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ABSTRACT  

A Smart Grid is a cyber-physical system (CPS) that tightly integrates computation and 

networking with physical processes to provide reliable two-way communication between 

electricity companies and customers. However, the grid availability and integrity are 

constantly threatened by both physical faults and cyber-attacks which may have a 

detrimental socio-economic impact. The frequency of the faults and attacks is increasing 

every year due to the extreme weather events and strong reliance on the open internet 

architecture that is vulnerable to cyber-attacks. In May 2021, for instance, Colonial 

Pipeline, one of the largest pipeline operators in the U.S., transports refined gasoline and 

jet fuel from Texas up the East Coast to New York was forced to shut down after being 

attacked by ransomware, causing prices to rise at gasoline pumps across the country. 

Enhancing situational awareness within the grid can alleviate these risks and avoid their 

adverse consequences. As part of this process, the phasor measurement units (PMU) are 

among the suitable assets since they collect time-synchronized measurements of grid status 

(30-120 samples/s), enabling the operators to react rapidly to potential anomalies. 

However, it is still challenging to process and analyze the open-ended source of PMU data 

as there are more than 2500 PMU distributed across the U.S. and Canada, where each of 

which generates more than 1.5 TB/month of streamed data. Further, the offline machine 

learning algorithms cannot be used in this scenario, as they require loading and scanning 

the entire dataset before processing. The ultimate objective of this dissertation is to develop 

early detection of cyber and physical anomalies in a real-time streaming environment 

setting by mining multi-variate large-scale synchrophasor data. To accomplish this 

objective, we start by investigating the cyber and physical anomalies, analyzing their 

impact, and critically reviewing the current detection approaches. Then, multiple machine 

learning models were designed to identify physical and cyber anomalies; the first one is an 

artificial neural network-based approach for detecting the False Data Injection (FDI) attack. 

This attack was specifically selected as it poses a serious risk to the integrity and availability 

of the grid; Secondly, we extend this approach by developing a Random Forest Regressor-

based model which not only detects anomalies, but also identifies their location and 

duration; Lastly, we develop a real-time hoeffding tree-based model for detecting 

anomalies in steaming networks, and explicitly handling concept drifts. These models have 

been tested and the experimental results confirmed their superiority over the state-of-the-

art models in terms of detection accuracy, false-positive rate, and processing time, making 

them potential candidates for strengthening the grid's security.   

Keywords: cyber-attacks, physical faults, Hoeffding Tree, Transfer learning, ADWIN, 

FDI, RFR, PMU 
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Chapter I 

Introduction 

1. Motivation and Problem Statement 

The power grid plays a critical role in the smooth functioning of modern society by 

supplying electricity to all its key pillars including transportation, communication, and 

health systems. Thus, ensuring the availability and the integrity of the power grid is 

indispensable for providing a good quality of life. Additionally, the power system is an 

important pillar for U.S national security since the U.S military installations and operations 

rely heavily on it. Due to its critical nature, the power grid can be subject to several 

malicious cyber-attacks which could cause fear in society and leave a serious socio-

economic impact. On December 23, 2015, the Ukrainian power grid was subject to a large 

cyber-attack where three different distribution companies were attacked. This incident 

resulted in several outages that caused approximately 225, 000 customers to lose power 

across various areas. The attack was due to a third party’s illegal penetration into the 

distribution companies’ computer and Supervisory control and data acquisition (SCADA) 

system which disconnected seven 110 kV and twenty-three 35kV substations for more than 

three hours [1]. A few years later, on Marth 5th 2019, the power grid control systems in 

Utah, Wyoming, and California were subject to a Denial of Service (DoS) attack causing 

disturbances and loss of visibility in certain sections of the utility's SCADA system [2]. 

Recently, in May 2021, Colonial Pipeline, one of the largest pipeline operators in the U.S., 



 

 

2 

transports refined gasoline and jet fuel from Texas up the East Coast to New York was 

forced to shut down after being attacked by ransomware, causing prices to rise at gasoline 

pumps across the country [3]. These cyber incidents, which could cost the U.S. economy 

$1 trillion [4], illustrate the detrimental impacts of cyber-attacks and the economic burden 

that they can bring to any nation’s critical infrastructure.  

Although the wide variety of industrial cyber-attacks, including the time synchronization 

attack, replay attack, DoS attack, man-in-the-middle attack (MITM), and false data 

injection attack (FDI) [5]–[8], they typically fall into one of the three major categories of 

attacks targeting availability, integrity, or confidentiality. The first category includes the 

attacks which aim at delaying or blocking the communication in the power system, such as 

the time synchronization and DoS attacks [5], [7]. The IEC standard 618501 [9] mainly 

used for power substation automation, defines several message types with specific timing 

constraints. The most time-critical message types are the Type 1A/P1 and Type 1A/P2 

which are used for Generic Object-Oriented Substation Event trip protection purposes. 

These messages have two end-to-end delay constraints: 3 ms and 10 ms [9], respectively. 

In other words, compromising the availability or even causing a delay for more than 10 ms 

in substations can block the exchange of critical protection messages. The second category 

includes attacks that alter and modify the exchanged instructions in the power system, such 

as the relay attack [6]. In the SCADA system where the Modbus protocol is used for 

exchanging instructions between a Master (e.g. Master Terminal Unit (MTU)) and slave 

(e.g. Programmable Logic Controller (PLC)), the replay attack can be used to intercept and 

inject falsified instructions. The last category comprises attacks that aim at getting 

unauthorized access to the data in the power grid network, such as the MITM attack [10], 

[11]. The order of precedence of security criteria is different depending on the type of 
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network operations. For instance, in the conventional communication network, 

confidentiality is the most important security criterion followed by integrity and then 

availability. However, in the Smart Grid network, especially in the Advanced Metering 

Infrastructure (AMI) and the Home Area Network, the availability and integrity precede 

confidentiality. In recent years, the electrical distribution system is greatly supported by 

AMI which integrates smart meters with communication networks to provide advanced 

functionalities to the customers. Unfortunately, the cyber-attacks on AMI present a clear 

danger to both utilities and customers. FDI attack was the major reason behind the most 

devastating scenario of the Ukraine blackout [12].  

Improving situational awareness within the grid is an effective preventive measure to 

detect potential anomalies, and avoid their adverse consequences. PMUs are reliable 

sensors that can collect relevant measurements and assist in increasing visibility within the 

grid [13]. PMUs collect magnitude, phase angle, frequency, voltage, and current, with a 

precise GPS-based timestamp [14]. So far, there are more than 2500 PMUs deployed in the 

North American power grid, where each of which generates between 30 and 60 samples/s 

[15], roughly 1.5 TB/month of streamed data.  

However, processing such large PMU streams requires expensive computational 

resources and faster algorithms. Further, the conventional ML algorithms, cannot be used 

in this scenario, as they require loading and scanning the entire dataset before processing. 

Thus, two important criteria have to be met by any streaming ML technique for handling 

PMU data: 1) training the model with recent history holding shorter signatures; and 2) 

adapting to concept drifts (e.g., fluctuations) in real-time. It is important to note that the 

model trained on a historical record will no longer have relevance to the incoming data 
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stream, and thus may fail to capture any critical or new events. Hence, meeting the above 

two criteria is key for successful and future real-time streaming algorithms. 

2. Dissertation goal and objectives 

Considering the cyber and physical security issues mentioned above, the goal of this 

dissertation is “to develop efficient and accurate models for detecting potential 

anomalies and cyberattacks in the smart grid in real-time”. To achieve this goal, the 

following objectives were set and met:  

• Investigate the existing anomaly detection approaches for PMU data and design 

approaches to model both physical and cyber anomalies in the Smart Grid 

environment.  

• Investigate existing algorithms to detect fault location and duration, and examine 

their performances and their application in a real-time environment.  

• Develop real-time machine learning models to classify concept drifts and anomaly 

signatures using transfer learning.  

3. Contributions 

The contributions of this dissertation are as follows:  

1. Conducting a state-of-the-art review on anomaly detection approaches 

The first contribution of this dissertation provides a comprehensive investigation of the 

existing anomalies in the smart grid. The anomalies are categorized into physical and cyber 

events; their impact on confidentiality, integrity, and availability are also examined. Then 

we provide a critical review and classification of existing anomaly detection approaches 
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into conventional, machine learning, and hybrid approaches, as well as their main 

advantages and limitations. 

2. Modeling False Data Injection (FDI) attacks and developing an Artificial Neural 

Network (ANN) detection approach.  

The second contribution provides an ANN-based approach to detecting FDI attacks. 

These attacks have been particularly selected as they target the integrity of the system and 

threaten its availability. First, the FDI attacks will be modeled and used to simulate two 

attack scenarios to generate the appropriate dataset. Next, an Artificial Neural Network 

based model is developed, trained, and compared against state-of-the-art models using 

several performance metrics including accuracy and probability of false alarm.  

3. Developing Random Forest Regressor (RFR) model to detect fault locations and 

predict their duration.  

In addition to detecting anomalies, as given by the first contribution, it is necessary to 

predict their location, especially in such heterogeneous and highly interconnected systems 

as the power system. Thus, this contribution is about developing a regression model to 

detect both fault location and duration. The RFR model has been trained on a synthetic 

dataset generated based on various fault attack scenarios simulated in the GridPACK 

framework, which is an open-source framework designed to support the development and 

implementation of Smart Grid applications developed by the Pacific Northwest National 

Laboratory (PNNL). Then, the RFR model has been extensively tested throughout four case 

studies: detection of fault location, predicting fault duration, handling missing, and 

streaming data.  

4. Developing a Real-time anomaly detection approach for streaming PMU data.  
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The streaming nature of the PMU data requires quick and accurate scanning when it 

comes to detecting anomaly events. Conventional machine learning approaches are not 

reliable to detect anomalies from the PMU data streaming environment. In this 

contribution, a transfer learning-based hoeffding tree with ADWIN (THAT) is proposed to 

detect anomalies in a real-time environment setting. The THAT model is trained on four 

event signatures with varying durations and extensively tested and compared to existing 

online machine learning models.  

The aforementioned contributions were published and presented in the following peer-

reviewed journals and conferences:  

• El Mrabet, Z.; Sugunaraj, N.; Ranganathan, P.; Abhyankar, S. Random Forest 

Regressor-Based Approach for Detecting Fault Location and Duration in Power 

Systems. Sensors 2022, 22, 458. https://doi.org/10.3390/s22020458. (Journal) 

• Z. E. Mrabet, D. F. Selvaraj and P. Ranganathan, "Adaptive Hoeffding Tree with 

Transfer Learning for Streaming Synchrophasor Data Sets," 2019 IEEE International 

Conference on Big Data (Big Data), 2019, pp. 5697-5704, DOI: 

10.1109/BigData47090.2019.9005720. (Conference) 

• Z. E. Mrabet, D. F. Selvaraj, A. S. Nair, and P. Ranganathan, "Detection of the False 

Data Injection Attack in Home Area Networks using ANN," 2019 IEEE International 

Conference on Electro Information Technology (EIT), 2019, pp. 176-181, DOI: 

10.1109/EIT.2019.8834036. (Conference) 

• Z. Mrabet and P. Ranganathan, “Cyber-Physical Attack Detection Approaches in the 

Wide Area Measurement System: A Survey”, submitted to International Journal of 

Electrical Power and Energy Systems, Elsevier. (Journal) 
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4. Dissertation organization 

This dissertation is organized as follows: Chapter 2 provides an overview of the existing 

approaches to identifying anomalies in the power system. In particular, it describes 

conventional, machine learning-based, and hybrid approaches to detecting cyber and 

physical anomalies. Chapter 3 describes the proposed ANN-based approach to detecting 

FDI attacks. The attack has been modeled and then simulated to generate the appropriate 

dataset. The proposed machine learning model has been trained, assessed, and compared 

with state-of-the-art models using several metrics. Chapter 4 focuses on detecting anomaly 

locations and predicting their duration. Several fault scenarios were considered and 

simulated in GridPACK to generate the dataset used for training and testing a Random 

Forest Regressor model. In addition, a comprehensive parametric study will be presented 

in which seven state-of-the-art models are hyper-tuned and then compared to the proposed 

model based on several metrics. Chapter 5 introduces the proposed model for detecting 

anomalies in streaming networks. In addition, it explains the dataset used to train and test 

the models, and it discusses the model performance results. Chapter 6 concludes the 

dissertation and sheds light on some future research directions.   
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Chapter II 

Cyber and Physical Anomalies Detections Approaches in Smart 

Grid  

In this chapter, we set the stage for this research. We begin by defining the research 

context, which is the Smart Grid and its cybersecurity requirements. Then, it describes the 

various Smart Grid domains, their key systems, and the various cyber and physical 

anomalies. Next, it reviews thoroughly the existing detection approaches and discusses 

their advantages and limitations. The remainder of the chapter is organized as follows: 

1Section I explains the Smart Grid, its domains, and key systems. Section II discusses the 

fundamental parameters of cybersecurity in Smart Grid. Section III categorized anomalies 

into cyber and physical and discussed their security impact. Section IV is dedicated to 

reviewing the detection approaches, which are classified into conventional, machine 

learning-based, and hybrid approaches, and highlighting their advantages and limitations.  

1. Introduction 

The National Institute of Standards and Technology (NIST) describes a Smart Grid as a 

collection of seven logical domains: generation, transmission, distribution, markets, 

customers, service providers, and operations, as shown in Figure 1. Each domain includes 

both actors and applications; actors are programs, devices, and systems, while applications 

 

1 This chapter is a slightly modified version of our paper: Z.E. Mrabet, P. Ranganathan, "Cyber-Physical Attack Detection Approaches in the 

Wide Area Measurement System: A Survey” Submitted to International Journal of Electrical Power and Energy Systems, Elsevier.  
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are tasks performed by one or more actors in each domain [16]. The following is a detailed 

description of each domain, along with its principal actors and applications.  

 

Figure 1. NIST's seven domains of the Smart Grid 

The main actor in the customer domain is the end-user. There are generally three types 

of customers: residential, commercial/building, and industrial. Besides consuming 

electricity, these actors may also produce, store, and manage it. This domain is electrically 

connected to the distribution domain and interacts with the distribution, operation, service 

provider, and market domains [16]. 

The bulk generation domain actors include electricity producers that generate electricity 

in significant quantities using resources such as oil, flowing water, coal, nuclear fission, 

and solar radiation. This domain is electrically connected to the transmission domain and 

communicates via an interface with the market domain, transmission domain, and 

operations domain [16]. 

In the transmission domain, electrical power is transmitted over long distances from the 

generation domain to the distribution domain via multiple substations. It may also be used 

to store and generate electricity. Monitoring and controlling the transmission network is 
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achieved through a SCADA system, which is made up of a communication network, control 

devices, and monitoring devices [16]. 

The distribution domain includes all entities involved in the distribution of electricity to 

and from end-users. There are various designs for electrical distribution systems including 

radial, looped, and meshed. This domain is interconnected to the transmission domain, 

customer domain, and consumption metering points; in addition to supplying energy to the 

final consumer, this domain may also be involved in producing and storing energy  [16]. 

Actors in the market domain are the operators and participants in the electricity markets. 

This domain maintains the balance between electricity supply and demand. To match 

production with demand, the market domain communicates with energy supply domains, 

including the bulk generation domain and distributed energy resources [16].   

Actors in the operations domain are those responsible for managing the movement of 

electricity. This domain ensures efficient and optimal operations throughout the 

transmission and distribution networks. During transmission, it utilizes energy 

management systems whereas, during distribution, it uses distribution management 

systems [16]. 

The service provider domain includes organizations providing services to both electrical 

customers and utilities, as well as managing services such as billing, customer account, and 

use of energy. The service provider interacts with the operation domain to provide 

situational awareness, system control, as well as communicating with the customer and 

marketplace domains to develop smart services such as enabling customer interaction with 

the market and energy generation at home [16]. 
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2. Smart grid’s system 

The seven domains discussed above are interconnected through devices and 

applications. The Customer domain includes applications and devices such as smart meters, 

appliances, thermostats, energy storage, electric vehicles, and distributed generation. In the 

Operations domain, applications and devices include SCADA as well as computers or 

display systems in the operation center. In the Transmission and Distribution domains, 

applications and devices include PMUs in transmission line substations, substation 

controllers, distributed generation, and energy storage [17]. We will discuss in detail some 

of these Smart Grid's key components in the following section. 

2.1. Substation automation 

A substation is an instrumental component of the Smart Grid network; it carries out a 

variety of functions, including receiving power from generating facilities, regulating the 

distribution, and controlling power surges. The majority of these operations are automated 

within the substation to ensure greater grid reliability [18]. They are performed through a 

variety of systems and network protocols, including remote terminal units (RTUs), the 

global positioning system (GPS), human-machine interfaces (HMI), and intelligent 

electronic devices (IEDs) [21], and IEC 61850 [19]. 

2.2. PMU-based Wide Area Measurement System (WAMS) 

The Phasor Measurement Unit provides situational awareness, operation, and reliability 

of the power system network [20]. It plays a major role in the Smart Grid network by 
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providing a near time-synchronized measurement that enables the grid operator to analyze 

the operating status of the power grid. Such a feature is achieved through the utilization of 

the synchrophasor which synchronizes the critical measurements received from different 

grid components widely distributed in the Smart Grid with a precise clock through the GPS. 

The PMU is regarded as the nervous system of the Smart Grids it is capable of providing 

time-synchronized measurements of the grid status, which enable the grid operators to react 

quickly to accidental and unexpected events.  

Since the time-synchronized measurements produced by the PMUs are sent to Phasor 

Data Concentrator (PDC) or a control center, it is important to protect all the components 

in the synchrophasor communication system. this system is called the PMU-based WAMS. 

A typical WAMS is composed of PMUs, and local and regional PDC, as illustrated in 

Figure 2.  

The PMU receives the three-phase voltages and currents coming from the power system 

network in the form of an analog signal. This signal is filtered through an anti-aliasing 

module to limit the bandwidth of the incoming signal and then converted into a digital 

signal via the (A/D) converter module. The digital signal is fed to the Central Processing 

Unit to compute the phase and magnitude of the signal using the Discrete Fourier 

 

Figure 2 A typical PMU-based WAMS architecture 
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Transformer in conjunction with the timed GPS signal. The output signal is time-

synchronized using a sampling clock that is phase-locked to the one-pulse-per-second 

provided by the GPS receiver. The pulse signals from the satellite are phase-locked with 

the sampling clock through the Phase Locked Oscillator (PLO) module. PLO divides the 

one pulse per second signal from GPS into the required number of pulses per second for 

sampling [21][22]. The time-stamped signal is transmitted to the local PDC. Then, the 

measurements from several local PDC are reported to the regional PDC. As shown in 

Figures 2 and 3.   

The communication between the PMUs and PDC is defined through various 

communications technology including the Power Line Communication (PLC), Optical 

Fiber communication, Microwave communication, Cellular communication, and Satellite 

communication. The end-to-end communication between the PDC and the PMU is also 

based on the IEEE C37.118.2-2011 standard which defines the format of the messages for 

exchanging data between the PMU and the PDC or between PDCs.  There are four types 

of messages types: data, configuration, header, and command frames. The header, 

configuration, and data frames are sent from the PMU to the PDC while the command 

frames are sent from the PDC to the PMU. The header frame provides information about 

the PMU and helps the PDC identify the PMU. In the configuration frame, there are three 

 

Figure 3. Phasor measurement unit components 
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types: CFG-1 which provides information about the capacity of the PMU, such as reporting 

rates and noise suppression, and CFG-2 and CFG-3 which provides information about the 

currently reported measurements. The data frame includes the real-time synchrophasor data 

measured by the PMU including the current, frequency and voltage, and amplitudes. 

Figure 4 shows a typical real-time communication between a PMU and a PDC through 

the IEEE C37.118.2-2011 standard. The PDC initiates the communication by sending a 

command frame to turn on the transmission and sends a request for a configuration frame 

(CFG). The PMU responds to this request, and then PDC makes another request for 

synchrophasor data. The PMU sends back the requested data which is included in a data 

frame format. In the data frame parquets, various fields serve in initiating and terminating 

the communications. For instance, the SYNC field which marks the beginning of the frame, 

a Frame Size field provides the length of the entire frame, an IDCODE field which is used 

as an ID to identify the frame, a SOC field which provides information about the time 

stamp,  A FRACSEC field which presents the time quality or time of measurements for 

data frames, and then a Cyclic Redundancy Check (CRC) which marks the end of the data 

frame [23] [24].  

 

Figure 4. PMU-PDC communication via the IEEE C37.118.2 protocol 
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2.3. Advanced Metering Infrastructure (AMI) 

The AMI falls under the domains of the customer and the distribution and is responsible 

for collecting, measuring, and analyzing energy, water, and gas consumption. It consists of 

three main components: smart meters, an AMI headend, and network communications [25]. 

A smart meter is a digital meter that automatically collects in real-time the measurement 

data and transmits them to the AMI backend. A headend consists of two components: the 

AMI server, which collects meter data, and the meter data management system (MDMS), 

which manages collected data and shares it with other systems, such as demand response, 

historians, and billing systems. Communication between the smart meters and the AMI 

headend is defined through several network protocols, including power line 

communications (PLC), Zigbee, Z-Wave, and Wireless M-Bus [25]. 

2.4. Supervisory control and data acquisition (SCADA) 

A SCADA system is used to measure, monitor, and control electrical power grids and is 

composed of three main components, including the RTU, MTU, and HMI [26]. Essentially, 

an RTU is composed of three components: the first is intended for data acquisition, the 

second is responsible for executing the instructions coming from the MTU, and the third is 

designed for communication; The MTU is responsible for controlling the RTU; HMI is a 

graphical user interface for SCADA system operators. SCADA systems communicate 

using a variety of industrial protocols, including distributed network protocol 3.0 (DNP3) 

and IEC 61850 [26]. 
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3. Cybersecurity fundamental for Smart Grid  

The NIST has identified three criteria for maintaining security and protecting 

information within the Smart Grid, including confidentiality, integrity, and availability 

[16]. The following paragraphs describe each criterion. 

3.1. Confidentiality 

Confidentiality refers to protecting both personal privacy and proprietary information 

from being accessed or disclosed by unauthorized entities, individuals, or processes [10]. 

In AMI systems, customers' energy consumption data such as patterns of energy 

consumption, metering usage, and billing information exchanged between a customer and 

various entities must be treated confidentially and privately; otherwise, the customer's 

information may be misused by unauthorized people or marketing firms [27]. Thus, the 

metrology and energy information contained within the smart meters should be treated with 

the utmost confidentiality, including the prevention of physical theft of meters and 

subsequently the stored data. 

3.2. Availability  

Availability is defined as ensuring timely and reliable access to information and systems. 

Reliable and interrupted communication is vital for continuously monitoring the state of 

the grid [10]. The unavailability of the system may cause a delay or discontinuity in the 

communication, which could adversely affect the system's stability, potentially resulting in 

a loss of power. An interruption in the network availability can, for example, disrupt the 
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operation of a control system by blocking the flow of information across the network and 

thereby preventing operators from controlling the system [10], [27]. 

3.3. Integrity  

Integrity refers to the preservation of data and systems against unauthorized 

modification or destruction [10]. The integrity of the grid can be compromised if an 

adversary succeeds in altering the sensors' measurements and relaying that biased 

information to the state estimator, resulting in an inaccurate estimation of the current state 

of the grid. The integrity requirement for AMI systems relates to both the integrity of the 

data being retrieved from the meter as well as the integrity of the control commands, such 

as preventing unauthorized control commands from being sent from the AMI headend to 

the smart meter [28]. Integrity requires both nonrepudiation and authenticity of the 

information. The principle of nonrepudiation states that individuals, entities, or 

organizations cannot perform a specific action and then deny it later; authenticity implies 

the fact that data originates from a reliable source [10], [27]. 

Accountability is another complimentary security criterion that can strengthen the 

security posture of the grid [29]. It refers to ensuring the traceability of the system and that 

the actions performed by a person, device, or public authority can be verified so that no one 

can deny their actions [29]. The recording of this information may be used as evidence in 

a court of law to identify the perpetrator [29]. 

4. Cyber-physical anomalies in Smart Grid 

A Smart grid is a Cyber-Physical System that tightly integrates computation and 

networking with physical processes and relies on actuators and sensors to monitor and 
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control complex physical processes, creating complex feedback loops between the physical 

and cyber worlds [30]. The cyber and physical systems are interconnected via information 

technology (IT) and operational technology (OT). IT refers to the application of networks 

for storing and transmitting data, such as AMI; while OT refers to monitoring and 

controlling specific devices, such as the SCADA system [31].  

Broadly speaking, anomalies correspond to patterns and abnormal behavior in data. 

These nonconforming patterns are also referred to as outliers, discordant observation, and 

exceptions [32]. In Smart Grid contexts, anomalies refer to all malfunctions either 

intentionally or unintentionally caused by physical or cyber events. Throughout this 

dissertation, we classified anomalies into two classes: cyber and physical; all anomalous 

events that are directed at compromising the IT network are considered cyber-anomalous 

events, while those that target the OT network are termed physical malicious events. 

Example of physical anomalies includes aurora attacks, power system faults, and FDI 

attacks; while cyber anomalies include GPS spoofing, jamming, scanning, MITM, Viruses, 

and DoS attacks. Figure bellow illustrates how these various cyber and physical anomalies 

are directed to the Smart Grid’s domains. In the following section, we will investigate 

several cyber and physical anomalies along with their impact on the Smart Grid’s systems.  
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Figure 5. Cyber and Physical anomalies in the Smart Grid 

4.1. Physical anomalous events 

4.1.1. Aurora attack 

A successful connection between a generation source and an electric grid requires 

coordination and synchronization of several parameters, such as frequency, voltage, and 

phase rotation. The protective relays are responsible for checking these parameters and 

allowing the connection only when they are within a pre-set tolerance (synchronism). Such 

tolerance contributes to a more reliable and robust power supply from the generator, as they 

permit a small degree of variation over a short period without permanently separating the 

generation sources [33]. The Aurora attack took advantage of this tolerance by intentionally 

tripping a breaker out of synchronism, causing mechanical and electrical stress, resulting 

in damage to equipment, as shown in Figure 6. Aurora attack targets mainly the availability 

of the generators, but it can also impact other equipment including motors, transformers, 

and adjustable frequency drives [33].  
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Figure 6. An Aurora attack scenario [33] 

4.1.2. Power system faults 

Power system physical faults are mostly caused by natural weather events, such as 

storms, high winds, or fallen trees. Sometimes, the cause can be due to an equipment 

failure, or a failing tower. These faults are generally classified into balanced and 

unbalanced faults [34][35]. An unbalanced fault, also known as an asymmetrical fault, is a 

commonly occurring fault in the power system and can be of a series or shunt type. In the 

series fault type, the voltage and frequency values increase, while the current level 

decreases at the faulty phases. In shunt fault, the current level rises, while the frequency 

and voltage levels decrease at the faulty phases. There are several shunt fault types: single 

line to ground (SLG), line to line (LL), double line to ground (DLG), and Three-phase to 

the ground (LLL). An SLG occurs when a transmission line phase touches a neutral wire 

or the ground; the DLG or LL fault occurs when two or more phases make a connection 

with the ground. According to [35], [36] the likelihood of occurrence of each fault type is 

70% for SLG, 15% for LL, 10% for DL, and 5% for LLL. Although there is a low likelihood 

of LL fault occurrence, it is considered a severe fault that can cause a rise in fault current 
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magnitude and thereby result in outages or large damage to grid assets. Hence, necessitates 

the need for fault detection and location identification model. 

There are additional anomalous events that disturb the power system, such as voltage 

spike, sage and swell, and fluctuation. Voltage spikes are instantaneous or drastic rises in 

voltage within a short period. Voltage fluctuation may result from turbine governor 

problems or rapid changes in loads. Sag results mostly from an abrupt increment of 

impedance due to losing contact; while swell may come from rapid reactive power injection 

in the network [37] 

4.1.3. False Data Injection (FDI) attacks 

 FDI attacks are designed to alter data stored in the control center or transmitted via 

communications infrastructure, which ultimately compromises the integrity of the power 

systems or even their availability. An attack of this type was first introduced by [38] in 

connection with DC system models, in which the authors assumed that the adversary had 

knowledge of the power system topology and parameters and could alter meter 

measurements while remaining consistent with physical laws such as Kirchhoff's circuit 

law to bypass the bad data detection process [31]. Such an attack could result in inaccurate 

estimates of the power system state, which is essential for a variety of power system 

applications, including economic dispatch and contingency analysis, which in turn could 

result in the state estimator sending incorrect values to the operator and leading to unstable 

system states, voltage collapses, and eventually physical and economic losses [39]. The 

authors of [40] examined the implications of a hidden FDI attack at the RTU level on AC 

state estimation and concluded that it had two negative consequences.  
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If the data is altered in a way that the state estimation schemes cannot detect as false, 

there will be an incorrect perception of the observable state of the system, which may lead 

the grid operator to take actions that endanger the system's security. Despite the detection 

of an attack, parts of the system may become unobservable, meaning the state estimator is 

unable to estimate changes in the state values (e.g., voltage magnitudes and voltage angles), 

placing the transmission grid at risk from a local physical attack. It may already be too late 

to prevent an outage of a greater part of the system by the time the effects of the physical 

attack have propagated into the rest of the system in which the state is observable. It has 

also been concluded that the FDI attacker using a DC model has a greater chance of 

introducing errors in the measurements and ultimately triggering bad data detection. Thus, 

the nonlinearity of the power flow equations provides advantages to the system operator to 

detect this type of FDI attack. However, if the attacker knows the estimated state, they can 

launch an AC FDI attack without being detected by the AC state estimation. But in reality, 

it is difficult for an attacker to obtain the same estimated state as the operators. Thus, 

authors in [41] proposed a sufficient condition for an imperfect and undetectable FDI 

attack. Authors in [42] proposed the design of blind FDI attacks based on little to no 

knowledge of the Smart Grid topology which would significantly reduce the attack cost.  

Authors in [43] have suggested another FDI attack on the electricity market, using small 

changes to the price signals to increase the difference between the generated and consumed 

power. This attack is extended here [44], in which the attacker can inject false pricing data 

at any time and repeatedly over some time, resulting in over-generation, economic losses, 

and poor power quality. Further detail about this attack will be discussed in the next chapter.  
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4.2. Cyber anomalous events 

4.2.1. GPS spoofing attacks 

GSP spoofing against PMU device. A study conducted by Daniel P. et al. [45] showed 

how a GPS spoofer was able to manipulate the PMU readings and cause a plant to trip. 

Through their experiments, they demonstrate that an attacker can manipulate the PMU time 

stamp by injecting a falsified set of the GPS signal into the antenna of the PMU’s time 

reference receiver. Injecting timing error for a few microseconds was enough for the PMU 

to violate the maximum phase error allowed by the applicable standards, Such errors can 

provide a false perception of the status of the grid, leading to unnecessary control actions 

[45]. Therefore, it is important to protect the PMU from such manipulations.  

4.2.2. Jamming attacks 

In the jamming attack, an adversary exploits the shared nature of the wireless network 

and sends a random or continuous flow of packets to keep the channel busy and then 

prevents legitimate devices from communicating and exchanging data [46]. Due to its time-

critical nature, Smart Grid requires a highly available network to meet the quality of service 

requirements and such an attack can severely degrade its performance [46]. Keke G. et al. 

[47] proposed a jamming attack named maximum attacking strategy using spoofing and 

jamming (MAS-SJ) that targets mainly the wireless Smart Grid network (WSGN). Because 

WSGN is important for monitoring the Smart Grid along with the PMUs, which play a key 

component by providing time-synchronized data of power system operating states [47], 

attacks like MAS-SJ can disturb the operation of the system or even make it unavailable 

[10].  
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4.2.3. Scanning attacks 

Scanning attacks aim at discovering all the systems and network protocols alive in the 

Smart Grid network. Obtaining such information will provide the attacker with valuable 

insight into the network topology and the deployed system, enabling them to launch a 

customized and efficient attack. Modbus and DNP3 are two industrial protocols susceptible 

to scanning attacks. As Modbus/TCP was designed for communication and not for security 

purposes, it can be compromised by an attack known as Modbus network scanning [48]. In 

this attack, a benign message is sent to all devices connected to the network, and 

information is gathered about them [48]. Modscan is a SCADA Modbus network scanner 

designed to detect open Modbus/TCP and identify device slave IDs and their IP addresses 

[49]. Nicolas R. has proposed an algorithm to scan the DNP3 protocol and discover hosts, 

specifically slaves, their addresses, and their corresponding master [50].  

4.2.4. Man-in-the-middle (MITM) attacks 

MITM attacks occur when an attacker inserts themselves between two legitimate devices 

and listens for, performs an injection, or intercepts the traffic between them. Upon 

connecting to these devices, the attacker retransmits the traffic between them; the two 

legitimate devices appear to communicate directly, however they are communicating 

through a third device [10], [19]. For example, an attacker could conduct a MITM, by 

placing himself on an Ethernet network to intercept the exchanged I/O values to the HMI 

and PLC. The MITM could also be used to intercept TCP/IP communications between a 

SCADA server and a substation gateway [10], [19]. In [51], the authors who the impact of 

MITM attacks on SCADA communication integrity. Additionally, authors in [52] 

emphasized the vulnerability of DNP3, a protocol used in SCADA, and experimented with 
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MITM attacks with two scenarios that demonstrated the possibility of intercepting 

messages exchanged between the master station and the outstations, modifying their 

content, and injecting them into the network. 

4.2.5. Denial of Service (DoS) attack  

DoS attacks aim to adversely affect the availability of a system. In the context of a Smart 

Grid, DoS attacks are typically used to prevent the control center from receiving sensor 

measurements or actuators from receiving control commands using a variety of methods, 

including jamming the communication channel by transmitting a signal with high 

transmission power to flood the targeted channel and eventually block it or violating 

network protocols to increase packet collisions. While the system operator can detect the 

attack due to the loss of measurement data, they are unable to stop it due to the inability to 

send control signals to the actuators [53], [54].  Authors in [7] proposed a DoS-based attack 

known as the puppet attack that targets the AMI network by exploiting a vulnerability in 

the dynamic source routing protocol, then exhausting the communication network 

bandwidth, causing a drop of packet delivery of 10% to 20%. The time -delay-switch attack 

[55] is another DoS attack that introduces a delay in the control system leading to instability 

in the system.   

4.2.6. Virus and warms  

Viruses are programs that are used to infect a specific device or system. Worms are self-

replicating programs that take advantage of a network to spread, replicate, and infect other 

devices and systems [10], [19]. Trojan horses are programs that appear to carry out 

legitimate functions on the target system, but run malicious code in the background [10], 

[19]. In June 2010, Roel Schouwenberg, an analyst at Kaspersky Lab, detected Stuxnet, the 
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first worm that attacks SCADA systems [56]. Stuxnet, a worm of 500 KB, exploited many 

zero-day vulnerabilities, which were not yet disclosed by the software owner. It infected at 

least 14 industrial sites based in Iran, including a uranium-enrichment plant. More than one 

year later, two more worms that targeted industrial control systems were discovered, Duqu 

and Flame. Unlike Stuxnet, Duqu was designed to gather and steal information about 

industrial control systems. Flame, on the other hand, was created to be used in cyber 

espionage in industrial networks. It has been found in Iran and other Middle East countries 

[19], [28]. 

The cyber and physical anomalies described above target different parts of the Smart 

Grid system and attempt to compromise their confidentiality, integrity, and availability to 

varying degrees. DoS attacks, for instance, target primarily the availability of the system, 

while FDI attacks compromise the integrity, as well as possibly the availability. Figure 7 

illustrates the various anomalies in Smart Grid and the corresponding compromised 

security parameters. 
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Figure 7. Cyber and Physical anomalies impact on the Smart Grid Security Parameters 

5. Anomaly detection approaches 

Several approaches for detecting cyber and physical anomalies have been reported in the 

literature [57]- [58]. Some authors have proposed conventional approaches, such as 

impedance-based and traveling wave techniques, while others have proposed machine 

learning-based approaches, which can be categorized into supervised, unsupervised, semi-

supervised, and reinforcement learning. Other authors have proposed hybrid approaches 

comprising conventional and machine learning approaches. In this section, we will examine 

all these various approaches and analyze their advantages and limitations.  

5.1. Conventional approaches 

 Some existing conventional approaches rely on the traveling wave [57] and impedance-

based methods [35],[59] for detecting anomalies in the grid. The traveling wave approach 
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needs high-speed data acquisition equipment, a GPS, sensors, and a transient fault recorder 

to detect the transient waveform for fault location. The location of the fault is computed by 

tracking” time-tagging the arrival of the traveling wave at each end of the line and 

comparing against the time difference to the total propagation time of the line with the help 

of GPS” [57]. This approach has several advantages, as the approach is not impacted by 

excessive resistance, load variance, reflection, grounding resistance, refraction of the 

traveling waves, or series capacitor bank [57]. However, the accuracy of the approach relies 

on capacitance and line inductance. Unlike the time wave method, the impedance-based 

approaches [35],[59] are simple and easy to implement, as they require only measurement 

data that include fault voltages and fault currents collected from the digital fault recorder 

or relays to compute the impedance. The accuracy of this approach can be affected in the 

case of a grounded fault, where the fault resistances can reach higher values.  

5.2. Machine learning-based approaches 

The machine learning techniques used to detect anomalies in the Smart Grid are 

categorized as supervised, unsupervised, semi-supervised, and reinforcement learning (RL) 

[60]-[61]. Supervised learning algorithms build regression or classification models from a 

set of input features and their corresponding outputs. Although there is a wide range of 

supervised models, including logistic regression and neural networks as well, they usually 

fall into one of the following categories: Decision Tree models, Function models, Bayesian 

models, and Ensemble models [62]. Unsupervised learning is the process of discovering 

hidden patterns and associations within unlabeled data. The most common unsupervised 

learning algorithm is clustering [63]. Semi-supervised learning refers to a combination of 
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supervised learning and unsupervised learning, and it is typically used in cases where 

training data is insufficient [64]. RL refers to the process of learning directed towards a 

specific objective in which an agent learns by interacting with an unknown environment, 

typically in a try-and-error way. In this process, the agent receives feedback from the 

environment in the form of a reward (or punishment); it then uses this feedback to train 

itself, as well as to acquire experience and knowledge about the environment [65].    

5.3. Supervised learning  

5.3.1. Function-based models 

Several authors have proposed supervised function-based models for detecting 

anomalies in the Smart Grid [60]-[66]. Most of these approaches were trained on data 

including input features such as voltage, current, phase angle, and fault location as output. 

For example, authors in [60] proposed a back propagation-based neural network (BPN) to 

estimate fault location in distribution networks. Here, fault current was selected as a key 

feature to train the NN model. A Levenberg-Marquardt algorithm (also known as damped 

lease square) is applied to BPN for faster convergence. Then, the BNN model was deployed 

to run on the DIgSILENT Power Factory 13.2. Similarly, a feed-forward NN (FNN) based 

approach is proposed in [67]. Here, fault voltages and fault currents are selected as two 

features to train the model. A sigmoid activation function was used to normalize the data. 

Their results showed a detection error of less than 3%. Another NN-based approach was 

proposed in [68]  to estimate fault distances from substation(s). The selected input features 

include: three-phase voltage, current, fault conditions, and active power gathered from 

substation(s). This approach was trained on different fault locations, resistances, and loads. 
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The approach was tested on an IEEE 34-bus system and yielded promising results, even 

under dynamic changes in network topology. Additionally, this approach showed more 

tolerance to noise. Although high accuracy was reported for NN based approaches in the 

above-mentioned studies, the training time required for NN is longer does not suit for 

dynamic or real- time environments. On the contrary, the SVM based approach is faster 

and relatively accurate, even for larger size data. However, it requires careful selection of 

appropriate kernel type and hyper-parameters. 

In [69], the authors proposed a convolutional neural network (CNN) based approach 

using bus voltages. This method has been trained and tested on IEEE 39-bus and IEEE 68- 

bus systems under uncertain conditions for system observability and measurement quality. 

Their results show that CNN can localize the faulted line even in low visibility (7% of 

buses) conditions. Another Recurrent Neural Networks (RNN) has been proposed in [70] 

to deal with the electricity stealth issue. Specifically, a deep autoencoder has been coupled 

with a long-short-term-memory (LSTM)-based sequence-to-sequence (seq2seq) structure 

to capture false data injected in the AMI network.  

A KNN based approach for detecting faults in a photovoltaic (PV) system is proposed 

in [71]. This approach has been trained and tested on data generated from a developed PV 

model. The reported results show a classification accuracy of 98.70% with an error value 

ranging between 0.61% and 6.5%. Another KNN based approach algorithm was applied to 

classify three-phase faults (3LG), voltage oscillation, and voltage sag scenarios in [37]. 

However, the model accuracy was not provided.  
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5.3.2. Decision tree-based models 

Several decision tree-based approaches have been proposed to deal with streaming data 

and detect the eventual anomalies. For instance, authors [72] proposed a Hoeffding Tree 

(HT) combined with two concept drift detectors: drift detection method (DDM) and 

Adaptive sliding windows (ADWIN) for building a fast decision tree that is adaptable for 

changes. This model has been trained on a synthetic dataset where different attack scenarios 

were simulated. The dataset contains normal and anomaly events, physical and cyber 

events. The physical event includes power system faults while the cyber event includes trip 

command injection, 1LG Fault replay, and Replay Disabled attacks. The model 

HT+ADWIN+DDM has been trained and tested on this heterogeneous dataset and reported 

a classification accuracy greater than 98% for binary classification.  

Similarly, authors in [73] have proposed a Hoeffding Adaptive Tree (HAT) based 

approach for detecting events from continuous streams of PMU data within computational 

boundaries of memory and processing time. The authors have conducted three experiments 

to generate a training dataset of binary classes. In the first one, synchrophasor data with 

three-phase faults has been generated and load fluctuations have been injected by changing 

the True Power (P) and Reactive Power (Q) at a regular interval to evaluate the ability of 

the HAT model in adapting to concept drift. In the second one, two classes of events have 

been generated: fault and normal classes. Fault class includes the SLG faults while the 

normal class includes normal power system operations without changing the load 

conditions. In the third experiment, non-adaptive HT with fixed size has been evaluated on 

the previously generated dataset to illustrate the impact of the tree size on the classification 

accuracy. Based on the reported results, HT showed the concept drift compared to 

traditional Decision Trees (DTs) J48 and REPTree. However, in these two studies, the 
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duration of the physical fault events was not considered while generating the training 

synchrophasor dataset. Some faults have to be monitored for a certain time to identify their 

natures. For instance, a frequency deviation of 0.15 to 1.0 Hz is considered as an inter-area 

oscillation only if the fluctuation lasts for 60 seconds [74]. Otherwise, it is considered a 

normal power system operation. In addition, some physical events are time-sensitive and if 

they are not early detected then they may lead to cascaded outages.  Thus, it is necessary to 

include the event duration as a feature in the training dataset.  

5.3.3. Bayesian-based model  

Authors in [75] proposed a Bayesian-based approach for detecting false injected data. 

Here, the authors proposed a dynamic Bayesian game-theoretic approach for detecting FDI 

attacks with incomplete information with a 98% detection rate. Other authors in [76] 

proposed a Naïve Bayed model along with RF, DT, and Logistic regression for detecting 

various cyberattacks in SCADA networks. The reported results showed satisfactory results 

in terms of detecting attacks in an offline and online network.  

5.3.4. Ensemble model  

Authors in [77] proposed an ensemble approach based on the Active learning-based 

extreme gradient Boosting (AL-XGBoost). This approach was developed to detect FDI 

attacks in a cyber-physical energy system. The average detection accuracy obtained with 

the AL-XGBoost method is 0.9784 and 0.9845 for IEEE 57- and 118-bus test systems, 

which is higher than SVM and KNN. Authors in [78] proposed an AdaBoost combined 

with a Genetic Algorithm (GA) and Deep Neural Network (DNN) to detect electricity theft 

attacks. The model has shown superiority over SVM, ANN, and RF-based on accuracy, 

true positive and false-positive rates. In [79] authors discuss a fault line identification and 
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localization approach using RF and decision tree classifiers. Here, the models were trained 

on an IEEE 68 Bus system. The generated data consists of several fault types including a 

Three-phase short circuit (TP), Line to ground (LG). The reported experiment results show 

that classification accuracy of 91%. Another RF-based approach was proposed in [80]. 

Here, the model was trained on three-phase current and voltage data, validated using an 

IEEE-34 system, and achieved an accuracy above 90%. 

5.4. Unsupervised learning  

Authors in [81] proposed an unsupervised learning model for real-time event 

classification and fault localization in synchrophasor data. Their methodology relies on 

three processes. The first process focuses on removing bad data from collected PMU 

measurements using the Maximum Likelihood Estimation (MLE) approach. In the second 

process, the events are classified using a combination of Density-based spatial clustering 

of applications with noise (DBSCAN), and logic rules were generated using a physics-

based decision tree (PDT) method. This PDT method uses parameters such as active power, 

reactive power, and fault event types. The third process reports localizing events in real-

time using a graph theory. Finally, a score metric is computed using Shannon entropy, and 

descriptive statistical parameters (e.g., standard deviation, range, mean difference, and crest 

factor). Three case studies have been considered using metrics such as precision and recall 

and their reported result show that their proposed data cleansing approach outperforms 

Chebyshev and K-means methods, with a 95% precision. Additionally, the average run-

time taken for their classification algorithm is around 0.09s for a typical window size of 30 

samples involving five PMU sensors. 
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Authors in  [61] proposed another unsupervised K-mean-based model for detecting DoS 

attacks, including UDP and ICMP flooding attacks, against the AMI network. The 

proposed model was able to cluster the normal and abnormal behaviors using unlabeled 

data, but the model’s performances were not provided.  

5.5. Semi-supervised models  

Authors in [82] proposed a semi-supervised and deep representation learning for 

detecting anomalies in WAMS including Short-circuit fault, Remote tripping command 

injection attack, and Data injection attack.  

5.6. Reinforcement learning (RL)  

Authors in [83] proposed a multiagent RL-based approach for detecting the simple and 

coordinated FDI attacks on the distributed control layer in a DC microgrid. Similarly, 

authors in [84] modeled the anomaly detection problem as a partially observable Markov 

decision process (POMDP) problem and developed a universal online detection algorithm 

based on RL for detecting FDI, DoS, and jamming attacks. The model was evaluated in an 

IEEE 14-bus system and showed a precision above 99%.  

5.7. Hybrid approaches 

Several hybrid methods combine conventional and ML approaches. For instance, 

authors in [85] proposed a wavelet transform and Support Vector Machine (SVM) to locate 

faults in transmission lines and can be described in three stages. In the first stage, voltage 

and current values emitted by a transmitter were used to locate the fault; the second phase 
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feeds a multi- class SVM model to the training based on selected influential features, and 

classification of fault location is done using a regression approach. Here, the fault 

classification error is below 1% for all fault types and specifically 0.26% for SLG, 0.74% 

for LLG, 0.20% for LL, and 0.39% for LLLG. Authors in [86] have proposed an event 

location estimation (ELE) algorithm for the wide-area monitoring system for PMU data. 

Their approach relies on clustering and wavelet analysis to detect and localize events in 

real-time. In this work, the network is initially divided into several clusters, where each 

cluster is defined as an electrical zone using K-means. Next, a wavelet-based event 

detection approach is used to detect and localize event occurrences by tracking any large 

(e.g. event magnitudes) disturbance levels. Once the event is detected, its magnitude is 

defined using a Modified Wavelet Energy value, and its location is estimated at each 

electrical zone’s. The authors implemented the ELE approach in real-world PMU-setting 

containing 32 dynamic events with an excellent localizing accuracy value. It is important 

to note that the authors did not consider data quality issues in the PMU measurements. 

Some probable causes for data quality issues could be irregular sampling or data rate, 

bandwidth challenges, and time synchronization errors. 

In [87], the authors discuss a wavelet decomposition technique combined with fuzzy 

logic to identify both faulty line(s) and their locations in a multi-terminal high voltage direct 

current network. In their paper, wavelet coefficients of both positive and negative currents 

were initially computed and then fed to a fuzzy logic-based voting system to identify the 

faulty line(s). Once the line is identified, a traveling wave-based algorithm is used to 

determine the exact fault location using the Daubechies wavelets. A discrete wavelet 

transform (DWT) combined with SVM for fault detection in distribution networks has been 

proposed in  [88]. Here, features are extracted using SVM and DT and then optimized using 
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a GA. Their model performance was evaluated on two active distribution networks (e.g., 

IEEE 13-Bus and IEEE 34-Bus systems), and the authors claim that their model 

outperforms the probabilistic neural network (PNN).  

Figure 8 and Table 1 provide a summary of these approaches along with their potential 

advantages and limitations. 

 

 
Figure 8. Conventional, ML, and hybrid approaches for detecting anomalies in the Smart Grid system 

Table 1. Cyber and physical anomaly detection approaches 

Category Approach 

Anomalous 

event 

category  

Anomalous 

event type 

Targeted 

Smart Grid 

domain 

Advantages Limitations 

Conventional 

Traveling wave 

[57] 

 Physical 

Single-phase 

grounding 

fault 

Transmission 

domain 

High tolerance 

to the excessive 

resistance, load 

variance, 

reflection, 

grounding 

resistance, 

refraction of the 

traveling wave 

or series  

capacitor  bank 

The accuracy 

of the model 

relies heavily 

on 

capacitance 

and line 

inductance 

Impedance-based 

[35] 

Unbalanced 

faults 

Transmission 

domain 

Simple and easy 

to implement 

The accuracy 

can be 
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Impedance-based 

[59] 
Shunt fault 

Distribution 

domain 

affected in 

the case of a 

grounded 

fault, where 

the fault 

resistances 

can reach 

higher 

values. 

 

 

 

 

 

Machine 

learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Back propagation-

based neural 

network (BPN)[60] 

Physical 

1 phase, 2 

phase, and 3 

phases faults 

Distribution 

domain 

The model is 

fast to converge 

and requires few 

features 

The selected 

features are 

insufficient 

to capture 

various 

anomaly 

signatures. 

KNN [71] Physical 

Open circuit 

faults, line-

line (LL) 

faults, partial 

shading with 

and with-out 

bypass diode 

faults 

and partial 

shading with 

inverted 

bypass diode 

faults in real-

time 

Generation 

domain 

Fault location 

accuracy 

reaches 98.70% 

with an error 

between 0.61% 

and 6.5%. 

The study 

considered 

the PV data 

only 

Feed-forward NN 

(FNN) [67] 
Physical Shunt faults 

Distribution 

domain 

The detection 

error is less than 

3%. High 

tolerance to the 

fault resistance, 

fault type, and 

fault location. 

The fault 

location was 

not 

considered 

and they are 

unsuitable 

for real-time 

applications  

 

 

NN [68] Physical 
Ground fault, 

short circuit 

Distribution 

domain  

High tolerance 

to noise. 

CNN [69] Physical 

TP, LG, 

double line to 

ground (DLG) 

and 

Transmission 

domain  

Optimal 

localization 

estimation even 

under low 
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Machine 

learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

line to line 

(LL) faults 

visibility (7% of 

buses) 

MLE + DBSCAN 

[81] 
Physical 

Three-phase 

fault, 

P load 

increased, 

Q load 

increased 

Distribution 

domain 

The proposed 

data cleansing 

approach 

outperforms 

Chevyshev and  

K-means and 

achieve a 

precision of 

95%. Less than 

0.9 s to classify 

events for a 

typical window 

size of 30 

sample data. 

RF+ DT [79] Physical 

Three-phase 

fault, line to 

ground (LG), 

line-to-line to 

ground, line-

to-line (LL), 

loss of line 

Distribution 

domain  

Fault location 

detection 

accuracy is 91% 

RF [80] Physical 

Single-phase 

to ground 

faults 

Distribution 

domain 

Fault location 

detection 

accuracy is 

90.96% in 

distribution 

systems 

HT+ADWIN+DDM 

[72] 

Cyber and 

physical 

Symmetric, 

unsymmetrical 

faults, and trip 

command 

injection 

attack   

Transmission 

domain 

Classification 

accuracy is 

greater than 

94% for 

multiclass and 

greater than 

98% for binary 

class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HAT [73] 
Cyber and 

physical 

Three-phase 

faults, SLG 

Transmission 

domain 

Optimal 

adaptability to 

the concept drift 

events 

OzaBag and Active 

classifier 
Cyber 

DoS, 

unauthorized 

Distribution 

domain 

ActiveClassifier 

and 
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Machine 

learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[25] access from a 

remote 

machine, to 

local super 

user (root) 

privileges, 

surveillance, 

and probing. 

SingleClassDrift 

algorithms 

reported 

satisfactory 

results in terms 

of time 

processing and 

memory 

consumption 

 

 

Fault 

location and 

duration 

were not 

considered. 

This model is 

not suitable 

for real-time 

network  

RL deep Q-network 

[83] 

Cyber and 

physical 
FDI attack 

Generation 

and 

transmission 

domains 

Effective in 

detecting simple 

and coordinated 

FDI attacks 

SVM+AIS [58] Cyber 

 DoS attack 

and 

unauthorized 

access from a 

remote 

machine 

Distribution 

and 

Consumer 

domains   

Tthe detection 

accuracy is high 

Processing 

time is high 

and it is not 

suitable for 

streaming 

data.  

The fault 

duration was 

not 

considered 

 POMPD [84] 
Cyber and 

physical 

FDI, DoS, and 

jamming 

attacks 

Transmission 

domain 

Model efficient 

in detecting 

various attacks 

with a 99% 

precision 

Model in 

unsuitable 

for real-time 

deployment.  

LSTM [70] 
Cyber and 

physical 

FDI attack and 

electricity 

theft 

Distribution 

system 

The model 

outperforms the 

Naïve Bayes, 

SVM, and 

ARIMA in 

terms of 

detection rate 

and false alarm 

with an 

improvement of 

4−21% and 

4−13%, 

respectively 
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Machine 

learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Machine 

learning 

NB, RF, DT, LR 

[76] 
Cyber 

Scanning 

attack 

Operations 

domain 

Results showed 

that these 

models are 

efficient in 

detecting 

SCADA 

cyberattacks in 

real-time.  

Neither 

attack 

location nor 

duration 

were 

considered. 

Dynamic Bayesian 

game-theoretic 

approach [75] 

Physical 
Load 

measurement  

Operation 

domain  

The model is 

effective in 

detecting 

anomalies with 

incomplete 

information and 

with a detection 

rate of 98% 

AL-XGBoost 

[77] 
Physical 

FDI attack and 

cascading 

failure 

 

 

Transmission 

domain 

The proposed 

model reaches a 

detection 

accuracy of 

99% and 

outperforms 

SVM and KNN 

Semi-supervised 

Deep representation 

learning [82] 

Cyber and 

Physical 

Short-circuit 

fault, remote 

tripping 

command 

injection 

attack, and 

FDI attack 

Transmission 

domain 

The model 

outperforms the 

supervised ML 

model in terms 

of the true 

positive rate 

Model 

suffers from 

a high false-

positive rate 

compared to 

supervised 

ML models 

AdaBoost with GA 

and DNN [78] 
Physical FDI attack 

Distribution 

domain 

Model is 

superior to 

SVM, RF, and 

NN in terms of 

detecting 

electrical theft 

with 94.8% of 

true positive 

rate 

The attack 

model was 

not provided. 

K-means [61] Cyber DoS attack 
Distribution 

domain 

Model is 

efficient in 

handling 

unlabeled data  

Model’s 

performances 

were not 

provided. 
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Hybrid 

SVM+ Wavelet 

transform [85] 
Physical 

SLG, LLG, 

LL 

Transmission 

domain 

The fault 

classification 

error is below 

1% for all fault 

types. 

The fault 

duration was 

not 

considered 

and the 

model is not 

suitable for 

streaming 

power 

system data. 

K-mean + Wavelet 

transform + ELE 

[86] 

Physical 

32 dynamic 

events 

including 

generator and 

line trips 

Transmission 

domain  

Fault location 

accuracy attain 

100% 
The fault 

duration was 

not 

considered 

and the 

processing 

time is high, 

which make 

them 

inappropriate 

for streaming 

data. 

Fuzzy logic + 

Wavelet transform 

[87] 

Physical 

Negative to 

ground 

and the 

positive to 

ground faults 

Transmission 

domain 

The error 

between the 

actual fault 

location and the 

predicted one is 

low then 

0.002% 

SVM+ Discrete 

wavelet transform 

[88] 

Physical 

High 

impedance 

fault  

Distribution 

domain 

Fault location 

accuracy is 

98.27% for 

IEEE 13-Bus 

and 98.29% for 

the IEEE 34-

Bus test systems 

 

6. Conclusions 

This chapter laid the groundwork for the following chapters by providing a 

comprehensive review of the existing cyber and physical anomalies in the Smart Grid and 

their impact on the different subsystems' security. Additionally, it reviewed in depth the 

existing detection approaches and analyzed their strengths and limitations. The next chapter 
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will analyze the FDI attack in detail and introduce a machine learning-based detection 

method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

43 

 

Chapter III 

Detection of the False Data Injection Attack in Home Area 

Networks using ANN  

This chapter focus on developing an Artificial Neural Network model for detecting False 

Injection Data (FDI) attack in the home area networks. The proposed approach is trained 

on a dataset containing the electricity demand profiles for 200 households for the Midwest 

region of the United States. However, this data set does not include any false measurement 

data. Thus, the first step is falsifying the data by injecting the false data intentionally using 

several membership functions. These membership functions are carefully selected to mimic 

the malicious manipulation caused by the FDI attack. Then, the proposed ANN model is 

trained on the prepared dataset and compared against two other machine learning 

approaches namely, SVM and RF. This Chapter is organized as follows: Section I describes 

an FDI attack model. Section III describes the methodology adopted to model the FDI 

attack using two membership functions. In addition, it explains the ANN-based detection 

approach with the relevant features that are used for training the model. Section IV presents 

the various performance metrics used to evaluate the proposed approach and discusses the 

obtained results. The conclusions and future directions are provided in the last section 2. 

 

2 This chapter is a slightly modified version of our paper "Detection of the False Data Injection Attack in Home Area Networks using 

ANN" published in the IEEE International Conference on Electro Information Technology (EIT), 2019, pp. 176-181, doi: 

10.1109/EIT.2019.8834036. 
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1. Introduction 

In the previous chapter, we discussed several FDI attack scenarios and their impact on 

the Smart Grid domains, such as the customer, operations, and market domains. These FDI 

attacks break into the system by compromising the weakest devices and network protocols, 

as shown in Figure 9. At the device level, for instance, a smart meter can be used as an 

attack vector to inject false data or even create breaches in the metering data set. Since the 

smart meters can disconnect-reconnect remotely and control the user appliance and devices 

to manage load and demands, a compromised smart meter can forge the demand request, 

such as requesting a large amount of energy or even misleading the electrical utility about 

electricity consumption and cost. The home appliances that interact with the service 

provider or with the AMI can also be maliciously manipulated causing undesirable 

consequences in the residential areas.  

 

Figure 9. A false data injection attack scenario 
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At the network level, an attacker can inject malicious traffic into the wireless network 

through attacks such as the MITM attack. Figure 10 illustrates a MITM attack scenario 

where an adversary falsifies the actual energy consumption by intercepting the data 

exchanged between the customer and the utility via the ZigBee protocol. This protocol is 

widely used for short-rand wireless data transfer, particularly for wireless low-power 

devices, but it suffers several vulnerabilities [89]. Thus, the attacker can easily compromise 

this weakest point of the system and then tap on it to launch more advanced attacks from 

within the network. The attacker can also inject false data in the sensor network in the Grid 

by tampering, misrepresenting, or forging the sensor’s data [90], [91]. These types of FDI, 

either at the device or at the network level, can cause undesirable consequences such as 

disturbing the power system state estimation and sending wrong information to the system 

operators [92]. Moreover, the FDI attack can negatively impact the electricity market by 

manipulating the real-time electricity price at any given compromised bus [93]. In [94]–

[96], the authors demonstrate that the FDI attack can interfere with the electricity market 

operations as the manipulated state estimation output affects the economic dispatch. 

Authors in [97], [98] investigate how the FDI attack can be exploited for continuous 

financial arbitrage, such as virtual bidding at a given set of buses. 

 
Figure 10. An FDI attack scenario at the Smart Grid's network-level 
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2. Related work 

In addition to the anomaly detection approaches discussed in the previous chapter, 

considerable efforts have been made specifically on the identification and mitigation of 

FDI attacks in the electric Smart Grid [38], [99]. Some of the proposed approaches are 

intended to protect the physical part of the grid while others are cyber-oriented approaches. 

From the physical security perspective, authors in [100], [101] suggested the physical 

protection of basic measurement devices by locking them in boxes or even replacing them 

with PMUs. However, the implementation of physical protection schemes of every 

measurement device in the grid can pose serious challenges in terms of cost and feasibility. 

On the other hand, an alternative and optimal solution have been proposed in [102], where 

a graphical method is used to locally protect only the vulnerable components. However, 

the question was how to identify those critical and vulnerable components in the grid? 

Authors in [103] have answered this question by proposing a contraction factor particle 

swarm optimization-based hybrid cluster technique to rank and classify each component in 

the grid based on its vulnerability, from most to least vulnerable, then to protect the weakest 

one. Authors in [11] and [99] propose cyber-security approaches as supplementary to the 

physical security countermeasures. Authors in  [11] proposed SVM and a statistical-based 

anomaly detection method to detect the FDI attack. Authors in [99] suggest a deep learning 

algorithm to recognize the features of the FDI attack using the historical measurement data, 

and these features are then used in detecting the FDI attacks in real-time.  
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3. Methodology 

3.1. FDI attack model 

Training and testing a supervised machine learning model require an appropriate dataset 

with the relevant features. To the best of the authors’ knowledge, no publicly available 

dataset includes the FDI attack that can be used to train the proposed classifier. Thus, the 

false measurements are deliberately introduced in a legitimate dataset to replicate an FDI 

attack scenario. This dataset contains the electricity demand profiles for 200 households 

available in the 2009 Residential Energy Consumption Survey dataset for the Midwest 

region of the United States for one year. The profiles have been generated using the 

approach proposed by Muratori et al. [104], which produces realistic patterns of residential 

power consumption, then validated using metered data with a resolution of 10 minutes. 

Households vary in size and number of occupants and the profiles represent total energy 

consumption. The dataset consists of four main features: date, time, energy demand, and 

the cost per kWh.  

Generally, the energy consumption of a household is the simple aggregation of all the 

individual appliances and plugin loads, thus each household has a varying load demand 

throughout the day. An FDI attack aims at introducing bias in some measurements, such as 

frequency, voltage, or energy consumption, resulting in a change of load pattern of a 

household. Figures 11 and 12 illustrate a normal energy consumption behavior and a 

falsified one using an FDI attack. By taking a reverse approach, one can simulate the FDI 

attack by simply changing the distribution of some measurements over time through the 

injection of false values. These falsifications are not injected randomly, but they follow 



 

 

48 

specific patterns that reflect the FDI attacker behavior and they can be modeled using the 

membership functions. In this study, two FDI attack scenarios are considered.    

 
Figure 11. A normal energy consumption behavior for a given household 

 

Figure 12. A falsified energy consumption via an FDI attack 

• Scenario 1: Increasing energy consumption during peak hours 

During the peak hours, the use of electricity is typically the highest from Monday 

through Friday between 8 a.m. and 10 p.m.; usually, the average price of the electricity 

usage during the peak hours is twice as that of the off-peak hours. For instance, the average 
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price of electricity in California is about 10 cents/kWh during the off-peak hours and 20 

cents/kWh during peak hours [34]. In this scenario, it is assumed that an adversary seeks to 

increase the energy consumption of a compromised smart meter during peak hours to 

increase drastically the electricity bills of the targeted user. Usually, communication within 

the AMI network is defined by the Z-wave and Zigbee protocols. These protocols can be 

exploited by several attacks including the MITM attack and replay attack [11], [99]. It 

should be noted that proposing an attack model to compromise the AMI network is out of 

the scope of this paper and it is planned as future work. To model this behavior, the 

Trapezoidal membership function is used to falsify the legitimate data. This function is 

expressed as [105]: 

 𝑢(𝑥, 𝛼, 𝛽, 𝛾, 𝛿) =

{
  
 

  
 

0, 𝑥 < 𝛼
𝑥 − 𝛼

𝛽 − 𝛼
, 𝛼 ≤ 𝑥 ≤ 𝛽

1, 𝛽 < 𝛼 ≤ 𝛾
𝛾 − 𝑥

𝛾 − 𝑦
, 𝛾 < 𝑥 ≤ 𝛿

0, 𝑥 > 𝛿

 (1) 

Here x is the time variable and [β, γ] is the peak electricity usage time interval. Figure 

13 depicts the redistribution of the energy demand following the Trapezoidal function. 
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Figure 13. Scenario 1: Increasing the energy demand consumption during peak hours. 

• Scenario 2: Increasing the energy demand during the off-peak hour for a long 

period of time 

In this case, it is assumed that the attacker performs an abnormal load increase in energy 

consumption for several hours during the off-peak hour to affect the electricity bill of a 

targeted user. Such a behavior can be modeled using the Sigmoid function which is 

expressed as [106]: 

 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (2) 

Here x represents the energy demand value. Figure 14 illustrates how the energy 

consumption during the off-peak hour is manipulated using the sigmoid function. 
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Figure 14. Scenario 2: Increasing the energy demand consumption during the off-peak hours. 

3.2. Artificial Neural Network model 

Once the falsified data are injected into the data set, the next step consists of preparing 

the data set for training the classifier. As illustrated by Figure 15, this step includes labeling 

the data, normalizing the values of the relevant features (date, time, energy demand, and 

the cost per KWh) in addition to the removal of the redundant records. Before feeding the 

dataset to the supervised classifier, it is essential to label the data. The original dataset has 

one class corresponding to the normal energy consumption (normal event). After injecting 

the false measurements, the dataset includes an additional class corresponding to the 

falsified data (FDI event). In data normalization, the values of the features are standardized 

and aligned to decrease the convergence time of the classifier. In addition, the redundant 

data are eliminated to reduce the bias toward one class and at the same time increase the 

detection accuracy of the classifier. The relevant features that are selected to detect the FDI 

attacks are the energy demand, corresponding cost, and time. The labeled, normalized, and 

standardized data set is split into training (70%) and testing (30%) data. 
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Figure 15. Conceptual diagram of the proposed approach 

In this study, ANN is used as a classifier and it is a supervised machine learning 

algorithm used for classification and regression prediction. The two terms ANN and NN 

are used interchangeably throughout the dissertation. ANN is composed of an input layer, 

two hidden layers, and the output layer where each layer is composed of several neurons. 

A neuron is a computation unit that takes a set of inputs 𝑥1, 𝑥2, … . , 𝑥𝑛  where each input is 

associated with weight, 𝑤1, 𝑤2, … . , 𝑤𝑛 and predicts the output using a non-linear activation 

function.  

A typical neuron takes several inputs 𝑥1, 𝑥2,… . , 𝑥𝑛 each of which is multiplied by a 

given weight, 𝑤1, 𝑤2, … . , 𝑤𝑛. These inputs are multiplied by their corresponding weights 

and summed together to pass them through a non-linear activation function. The equation 

of a given node is expressed as:  

 𝑧 = 𝑓(𝑏 + 𝑥 ∗ 𝑤)𝑓(𝑏 +∑ 𝑤𝑖𝑥𝑖
𝑛

𝑖=0
) (3) 

Where 𝑏 is the bias term that allows to shift the results of the activation function to the 

left or right and to train the model when the input features are 0. In this study, the inputs 

𝑥1, 𝑥2, … . , 𝑥𝑛 are the features which represent each event in the dataset. In particular, these 

features are date, time, energy consumption, and cost. These inputs are fed into an 
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activation function. In this study, three activation functions are investigated with the ANN: 

Sigmoid function, hyperbolic tangent (Tanh) function, and rectified linear unit (Relu) 

function [107]. For the Sigmoid function, the output is bounded by 0 and 1. When the input 

is very large, the output is approximately 1, and when the input is very small, the output is 

approximately 0. The values between these two extremes are shaped like an S-curve, and 

it is expressed as [107]:  

 𝑓(𝑧) =
1

1 + 𝑒−𝑧
  (4) 

Where 𝑧 is the input value of a given feature.  

In contrast to the sigmoid function, the Tanh function ranges between -1 and 1, and as 

such is preferred over the sigmoid function since it is zero-centered; it is expressed as [107]:  

 𝑓(𝑧) = tanh (0, 𝑧) (5) 

Where 𝑧 is the input value of a given feature.  

The Relu function is a non-linear function expressed as follows [107]:  

 𝑓(𝑧) = max (0, 𝑧) (6) 

Where 𝑧 is the input value of a given feature.  

In this research, the three types of activation functions are considered to train and test 

the proposed model. Training the model involves two main steps: forward propagation and 

backpropagation. The forward propagation process entails weighing the training samples 

and passing them through the activation function to compute a predicted output for each 

node; this output is compared with the actual one to measure the error using a loss function. 

Various loss functions can be adopted, including the mean absolute error, mean square 

error, mean bias error, and Cross-Entropy loss function. Given that we are dealing with a 
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classification issue, we choose the Cross-Entropy loss function which can be expressed as 

follows [108]:  

 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 = −(𝑦𝑖 log(𝑦
′
𝑖
) + (1 − 𝑦𝑖)log (1 − 𝑦′𝑖)) (7) 

Where the 𝑦𝑖  is the actual output and 𝑦′𝑖 is the computed one.  

Following the computation of the loss function, backpropagation is used to propagate 

the error to all nodes in the network and reduce the error by updating the weights using 

gradient descent optimization algorithms. There are many types of optimizers, including 

adaptive moment estimation (Adam), Adadelta, nesterov accelerated gradient, Adagrad, 

and RMSprop. According to [109], Adam is the most optimal algorithm compared to other 

gradient descent optimization algorithms. As a result, Adam is selected as an optimizer in 

this study.   

The last layer includes the softmax function to compute the probability of distribution 

over a set of mutually exclusive labels, 0 for a normal event and 1 for an FDI event, with a 

certain level of confidence. It is given by: 

 𝑦𝑖 =
𝑒𝑍𝑖

∑ 𝑒𝑍𝑗𝑘
𝑗=0

  (8) 

Where 𝑍𝑖 is the activation function of a neuron 𝑖 and 𝑘 is the total number of hidden 

neurons. After training the ANN, a portion of the training data set is used to validate the 

model. The trained model is tested against 30% of the dataset and each record is classified 

either as a normal event or an FDI attack event.   

4. Results and discussion   

The results obtained from the trained and tested ANN model are shown in Figures 16 

and 17. The optimal ANN model is then compared against two other classifiers: SVM and 
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RF. To increase the detection accuracy while avoiding the overfitting and under-fitting 

issues, a parametric study is conducted individually on these algorithms. For instance, three 

types of kernels are selected for SVM: Radial Basis Function (RBF), Sigmoid, and 

polynomial functions. In RF, the number of trees used is 10 and 100. A comparison between 

these algorithms is carried out based on several performance metrics including the 

accuracy, probability of detection (Pd), the probability of miss detection (Pmd), and the 

probability of false alarm (Pfa) [37], [38], and the results are summarized in Table 2.  

The accuracy corresponds to the number of times a normal or an FDI event is correctly 

classified among the total number of events in the dataset and it is expressed as: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠
 (9) 

The probability of detection, Pd, is defined as the number of times an FDI event is 

correctly classified against the total number of events and it is given by: 

 𝑃𝑑 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝐹𝐷𝐼 𝑒𝑣𝑒𝑛𝑡𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝐷𝐼 𝑒𝑣𝑒𝑛𝑡𝑠
 (10) 

The probability of miss detection, Pmd, is expressed as the number of times an FDI event 

is incorrectly classified as a normal event against the total number of FDI events and it is 

given by:  

 𝑃𝑚𝑑 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝐷𝐼 𝑒𝑣𝑒𝑛𝑡𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝐷𝐼 𝑒𝑣𝑒𝑛𝑡𝑠
 (11) 
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The probability of false alarm, Pfa, corresponds to the number of times a normal event 

is wrongly classified as an FDI event among the total number of normal event signals and 

it is expressed as: 

 𝑃𝑓𝑎 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝐷𝐼 𝑒𝑣𝑒𝑛𝑡𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙  𝑒𝑣𝑒𝑛𝑡𝑠
 (12) 

Figure 16 shows the accuracy of the ANN with Sigmoid, Tanh, and Relu functions 

versus the number of instances events. As it can be seen, the ANN with the Relu function 

reports higher accuracy with more than 25,000 instances compared to Tanh and Sigmoid 

function. The accuracy of NN with Relu function changes slightly between 98.4% and 

98.5% between 5,000 and 18,000 instances and then it increases and stabilizes at 99% with 

more than 23,000 instances. Tanh function’s accuracy ranges between 98.3% and 98.6% 

for more than 5,000 instances and less than 18,000, then it increases and stabilizes at 99% 

between 22,000 and 43,000 instances before it drops to 98.85% with more than 45,000 

 

Figure 16. The accuracy of NN with three activation functions: Relu, Sigmoid, and Tanh function, as a 

function of the number of instances. 
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instances. ANN with Sigmoid function has the lowest accuracy value, which equals 98% 

with 5,000 instances, and its higher accuracy, which is 99%, for a number of instances 

between 31,000 and 39,000. On average, Relu and Tanh functions report almost the same 

accuracy, which is 98.8%, followed by Sigmoid function with 98.7% accuracy. Although 

the 0.1% difference seems a very small number, it constitutes more than 52 instances in the 

dataset.  

Figure 17 shows the Pfa of NN with Relu, Tanh, and Sigmoid as a function of the number 

of instances. As one can see, the Pfa decreases as the number of instances decreases. Relu 

and Tanh function reports the lowest Pfa value, which is equal to 0.9%, with 21, 000 

instances, while Sigmoid function reaches the same Pfa value with 31 000 instances. The 

highest Pfa value is reported by the Sigmoid function with 4,830 instances. On average, the 

Relu and Tanh functions have the lowest Pfa value, which is equal to 1.16%, followed by 

the Sigmoid function with 1.24%.  
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The results obtained from these simulations suggest that the NN with the Relu activation 

function exhibits better performance as compared to NN with Sigmoid and Tanh functions. 

Although the Relu function is outperformed by the other activation function, it shows more 

stability. Thus, it can be considered as the optimal activation function for NN compared to 

Sigmoid and Tanh in terms of accuracy and Pfa. Table 2 illustrates a comparison between 

NN with the Relu activation function, RF and SVM. As it can be seen, the NN reports the 

higher accuracy, which is 99%, followed by RF (100 trees) with 94.3%, RF (10 trees) with 

92.8%, and then SVM-RBF with 86%. The lowest accuracy rate is reported by SVM with 

the polynomial kernel. In terms of probability of detection, the NN reports the highest 

accuracy, which is equal to 99.4% followed by RF (100 trees) with 88.2%, RF (10 trees) 

with 85.9%, and then SVM-Sigmoid with 80.5%. In terms of probability of miss detection, 

 

Figure 17. Probability of false alarm of NN with three activation functions: Relu, Sigmoid, and Tanh 

function, as a function of the number of instances. 
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the NN reports the lowest value, which is 0.6%, followed by RF (100 trees) with 11.8%, 

RF (10 trees) with 14.1%, and then SVM-Sigmoid with 19.5%. In terms of the Pfa, RF (100 

trees) reports the lowest value, which is 0.2%, followed by NN with 0.9%, RF (10 trees) 

with 1.1%, and then SVM-RBF with 1.8%. These results suggest that the NN with the Relu 

activation function is an optimal classifier to detect FDI attack as compared to that of SVM 

and RF in terms of accuracy, probability of detection, and probability of miss detection. 

However, RF with 100 trees outperforms the NN in terms of Pfa with less than 0.7% which 

is about 367 instances in the data set. These false alarms can impact network performance 

by consuming additional bandwidth and thus can overloading the network.  

5. Conclusions 

In this chapter, an ANN-based approach is implemented to detect the FDI attack in 

Home Area Networks. Two attack scenarios are considered to model the FDI attack using 

Sigmoid and Trapezoidal membership functions. The falsified dataset is fed to ANN for 

training and testing the model. During the training phase, three activation functions are 

investigated: Relu, Sigmoid, and Tanh functions. The results are evaluated based on several 

performance metrics and compared against SVM and RF methods. From the simulation 

Table 2. Comparison between the ANN, SVM, and RF in terms of accuracy, Pd, Pfa, and Pmd. 

Algorithm Accuracy  Pd Pmd Pfa  

SVM- RBF 86%  72.7% 27.3% 1.8%  

SVM- Sigmoid 84.3%  80.5% 19.5% 12.3%  

SVM- Polynomial 82.9%  66.9% 33.1% 2.7%  

ANN- Relu (100 neuron 

nodes) 
99%  99.4% 0.6% 0,9%  

RF (10 trees) 92.8%  85.9% 14.1% 1.1%  

RF (100 trees) 94.3%  88.2% 11.8% 0.2%  
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results, it is observed that ANN with the Relu activation function and 100 neuron nodes 

detects the falsified injected data with an accuracy of 99%. In addition, it outperforms the 

RF and SVM in terms of probability of detection, and probability of miss detection. 

However, the RF with 100 trees exhibits a low Pfa, which is 0.2% followed by ANN with 

0.9%. In the next chapter, we will improve the proposed detection approach for detecting 

the anomalies' location and predict their duration.   
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Chapter IV 

Random Forest Regressor-Based Approach for Detecting Fault 

Location and Duration in Power Systems 

This chapter is an extension of Chapter III. Specifically, the focus here is on a random 

forest regressor (RFR) based model to detect anomaly locations and predict their duration 

simultaneously. From a machine learning perspective, fault location detection is usually 

approached as a multiclass classification problem where the output would be a class label, 

fault position; while fault duration prediction is regarded as a regression problem as the 

output would be a continuous value, fault duration. GridPACK framework [110] was used 

to train the model by simulating several three-phase fault scenarios on a nine-bus system 

to generate appropriate datasets. A collection of four experiments are formulated to 

evaluate the performance of the RFR model. This chapter is organized into the following 

sections: Section 2 focuses on RFR model description, with details on simulated fault 

scenarios, feature selections, and training/testing process; Section 3 discusses the analysis 

of four experiment scenarios for classifying and predicting fault location and duration with 

off-line/streaming conditions, and Section 4 draws conclusions and recommendations for 

future work3.  

 

3 This chapter is a slightly modified version of our paper “Random Forest Regressor-Based Approach for Detecting Fault Location and 

Duration in Power Systems” published in Sensors 2022, 22, 458. https://doi.org/10.3390/s22020458 
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1. Introduction & Related work 

As we discussed in Chapter II, anomaly identification is critical for seamless Smart Grid 

operations and utilities are working around the clock to reduce outage rates from 

interruptions such as contact with natural vegetation, animals, or weather events [111]–

[113]. The unplanned outages can lead to long service interruptions and a significant 

economic impact on the customers. The cost to various consumers for a one-hour outage 

during a summer afternoon was estimated to be approximately USD 3 for a typical 

customer, USD 1200 for small and medium organizations, and USD 82,000 for large 

organizations [114]. These outage costs increased substantially depending on the time of 

year and outage duration, especially when they occur during winter. Thus, predicting faults 

in the system along with their duration is the first step towards reducing the number of 

unplanned outages and providing a prediction-based plan to the utility for deploying the 

appropriate maintenance crews and the sequence of operations [115], [116].  

Although Many power system fault detection approaches have been reported in peer-

reviewed [57]- [58], relatively few works have been carried out to predict fault duration. 

However, this is arguably pertinent information from the customer’s perspective. When a 

fault or an outage occurs and consumers ask when the power will be restored, utilities have 

to provide an accurate estimation of the recovery time. Seattle City Light provides a real-

time outage map with an estimated restoration time; however, the difference between the 

actual outage duration and the estimation time is large, possibly because of the conventional 

techniques used [115], [117]. There are few approaches in the literature that have attempted 

to address this issue. Authors in [115] proposed a real-time approach for detecting outages 

in distributed systems. This approach was based on recurrent neural network (RNN) and 
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was trained on three sources of historical data: outage report provided by Seattle City Light 

and 15 years of data, repair logs and weather information. Another approach for predicting 

faults duration in transmission systems was proposed in [116]. This approach was based on 

Naive Bayes (NB) classifier and SVM and it was trained on non-temporary fault-type data 

including features such as substation, asset type, fault category, and outage start time. The 

reported results indicated an accuracy above 97%.  

To bridge this gap, we propose an approach that maps first the location and duration of 

the fault into one single value and then applies an RFR-based model for detecting fault 

locations and predicts their duration simultaneously. Additionally, the proposed model is 

capable of predicting various faults' duration including short, medium, and large. It is 

adaptable to other case scenarios and power system datasets as it includes an ensemble of 

multiple uncorrelated trees that achieves strong generalizations; It predicts various fault 

duration including short, medium, and large duration; and It is convenient for real-time 

applications as it requires less processing time compared to the existing approaches. 

GridPACK framework [110] was used to train the model by simulating several three-phase 

fault scenarios on a nine-bus system to generate appropriate datasets. A collection of four 

experiments are formulated to evaluate the performance of the RFR model. The model was 

evaluated in experiment 1 for fault detection accuracy, then compared to seven classifiers: 

ANN, DNN, SVM, KNN, NB, DT, and HT. The RFR model was evaluated in experiment 

2 for predicting fault duration, then compared to the regression version of models such as 

support vector regressor and decision tree regressor. Mean squared error (MSE) and mean 

absolute error (MAE) were used as evaluation metrics. In experiment 3, the RFR was 

examined in terms of handling missing data possibly caused by equipment failure, data 

storage issues, or unreliable communication. The RFR was tested in a streaming data 
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environment in experiment 4, where multiple window sizes were considered. The MSE and 

processing time for the RFR were then compared to HT and DNN. The HT and DNN 

models are commonly suggested for power system streaming data [99], [118].  

2. Methodology  

2.1. Random Forest Regressor (RFR) Model  

Random forest 𝐹 is an ensemble approach with several independent and uncorrelated 

DT 𝐹 = 𝑡1, 𝑡2, … . , 𝑡𝑡. These uncorrelated trees assist model 𝐹 in achieving an accurate 

generalization by injecting randomness into the DT.  𝐹 is a bagging approach that combines 

several high variance and low bias trees to create low bias and low variance models using 

bootstrapping and aggregation techniques [119], [120]. Consider a training set S =

{𝑋𝑚 , 𝑌𝑚}(𝑀=1)
𝑚  , where X ⊂  𝑅𝐷and consists of input feature space with parameters such 

as voltage (𝑣), phase angle (φ), current (𝑖), and frequency (𝑓). 𝑌 is a multidimensional 

continuous space 𝑌 ⊂ 𝑅𝐷′, and includes both the fault location and corresponding fault 

duration. 𝑀 is the number of samples, and bootstrap is a subset 𝑆t of the entire training set 

𝑆, where each instance has been randomly sampled using a uniform distribution with or 

without replacement. The resulting bootstrap data includes the same number of instances 

as the original data set 𝑆; however, approximately 1/3 of these samples are duplicated and 

approximately 1/3 of the instances are removed from the bootstrap sample. Multiple passes 

are performed on the input data to create bootstraps for each tree. Once the training and 

testing are completed on the bootstrap data, the prediction of all the independent trees is 

averaged as one aggregated value. By distributing the training set across multiple trees and 
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training each one on a subset of the training data, the model generated does not overfit; and 

since the model is built using low bias trees, the underfitting problem is also avoided.  

Assuming that output variables follow a multivariate Gaussian distribution with mean 𝜇 

and covariance Σ, the regression posterior can be modeled as  

 𝑃(𝑦|𝑥,𝑃𝑡) = 𝑁𝑡(𝑦|𝜇𝑡, Σ𝑡) (13) 

where 𝑃𝑡 is a partition built by a random tree 𝑡𝑡, 𝑁𝑡 is a multivariate Gaussian with mean 

𝜇𝑡, and covariance Σ𝑡 is predicted in the output space 𝑌 from the subsets of the training 

dataset. The purpose of training the trees is to reduce the uncertainty related to the 

multivariate Gaussian model, especially when an appropriate splitting function 𝑓 must be 

selected to split the subset 𝑆𝑙 of the training set. These calculations are performed at each 

arriving node 𝑁𝑙 in the tree 𝑡𝑡 to reduce any prediction uncertainty caused due to “splitting”.  

An example of function 𝑓 includes information gain and the Gini index. The unweighted 

differential entropy function, which is a continuous version of Shannon’s entropy (SE), is 

considered an optimal function for computing information gain in a regression task [119], 

[120]. The SE function was selected, as it reported satisfactory results in terms of prediction 

error, defined as 

 𝑓(𝑆𝑙) = ∫ ∑𝑃(𝑦|𝑆𝑙) log(𝑃(𝑦|𝑆𝑙))𝑑𝑌

𝑛

𝑖=1(𝑦∈𝑌)

 (14) 

Where 𝑖 is a  given input instance and 𝑦 is output including both fault duration and 

location. As we model the posterior using multivariate Gaussian, 𝑓 can be rewritten as [34]  

 𝑓(𝑆𝑙) =
1

2
log((𝜋 exp)𝐷

′
|Σ(𝑆𝑙)) (15) 
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where Σ(𝑆𝑙) is the covariance matrix estimated from the subset 𝑆𝑙 . After splitting the 

subset𝑆𝑙 at node 𝑁𝑡 into two subsets nodes, 𝑆𝑙
𝑟𝑖𝑔ℎ𝑡

 and 𝑆𝑙
𝑙𝑒𝑓𝑡

, using function 𝑓, the 

information gain ∆  is calculated using  

 ∆ = 𝑓(𝑆𝑙) − 𝑤𝑙𝑓(𝑆𝑙
𝑙𝑒𝑓𝑡) − 𝑤𝑟𝑓(𝑆𝑙

𝑟𝑖𝑔ℎ𝑡) (16) 

where 𝑤𝑙 =
|𝑆𝑙|

|𝑆𝑙
𝑙𝑒𝑓𝑡

|
 and 𝑤𝑟 =

|𝑆𝑙|

|𝑆𝑙
𝑟𝑖𝑔ℎ𝑡

|
. Once the training phase is completed, the prediction 

phase consists of sending the new received instances through the trees of the forest and the 

posteriors of all the trees are estimated using the following equation:  

 𝑃(𝑦|𝑥) =
1

𝑇
∑𝑃(𝑦|𝑥,𝑃𝑡)

𝑇

𝑡=1

 (17) 

where T is the number of trees in the forest and 𝑃𝑡 is the partition introduced by 𝑃𝑡. 

Given any new instance, the model can predict its corresponding fault duration and location 

by maximizing a posterior:  

 �̂� = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦∈𝑌

𝑃(𝑦|𝑥) (18) 

2.2. Dataset  

The simulated fault scenarios were completed using GridPACK software, an open-

source framework designed to support the development and implementation of Smart Grid 

applications. Examples of these applications include power flow simulations for the electric 

grid, contingency analysis of the power grid, state estimation based on electric grid 

measurements, and the dynamic simulation of the power grid. These applications are 

capable of running on high-performance computing architecture (HPC) [110]. The dynamic 

simulation application package in GridPACK was selected to simulate a three-phase fault 

at various bus locations with different fault duration(s) using a nine-bus system. The faults 
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duration was varied from 0.05 to 0.5 s along with fault strength levels, such as magnitude. 

An example of scenario one is depicted in Figures 18 and 19. Three features were selected 

to capture both the fault location and duration: the voltage magnitude (𝑉𝑚) at each bus, the 

phase angle (φ) at each bus, and the frequency (f) of the generators. The timing of the fault 

applied to each bus was ten seconds. The total number of samples for all simulated 

scenarios equaled 53,512 samples. A summary of the training and test data is listed in Table 

3. Additionally, Figure 20 illustrates a conceptual diagram of the proposed approach 

starting from simulation fault scenarios to evaluating the RFR model’s performances.  

 
Figure 18. The phase angle of the 9 buses after injecting a three-phase fault. 
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Figure 19. Voltage magnitude of the 9 buses after injecting three-phase fault. 

 

 

 

 

 

Table 3. Common three-phase fault modeling for nine scenarios with different duration 

Scenario Fault location Fault duration 
Simulation 

time 

Number of generated 

sample for each fault 

duration 

Number of generated 

samples for each 

scenario 

Scenario 1-

9 

Apply fault at 

bus  

1-9 

0.05s to 0.5s 

with a step of 

0.05s 

10s 594 samples 

5945 samples/scenario. 

Total number of samples 

is 53512 
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3. Experiments and Metrics  

Four experimental scenarios were considered for the evaluation of the RFR model 

performance. The proposed model was assessed based on the accuracy metric in experiment 

1, which is the ratio of the correctly classified fault location cases over the total number of 

cases. The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metric can be expressed as  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (19) 

where 𝑇𝑃 is the true positive, 𝑇𝑁 is the true negative, 𝐹𝑃 is the false positive, and 𝐹𝑁 

is the false negative. These values were obtained from the confusion matrix. The second 

set of experiments evaluated the model’s performance when predicting the fault duration. 

As this feature is a continuous value, the accuracy metrics cannot be used; therefore, other 

performance metrics, such as 𝑀𝐴𝐸 and 𝑀𝑆𝐸, were selected. The 𝑀𝐴𝐸 is the average of 

the absolute differences between the actual and predicted fault duration, and it is given by  

 𝑀𝐴𝐸 =
1

𝑛
∑|(�̂� − 𝑦)|

𝑛

𝑖=1

 (20) 

where �̂� is the predicted fault duration, 𝑦 is the actual fault duration, and 𝑛 is the number 

of instances or cases. Unlike 𝑀𝐴𝐸, 𝑀𝑆𝐸 has the benefit of penalizing for significant errors 

because it averages the squared differences between the actual fault duration and the 

predicted one, expressed as  

 𝑀𝑆𝐸 =
1

𝑛
∑(�̂� − 𝑦)2
𝑛

𝑖=1

 (21) 

The 𝑀𝑆𝐸 and 𝑀𝐴𝐸 of the proposed model were compared to the regression version of 

the other seven models listed above. The fault duration and location were evaluated in a 

streaming window environment during experiment 3.  
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3.1. Models Hyper-parameters Tuning  

To conduct a fair comparison between RFR and the other models, a hyper-parameter 

study was conducted to determine the optimal parameters. Two approaches can be 

investigated to select the best hyper parameters: GridSearch and RandomizedSearch [121]. 

The former is convenient for an exhaustive search for the best-performing hyper parameters 

given advanced computing resources, whereas the latter defines a grid of hyper parameters 

and randomly selects the optimal one [121]. GridSearch was employed to examine, in-

depth, the relevant parameters for each model and their optimal values using a subset of the 

data. For KNN, two weighting functions were chosen with varying numbers of neighbors: 

uniform and distance. In uniform weighting, all points within the neighborhood are 

weighted equally, while in distance weighting, closer neighbors are given more weight 

[122]. In the RFR method, two maximum features methods were selected, sqrt and log2, to 

determine the number of features to consider when looking for the best split. For SVM, two 

kernel types were chosen, polynomial and RBF. A range of regularization parameters (C) 

was also considered. For NN, two activation functions were selected in conjunction with a 

variety of hidden nodes. In DT, the minimum number of samples needed to split a node 

internally was determined; additionally, various values were investigated to control 

randomness within the tree. Alpha and lambda were selected as the shape parameters for 

NB; alpha is the shape parameter for the Gamma distribution before alpha, and lambda is 

the shape parameter for the Gamma distribution before lambda [122]. For DNN, two 

numbers of hidden layers were chosen, each of which has multiple hidden neuron nodes. 

Finally, two split functions were investigated for HT with varying split confidence values.  
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Table 4 provides the GridSearch methods results for the various models. The optimal 

parameters for each model are highlighted. KNN reported the lowest MSE values, 6.7 and 

0.16 standard deviation, with the distance weight function and 100 neighbors. According 

to these results, KNN fits data more smoothly with an increasing number of neighbors; this 

is because more neighbors reduce the edginess by taking into account more data, thus 

lowering the overall error of the model. SVM reaches low error, 5.9, when using RBF 

kernel and a regularization parameter (C) set to 10. These results reflect that increasing the 

C value can contribute to low error rates, possibly because there are more potential data 

points within the margin or that were incorrectly classified, which can be corrected by using 

a high C value. DT performs better with a leaf size of six and a random state of one. Based 

upon these results, it appears that increasing the minimum leaf size will increase the 

model’s ability to determine the appropriate pruning strategy, and, as a result, improve its 

performance.  

Table 4. Hyper tuning parameters for KNN, RF, DNN, DT, NB, HT, NN, and SVM. 

Model Hyperparameters 
Mean Squared 

Error 

Standard 

Deviation 

KNN 
Weight 

function 

Uniform 

1 11.21 2.6 

10 7.25 0.45 

100 6.71 0.17 

Distance 

1 11.21 2.6 

10 7.24 0.43 

100 6.7 0.16 

SVM 

Polynomial 

kernel 

C=1 6.013 0.11 

C=5 6.13 0.14 

C=10 6.16 0.08 

Radial 

basis function  

(RBF) kernel 

C=1 6.09 0.14 

C=5 6.17 0.08 

C=10 5.9 0.1 

DT Random state 0 10.51 3.56 
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Model Hyperparameters 
Mean Squared 

Error 

Standard 

Deviation 

Minimum leaf 

size = 1 

1 10.39 3.65 

2 10.58 3.57 

Minimum leaf 

size = 6 
Random state 

0 9.32 3.15 

1 9.29 3.12 

2 9.31 3.15 

DNN Relu function 

5 hidden layers 

50 hidden 

nodes 
1.20 × 10−2 2.40 × 10−3 

100 hidden 

nodes 
1.12 × 10−2 1.39 × 10−3 

150 hidden 

nodes 
1.14 × 10−2 1.39 × 10−3 

10 hidden 

layers 

50 hidden 

nodes 
1.12 × 10−2 3.51 × 10−3 

100 hidden 

nodes 
1.14 × 10−2 1.39 × 10−3 

100 hidden 

nodes 
1.20 × 10−2 2.40 × 10−3 

RFR 

Max feature: 

sqrt 

Number of 

trees 

1 10.31 2.68 

10 6.45 0.53 

100 6.2 0.67 

Max feature: 

log2 

Number of 

trees 

1 10.52 2.68 

10 6.75 1.26 

100 6.15 0.63 

NN 

Relu 

function 

Number of 

hidden nodes 

150 4.37 0.18 

300 4.64 0.23 

450 4.62 0.12 

Identity 

function 

Number of 

  hidden nodes 

150 6.15 0.08 

300 6.15 0.06 

450 6.16 0.08 

NB 

Alpha = 1 × 10−6 Lambda 

1 × 10−6 1.26 × 10−3 1.42 × 10−4 

1 × 10−4 1.17 × 10−3 1.56 × 10−4 

1 × 10−2 1.07 × 10−3 1.66 × 10−4 

Alpha = 1 × 10−4 Lambda 

1 × 10−6 1.14 × 10−3 1.98 × 10−4 

1 × 10−4 1.19 × 10−3 1.51 × 10−4 

1 × 10−2 1.15 × 10−3 2.37 × 10−4 

HT 
Split function: 

Gini Index 

Split 

confidence 

1 × 10−5 12.41 4.88 

1 × 10−4 14.53 6.13 

1 × 10−3 14.91 6.24 
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Model Hyperparameters 
Mean Squared 

Error 

Standard 

Deviation 

Split function: 

Information gain 

Split 

confidence 

1 × 10−5 10.88 2.89 

1 × 10−4 11.24 8.13 

1 × 10−3 17.64 7.22 

 

The optimal DNN configuration entails five hidden layers, each of which contains 100 

hidden nodes with the Relu function. These results suggest that the number of hidden layers 

and hidden neuron nodes did not dominate the model’s performance; that is, the model 

obtained the best results without overfitting by using five hidden layers, each containing 

100 neuron nodes. The RFR showed optimal results using log2 as a maximum feature and 

100 trees. When splitting a node with log2 as a maximum feature, RFR is better able to find 

the optimal size of the random subset of features. An optimal configuration of NN includes 

a Relu function and 150 hidden nodes. NN results indicate that an increased number of 

trees does not improve the model’s performance, but rather the choice of an activation 

function; Relu has demonstrated a lower error rate than identity. The optimal alpha and 

lambda settings for NB were set to 1 × 10−6 and 1 × 10−2, respectively. NB’s results 

indicated that changes to alpha or lambda values do not have a significant impact on model 

performance. HT’s optimal parameters are information gain, as a split function, and split 

confidence set to 1 × 10−5. HT’s results indicated that selecting a lower confidence level 

while using information gain reduced error rates and their standard deviations significantly.  

3.2. Experiment Result #1: Fault Location Detection  

The results of experiment 1 are depicted in Figure 21. This figure explores the 

comparison between the proposed model (RFR) and the other seven models in terms of 

fault location detection accuracy at nine different fault locations. At fault location 1, the 
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RFR approach detects approximately 92% of the faults, followed by DNN with 80% 

accuracy. NB reports the poorest performance with an accuracy rate below 2%. At the 

second location, DNN and RF report similar results, 71%, followed by KNN, NN, and 

SVM. At the third fault location, RFR reports the highest accuracy rate, 94%, followed by 

DNN with 78%, then KNN with 46%. RFR detects 76% of the faults at fault location 4, 

compared to DNN at 60%. Table 5 provides the processing time along with accuracy for 

the training and testing of these models. Although the testing time for the NN, NB, and DT 

models is relatively low, the accuracy was under 20%. Alternatively, RFR and DNN 

reported respective accuracy of 84% and 72% with a short test time below 0.046 s.  

3.3. Experiment Results #2: Fault Duration Prediction  

The fault duration prediction results are illustrated in Figure 22. The lowest reported 

MAE values were from the RFR, HT, and DNN models. The highest MAE value was from 

 

Figure 21.  Comparison between the proposed model (RFR) and NN, DNN, SVM, NB, DT, and HT in 

terms of fault location detection accuracy at various locations. 
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DT, at 2.4 s. These results suggest that DNN, HT, and RFR are the optimal models for 

predicting fault duration as the difference between the actual and predicted duration for the 

entire testing dataset was less than 0.6 s. Figure 22 also depicts the MSE of RFR compared 

to the other models. The RFR and HT models reported the lowest MSE value, close to 1 s; 

however, the prediction error for DNN was more than 1.5 s. The RFR, HT, and DNN 

models yield optimal results for MAE and MSE; therefore, these models were selected for 

the next experiment.  

Figure 23 illustrates fault location detection by comparing the three optimal performing 

models, DNN, RF, and HT, tested with three different fault durations: a short fault duration 

ranging between 0.05 and 0.15 s, a medium fault duration ranging between 0.2 and 0.35 s, 

and a long fault duration ranging between 0.4 and 0.5 s. The RFR model outperforms DNN 

and HT when detecting faults with short, medium, and long durations. The RFR model 

reports a 65% accuracy when detecting the short fault duration, followed by DNN with 

12%, then HT with 10%. The accuracy of the RFR model increases to 91% detection for 

the medium duration, followed by HT with 22%, then DNN with 16%. The RFR model 

reports a 91% fault detection accuracy for the long duration, followed by HT with 24%, 

  
Figure 22. The MAE and MSE of RFR, NN, DNN, SVM, NB, DT, and HT in terms of fault duration 

prediction. 
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then DNN 16%. These results suggest that the RFR model is an appropriate model for 

detecting short, medium, and long fault durations. DNN requires a larger dataset to achieve 

optimal performance, which may explain its poor performance. We split the dataset into 

three parts with specific fault durations: 1. A short fault duration with 16,211 instances; 2. 

Medium fault duration with 21,500 instances; and 3. Long fault duration with 15,800 

instances. Training and testing DNN on each sub-dataset was not sufficient for it to achieve 

optimal detection accuracy, suggesting that RFR can achieve its highest accuracy with a 

relatively small number of instances compared to the DNN model.  

 
Figure 23. Accuracy of RF, DNN, and HT in terms of detecting fault location with various duration. 

3.4. Experiment Results #3: Handling Missing Data  

Figure 24 illustrates MSE and MAE as a function of the percentage of missing data for 

the three selected models: DNN, RFR, and HT. The purpose of this experiment was to 

evaluate the model’s robustness when handling missing data. The collected measurements 

within a real power system network, including voltage, magnitude, and frequency, can be 

incomplete due to equipment failure, data storage issues, or unreliable communication [31]; 
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therefore, it is crucial to evaluate the model’s capacity for accurately predicting the fault 

duration. The MSE of the three models increases as the percentage of missing data increases 

(Figure 24). RFR’s MSE values of 1.8 and 7.8 correlate to missing data percentages of 10% 

and 90%, respectively. DNN reports an MSE value of 2.5 with 10% of the data missing, 

while HT reports an MSE value of 6 for the same percentage of data missing. The MSE 

values of DNN and HT increase as the percentage of missing data increases, reaching the 

highest value of 10. Figure 24 also illustrates the MAE as a function of the percentage of 

missing data. The evolution of the MAE value for the three models indicates similar 

behavior to the previous one. RFR has an MAE value of 0.85, followed by DNN with 1.29, 

then HT with 2.1, with 10% of the data missing. The MAE values of the three models 

increase as the percentage of missing data increases to reach their highest values, which are 

2.25 for RFR, 2.58 for HT, and DNN, with 90% of the data missing. These results suggest 

that the RFR model is more resilient and tolerant to missing data; therefore, it is the optimal 

model for fault duration prediction even with incomplete data.  

  

Figure 24. MSE and MAE as a function of the percentage of missing data for the three models: DNN, HT, and 

RFR. 



 

 

79 

3.5. Experiment Results #4: Handling Streaming Data  

The RFR, DNN, and HT models selected from the previous experiments were evalu- 

ated with streaming data. The models were trained incrementally: they were not trained and 

tested on the entire dataset, they were incrementally trained with one sample at a time. The 

MSE and the processing time of each model were then evaluated (Figure 25). The MSE of 

the RFR values were consistently below 0.1 s as the number of samples increased. For HT, 

the MSE dropped sharply from 28 s to 0.5 s; for samples between 0 and 10,702, it stagnated 

at 0.5 s, and then dropped to 0.1 s. The DNN’s MSE values decreased from 30 s to 2 s as 

the number of samples increased to 32,107, then decreased slowly to reach the lowest value 

of 0.1 s before stabilizing. RFR reported the lowest value for processing time per sample: 

0.0028 ms, followed by DNN with 0.0032 ms, then HT with 0.7 ms. The results obtained 

in this experiment set suggest that RFR is a potential model for detecting fault locations 

within a near-real-time streaming environment. A summary of the obtained results for the 

four experiments is provided in Table 5. The overall accuracy, MAE, MSE, processing 

 
Figure 25. Comparison between DNN, HT, and RFR in terms of MSE. 
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time, and overall rankings are high for RFR, medium for DNN, and low for the other 

models.  

Table 5. Summary of the RFR’s performances compared to those of DNN, HT, NN, SVM, DT, NB, and 

KNN, obtained in the four experiments. 

Experiment Performance Metrics RFR DNN HT NN SVM DT NB KNN 

1. Detecting 

fault location 

Overall accuracy for 

four fault locations 
84% 72.5% 27% 18.75% 14% 2% 8.25% 41% 

2. Predicting 

fault duration 

MSE 1.1 s 1.2 s 1.1 s 5.6 s 6.5 s 6.6 s 6.2 s 5.1 s 

MAE 0.6 s 0.6 s 0.6 s 1.9 s 2.2 s 2.5 s 2.2 s 1.8 s 

3. Handling 

missing data 

MSE 4.6 s 8.4 s 8.7 s - - - - - 

MAE 1.5 s 2.09 s 2.14 s - - - - - 

4. Detecting 

fault in 

streaming 

data 

Processing time per 

sample 
0.0028 ms 0.0032 ms 0.7 ms - - - - - 

Overall ranking High Medium Low Low Low Low Low Low 

3.6. Discussion  

Experimental results show that the performance of the ensemble method used in this 

paper, i.e., RFR, consistently outperforms the other models in simultaneously detecting the 

location and duration of faults on a multi-bus system. With an overall accuracy of over 

84%, the RFR model performed optimally and consistently at various fault locations as 

well as with various fault duration (short, medium, and long), suggesting that RFR is the 

appropriate model for this dual-purpose task. For the same task, DNN also demonstrated 

consistent overall performance, albeit at the expense of a long processing time that makes 

it unsuitable for real-time applications.  
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While machine learning models can perform fairly well in an ideal and deterministic 

environment that is free from anomalies, it was pragmatic and necessary to evaluate the 

performances of these models in scenarios where data might be missing due to equipment 

failure, data storage issues, or unreliable communication. Based on the results in this paper, 

all three models, i.e., HT, DNN, and RFR, show MSE and MAE values of under 11 and 

2.6, respectively, when the percentage of missing data is progressively increased from 10% 

to 90%. Depending on the severity of the said factors, RFR was proven to be the optimal 

candidate, followed by HT and DNN, in extrapolating system status during non-steady-

state operations.  

Another critical component of a model’s capability, when deployed in a real-world 

environment, is its ability to evolve and adapt to unexpected data distribution changes and 

concept drifts. From the experimental results, RFR achieved an MSE 0.0028 ms when 

trained and tested incrementally on streaming data, which makes it suitable for detecting 

faults in near-real-time. Overall, the RFR model performed optimally and consistently 

under four different scenarios, indicating that the model can generalize and adapt to new, 

previously unseen, data without the risk of overfitting or underfitting  

4. Conclusions  

An RFR-based model was successfully implemented to identify the location and 

duration of faults. Various fault scenarios were modeled using PNNL’s GridPACK 

software to generate the training dataset. A total of nine fault scenarios was simulated by 

injecting faults on specific buses over a specified period of time. The RFR models were 

trained and evaluated within the context of four study cases: detecting fault location, 
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predicting fault duration, handling missing data, and streaming data. A comparison was 

also conducted between the RFR model and several state-of-the-art models using multiple 

performance metrics, including accuracy, MSE, and processing time. Results indicate that 

both RFR and DNN models are suitable of detecting the location and duration of a fault 

with an accuracy of 84% and 72%, respectively. The RFR, DNN, and HT models yielded 

better results when predicting faults in streaming networks. Overall, the RFR model 

consistently outperformed the other models, making it appropriate for real-time situational 

awareness deployments to determine both the location and duration of the faults while 

handling missing data. The next chapter will be focus on developing a machine learning 

model to detect anomalies in real-time and to handle the potential concept drifts due to load 

change, blip, or noise.  
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Chapter V 

Adaptive Hoeffding Tree with Transfer Learning for Streaming 

Synchrophasor Data  

This chapter extends the previous one by developing anomaly detection approaches for 

real-time networks with adaptability to concept drifts. The proposed approach is titled 

Transfer Adaptive Hoeffding Tree (THAT) based on Hoeffding Tree and transfer learning. 

This Chapter is divided into the following sections: Section II covers an overview of THAT 

model, it details the synch phasor training dataset, and the relevant features used for 

detecting the oscillation events; and section III evaluates the proposed model with some 

performance metrics. Section VI draws some conclusions4. 

1. Introduction & Literature review 

Phasor measurement units (PMUs) are key assets in the Smart Grid for improving 

situational awareness within the grid and detecting potential anomalies. Each PMU 

generates between 30 and 60 samples/s [15], roughly 1.5 TB/month of streamed data. Thus, 

Loading and processing an open-ended source of fast and huge volumes of PMU data is 

challenging in terms of affording the required computational resources. The conventional 

 

4   This chapter is a slightly modified version of our paper "Adaptive Hoeffding Tree with Transfer Learning for Streaming Synchrophasor 

Data Sets” published in the IEEE International Conference on Big Data (Big Data), 2019, pp. 5697-5704, doi: 

10.1109/BigData47090.2019.9005720. 
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ML approaches, used for extracting insights are no longer relevant since they require 

loading and scanning the entire dataset [60]. Thus, two important criteria have to be 

satisfied by any ML approach when it comes to dealing with streaming PMU data: building 

the model with a limited dataset as it is challenging to store the entire streaming PMU 

measurements into memory, and the model must adapt itself to concept drift when the data 

distribution changes gradually or abruptly over time, which could be due to load changes. 

Otherwise, the model built in the past will no longer be consistent with the data received in 

the present and its performance will decrease. Developing a classifier that meets these 

requirements is challenging, so approximate solutions can be considered with an associated 

error to be minimized.    

Relatively few studies have considered the streaming nature of the PMU data and 

developed a machine learning accordantly. For instance, In [123], the authors proposed a 

Hoeffding Tree (HT) combined with two concept drift detectors (e.g., drift detection 

method: (DDM) and Adaptive sliding windows: (ADWIN)) for building dynamic DT that 

are adaptable to quick changes. This method has been trained on a synthetic PMU dataset, 

where multiple attack scenarios were modeled. The dataset contains normal, anomalous, 

physical, and cyber events. The physical event includes relay-based faults, and the cyber 

events include injections of various trip commands, SLG fault replay commands, and 

disable command attacks. The model (e.g., HT+ADWIN+DDM) trained and tested 

reported a classification accuracy greater than 98%. Similarly, authors in [124] proposed a 

HAT-based approach for detecting events on PMU data. The authors modeled two 

scenarios in their PMU data sets; 1) a three-phase fault has been generated with some load 

fluctuations altering true power (P) and reactive power (Q) at a regular interval, and 2) 

cataloged two classes such as fault and normal. Fault class includes a SLG fault, while the 
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normal class includes normal power system variables such as voltage (𝑣), phase angle (φ), 

current (𝑖), and frequency (𝑓). Based on the reported results, HT showed a good ability in 

detecting the power system faults and adaptation to the concept drifts in comparison with 

traditional DT such as J48 and REPTree. 

However, in the above two studies, the duration of the physical fault events was not 

considered in their data set. There is a certain types of power system faults that are time-

sensitive and thus require early detection. The cause of inter-area oscillations is primarily 

due to system events coupled with a poorly damped power system. Generally, these low-

frequency oscillations (0.1-0.8 Hz) are noticed in a larger grid with multiple generators or 

renewable plants (with high wind or solar penetration) that are connected to weak tie-line 

connections. This can lead to a high degree of uncertainties in the system and it is often 

difficult to detect in real-time. Specifically, smaller frequency deviations that range from 

0.15-1.0 Hz lasting 60 seconds or longer may cause inter-area oscillations and quickly 

destabilize the grid [74]. Similarly, momentary voltage or current instabilities (e.g., surges 

or spikes of 2-5 seconds) may lead to asset failures (e.g., transformer, relays, or circuit 

breakers). Thus, including signatures with various event duration is a key feature for 

training real-time machine learning algorithms. In this chapter, a transfer learning-based 

HT with ADWIN is proposed to detect anomalies in the streaming PMU data using four-

event signatures with varying durations. Multiple HT classifier is trained on normal and 

anomalous signatures, while ADWIN is included at the leaf for adaptation to concept drift 

(e.g., fluctuations).  

The proposed THAT model is trained on four event signatures with varying durations. 

As HT and ADWIN require fixed features during the training phase and they cannot be 

trained on events with different durations, these models will be improved by incorporating 
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a transfer learning (TL) technique. Here, TL refers to the transfer (or retention) of 

knowledge that can be learned across multiple similar tasks, but not identical [125]. The 

process of TL is as follows: the model is trained on the first signature (e.g., first task) and 

any acquired knowledge will be transferred to perform the training on the next task, that 

focuses on the second signature. Thus, the process of transferring the learned training can 

be repeated to subsequent signatures. To the best of the author’s knowledge, this is the first 

attempt to integrate transfer learning with any streaming classifier for anomaly detection 

containing signatures with varying durations. In [125], the authors proposed transfer 

learning in a decision tree, but it was not for streaming data applications. 

2. Methodology 

2.1. Transfer Adaptive Hoeffding tree (THAT) 

An efficient real-time anomalies detection model in PMU data streams must satisfy two 

fundamental requirements: 1) scanning only a small sample of the data in order to build the 

model rapidly and efficiently; and 2) adapting to concept drifts (e.g., changes in data 

distribution) in real-time. Conventional batch models are not suitable to operate in such an 

environment as they do not evolve over time and may fail to capture new anomalous events.  

Alternatively, the Hoeffding Tree (HT) is a prominent model candidate as it requires a 

minimum number of arriving samples to build trees with a certain confidence level [126]. 

Instead of loading the entire data into memory, HT loads a small sample of PMU data to 

generate the tree, which will be stored in memory along with some statistics relating to 

incoming data streams in the leaves to allow the model to evolve over time. This was made 

possible due to the fact that a small sample can often be enough to choose an optimal 
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splitting attribute and start building the tree, assuming that the data distribution does not 

change over time [126]. Additionally, the HT model is mathematically supported by the 

Hoeffding bound, which quantifies the number of samples necessary to estimate a statistic 

within a prescribed precision (in this case, the significance of an attribute). Unlike other 

incremental decision tree models, using the Hoeffding bound one can demonstrate that the 

HT output is asymptotically nearly identical to that of a batch decision tree model using 

infinite samples [127], [128]. Furthermore, the Hoeffding bound provides a strong bound 

when compared with Markov's and Chebyshev's bounds [129], [130]. However, while HT 

has shown exceptional performance in detecting anomalies in a streaming data setting [72], 

[124], it is unable to adapt to potential concept drift. In this dissertation, we develop a model 

named Transfer Adaptive Hoeffding Tree which leverages the HT as a base model and 

includes a concept drift detector, Adaptive Windowing (ADWIN), and supervised transfer 

learning to build a dynamic model suitable for detecting anomalies in a high-speed PMU 

data stream, adaptable to the eventual concept drifts and with better generalizability. 

Algorithm 1 shows the pseudocode of the THAT algorithm for detecting anomalies in the 

PMU stream data. The algorithm has two stages, stage 1: create a new HT, and stage 2: 

carry transfer learning operations between two HT models by training the target model on 

the subsequent signature in the queue using the learned HT tree. 

The details for these two stages are as follows: In stage 1, (lines 1-20), a new HT target 

tree is created if the HT source tree is not provided. During this early stage, transfer learning 

is not required. In line 2, a target tree is initialized by creating the first node (root). In lines 

3-19, a for loop is performed for all the training instances, where each sample is filtered 

down the tree to the appropriate leaf 𝑙 based on the test sequences present in the 𝐻𝑇 built 

to that point (line 4). During this process, sufficient statistics on the samples and Hoeffding 
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bound are computed. Each leaf 𝑙 contains enough statistics to make decisions about the 

further growth of the tree. These statistics need to be sufficient to enable the calculation of 

the Information Gain afforded by each possible split. However, storing unnecessary 

information would increase the total memory requirement for the tree. In line 5, the 

statistics hold by 𝑙 are updated to estimate the Information Gain of splitting each attribute. 

In line 6, the 𝑛𝑙 is the number of samples seen at leaf 𝑙 (computed from the sufficient 

statistics), is updated. Lines 7-18 are executed only when a mix of different classes enables 

further splitting. In line 8, the splitting criterion 𝐺 is used to estimate the 𝐺𝑙 value for each 

attribute. The function 𝐺 measures the average amount of purity that is gained in each 

subset of a split and indicates how well a given attribute separates the training examples 

according to their target classification [128]. In this study, two different approaches will be 

investigated to compute the function 𝐺: Information Gain (entropy) and the Gini index.  
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Algorithm 1. Transfer learning Hoeffding Adaptive Tree (THAT) 

Input: training set S, S’, HTsource 

Output: HTtarget 

1.  If  HTsource is NULL 

2.    Let HTtarget  be a tree with a single leaf (the root) 

3.    For all instances in S do 

4.      Sort instances into leaf  𝑙 using HTtarget 

5.      Update sufficient statistics in 𝑙 
6.      Increment 𝑛𝑙, the number of instances seen at 𝑙 
7.      If 𝑛𝑙 mod 𝑛𝑚𝑖𝑛 = 0 and instances seen at 𝑙 not all of same class  

8.          Compute 𝐺𝑙(𝐴𝑖) for each attribute 

9.          Let 𝐴𝑎 be attribute with highest 𝐺𝑙 
10.          Let 𝐴𝑏  be attribute with second highest 𝐺𝑙 

11.          Compute Hoeffding bound 𝜖 = √
𝑅2 ln(

1

𝛿
)

2𝑛𝑙
 

12.          If 𝐴𝑎 ≠ 𝐴0 and (𝐺𝑙(𝐴𝑎) − 𝐺𝑙(𝐴𝑏) > 𝜖 or 𝜖 < 𝜏)  
13.              Replace 𝑙 with an internal node that splits on 𝐴𝑎 

14.              For all branches of the split do 

15.                  Add a new leaf with sufficient statistics 

16.              End for 

17.          End if 

18.      End if 

19.    End for 

20.  Return HTtarget 

21.  Else 

22.  HTtarget = HTsource 

23.  Q  all attributes of S’  not in HTtarget 

24.  For each attribute A’  dequeued from Q  

25.    For each training instance I  in S’ 

26.        Classify I’  using the HTtarget 

27.        If I ‘ is predicted correctly then  

28.           Do nothing 

29.        Else 

30.          Replace HTtarget ‘s class node with a new node for attribute A’ 
31.          Add a new branch to node A’, labeled with A’s value in I’ 
32.          Add a new leaf node labeled with I’’s target class label 

33.        End if  

34.    End for 

35.  End for 

36.  Return HTtarget 

37.  End if 
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If the distribution of the two classes (e.g., oscillation event class, and normal event class) 

in the PMU stream contains the probabilities p1, and p2 of the classes, then the entropy of 

a given attribute 𝐴 in a training data set 𝑆 is calculated by: 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐴) =∑−𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝑛

𝑖=1

 (22) 

Here 𝑛 is the number of classes and it is equal to 2. The attribute, 𝐴, is one of the selected 

features which could be voltage (𝑣), phase angle (φ), current (𝑖), and frequency (𝑓). Then, 

the Information Gain is computed by: 

 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛(𝑆,  𝑋) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋) −     ∑
|𝑆𝑘|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑘)

𝑘∈(𝑋)

 (23) 

Where 𝑘 is the value of the attribute 𝐴, and 𝑆𝑘 is a subset of 𝑆 where 𝐴 = 𝑘. 

The other metric considered for evaluation is known as Gini Index, and this index is 

computed as:  

 𝐺𝑖𝑛𝑖(𝑋) = 1 −∑𝑝𝑗
2

𝑛

𝑖=1

 (24) 

Here 𝑛 is the number of classes (e.g., n=2 in our case). In lines 9 and 10, the attributes 

with the largest gain information are used for the next steps. Line 11 computes the 

Hoeffding bound such that probability 1 − 𝛿 corresponds to a confidence value of 𝛿 ∈

{1,0}, where the true mean of a random variable of range 𝑅 will not differ from the 

estimated mean after 𝑛 independent observations by more than 𝜖 and it is given by: 

 
ϵ = √R

2 ln(
1
δ)

2n
 

(25) 

In line 12, a split criterion test is performed between the largest gain value attribute and 

𝐴0 and compared with the Hoeffding bound. The value of 𝜏 is used to analyze trade-off 
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conditions. If the attribute obtained is the best choice, then the node is split and the tree 

grows (lines 13-15) [124], [131], [132].  

Lines 21-37 focus on the concept of “transfer learning”, where the knowledge gained 

between two HT models trained on two different signatures (i.e., tasks) are shared or 

transferred. The model is scalable to transfer knowledge beyond two HT models if needed. 

Before we define transfer learning and how it is used with HT, we must understand the 

term ‘standard learning’ (SL). The authors in [28] define SL  using the following 

description process: “Let 𝐷 be a domain consisting of r-dimensional feature space 𝑋, a label 

space 𝑌, a probability distribution 𝑃 = (𝑥, 𝑦) where 𝑥 ∈  X  is the feature vector, and y ∈ 

Y. With a finite set of labeled examples 𝑆 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛, 𝑦𝑛)) drawn from 𝑃 

and a loss function 𝐽, standard learning consists of defining a function 𝑓: 𝑋 → 𝑌 with a 

minimum 𝐽 value”. In the case of transfer learning, a source domain 𝐷𝑆 = (𝑋𝑆 , 𝑌𝑆 , 𝑃𝑆) and 

a target domain 𝐷𝑇 = (𝑋𝑇, 𝑌𝑇 , 𝑃𝑇) are both used to learn a function 𝑓′: 𝑋𝑇 → 𝑌𝑇  given a set 

of labeled examples 𝑆 drawn from 𝑃𝑇 and some information about 𝐷𝑆 , such that the value 

of the loss function 𝐽′ is as small as possible [133]. There are two possible types of transfer 

learning: inductive and supervised. In the inductive type, the source and target tasks are 

different, but they share some common features. The supervised type is used when ∣ 𝑆𝑇∣>> 

∣ 𝑆𝑆∣ and aims to improve the task learning of domain 𝐷𝑇 given 𝑆𝑇 [133]. As shown in 

Figure 26, the proposed THAT model is trained on four signatures (oscillation and normal 

events) with different magnitude and durations: 400s, 120s, 60s, and 50s, respectively. 

Then supervised transfer learning can be applied to transfer knowledge between different 

THAT models since ∣ 𝑆4∣>> ∣ 𝑆3∣>>∣ 𝑆2∣>>∣ 𝑆1∣. 
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2.2. Concept drift detector 

Due to the high potential of unexpected events that could occur in the distribution of the 

streaming PMU data, it is important to deal with these unexpected events and help the ML 

model in adapting and classifying these unknown events, this event is known as concept 

drift. A concept drifts when the law underlying the data changes gradually or abruptly. 

Additional concept drift types are given in Figure 27. Thus, the model built in the past is 

no longer consistent with the data received in the present. Concept drifts could be due to 

different reasons including noise, the influence of the environment, variation in 

characteristics not considered in the model, seasonal alterations. A convenient treatment of 

concept drift means that recent data that conflict with past assumptions should prioritize 

the construction of the model. But, at the same time, assumptions based on old data that are 

still consistent should be preserved.  

Several approaches have been proposed for tackling such events. These approaches 

include DDM, Early Drift Detection Methods (EDDM), Linear Four Rate (LFR), Just in 

time (JIT), and ensemble methods [134], [135], [136]. DDM and EDDM don’t require to 

store the data but they are susceptible to false alarms. LFR [134] is constant in space 

complexity and can deal with imbalance classes as it uses different error types separately, 

but it still suffers from the labeling cost. JIT [136] does not require labeled data and can 

detect the abrupt change but it is inefficient with the gradual drift. Ensemble methods [25] 

are effective in detecting the recurring concepts, but they use a large batch which makes 

them ineffective in identifying precisely the change location. ADWIN turns out to be an 

optimal concept drift detector since it is better for change localization and uses a dynamic 

window which adapts its size according to the change rate observed in the data within the 



 

 

94 

window. When the data is stationary, the window size dynamically increases, and it 

decreases when a change is detected. 

 

Figure 27. Concept drift types 

In order to improve the HT, we include the ADWIN as a concept drift detector and make 

the model adaptable to the eventual concept drifts. ADWIN is also used to store temporarily 

the recent data for rebuilding or revising the classifier [138].  

Let 𝑥′1, 𝑥′2, 𝑥′3, … 𝑥′𝑡  be a sequence of real PMU values where the value of 𝑥′𝑡 is 

available only at time 𝑡. Each 𝑥′𝑡 was generated based on some distribution 𝑃𝑡 and 

independently for every 𝑡. Let 𝑢𝑡 be the expected value when it is drawn according to 𝑃𝑡. 

ADWIN uses a sliding window 𝑊 with the recently received data. Let 𝑛 denote the length 

of 𝑊, �̂�𝑊 the observed (known) average of the data in 𝑊, and 𝑢𝑊 the expected (unknown) 

Algorithm 2. ADWIN: Adaptive Windowing Algorithm 

1. Initialize Window 𝑊 

2. for each 𝑡 > 0 

3.   do 𝑊  𝑊 ∪ {𝑥′𝑡} (i.e., add 𝑥′𝑡 to the head of 𝑊) 

4.     repeat drop elements from the tail of 𝑊  

5.        until |�̂�𝑊0 − �̂�𝑊1| ≥ 𝜖 holds for every split of 𝑊 into 

           𝑊 = 𝑊0.𝑊1 

6.  output �̂�𝑊 
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average of the 𝑢𝑡 for 𝑡 ∈ 𝑊. If there are two sub-windows 𝑊0 and 𝑊1 with sufficiently 

different averages, then it can be concluded that the expected values will be  different and 

the older portion of 𝑊, i.e. 𝑊0, is dropped (Algorithm 2) [139]. The difference between the 

observed average (�̂�𝑊) and the expected average (𝑢𝑊) is compared to 𝜖 which is computed 

based on the Hoeffding bound and is defined as:  

 𝜖 = √
1

2𝑚
ln
4

𝛿′
 (26) 

Where 𝑚 is defined as: 

 𝑚 =
1

1/𝑛0 + 1/𝑛1
 (27) 

Where 𝑛0, 𝑛1are the lengths of 𝑊0 and 𝑊1, respectively. The 𝛿′ is defined as:  

 𝛿′ =
𝛿

𝑛
 (28) 

Where 𝛿 is confidence value and 𝑛 = 𝑛0 + 𝑛1. 

2.3. Dataset 

The dataset used in this study includes a collection of oscillatory events (e.g., four 

signatures) recorded by PMUs across multiple substations at various locations of a power 

system [140]. Each signature represents a fault in the Smart Grid with associated 

parameters, e.g., voltage, current, phase angle and frequency information of varying 

durations, ranging from 3 to 6 minutes. The dataset is modified to introduce concept drift 

events in the four signatures. Each signature is identified by its oscillation frequency, 

duration, and potential cause. For example, a signature containing frequency ranges from 

0.1 Hz to 0.15 Hz if held for up to 400 seconds then it is classified as an oscillation event, 
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otherwise, it is considered as a normal event. The specific range and duration of oscillations 

have been selected according to the analysis conducted in [74], [141]. Table 6 provides the 

specifications of the four signatures. To evaluate the adaptability of the uncertain events, 

the data stream is injected with additional fluctuations or concept drifts using a Massive 

Online Analysis (MOA) generator [131]. A gradual pace of concept drift is modeled to 

mimic most fault progression in the power system [123]. The final dataset includes four 

signatures each of which includes 2000 normal events and 2000 oscillation events with 

gradual concept drifts. 

3. Simulation, Results, and Discussion 

With streaming PMU data, it is challenging to store the entire dataset and sectioning it 

into training, validation, and testing data in order to evaluate the THAT model. Thus, other 

evaluation techniques are considered including Holdout, interleaved test-then-train, and 

prequential. In Holdout, a section of the incoming data is used to train the model and small 

test cases were used to compute the performance. In interleaved test-and-train, each 

instance of the data stream is used for testing and training the model. Prequential is similar 

to interleaved test-and-train and uses a sliding window or a decaying factor. The proposed 

Table 6. PMU Dataset description 

Signatures Oscillation frequency Duration Potential event cause Classes Concept drift 

Signature 1 
0.1 Hz – 0.15 Hz >> 400s Generators Oscillation event 

Gradual 

0.1 Hz – 0.15 Hz << 400s - Normal event 

Signature 2 
0.15 Hz – 1 Hz >> 120s Local plant control Oscillation event 

0.15 Hz – 1 Hz << 120s - Normal event 

Signature 3 
1.0 Hz – 5.0 Hz >> 60s Inter-area oscillation Oscillation event 

1.0 Hz – 5.0 Hz << 60s - Normal event 

Signature 4 
5.0 Hz – 14.0 Hz >> 50s Local plant control Oscillation event 

5.0 Hz – 14.0 Hz << 50s - Normal event 
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model (THAT) was evaluated using these three techniques and it was observed that the 

prequential technique exhibited higher detection accuracy with moderate processing time 

against other approaches.  

In order to evaluate the performance of the THAT model, a comparative analysis with 

OzaBag has been carried out using several performance metrics. An MOA platform [26] 

was used to run the simulations. The ensemble approach (i.e., OzaBag) is selected, as some 

literature [17], [32] reported satisfactory results with power system data. The performance 

metrics used are accuracy, Kappa and evaluation time. The first metric evaluates the 

algorithm in terms of detecting accurately the instances of oscillation and normal events 

(Equation (29)). However, the accuracy may produce overly optimistic predictions with 

imbalanced classes. Kappa metrics can be used to resolve this issue and reduce instances 

that were incorrectly classified by chance (Equation (30)). Thus, Kappa is used to help in 

better tuning the THAT model. The evaluation time computes the required time to process 

each instance.  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁  

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (29) 

Where 𝑇𝑃 is the true positive, 𝑇𝑁 is the true negative, 𝐹𝑃 is the false positive, and 𝐹𝑁 

is the false negative.  

 𝐾𝑎𝑝𝑝𝑎 =
(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 )

(1 − 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)
 (30) 

Where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is given by Equation (29), and 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is defined as:  

 

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
(𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑃) ∗ (𝐹𝑃 + 𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙2
 

(31) 

Here 𝑇𝑜𝑡𝑎𝑙 is 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃. 
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3.1. Experiment (I): THAT without supervised transfer learning 

For this case, the THAT model was separately trained on the four signatures without 

applying supervised transfer learning. A parametric study of THAT and OzaBag models 

has been conducted in order to define the appropriate value of each hyper-parameter of 

these models. 

For the THAT, two Information Gain functions have been explored: Gini index and 

Entropy, and different values of 𝛿 have been selected ranging from 0 to 1.  The results of 

this experiment are given in Figures 28 to 31. These figures illustrate the experimental 

results of one signature. The results of the other three signatures are not included due to 

space constraints. Figure 28 illustrates the accuracy of the THAT model as a function of 

the number of instances with the Gini index and different 𝛿 values. As it can be seen, the 

accuracy increases sharply between 0 and 250 instances to reach the highest accuracy value, 

which is 99%, and stabilizes at that value. The accuracy decreases after the insertion of 

concept drifts and finally increases again to stabilize at 97%. In addition, one can notice 

that the model recovers better after gradual concept drift for values of 𝛿 greater than 0.2.  
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Figure 28. Accuracy vs Number of Instances for THAT 

with Gini Index function and different δ values. 

Figure 29 shows the accuracy of the THAT model as a function of the number of 

instances with the Information Gain and different 𝛿 values. It can be seen that these 

functions follow the trends similar to those of Figure 28, the model accuracy increases and 

reach the higher accuracy value, which is 99%, and it stabilizes at this value. Then it 

decreases after the concept drifts and reaches the lowest accuracy value of 72% with 𝛿 =

0.0, and then it recovers and stabilizes at 97% after 3500 instances. Additionally, it is worth 

mentioning that all the highest accuracy values are reported when 𝛿 is set to 0.2 or higher 

value. As seen in Figures 28 and 29, THAT + Gini Index and THAT + Information Gain 

reported the same performance in terms of accuracy, especially with a 𝛿 value equal or 

higher than 0.2. However, the Information Gain is computationally demanding since it uses 

the logarithmic scale in computing the entropy of each feature. Thus, the Gini Index is 

selected for the next experiments.  



 

 

100 

 

Figure 29. Accuracy Vs Number of Instances for THAT 

with Information Gain and different δ values. 

Figure 30 illustrates the Kappa value of the THAT model as a function of the number of 

instances with the Gini Index and different 𝛿 values. As can be seen, the Kappa value 

increases exponentially between 0 and 250 instances and stabilizes at 99%, and drops at  
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Figure 30. Kappa Vs Number of Instances for THAT with 

Gini Index function and different δ values. 

1000 instances, on the occurrence of concept drifts. After 1000 instances, the model 

recovers quickly for all 𝛿 values greater than 0.2. Additionally, one can notice that the 

Kappa function follows a similar trend as that of Figure 29 since the classes are equally 

distributed in the dataset (50% oscillation event and 50% normal event). 

Figure 31 illustrates the evaluation time as a function of the number of instances for 

THAT with the Gini Index and different 𝛿 values. It can be seen that the evaluation time 

increases slightly between 0ms and 25ms with instances less than 1000 instances. After the 

concept drifts, the evaluation time increases sharply with all 𝛿 values which are equal to or 

greater than 0.2. The highest evaluation time is reported by 𝛿=1 and the lowest value is 

reported with 𝛿= 0. The reported results suggest that the optimal THAT performance is  
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Figure 31. Evaluation time Vs Number of Instances for THAT 

with Gini Index function and different δ values. 

achieved by the Gini Index function and a 𝛿 value which is equal to or greater than 0.2. In 

addition, the THAT model with a 𝛿 greater than 0.4 is slightly demanding in terms of 

evaluation time. By setting the 𝛿 to 0.2, a tradeoff can be made between high accuracy and 

optimal evaluation time. Regarding OzaBag, a parametric study has been conducted in 

terms of the number of HTs: 5, 10, 15, and 20 HTs. The obtained results showed that better 

performance is achieved by choosing 5 HTs. Increasing the number of HTs does not 

increase significantly the OzaBag model accuracy but it increases the evaluation time. 

Thus, OzaBag with 5 HTs is the optimal number in terms of accuracy, Kappa, and 

evaluation time.  

After defining the appropriate parameters for THAT and OzaBag, the models are trained 

on the four signatures and the corresponding results are given in Figures 32 through 34. 

Figure 32 shows a comparison between THAT and OzaBag in terms of accuracy based on 
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one signature. It is seen that the accuracy of the two models is similar between 0 and 1000 

instances. Both instances then reach a peak value of 99% then stabilizes at that value. 

models’ accuracy increases sharply between 0 and 250. After the concept drifts, the 

accuracy of the models drops to 96% and 88% for THAT and OzaBag, respectively. In 

addition, one can notice that the THAT model recovers quickly after the concept drift 

events and increases slightly to reach 98% with 1999 instances. At 2000 instances, the 

accuracy of the THAT model decreases slightly due to another concept drift, but it recovers 

and regains its previous accuracy value. On the other hand, the accuracy of the OzaBag 

model is affected by concept drifts. Later, it increases slightly and decreases again after the 

second concept drift before reaching a final accuracy value of 90% at 4000 instances. 

 

Figure 32. THAT Vs OzaBag in terms of accuracy as function of the number of instances. 

Figure 33 illustrates a comparison between the THAT and OzaBag in terms of the 

evaluation time. It is observed that the evaluation time of OzaBag increases exponentially 

as the number of instances increases, while the growth is linear for the THAT model. For 
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instance, OzaBag needs 500 ms to process 2000 instances and 2150 ms to process 4000 

instances. On the other hand, THAT requires 80 ms for processing 2000 instances and 230 

ms for processing 4000 instances. This can be explained by the fact that OzaBag is an 

ensemble approach that uses several models (e.g., 5 HTs), and training all these models 

requires a longer processing time. However, the THAT model only includes one HT model 

with Gini Index and hence does not demand larger run-time.   

 

Figure 33. THAT Vs OzaBag in terms of evaluation time as a function of the number of instances. 

By using the prequential technique, accuracy is computed for each instance. In order to 

provide an overall accuracy of different models, an average accuracy can be considered 

which is computed by summing up the accuracy of each instance and dividing the results 

by the total number of instances. The average accuracy is computed after training the 

models on the four signatures discussed in Section II and the results are given in Figure 34. 

As can be seen, the two models reported similar accuracy, which is 94%, for the first 

signature. For the second signature, the THAT model outperforms OzaBag with a 
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difference of 6%; an accuracy of 97% is reported by THAT while OzaBag’s is at 91%. For 

the third signature, the THAT model is performing slightly better (99%) than OzaBag 

(98.5%) For the fourth signature, both models reported an accuracy value of 99%.  

 

Figure 34. THAT Vs OzaBag in terms of average accuracy. 

3.2. Experiment(II): THAT with supervised transfer learning 

Here, the THAT model has been trained on four signatures using the supervised transfer 

learning concept. Examples of the obtained results are given in Table 7. It is noted that both 

the THAT and the OzaBag models report the same average accuracy of 94%. One can 

notice that the accuracy of both models has decreased when compared to the first 

experiment. This is due to the fact that in the first set of experiments, the models have been 

Table 7. Comparison between THAT model and OzaBag. 

Data stream models Average accuracy Evaluation time/instance 

THAT model with supervised transfer learning 94% 0.34s 

OzaBag (5 HT) 94% 1.04s 
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trained on four signatures separately, while in the second case, these models were trained 

on four signatures at the same time. Usually, when the models become more generalized, 

their accuracy decreases. In terms of the evaluation time, the THAT model with transfer 

learning requires a lesser evaluation time than the OzaBag. THAT takes 0.34ms to classify 

a given instance, while OzaBag takes 1.04ms. A typical PMU with a data rate of 120 

samples/s requires 8.33ms to process one sample. Thus, the obtained results suggest that 

THAT is more suitable for the PMU streaming data in terms of detecting accurately the 

faults events in near-real-time.   

4. Conclusions 

 A transfer learning technique using the Hoeffding tree and ADWIN is proposed for 

synchrophasor data. The proposed model, called THAT, can be easily trained for any PMU 

signatures of varying and shorter durations. It does not require loading the entire data into 

memory to build the decision tree model and is thus suitable for real-time processing. 

Additionally, ADWIN is included, so the THAT model is easily adaptable to gradual 

concept drifts. A prequential technique was used to evaluate the performance of the model 

and the results have been compared to the OzaBag method. After performing a parametric 

study and tuning the models, two sets of experiments have been conducted. In the first case, 

the THAT model has been trained separately on each signature. In the second case, 

supervised transfer learning has been applied to the THAT model. The obtained results 

showed that the THAT and OzaBag models report higher average accuracy ranging 

between 91% and 99% (case 1). For case 2, the average accuracy was decreased to 94% in 

both models, but the THAT model required smaller computational run-time than OzaBag. 
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Further, the results suggested that increasing the number of HT in the OzaBag model did 

not significantly improve the overage accuracy, but it did increase processing time 

considerably. Thus, the THAT model is more suitable than the OzaBag model for the PMU 

data stream, since it provides a near-real-time response to the dynamic fault event 

conditions. 
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Chapter VI 

Conclusions and Future Work 

In this dissertation, we aimed at consolidating the grid’s security posture by mining 

multi-variate large-scale synchrophasor data to reveal potential physical and cyber 

anomalies. Particularly, chapter II provides a holistic review of the existing cyber and 

physical anomalies in the Smart Grid and their impact on the different subsystems' 

security. Additionally, it critically reviewed in depth the existing detection approaches and 

analyzed their strengths and limitations. An ANN-based approach is presented in chapter 

III to detect FDI attacks; two attack scenarios are used to model the FDI attack using 

sigmoid and trapezoidal membership functions. A falsified dataset is used in ANN for 

training and testing; during the training phase, three types of activation functions are 

explored: Relu, Sigmoid, and Tanh functions. Based on simulation results, it is concluded 

that ANN with the Relu activation function and 100 neuron nodes detects the falsified 

injected data with an accuracy of 99%, and it outperforms SVM in terms of probability of 

detection, and probability of miss detection. However, the RF with 100 trees exhibits a low 

Pfa, which is 0.2% followed by ANN with 0.9%. In Chapter IV, we developed an RFR-

based approach for determining, not only anomalies but also their respective location and 

duration. We trained the model on several fault scenarios simulated on GridPACK; a total 

of nine fault scenarios were simulated by injecting faults on specific buses over a specified 

time period. Four study cases were used to train and evaluate the RFR models: detecting 

fault location, predicting fault duration, handling missing data, and streaming data. The 

obtained results showed that RFR outperformed several state-of-the-art models in terms of 
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accuracy, MSE, and processing time. Results indicate that RFR is capable of detecting the 

location and duration of a fault with an accuracy of 84%. The RFR model consistently 

outperformed all other models, and it can therefore be utilized in real-time situational 

awareness systems to determine both the location and duration of faults while coping with 

missing data. 

In chapter V, we extended the RFR, by developing an online machine learning model 

suitable for the streaming synchrophasor data. THAT, the proposed model, can be easily 

trained for PMU signatures of different durations and duration variations. The model does 

not require loading the entire data into memory in order to build the decision tree model 

and is thus suitable for real-time processing. Additionally, ADWIN is included, so the 

THAT model can be easily adapted to gradual concept drifts. The THAT model’s 

performance was evaluated and compared to the OzaBag method. Two sets of experiments 

have been conducted after performing a parametric study and tuning the models. The model 

in the first case has been trained separately on each signature; in the second case, supervised 

transfer learning has been applied to the THAT model. Based on the obtained results, the 

THAT and OzaBag models reported higher average accuracy levels ranging from 91% to 

99% (case 1). For case 2, the average accuracy declined to 94% in both models, but the 

THAT model required a smaller run-time than OzaBag. That model is therefore more 

appropriate for the PMU data stream since it provides a near-real-time response to dynamic 

fault event conditions.  

In summary, this dissertation aims to provide early restoration, enhanced resilience, and 

improved observability of the Smart Grid network through modeling and detecting cyber 

and physical anomalies; these are the main contributions:  
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• Conducting a state-of-the-art review on anomalies in Smart Grid and their 

respective detection approaches. 

• Modeling False Data Injection (FDI) attacks and developing an Artificial Neural 

Network (ANN) detection approach.  

• Developing Random Forest Regressor (RFR) model to detect fault locations and 

predict their duration.  

• Developing a Transfer Adaptive Hoeffding Tree (THAT) for detecting anomalies 

in streaming PMU data in real-time.  

One of the challenges encountered while conducting this research was the lack of 

reliable and comprehensive PMU data containing physical and cyber events. In light of 

this, one of the future directions of this research will be to establish a testbed using a Real-

Time Digital Simulator (RTDS) to simulate more realistic cyber and physical events and 

assess our model's efficiency and scalability. A further extension of this work would be to 

realize the deployment of these models in hardware devices such as FPGAs at the PMU 

level to overcome the computational burden at the PDC level. This would assist in 

inspecting traffic, scanning it rapidly, and detecting potential anomalies in real-time. 
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Appendix A – Additional Resources 

More resources regarding this research, including video presentations, code sources, and 

datasets, can be found at: https://github.com/zakaria-grid/Real-Time-ML-models-for-

anomaly-detection  
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