRODUCTION 

1.1 BACKGROUND 

1.1.1 Food Safety and Quality Control 

Hyperspectral imaging has in recent years become an invaluable tool for food 

safety and quality applications. Spoilage and contamination of food and food products are 

concerns that have been addressed by researchers over the past few years. Studies include 

detection of spoilage due to E. coli bacteria in grass carp fish [1], fecal contamination in 

apples [2], and bacterial contamination in chicken fillets [3]. Food fraud, the intentional 

mislabeling of food types or misrepresentation of production methods, is another major 

food safety issue that has been addressed with hyperspectral imaging. For example, this 

technology has been used to identify less expensive species of fish fillets that have been 

marketed and sold as more expensive red snapper fillets [4], [5]. 

Likewise, hyperspectral imaging has been a staple of agriculture monitoring for 

many years. Early applications include large-scale remote monitoring of land and 

agriculture from the Landsat-I satellite [6], monitoring of crop yield, and detection of 

plant disease and invasive species [7]. While agriculture applications have remained 

constant since these early examples, the methods have changed with unmanned aerial 

vehicle (UAVs) becoming an attractive survey platform for local, detailed monitoring 

efforts [8]. 

1.1.2 Diabetic Wound Monitoring 

The global prevalence of diabetes among adults was estimated to be 9.5% (537 

million people) in 2021 and is expected to rise to 10.2% (578 million people) by 2030 

and up to 10.9% (700 million people) by 2045 [9], [10]. Of the people diagnosed with 
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diabetes, around 15-25% will develop foot ulcers during their lifetime [11]. These foot 

ulcers are produced from neuropathy which leads to the formation of a callus which, as a 

result of frequent trauma, causes subcutaneous hemorrhage and eventual erosion to an 

ulcer [12]. In the United States, cost estimates for the management of diabetic foot ulcers 

are $9–$13 billion [10], [13]. In Nigeria and India, the cost of managing diabetic foot 

ulcers approaches 4% of the health budget for these countries [14].  

Underrepresented communities are particularly at risk. Diabetic diagnosis and its 

subsequent complications are more prevalent in these underserved populations. African 

American adults are 60% more likely than non-Hispanic white adults to have been 

diagnosed with diabetes by a physician and twice as likely as non-Hispanic whites to die 

from diabetes [15]. According to the Center for Disease Control (CDC), the prevalence of 

diagnosed diabetes is highest among Native Americans and Alaskan Natives than among 

any other US racial group [16]. Compounding this, these communities also experience 

the healthcare difficulties of rural and low-access settings. More than 46 million 

Americans (15% of the US population) live in rural areas (CDC), and this cohort 

experiences a 17% higher rate of Type 2 Diabetes than urban residents while 

simultaneously suffering workforce shortages of primary and specialty care providers 

[17], [18]. 

The state of wound progression or healing is in large part influenced by the 

transport of oxygen to the affected area [19]. Tissue oxygenation (SO2), the percentage of 

oxygenated hemoglobin in the blood, is thus a key indicator of tissue health and a vital 

metric for monitoring diabetic foot wounds. Hyperspectral imaging (HSI) offers a non-

contact, non-invasive method for estimating SO2 in tissue near the affected area, making 
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it an ideal tool for diabetic foot wound monitoring [20]. Algorithms based on the 

Lambert-Beer law [21], Kubelka-Munk theory [22], and approximations to the Radiative 

Transfer Equation (RTE) [23] have been developed to estimate SO2 from hyperspectral 

information, and many of these algorithms have found their way into clinical devices 

such as the OxyVu system (Hypermed, MA), the Kent Camera (Kent Imaging, Canada), 

and the TIVITA system (Diaspective, Germany) [24]. However, some researchers have 

noted disparities in SO2 estimation accuracies for different skin types, with higher errors 

seen for patients with higher melanin concentration (i.e., darker skin) [25]–[27]. This 

presents a significant problem for monitoring wound progression in the most affected 

populations. 

1.2 HYPERSPECTRAL IMAGING DISADVANTAGES 

Most hyperspectral imagers are complicated. They fall into one of two major 

categories, based on the method by which the full spatial-spectral data cube is assembled. 

Data cubes can be reconstructed by either spatial scanning or spectral scanning or 

combination of these methods.  

With spatial scanning imagers, light is collected at a point or along a line and 

dispersed into its spectral components by a dispersive optic such as prism or diffraction 

grating. This point or line is then scanned, either through physical motion of the sensor, 

reflection from a scanning mirror, or moving an object along a path.  

With spectral scanning imagers, the full spatial content is collected by the image 

sensor. Collection of the wavelength bands is typically accomplished by switching 

wavelengths through filter wheels, electronically controlled liquid crystal tunable filters 

(LCTF) or acousto-optic tunable filters (AOTF) [28].  
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Despite successes in a range of food safety, agriculture, and biomedical 

applications, hyperspectral imaging does have its share of disadvantages, mostly due to 

the data cube being constructed from individual components collected in a time 

sequential manner. This can be an error-prone process, especially for high-speed imaging 

applications. Another category of hyperspectral imager, the snapshot imager, overcomes 

these issues by combining an array of optics to collect both the spatial and the spectral 

information simultaneously. Usually this means some compromise in either the spectral 

or spatial domain. All these solutions tend to be both complex and costly [29]. The reason 

they are costly is they are not designed for targeted applications. In research and 

discovery, you don’t know what wavelengths will be significant and what wavelength 

ranges in the spectral data are redundant. In many cases, once you understand the spectral 

characteristics for a particular targeted application, the complexity of the spectral imaging 

system can be significantly reduced.  

An issue common to all hyperspectral imager types is the significant computing 

power required and the large file sizes of the data cubes, especially in applications 

involving larger fields of view. Attempts to address these issues have included the 

application of compressive sensing [30]–[32], deep neural networks [33], and methods 

centered around principal component analysis (PCA) [34]. Each of these solutions has its 

own limitations in terms of heavy computational requirements and large file sizes for data 

cube analysis. 

1.3 WAVELENGTH SELECTION 

One way to address these disadvantages is through implementation of a 

wavelength selection approach where only a specific subset of the narrowband 
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wavelength bands is used for the desired application. The goal of this approach is to 

select only those wavelengths which provide the most information for solving the 

problem of interest, thus enabling a reduction in the wavelengths that need to be 

collected. This in turn allows for less complex collection devices and reduces the file 

sizes of the collected data cubes.  

Wavelength selection for hyperspectral technologies is a well-studied problem. 

Ayala et al. [35] provides a thorough review of the state-of-the-art in wavelength 

selection algorithms for biomedical imaging applications and offers its own selection 

algorithm based on a domain adaptation technique. Marois et al. [36] proposes a 

wavelength selection for general chromophore concentration estimation based on a novel 

nonlinear least squares algorithm which performs selection by maximizing the singular 

values of a scattering-modulated absorption matrix. While these techniques have shown 

high accuracy in tissue oxygenation estimation in general, none of these have focused in 

particular on the ability to achieve this accuracy across all skin types. 

1.3 RESEARCH OBJECTIVES 

The objective of this research was to develop algorithms and methods for 

wavelength selection, classification, and regression for specific applications related to 

food safety and biomedical analysis. A guiding principle in these efforts was the desire 

for the resulting algorithms to enable development of a family of inexpensive, portable 

devices each designed for an individual application. As such, the algorithms needed to (1) 

achieve a significant reduction in the number of wavelengths required for collection, and 

(2) be compatible with hardware designs featuring inexpensive LEDs and/or filters with 

relatively wide bandwidths and unstable peak wavelengths. 



 

6 

 

1.4 APPROACH 

We focused our efforts on two applications: (1) fish classification by species to 

combat food fraud and (2) estimation of tissue oxygenation for diabetic foot wound 

monitoring. The first application, though worthwhile in its own right, served as a proving 

ground for the initial algorithm development. The absorption spectra of fish flesh tend to 

be spatially homogeneous which greatly simplifies the per-pixel classification problem. 

We considered this study as a “phantom” study for the wound monitoring problem which 

is more complicated due to the great variability in skin types and physiological aspects 

between people, as well as the spatial variability in the skin of an individual. 

1.5 DISSERTATION OUTLINE 

This dissertation is organized into six chapters. The first chapter provides an 

introduction to hyperspectral imaging applications and algorithms and discusses the goals 

of this research. 

The next four chapters detail individual studies that we performed in pursuit of 

these research goals. Chapter 2 describes our first investigation of wavelength selection 

for fish fillet species classification. The approach taken for this study featured a genetic 

algorithm-based selection method with and without spectrum reconstruction. 

Classification on a dataset of 14 fillets representing 6 different species, with both visible 

near-infrared (VNIR) and fluorescence spectra, was conducted using several common 

machine learning classifiers, and the results for compared. 

Chapter 3 continues with the fish fillet species classification application, but 

discusses a new approach based on feature selection using a self-organizing map (SOM). 

For this study, wavelengths were treated as features to be fed as input to machine learning 
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classifiers, and the SOM was employed as a feature selection technique to identify 

wavelengths offering non-redundant information. Classification results using the SOM 

method on the same dataset of 14 fillets are compared with those using the genetic 

algorithm method from Chapter 1. 

The culmination of the fish fillet species classification effort is discussed in 

Chapter 4 where the genetic algorithm of the first study is replaced by simulated 

annealing. A simple multilayer perceptron (MLP) classifier was added to the assortment 

of machine learning classifiers, and results are provided for an expanded dataset of 133 

fillets representing 25 species. Spectra for this dataset were taken in VNIR, fluorescence, 

and short-wave infrared (SWIR) modes. Classification results are provided for 

individually for the modes and for the fusion of the modes. 

Chapter 5 turns to the wound monitoring application and the problem of tissue 

oxygenation (SO2) estimation. The simulated annealing approach from Chapter 4 is 

employed here with the Extended Modified Lambert-Beer law (EMLB) performing the 

estimation function. Performance is validated using both Monte Carlo simulation data 

and in vivo data collected from 13 volunteers during an arterial occlusion study. In 

keeping with our research goals, we measure performance for the Monte Carlo dataset as 

a whole and broken out by melanin fraction to illustrate our algorithms’ potential for 

enabling reliable wound monitoring for all skin types. Additionally, we measure 

performance with the original validation data and with a version of the data convolved 

with a 15 nm full width half maximum (FWHM) Gaussian filter to simulate data 

collection by the type of LED that might be found in an inexpensive portable wound 

monitoring device. 
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Finally, Chapter 6 summarizes the findings of this dissertation research and gives 

recommendations for expanding upon this research in future work.   
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CHAPTER 2. CLASSIFICATION OF FISH SPECIES USING 

GENETIC ALGORITHM WAVELENGTH SELECTION AND 

SPECTRAL RECONSTRUCTION 

2.1 INTRODUCTION 

The goal of this initial effort was to show proof of concept for a new method for 

rapid collection of spectral image data while minimizing file size and computational 

resource requirements. Our proposed rapid spectral imaging system consisted of two 

main components. The first is a focal plane array covered with a mosaic color filter array 

or selected wavelength LEDs that collects full spatial resolution images at small number 

(i.e., 3-5) of narrow wavelength bands. These wavelength bands are selected for the 

application using genetic algorithm-based optimization. The second component is a low-

cost point spectrometer that collects a full resolution spectrum representing an average 

over all or part of the scene. This average spectrum was used as an input to a simple 

reconstruction algorithm to estimate the full data cube with minimal processing. This 

proposed method could be applied in a hand-held, mobile device for rapid scanning of 

food products in non-industrial commercial marketplaces or configured into a drone-

deployable payload for low-altitude aerial scanning of crops and vegetation. 

We showed proof of concept for this proposed method in a study based on a food 

fraud application involving the identification of the correct species of fish fillets [5]. 

Visible/near-infrared (VNIR) reflectance and fluorescence data for a total of 14 fish 

fillets representing six different species were used. We selected sets of 3 to 25 

wavelength bands using a genetic algorithm and calculated the normalized root mean 

squared error (NRMSE) for each to determine the value at which the error curve flattens. 

Confidence intervals (95%) are calculated for all sets of wavelength bands to determine 
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the variability of the optimization method results. Finally, we conducted a classification 

study to evaluate the utility of our wavelength band selection and spectral reconstruction 

method. Our results indicate that this method does indeed yield classification accuracies 

close to those using the original full spectral resolution data, even for the stress-testing 

cases where only 3-5 wavelength bands are selected. 

2.2 MATERIALS AND METHODS 

2.2.1 Hyperspectral Imaging System 

Full-resolution reflectance and fluorescence images were collected using an in-

house developed visible and near-infrared (VNIR) hyperspectral imaging system [37]. 

The light source for VNIR reflectance was a 150 W quartz tungsten lamp (Dolan Jenner, 

Boxborough, MA, USA). For fluorescence imaging, two UV line light sources were used, 

each with four 10 W, 365 nm, light-emitting diodes (LEDs) (Led Engin, San Jose, CA, 

USA). Reflectance images in 125 bands within the 419-1007 nm spectral range (4.4 nm 

at FWHM) and fluorescence images in 60 bands within the 438-718 nm range (4.4 nm at 

FWHM) were acquired using a 23 mm focal length lens, an imaging spectrograph 

(Hyperspec-VNIR, Headwall Photonics, Fitchburg, MA, USA), and a 14-bit electron-

multiplying charge-coupled device (EMCCD) camera (Luca DL 604M, Andor 

Technology, South Windsor, CT, USA). 

2.2.2 Spectral Reconstruction Algorithm 

We developed a simple spectral reconstruction algorithm based on samples taken 

at a small number of wavelength bands, k, within the relevant spectral range and a full-

resolution spectral average taken over the entire scene. The scene is a homogenous region 

of the sample being analyzed (no background regions). We refer to this spectral average 
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as the “reference spectrum.” Our reconstruction algorithm uses the reference spectrum to 

estimate the reflectance/fluorescence values at the missing N - k wavelengths. This 

interpolation is conducted in a piecewise-linear manner by fixing the values at the 

sampled wavelength band centers and using the point-to-point slopes from the 

corresponding region of the reference spectrum to estimate values at wavelengths in 

between in both the forward (i.e., increasing wavelengths) and backward directions. A 

weighted average of the corresponding points from these spectrum estimates yields the 

resulting reconstruction. This process is repeated for every pair of successive sampled 

bands until the entire spectral range has been covered. Figure 1 provides an illustration of 

this method.  

 

 

Figure 1. Illustration of the spectral reconstruction algorithm. Spectrum values have been sampled at 

bands indicated by points P(i) and P(i+1). Point-to-point slopes at full resolution are calculated from the 

reference spectrum (in red) and used to calculate a forward estimation (dashed green line) anchored at 

P(i) and a backward estimation (dashed orange line) anchored at P(i+1). The final full resolution estimate 

(solid blue line) is determined by taking weighted averages of the forward and backward estimates. 
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2.2.3 Sample Augmentation 

If the first and last wavelengths of the relevant spectrum are not included in the 

set of sampled bands, we conduct an augmentation step to estimate these values and the 

values for the wavelengths between these and the lowest and highest sampled 

wavelengths. Given a set of spectral samples 𝑃(𝑖), 𝑖 ∈ 1, 2, ⋯ , 𝑘 and a reference 

spectrum, 𝑆(𝑗), 𝑗 ∈ 1, 2, ⋯ , 𝑁, with a full resolution of N wavelengths 𝜆1, ⋯ , 𝜆𝑁, we first 

augment these samples by estimating values for the first and last wavelengths in the 

range. Let the wavelength of the first sample point, 𝑃(1), be 𝜆𝑃(1)and of the last sample 

point, 𝑃(𝑘), be 𝜆𝑃(𝑘). For a reference spectrum 𝑆(𝜆𝑗), 𝑗 ∈ 1, 2, ⋯ , 𝑁, these augmented 

estimates are determined as follows. 

𝑃(0) = 𝑃(1) − [𝑆(𝜆𝑃(1)) − 𝑆(𝜆1)] (2.1) 

𝑃(𝑘 + 1) = 𝑃(𝑘) − [𝑆(𝜆𝑁) − 𝑆(𝜆𝑃(𝑘))] (2.2) 

2.2.4 Forward and Backward Estimates 

As described above, interpolation between sample points 𝑃(𝑖) and 𝑃(𝑖 + 1) is 

accomplished by taking weighted averages of estimates brought forward from 𝑃(𝑖) and 

backward from 𝑃(𝑖 + 1). Let us assume that 𝜆𝑝 = 1, 2, ⋯ , 𝑀 are the wavelengths for the 

points at full resolution between 𝑃(𝑖) and 𝑃(𝑖 + 1). The forward estimates are calculated 

in the following recursive manner: 

For p = 1 to M: 

𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑝) = 𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑝 − 1) + [𝑆(𝜆𝑝+1) − 𝑆(𝜆𝑝)] (2.3) 

where 𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑(0) = 𝑖. The backward estimates are calculated in a similar recursive 

manner: 
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For p = M to 1: 

𝑃𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑝) = 𝑃𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑝 + 1) − [𝑆(𝜆𝑝+1) − 𝑆(𝜆𝑝)] (2.4) 

where 𝑃𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑀 + 1) = 𝑖 + 1. 

2.2.4 Weighted Averages 

Having determined the forward and backward estimates, we now calculate a 

weighted average that yields the final interpolated values. For the backward estimates, the 

weights are calculated as: 

𝑤𝑝,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 =
𝑝

𝑀 + 1
(2.5) 

The values for the forward weights are the same, but in the reversed order: 

𝑤𝑝,𝑓𝑜𝑟𝑤𝑎𝑟𝑑 =
𝑀 − 𝑝 + 1

𝑀 + 1
(2.6) 

The final interpolated values are given by: 

𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑝) = 𝑤𝑝,𝑓𝑜𝑟𝑤𝑎𝑟𝑑 ∙ 𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑝) + 𝑤𝑝,𝑏𝑎𝑐𝑘𝑎𝑟𝑑 ∙ 𝑃𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑝) (2.7) 

The complete spectral reconstruction algorithm is summarized in Table 1. 

Table 1. Spectral reconstruction algorithm 

Step Description 

              1. 
Calculate spectral average over all valid pixels. 

2. 
Record values at selected wavelengths. 

3. Augment samples by estimating values at the first and last wavelengths of the 

full-resolution spectrum.  

4. 

For each successive pair of sampled wavelengths, j and j + 1: 

a. Determine the number of wavelengths, m. 

b. Use the reference spectrum to determine the slopes between the measured 

values at the selected wavelengths and those at the wavelengths in between.  

c. Use the slopes to project the spectral estimates forward from the spectral 

value at sampled wavelength j and backward from sampled wavelength j + 1.  

d. Create a set of weights based on the number of in-between wavelengths.  

e. Estimate the spectral value at each of the in-between wavelengths by taking a 

weighted average of the forward and backward projections at that wavelength. 
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2.3 GENETIC ALGORITHM 

We use a genetic algorithm to solve the following optimization problem: 

Minimize 𝑓(𝒙𝑘) = ∑ 𝜔𝑗 (𝑆(𝑗) − 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑗))
2

𝑁
𝑗=1 : 

(2.8) 

Subject to:  ‖𝒙𝑘‖0 = 𝑘 

                                                             1 ≤ 𝑥𝑘(𝑙) ≤ 𝑁    ∀ 𝑙 ∈ 1, 2, ⋯ , 𝑘 

                                         𝑥𝑘(𝑙) ∈ ℤ 

                                         ∑ 𝜔𝑗 = 1.0𝑁
𝑗=1  

In this way we minimize a weighted sum of squared errors over the full-resolution 

spectral range. The first constraint simply restricts the number of wavelength samples to 

no more than k. The second constraint restricts the indices of the sampled wavelengths 

(which form the vector x) to fall within the bounds of the indices of the full-resolution 

spectrum (i.e., 1 and N). The third constraint ensures that this vector is integer valued. 

Finally, the last constraint ensures that weights are properly normalized. 

The genetic algorithm is implemented using Matlab’s Global Optimization 

Toolkit [38]. This heuristic optimization method works by creating a “population” of trial 

solutions (i.e., “chromosomes”) and calculating the “fitness” of each. In our case, each 

chromosome consists of k wavelengths and the fitness is determined by the spectral 

reconstruction error. The chromosomes in the population are then sorted and a selected 

number of the most fit chromosomes (i.e., the “elite count”) are passed on to fill most of 

the population for the next generation. The remainder of the population is filled via a 

tournament selection process whereby a small number (four in our case) of chromosomes 

from the preceding generation are selected at random and the one with the highest fitness 



 

15 

 

is selected as a “parent.” Two parents are selected in this process and are combined to 

generate two “children” for the new population. This occurs by combining a portion (i.e., 

the “crossover fraction”) of the first parent and the remainder from the second parent to 

form the first child. The second child is formed similarly by combining the opposite 

portions of both parents. We set the number of chromosomes per generation to 300, the 

elite count to 30, and the crossover fraction to 0.9. After each generation, the minimum 

error and corresponding chromosome were recorded. The genetic algorithm was allowed 

to continue until 75 consecutive generations passed with no change in minimum error.  

The genetic algorithm is a heuristic method with no guarantee of identifying the 

global minimum. We enhanced this optimization method in two ways. First, we used the 

winning chromosome resulting from the k = m – 1 iteration to inform the starting point 

for the k = m iteration (with the mth wavelength selected at random). Second, we followed 

the genetic algorithm with a Generalized Pattern Search (GPS) using the result of the 

genetic algorithm as the starting point [39]. The GPS algorithm creates a mesh, centered 

on the starting point, that is defined by a set of direction vectors and a scalar mesh size. 

At each iteration, the objective function is evaluated at each of the new points until one is 

found that produces a value less than the current minimum value. This new point is 

selected as the new starting point and the search continues with the same (or larger) mesh 

size. If none of the points produces a lower objective function value, then the mesh size is 

reduced and the process continues until the mesh size reaches a minimum threshold [40]. 

In this manner, the GPS algorithm can help to push the genetic algorithm solution out of 

a local optimum and move it to the global optimum (assuming these points are in the 

same vicinity). 
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2.4 DATA 

2.4.1 Fish Fillet Data Collection 

Our database for this study consisted of VNIR reflectance and fluorescence 

spectra collected from 14 fish fillets of six different species (six red snapper, four 

Malabar snapper, one vermillion snapper, one summer flounder, one blue tilapia, and one 

white bass). Each fillet was placed in a 150 × 100 × 25 mm3 sample holder created with a 

3D printer (Fortus 250 mc, Stratasys, Eden Prairie, MN, USA) using production-grade 

black thermoplastic. Image acquisition used the pushbroom method whereby a linear 

motorized translation stage was used to move the sample holder incrementally across the 

scanning line of the imaging spectrograph. The length of the instantaneous field of view 

(IFOV) was made slightly longer than the length of the sample holder (150 mm) by 

adjusting the lens-to-sample distance. The resulting spatial resolution along this 

dimension was determined as 0.4 mm/pixel. Each fillet was sampled along the width 

direction (100 mm) of the holder with a step size of 0.4 mm to match the spatial 

resolution of the length direction [5].  

Flat-field corrections were applied to the VNIR reflectance images and the 

fluorescence images to convert original absolute intensities in CCD counts to relative 

reflectance and fluorescence intensities [20]. An initial spatial mask was then created for 

each imaging mode to separate the fish fillets from the background. Outliers were 

handled by first calculating the mean (μ) and standard deviation (σ) of the fish pixel 

intensities over the entire fillet. We considered 10 × 10 pixel region “blocks” to mimic 

independent fish fillet spectral point measurements using the field of view of a fiber optic 

spectrometer. We also have an exclusion criteria where if ≥10% of the constituent pixels 

in a block exceeded μ ± 2 σ to eliminate outliers. This approach produced a final set of 
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spatial masks, one each for the reflectance and fluorescence images, that determined the 

blocks to be used for analysis. Table 2 lists the number of valid blocks for each fillet and 

each collection mode. 

Table 2. Fish fillet database summary. 

Fillet Collection Mode Number of Fillets 
Number of Valid 

Blocks 

Red Snapper VNIR 6 2,401 

Malabar Snapper VNIR 4 1,599 

Vermillion 

Snapper 
VNIR 1 283 

Summer Flounder VNIR 1 316 

Blue Tilapia VNIR 1 250 

White Bass VNIR 1 280 

Red Snapper Fluorescence 6 2,423 

Malabar Snapper Fluorescence 4 1,517 

Vermillion 

Snapper 
Fluorescence 1 504 

Summer Flounder Fluorescence 1 516 

Blue Tilapia Fluorescence 1 345 

White Bass Fluorescence 1 387 

 

The average reflectance and fluorescence spectra for each of the six fish species is 

shown in Figure 2. The spectra for all six species (including the red snapper and the 

Malabar snapper) were calculated from the pixels of a single fillet. VNIR reflectance and 

fluorescence spectra for individual blocks from one red snapper image are shown in 

Figure 3 along with the average spectrum. The significant differences in the shapes and 

positions of the spectral averages for the various species and homogeneous nature of the 

spectra for pixels of a single fillet suggest that high classification accuracies can be 

achieved with this spectral information. Note, however, that the point of this study is not 

to demonstrate high classification accuracy, but to demonstrate how the proposed 

wavelength band selection and spectral reconstruction methodology can yield 
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classification accuracies on par with those resulting from the original full spectral 

resolution data.  

  

Figure 2. Average reflectance (left) and fluorescence (right) spectra for each of the six fish species. 

 

  

Figure 3. VNIR reflectance (left) and fluorescence (right) spectra for each pixel of one of the red snapper 

fillets. The solid blue curves denote the average spectrum over all pixels.  

2.5 RESULTS 

2.5.1 Validation of selected wavelength Sets 

Plots of the average NMRSE and the associated 95% confidence intervals 

resulting from the optimization process described above, for k = 3 to 25, are shown in 

Figure 4. Results for the VNIR reflectance dataset are on the left and for the fluorescence 

dataset on the right. Confidence intervals were calculated from the results of 10 separate 



 

19 

 

iterations of this optimization process for each k value and dataset type. For both the 

VNIR and the fluorescence datasets, the confidence intervals are widest in the k = 5 to 12 

range but significantly narrower for k = 3 and for k > 12. This suggests that the selection 

of wavelengths is most critical in the k = 5 to k =12 range where minor differences in 

winning chromosomes between iterations can lead to larger differences in error. For large 

k values, very similar error values can be attained with a more varied selection of 

wavelengths.  

  

Figure 4. Average NRMSE (solid curves) and 95% confidence intervals (dashed curves) for the VNIR 

reflectance (left) and fluorescence (right) datasets following optimal wavelength band selection using the 

proposed genetic algorithm-based optimization method and a cost function based on the proposed spectral 

reconstruction algorithm. 

2.5.2 Classification 

Classification accuracies for the VNIR reflectance data based on the spectral 

values at the k = 3, 4, 5 optimal wavelengths are given in Table 3. The accuracies 

determined using the original full-resolution spectral data are provided in the “Original” 

column as a reference. Features based on the spectral values at the k optimal wavelength 

only are listed under the “No Reconstruction” column and those based on the 

reconstructed spectral values at all full-resolution wavelengths are listed under the 

“Spectral Reconstruction” column. The rightmost three columns in Table 3 list the 
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corresponding accuracies with spectral reconstruction applied. Results for the 

fluorescence case are provided in a similar manner in Table 4. Values in bold denote the 

highest accuracy for the given classification algorithm and are determined separately for 

the “No Reconstruction” and the “Spectral Reconstruction” cases. 

Table 3. Classification accuracies for the VNIR reflectance data. 

Classifier Original 
No Reconstruction Spectral Reconstruction 

k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 

Linear 

Discriminant 
100% 75.04% 77.02% 79.45% 99.98% 99.85% 99.70% 

Quadratic SVM 99.65% 80.05% 83.33% 85.64% 96.35% 97.44% 97.88% 

Weighted KNN 97.54% 80.97% 83.59% 84.90% 95.46% 96.04% 96.31% 

Subspace 

Discriminant 
100% 72.49% 74.70% 77.14% 99.94% 99.93% 99.93% 

 

     Table 4. Classification accuracies for the fluorescence data. 

Classifier Original 
No Reconstruction Spectral Reconstruction 

k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 

Linear 

Discriminant 
99.02% 78.36% 79.94% 82.94% 89.72% 91.66% 91.53% 

Quadratic SVM 99.91% 92.16% 91.29% 93.52% 92.29% 94.42% 95.03% 

Weighted KNN 98.23% 92.22% 91.52% 93.32% 95.22% 95.01% 95.79% 

Subspace 

Discriminant 
99.02% 76.12% 77.35% 81.05% 89.63% 91.65% 91.58% 

2.6 CONCLUSIONS 

This study was designed to show proof of concept for a new conceptual design of 

an inexpensive hyperspectral imaging device. Images collected with this device possess 

full spatial resolution and contain a relatively small number (i.e., 3, 4, or 5) of 

narrowband channels selected by a genetic algorithm optimization method followed by 

generalized pattern search. An integrated non-imaging optical spectrometer collects a 

full-resolution spectrum representing an average over the entire scene. The full 

hyperspectral data cube is then generated using a simple hyperspectral reconstruction 

algorithm.  
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A dataset containing VNIR reflectance and fluorescence data collected from 14 

fish fillets representing six different species was used for this study. Results of the 

optimization study showed low reconstruction errors (as measured in terms of NMRSE) 

overall with flattening of the error curves for k  ≥ 10. The relevance of the combined 

wavelength selection and hyperspectral reconstruction algorithm was evaluated with a 

separate classification study. As expected, the classification accuracies dropped 

significantly when going from using the original full spectral resolution data to using the 

data at the k = 3, 4, 5 selected wavelengths only. However, these accuracies rose 

significantly when the hyperspectral reconstruction algorithm was applied. Furthermore, 

while the accuracies increased with k in general, the accuracies for the k = 3 case differed 

by only 2-3% from the highest value. These results confirm proof of concept for the 

suggested design of inexpensive hyperspectral imaging devices, at least for this food 

fraud application featuring homogenous spectral data.  
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CHAPTER 3. HYPERSPECTRAL BAND SELECTION FOR FOOD 

FRAUD APPLICATION USING SELF-ORGANIZING MAPS (SOM) 

3.1 INTRODUCTION 

Hyperspectral band selection has received much attention in recent years with 

various methods proposed for identifying optimal spectral band subsets. Of these, 

unsupervised methods are particularly attractive since they do not require a labeled 

dataset, which can be difficult and expensive to develop. Principal component analysis 

(PCA) [41] and independent component analysis (ICA) [42] are among the most popular 

dimensionality reduction techniques, a problem closely related to band selection. 

However, for this study, we place such methods in a separate category since they require 

access to the full set of wavelength bands. With regard to unsupervised hyperspectral 

band selection, then, leading methods include those based on correlation analysis [43], 

constrained energy minimization [44], and mutual information [45]. Recent additional 

methods include graph-based methods [46], [47], clustering methods [48], self-

representation [49], rank minimization  [50], and wavelet models [51]. All of these 

methods attempt to identify optimal subsets of bands by minimizing redundancies. 

The primary limitation shared by nearly all these methods is that they can only 

account for linear correlations between bands. To overcome this limitation and account 

for inherent nonlinearities, some researchers have turned to self-organizing maps 

(SOMs). Based on the concept of competitive learning, SOMs identify a nonlinear 

transformation from high to low dimensional space such that the separation between 

points in the lower dimension is representative of the relative dissimilarity between their 

higher dimensional counterparts. The Feature Competitive Algorithm (FCA)  proposed 

by Ye and Liu [52] is a general feature selection method that works by identifying those 
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features in the original high dimensional space that align best with the trained “reference 

vectors” of the SOM. The Subspace Clustering Based on SOM (SCBSOM) [53] method 

proposed by Tian and Gu applies a one-dimensional clustering in each dimension based 

on the weight connections in the learned SOM followed by a merging process. 

Benabdeslem’s and Lebbah’s Heuristic Input for SOM (HI-SOM) [54] similarly applies 

clustering in the trained SOM for feature selection. However, although SOMs have been 

used to enhance the classification of hyperspectral images [55], to our knowledge, no 

other researchers have investigated the use of SOM for hyperspectral band selection. 

In this chapter, we introduce a new hyperspectral band selection method based on 

the exploitation of the relationships between weights in the trained SOM’s reference 

vectors. We use the mean distance between pairs of “weight planes” (i.e., a high 

dimensional plane formed by the weights from all trained reference vectors 

corresponding to the same input band) as a measure of the nonlinear correlation between 

the bands. We refer to this measure as the Weight Plan Distance (WPD). Although visual 

inspection of weight planes to evaluate redundancy has been suggested by others [56], 

[57], to our knowledge, this is the first proposal of a completely automated method based 

on weight plane analysis. We apply this method to a food fraud application where 

hyperspectral imaging is used to determine the correct species of fish fillets. We compare 

the band selection and classification results of this method to those obtained by the 

authors where a genetic algorithm was used to select wavelength bands based on their 

ability to reconstruct the full resolution spectra with minimal error, and these same bands 

were in turn used as features for the species classification [58]. 

3.2 SELF-ORGANIZING MAP (SOM) METHOD 
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3.2.1 SOM and Weight Plane Distance (WPD) 

Developed by Teuvo Kohonen in 1982 [59], the SOM is a type of two-layer 

artificial neural network that produces a low-dimensional (typically 2D) representation of 

vectors in a high-dimensional input feature space. It does this by applying unsupervised 

competitive learning to move the network’s weights closer to the input vector. For each 

input vector, the Euclidian distance between this vector and the weight vectors (called 

“reference vectors”) for all output neurons is calculated. The neuron with the smallest 

distance is declared the “best matching unit” (BMU), and the reference vectors for all 

neurons within a neighborhood of the BMU are updated. This “neighborhood” is defined 

with a neighborhood function, ℎ𝑐𝑖(𝑡), where the c subscript refers to the index of the 

BMU and the i subscript refers to the ith neuron [60]. The updated weight for the ith 

reference vector is then given by: 

𝒘𝑖(𝑡 + 1) = 𝒘𝑖(𝑡) + 𝛼 ∙ ℎ𝑐𝑖(𝑡) ∙ [𝒙(𝑡) − 𝒘𝒊(𝑡)] (3.1) 

Figure 1 shows the results of training an 8 × 8 SOM on Fisher’s iris dataset [61]. 

The output layer neurons are arranged in a hexagonal pattern. Figure 5(a) shows a plot of 

the number of input vectors that are mapped to each output layer neuron. Figure 5(b) 

shows plots of the reference vector weight values at each output neuron for each input 

weight, with darker colors representing larger values. The collection of weight values for 

each input is commonly referred to as a “component plane” or “weight plane” [62].  
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(a) (b) 

Figure 5. Results of SOM trained on Fisher’s iris dataset. (a) Plot of the number of input vectors mapped 

to each neuron in the output layer; (b) Colored plots of the weight values for each input weight plane. 

Darker colors indicate larger weight values. 

We compute the weight plane distances (WPD) by calculating the squared 

difference between the value of a node in one weight plane and the corresponding node in 

another weight plane. This calculation is repeated for all nodes, and the squared 

differences are then averaged to yield the WPD between these two weight planes. The 

complete set of WPDs is computed by calculating the WPD between each pair of weight 

planes. This WPD set would yield a symmetric N × N matrix, where N is the number of 

nodes in the SOM. For efficiency, we compute only one half of this matrix and set the 

entries in the other half to zero. As Figure 6 shows, this half matrix can be plotted to 

represent the 3D structure of the WPD. Finding the peaks in this structure thus equates to 

identifying those pairings of bands that have the least redundancy. 

Figure 6 hints at the true benefit of this SOM WPD approach. This method 

provides a means of band selection based on minimization of redundancy, and it also 

provides a measure of importance for exact band selection. For example, a tall but broad 

peak in the WPD matrix suggests that we could select any pair of bands in the vicinity of 

the true local optimum and still achieve a near-maximum degree of non-redundancy. This 
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could be particularly beneficial in designing a sparse hyperspectral imaging system where 

the collection of imagery at certain wavelengths may be easier to engineer than at others.  

 
Figure 6. Surface plot of the WPD from for the VNIR data in our fish fillet species classification study. 

Each peak represents a local maximum non-redundancy between features. Note that we calculate values 

for only half of the otherwise symmetric WPD matrix.  

 

3.2.2 Peak Finding and Feature Ranking 

To select features using the WPD matrix, we first find local peaks along each row 

of the WPD matrix. The WPD values at these peak locations are saved in an intermediate 

matrix while the values at other locations are zeroed. We then apply the same process 

along each column of this intermediate matrix to identify the final WPD peaks. We apply 

this two-stage process to better eliminate the false peaks that can appear when using 2D 

peak finder algorithms. 

Feature ranking is then conducted using the WPD values at the selected peaks. 

For example, the two features corresponding to the tallest peak in Figure 2 (i.e., the two 

features with the largest WPD) are assigned ranks one and two. The two features 

corresponding to the next tallest peaks are assigned ranks three and four, and so on.  

3.3 CLASSIFICATION OF FISH SPECIES 
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We used the bands selected by our SOM-based method as features to train four 

conventional machine learning classifiers – linear discriminant, quadratic support vector 

machine (SVM), weighted k-nearest neighbors (WKNN), and subspace discriminant (an 

ensemble method which applies linear discriminants to random subsets of features). These 

classifiers were then used to classify the correct species of fish fillet based on information 

from one pixel’s visible/near-infrared (VNIR) reflectance or fluorescence spectrum. This 

classification was repeated for numbers of selected wavelengths, k = 3, 4, and 5, and a 5-

fold cross-validation was conducted as a robust estimation of classification accuracy. This 

SOM-based method’s performance was evaluated via comparison with the results from the 

genetic algorithm method [58]. 

3.4 FISH FILLET DATA COLLECTION 

The same dataset consisting of VNIR and fluorescence spectra of14 fish fillets 

representing 6 different species discussed in Chapter 2 was used for this study. Table 2 

and Figure 3 provide details of this dataset and show example spectra. 

3.5 RESULTS 

3.5.1 Peak Finding and Feature Selection 

Figure 7 shows the WPD plot for the VNIR data with the results of the peak 

finding algorithm added as red asterisks. The terrain of this WPD matrix is near-optimal 

for realizing the benefits of the SOM WPD band selection method. Prominent peaks rise 

above the floor of the surface plot to represent apparent differences between regions of 

high WPD values (and hence little redundancy between the associated bands) and low 

WPD values. Notice that the algorithm has successfully isolated the local maximum for 

each peak. Notice also that the algorithm has identified several peaks near the floor of the 
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surface plot with very low WPD values. We consider this an acceptable outcome of the 

band selection process since a threshold based on the number of bands, or WPD values 

can easily be added based on user needs. 

 

   

Figure 7. Results of the peak finding algorithm for the VNIR data displayed from three different angles. 

Identified peaks are denoted with the red asterisks. 

 

Figure 8 shows the peak selections for the fluorescence data. The terrain in this 

case is not as favorable as that for the VNIR case. There are only two prominent peaks 

that can be seen by eye, both of which slope down slowly in each direction. Furthermore, 

the broader peak has a “double bump” that confuses the peak finder algorithm, causing it 

to make two selections when one is likely more appropriate. As these peaks slope 

downward toward the diagonal of the WPD matrix, there are ridges in the profile that 

cause the algorithm to find more questionable local peaks.  

 

   

Figure 8. Results of the peak finding algorithm for the fluorescence data displayed from three different 

angles. Identified peaks are denoted with the red asterisks. 
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Table 5. Top five selected VNIR wavelength bands (and corresponding indices) ranked by WPD value. 

Method 
Selected Wavelength Bands (nm, ordered by rank) 

VNIR Fluorescence 

SOM WPD 
419.3 (1), 694.2 (59), 964.4 (116), 

542.5 (27), 571.0 (33) 

438.2 (1), 713.2 (59), 623.1 (40), 

604.1 (36), 457.2 (5) 

Genetic 

Algorithm 

523.6 (23), 675.2 (55), 860.1(94), 

898.0 (102), 959.7 (115) 

447.7 (3), 499.9 (14), 566.2 (28), 

642.1 (44), 694.2 (55) 

 

Table 5 gives the wavelengths and corresponding indices for the top five selected 

bands for the VNIR and fluorescence data. For the SOM WPD method, the bands are 

listed in the WPD rank order. We immediately notice some significant discrepancies 

between the selections made by these two methods. For example, for both the VNIR and 

fluorescence data, the first wavelength band is the top-ranked band for the SOM WPD 

method but does not even appear in the list of selections by the genetic algorithm method. 

This discrepancy is likely a consequence of the spectral reconstruction process, which 

estimates values at the initial and final bands in the spectral range based on forward and 

backward projection from the lowest and highest selected bands, respectively. Other 

selections by the two methods appear to match within a few index values (e.g., bands 59 

and 55 for the VNIR data and bands 40 and 44 for the fluorescence data). These 

discrepancies can be resolved by looking at the peaks in Figures 6 and 7 to determine if 

these selected bands have significantly different WPD values. We find that the WPD 

difference for bands 59 and 55 in the VNIR data is relatively small (3.4%) when we look 

along the same peak but is significantly larger (10.3%) for bands 40 and 44 in the 

fluorescence data.  

3.6 CLASSIFICATION RESULTS 

The classification results for the VNIR and fluorescence data are listed in Table 6 

and Table 7. For each classification algorithm, the classification experiment was repeated 
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for the top k = 3, 4, and 5 selected wavelength bands. The highest classification accuracy 

for each classification algorithm and band selection method (over all k values) are bolded. 

The SOM WPD method has yielded the higher classification accuracy for 2 of the 4 

classifiers with the VNIR data and all 4 classifiers with the fluorescence data. 

 

Table 6. Classification accuracies for the Genetic Algorithm and SOM WPD methods with the VNIR 

data. 

Method 
Genetic Algorithm SOM WPD 

k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 

Linear Discriminant 75.04% 77.02% 79.45% 74.40% 78.57% 78.40% 

Quadratic SVM 80.05% 83.33% 85.64% 78.69% 84.93% 87.91% 

Weighted KNN 80.97% 83.59% 84.90% 79.12% 85.98% 88.03% 

Subspace 

Discriminant 
72.49% 74.70% 77.14% 70.05% 71.83% 72.43% 

 

Table 7. Classification accuracies for the Genetic Algorithm and SOM WPD methods with the 

fluorescence data. 

Method 
Genetic Algorithm SOM WPD 

k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 
Linear Discriminant 78.36% 79.94% 82.94% 79.55% 86.53% 87.30% 

Quadratic SVM 92.16% 91.29% 93.52% 86.33% 94.52% 96.98% 

Weighted KNN 92.22% 91.52% 93.32% 88.21% 93.24% 95.80% 

Subspace Discriminant 76.12% 77.35% 81.05% 75.51% 74.72% 95.98% 

 

3.7 CONCLUSIONS 

This study was conducted with two primary goals. The first was to evaluate a new 

method for hyperspectral wavelength band selection based on the average distance 

between the weight planes formed by a trained SOM’s reference vector values. The 

second was to compare the band selections and classification performance of this new 

method with a genetic algorithm-based method applied in the study described in Chapter 

2 and published in [5]. As in the earlier study, we used hyperspectral imaging data 

collected in both VNIR and fluorescence ranges to perform this evaluation and 

comparison. The classification portion of this study consisted of 10 × 10-pixel block-wise 

classification of the species of a fish fillet using four conventional machine learning 
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classifiers and the VNIR/fluorescence values from the selected bands as the input 

features. This classification serves as a means of preventing a common food fraud 

technique where fish fillets of one species (e.g., blue tilapia, white bass, summer 

flounder) are labeled and sold as a more expensive species (e.g., red snapper). 

Surface plots of the WPD matrix values showed prominent peaks representing 

pairings of wavelength bands with large distances between their respective weight planes 

(and hence, low redundancy between the bands). This situation was more evident for the 

VNIR data than for the fluorescence data. Band selections differed significantly between 

the original genetic algorithm-based method and the new SOM WPD method. Using the 

WPD surface plots to determine the significance of these discrepancies in redundancy 

between bands, we found that the disparities were more significant for the fluorescence 

data than for the VNIR data. 

Results of the classification analysis clearly favored the new SOM WPD method, 

with 2 of the 4 classifiers yielding higher accuracies for this method with the VNIR data 

and all 4 yielding higher accuracies for the fluorescence data. However, we note that the 

genetic algorithm-based method used in [5] was designed to optimize spectral 

reconstruction and not classification directly.   

The results of this study indicated promise for the new SOM WPD method and 

highlight room for improvement. For example, the peak finding algorithm was shown to 

locate peaks in the fluorescence WPD values that appear somewhat redundant. Also, the 

method described in this chapter selects wavelength bands two at a time by finding peaks 

in the WPD matrix, but it does not include a follow-up step where all selected bands are 

paired and the corresponding WPD value is measured against an acceptance threshold to 
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reduce redundancies further. Future studies should address these algorithm issues and 

evaluate the robustness of the SOM WPD method by testing it on other hyperspectral 

imaging datasets. 
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CHAPTER 4. SIMULATED ANNEALING-BASED 

HYPERSPECTRAL DATA OPTIMIZATION FOR FISH SPECIES 

CLASSIFICATION 

4.1 INTRODUCTION 

This chapter discusses the third and final study related to the fish fillet species 

classification application. In this study, we expanded our dataset both in terms of number 

of fillets and in number of represented species. In addition to the SWIR and fluorescence 

modes, we also added a short-wave infrared (SWIR) mode for data collection. The results 

of this study supported those of the previous two studies and showed improved 

classification accuracy through the inclusion of a multilayer perceptron (MLP) classifier. 

Classification results are provided for each spectral mode individually and for the fusion 

of modes which yielded the highest accuracy.   

4.2 MATERIALS AND METHODS 

2.1 Hyperspectral Imaging Systems 

The same hyperspectral imaging system described in Section 2.2.1 was used to 

collect spectra in the VNIR and fluorescence modes. A separate hyperspectral imaging 

system was used to acquire reflectance images in the SWIR region. The illumination 

source for this system was a custom-designed two-unit lighting system, each with four 

150 W gold-coated halogen lamps with MR16 reflectors. The detection unit included a 25 

mm focal length lens and a hyperspectral camera, including a 16-bit mercury cadmium 

telluride array detector and an imaging spectrograph (Hyperspec-SWIR, Headwall 

Photonics, Fitchburg, MA, USA). The SWIR reflectance images were acquired in a 

wavelength range of 842-2532 nm (287 wavelengths).  
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4.3 SIMULATED ANNEALING 

Rather than sensing the full resolution spectra in each of the three modes, the 

proposed method uses just a small number of narrow wavelength bands (referred to 

simply as “wavelengths” in this paper) that are specifically chosen to yield accurate 

species classifications. Simulated annealing, a heuristic optimization method modeled 

after the metallurgical annealing process in which the metal undergoes controlled cooling 

to remove defects and toughen it, was used to select the wavelengths. The simulated 

annealing algorithm consists of a discrete-time inhomogeneous Markov chain with 

current state 𝑠(𝑖) and a cooling schedule defined by a starting temperature, 𝑇𝑚𝑎𝑥, a final 

temperature, 𝑇𝑚𝑖𝑛 < 𝑇𝑚𝑎𝑥, and a total number of steps, 𝑛 [63]. The goal of the algorithm 

is to determine the minimum of a user-defined energy function, 𝐸(𝑖).  

At each iteration 𝑖 ∈ 1, ⋯ , 𝑛, a new trial state is determined by randomly selecting 

a “neighbor” of the previous state and calculating its energy. If the resulting energy is less 

than the energy from the previous iteration, the trial state becomes the new state of the 

system. If the resulting energy exceeds the energy of the previous energy, the algorithm 

adopts the trial state with probability given by: 

𝑃(𝐸(𝑖), 𝐸(𝑖 − 1)) = 𝑒
−

1
𝑇(𝑖)

[𝐸(𝑖)−𝐸(𝑖−1)]
(4.1) 

where 𝑇(𝑖) is the temperature at iteration 𝑖. Note that this equation allows the algorithm 

to occasionally accept states that result in an increase in energy. This can benefit the 

optimization by preventing it from becoming stuck in local minima. The probability of 

accepting such states is high at the beginning of the process when the temperature is high 

but gradually decreases with decreasing temperature. The output of the algorithm is the 
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state with the lowest energy encountered throughout the annealing schedule. Figure 9 

provides a summary of this algorithm. 

 

Figure 9. Flowchart for the simulated annealing algorithm used to select the best k wavelength for fish 

species classification. 

For this wavelength selection problem, we define the state as an array of binary 

elements indicating the presence or absence of each wavelength in the full-resolution 

spectrum. Because the collected spectra may contain artifacts at the lowest and highest 

wavelengths, we institute a fixed buffer of size 𝑚 at either end of the spectrum. Thus, the 

state at iteration i can be expressed as 

𝑠(𝑖) = 𝐼(𝑗) 𝑓𝑜𝑟 𝑗 ∈ 𝑚 + 1, ⋯ , 𝑁 − 𝑚 − 1 (4.2) 

where 𝐼(𝑗) is 1 to indicate that the jth wavelength is selected and 0 to indicate it is not, 

and 𝑁 is the total number of wavelengths in the spectrum. Furthermore, because 

consecutive wavelengths are highly correlated and thus offer little additional information 
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if both are selected, we institute a minimum separation of 𝑞 wavelength indices between 

selected wavelengths. Finally, we set a limit, 𝑘, on the number of wavelengths selected 

such that: 

∑ 𝐼(𝑗)

𝑁−𝑚−1

𝑗=𝑚+1

= 𝑘 (4.3) 

Under these three restrictions, we update the state for each iteration by generating 

a “neighbor” of the current system state. This is done by randomly de-selecting one 

wavelength index from the current state and selecting a new one. The energy of the trial 

state is then calculated as 1 − 𝑎(𝑖) where 𝑎(𝑖) is the average 4-fold cross validation 

accuracy (see Section 2.5) as determined using the weighted k-nearest neighbors 

(WKNN) classifier. WKNN is a variation of the familiar k-nearest neighbors algorithm 

where the training data points are weighted based on the squared inverse of their 

distances from the query point. It was chosen as the basis for the energy calculation 

because of its relatively high classification performance and its rapid training time. 

Accuracy, in this sense, is calculated as the percentage of correct classifications, 

weighted by the number of samples per class in the test sets to ensure equal contribution 

from each class. 

The simulated annealing algorithm was implemented in Python 3.7 using the 

simanneal 0.5.0 library [64]. The temperature parameters were set to 𝑇𝑚𝑎𝑥 = 25 and 

𝑇𝑚𝑖𝑛 = 0.05 and the number of steps was set to 𝑛 = 5,000. These temperature values 

were selected to ensure nearly 100% selection of new states in the initial steps, regardless 

of whether the energy decreased or increased, and nearly 0% selection of states that 
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increased the energy during the final steps. The number of steps was chosen to balance 

the desire for rapid processing with the need for algorithm convergence.  

4.4 CLASSIFICATION OF FISH SPECIES 

To evaluate the success of the optimal wavelength selection algorithm, a pair of 

classification studies were conducted with the goal to determine the correct species of a 

fillet based on spectral information from a single sample point on the fillet represented by 

one 10 × 10 pixel block (i.e., voxel). For both studies, a multi-layer perceptron (MLP) 

neural network served as the primary classifier. In the first study, each spectral mode 

(i.e., VNIR, fluorescence, and SWIR) was investigated separately and the results of the 

MLP classifier were compared with results from a collection of common machine 

learning classifiers. The classifiers were trained on the spectral values from the selected 

wavelengths and evaluated using 4-fold cross-validation. In the second study, the selected 

wavelengths from the three spectral modes were combined in the input layer of the MLP 

classifier, and this spectral fusion method was again evaluated with 4-fold cross-

validation. Both studies were repeated for numbers of selected wavelengths k = 3, 4, 5, 6, 

and 7. Results using all available wavelengths were included as a benchmark for 

comparison. 

4.4.1 Multi-Layer Perceptron (MLP) Classifier 

An MLP neural network is a common feed-forward artificial neural network that 

determines its weight values through supervised learning to yield a nonlinear decision 

boundary designed to minimize a cost function. In this case, the cost function was defined 

as the complement of the multiclass classification accuracy (weighted by the number of 

samples per class). The MLP classifier used for both the single-band and fusion studies 
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consists of two hidden layers with 512 and 128 nodes, respectively. The input and hidden 

layers use the rectified linear unit (ReLU) activation function, and the output layer uses 

the softmax activation function to yield the classification decision. To protect against 

overfitting, dropout with a probability of 50% was applied to both hidden layers [65]. 

Additionally, L2 kernel regularization (with factor 𝜆 = 0.0001) was applied to both 

hidden layers to protect against overfitting by adding a term to the loss function that 

increases with the magnitude of the network’s weight vector. Figure 10 shows the 

architecture for this MLP classifier. 

 

 

Figure 10. Architecture for the MLP classifier used for the single-band and spectral fusion studies. 

4.4.2 Single-Mode Classification Study 

In addition to the MLP classifier, four common machine learning classifiers – 

including support vector machine with a linear kernel (SVM), WKNN, linear 

discriminant (LD), and Gaussian Naïve Bayes (GNB) - were used to perform 
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classification separately for each of the VNIR, fluorescence, and SWIR data. As with the 

first study, feature sets consisted of the k spectral samples with no further attempt at 

feature selection. A 4-fold cross-validation was conducted for each study as a robust 

estimation of multiclass classification accuracy (weighted by the number of samples per 

class).  

SVM determines the set of maximum-margin hyperplanes to separate the classes 

in the feature space. WKNN, as explained above, is a variation on the k-nearest neighbors 

algorithm that weights the training points by the inverse square of their distances from the 

query point. LD classification makes simplifying assumptions about the data (i.e., 

Gaussian distributed with the same covariance matrix for all classes) to determine the 

separating hyperplanes. Finally, GNB combines the probabilities of obtaining the 

measured value for each input given each specific class and selects the class with the 

highest resulting probability. GNB assumes statistical independence between the inputs 

[66]. SVM was included due to its reputation as a high-performance classifier. WKNN, 

another robust classifier, was included for its performance and because of its use in the 

simulated annealing algorithm. LD was included for comparison to evaluate any 

performance degradation that might result from the expected violation of the Gaussian or 

identical covariance assumptions. GNB was included for comparison to evaluate 

performance degradation due to the expected violation of independence among the inputs 

(i.e., the selected wavelengths).  

Each classifier was trained with the 𝑘 = 3, 4, 5, 6, and 7 wavelengths selected by 

the simulated annealing algorithm for each of the three spectral modes. To place the 

resulting classification accuracy values in context, the results of this study were 
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compared with benchmark classification accuracies determined using all wavelengths in 

the full-resolution spectra. 

4.4.3 Spectral Fusion Classification Study 

For this study, the wavelengths were selected for each of the three spectral modes 

independently, as discussed in the previous section, and then concatenated into a single 

vector which formed a new input layer for the MLP classifier. This classifier was then 

trained and evaluated (using 4-fold cross-validation) for 𝑘 = 3, 4, 5, 6, and 7 wavelengths 

and the results were compared with a benchmark determined by including all 

wavelengths from the full-resolution spectra. Due to concerns about the usefulness of the 

SWIR data for species classification, we also evaluated fusion with just the VNIR and 

fluorescence modes. 

4.5 FISH FILLET DATA COLLECTION 

Figure 11 shows an overview of the data acquisition and processing steps for the 

studies represented in this paper. The database for this study consisted of VNIR and 

SWIR reflectance and fluorescence spectra collected from 133 fish fillets representing a 

total of 25 different species groups (Table 1). The species for each fillet was verified 

using DNA barcoding [5]. Each fillet was placed in a 150 × 100 × 25 mm sample holder 

created with a 3D printer (Fortus 250mc, Stratasys, Eden Prairie, MN, USA) using 

production-grade black thermoplastic. Image acquisition was conducted by the 

pushbroom method, where a linear motorized translation stage was used to move the 

sample holder incrementally across the scanning line of the imaging spectrograph. The 

length of the instantaneous field of view (IFOV) was made slightly longer than the length 

of the sample holder (150 mm) by adjusting the lens-to-sample distance. The resulting 
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spatial resolution along this dimension was determined as 0.4 mm/pixel. Each fillet was 

sampled along the width direction (100 mm) of the holder with a step size of 0.4 mm to 

match the spatial resolution of the length direction [5].  

 

Figure 11. Overview of the data acquisition and processing flow. 

Flat-field corrections were applied to the VNIR and SWIR reflectance images and 

the fluorescence images to convert the original absolute intensities in CCD counts to 

relative reflectance and fluorescence intensities [67]. An initial spatial mask was then 

created for each imaging mode to separate the fish fillets from the background. Outliers 

were handled by first calculating the mean (μ) and standard deviation (σ) of the fish pixel 

intensities over the entire fillet. Voxels of 10 × 10 pixels were considered to mimic 

independent fish fillet spectral point measurements using the field of view of a fiber optic 

spectrometer. Exclusion occurred if ≥10% of the constituent pixels in a voxel exceeded μ 

± 2 σ to eliminate outliers. Figure 12 shows an example result of voxel processing. This 

approach produced a final set of spatial masks, one each for the VNIR and SWIR 

reflectance and fluorescence images, which determined the blocks to be used for analysis. 

Finally, the fluorescence spectra were scaled by a constant factor of 6,000, the 

approximate maximum of fluorescence spectral values in the database. This was done to 
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set the range of fluorescence values to between zero and one. Alternative normalization 

methods such as z-score and area under the curve (AUC) normalization were tried as well 

and produced similar results. However, this simple scaling was chosen because, unlike 

these alternatives, it requires no knowledge of the entire spectrum and is thus consistent 

with the concept of collecting only a small number of wavelengths for analysis. Table 8 

provides a summary of this database with the numbers of fillets per species and the 

number of valid voxels for each fillet and each collection mode. 

 

Figure 12. Example of data collection and voxel processing for a red snapper fillet. From the original 

VNIR image (left), a mask is applied (center) to remove the background and voxels of 10 x 10 pixels are 

generated (right). Valid voxels are shown in white. 

Table 8. Fish fillet database summary. 

Species 
Number of 

Fillets 

Number of Valid Voxels 

VNIR Fluorescence SWIR 

Almaco Jack (Seriola rivoliana) 4 1157 1169 1992 

Atlantic Cod (Gadus morhua) 4 1322 1391 1508 

Bigeye Tuna (Thunnus obesus) 4 831 572 2416 
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California Flounder (Paralichthys californicus) 4 1016 1113 2416 

Char (Salvelinus sp.) 4 1165 1156 1508 

Chinook Salmon (Oncorhynchus tshawytscha) 4 1630 1570 2416 

Cobia (Rachycentron canadum) 4 1235 1170 1508 

Coho Salmon (Oncorhynchus kisutch) 4 894 887 2416 

Gilthead Bream (Sparus aurata) 4 1314 1275 1362 

Goosefish (Lophiidae sp.) 4 1304 1356 1508 

Haddock (Melanogrammus aeglefinus) 4 1193 1375 1508 

Malabar Blood Snapper (Lutjanus 

malabaricus) 
12 5530 4750 7248 

Opah (Lampris sp.) 4 913 875 2416 

Pacific Halibut (Hippoglossus stenolepis) 4 1943 2120 2416 

Pacific Cod (Gadus macrocephalus) 4 1619 1723 2416 

Petrale Sole (Eopsetta jordani) 6 2253 2427 3624 

Rainbow Trout (Oncorhynchus mykiss) 11 4263 3606 4806 

Red Snapper (Lutjanus campechanus) 18 9482 7351 10872 

Rockfish (Sebastes sp.) 4 1230 1310 2416 

Sablefish (Anoplopoma fimbria) 4 954 963 2416 

Sockeye Salmon (Oncorhynchus nerka) 4 1033 909 2416 

Swordfish (Xiphias gladius) 4 789 786 2416 

Tuna (Thunnus sp.) 6 1473 1314 3170 

Winter Skate (Leucoraja ocellata) 4 1839 1815 1860 

Yelloweye Rockfish (Sebastes ruberrimus) 4 1197 1216 2416 

 

The reflectance and scaled fluorescence spectra for each of the 25 fish species are 

shown in Figure 13. The significant differences in the shapes and positions of the spectral 

averages for the various species and the homogeneous nature of the spectra (as indicated 

by the relatively short error bars) suggest that high classification accuracies can be 

achieved with this spectral information.  
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(a) 
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(b) 
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(c) 

Figure 13. Average spectra for each of the 25 fish species. (a) VNIR reflectance; (b) scaled fluorescence; 

(c) SWIR reflectance. Error bars correspond to half of a standard deviation over all voxels for each 

species. 

4.5.1 Cross-Validation Train and Test Datasets 

For both the single-mode and the spectral fusion studies, 4-fold cross-validation 

was conducted by dividing the complete dataset (as described in Table 8) into four 

disjoint test sets, each of which contained voxels from at least one fillet of each of the 25 

species. The corresponding training set for each test set was then composed of all data not 

in the test set. Four-fold cross-validation (as opposed to the more common 5- or 10-fold 

versions) was chosen because there was greater variability between fillets of the same 
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species than between voxels of the same fillet. Thus, we wanted to ensure that each test 

set contained entire fillets that were not included in the corresponding training set. For 

those species with more than four fillets in the complete dataset (e.g., Malabar blood 

snapper), the fillets were divided into the four test sets with the goal of having the total 

number of fillets in each test set as equal as possible. 

4.5.2 Data Imbalance Correction 

To prevent classification biases due to data imbalances between the various 

species, we applied sampling with replacement to each training set to produce 8,000 

voxel samples per species for a total of 200,000 samples in each training set. No 

resampling was applied to the test sets, but the measured multiclass classification 

accuracies were weighted by the number of voxel samples per class to ensure an equal 

contribution from each species. 

4.6 RESULTS AND DISCUSSION 

4.6.1 Wavelength Selection 

The robustness of the proposed simulated annealing approach was evaluated by 

running 10 iterations of the algorithm with the VNIR data for the k = 7 cases and 

examining the variation in the resulting selected wavelengths and the associated WKNN 

classification accuracies. Figure 14(a) shows the wavelengths selected for each of the 10 

iterations, with each row of similarly colored dots representing a single iteration. 

Although some variability in the selected wavelengths is noticeable, the plot of multiclass 

classification accuracies for these iterations in Figure 14(b) shows little variability in the 

resulting accuracy. The standard deviation over these 10 accuracy values was 0.13%. 
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(a) (b) 

Figure 14. Results of the wavelength selection robustness study. (a) Scatter plot showing selected 

wavelengths for 10 iterations of the k = 7 VNIR study. (b) Plot of final accuracies for each of the 10 

iterations. 

Figure 15 shows the average VNIR reflectance spectrum for a red snapper fillet 

with the k = 3, 4, 5, 6, and 7 optimal wavelengths selected by the simulated annealing 

algorithm. For all k values, the selected wavelengths correspond to interesting peaks, 

valleys, and inflection points of the spectrum. Clearly, the region of wavelengths < 600 

nm is favored along with the trough near 950 nm.  
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Figure 15. Average VNIR reflectance spectrum for one of the red snapper fillets with the optimal k = 3, 

4, 5, 6, 7 wavelength selections. 

The wavelength selections for the fluorescence data in relation to the average 

spectrum for one of the red snapper fillets are shown in Figure 16. For this mode, the 

initial wavelength selections are concentrated at the minima of the spectrum with no 

wavelengths near the large peak around 670 nm selected until the k = 6 case. 

   

  

Figure 16. Average fluorescence spectrum for one of the red snapper fillets with the optimal k = 3, 4, 5, 

6, 7 wavelength selections. 

Figure 17 shows the wavelength selections for the SWIR reflectance data. The 

selections for each of the k values are concentrated near the trough around 1000 nm and 

the inflection point near 1160 nm. No wavelengths above 1200 nm are selected. 
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Figure 17. Average SWIR reflectance spectrum for one of the red snapper fillets with the optimal k = 3, 

4, 5, 6, 7 wavelength selections. 

4.6.2 Classification 

4.6.2.1 Results of the Single-Mode Study 

Average cross-validated (4-fold) classification accuracies for the VNIR 

reflectance data are given in Table 9. The column labeled “Benchmark” gives the results 

for the case where all wavelengths are included. The set of columns under “Selected 

Wavelengths” list the resulting accuracies based on the spectral values at the k = 3, 4, 5, 

6, 7 optimal wavelengths. Results for the fluorescence data are provided in a similar 

manner in Table 10 and for the SWIR reflectance data in  

Table 11. Values in bold denote the highest accuracy for each number of selected 

wavelengths.  

Table 9. Single-mode classification accuracies (4-fold cross-validation) for the VNIR reflectance data. 

 
Benchmark Selected Wavelengths  

All Wavelengths k = 3 k = 4 k = 5 k = 6 k = 7 

MLP 87.7% 50.4% 60.1% 72.7% 79.7% 82.7% 

SVM 89.8% 50.6% 59.9% 68.7% 74.5% 77.6% 
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WKNN 69.8% 45.6% 56.0% 61.7% 65.1% 67.4% 

LD 91.7% 45.0% 51.2% 54.6% 58.4% 61.3% 

GNB 33.1% 26.8% 31.2% 27.3% 28.6% 31.7% 

 

Table 10. Single-mode classification accuracies (4-fold cross-validation) for the fluorescence data. 

 
Benchmark Selected Wavelengths  

All Wavelengths k = 3 k = 4 k = 5 k = 6 k = 7 

MLP 92.9% 78.9% 84.3% 86.2% 89.4% 89.9% 

SVM 82.5% 66.7% 71.7% 70.8% 79.5% 79.5% 

WKNN 79.2% 71.1% 75.2% 77.3% 77.1% 77.3% 

LD 84.1% 59.0% 62.2% 65.4% 65.5% 68.5% 

GNB 51.0% 40.2% 45.2% 44.0% 49.0% 49.0% 

 
Table 11. Single-mode classification accuracies (4-fold cross-validation) for the SWIR data. 

 
Benchmark Selected Wavelengths  

All Wavelengths k = 3 k = 4 k = 5 k = 6 k = 7 

MLP 75.8% 46.1% 56.1% 66.4% 67.7% 67.6% 

SVM 63.2% 44.5% 53.0% 62.1% 64.2% 64.1% 

WKNN 41.0% 38.7% 46.3% 50.9% 52.1% 52.6% 

LD 80.7% 38.2% 45.2% 51.1% 53.3% 54.5% 

GNB 20.3% 14.4% 14.5% 14.8% 14.7% 14.6% 

 

Looking first at the accuracies for the benchmark cases, MLP yields the highest 

accuracy for the fluorescence data but comes in second for the SWIR data and third for 

the VNIR data. The superior performance of LD, a relatively simple classifier, for the 

VNIR and SWIR benchmark cases suggests that overfitting is a significant problem for 

these cases. Accuracies for the SWIR data are far lower, with LD yielding the highest 

accuracy at just 80.65%. GNB yields the lowest accuracies for all three modes, 

reinforcing the notion that classification performance is not dependent upon the values 

from the selected wavelengths themselves but upon their values in relation to one 

another. The independence assumption of GNB results in low performance.  

Looking next at the “Selected Wavelengths” cases, MLP outperforms the other 

classifiers for all k values and spectral modes (except for the k = 3 case with the VNIR 

data). Accuracies >85% are possible given spectral values at just seven or fewer 
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wavelengths for the fluorescence data and >80% for the VNIR reflectance data. Most 

importantly, with MLP trained on only seven spectral values, the resulting accuracies are 

within 10 percentage points of the benchmark case for all three spectral modes. The 

highest performance (89.91%) is seen for the fluorescence data.  

Figure 18, Figure 19, and Figure 20 show confusion matrices for the k = 7 MLP 

results from the single-mode VNIR, fluorescence, and SWIR data, respectively. The 

classification performance is clearly best with the fluorescence data with accuracies > 

95% for many species. However, the accuracies for some other species are much lower. 

For example, goosefish has the lowest accuracy at 62.5%, being misclassified as rockfish 

28.2% of the time. This is an indication that nearly an entire goosefish fillet was 

misclassified as rockfish in one of the folds. The overall classification performance is a 

little lower with the VNIR data. Winter skate shows the lowest classification accuracy at 

39.4% in this case, being misclassified as goosefish 26.0% of the time and as almaco jack 

13.0% of the time. Much worse performance is seen with the SWIR data where we find a 

larger variety of misclassifications. Rockfish has the lowest classification accuracy at just 

15.7% with high percentages of misclassification (> 14%) as Atlantic cod, haddock, 

Pacific halibut, and Pacific cod.  
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Figure 18. Confusion matrix for the single-mode VNIR results with the k = 7 MLP (overall classification 

accuracy = 82.7%). 

 

Figure 19. Confusion matrix for the single-mode fluorescence results with the k = 7 MLP (overall 

classification accuracy = 89.9%). 
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Figure 20. Confusion matrix for the single-mode SWIR results with the k = 7 MLP (overall classification 

accuracy = 67.6%). 

The variability of these single-mode classification results with each of the four 

cross-validation folds can be seen in Figure 21. The lower and upper limits of the error 

bars in each plot represent the minimum and maximum accuracies, respectively, for the 

four-folds. The red dashed line in each plot represents the benchmark accuracy obtained 

by MLP using all wavelengths in the spectrum.  

 

  

(a) (b) 
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(c) 

Figure 21. Plot of 4-fold cross-validation accuracies for each of the five classifiers as a function of the 

number of selected wavelengths in the single-mode classification study for (a) VNIR, (b) fluorescence, 

and (c) SWIR data. The red dashed line in each plot marks the benchmark accuracy obtained by MLP 

using all wavelength in the spectrum. Error bars mark the range of accuracies for the four folds. 

The results of the single-mode classification study prove that high accuracies can 

be obtained (especially with the MLP classifier) with just seven or fewer wavelengths. 

The best benchmark performance (92.9%) using all wavelengths was seen with the 

fluorescence mode with MLP followed by VNIR reflectance (91.7%) and then SWIR 

reflectance (80.7%), both with LD. The superior performance of LD in these cases 

suggests the inclusion of all wavelengths significantly increases the potential for 

overfitting. With seven wavelengths in the fluorescence case, the MLP accuracy came 

within ~3% of the benchmark accuracy. Review of the confusion matrices from this study 

reveal that although high overall accuracies can result from these single-mode 

classifications, each spectroscopic mode has its own unique set of strengths and 

weaknesses. Furthermore, highly concentrated misclassification results were seen in a 

few cases, suggesting that entire fillets in the test sets were sometimes misclassified. This 

is likely a consequence of the somewhat small size of our current dataset. We believe 
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these misclassifications can be alleviated in future studies as we increase the number of 

fillets per species to better represent the within-species variability of the spectra. 

4.6.2.2 Results of the Fusion Classification Study 

Table 12 gives the resulting average 4-fold cross-validation accuracies for the 

MLP classifier with the spectral modes fused at the input layer. As with the single-mode 

study, the value in the “Benchmark” column is the accuracy obtained by fusing all 

wavelengths from the various modes. We present results from the fusion of all three 

modes as well as results of fusion without the SWIR mode. This latter iteration was 

included due to the poor performance with the SWIR data in the single-mode study. By 

fusing the modes, MLP is able to produce classification accuracies that exceed the 

highest accuracies from the single-mode study by > 10% for k = 3 and by > 4% at k = 7. 

An accuracy of > 90% is obtained even with only three wavelengths. The fusion 

accuracies with all three spectral modes exceed the accuracies without the SWIR data 

only by 1-2 percentage points for the k = 3, 4, 5, 6, 7 cases (and is lower for the 

benchmark case), indicating that SWIR, in fact, does not contribute independent 

information for species classification. Figure 22 shows the confusion matrix for the 

fusion of all three modes with k = 7. Note that although the rates of correct classification 

are > 99% for many species and > 90% for 20 species, the large, concentrated 

misclassification errors seen in the single-mode study were found here as well. Tuna has 

the lowest classification accuracy at 61.80%, with 27.8% of the misclassifications as 

Malabar blood snapper. In this case, less than 8% of the voxels from the two tuna fillets 

in one of the test sets were classified correctly. 
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Table 12. Resulting average 4-fold cross-validation accuracies for the fusion of spectral modes in the 

input layer of the MLP classifier. The values in the “Benchmark” column refer to accuracies obtained 

using all wavelengths in each spectral mode. 

Fusion Benchmark k = 3 k = 4 k = 5 k = 6 k = 7 

VNIR-Fluor-

SWIR 
94.9% 90.4% 92.3% 93.8% 94.8% 94.5% 

VNIR-Fluor 95.5% 88.9% 90.2% 92.4% 94.7% 94.0% 

 

 

Figure 22. Confusion matrix for the fusion of all three spectral modes with k = 7 selected wavelengths 

(overall classification accuracy = 94.5%). 

These results support the hypothesis that individual strengths of different 

spectroscopic modes can be combined to form a classifier with superior accuracy. Stated 

another way, the failure modes of each spectroscopic mode can be mitigated by the other 

two modes to significantly reduce all misclassification rates. Furthermore, Table 12 and 

Figure 22 reveal that significant improvements in accuracy are possible even with just 

three selected wavelengths from each mode. 

4.7 CONCLUSIONS 

This effort was designed to evaluate the potential of a new methodology for 

selecting narrowband wavelengths from multiple spectroscopic modes and combining the 
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spectral values at these wavelengths to enable the accurate classification of materials 

under investigation. The simulated annealing algorithm was found to robustly produce 

optimal sets of k wavelengths for k = 3, 4, 5, 6, 7. The results of the two classification 

studies confirm proof of concept for the proposed methodology to support the design of 

inexpensive hyperspectral imaging devices to classify fish species featuring homogenous 

spectral data.  
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CHAPTER 5. SIMULATED ANNEALING-BASED WAVELENGTH 

SELECTION FOR ROBUST TISSUE OXYGENATION 

ESTIMATION POWERED BY THE EXTENDED MOD-IFIED 

LAMBERT-BEER LAW 

5.1 INTRODUCTION 

In this chapter, we shift to a different application for hyperspectral wavelength 

selection: SO2 estimation for wound monitoring. A slightly modified version of the 

simulated annealing algorithm from Chapter 4 is used, but it is paired with a different 

cost function built around the Extended Modified Lambert-Beer law (EMLB), an SO2 

estimation method introduced by Huong et al. [68] which has been proven effective in 

diabetic wound monitoring [69] and robust to differences in melanin concentration. We 

re-introduce the EMLB and provide additional details on its implementation. The EMLB 

is applied with different numbers of selected wavelengths and SO2 estimation accuracy is 

evaluated with validation datasets consisting of visible band Monte Carlo simulation 

spectra representing light to dark skin types and in vivo spectra collected during an 

occlusion study from 13 Asian volunteers. To simulate the properties of a collection 

device designed with inexpensive LEDs and/or filters, these evaluations are repeated with 

the same data convolved with a 15 nm full-width half maximum (FWHM) Gaussian 

filter. Furthermore, a stability test is performed to determine the variation in prediction 

accuracy that might be experienced should the peak wavelengths of the LEDs/filters not 

match the selected wavelengths, either due to manufacturing tolerances, temperature 

fluctuations, or other phenomena. 

5.2 MATERIALS AND METHODS 
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5.2.1. Extended Modified Lambert-Beer Law 

The Extended Modified Lambert-Beer law (EMLB) was introduced by Huong et 

al. in [20] to address deficiencies in the ability of regression models such as the standard 

Lambert-Beer law and the Modified Lambert-Beer law, introduced by Twersky [70], to 

accurately estimate vital parameters including tissue oxygenation (SO2) and percent 

blood carboxyhemoglobin (COHb). The EMLB has previously been expressed (e.g., [68], 

[71], [72]) as: 

𝐴(𝜆) = 𝐺0 + 𝜇𝑎(𝜆)𝑑0 + 𝐺1𝜆 + 𝜆𝑒−𝜇𝑎(𝜆)𝑑1 (5.1) 

In this equation, the second term represents the standard Lambert-Beer law where 

𝜇𝑎(𝜆) is the wavelength-dependent absorption coefficient of blood and 𝑑0 is the optical 

path length through the skin. The remaining terms then model artifacts in the absorption 

spectrum caused by extraneous phenomena. The first term, 𝐺0, provides a constant offset 

value for the absorbance fit. The combination of these first two terms forms the Modified 

Lambert Beer law. The third term is used to model both scattering effects and absorbance 

due to melanin in the epidermis, assuming both remain approximately linear over the 

spectral region of interest. Finally, the last term is used to model the nonlinear effects that 

arise from complex light scattering and absorption in the dermis. 

To better describe how the EMLB is solved to estimate SO2 for a given 

absorbance spectrum, we rewrite the EMLB as: 

𝐴(𝜆) = 𝛽0𝐺0 + 𝛽1𝜇𝑎(𝜆)𝑑0 + 𝛽2𝐺1𝜆 + 𝛽3𝜆𝑒−𝜇𝑎(𝜆)𝑑1 (5.2) 

Note that the form of the EMLB is modified slightly from its expression in 

Equation 1 through the inclusion of the 𝛽3 parameter which adds an extra degree of 

freedom. The solution is then conducted in an iterative two-step manner. In the first step, 
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the Matlab function fminsearch is invoked to generate candidate values for the 

parameters 𝐺0, 𝑆𝑂2, 𝑑0, 𝐺1, and 𝑑1. These values are then passed to the function that 

fminsearch has been tasked to minimize. Within this function, the values for the five 

parameters are set as constants and a linear regression is performed to estimate the vales 

for the regression coefficients 𝛽0, 𝛽1, 𝛽2, 𝛽3. Finally, these regression coefficient values 

are inserted into Equation 2 and the Euclidian distance between the original spectrum and 

the EMLB reconstruction is computed and returned to fminsearch. This two-step process 

continues until either the number of fminsearch iterations exceeds 10,000 or the return 

value changes by no more than 1 × 10−20. Bounds for the SO2 estimates were set at 0.0 

and 1.0 to prevent physically unrealistic estimates. 

5.2.2 Monte Carlo Simulation 

5.2.2.1 Tools and Datasets 

Monte Carlo simulation is a common method for modeling light-skin interactions. 

Simulated photons are absorbed and/or scattered probabilistically depending on 

coefficients determined from the skin model provided by the user. Each simulation run 

typically accounts for a single wavelength, and the results of multiple runs can be 

combined to generate a full reflectance spectrum. 

One of the most popular Monte Carlo simulation tools is the Monte Carlo for 

multi-layered tissues (MCML) tool developed by Wang and Jacques [73]. MCML has 

been used extensively in published studies relating to optical measurement of skin 

parameters. Tsumura et al. [74] provide a good description of how the MCML simulation 

works. Unfortunately, MCML processing is relatively slow given the large number of 

computations that occur for each simulation. Addressing this key weakness, 
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CUDAMCML was developed by Alerstam et al. [75] to take advantage of computational 

acceleration enabled by parallel processing on a graphics processing unit (GPU). 

Two separate simulation datasets were developed for this project. The first was 

used exclusively by the simulated annealing algorithm for wavelength selection (see 

Section 2.4). It consisted of 36 simulated spectra from 450-800 nm at 1 nm resolution 

with parameters as given in Table 13. Parameter values were selected to represent typical 

values for human skin and melanin concentrations light-skinned adults, moderately 

pigmented adults, and darkly pigmented adults [76]. These parameters are discussed 

further in Section 2.3. 

Table 13. Parameters for simulated dataset used in wavelength selection. 

Parameter Value 

SO2 0.40 – 1.0 (steps of 0.05) 

Epidermis Thickness (μm) 60.0 

Dermis Thickness (cm) 2.0 

𝑓𝑚𝑒𝑙 0.015, 0.15, 0.40 

𝑓𝑏𝑙𝑜𝑜𝑑 0.05 

 

The second simulation dataset was used for validation of the wavelength selection 

and SO2 estimation algorithms and consisted of 1,000 spectra, again from 450-800 nm at 

1 nm resolution. These spectra were generated using the same parameters as given in 

Table 1, except the values for SO2 and 𝑓𝑚𝑒𝑙were selected at random from a uniform 

distribution bounded by the maximum and minimum values in Table 13. 

5.2.2.2 Simulation of Inexpensive HSI Device 

The data simulation approach of CUDAMCML effectively assumes a perfect 

sensor capable of collecting spectral information at precisely known wavelengths with 

infinitely narrow bandwidth. This assumption is a poor one for real devices and is 

particularly poor for a device which relies on inexpensive LEDs and/or filters for spectral 
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data collection. Table 14 gives peak tolerance and spectral widths for example 

narrowband LEDs in the 520-600 nm range. Thus, to model a more realistic device, the 

analysis was repeated with a copy of the simulation dataset where the spectra were 

convolved with a 15 nm FWHM Gaussian filter. Importantly, the absorption coefficients 

for oxygenated and deoxygenated blood were also convolved with the same filter for this 

analysis.  

Table 14. Example visible band LEDs in the 520–600 nm range of interest. Spectral widths are provided 

as FWHM. 

LED Peak Wavelength Peak Tolerance FWHM 

Lumiled LUXEON Z (green) [77] 520-540 nm ± 0.5 nm 30 nm 

Thorlabs LED 560L [78] 562 nm (not given) 11 nm 

Thorlabs LED 590L [78] 590 nm ± 10 nm 15 nm 

Ocean Insight Visible LED [79] 533 nm ± 5 nm 18 nm 

Osram LP-T655-Q1R2-25 [80]  562 nm ± 4 nm 19 nm 

 

Figure 23(a) shows the smoothing effect of the Gaussian convolution on an 

example spectrum. The convolution tends to flatten and broaden the two peaks which 

result from oxyhemoglobin absorption. This effect is not modeled in the EMLB, so to 

compensate, we convolve the extinction coefficients for oxy- and deoxyhemoglobin with 

the same 15 nm Gaussian filter. Figure 23(b) and Figure 23(c) show these coefficients 

before and after the convolution. Analyses were conducted on the data both before and 

after convolution to evaluate the differences in performance that might be expected 

between a costly medical or industrial grade instrument and the sort of less expensive 

device that could benefit patients in poor and rural areas. We refer to analyses with the 

original data (i.e., before convolution) as the “ideal” case and with the convolved data as 

the “convolved” case. 
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(a) 

  

(b) (c) 

Figure 23. Effects of convolution with a 15 nm FWHM Gaussian filter. (a) Example spectrum before and 

after convolution. The other plots show molar extinction coefficients for oxy- and deoxyhemoglobin (b) 

before and (c) after convolution. Convolution flattens and broadens the distinctive peaks in the 

oxyhemoglobin curve, most significantly in the higher wavelength lobe, bringing it closer to the 

deoxyhemoglobin curve. 

5.2.3 Skin Model 

Both Monte Carlo datasets were created using a two-layer skin model similar to 

the one proposed by [23] with an epidermis thickness of 60 μm [76] and a dermis 

thickness of 2 mm. This model matches the one proposed by Binzoni et al. and is 

consistent with the approximate maximum penetration depth of visible light in skin [81]. 

The upper layer is assumed to contain only melanin with volume fraction 𝑓𝑚𝑒𝑙 and the 
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lower layer to contain only blood with volume fraction 𝑓𝑏𝑙𝑜𝑜𝑑. Other skin contents (e.g., 

water and fat) are ignored since their absorption coefficients are orders of magnitude 

lower than those of melanin and hemoglobin in the 520 – 600 nm range of interest [82]. 

Absorption coefficients for 100% melanin in the epidermis layer are given by 

Meglinski and Matcher [83] as: 

𝜇𝑎,𝑒𝑝𝑖(𝜆) = 5 × 1010𝜆−3.33 (𝑐𝑚−1) (5.3) 

where the wavelength, λ, is in nanometers. These values are multiplied by 𝑓𝑚𝑒𝑙 to arrive 

at the actual absorption of light in the epidermis. The value of 𝑓𝑚𝑒𝑙 can range from 1.3 – 

6.3% for light-skinned adults, 11 – 16% for moderately pigmented adults, and 18-43% 

for darkly pigmented adults [76]. Absorption in the dermis is modeled as a combination 

of absorption by deoxyhemoglobin (Hb) and oxyhemoglobin (HbO2): 

𝜇𝑎,𝑑𝑒𝑟𝑚𝑖𝑠(𝜆) = 𝜀𝐻𝑏𝑂2(𝜆)𝐶𝐻𝑏𝑂2 + 𝜀𝐻𝑏(𝜆)𝐶𝐻𝑏 (5.4) 

where 𝜀𝐻𝑏𝑂2 and 𝜀𝐻𝑏 are the absorption coefficients for Hb and HbO2, respectively, 

given by Prahl [84], and 𝐶𝐻𝑏𝑂2 and 𝐶𝐻𝑏 are the concentrations of these two substances in 

the blood. This equation can be expressed in a more convenient form that clearly 

illustrates the role of SO2 in the absorbance: 

𝜇𝑎,𝑑𝑒𝑟𝑚𝑖𝑠(𝜆) = ((𝜀𝐻𝑏𝑂2(𝜆) − 𝜀𝐻𝑏(𝜆))𝑆𝑂2 + 𝜀𝐻𝑏) 𝑇 (5.5) 

where T is the total concentration of hemoglobin in the blood and 𝑆𝑂2 =

𝐶𝐻𝑏𝑂2 𝑇⁄ . 

Scattering coefficients, the same used for both the epidermis and the dermis, are 

provided by Stavaren et al. [85] based on experimentation with intralipid 10%. These 

values were found to closely match the scattering behavior of biological tissues as found 

by Bashkatov et al. [86]. Figure 24 shows the absorption and scattering coefficients 
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plotted as functions of wavelength over the visible range. Anisotropy factors, also 

provided by Staveren et al. [85], are computed as: 

𝑔(𝜆) = 1.1 − 0.58 × 10−3𝜆  (𝑐𝑚−1) (5.6) 

Given the small variation with wavelength over the range of interest, the index of 

refraction was set to a constant 1.4 for both layers [68], [87]. 

 

Figure 24. Scattering and absorption coefficients for the skin model used in this study. 

5.2.4 Simulated Annealing Wavelength Selection 

Instead of sensing the full resolution visible absorbance spectrum at 450 – 800 

nm, the proposed method uses just a small number of narrow wavelength bands (referred 

to simply as “wavelengths” in this paper) that are specifically chosen from the vicinity of 

the hemoglobin peaks (520-600 nm) to yield accurate SO2 estimates using the EMLB. 

Wavelength selection is accomplished via simulated annealing, a heuristic optimization 

method modeled after the metallurgical annealing process in which the metal undergoes 

controlled cooling to remove defects and toughen it. The simulated annealing algorithm 
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consists of a discrete-time inhomogeneous Markov chain with current state 𝑠(𝑖) and a 

cooling schedule defined by a starting temperature, 𝑇𝑚𝑎𝑥, a final temperature, 𝑇𝑚𝑖𝑛 <

𝑇𝑚𝑎𝑥, and a total number of steps, n [63]. The goal of the algorithm is to determine the 

minimum of a user-defined energy function, 𝐸(𝑖).  

At each iteration 𝑖 ∈ 1, ⋯ , 𝑛, a new trial state is determined by randomly selecting 

a “neighbor” of the previous state and calculating its energy. If the resulting energy is 

lower than the energy from the previous iteration, the trial state becomes the new state of 

the system. If the resulting energy exceeds the energy of the previous energy, the 

algorithm adopts the trial state with probability given by: 

𝑃(𝐸(𝑖), 𝐸(𝑖 − 1)) = 𝑒
−

[𝐸(𝑖)−𝐸(𝑖−1)]
𝑇(𝑖) (5.7) 

where 𝑇(𝑖) is the temperature at iteration i. Note that this equation allows the algorithm 

to occasionally accept states that result in an increase in energy. This can benefit the 

optimization by preventing it from becoming stuck in local minima. The probability of 

accepting such states is high at the beginning of the process when the temperature is high 

but gradually decreases with decreasing temperature. The output of the algorithm is the 

state with the lowest energy encountered throughout the annealing schedule. Figure 25 

provides a summary of this algorithm. 
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Figure 25. Flowchart for the simulated annealing algorithm used to select the best k wavelengths for SO2 

estimation. 

For this wavelength selection problem, the state is defined as an array of binary 

elements indicating the presence or absence of each wavelength in the full-resolution 

spectrum. A limit, k, is set on the number of wavelengths selected such that: 

∑ 𝐼(𝑗)

𝑁−𝑚−1

𝑗=𝑚+1

= 𝑘 (5.8) 

Under this restriction, the state for each iteration is updated by generating a 

“neighbor” of the current system state. This is done by randomly de-selecting one 

wavelength index from the current state and selecting a new one. The energy of the trial 

state is then calculated as the average absolute prediction error over the Monte Carlo 

dataset.  

The Matlab function simannealbnd served as the basis for the implementation of 

the proposed simulated annealing algorithm. The initial temperature was set to 𝑇𝑚𝑎𝑥 =

5,000 and the maximum number of iterations was set to 𝑛 = 1,000. The number of steps 
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was chosen to balance the desire for rapid processing with the need for algorithm 

convergence. The temperature function was modified to allow for a slower cooling rate 

than the default and is given by: 

𝑇 =  𝑇0𝑖𝑡𝑒𝑟
∙ 0.985(𝑖𝑡𝑒𝑟−𝑜𝑓𝑓𝑠𝑒𝑡) (5.9) 

where iter is the current number of iterations. With these settings, the probability of 

acceptance for a 1% increase in the RMSE remained above 66% for the first half the total 

iterations, allowing for a less restricted random walk through the solution space. In the 

latter half of the iterations, the acceptance probability was allowed to drop well below 

1%, enabling a more targeted search near the optimal point. After 750 iterations, 𝑇0 was 

increased to 5 and an offset was applied to the number of iterations in the exponent of 

Equation 3 to reset the cooling rate from that point. The acceptance function was 

modified to implement the exponential function in Equation 1. After every 100 iterations, 

the state was returned to state with the lowest error found thus far to ensure that the 

algorithm does a thorough search in the area of the state space which is presumably near 

the global minimum. The algorithm ended its search upon reaching the maximum number 

of iterations, or upon reaching 300 consecutive iterations with no change in the average 

prediction error greater than 1 × 10−10
, whichever came first. 

Wavelength selections were conducted for numbers of wavelengths k = 3, 5, 7, 

11, 15, 20, 40, and 60 (the total number of wavelengths to select from in the 520-600 nm 

range was 81). To prevent unnecessary selection of adjacent wavelengths for low values 

of k, a validity check was added to the simulated annealing algorithm whereby a 

candidate selection was declared invalid if the separation between any pair of 

wavelengths was less than 2 nm and k < 20. 
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5.2.5. Validation Datasets 

A two-part validation of the proposed wavelength selection and SO2 estimation 

algorithm set was performed. The first part evaluated the algorithms’ performance against 

a Monte Carlo validation dataset that was generated with CUDAMCML using the skin 

model described in Section 2.3. This simulation dataset, described in Section 2.2, enabled 

a direct evaluation of SO2 prediction accuracy since the true SO2 value was known. 

Validation was performed both on the full 1 nm resolution simulation data to represent 

the ideal case described in Section 2.2 and on a version of the same data convolved with a 

15 nm FWHM Gaussian filter to represent the convolved case. 

The second part of the validation process was performed on the in vivo dataset 

described in [71] which consists of reflectance data collected from 13 Asian volunteers 

(aged 24.3 ± 2 years). A 9W white light emitting diode (LED) (Lumileds, Philips) 

illuminated the right index finger of each volunteer from an 80 mm distance at an angle 

of 20˚ from normal. An optical fiber connected to a spectrometer (Ocean Optics 

USB4000) was placed 8 mm from the fingertip at 15˚ from normal and collected 

reflectance data at a spectral resolution of 0.2 nm in the wavelength range of 200-850 nm. 

These data were then converted from reflectance to absorbance, the 520-600 nm 

wavelength range was extracted, and the resolution was adjusted to 1 nm via cubic 

interpolation. 

5.2.6 Stability Testing 

Additionally, we conducted a series of stability tests where the selected 

wavelengths were adjusted randomly by ±1 nm to simulate uncertainty in the peak 

wavelengths. Specifically, for each iteration, a random subset of the k selected 
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wavelengths was chosen and each peak wavelength in the subset was moved at random 

by either +1 nm or -1 nm. The goal of this stability testing was to evaluate the sensitivity 

of our proposed SO2 estimation method to uncertainties in the spectral parameters of our 

hypothesized inexpensive device.   

5.3 RESULTS AND DISCUSSION 

5.3.1 Wavelength Selection 

Wavelength selections for various numbers of selected wavelengths, k, for both 

the ideal case and the convolved case, are shown in Figure 26. Notice that while 

selections for the ideal case include both lobes of the oxygenated hemoglobin extinction 

coefficient curve, selections for the convolved case tend to favor the left lobe only. This 

can be explained by observing the effect that the convolution has on the spectra as shown 

in Figure 27.    

  

(a) (f) 
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(b) (g) 

  

(c) (h) 

  

(d) (i) 

  

(e) (j) 

Figure 26. Wavelength selections for various values of k. The left column shows selections for the ideal 

case and the right column shows selections for the convolved case. (a, f) k = 5, (b, g) k = 11, (c, h) k = 20, 

(d, i) k = 40, (e, j) k = 60.  The selections are superimposed on plots of the absorption coefficients for 

oxygenated (red) and deoxygenated (blue) hemoglobin. 
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(a) 

  

(b) 

Figure 27. Simulated absorption spectra for the ideal (left) and convolved (right) cases for (a, b) low 

melanin (< 0.10) and (c, d) high melanin (> 0.30) concentrations. Each plot shows example spectra for 

low (< 0.60, blue), medium (0.60 – 0.80, green), and high (> 0.80, red) SO2 values. Note that the 

separations between the curves near the higher wavelength lobe is greatly diminished for the convolved 

case relative to the ideal case. 

Figure 27 shows example simulated spectra for low (< 0.10), medium (0.10 – 

0.30), and high (> 0.30) SO2 values for both the ideal and the convolved cases. The 

spectra in Figure 27(a) represent skin with low melanin fractions (< 0.10) and those in 

Figure 27(b) represent skin with high melanin fractions (> 0.30). For both melanin 

fractions, there is a noticeable separation between the curves near the higher wavelength 

lobe for the ideal case. However, this separation is greatly diminished for the convolved 

case. Thus, the ability to distinguish between different SO2 values using wavelengths in 
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this region is similarly diminished. Interestingly, wavelength selection does favor 

wavelengths near the lower wavelength lobe even though there is little separation 

between the curves in any of the plots of Figure 27. Selection of wavelengths in this 

region is likely needed for slope estimation (third term in Equations 1 and 2) more than 

for SO2 estimation (second and fourth terms). 

5.3.2 Validation Results 

5.3.2.1. Monte Carlo Dataset 

Mean prediction errors over the entire Monte Carlo validation dataset for the 

different numbers of selected wavelengths, k, are plotted in Figure 28 with error bars 

representing one standard deviation. For both the ideal and the convolved cases, very low 

errors (< 1%) are evident for all but the k = 3 case. Figure 29 shows these results 

separated by melanin fraction to represent light-skinned, moderately pigmented, and 

darkly pigmented adults. For all plots in both figures, we note the slight increase in 

prediction errors for the k = 81 case where all possible wavelengths are selected, 

suggesting that the inclusion of some wavelengths actually hurts the prediction accuracy 

due to as of yet unmodeled phenomena. This finding is consistent with other studies (e.g., 

[35]) which achieved higher estimation accuracy with fewer wavelengths than were 

available. The small highly overlapping error bars for k > 3 indicate that there are no 

significant differences in prediction errors for the different skin types, thus validating the 

proposed algorithm’s ability to not only accurately predict SO2, but to do so for all skin 

pigmentations.  
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(a) (b) 

Figure 28. Mean prediction error values for each number of selected wavelengths along with one standard 

deviation error bars for the (a) ideal case and the (b) convolved case. Values are computed from the entire 

Monte Carlo validation dataset. 

  

(a) (b) 

Figure 29. Prediction errors for the Monte Carlo validation dataset separated by melanin fraction 

representing light-skinned (< 0.10), moderately pigmented (0.10 – 0.30), and darkly pigmented (> 0.30) 

adults. Mean values and one standard deviation error bars are given for (a) the ideal case and (b) the 

convolved case. 

5.3.2.2 In Vivo Dataset 

Since the true SO2 values for the in vivo dataset are unknown, performance of the 

proposed algorithm was validated by its ability to yield differences in the SO2 predictions 

for the at rest and the occlusion states that are statistically significant. Figure 30 shows 

the resulting mean predicted SO2 values and one standard deviation error bars for these 

two states over all numbers of selected wavelengths. For all but the k = 3 experiment in 
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the ideal case, the separation between mean values for the at rest and occlusion states is 

statistically significant as determined via a two-tailed independent sample t-test (Matlab’s 

ttest2 function) with a confidence level of 95%. However, there is noticeable fluctuation 

in the mean values for k < 20.  

  

(a) (b) 

Figure 30. Mean prediction values and one standard deviation error bars for the in vivo dataset for the 

different numbers of selected wavelengths. Values for the subjects in the at rest state are shown in blue 

and for the occlusion state in red. Results are given for the (a) ideal case and for the (b) convolved case. 

Table 15 lists the time-averaged and student-averaged SO2 estimates for the at rest 

and occlusion states, for both the ideal and the convolved cases, and compares these 

values with values from the recent literature. The SO2 estimates from this study are thus 

consistent with those of other studies for both the at rest and occlusion conditions.  

Table 15. Time-averaged and student-averaged mean and standard deviation of SO2 estimates for the at 

rest and occlusion conditions in this study (top) compared with values from recent literature (bottom).  

 Ideal Convolved 

k At Rest Occlusion At Rest Occlusion 

3 92.59 ± 1.94% 92.53 ± 1.96% 87.28 ± 2.17% 84.20 ± 2.82% 

5 81.06 ± 5.60% 8.71 ± 4.63% 68.27 ± 2.86% 13.64 ± 3.93% 

7 69.03 ± 4.57% 13.37 ± 5.64% 65.86 ± 3.37% 3.64 ± 2.49% 

11 91.14 ± 3.34% 19.24 ± 5.36% 73.51 ± 3.15% 7.67 ± 3.66% 

15 72.35 ± 5.34% 7.16 ± 3.90% 75.84 ± 2.16% 27.45 ± 3.01% 

20 83.41 ± 3.69% 20.90 ± 4.20 74.99 ± 2.16% 26.69 ± 3.01% 

40 88.59 ± 3.03% 16.73 ± 4.57% 74.80 ± 2.08% 27.59 ± 2.99% 

60 87.98 ± 2.99% 16.17 ± 4.40% 77.37 ± 2.22% 26.36 ± 3.17% 

81 90.45 ± 2.83% 15.60 ± 4.44% 79.35 ± 2.30% 26.09 ± 3.29% 
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  Investigator Estimated SO2 

At Rest  

Caspary et al. [88] 92 ± 2.6% 

Zhang et al. [89] 93 ± 1% 

Kobayashi et al. [90] 68 ± 6% 

Thorn et al. [91] 63 ± 11% 

Huong et al. [71] 91.2 ± 5.4% 

Kyle et al. [92] 73.9 ± 5.8% 

 Bezemer et al. [93] 87 ± 3% 

Arterial Occlusion  

Kobayashi et al. [90] 48% 

Vogel et al. [94] 35% 

Ferrari et al. [95] 20% 

Huong et al. [71] 12.3 ± 8.9% 

Kyle et al. [92] 47.3 ± 7.6% 

 Bezemer et al. [93] 3 ± 5% 

5.3.3 Stability Test Results 

Figure 30 shows the absolute differences in prediction error resulting from the test 

to determine the stability of the proposed algorithm with respect to small changes in the 

selected peak wavelengths. The k > 3 experiments for ideal case are shown to be very 

stable to fluctuations in peak wavelengths with most of the error differences much less 

than 1%. Similar results can be seen for the convolved case, although there is noticeably 

more variation for the k = 7 and k = 11 cases with differences in error reaching to ~3%. 

Furthermore, the mean error differences are shifted away from zero for the k = 40 and k = 

60 cases, reflecting the increases in prediction error from the Monte Carlo validation 

study results shown in Figure 28. Given the reduction in complexity and expense offered 

by the hypothetical device enabled by the proposed algorithm, this potential for modest 

additional error may be an attractive trade off. 
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(a) (b) 

Figure 31. Results of the stability testing for (a) the ideal case and (b) the convolved case. Boxplots are 

based on the differences in prediction error between the values for the adjusted wavelength sets and those 

for the exact wavelengths selected by the simulated annealing algorithm. 

5.4 CONCLUSIONS 

This study was designed to evaluate the potential for developing an inexpensive 

device for accurately estimating SO2, regardless of skin type, via narrowband 

spectroscopy with a small number of wavelengths. The proposed simulated annealing-

based wavelength selection and EMLB-based SO2 estimation algorithm was found to 

yield SO2 estimates with low error (< 1%), using as few as five wavelengths, in both 

simulated and in vivo validation datasets. Furthermore, these results were consistent 

across skin types of low, medium, and high melanin fractions. Additional testing proved 

that the proposed algorithm is robust to slight fluctuations in the peaks of the selected 

wavelengths as might be experienced in a device constructed with cost-effective LEDs. 

Similarly, the algorithm proved to be robust to data convolution with a 15 nm FWHM 

Gaussian filter, another test conducted to model a more realistic device.  

 

 

  



 

79 

 

CHAPTER 6. RESEARCH SUMMARY AND FUTURE WORK 

6.1 SUMMARY AND FINDINGS 

The driving goal of this dissertation research was to develop algorithms and 

methods that could provide the benefits of hyperspectral imaging in a family of 

inexpensive portable devices, each designed for use in a specific application. This 

research resulted in the development of multiple algorithms for wavelength selection and 

classification/regression. Each were designed for the specific application of interest, 

although common approaches were identified which could be applied across domains. 

Simulated annealing arose as the preferred wavelength selection method due to its ease of 

use, its ready adaptability to integer selection problems, and the convenience of 

transferring to different applications by simply swapping out the cost function. For the 

fish species classification application, the MLP was identified as the classifier with the 

best performance. 

The key finding of this fish species classification study was that accurate 

classification could be achieved with just a handful (i.e., ~5-7) of properly selected 

wavelengths. We showed proof of concept that the complexity and cost of typical 

hyperspectral imaging devices could be reduced by designing them to collect data at only 

the required wavelengths. As added benefits, collection at only a handful of wavelengths 

would significantly reduce data storage requirements and preserve battery life in our 

desired inexpensive portable devices. 

The SO2 estimation study similarly found that high estimation accuracy was 

achievable with a small number of selected wavelengths. However, this study further 

investigated the feasibility of our inexpensive portable device concept through spectral 
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convolutions and peak wavelength adjustments to simulate collection with common 

LEDs and/or filters. We found that our wavelength selection and EMLB-based SO2 

estimation algorithms were robust to bandwidths of 15 nm FWHM and peak wavelength 

fluctuations of ±1 nm. 

6.2 RECOMMENDATIONS FOR FUTURE WORK 

6.2.1 Expansion of Wavelength Range for SO2 Estimation 

In our SO2 estimation study, we limited our wavelength selection to the 520-600 

nm range near the peaks of the hemoglobin extinction coefficients. In future studies, this 

range should be expanded toward the higher wavelengths, possibly including the near 

infrared. Not only could this potentially improve SO2 estimation, but it could also 

simplify device design if the selected wavelengths were further separated, ensuring less 

overlap. 

6.2.2 Expansion of In Vivo Validation of SO2 Estimation 

The validation of our proposed SO2 estimation approach relied heavily on 

analysis with Monte Carlo simulation data, with a relatively small set (13 volunteers) of 

in vivo data used only to show that our algorithms could distinguish between at rest and 

arterial occlusion conditions. This in vivo validation dataset should not only be enlarged, 

but it should also be diversified to include representatives of all six Fitzpatrick skin types. 

6.3.3 Enhanced Simulation of Inexpensive Portable Devices 

We convolved our Monte Carlo validation data in our SO2 estimation study with a 

15 nm FWHM Gaussian filter to simulate collection using common LEDs and/or filters. 

However, true LED bandwidths vary with wavelength. This means that to accurately 
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model the sort of inexpensive portable device that we envision, the bandwidth of the 

Gaussian filter should vary with wavelength accordingly. Additional enhancements to 

this model could include peak wavelength adjustments that vary with wavelength as well. 

In short, the model should be consistent the actual LEDs/filters selected for the hardware 

design. 

6.3.4 Improvements to the Extended Modified Lambert-Beer Law 

The EMLB was chosen as our SO2 estimation model due to its proven record for 

high estimation accuracy regardless of melanin concentration. However, through the 

course of our experimentation, we identified certain behaviors in the data that we believe 

is not modeled in the EMLB. For example, we found that the estimation error for the 

convolved case increased with an increasing number of selected wavelengths. 

Furthermore, the EMLB assumes that the effects of scattering and melanin absorption 

remain linear over the collected wavelength range. This assumption will likely not hold 

as we explore an expansion of our wavelength range of interest. Thus, additional work 

will be needed to model phenomena that are not currently comprehended by the EMLB. 

6.3.5 Addition of a “None” Class for Fish Fillet Species Classification 

Our fish fillet species classification studies found that high classification 

performance could be achieved with just a few selected wavelengths (and even higher 

accuracy could be achieved via fusion of spectral modes). However, the approaches 

proposed in these studies made an implicit assumption that the fillet being examined is of 

a species that is included in the classifier’s list of known classes. If this fillet’s species is 

unknown to the classifier, then the classifier will necessarily fail by declaring the wrong 

species, possibly with a high associated probability score.  
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This issue could be resolved by implementing a “none” class in the classifier. The 

purpose of this new class would be to simply allow the classifier to determine that the 

fillet under test does not look like any of the known species. 

6.3.6 Expansion to New Applications 

This dissertation research demonstrated that the proposed wavelength selection 

algorithms could be adapted to different applications. Thus far we have proven the 

success of these algorithms for food fraud detection and wound monitoring applications, 

but range of applicability of these algorithms is in no way limited to these two. Future 

studies should investigate their use in any of the many additional applications for which 

hyperspectral imaging has proven useful.  
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