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Abstract 

 

The collegiate aviation programs of higher education are seeking to adapt their 

capabilities and expertise toward educating a generation of airmen who will operate 

Remotely Piloted Aircraft (RPA). The collection of studies presented in this dissertation 

address this interest as higher education programs investigate the value of modalities and 

pedagogies, tune the application of instructional aids, and assess novel measurements for 

how students interact with their training. Three studies were completed in building this 

program of research. Study I, Waller et al. (2016), was published in a peer-reviewed 

journal and is adapted for reprint with permission. Study I established the effectiveness of 

a software trainer to improve students’ ability to interact with the MQ-9 Remotely Piloted 

Aircraft (RPA) when students were granted access via either a traditional, blended, or 

distance modality. Study II expanded the work of Waller et al. (2016), increasing the 

sample size to reach across the curriculum as well as accounting for students’ pilot 

certification to better isolate the effect of modality on student performance with the MQ-

9 Heads Down Display (HDD) menus. Lastly, Study III assessed whether workload and 

engagement could be measured by cognitive state estimation as students conducted 

simulated MQ-1 RPA training. This program of research advances the understanding of 

RPA instruction by (1) assessing tools and methods that can contribute to a student’s 

training, and (2) demonstrating that cognitive state measurement is sensitive to changes 

in student workload and engagement. 

 Keywords: remotely piloted aircraft, blended learning, electroencephalograms, 

workload, cognitive states 
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Introduction to Program of Research 

The University of North Dakota (UND) and its John D. Odegard School of 

Aerospace Science offers a variety of educational opportunities in aviation. One of the 

world’s largest civilian training fleets, an estate of facilities, well-vetted policies, and a 

growing multimedia capability have allowed students to explore majors in commercial 

aviation, flight education, Air Traffic Management (ATM), aviation management, and 

one of the nation’s first majors in Unmanned Aircraft Systems (UAS) Operations (Miller, 

2019).  

The opportunities presented by unmanned aircraft have long since captured the 

attention of aviation educators and researchers in higher education, regulatory 

administrations, entrepreneurs in industry, as well as state and congressional legislatures 

(Banks et al., 2018; Jenkins & Vasigh, 2013; Miller, 2019; North Dakota Aeronautics 

Commission, 2010, 2015). Today, the collegiate aviation programs in higher education 

leverage their experience across the aeronautical sciences toward supplying the newest 

generation of airmen to the unmanned aircraft industry (Waller & Bridewell, 2014). Like 

aspiring airline pilots (Lutte & Lovelace, 2016), students of unmanned aircraft bear high 

costs for flight training. The program of research below assesses trainers, blended 

learning, and measures of human performance as specific flight training adaptations. 

Reducing contact time in a flight training device – which has a high operational cost – or 

tailoring training to an individual’s competency and performance are opportunities which 

can improve both the quality and efficiency of training. 
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Overview of Study I 

Published in the Journal of Unmanned Aerial Systems in 2016, Waller et al. 

conducted a pilot study collecting data on the application of a Heads Down Display 

(HDD) Menu Trainer. While decades of experience and human factors study have 

informed the design of control interfaces in modern manned aircraft, the flight control 

interfaces unique to unmanned aircraft have been associated with several mishaps and 

accidents (Williams, 2004, 2006). The nested HDD menus of the MQ-1 and MQ-9 are 

used for many functions and the unfamiliar interface was identified as problematic during 

student training. A software trainer was designed in response to these challenges through 

the cooperative efforts of the University of North Dakota and the Air Force Research 

Laboratory (AFRL). The HDD menu trainer was designed to familiarize students with the 

layout and manipulation of the HDD menus for the MQ-1 and MQ-9 RPA. Waller et al. 

assessed students’ ability to interact with the menus after using the trainer and also 

investigated whether student performance with the trainer would vary when it was not 

delivered as part of a traditional lesson with an instructor. 

A mixed ANOVA compared pretest and posttest scores (n = 15) across modalities 

(i.e. traditional, blended, and distance pedagogies). Results demonstrated that the trainer 

significantly improved the performance of all students (p < 0.001), however no 

significant effect was found between the different modalities. Although there were no 

significant differences noted in pretest or posttest scores between methods of instruction, 

it was observed that students holding commercial pilot certificates performed 

significantly higher on the pretest that those with no FAA pilot certification (p < 0.05). 

The study demonstrated the HDD menu trainer’s capacity to improve students’ 
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navigation and manipulation of the MQ-9 menu structure but recommended controlling 

for pilot certification as its effects across instructional methods were investigated further.  

Overview of Study II 

Extending the work of Waller et al. (2016), this study further investigated 

differences in student performance on the HDD menu trainer when it is applied in 

traditional, blended, and distance modalities. This study was designed to allow for 

improved isolation of the variation in performance that could be uniquely attributed to 

modality. As pilot certification had been shown to affect performance with the trainer, a 

sample of students (n = 102) both with and without FAA pilot certification completed the 

same pretest and posttest evaluation used by Waller et al. Within this sample, 26 

participants held no FAA pilot certificate, 48 participants held a Private certificate, and 

27 participants carried Commercial certification. Students participating in the blended (n 

= 29) and distance (n = 30) modalities, who accessed the HDD menu trainer remotely, 

were also asked to self-report the hours spent studying with the trainer on their own. 

Level of pilot certification was entered as a covariate in a mixed factorial 

ANCOVA. Results illustrated – again – the effectiveness of the HDD menu trainer with a 

main within-subjects effect on performance F(1,93)=27.65, p<.001. That is, independent 

of both the modality and pilot certification, posttest scores were higher than pretest 

scores. Regardless of modality, student performance was – once more – higher for 

students holding an FAA pilot certificate than for those without F(1,93)=3.97, p<.05. No 

significant difference was found between the hours of study reported by participants in 

blended and distance instruction t(54)=-0.08, ns, and neither modality nor pilot 

certification was found to significantly moderate student performance from pretest to 
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posttest. Strictly in terms of performance with the trainer, the blended and distance 

instructional methods performed at least as well as the traditional instructional method.  

The educational process should not be reduced to a single metric or measurement. 

However, these results on performance illustrate how the HDD menu trainer can be 

utilized in a way which compliments practical one-on-one flight instruction – a hallmark 

of aviation education – without compromising on students’ ability to navigate and 

manipulate the HDD menus for the MQ-1 and MQ-9 RPA. Today it has become a 

standalone staple of upper-division instruction for these aircraft. 

Overview of Study III 

This study - The Effectiveness of Operator State Monitoring in Measuring 

Remotely Piloted Aircraft (RPA) Training – explores whether electroencephalogram 

(EEG) technology is able to measure changes in cognitive workload and engagement in 

remote pilots during their simulated RPA training. Cognitive workload and task 

engagement are common constructs in human performance research, and represent the 

supply-demand relationship of cognitive resources and the attentional resources available 

to attend a task, respectively (Bernhardt et al., 2019). Over the past two decades, 

equipment and indices have been developed to measure these constructs of performance 

in laboratory settings using basic cognitive tasks (Berka et al., 2007). These measures 

have been proposed for assessing the effectiveness of training and simulation programs 

because they are able to assess change in cognitive state which is not obvious from task 

performance alone (Berka et al., 2007; Parasuraman, 2015). Electroencephalograms have 

been shown to reflect workload levels and sustained attention during training and 

learning, however a limited number of studies have examined the effectiveness of EEG in 
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operational settings (Bernhardt et al., 2019; Mathan & Yeung, 2015; Mills et al., 2017; 

Yuan et al., 2014).  

Extending the technology’s application in other areas of aviation (Aricò et al., 

2016; Bernhardt et al., 2019; Borghini et al., 2015), EEG data was collected from remote 

pilots (n = 10) during simulated MQ-1 RPA training events in the PRINCE device. 

Posterior probabilities of ABM’s high workload and engagement metrics were collected 

throughout the simulation. Results demonstrated that EEG-based cognitive state metrics 

are able to detect subtle changes in operator workload during simulated RPA operations. 

The NASA TLX was administered to collect a subjective measure of workload but no 

significant association was observed between the subjective and EEG-based measures of 

workload.  

Also noted was significantly reduced workload during those legs of the flight 

pattern assisted by the heading hold function of the autopilot than for those legs where 

remote pilots were unassisted by this automation. In addition to proposing these metrics 

for measuring the effect of training over time, this relationship between remote pilot 

cognitive workload and autopilot use could also justify design of a procedure which 

investigates the impact of automation on workload and other cognitive states during 

simulated RPA operations. 

Purpose of the Research Program 

Each of the three studies presented investigated methods and measurement of 

training in unmanned aircraft – recognized more broadly as Remotely Piloted Aircraft 

(RPA). When a study reflects peer-reviewed work previously published or submitted, the 

reprint is accompanied by reference to the associated journal with permission to reprint 
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for the purposes of this program. References are detailed within each study but a 

summary of references across the entire program of research also precedes the 

appendices. Appendix A contains annotated summaries of the dataset variables for each 

effort. Results and conclusions are offered in each study, however, a Discussion and 

Conclusions chapter below offers a synthesized perspective of the research program and 

also aligns these methods and measures with opportunities for continued study. 
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Study I 

Waller et al. (2016) 

 

Medium Altitude Long Endurance RPA Training: 

A Pilot Study in Blended Learning 
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Abstract 

 

Since April of 2011, research and development efforts between the Air Force Research 

Laboratory (AFRL) and the University of North Dakota (UND) have progressed through the 

“Science and Technology for Warfighter Training and Aiding.” Cooperative Agreement. One 

product of these cooperative efforts has been a Heads Down Display (HDD) Menu Trainer. 

Designed to familiarize students with the layout and manipulation of the HDD menus for either 

the MQ-1 or MQ-9, a parallel pretest/posttest design was designed to examine the efficacy of this 

HDD menu trainer as training aid in traditional, blended, and distance pedagogies. 

 Results of a mixed ANOVA indicated the trainer significantly improved performance 

from pretest to posttest scores across all groups (p<0.001), however comparing these scores 

according to instructional intervention (i.e. Traditional, Blended, and Distance) found no 

significant effect. No significant differences were observed between pretest, posttest, or percent 

change scores according to instructional intervention. Analysis of the same variables with respect 

to pilot certification revealed that learners holding a Commercial pilot certificate scored 

significantly higher on the pretest than those with no FAA (Federal Aviation Administration) 

pilot certification (p<0.05), and learners with no FAA pilot certificate demonstrated significantly 

higher percent changes from pretest to posttest than learners with Commercial pilot certificates 

(p<0.05). While, it is clear that the HDD menu trainer has demonstrated effectiveness in 

improving a student’s ability to navigate and manipulate the MQ-9 menu structure, the subtle 

differences between instructional methods will require further investigation. Future studies are 

encouraged to investigate the benefits and effectiveness of each instructional method while 

controlling for pilot certification. 
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Medium Altitude Long Endurance RPA Training: 

A Pilot Study in Blended Learning 

 

In the past two decades, the availability and capability of computer technologies have 

greatly expanded the educational options available to learners and instructors alike (Osguthorpe 

& Graham, 2003). Integrating these advances into pedagogy, which recognizes and capitalizes 

on the inherent strengths of both traditional (i.e. face-to-face) and distance systems of delivery, is 

the challenge that blended learning offers. Computer Based Training (CBT) modules offer a 

specific and contemporary example of these expanded educational options, and have been 

defined as “… self-contained, interactive, often asynchronous, computer-based program[s] 

designed for self-paced instruction that uses features of learner control coupled with predesigned 

material, required responses and feedback” (Bedwell & Salas, 2010, p. 240). 

Statement of the Problem 

Since April of 2011, research and development efforts between the Air Force Research 

Laboratory (AFRL) and the University of North Dakota (UND) have progressed through the 

“Science and Technology for Warfighter Training and Aiding.” Cooperative Agreement. This 

CA (FA8650-11-2-6212), is producing a state-of-the-art curriculum for Medium Altitude, Long 

Endurance Remotely Piloted Aircraft (MALE RPA) pilots and sensor operators, as well as 

establishing infrastructure for future research efforts. One product of these cooperative efforts 

has been a Heads Down Display (HDD) Menu Trainer. This CBT module, developed by UND’s 

Aerospace Network, was designed to familiarize students with the layout and manipulation of the 

HDD menus for either the MQ-1 or MQ-9. 

The efficacy of the HDD menu trainer to improve a student’s ability in navigating and 

manipulating the MQ-9 menu structure, as well as its application as training aid in blended 
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pedagogy, or standalone teaching tool in distance pedagogy have not yet been examined. This 

need for evaluative validation fits well into gaps in extant literature regarding Computer Aided 

Instruction (CAI) (Adler & Johnson, 2000). In characterizing literature related to CAI, Adler and 

Johnson (2000) concluded that evaluation articles on the topic remain uncommon in comparison 

to demonstrations and media-comparative studies, and call for future research to be more aware 

of these gaps if CAI literature is to mature. 

Purpose of the Study 

The purpose of this pilot study was to examine the expertise of students in navigating and 

manipulating the Heads-Down Display (HDD) menus of MALE RPA when provided either 

traditional, blended, or distance instruction. Learner knowledge gains between groups were 

measured by both pretest and posttest assessments to assess the effectiveness (1) of the HDD 

menu trainer, and (2) its potential for use in a variety of instructional methods. 

Literature Review 

Blended learning 

While used frequently throughout academic journals and conferences (Osguthorpe & 

Graham, 2003), a strict definition of blended learning appears elusive in the extant literature. In 

his work describing the definitions and directions of blended learning environments, Osguthorpe 

(2003) offered that, 

“Blended learning combines face-to-face with distance delivery systems… the internet is 

involved, but it’s more than showing a page from a website on the classroom screen. And 

it all comes back to teaching methodologies – pedagogies that change according to the 

unique needs of learners. Those who use blended learning environments are trying to 

maximize the benefits of both face-to-face and online methods – using the web for what 
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it does best, and using class time for what it does best.” (Osguthorpe & Graham, 2003, p. 

227)  

 Osguthorpe and Graham (2003) stress that blended approaches are based upon the 

assumption that inherent benefits, and weaknesses, exist for both face-to-face interaction and 

distance delivery. Educators employing blended approaches to instruction must discern the best 

balance between online access to knowledge and face-to-face human interaction as they develop 

each course (Osguthorpe & Graham, 2003). Evaluative works on curricula which fall under 

Osguthorpe and Graham’s (2003) working definition of blended learning strategies, or are 

specific to Bedwell & Salas (2010) definition of CBT, are reviewed in the sections that follow. 

These efforts have been organized according to domains regarding (1) knowledge gains, (2) 

learner attitudes, and (3) learning efficiency, as offered by Chumley-Jones, Dobbie, and Alford 

(2002).  

Learner knowledge gains 

Efforts addressing learner knowledge gains have assessed change in participant 

performance as a result of intervention with some manner of computer assisted, or computer 

based instruction. The majority of studies in this domain measured change using multiple choice 

test-scores. Pretest/posttest self-controlled studies were the most common design, however others 

such as self-selected controlled studies, assigned crossover trials, and randomized controlled 

trials methodologies were also noted (Chumley-Jones et al. 2002). Several within-group 

methodologies were able to successfully document significant increases in performance as a 

result of distance instruction (Boyle, Bradley, Chalk, Jones, & Pickard, 2003; Curran, Hoekman, 

Gulliver, Landells, & Hatcher, 2000; Engel, Crandall, Basch, Zybert, & Wylie-Rosett, 1997; 

Francis, Mauriello, Phillips, Englebardt, & Grayden, 2000; Harris, Salasche, & Harris, 2001; 



 

12 
 

Kronz, Silberman, Allsbrook Jr., & Epstein, 2000; Perryer, Walmsley, Barclay, Shaw, & Smith, 

2002). 

Although within-group assessments of distance instruction were common, between group 

methodologies allow comparisons to be made across or against alternative pedagogical strategies 

(i.e. traditional face-to-face, blended, and standalone distance). In these designs, literature which 

indicated a lack of significant difference in terms of knowledge gains appear to be the majority 

when distance and traditional pedagogies are compared (Baumlin, Bessette, Lewis, & 

Richardson, 2000; Bell, Fonarow, Hays, & Mangione, 2000; Block, Felix, Udermann, Reineke, 

& Murray, 2008; Rivera & Rice, 2002; Rose, Frisby, Hamlin, & Jones, 2000; Sakowski, Rich, & 

Turner, 2001; Woo & Kimmick, 2000). Allen, Mabry, Mattrey, Bourhis, Titsworth, & Burrell 

(2004) also found little distinction between traditional and distance learning classrooms on the 

basis of performance, but offer that no clear decline in educational effectiveness is noted when 

utilizing distance education technology. 

Other between-groups designs did identify significant differences in favor of distance and 

blended pedagogies. For example, in their examination of potential pedagogic advantages of 

distance methods of instruction, Lipman, Sade, Glotzbach, Lancaster, and Marshall (2001) 

compared a traditional classroom course with the same course supplemented by internet-based 

discussion. Results indicated that performance was higher (p< 0.005) in the blended course than 

the traditional course (Lipman et al. 2001). Melton, Graf, and Chopak-Foss (2009) compared 

student achievement in blended and traditional pedagogies with mixed results. However, the 

grades of students in the blended course were found to be significantly higher (p<0.05) than 

those in the traditional course (Melton et al. 2009).  
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In 2007, Pereira, Pleguezuelos, Meri, Molina-Ros, Molina-Tomas, and Masdeu, 

examined the efficiency of blended pedagogy, and found that students receiving blended learning 

received significantly higher grades (p< 0.0001) than those in the traditional group (Pereira, et 

al., 2007). Student feedback also indicated that students felt the course design was an effective 

(88%) and efficient (92%) method of learning, and helped to familiarize them with resources on 

the internet (96%) (Pereira, et al., 2007). Further, students’ confidence, measured before and 

after the intervention, showed significant improvement (p <0.001). 

Learner attitudes 

Since, the late 1990’s students have valued the “…flexibility, timeliness, efficiency and 

breadth of access to relevant information offered by the [internet]” (Agius & Bagnall, 1998, p. 

337). Another facet commonly used to evaluate pedagogy, and the second category offered by 

Chumley-Jones et al. (2002), learner attitudes have been measured and examined regularly in the 

extant literature.  

In their study, Baumlin, et al. (2000) examined course satisfaction with a participant 

survey. Results indicated that 65% of participants said they wanted computer-assisted instruction 

as an adjunct to their course curricula, but only 28% of the students with access actually utilized 

the module. Participants who did use it rated it useful (4.2/5), easy to use (4.4/5), and easy to 

access (4.1/5). Of the students with access to the online module who chose not to use it, 77.8% 

reported a lack of time as the reason for not using the module (Baumlin, et al. 2000). In Bell et 

al. (2000), ratings on a learner satisfaction scale indicated that students using the online tutorial 

displayed higher satisfaction with the curriculum (Bell et al. 2000).  

The 2000 work of Curran et al. also made a general measure of learner attitude. 

Participants indicated high satisfaction with the self-paced instruction and use of the 
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asynchronous computer conferencing for collaboration among colleagues (Curran et al. 2000). A 

voluntary satisfaction survey by Harris et al. (2001), indicated extremely high user satisfaction 

with a distance curriculum. A learner satisfaction survey by Melton et al. (2009), indicated 

higher satisfaction from students receiving blended learning course delivery (p< 0.01). Authors 

concluded that the blended course delivery was preferred over the traditional lecture format, 

challenging teachers’ traditional approach to delivering general health courses at the university 

level (Melton et al. 2009). Horsch, Balback, Melnitzki, and Knauth (2000) conducted a simple 

survey design to measure learner attitudes regarding a distance course. On a scale of 1 to 5, 

(1=very good; 5=very bad) students (n = 32) rated the online module at 1.93. In a self-

assessment of knowledge gained, 18 of 32 students indicated they had acquired new knowledge, 

and 10 indicated that learning with the online text was more efficient than learning with a 

conventional textbook (Horsch et al. 2000). 

Hsu and Hsieh (2011) utilized four scales (i.e. the Case Analysis Attitude Scale, Case 

Analysis Self-Evaluation Scale, Blended Learning Satisfaction Scale, and Metacognition Scale) 

for students to rate their own performance in blended and traditional delivery courses. Results 

indicated no difference between groups on any of the self-reported performance scales measured 

at pretest and posttest. Authors offer that these results demonstrate that both blended learning 

and traditional classroom lectures are both effective avenues for presenting materials and 

exchanging ideas to understand course content, and recommend that newly developed course 

modules and innovative course components should be tested repeatedly for effectiveness (Hsu & 

Hsieh, 2011). Smyth, Houghton, Cooney, and Casey (2012) interviewed focus groups of students 

regarding their blended learning experience, and found that students received the blended 
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learning method positively, but offered that the online component meant little time away from 

study, suggesting that it was more invasive on their everyday life (Smyth et al. 2012). 

In their examination of the effectiveness of traditionally and distance courses, Rose et al. (2005) 

also made a point to measure student satisfaction. No significant differences were reported for 

(1) communication with classmates, (2) instructor, (3) assignments, (4) review sessions, (5) 

relevance of course, or (6) the overall course (Rose et al. 2000). Pereira et al. (2007) also 

observed no statistical difference in overall satisfaction between their blended and traditional 

courses. Rivera and Rice (2002), who conducted a pilot study evaluating three class formats (i.e. 

traditional, distance, and blended) found that measures of student satisfaction seemed to indicate 

that relative to the traditional and blended courses, students in the distance course were less 

satisfied. Woo and Kimmick (2000) also compared student satisfaction, but found that 

participants in the distance course reported significantly higher (p< 0.05) stimulation of learning 

compared to those in the traditional lecture course.  

As with the efforts addressing learner knowledge gains, measurements of learner attitudes 

have returned mixed responses. Aside from noting a positive disposition toward pedagogies 

utilizing some manner of computer assisted, or computer based instruction from the majority of 

the works, these results are difficult to generalize. While measuring learner attitudes toward 

experimental curriculums appears commonplace, there seems to be little standardization or 

congruence in method of measurement. 

Learning efficiency 

The final and briefest of the three categories examined is learning efficiency. Requiring at 

minimum a between groups comparison for quantitative results, measures of learning efficiency 

for interventions with some manner of computer assisted, or computer based instruction 
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compared to traditional delivery methods are rare. Only two studies were identified as addressing 

this topic. The first was also reviewed in the learner attitude section. In their examination of 

knowledge gains, learning efficiency and learner satisfaction between an online tutorial program 

and printed materials, Bell et al. (2000) assessed students (n = 162) enrolled in family medicine 

and internal medicine residency programs at four universities. Results indicated no significant 

difference in posttest scores between those students using the online tutorial and the printed text 

materials. However, those utilizing the online tutorial spent less time studying (p< 0.001), 

demonstrating greater learning efficiency. The second study, also reviewed in the learner 

attitudes section was a simple survey study design to collect student attitudes regarding a 

distance medical course. In a self-assessment of knowledge gained, 18 of 32 students indicated 

they had acquired new knowledge, and 10 indicated that learning with the online text was more 

efficient than learning with a conventional textbook (Horsch et al. 2000). As with program cost, 

a fourth category offered by Chumley-Jones et al. (2002), this category of evaluative research 

regarding computer assisted, or computer based instruction requires further exploration. 

Methodology  

The present study examined the effectiveness of the HDD menu trainer in improving a 

student’s ability to navigate and manipulate the MQ-9 menu structure, as well as potential 

impacts of either traditional, blended, or distance instruction on this process. Using the HDD 

menu trainer developed under the “Science and Technology for Warfighter Training and 

Aiding.” Cooperative Agreement between AFRL and UND, pretests and posttests were used to 

measure learner knowledge gain. Learner attitude was assessed using a satisfaction survey. 
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Sample 

The sample for this study consisted of individuals both with and without FAA pilot 

certification at the University of North Dakota John D. Odegard School of Aerospace Sciences 

(n = 15). Of this sample, 3 participants held no FAA pilot certificate, 5 participants held a Private 

Pilot Certificate, and 7 participants carried Commercial Pilot certification. The average subject 

age was 27.73. Subject responses were not separated by race or gender, and no subject’s results 

were excluded from analysis. Participants were randomly assigned to one of three groups (i.e. 

Traditional, Distance, and Blended) receiving various instructional interventions with respect to 

MQ-9 HDD menus. 

Instrument 

The HDD menu trainer, developed by UND’s Aerospace Network was designed to 

familiarize students with the layout and manipulation of the HDD menus for either the MQ-1 or 

MQ-9. The trainer contains (1) a tutorial describing menu layout, menu navigation, button types, 

and button arrangement, (2) a walk-through function, which guides students through each root 

menu and its submenus, (3) an exercise function, which tests the student’s ability to navigate and 

execute specific commands within a set time limit, and finally (4) a freeplay function, which 

allows the students to navigate and explore the HDD menus without specific focus or limits on 

time. 

The menu trainer was delivered to the distance and blended groups via an open source, 

online Learning Management System (LMS) administered by the researcher. All subjects had 

access to the LMS for completion of the pretest and posttest measures. Subjects were briefed on 

use of the LMS at the start of the intervention. 
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The pretest and posttest measures utilized a modified version of the HDD menu trainer’s 

exercise function. These assessments, designed by an Original Equipment Manufacturer (OEM) 

certified MQ-9 IP, reflect those menu functions most commonly used or most critical for 

gauging a student’s expertise with navigating and manipulating the HDD menus. Roughly 25 

pilot orientated menu functions were selected from the pool of 260 which constitute the menu 

trainer’s exercise function, and were adapted for delivery as the pretest and posttest measures. 

These measures, like the menu trainer’s exercise function, measure the student’s ability to 

navigate and execute specific commands within a set time limit. Performance was assessed 

according both the speed and accuracy of the student’s response. 

Data Collection and Analysis 

This study was reviewed and approved by the University of North Dakota’s Institutional 

Review Board. Subjects were informed of the study with advertisements posted throughout the 

campus aerospace facilities as well as the aviation student email listserve. Subjects were briefed 

on the purpose and nature of the study prior to participation. Due to the sensitive nature of the 

MQ-9 HDD menus, participants were also required to present proof of U.S. citizenship by means 

of a passport, and/or birth certificate and driver’s license and sign an International Traffic in 

Arms Regulations (ITAR) Statement of Understanding. 

Subjects were randomly assigned to one of three study groups to receive instruction on 

navigating and manipulating the HDD menus of the MQ-9. As illustrated in Table 1, students 

assigned to the distance group were granted access to the HDD menu trainer. Subjects assigned 

to the blended group were granted access to the HDD menu trainer, but also attended a 

classroom discussion guided by an Original Equipment Manufacturer (OEM) certified MQ-9 

Instructor Pilot (IP). Subjects assigned to the traditional group were not granted access to the 
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HDD menu trainer, but received a lecture and lesson on the HDD Menus from an OEM certified 

MQ-9 IP. The lesson completed by the traditional group was conducted using an MQ-9 part-task 

trainer which simulated the same HDD menus but provided no innate instructional aspects (i.e. 

no tutorial, walk-through, or exercise functions). The layout and functionality of the menus 

simulated in this part-task trainer were identical to those used in the pretest and posttest 

measures, as well as those used by the distance and blended groups. 

 

 

Table 1, Research Design 

  Traditional  Blended  Distance  

  Group  Group   Group  

HDD Menu Trainer   No  Yes  Yes  

MQ-9 Instructor Pilot   Yes  Yes  No  

    

 

Descriptive and inferential statistics were collected from the data. The means, standard 

deviations, minimum, maximum, range, and measures of skewness and kurtosis indices were 

calculated using raw scores from each group. A one way ANOVA was used to assess differences 

between the groups on pretest, posttest, and percent change scores. In cases where parametric 

assumptions were violated, Kruskal-Wallis non-parametric procedures were used to assess 

potential relationships. Significance in all statistical tests were set at a minimum of p<0.05. 

Results 

Learner Knowledge Gains 

Illustrated in Table 2 are descriptive statistics for each of the three groups in their pretest, 

posttest, and percent change measures. Each task in the parallel pretest and posttest measures 

was assigned 15 possible points. Points were deducted for incorrect keystrokes as well as when a 
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task could not be completed inside 30 seconds. If a task was skipped, a score of 0 was assigned. 

Percent change was calculated as the difference between the pretest and posttest score divided by 

the pretest Score. Also included in Table 2 are z-scores for the skewness and kurtosis of each 

factor’s score distribution. For these measures, absolute values greater than 1.96 indicate 

significantly non-normal distributions at p<0.05 (Field, 2009). Except for skewness in the 

percent change measure of the distance group, all measure distributions failed to differ 

significantly from a normal distribution in either skewness or kurtosis. 

 

 

Table 2, Descriptive Results According to Instructional Method 

 

 N Mean SD Minimum Maximum Z skewness Z kurtosis 

PRE-TEST         

     Traditional  5 244.00 68.58  157.00 324.00  0 .00  -0 .86  

     Blended  5 264.60  49.26 191.00 309.00 -0 .87 -0 .23  

     Distance  5 270.40 56.79 175.00 326.00 -1 .70 1 .57 

POST-TEST                 

     Traditional  5 331.40  26.95 308.00 365.00   0 .67  -1 .45  

     Blended  5 334.00 27.59 299.00 371.00 0 .21 -0 .26 

     Distance  5 332.00 25.95  308.00  366.00 0 .48  -0 .58  

PERCENT CHANGE                 

     Traditional  5 42.91 33.28 12.65 96.18 1 .34 0 .73 

     Blended  5 28.85 18.41  6.47 56.54 0 .72 0 .58  

     Distance  5 27.26  28.14 5.12  76.00  2 .07*  1 .92  

 * Indicates significance at the 0.05 level  

 

 

Results of the one way ANOVA (Table 3) comparing pretest, posttest, and percent 

change scores between groups found no significant differences between the three groups on any 

of the measures. Although non-normality was noted in the skewness of the distance group in 

percent change, the same patterns of significance were noted using nonparametric Kruskal-
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Wallis procedures comparing the mean ranks of percent change, as well as pretest and posttest 

scores, with respect to instructional method. 

Table 3, One Way ANOVA Results According to Instructional Method 

  Traditional  Blended  Distance  

  Group  Group   Group  

 Mean SD  Mean SD  Mean SD P 

PRE-TEST   244.00 68.58   264.60  49.26  270.40 56.79   0.761 

POST-TEST   331.40  26.95  334.00 27.59  332.00 25.95    0.987 

PERCENT CHANGE  42.91 33.28  28.85 18.41  27.26  28.14   0.620 

 * Indicates significance at the 0.05 level    

    

 

A mixed ANOVA indicated the trainer significantly improved performance from pretest 

to posttest scores across all groups F(1,12) = 49.01  (p<0.001), however comparing these scores 

by instructional intervention (i.e. Traditional, Blended, and Distance) found no significant effect. 

To summarize, an overall effect of instruction was observed, but did not vary across the three 

types of instructional intervention. 

Regarding pilot certification. 

Analysis of pretest and posttest scores, as well as percent change in scores with respect to pilot 

certification revealed several relationships meriting consideration for future studies in this area. 

In Table 4, results of a one way ANOVA and Tukey post hoc analysis indicated that participants 

holding a commercial pilot certificate scored significantly higher on the pretest than those with 

no FAA pilot certification (p<0.05). No significant effect of pilot certification was found in an 

analysis of the post test scores. Furthermore, significantly higher percent changes from pretest to 

posttest were observed in participants with no FAA pilot certificate than those with commercial 

certificates (p<0.05). Again, a similar pattern of results were found when analysis was repeated 

using the Kruskal-Wallis procedure. 
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Table 4, One Way ANOVA results According to Pilot Certification 

  None  Private  Commercial  

  (n = 3)  (n = 5)  (n = 7)  

 Mean SD  Mean SD  Mean SD P 

PRE-TEST   191.67 17.00  258.80 67.11  289.43 27.92   0.024* 

POST-TEST   306.00 6.25  339.20 25.15  339.00 23.90   0.114 

PERCENT CHANGE  60.45 14.01  37.88 34.05  17.77 10.47   0.041* 

 * Indicates significance at the 0.05 level    

    

 

 

Learner Attitudes 

A learner satisfaction survey was used to gauge participant satisfaction with the 

instruction they received. Participants were asked to respond to 8 statements regarding course 

satisfaction on a five point Likert scale (1=Strongly Disagree; 5=Strongly Agree). Sum totals and 

descriptive statistics for these responses are found in Table 5 below. While results of a one way 

ANOVA did not indicate a significant difference between course satisfaction and instructional 

method, patterns in the open ended responses offer some differentiation. 

Table 5, Descriptive Results of Learner Attitude 

 

 N Mean SD Minimum Maximum Z skewness Z kurtosis 

ATTITUDE         

     Traditional  5 29.20 5.45  22  35  -0 .59 -0 .99 

     Blended  5 32.60 6.23  23  39  -1 .02 -0 .38 

     Distance  5 29.00  1.00 28  30  0 .00 -1 .50 

 * Indicates significance at the 0.05 level  

 

 

Open-ended responses to the prompts “Please describe improvements, if any, which 

would better assist your learning of the course material.” and “Please describe specific aspects of 

the course or instruction which promoted your learning." provide qualitative context. Members 
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of the traditional group commonly felt that additional time and access to the HDD trainer would 

have better assisted their learning “… As someone who prefers to study alone, access to the 

trainer”, “More time to teach the material”, “More time with software” and “I would have 

benefitted from some practice exams at home.” While the ability to govern instructional pace 

was a common theme in aspects of the course which promoted learning for members of the 

distance group, preference for an introductory lecture preceding self-study was noted as a way to 

better assist their learning. In the blended group, the combination of self-paced practice and the 

availability of instructor expertise in classroom discussions surfaced as positive aspects of the 

course. 

Learning Efficiency 

The traditional group was presented a 15 minute lecture followed by a simulated lesson in 

a part-task trainer Ground Control Station (GCS) for 45 minutes. As a single crew includes 1 

pilot position and 1 sensor operator, this instruction only permitted 2 individuals to work directly 

with the IP at a time, while the remainder of the class observed. Following this lesson, 

participants were not allowed access to the menus excluding a 1 hour practice period in the 

simulated GCS. Self-reported study times for the distance group indicated an average of 1.3 

hours of effort (0.84 SD) with the HDD menu trainer. Finally the self-reported study times for 

the blended group showed an average of 3.5 hours of effort (2.58 SD) preceding a 1 hour 

classroom discussion and review prior to the posttest. 

Discussion 

The results above demonstrate that the HDD menu trainer is effective in improving a 

student’s ability to navigate and manipulate the MQ-9 menu structure. Results for learner 

knowledge gains, learner attitudes, and learning efficiency offer preliminary indications of the 
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trainer’s potential as training aid in blended pedagogy, as well as standalone teaching tool in 

distance pedagogy. Similar to many previous efforts reviewed, the HDD menu trainer was at 

least as effective as the traditional method of instruction currently used in terms of learner 

knowledge gains. Although inferential results of the learner satisfaction survey did not reflect 

differing levels of satisfaction, written responses to the open ended portions of the instrument 

indicated that learners clearly identified with classic strengths and weaknesses of both traditional 

and distance pedagogies. The group receiving traditional instruction benefitted from the 

interaction and expertise of the live instructor, but requested additional time with the material or 

ways to study according to their individual needs. Members of the distance group, meanwhile, 

appreciated the ability to self-govern the pace of their learning but noted instructor availability as 

a way to improve their learning. 

While it may have been anticipated that the blended group would outperform the other 

groups, benefitting from the advantages of instructor availability as well as the ability to govern 

their own preferences for pace and duration of instruction, the relatively small sample sizes 

likely affected this in two ways. First, if instructional method commands only a small effect size 

on learner knowledge gains, much larger sample sizes will be required to reliably detect a 

genuine effect when one exists. Second, as overall class size approaches the size of a single RPA 

crew, the unique differences between the instructor delivered portions of the blended and 

traditional approaches lessen. As class size approaches the size of a single crew, the lecture 

received by the traditional group increasingly resembles the individual attention normally 

reserved for individual lessons. Likewise, with fewer members of the blended group, individual 

members may benefit less from the questions and discussion generated between their peers and 
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the instructor. As such, it may be that the blended pedagogy has a greater effect on learning 

knowledge gain and learning efficiency (in terms of instructor time) as class size increases.    

Conclusion and Future Studies  

 As the availability and capability of instructional technologies continues to expand, 

opportunities to adapt, validate, and improve pedagogy accordingly are many. Extant literature 

reflecting evaluative efforts on distance and blended instruction generally report that these 

instructional methodologies are able to perform at least as well as traditional methods and in 

some circumstances, better. Blending the advantages of traditional face-to-face instruction with 

the benefits of computer aided delivery systems for learners is the focus of blended learning. The 

purpose of this pilot study has been to examine the expertise of students in navigating and 

manipulating the HDD menus of MALE RPA to assess (1) the effectiveness of the HDD menu 

trainer, and (2) its potential for use in traditional, blended, or distance instructional methods. 

Results of a mixed ANOVA indicated the trainer significantly improved performance from 

pretest to posttest scores across all groups (p<0.001), but comparisons by instructional 

intervention (i.e. Traditional, Blended, and Distance) found no significant effect. A lack of 

significant differences between pretest, posttest, and percent change scores between groups 

indicates that the HDD menu trainer may be assumed as equally effective in terms of learner 

knowledge gains across the instructional designs examined. 

Exploration of the relationship between pilot certification and performance revealed an 

additional aspect influencing MALE RPA training, which must be controlled in future studies 

seeking variation uniquely attributable to instructional method. This pilot study found that 

learners holding a commercial pilot certificate scored significantly higher on the pretest than 

those with no FAA pilot certification (p<0.05). Such tendencies beg further investigations into 
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the relationship of FAA pilot certification and MALE RPA training. What skills, knowledge, or 

experience, captured by these aviation benchmarks, accounts for the increased initial 

performance? Is the lack of significant difference between posttest scores with respect to 

certification the result of an artificial ceiling effect with the instrument? Does the ability to 

navigate and manipulate these menus represent understanding of their function? Perhaps 

considerations such as these can be used to adapt initial operations training in these platforms to 

the qualifications of those best qualified or most likely to be entering this new and rapidly 

evolving discipline.  

As demand for MALE RPA pilots and sensor operators grows, adapting pedagogy and 

technologies to provide the highest standard of instruction at the greatest efficiency will remain 

an enormous challenge for all. Future studies involving the HDD menu trainer are underway 

utilizing the results of this pilot effort to isolate the unique variance in performance explained by 

instructional method and possible interactions between instruction and pilot certification. 

Informed by the results of this study, these efforts will utilize larger samples to map this 

relationship. Other studies are encouraged to document and reflect on learning efficiency, 

investigating whether use of such training aids can reduce instructor and/or simulator training 

time while engendering equivalent knowledge, skills, and abilities. Examining the pedagogy of 

MALE RPA training with consideration to learner knowledge gains, learner attitude, and 

learning efficiency will support the comprehensive understanding necessary to advance and 

mature this training domain.  
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Abstract 

The Heads Down Display (HDD) Menu Trainer – a stand-alone software trainer – was 

developed to familiarize students in Remotely Piloted Aircraft training with the layout and 

manipulation of the HDD menus for either the MQ-1 or MQ-9. Preliminary work by Waller et al. 

(2016) established the efficacy of the HDD Menu Trainer in improving student performance 

from pretest to posttest scores across several modalities (i.e. traditional, blended, and distance). 

Recognizing that students holding pilot certification scored higher in some aspects of the HDD 

Menu Trainer, this study sampled students across a curriculum to assess whether performance 

with the HDD Menu Trainer would differ across modalities (i.e. traditional, blended, and 

distance) when FAA pilot certification was controlled.  

Results of a mixed factorial ANCOVA indicated the effectiveness of the HDD menu 

trainer once more through a main within-subjects effect of performance and performance was 

again higher for students holding an FAA pilot certificate than for those without. However, 

modality failed to demonstrate a significant interaction effect with student performance from 

pretest to posttest. These results affirm that even outside the variation which should be attributed 

to a student’s pilot certification, the HDD Menu Trainer demonstrates equal effectiveness when 

used in blended and distance modalities. These results support several prior works finding 

blended learning applications to be at least as effective as other modalities. 

As blended, flipped, and hybrid learning models are increasingly expected within higher 

education curriculums, future work is anticipated in the construct of student engagement (Borup 

et al., 2020; Halverson & Graham, 2019). 
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Medium Altitude Long Endurance RPA Training: 

Evaluating Blended Learning  

 

In 2003, Osguthorpe and Graham situated their understanding of blended learning 

according to aspects of both modality (i.e. the mode of delivery) and pedagogy (i.e. the method 

of teaching). Since then, assessments of blended learning at the course-level have established its 

effectiveness through comparison to traditional models – commonly construed as face-to-face 

(Porter et al., 2014; Waller et al., 2016).  

Statement of the problem. 

Between 2011 and 2017 the “Science and Technology for Warfighter Training and 

Aiding.” Cooperative Agreement between the University of North Dakota and the Air Force 

Research Laboratory (AFRL) produced curriculum for Medium Altitude, Long Endurance 

Remotely Piloted Aircraft (MALE RPA) pilots and sensor operators. From these efforts was 

developed a Heads Down Display (HDD) Menu Trainer as a stand-alone software trainer to 

familiarize students with the layout and manipulation of the HDD menus for either the MQ-1 or 

MQ-9. 

Preliminary work by Waller et al. (2016) established the efficacy of this HDD menu 

trainer in improving student performance from pretest to posttest scores across several modalities 

(i.e. traditional, blended, and distance). Waller et al. also noted that participants with greater 

levels of Federal Aviation Administration (FAA) pilot certification scored significantly higher on 

the pretest measure of the HDD Menu Trainer but lacked a sufficient sample to assess FAA pilot 

certification as a covariate. 

Data collection across the curriculum, rather than within a course, was needed to assess 

whether student performance across modalities would begin to differ when the model allowed 

FAA pilot certification to covary 
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Purpose of the study. 

The purpose of this study was to sample students across a curriculum, rather than within a 

course, to assess whether student performance with the HDD Menu Trainer would differ across 

modalities (i.e. traditional, blended, and distance) when FAA pilot certification was allowed to 

covary in the analysis.   

Literature Review 

Measures such as (1) student evaluations and satisfaction (Horsch et al., 2000; Hsu & 

Hsieh, 2011; Smyth et al., 2012), (2) student performance and achievement, (Allen et al., 2004; 

Baumlin et al., 2000; Bell et al., 2000; Block et al., 2008; Boyle et al., 2003; Curran et al., 2000; 

Engel et al., 1997; Francis et al., 2000; Harris et al., 2001; Kronz et al., 2000; Lipman et al., 

2001; Melton et al., 2009; Perryer et al., 2002; Rivera & Rice, 2002; Rose et al., 2000; Sakowski 

et al., 2001; Woo & Kimmick, 2000), the Sloan-C Pillars (Laumakis et al., 2009), and even the 

confidence of students (Pereira et al., 2007) have all seen use in situating instructional models 

(e.g. face-to-face, blended, and online) according to modality.  

As the adoption of blended learning progressed, proponents predicted it would become 

the ‘new normal’ within higher education (Norberg et al., 2011). Accepting the course-level 

effectiveness of blended learning, the sections below review institutions and administrations 

seeking a better understanding of how blended learning might be strategically implemented at 

scale.  

University of Granada, Spain. 

Among the first examples aggregating data across curriculums is a blended learning 

initiative evaluated by Lopez-Perez et al. (2011) at the University of Granada, Spain. First year 

undergraduate students (n = 985) – enrolled in Business Administration and Management, 
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Economics Business Studies, and the Business Administration/Law courses – provided their 

perceptions of the courses via a 13-item survey (Lopez-Perez et al., 2011). The students’ 

performance was also measured by (1) the proportion of students sitting the final exam (the ‘non-

dropout rate’) and (2) the proportion of passing grades (Lopez-Perez et al., 2011).  

Results indicated that blended learning reduced dropout rates and increased exam passing 

rates (Lopez-Perez et al., 2011). A comparison of regression models indicates that students’ 

motivation during the face-to-face portion of their blended course were predictive of their final 

grade (p< 0.01), over and above the variation explained by their age, gender, average grade prior 

to entering the course, and attendance (Lopez-Perez et al., 2011). Lopez-Perez et al. (2011) offer 

that the motivation, satisfaction, and perceived utility of blended learning may influence student 

performance in an indirect way.  

University of Central Florida, United States. 

Moskal et al. (2013) assess the performance of blended learning efforts at the University 

of Central Florida (UCF). With an interest in improving teaching and informing institutional 

policymaking, Moskal et al. investigated how student satisfaction, success, and withdrawal 

related to course modality (i.e. blended, fully online, face-to-face, blended lecture capture, and 

lecture capture). Course ratings from academic years 2008 to 2011 were indexed by modality 

(Moskal et al., 2013).  

A large sampling (n = 913,688) of student satisfaction reflected “… the blended modality 

[enjoyed] the highest percentage (52%) of “excellent” responses producing a 4% marginal 

advantage over online and face-to-face courses that [were] tied at 48%...” (Moskal et al., 2013, p. 

19). From this finding, the university used regression tree analysis to identify aspects of the 

instructor and course which lead to an overall rating of ‘excellent’ (Moskal et al., 2013). 
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The analysis of Moskal et al. (2013) found that if UCF students rated the instructor's (1) 

ability to facilitate learning, (2) communication skill, and (3) respect and concern for students as 

‘excellent’, the probability of the course receiving an overall rating of ‘excellent’ moved to .97 – 

regardless of the modality. Encouraged by this finding, Moskal et al. conducted a hierarchical 

logistic regression indicating that over and above the predictive power of demographic 

characteristics associated with students, the addition of these three instructor qualities is able to 

increase R2 by 0.719. Regardless of modality, which does not enter the model, these three items 

are proposed as high-impact areas for improving pedagogy (Moskal et al., 2013).  

When student rates of success – measured as earning a passing grade – and withdrawal 

were evaluated against modality, courses in the blended learning category yielded the highest 

success rates of 90.8% and saw withdrawal at roughly half the rate (2.8%) of lecture capture 

courses (5.3%) (Moskal et al., 2013). 

York University, Canada. 

At York University, Owston et al. (2013) examined the relationship between student 

perceptions and achievement in blended learning courses. Following a multi-year initiative to 

increase blended learning, students (n = 577) were surveyed from eleven (11) blended learning 

courses. In an Analysis of Covariance (ANCOVA) model, responses to a 31-item survey were 

entered as the independent variables, cumulative grade point averages (CGPA) were entered as a 

covariate, and final grade for the blended coursework was entered as the dependent measure of 

achievement (Owston et al., 2013).  

Results indicated higher achievement (i.e. a final grade) for students who strongly agreed 

with the statements ‘I am satisfied with this [blended] course’ and ‘I would take another blended 

course’ – F(4,448) = 12.69, p = .000, η2 = .102 and F(5,447) = 6.30, p = .000, η2 = .066, 
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respectively, with the estimated marginal mean of final grades corrected for CGPA. Owston et 

al. (2013) conclude, “… that the highest achievers were most satisfied with their blended course, 

would take one again, and preferred the blended format over fully face-to-face or online 

[courses]” (p. 41). The opposite was found for low achieving students. 

 Further results from the ANCOVA model indicated that high achieving students found 

that blended learning offered (1) convenience, and (2) reduced travel time and expenses –  

F(5,445) = 6.37, p = .000, η2 = .067 and F(5,443) = 5.56, p = .000, η2 = .059, respectively 

(Owston et al., 2013). When assessing the relationship between engagement in blended learning 

and achievement, the largest effect was found in responses to the statement asking whether 

students were engaged more in their current blended course than other face-to-face courses they 

had taken, F(5,444) = 15.99, p = .000, η2 = .153 (Owston et al., 2013). All but one of the twelve 

Likert statements related to engagement indicated significant differences between high and low 

achievers. For the inquiry related to students’ perceptions of learning, Owston et al. (2013) relay 

a significant relationship between responses to the statement ‘Compared to typical face-to-face 

courses I have taken… this course has improved my understanding of key concepts’,  F(5,446)= 

6.38, p= .000, η2 = .067.  

Following York University’s implementation of a major blended learning initiative, 

Owston et al. (2013) offer, “high achievers are very satisfied with the blended format, find 

blended learning to be convenient and flexible, are very engaged in their studies, and appear to 

learn key concepts better” (p. 43). The endorsement supports the university’s interests with the 

caveat from Owston et al. that blended courses may not be as suitable for low achievers.  

While several of the higher-education efforts above were funded internally, some noted 

grant support from the NGLC awarded jointly to the American Association of State Colleges and 
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Universities (AASCU) and the University of Central Florida (UCF) (Porter et al., 2014), or a 

Sloan fluency/localness grant awarded to the University of Wisconsin–Milwaukee (UWM) 

(Graham et al., 2013).  

Methodology 

The present study examined the impact of modality (i.e. traditional, blended, or distance) 

in learning the HDD menus of a MALE RPA while controlling for FAA pilot certification. Using 

the HDD Menu Trainer developed under the “Science and Technology for Warfighter Training 

and Aiding.” Cooperative Agreement between the Air Force Research Laboratory and the 

University of North Dakota, pretests and posttests were used to measure learner knowledge gain.  

Sample. 

The sample for this study consisted of individuals both with and without FAA pilot 

certification at the University of North Dakota John D. Odegard School of Aerospace Sciences 

(n=102). Of this sample, 26 participants held no FAA pilot certificate, 48 participants held a 

Private Pilot certificate, and 27 participants carried Commercial Pilot certification. Average age 

was 22.93 (SD=5.68). Participants were assigned to modality groups (i.e. Traditional, Distance, 

and Blended) by class, with each class receiving various instructional interventions for teaching 

the Heads Down Display (HDD) Menus of the MQ-9. 

Instrument. 

The HDD Menu Trainer, developed by UND, was designed to familiarize students with 

the layout and manipulation of the HDD menus for either the General Atomics MQ-1 or MQ-9. 

The trainer contains (1) a tutorial describing menu layout, menu navigation, button types, and 

button arrangement, (2) a walk-through function, which guides students through each root menu 

and its submenus, (3) an exercise function, which tests the student’s ability to navigate and 
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execute specific commands within a set time limit, and finally (4) a freeplay function, which 

allows students to navigate and explore the HDD menus without specific focus or limits on time. 

The menu trainer was delivered to the distance and blended groups via an open source, 

online Learning Management System (LMS). All participants had access to the LMS for 

completion of the pretest and posttest measures. Participants were briefed on use of the LMS at 

the start of the intervention. 

The pretest and posttest measures utilized a modified version of the HDD Menu Trainer’s 

exercise function. Designed by an Original Equipment Manufacturer (OEM) certified MQ-9 

instructor pilot, these assessments represented those menu functions most commonly used or 

most critical for gauging a student’s expertise with navigating and manipulating the HDD menus. 

Roughly 25 pilot orientated menu functions were selected for the pretest and posttest from the 

trainer’s 260 exercise functions, and were adapted for delivery as the pretest and posttest 

measures. As with the trainer’s exercise function, the student’s ability to navigate and execute 

specific commands within a set time limit were assessed. Performance was measured according 

both the speed and accuracy of the student’s response. 

Data collection and analysis. 

This study was reviewed and approved by the applicable Institutional Review Board. 

Participants were informed of the study with advertisements posted throughout the campus 

aerospace facilities as well as the aviation student email listserve. Participants were briefed on 

the purpose and nature of the study prior to participation. Due to the sensitive nature of the MQ-9 

HDD Menus, participants were also required to present proof of U.S. citizenship by means of a 

passport, and/or birth certificate and driver’s license and sign an International Traffic in Arms 

Regulations (ITAR) Statement of Understanding. 
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The variety of modalities examined in this study were largely delivered during existing 

aviation courses, and random assignment among the groups should not be assumed. Preliminary 

work has indicated that pilot certification significantly affects pretest performance. To mitigate 

possible effects of this stratified sampling, participant level of FAA pilot certification has been 

controlled wherever learner knowledge gains are assessed across pedagogies. 

Each modality group received instruction on navigating and manipulating the HDD 

menus of the MQ-9. Illustrated in Table 1 below, students of the distance group were only 

granted access to the HDD Menu Trainer. Students of the blended group were granted access to 

the HDD Menu Trainer, but also attended a classroom discussion guided by an OEM certified 

MQ-9 Instructor Pilot (IP). Students assigned to the traditional group were not granted access to 

the HDD Menu Trainer, but rather received a lecture and simulator lesson on the HDD menus 

from an OEM certified MQ-9 IP. To ensure the same menu structure was represented in the 

instruction of the Traditional group and the pretest and posttest measures, the freeplay function 

of the HDD Menu Trainer was utilized in the simulated lesson. The version of the HDD Menu 

Trainer provided for this purpose had only freeplay functionality, the tutorial, walk-through, and 

exercise functions were disabled. 

Table 6, Research Design 

  Traditional  Blended  Distance  

  Group  Group   Group  

HDD Menu Trainer   Freeplay Only  Full  Full  

MQ-9 Instructor Pilot   Yes  Yes  No  

    

 

Results 

Illustrated in Table 2 are descriptive statistics for each of the three groups in their pretest, 

posttest, and percent change measures. Each task in the parallel pretest and posttest measures 
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was assigned 15 possible points. Points were deducted for incorrect keystrokes as well as when a 

task could not be completed inside 30 seconds. If a task was skipped, a score of 0 was assigned.  

Percent change was calculated as the difference between the pretest and posttest score divided by 

the pretest score.  

While significant departures from normality were noted among each of the pretest, 

posttest, and percent change distributions in the Kolmogorov-Smirnov and Shapiro-Wilk tests, 

the F statistic has been found to be robust against such violations. Because parametric 

assumptions may not be considered tenable, the results of the inferential procedures that follow 

should be interpreted with caution. 

Table 7,  

Descriptive Statistics for Student Performance 

      

 N Mean SD Minimum Maximum 

PRE-TEST       

     Traditional  39 203.95 69.47 63.00 324.00 

     Blended  29 210.80 60.72 103.00 311.00 

     Distance  30 235.24 70.86 14.00 326.00 

POST-TEST       

     Traditional  39 271.26 71.98 45.00 365.00 

     Blended  29 289.40 45.30 195.00 371.00 

     Distance  30 287.62 72.84 13.00 373.00 

PERCENT CHANGE        

     Traditional  39 43.60 48.44 -75.41 183.05 

     Blended  29 48.42 48.57 -15.67 192.23 

     Distance  30 25.98 30.19 -15.63 111.39 

* Indicates significance at the .05 level 

** Indicates significance at the .01 level 

*** Indicates significance at the .001 level 

 

An independent samples t-test (see Table 3) was used to compare the hours of self-study 

reported by students of the distance (M = 1.25, SD = 1.00) and blended (M = 1.22, SD = 1.51) 

modalities. Students in both of these groups had remote access to the HDD menu trainer, while 
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members of the traditional group did not. Results indicated no difference in amounts of self-

study between students in the blended and distance groups t(54)=-0.08, ns. 

Table 8,  

Comparison of Self-Reported Hours of Study 

 

 

 

 

 

 

 

 

 

 

Performance across Modality 

Results of a mixed factorial ANCOVA analyzed variation unique to modality (i.e. 

Traditional, Distance, and Blended) while controlling for whether or not a student held an FAA 

pilot certificate. Results, shown in Table 4, indicated the effectiveness of the HDD menu trainer 

once more through a main within-subjects effect of performance. That is, regardless of modality, 

and controlling for pilot certification, posttest scores were higher than pretest scores. As shown 

in the estimated marginal means plotted in Figure 1, modality failed to demonstrate a significant 

interaction effect with student performance from pretest to posttest.  

Although the same mixed factorial ANCOVA procedure indicated a significant between-

group main effect of pilot certification, no interactive effect was noted between student 

performance with the HDD Menu Trainer and FAA pilot certification. Regardless of modality, 

student performance was again higher for students holding an FAA pilot certificate than for those 

without. 

 

      

 n M (SD) Mean 

Difference 

t df 

      

Modality      

      Blended 30 1.22 (1.52) -0.03 -0.08 54 

      Distance 26 1.25 (1.00)    

      

* Indicates significance at the .05 level 

** Indicates significance at the .01 level 

*** Indicates significance at the .001 level 
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Figure 1, 

Estimated Marginal Mean Performance by Modality 

Table 4,  

Regressing Performance across Modality (Pilot Certification Controlled) 

 

 

 

 

 

 

 

 

 

Discussion and Conclusion 

This study sampled students across a curriculum to assess whether student performance 

with the HDD Menu Trainer would differ across modalities (i.e. traditional, blended, and 

distance) when FAA pilot certification was controlled. Waller et al. (2016) noted that students 
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 df MS F η2 

     
Performance 1 45212.63 27.65*** .23 

Performance * Modality 2 3396.18 2.07 .04 

Performance * Pilot Certification (Covariate) 1 299.83 0.18 .00 

Error (Performance) 93 15203.25   

Modality 2 3896.21 0.56 .01 

Pilot Certification 1 27550.44 3.97* .04 

Error 93 6939.72   

     

* Indicates significance at the .05 level 

** Indicates significance at the .01 level 

*** Indicates significance at the .001 level 
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holding pilot certification scored higher in some aspects of the HDD Menu Trainer. Here, 

whether a student holds an FAA pilot certification is entered as a covariate to control for these 

differences and better isolate variation which may be attributed to modality. Once again, the 

HDD Menu Trainer demonstrates (1) an ability to improve student ability in navigating and 

manipulating the HDD menus for the MQ-9 and (2) a significant between-subjects main effect 

on performance for students holding an FAA pilot certificate. Neither pilot certification nor 

modality was found to have a significant interactive effect on student performance. 

Prior work assessing blended learning applications has spanned several countries and 

disciplines. Like many of these works (Allen et al., 2004; Baumlin et al., 2000; Bell et al., 2000; 

Block et al., 2008; Boyle et al., 2003; Curran et al., 2000; Engel et al., 1997; Francis et al., 2000; 

Harris et al., 2001; Kronz et al., 2000; Lipman et al., 2001; Melton et al., 2009; Perryer et al., 

2002; Rivera & Rice, 2002; Rose et al., 2000; Sakowski et al., 2001; Woo & Kimmick, 2000), 

this study compared modalities using student performance and achievement. Like many of these, 

this study found its blended learning application to be at least as effective as other modalities. 

Lopez-Perez et al. (2011) utilized several regression models to better isolate the effect of 

motivation during the face-to-face portion of a blended learning experience, and Moskal et al. 

(2013) utilized a hierarchical logistic regression to explain the effect of three instructor qualities 

– over and above the predictive power of students’ demographic characteristics. As Owston et al. 

(2013) would enter cumulative grade point averages as an ANCOVA model covariate, so this 

study sought to increase the sensitivity of its model by designating a covariate of its own related 

to student performance. The ANCOVA results above affirm that even outside the variation 

which should be attributed to a student’s pilot certification, the HDD Menu Trainer demonstrates 

equal effectiveness when used in blended and distance modalities. 
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Future Directions 

Blended learning has long been situated in terms of both modality and pedagogy 

(Osguthorpe & Graham, 2003). As the blended learning model undergoes ongoing assessment 

and increasing integration within higher education, interests have begun to pivot toward goals 

such as (1) enhancing pedagogy and increasing access (Graham et al., 2005), (2) more efficient 

use of classroom resources and extending campus outreach (Graham et al., 2005; Moskal et al., 

2013), or even (3) adapting the educational paradigm for “… the ‘new type of learner’ enrolling 

at the university” (Carbonell et al., 2013, p. 32). 

Having so reviewed strategic integration of instruction which “… combines face-to-face 

with distance delivery systems…” (Osguthorpe & Graham, 2003, p. 227), a brief treatment of 

transitions to technology-assisted instruction which have not been strategic is also warranted on 

behalf of educational technology and instructional design scholars. The term ‘emergency remote 

teaching’ has recently emerged as a way to distinguish the mandatory transition that many 

institutions implemented to prevent the spread of the virus that causes COVID-19 (Hodges et al., 

2020). Where modality alone would closely associate the emergency remote teaching of Hodges 

et al. (2020) or the HyFlex model explained by Irving (2020) with blended learning, proponents 

are already separating the three on pedagogical terms (Saichaie, 2020). 

Although discussion – or perhaps more accurately – clarification surrounding modality 

has resurged with emergency remote teaching, the future directions of inquiry specific to blended 

learning appear to be focusing increasingly on the student engagement (Borup et al., 2020; 

Halverson & Graham, 2019). The study of this construct – its measurement and supporting 

mechanisms – are well situated as blended, flipped, and hybrid learning models are increasingly 

expected within higher education curriculum all around the globe (Saichaie, 2020).  
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Abstract 

Electroencephalograms (EEG) have been shown to reflect workload levels and sustained 

attention during training and learning, however a limited number of studies has examined the 

effectiveness of EEG in operational settings (Bernhardt et al., 2019; Mathan & Yeung, 2015; 

Mills et al., 2017; Yuan et al., 2014). The purpose of this research is to determine whether EEG 

technology is sensitive to changes in the cognitive workload and task engagement of remote 

pilots during simulated training events with the MQ-1. EEG data was collected from remote 

pilots (n = 10) during simulated MQ-1 RPA training events in the PRINCE device. 

Estimates of the Advanced Brain Monitoring, Inc. (ABM) cognitive metrics for high 

engagement and workload were averaged for the duration of the checklist as well as each leg of 

the flight pattern. Results of one-way repeated measures ANOVAs showed that the cognitive 

state metric for engagement F(11,8704)=4.87, p<0.001 and workload F(11,8328)=10.03, 

p<0.001 varied significantly within the flight pattern. Results of a paired sample t-test 

t(8348)=14.21, p<.001 indicated that workload was significantly lower (M=0.5536, SD=0.16) 

during legs of the flight pattern assisted by the heading hold function of the autopilot than those 

legs where remote pilots were unassisted by this automation (M=0.5718, SD=0.16). 

As with prior works in operational aviation settings, EEG-based cognitive state metrics 

demonstrated an ability to detect subtle changes in operator workload (Aricò et al., 2016; 

Bernhardt et al., 2019; Borghini et al., 2015). The NASA TLX was administered to collect a 

subjective measure of workload but no significant association was observed between the 

subjective and EEG-based measures of workload. 
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The Effectiveness of Operator State Monitoring  

in Measuring RPA Training 

 

Cognitive workload and task engagement are common constructs in human performance 

research, and represent the supply-demand relationship of cognitive resources and the attentional 

resources available to attend a task, respectively (Bernhardt et al., 2019). Over the past two 

decades, equipment and indices have been developed to measure these constructs of performance 

in laboratory settings using basic cognitive tasks (Berka et al., 2007; Johnson et al., 2011). These 

cognitive state measures have been proposed for assessing the effectiveness of training and 

simulation programs because they are able to assess change which is not obvious from task 

performance alone (Berka et al., 2007; Parasuraman, 2015). Electroencephalograms (EEG) have 

been shown to reflect workload levels and sustained attention during training and learning, 

however a limited number of studies has examined the effectiveness of EEG in operational 

settings (Bernhardt et al., 2019; Mathan & Yeung, 2015; Mills et al., 2017; Yuan et al., 2014).  

Purpose of the Study 

The purpose of this research is to determine whether EEG technology is sensitive to 

changes in the cognitive workload and task engagement of remote pilots during simulated 

training events with the MQ-1. 

Literature Review 

The construct of mental or cognitive workload has donned several definitions. Recent 

works have approached the construct as “… the dynamic relationship between the resources that 

are needed to carry out a task and the ability of the operator to adequately supply those 

resources.” (Bernhardt et al., 2019, p. 83)  Throughout these definitions a few points have 

become common, 
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In general, mental workload theory assumes that: 

(a) people have limited cognitive and attentional capacity, 

(b) different tasks will require different amounts of processing resources, and  

(c) two individuals might be able to perform a given task equally well, but differently in 

terms of brain activation. (Aricò et al., 2016, p. 299) 

In contrast to cognitive workload, the construct of engagement has been described as “… 

the availability of attentional resources and the mobilization of resources for efficient processing 

of task-related stimuli…” (Bernhardt et al., 2019, p. 83) Rather than the supply and demand 

relationship of cognitive workload, engagement is typically associated with states such as 

concentration or sustained attention (Bernhardt et al., 2019).  

By merit of its economy in cost and size, as well as its resolution in spatial and temporal 

terms, EEG has settled into a role of providing neurophysiological measurement of cognitive 

processes (Mills et al., 2017). EEG measures the minute voltage that passes through the scalp as 

the result of coordinated firing of billions of neurons in the brain (Mathan & Yeung, 2015). 

Because these voltages are viewed simultaneously across several regions of the brain, machine-

learning techniques are employed to characterize the unique patterns of neural response to 

cognitive effort (Mathan & Yeung, 2015). Measuring these voltages at several locations, 

multivariate discriminate functions characterize these patterns and may or may not be calibrated 

on an individual basis with baseline tasks. All of these methods ultimately use EEG signals to 

produce a single-dimensional estimate of effort (Mathan & Yeung, 2015). Patterns of neural 

activity and EEG features have been correlated in laboratory settings with the constructs of 

workload and engagement. 
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Development of EEG measures in Laboratory Settings 

A wide variety of methods, algorithms, and models have been leveraged to index the 

construct of cognitive workload from EEG measurements, however the brain’s theta (4–8 Hz) 

and alpha (8–12 Hz) activity from the prefrontal cortex (PFC) and the posterior parietal cortex 

(PPC) regions consistently contribute to the analysis (Aricò et al., 2016). Aricò et al. (2016) 

summarize several prior works to offer that the theta frequency band of the PFC is typically 

positively correlated with cognitive workload, while the alpha frequency of the PPC is typically 

negatively correlated with cognitive workload (Gevins & Smith, 2000). Significant contributions 

from the delta, beta, and gamma frequency bands appear to be less common (Aricò et al., 2016).   

Development of the workload metric used here – the posterior probabilities of high and low 

workload commercially available through Advanced Brain Monitoring, Inc. (ABM) – reaches 

back to the laboratory tasks of Berka et al. (2007). In this effort, Berka et al. validated their 

metric with data acquired as participants (n = 13) completed five laboratory tasks developed by 

Lockheed Martin. The tasks included between three and six levels of difficulty and were 

performed in the following order (1) grid, (2) forward digit span, (3) mental arithmetic, (4) 

backward digit span, and (5) trails (Berka et al., 2007). At each level of difficulty, participants 

were surveyed for a subjective measure of workload on three 100-point scales. The questions 

were (1) “How much mental energy did you exert on this task level?”, (2) “Objectively, how 

difficult was this task level?”, and (3) “How much attention did you focus on this task level?” 

(Berka et al., 2007, p. B233). 

The finished workload classifier of Berka et al. (2007) utilized EEG signals from the C3-

C4, Cz-PO, F3-Cz, Fz-C3, and Fz-PO sites. Thirty (30) EEG features were used to calculate a 

workload metric which was significantly higher during the encoding period of the Verbal Paired 
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Associate test (VPA), image-learning, and memory tests (Berka et al., 2007). The workload 

metric also correlated with subjective metrics and increased linearly with difficulty in the 

forward and backward-digit-span, grid-recall, and mental-addition tests (Berka et al., 2007). 

Berka et al. and Johnson et al. (2011), would also develop and validate four measurements of 

engagement. These engagement metrics utilize twenty-three (23) EEG features from the Fz-POz 

and Cz-POz sites and are calibrated according to a 3-choice vigilance task, a visual psychomotor 

vigilance task, and an auditory psychomotor vigilance task. These tasks (i.e. benchmarks) are 

performed by each participant allowing ABM’s model to produce posterior probabilities of (1) 

high engagement, (2) low engagement, (3) relaxed wakefulness, and (4) sleep onset on a scale 

ranging from 0.00 to 1.00 (Berka et al., 2007).  

In 2014, Sciarini et al. would find ABM’s workload metric to be sensitive to the changes 

in cognitive effort involved in completion of a Stroop task. Sciarini et al. (2014) explain, “The 

Stroop effect is elicited in experiments by manipulating the text of the name of a color, for 

example ‘brown.’ The stimulus is manipulated by presenting the text in the same color or in a 

different color than brown so that there is either congruence or incongruence between text and 

the color…” (p. 216). Longer reaction times associated with incongruence are attributed to a 

disruption in attentional allocation (Sciarini et al., 2014).  

Moving beyond the laboratory setting, EEG-based metrics of workload and engagement 

are now seeing application and assessment in operational settings (Borghini et al., 2012; Marcel 

& Millán, 2007; Schubert et al., 2008; Venthur et al., 2010; Welke et al., 2009), within education 

and training (Mathan & Yeung, 2015; Mills et al., 2017; Yuan et al., 2014), and also aviation. 
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Application of EEG Measurement in Aviation Settings 

In 2020, Belkhiria and Peysakhovich published a review of efforts involving both EEG 

and Electrooculogram (EOG) within the field of aeronautics between 2010 and 2020. The 

purpose of this review was – in part – “… to provide methodological guidelines for beginners 

and experts when applying [combined EEG and EOG] in environments outside the laboratory, 

with a particular focus on human factors and aeronautics.” (Belkhiria & Peysakhovich, 2020, p. 

1). Although the number of participants in each study varies, the majority of the reviewed 

datasets contained fewer than 30 participants. 

As early as 2010, the alpha frequency recorded just prior to stimulus was found to be a 

promising metric for active monitoring of both engagement as well as workload (Baldwin et al., 

2010). In a visual search task which simulated the role of a Unmanned Aerial Vehicle (UAV) 

operator, Baldwin et al. (2010) offered that the alpha frequency demonstrated potential “… as an 

index of when an operator may be more error prone or when a learner may be reaching a state 

where he or she is less likely to benefit from an instructional strategy.” (p. 9) 

In 2014, Borghini et al. began investigating the application of cognitive metrics in the 

evaluation of Air Traffic Control (ATC) students (n = 6) learning a new Air Traffic Management 

(ATM) task. Not only EEG, but also Electrocardiograms (ECG) and EOG signals were collected 

from participants. Results from a one-way repeated measures ANOVA indicated that theta 

frequencies over the frontal cortex (i.e. AF3, AF4, F3, Fz, and F4) varied significantly as training 

progressed across one week (Borghini et al., 2014). A second repeated measures ANOVA 

showed that alpha frequencies over the parietal cortex (i.e.  P3, Pz and P4) decreased as these 

ATC students progressed through training (Borghini et al., 2014).  
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Borghini et al. (2015) leveraged a Mental Workload Index (MWL) to assess the impact of 

a variety of avionic technologies on the cognitive workload of helicopter pilots. Eight (8) EEG 

channels were collected and the MWL index was “… defined as the ratio between the frontal 

theta and parietal alpha EEG [Power Spectral Density] PSD values.” (Borghini et al., 2015, p. 

6182) The study was designed around simulated operations during which participants used 

technologies which included a Head-Up Display (HUD), a Head-Mounted Display (HMD) and a 

Synthetic Vision System (SVS) (Borghini et al., 2015). Results indicated that the workload index 

was lower when pilots used the HUD as opposed to all other technologies.    

In 2016, Aricò et al. measured the cognitive workload of French Air Traffic Controllers 

(n = 12) during simulated ATM scenarios. In this effort, a machine-learning algorithm was used 

to index workload from EEG signals at eight (8) sites – positioned at Fz, F3, F4, AF3, AF4, Pz, 

P3, and P4 of the 10-20 standard. The EEG measure of workload was correlated against a 

subjective measure of workload as well as examined for reliability across one month (Aricò et 

al., 2016).  

 The experimental scenarios were accomplished across 45 minutes and varied in 

complexity (i.e. ‘EASY’, ‘MEDIUM’, and ‘HARD’). Workload demands during the scenario 

were adjusted by varying the number of aircraft, the number and type of clearances required, and 

the number and trajectory of interfering flights. Two pseudo pilots also interacted with the 

participants to simulate real-flight communications. The controllers were presented each of the 

three levels in 15 minute increments and a random order and provided subjective ratings of their 

workload on a five-point scale every 3 minutes – ranging from 1 ‘very easy’ to 5 ‘very difficult’ 

(Aricò et al., 2016).   
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Results of a one-way ANOVA on the Aricò et al. (2016) EEG measure of workload 

indicated that the controllers’ cognitive workload changed significantly during the simulated 

scenario. Controllers’ workload for EASY was significantly lower than MEDIUM, that 

MEDUIM was significantly lower than HARD, and finally, that workload for EASY was 

significantly lower than HARD (Aricò et al., 2016). 

Aricò et al. (2016) also provided a contrast between workload measures produced by 

EEG data and subjective measures. A Pearson’s correlation coefficient demonstrated a 

pronounced and positive relationship between the EEG-based workload measure and subjective 

measure provided by the controllers (r = 0.856, p = 0.0002) and the expert observers (r = 0.797, 

p = 0.0011). 

 Bernhardt et al. (2019) measured workload and engagement among ATC students (n = 

47) with varying levels of experience in a simulated ATC environment. Results of a 2 

(experience) by 5 (difficulty) mixed factorial design – with experience as the between-subjects 

factor and scenario phase difficulty as the within-subjects factor – indicated that less experienced 

controllers exhibited higher engagement than more experienced controllers. Although ABM’s 

metric for average probability of workload was sensitive to changes in workload throughout the 

scenario, it did not differentiate between experience groups. While pupil diameter was 

anticipated to correlate with ABM’s workload metric – when averaged across the five phases of 

the scenario – the two measures were not correlated r(43) = -0.25, p = 0.098 (Bernhardt et al., 

2019). Bernhardt et al. posit that the workload construct may not be a unitary, or that the pupil 

diameter measurement may include multiple physiological responses beyond workload alone – 

such as alertness or engagement. 
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The present study provides one of the first attempts to employ ABM’s operator state 

monitoring to measure workload and task engagement during simulated training events of remote 

pilots.  

Methodology 

This study was reviewed and approved by the applicable Institutional Review Board. 

Participants were briefed on the purpose and nature of the study prior to participation. All 

participants were enrolled in training curriculum, which requires proof of U.S. citizenship by 

means of a passport, and/or birth certificate and driver’s license as well as completion of an 

International Traffic in Arms Regulations (ITAR) Statement of Understanding. 

Sample, Instruments, and Data Collection 

EEG data was collected from remote pilots (n = 10) during simulated MQ-1 RPA training 

events in the PRINCE device. Posterior probabilities of ABM’s high workload and engagement 

metrics were collected throughout the simulation. The lesson calls for approximately 1.2 hours of 

contact time with the remote pilot, a checklist, and a flight pattern with 12 distinct legs (see 

Figure 1). At this point in their curriculum, the student flight crew – one remote pilot and one 

sensor operator – are expected to complete lesson tasks with instructor guidance. To begin this 

course of training, participants had earned a commercial pilot certificate with instrument ratings 

and accrued approximately 200 hours of total flight time in manned aircraft. 
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Figure 2, Simulated Flight Pattern 

 
 

Prior to the lesson, participant were administered a questionnaire of their flight 

experience, completed the Vocabulary subtest from the Wechsler Adult Intelligence Scale-Third 

Edition (WAIS-III; Wechsler, 1997), as well as the Vandenberg and Kuse Mental Rotation Test 

(Vandenberg & Kuse, 1978). Once these measures were complete, EEG signals were collected 
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using the ABM B-Alert X-24 wireless Bluetooth system. The B-Alert X-24 incorporates 20 

electrodes placed at the Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, 

POz, and O2 sites of the international 10/20 system. To establish benchmarks for each 

participant in cognitive load, drowsiness and distractibility the B-Alert X-24 uses three baseline 

cognitive assessment tasks (1) a three choice vigilance task, (2) a visual stimulus response task, 

and (3) an eyes closed, auditory stimulus-response task (Advanced Brain Monitoring, 2009).  

ABM produces its cognitive workload metric using two models – one produced using a 

forward digit span (FDS) task and the second using a backward digit span (BDS) task. Both 

models produce probabilities ranging from 0.00 to 1.00 with those closer to 1.00 reflecting 

higher workload. In the interest of generalizability, the cognitive state metric used to measure 

workload in this study was the mean between the FDS and BDS models – also produced by 

ABM (Advanced Brain Monitoring, 2009) 

Probabilities of cognitive states – such as high and low engagement, cognitive workload, 

distraction, and sleep onset – were calculated by ABM metrics (Berka et al., 2007; Johnson et al., 

2011). Probabilities from each 1 second (i.e., epoch) of the simulated lesson were generated for 

each cognitive state – ranging from 0.00 to 1.00 (Advanced Brain Monitoring, 2009). The start 

and end of the checklist and each flight leg were manually marked in the recording by a research 

technician to facilitate analysis of the EEG-based metrics.  

Results 

From the sample of remote pilots, the average probabilities of ABM’s high engagement 

and high workload metrics are provided in Table 1. Analysis and visualizations were produced 

using the R language and RStudio software (RStudio Team, 2020). 

 



 

63 
 

Table 9, Probability of High Engagement and Workload 

 

  Engagement  Workload 

N     (epochs) Mean SD  Mean SD 

        

CHECKLIST 10   (16,939) 0.52 .40  0.57 .16 

FLIGHT PATTERN        

     Leg 1 (90 sec) 10   (897) 0.47 .40  0.57 .15 

     Leg 2 (30 sec) 10    (304) 0.53 .40  0.56 .15 

     Leg 3 (30 sec) 10   (301) 0.52 .42  0.57 .14 

     Leg 4 (180 sec) 10   (1,866) 0.50 .40  0.54 .16 

     Leg 5 (60 sec) 10   (622) 0.49 .39  0.58 .15 

     Leg 6 (180 sec) 10   (1,810) 0.45 .40  0.56 .16 

     Leg 7 (60 sec) 10   (587) 0.49 .41  0.60 .15 

     Leg 8 (75 sec) 10   (789) 0.50 .40  0.56 .15 

     Leg 9 (45 sec) 10   (456) 0.43 .40  0.56 .16 

     Leg 10 (30 sec) 10   (309) 0.43 .41  0.59 .15 

     Leg 11 (60 sec) 10   (607) 0.50 .40  0.56 .16 

     Leg 12 (30 sec) 10   (308) 0.42 .40  0.55 .15 

        

   

   

 

Estimates of ABM’s cognitive metrics for high engagement and workload were averaged 

for the duration of the checklist as well as each leg of the flight pattern, producing Figures 2 and 

3 below. Results of one-way repeated measures ANOVAs showed that the cognitive state metric 

for engagement, F(11,8704)=4.87, p<0.001, and workload F(11,8328)=10.03, p<0.001 varied 

significantly within the flight pattern. Results of a paired sample t-test, t(8348)=14.21, p<.001, 

indicated that workload was significantly lower (M=0.5536, SD=0.16) during legs of the flight 

pattern assisted by the heading hold function of the autopilot than those legs where remote pilots 

were unassisted by this automation (M=0.5718, SD=0.16). 
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Figure 3, Cognitive State Metric for Workload: ABM's High Workload Metric during Checklist 

and Flight Pattern Events 

 

Figure 4, Cognitive State Metric for Engagement: ABM's High Engagement Metric during 

Checklist and Flight Pattern Events 

Each remote pilot provided a subjective evaluation of his or her workload following both 

the checklist and flight pattern tasks using the NASA TLX (Hart & Staveland, 1988). ABM’s 

probability of high workload was averaged for each participant using each epochs which 

occurred during the checklist and flight pattern. A Pearson’s product moment correlation was 

performed between the self-reported workload on the TLX and the ABM calculated cognitive 

state metric for high workload. Results indicated no significant relationship between the two 

measures during either the checklist r = -0.02, t(8) = -0.05, p = 0.96 or flight pattern events r = -
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0.53, t(8) = -1.79, p = 0.11. When both events were taken together, the same result was found r = 

-0.29, t(18)= -1.31, p = 0.21. 

Discussion and Conclusions 

This study demonstrates that EEG technology - developed for cognitive state estimation 

in operational settings – is sensitive to changes in the cognitive workload and task engagement of 

remote pilots during simulated training events with the MQ-1. As with prior works in operational 

aviation settings, EEG-based cognitive state metrics demonstrated an ability to detect subtle 

changes in operator workload (Aricò et al., 2016; Bernhardt et al., 2019; Borghini et al., 2015). 

The NASA TLX was administered to collect a subjective measure of workload, but no 

significant association was observed between the subjective and EEG-based measures of 

workload.  

The NASA TLX is collected in several prior studies. Borghini et al. (2014), for example, 

administered the NASA TLX as an alternate measure of workload where the instrument 

demonstrated how perceived workload significantly decreases as training in ATM tasks 

progresses within one week. However, the measure is rarely correlated directly with EEG-based 

metrics of workload. The absence of this procedure, in fact, is acknowledged as an explicit 

limitation in the work of Bernhardt et al. (2019). 

The lack of association in our results contrasts with other reports of a positive correlation 

between the NASA TLX and workload (Mathan & Yeung, 2015). It also contrasts with the 

prominent positive association noted by Aricò et al. (2016) between a subjective workload 

measure of their own – referred to as the Instantaneous Self-Assessment (ISA) – and an EEG-

derived measure.  
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The NASA TLX is noted as a hallmark among self-report measures but differs in 

important ways from both the ISA administered by Aricò et al. (2016) and the 6-point Likert 

scale of Mills et al. (2017). Even when administered using the iOS application, the NASA TLX 

requires operators to select between 15 pairwise comparisons which may contribute to the 

workload of the task before rating their effort on six scales. Whereas the pairwise weighing and 

multiple scales create a robust foundation for the NASA TLX, selecting a response ranging from 

1 ‘very easy’ to 5 ‘very difficult’ on the ISA or responding on a simple 6-point Likert scale 

allows reporting with little interruption and while the task is underway. The three minute 

frequency of Aricò et al. for sampling subjective workload seems better suited to establishing 

associations with EEG-based metrics.  

Here, EEG-based metrics for measuring cognitive states demonstrate a sensitivity for 

detecting variation during the training of RPA pilots. These results support design of a within-

subjects methodology using EEG data to assess the effectiveness of RPA training over time. 

Future Directions 

The measures and methods of cognitive states are maturing and coalescing into fields 

such as augmented cognition and adaptive automation. Many applications within aviation have 

emphasized the potential of cognitive state monitoring in the interest of safety, acknowledging 

“... errors could arise from aberrant mental processes, such as inattention, poor motivation, loss 

of vigilance, mental overload, and fatigue, that negatively affect the user’s performance” (Aricò 

et al., 2016, p. 296).  

In terms of technology advancement and integration, future work might also be expected 

in the validation of systems employing (1) dry electrodes – which eliminate the conductive gel or 

saline patch required to reduce the skin’s contact impedance – and (2) in-ear EEG devices – 
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which are simpler to place and diminish motion artifacts in the data (Belkhiria & Peysakhovich, 

2020). Both of these technological adaptations would ease collection of EEG signals in 

operational environments and enable assessment in increasingly ecological environments. 

Methodological and statistical advances are only increasing access to the potential of 

physiological signals like EEG. Belkhiria and Peysakhovich (2020) summarize, 

… advances in signal processing analysis provide a powerful tool for modeling complex 

probability distributions by automatically discovering intermediate abstractions from a 

huge amount of basic features. Deep machine learning and artificial intelligence have 

shown great promise in helping make sense of EEG signals… (p. 18)  

As technological and statistical advancement expand collection and access to EEG-based 

cognitive state metrics, still other works have sought to relate mental workload – measured not 

by EEG but by either ECG or EOG – with other measures of human performance such as 

perceptual load, stress, and performance on a modified Fitts’ task (Causse et al., 2016; Mallat et 

al., 2020; Mandrick et al., 2016). Still further effort may be anticipated here as augmented 

cognition is pursued as a method for optimizing learning performance (Mathan & Yeung, 2015), 

or predicting human error  (Baldwin et al., 2010; Mazaheri et al., 2009), or even enabling single-

pilot or reduced-crew operations in aviation (Schmid & Stanton, 2020). These distinct 

physiological metrics of workload could stand to further validate or augment the EEG-derived 

cognitive states employed above. 
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Discussion & Conclusions 

Remote pilots bear a high cost for flight training; costs which can be reduced by 

minimizing contact time in flight training devices. Studies I through III assessed adaptations in 

method (i.e. trainers and modalities) and measures of performance (e.g. workload and task 

engagement) to improve the efficiency and quality of remote pilot training in simulated MQ-1 

operations. This chapter reviews and reflects upon the program of research assembled above, 

presents the implications of these works for RPA training, acknowledges limitations, and 

anticipates future directions for research.  

Review of Research Program and Implications 

In the case of Study I and II, it was observed that students have difficulty navigating and 

manipulating a particular menu during their RPA training with the MQ-1 and MQ-9. The HDD 

Menu Trainer was developed to familiarize students with the layout and manipulation of these 

HDD menus but was unproven as a standalone trainer. Twenty-five (25) tasks in the HDD menus 

were selected by an OEM certified instructor pilot to measure student performance and the 

effectiveness of the trainer was demonstrated with a pretest/posttest design across modalities in 

Study I (Waller et al., 2016). 

Recognizing that students holding pilot certification scored higher in some aspects of the 

HDD Menu Trainer, Study II sampled students across a curriculum to assess whether 

performance with the HDD Menu Trainer would differ across modalities (i.e. traditional, 

blended, and distance) when FAA pilot certification was controlled. Multiple regression models 

have been leveraged previously within higher education as efforts sought the unique variability 

attributable to blended learning. Methodologically, Study II is most similar to the ANCOVA 

procedures of Owston et al. (2013) which allowed cumulative grade point averages of students to 
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covary as their model predicted performance in an academic course from student perceptions of 

blended learning.  

Where modality failed to demonstrate an interaction effect with student performance 

from pretest to posttest in Study II, the ANCOVA results affirmed that even outside the variation 

which should be attributed to a student’s pilot certification, the HDD Menu Trainer was equally 

effective when used in blended and distance modalities. It improves students’ RPA training 

today as a standalone method of familiarizing students with the layout and manipulation of the 

HDD menus prior to beginning fifteen hours of simulated MQ-1 operations; a course of training 

which carries an average cost of $4,151 per student (John D. Odegard School of Aerospace 

Sciences, 2021). 

Study III further expanded the examination of RPA training in simulated MQ-1 

operations by assessing whether EEG technology would be sensitive to changes in the cognitive 

workload and task engagement of remote pilots once they reach simulated training events with 

the MQ-1. The B-Alert X-24 wireless Bluetooth system of ABM was used to collect EEG signals 

across 20 electrodes. The cognitive workload metric – utilizing thirty (30) EEG features from the 

C3-C4, Cz-PO, F3-Cz, Fz-C3, and Fz-PO sites – and the engagement metric – utilizing twenty-

three (23) EEG features from the Fz-POz and Cz-POz sites and three benchmark tasks – were 

initially developed and validated by Berka et al. (2007) and Johnson et al. (2011) using 

laboratory tasks. 

Moving from the assessment of RPA training methods, the design of Study III 

investigates cognitive state metrics as a novel measure of performance and is supported by 

similar assessments in operational aviation settings (Aricò et al., 2016; Belkhiria & 

Peysakhovich, 2020; Bernhardt et al., 2019; Borghini et al., 2014, 2015). The results of Study III 
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demonstrate that the workload and engagement metrics produced by ABM are sensitive to 

changes in the cognitive states of remote pilots during simulated training events with the MQ-1. 

Variation in workload is greatest across 12 legs of a flight pattern and significantly reduced 

workload is specifically noted during legs of this flight pattern when remote pilots were assisted 

by the heading hold function of the autopilot. Whereas student completion standards depend 

today upon the nature of task completion (e.g. whether a task is completed ‘with flight instructor 

guidance’, ‘with little flight instructor guidance’, or ‘without flight instructor guidance’), the 

results of Study III improve RPA training by demonstrating an alternate measure of competency 

or performance which may not be obvious from task completion alone. 

Limitations 

Studies I through III note a number of limitations. Although the pattern of significance 

and direction were consistent between the examination of HDD Menu Trainer performance of 

Studies I and II, skew and kurtosis within the performance (i.e., both pretest and posttest scores) 

likely contributed to significantly non-normal distributions. Though the F statistic has been 

found to be robust against such violations (Howell, 2016), parametric assumptions may not be 

tenable and the results should be interpreted with caution. 

The results of Study III found no association between the self-reported workload of the 

NASA TLX and the cognitive state metric for high workload calculated by ABM. While this 

lack of association between cognitive state metrics and the NASA TLX – a hallmark among self-

report measures of workload – sacrifices some level of criterion validity, correlations between 

this instrument and alternate measures of workload or difficulty have seen mixed results 

(Borghini et al., 2014, 2015; Mathan & Yeung, 2015). It is possible that the design of the Study 

III tasks may have obscured the strength of the association.  
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It is noted above that ABM’s cognitive workload metric varied significantly across legs 

of the flight pattern, some of which were as short as 30 seconds in duration. To avoid 

interrupting the progress of the flight pattern, the NASA TLX – which requires participants to 

select between 15 pairwise comparisons and rate their effort across six scales – was only 

administered once the entire flight pattern was completed. Criterion validity for ABM’s 

cognitive state metrics may be pursued with more success in operational environments by 

measures which can more closely match a one second resolution or be administered without 

interruption. 

Future Directions for Research 

Throughout its progression, this program of research contributes a number of key 

implications to the practice of RPA training. Studies I and II addressed the questions of (1) is the 

HDD Menu Trainer able to increase student familiarity with the menus of the MQ-1 RPA, and 

(2) is the HDD Menu Trainer equally effective in blended or distance modalities? Results 

indicate the affirmative to both research questions and open further inquiry and avenues of study 

in blended learning. What aspects of the blended learning model are under examination today 

and, in turn, how might these efforts advance the quality and effectiveness of RPA training? 

As blended, flipped, and hybrid learning models are increasingly expected within higher 

education curriculum (Saichaie, 2020), the future directions of inquiry specific to blended 

learning are focusing increasingly on learner engagement (Borup, Jensen, et al., 2020; Halverson 

& Graham, 2019). Halverson and Graham, (2019), for instance, situate their interests in 

emotional engagement relative to cognitive engagement by proposing that both, “…cognitive 

and emotional engagement are the key factors essential to understanding learner engagement” (p. 
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153). To this model of learner engagement, behavioral engagement would also be added, again 

in contrast with cognitive engagement;  

… attendance or participation in a class might be evidence of behavioral engagement, 

while indicators of focused attention or absorption would be evidence of cognitive 

engagement. Similarly, submitting a course assignment or spending time in a learning 

management system (LMS) would indicate behavioral engagement while evidence of a 

student’s mental energy focused on asking questions, taking notes, checking 

understanding etc. would be evidence of cognitive engagement. (Borup, Graham, et al., 

2020, p. 812) 

Instruments to measure this conceptual framework of learner engagement and 

investigation of the mechanism which support high levels of student engagement are anticipated 

as blended, flipped, and hybrid learning models continue to be implemented. Research topics 

may include topics such as, (1) How do measures of engagement (i.e. cognitive, affective, and 

behavioral) predict academic success? (2) Does the effect of each engagement measure on 

academic success change across learning models? and/or (3) How do the engagement measures 

of Borup, Graham, et al. (2020) relate to one another? Understanding the role of engagement 

may better enable programs to successfully deliver learning outcomes within their classes and 

training courses. 

Study III addressed the questions, (1) Will EEG-based metrics of cognitive states such as 

workload and task engagement be able to distinguish variation during the training of RPA pilots? 

and (2) Will ABM’s cognitive metric for workload be associated with a self-reported workload 

metric like the NASA TLX? The results above support the former question using the B-Alert X-
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24 wireless Bluetooth system of ABM and this new measure of performance could support 

several interests in fields such as augmented cognition and adaptive automation. 

Part of the National Science Foundation, the Cognitive Neuroscience program is situated 

within the Division of Behavioral and Cognitive Sciences and, “… seeks to fund highly 

innovative proposals that employ brain-based measurements in order to advance our 

understanding of the neural systems that mediate cognitive processes.” (National Science 

Foundation, 2021, para. 2) Areas of particular interest to the program include the cognitive 

processes of, attention, learning, memory, decision-making, language, social cognition, and 

emotions.  

The cognitive process of learning is well aligned with the RPA training environment as 

well as the results of Study III. EEG collection at multiple points throughout training could 

assess whether the cognitive workload of a remote pilot changes over time when conducting the 

same procedure. In the same spirit of the procedures in Studies I and II, an assessment of 

learning or training effectiveness might include a mixed ANOVA measuring cognitive workload 

near the middle and the end of training, split according to autopilot assistance. 

Y = b0 + b1X1 + b2X2 + b3X1X2 + ɛ 

Where; 

Y is a measure of cognitive workload. 

X1 is lesson or collection time. | time = 0,1 

X2 is autopilot assistance. | assistance = 0,1 

X1X2 is a possible interaction effect (time * automation) 

 

The Cognitive Neuroscience program interest in attention may also support further 

investigation into the relationship between remote pilot cognitive workload and autopilot use in 

Study III. Aligned more closely to the interests of safety – than, perhaps, that of remote pilot 

training – a procedure which manipulates the availability of automation during simulated RPA 
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operations could better document the effect of automation on workload and other cognitive states 

or processes. 

Methodological and statistical advances are constantly increasing the potential of 

physiological signals like EEG (Belkhiria & Peysakhovich, 2020). In the efforts of Zhu et al. 

(2021), it is apparent that interest in developing and refining cognitive state metrics from smaller 

sets of EEG features remains an ongoing interest. Paired with these advances, technological 

advances – e.g. dry electrodes and in-ear EEG devices – will serve to expand access to EEG-

based cognitive state metrics and encourage increasingly ecological environments for collection. 

Some have already leveraged these signals to predict human error  (Baldwin et al., 2010; 

Mazaheri et al., 2009), while others have postulated how operator state monitoring may 

contribute to single-pilot or reduced-crew operations in aviation (Schmid & Stanton, 2020).  

Studies I through III assessed adaptations in method (i.e. trainers and modalities) and 

measures of performance (e.g. workload and task engagement) in an effort to improve the 

efficiency and quality of remote pilot training in simulated MQ-1 operations. Even as the study 

of blended learning models begins to recognize cognitive engagement among its indicators of 

learner engagement (Borup, Graham, et al., 2020; Halverson & Graham, 2019), proponents of 

cognitive metrics – such as working memory capacity and attention – are proposing their 

application in intelligent instructional systems (Mathan & Yeung, 2015), or the real-time 

measurement of changes in cognitive workload in intelligent tutoring systems (ITS) (Mills et al., 

2017). Fascinating work is on the horizon as the interests of instructional models and cognitive 

measurement increasingly intersect around the learning process.      

 

 



 

80 
 

References 

 

Adler, M., & Johnson, K. (2000). Quantifying the literature of computer-aided instruction in 

medical education. Academic Medicine 75 (10). 

Advanced Brain Monitoring. (2009). B-alert Live: User Manual. 

Agius, R., & Bagnall, G. (1998). Development and evaluation of the use of the internet as an 

educational tool in occupational and environmental health and medicine. Occupational 

Medicine, 48, 337–343. 

Allen, M., Mabry, E., Mattrey, M., Bourhis, J., Titsworth, S., & Burrell, N. (2004). Evaluating 

the effectiveness of distance learning: a comparison using meta-analysis. Journal of 

Communication, 54, 402–420. 

Aricò, P., Borghini, G., Di Flumeri, G., Colosimo, A., Pozzi, S., & Babiloni, F. (2016). A passive 

brain–computer interface application for the mental workload assessment on professional 

air traffic controllers during realistic air traffic control tasks. Progress in Brain Research, 

228, 295–328. 

Baldwin, C., Coyne, J. T., Roberts, D. M., Barrow, J. H., Cole, A., Sibley, C., Taylor, B., & 

Buzzell, G. (2010). Prestimulus alpha as a precursor to errors in a UAV target orientation 

detection task. Naval Research Lab. 

Banks, E., Cook, S., Fredrick, G., Gill, S., Gray, J., Larue, T., Milton, J., Tootle, A., Wheeler, P., 

Snyder, P., & Waller, Z. (2018). NCHRP Project 20-68A, Scan 17-01: Successful 

Approaches for the Use of Unmanned Aerial System By Surface Transportation Agencies. 



 

81 
 

In National Cooperative Highway Research Program. 

Baumlin, K., Bessette, M., Lewis, C., & Richardson, L. (2000). EMCyberSchool: An evaluation 

of computer-assisted instruction on the internet. Academic Emergency Medicine, 7, 959–

962. 

Bedwell, W., & Salas, E. (2010). Computer-based training: capitalizing on lessons learned. 

International Journal of Training and Development 14 (3). 

Belkhiria, C., & Peysakhovich, V. (2020). Electro-Encephalography and Electro-Oculography in 

Aeronautics: A Review Over the Last Decade (2010–2020). Frontiers in Neuroergonomics, 

1, 1–25. https://doi.org/doi: 10.3389/fnrgo.2020.606719 

Bell, D., Fonarow, G., Hays, R., & Mangione, C. (2000). Self-study from web-based and printed 

guidline materials: A randomized controlled trial among resident physicians. Annals of 

Internal Medicine, 132, 938–946. 

Berka, C., J., L. D., N., L. M., Yau, A., Davis, G., Zivkovic, V. T., Olmstead, R. E., Tremoulet, 

P. D., & Craven, P. L. (2007). EEG correlates of task engagement and mental workload in 

vigilance, learning, and memory tasks. Aviation, Space, and Environmental Medicine, 

78(5), B231–B244. 

Bernhardt, K. A., Poltavski, D., Petros, T., Ferraro, F. R., Jorgenson, T., Carlson, C., & 

Iseminger, C. (2019). The effects of dynamic workload and experience on commercially 

available EEG cognitive state metrics in a high-fidelity air traffic control environment. 

Applied Ergonomics, 77, 83–91. 

Block, A., Felix, M., Udermann, B., Reineke, D., & Murray, S. (2008). Achievement and 



 

82 
 

satisfaction in an online versus a traditional health and wellness course. Journal of Online 

Learning and Teaching, 4, 57–66. 

Borghini, G., Arico`, P., Di Flumeri, G., Salinari, S., Colosimo, A., Bonelli, S., Napoletano, L., 

Ferreira, A., & Babiloni, F. (2015). Avionic technology testing by using a cognitive 

neurometric index: A study with professional helicopter pilots. 2015 37th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC), 6182–6185. https://doi.org/http://dx.doi.org/10.1109/EMBC.2015.7319804 

Borghini, G., Aricò, P., Ferri, F., Graziani, I., Pozzi, S., Napoletano, L., Imbert, J. P., Granger, 

G., Benhacene, R., & Babiloni, F. (2014). A neurophysiological training evaluation metric 

for air traffic management. 2014 36th Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society, 3005–3008. 

https://doi.org/http://dx.doi.org/10.1109/EMBC.2014.6944255 

Borghini, G., Vecchiato, G., Toppi, J., Astolfi, L., Maglione, A., Isabella, R., Caltagirone, C., 

Kong, W., Wei, D., Zhou, Z., Polidori, L., Vitiello, S., & Babiloni, F. (2012). Assessment of 

mental fatigue during car driving by using high resolution EEG activity and 

neurophysiologic indices. 2012 Annual International Conference of the IEEE Engineering 

in Medicine and Biology Society, 6442–6445. https://doi.org/http://dx.doi.org/ 

10.1109/EMBC.2012.6347469 

Borup, J., Graham, C. R., West, R. E., Archambault, L., & Spring, K. J. (2020). Academic 

Communities of Engagement: an expansive lens for examining support structures in 

blended and online learning. Educational Technology Research and Development, 68(2), 

807–832. 



 

83 
 

Borup, J., Jensen, M., Archambault, L., Short, C. R., & Graham, C. (2020). Supporting students 

during COVID-19: Developing and leveraging academic communities of engagement in a 

time of crisis. Journal of Technology and Teacher Education, 28(2), 161–169. 

Boyle, T., Bradley, C., Chalk, P., Jones, R., & Pickard, P. (2003). Using blended learning to 

improve student success rates in learning to program. Journal of Educational Media 28 

(2&3). 

Burke, M., Sarpy, S. A., Smith-Crowe, K., Chan-Serafin, S., Salvador, R., & Islam, G. (2006). 

Relative Effectiveness of Worker Safety and Health Training Methods. American Journal of 

Public Health, 96, 315–324. 

Carbonell, K. B., Dailey-Hebert, A., & Gihselaers. (2013). Unleashing the creative potential of 

faculty to create blended learning. Internet and Higher Education, 18, 29–37. 

Causse, M., Imbert, J. P., Giraudet, L., Jouffrais, C., & Tremblay, S. (2016). The role of 

cognitive and perceptual loads in inattentional deafness. Frontiers in Human Neuroscience, 

10, 1–12. https://doi.org/10.3389/fnhum.2016.00344 

Chumley-Jones, H., Dobbie, A., & Alford, C. (2002). Web-based learning: sound educational 

method or hype? A review of the evaluative literature. Academic Medicine, 77, 86–93. 

Cohen, V. (2003). A model for assessing distance learning instruction. Journal of Computing in 

Higher Education, 14, 98–120. 

Curran, V., Hoekman, T., Gulliver, W., Landells, I., & Hatcher, L. (2000). Web-based 

continuing medical education (II): Evaluation study of computer-mediated continuing 

medical education. The Journal of Continuing Education in the Health Profession, 20, 106–



 

84 
 

119. 

Davidson, R. J., Jackson, D. C., & Larson, C. L. (2000). Human electroencephalography. In 

Handbook of Psychophysiology (pp. 27–52). 

DeBourgh, G. (1999). Technology is the tool teaching is the task: Student satisfaction in distance 

learning. Society for Information Technology and Teacher Education International 

Conference, 1–8. 

DeRouin, R., Fritzsche, B., & Salas, E. (2004). Optimizing e-learning: reserach-based guidelines 

for learner-controlled training. Human Resource Management Journal, 43, 147–162. 

Engel, S., Crandall, J., Basch, C., Zybert, P., & Wylie-Rosett, J. (1997). Computer-assisted 

diabetes nutrition education increases knowledge and self-efficacy of medical students. The 

Diabetes Educator, 23, 545–549. 

Field, A. (2009). Discovering Statistics Using SPSS. London: Sage Publications. 

Francis, B., Mauriello, S., Phillips, C., Englebardt, S., & Grayden, S. (2000). Assessment of 

online continuing dental education in north carolina. The Journal of Continuing Education 

in the Health Profession, 20, 76–84. 

Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and 

individual differences in cognitive ability and cognitive style. Cerebral Cortex, 10(9), 829–

839. 

Graham, C., Allen, S., & Ure, D. (2005). Benefits and Challenges of Blended Learning 

Environments. In M (pp. 253–259). IGI Global. 



 

85 
 

Graham, C., & Dziuban, C. (2008). Blended Learning Environments. In J (pp. 269–276). 

Graham, C., Woodfield, W., & Harrison, B. (2013). A framework for institutional adoption and 

implementation of blended learning in higher education. Internet and Higher Education, 18, 

4–14. 

Halverson, L. R., & Graham, C. (2019). Learner engagement in blended learning environments: 

A conceptual framework. Online Learning, 23(2), 145–178. 

Harris, J., Salasche, S., & Harris, R. (2001). Can internet-based continuing medical education 

improve physicians’ skin cancer knowledge and skills? Journal of General Internal 

Medicine, 16, 50–56. 

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results 

of empirical and theoretical research. Advances in Psychology, 52, 139–183. 

https://doi.org/https://doi.org/10. 1016/S0166-4115(08)62386-9 

Horsch, A., Balbach, T., Melnitzki, S., & Knauth, J. (2000). Learning tumor diagnostics and 

medical image processing via the WWW - The case-based radiological textbook ODITEB. 

International Journal of Medical Informatics, 58–59, 39–50. 

Howell, D. C. (2016). Fundamental statistics for the behavioral sciences. Cengage learning. 

Hsu, L.-L., & Hsieh, S.-I. (2011). Effects of a blended learning module on self-reported learning 

performances in baccalaureate nursing students. Journal of Advanced Nursing, 2435–2444. 

Irvine, V. (2020). The Landscape of Merging Modalities. EDUCAUSE Review, 55(4). 

Jenkins, D., & Vasigh, B. (2013). The Economic Impact of Unmanned Aircraft Systems 



 

86 
 

Integration in the United States. 

https://higherlogicdownload.s3.amazonaws.com/AUVSI/958c920a-7f9b-4ad2-9807-

f9a4e95d1ef1/UploadedImages/New_Economic Report 2013 Full.pdf 

John D. Odegard School of Aerospace Sciences. (2021). Individual Course Training Costs. 

https://aero.und.edu/aviation/student-info/individual-course-training-costs.html 

Johnson, R. R., Popovic, D. P., Olmstead, R. E., Stikic, M., Levendowski, D. J., & Berka, C. 

(2011). Drowsiness/alertness algorithm development and validation using synchronized 

EEG and cognitive performance to individualize a generalized model. Biological 

Psychology, 87(2), 241–250. 

https://doi.org/https://doi.org/10.1016/j.biopsycho.2011.03.003 

Kronz, J., Silberman, M., Jr., A., W., & Epstein, J. (2000). A web-based tutorial improves 

practicing pathologists’ gleason grading of images of prostate carcinoma specimens 

obtained by needle biopsy: Validation of a new medical education paradigm. The American 

Cancer Society, 89(8), 1818–1823. 

Laumakis, M., Graham, C., & Dziuban, C. (2009). The Sloan-C Pillars and Boundary Objects As 

a Framework for Evaluating Blended Learning. Journal of Asynchronous Learning 

Networks, 13(1), 75–87. 

Lipman, A., Sade, R., Glotzbach, A., Lancaster, C., & Marshall, M. (2001). The incremental 

value of internet-based instruction as an adjunct to classroom instruction: A prospective 

randomized study. Academy of Medicine, 76(10), 72–76. 

Lopez-Perez, M., Perez-Lopez, M., & Rodriguez-Ariza, L. (2011). Blended learning in higher 



 

87 
 

education: Students’ perceptions and their relation to outcomes. Computers and Education, 

56, 818–826. 

Lutte, R. K., & Lovelace, K. (2016). Airline pilot supply in the US: Factors influencing the 

collegiate pilot pipeline. Journal of Aviation Technology and Engineering, 6(1), 53–63. 

Macdonald, J. S., Mathan, S., & Yeung, N. (2011). Trial-by-trial variations in subjective 

attentional state are reflected in ongoing prestimulus EEG alpha oscillations. Frontiers in 

Psychology, 2, 1–16. 

Mallat, C., Cegarra, J., Calmettes, C., & Capa, R. L. (2020). A curvilinear effect of mental 

workload on mental effort and behavioral adaptability: an approach with the pre-ejection 

period. Human Factors, 62(6), 928–939. https://doi.org/10.1177/0018720819855919 

Mandrick, K., Peysakhovich, V., Rémy, F., Lepron, E., & Causse, M. (2016). Neural and 

psychophysiological correlates of human performance under stress and high mental 

workload. Biological Psychology, 121, 62–73. 

Marcel, S., & Millán, J. D. R. (2007). Person authentication using brainwaves (EEG) and 

maximum a posteriori model adaptation. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 29(4), 743–752. https://doi.org/http:// 

dx.doi.org/10.1109/TPAMI.2007.1012 

Mathan, S., & Yeung, N. (2015). Extending the diagnostic capabilities of artificial intelligence-

based instructional systems. 51–60. 

Mazaheri, A., Nieuwenhuis, I. L., Van Dijk, H., & Jensen, O. (2009). Prestimulus alpha and mu 

activity predicts failure to inhibit motor responses. Human Brain Mapping, 30(6), 1791–



 

88 
 

1800. 

Melton, B., Graf, H., & Chopak-Foss, J. (2009). Achievement and satisfaction in blended 

learning versus traditional general health course designs. International Journal for the 

Scholarship of Teaching and Learning, 3, 1–13. 

Miller, P. (2019). UAS degree program reaches 10-year anniversary. UND Today. 

http://blogs.und.edu/und-today/2019/12/uas-degree-program-reaches-10-year-milestone/ 

Mills, C., Fridman, I., Soussou, W., Waghray, D., Olney, A. M., & D’Mello, S. K. (2017). Put 

your thinking cap on: detecting cognitive load using EEG during learning. Seventh 

International Learning Analytics & Knowledge Conference, 80–89. 

Mortera-Gutierrez, F. (2006). Faculty best practices using blended learning in e-learning and 

face-to-face instruction. International Journal on E-Learning, 5, 313–337. 

Moskal, P., Dziuban, C., & Hartman, J. (2013). Blended learning: A dangerous idea? Internet 

and Higher Education, 18, 15–23. 

National Science Foundation. (2021). Cognitive Neuroscience (CogNeuro). 

https://beta.nsf.gov/funding/opportunities/cognitive-neuroscience-cogneuro 

Norberg, A., Dziuban, C., & Moskal, P. (2011). A Time Based Blended Learning Model. On the 

Horizon, 19(3), 207–216. https://doi.org/http://dx.doi.org/10.1108/10748121111163913 

North Dakota Aeronautics Commisson. (2010). North Dakota Economic Impact of Aviation. 

http://library.nd.gov/statedocs/Aeronautics/EconomicImpactReport20120329.pdf 

North Dakota Aeronautics Commisson. (2015). Statewide Economic Impact of Aviation in North 



 

89 
 

Dakota. https://aero.nd.gov/image/cache/Full_Technical_Report_-_FINAL_2.pdf 

Osguthorpe, R., & Graham, C. (2003). Blended learning environments: Definitions and 

directions. The Quarterly Review of Distance Education, 4(3), 227–233. 

Overbaugh, R. (1994). Reserach-based guidelines for computer-based instruction development. 

Journal of Reserach on Computing in Education 27 (1). 

Owston, R., York, D., & Murtha, S. (2013). Student perceptions and achievement in a university 

blended learning strategic initiative. Internet and Higher Education, 18, 38–46. 

Parasuraman, R. (2015). Neuroergonomic perspectives on human systems integration: Mental 

workload, vigilance, adaptive automation, and training. In D. A. Boehm-Davis, F. T. Durso, 

& J. D. Lee (Eds.), APA handbook of human systems integration (pp. 163–176). American 

Psychological Association. 

Pereira, J., Pleguezuelos, E., Meri, A., Molina-Ros, A., Molina-Tomas, C., & Masdeu, C. (2007). 

Effectiveness of using blended learning strategies for teaching and learning human 

anatomy. Medical Education, 41, 189–195. 

Perryer, G., Walmsley, A., Barclay, C., Shaw, L., & Smith, A. (2002). Development and 

evaluation of a stand-alone web-based CAL program. European Journal of Dental 

Education, 4(3), 118–123. 

Porter, W., Graham, C., Spring, K., & Welch, K. (2014). Blended learning in higher education: 

Institutional adoption and implementation. Computers and Education, 75, 185–195. 

Rivera, J., & Rice, M. (2002). A comparison of student outcomes & satisfaction between 

traditional & web based course offerings. Online Journal of Distance Learning 



 

90 
 

Administration, 5. 

Rose, M., Frisby, A., Hamlin, M., & Jones, S. (2000). Evaluation of the effectiveness of a web-

based graduate epidemiology course. Computers in Nursing, 18, 162–167. 

RStudio Team. (2020). RStudio: Integrated Development Environment for R. 

http://www.rstudio.com/ 

Sakowski, H., Rich, E., & Turner, P. (2001). Web-based case simulations for a primary care 

clerkship. Academic Medicine, 76(547.). 

Schmid, D., & Stanton, N. A. (2020). Progressing Toward Airliners’ Reduced-Crew Operations: 

A Systematic Literature Review. The International Journal of Aerospace Psychology, 30(1–

2), 1–24. https://doi.org/10.1080/24721840.2019.1696196 

Schubert, R., Tangermann, M., Haufe, S., Sannelli, C., Simon, M., Schmidt, E. A., Kincsesc, W. 

E., & Curio, G. (2008). Parieto-occipital alpha power indexes distraction during simulated 

car driving. International Journal of Psychophysiology, 69(3), 214. 

https://doi.org/http://dx.doi.org/10.1016/j.ijpsycho.2008.05.033 

Sciarini, L. W., Grubb, J. D., & Fatolitis, P. G. (2014). Cognitive state assessment: Examination 

of EEG-based measures on a stroop task. Human Factors and Ergonomics Society Annual 

Meeting, 215–219. 

Smyth, S., Houghton, C., Cooney, A., & Casey, D. (2012). Sutdents’ experiences of blended 

learning across a range of postgraduate programmes. Nurse Education Today, 32, 464–468. 

Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional 

spatial visualization. Perceptual and Motor Skills, 47(2), 599–604. 



 

91 
 

https://doi.org/https://doi.org/10.2466/ pms.1978.47.2.599 

Venthur, B., Blankertz, B., Gugler, M. F., & Curio, G. (2010). Novel applications of BCI 

technology: psychophysiological optimization of working conditions in industry. 2010 

IEEE International Conference on Systems, Man and Cybernetics, 417–421. 

https://doi.org/10.1109/ICSMC.2010.5641772 

Waller, Z., & Bridewell, J. (2014). Implementing UAS Programs: An Integrated Approach. 

Collegiate Aviation News, 12–13. 

Waller, Z., Petros, T., Bridewell, J., Kroeber, S., & Nowatzki, N. (2016). Medium Altitude Long 

Endurance Remotely Piloted Aircraft Training: A Pilot Study in Blended Learning. Journal 

of Unmanned Aerial Systems, 1, 6–16. https://doi.org/10.31356/avi-fac0002 

Wechsler, D. (1997). WAIS III: Wechsler adult intelligence scale. Psychological Corporation. 

Welke, S., Jurgensohn, T., & Roetting, M. (2009). Single-trial detection of cognitive processes 

for increasing traffic safety. International Technical Conference on the Enhanced Safety of 

Vehicles, 1–10. 

Williams, K. (2004). A Summary of Unmanned Aircraft Accident/Incident Data: Human Factors 

Implications. 

Williams, K. (2006). Human Factors Implications of Unmanned Aircraft Accidents: Flight-

Control Problems. 

Woo, M., & Kimmick, J. (2000). Comparison of internet versus lecture instructional methods for 

teaching nursing research. Journal of Professional Nursing, 16, 132–139. 



 

92 
 

Yuan, Y., Chang, K. M., Taylor, J. N., & Mostow, J. (2014). Toward unobtrusive measurement 

of reading comprehension using low-cost EEG. Fourth International Conference on 

Learning Analytics and Knowledge, 54–58. 

Zhu, G., Zong, F., Zhang, H., Wei, B., & Liu, F. (2021). Cognitive Load During Multitasking 

Can Be Accurately Assessed Based on Single Channel Electroencephalography Using 

Graph Methods. IEEE Access, 9, 33102–33109. 

https://doi.org/10.1109/ACCESS.2021.3058271 

 



 

A-1 
 

Appendix A 

Codebooks for Studies I-III 

 

Codebook for Study I 

 

Demographic variables. 

Name  Item 

Age Please state your age. 

[text box] 

Gender  What is your gender? Circle an answer. 

(0) Male 
(1) Female 

Education What is your education level? Circle all that apply 

(0) High School 
(1) College Freshman 
(2) College Sophomore 
(3) College Junior 
(4) College Senior 
(5) Associate Degree 
(6) Bachelor Degree 
(7) Master’s Degree 
(8) Doctoral Degree 
(9) Other Post Graduate Advanced Certification 

Ethnicity What is your ethnic identification? 

(0) White 
(1) Black or African American 
(2) American Indian or Alaska Native 
(3) Asian 
(4) Native Hawaiian and Other Pacific Islander 
(5) Other 

 

 Aviation experience variables. 

Name  Item 

Pilot Do you hold an FAA Pilot Certificate? 

(0) No 
(1) Yes 

Certificate If so, what Pilot Certificate do you hold? 

(0) None 
(1) Private 
(2) Commercial 
(3) Airline Transport Pilot  
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Hours_Total If so, what is your total flight time? 

(0) 0-50 hours 
(1) 50-100 hours 
(2) 100-150 hours 
(3) 150-200 hours 
(4) 200-300 hours 
(5) 300-500 hours 
(6) 500-1000 hours 
(7) More than 1000 hours 

Medical Do you hold an FAA Aviation Medical Certificate? 

(0) No 
(1) Yes 

Class If so, what class is your Aviation Medical Certificate? 

(1) First 
(2) Second 
(3) Third 
(4) Expired 

Instrument Do you hold an instrument rating? 

(0) No 
(1) Yes 

Hours_Inst_ 

Actual 

Please estimate your total instrument time 

[text box] 

Hours_Inst_ 

Simulated 

Please estimate your total number of simulated instrument time (i.e. hood time) 

[text box] 

Hours_Inst_ 

FTD 

Please estimate your total number of hours in a Ground Training Device or 

Aircraft Simulator. 

[text box] 

 

 Pedagogy and learning efficiency variables. 

Name  Item 

Pedagogy Pedagogy used to deliver HDD instruction. 

(0) Traditional 
(1) Distance 
(2) Blended 

Study Hours of self-study reported by the participant. 

[text box] 

Percent_Gain Percent Change from Pre-test to Post-test Score 

 

 Learner knowledge variables – HDD menu trainer pretest. 

Name  Item 

Pre_Score Participant’s Pretest Score 

[text box] 

Pre_Inc_1 Number of incorrect key strokes on HDD task 1 

[text box] 

Pre_Inc_2 Number of incorrect key strokes on HDD task 2 

[text box] 
Pre_Inc_3 Number of incorrect key strokes on HDD task 3 

[text box] 
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. 

. 

. 

 

Pre_Inc_25 Number of incorrect key strokes on HDD task 25 

[text box] 

Pre_Skip_1 HDD task 1 was skipped. 

(0) No 
(1) Yes 

Pre_Skip_2 HDD task 2 was skipped. 

(0) No 
(1) Yes 

Pre_Skip_3 HDD task 3 was skipped. 

(0) No 
(1) Yes 

. 

. 

. 

 

Pre_Skip_25 HDD task 25 was skipped. 

(0) No 
(1) Yes 

Pre_Time_1 Elapsed time – in seconds – on HDD task 1 

[text box] 

Pre_Time_2 Elapsed time – in seconds –  on HDD task 2 

[text box] 
Pre_Time_3 Elapsed time – in seconds –  on HDD task 3 

[text box] 
. 

. 

. 

 

Pre_Time_25 Elapsed time – in seconds –  on HDD task 25 

[text box] 

 

 

 Learner knowledge variables – HDD menu trainer posttest. 

Name  Item 

Post_Score Participant’s Posttest Score 

[text box] 

Post_Inc_1 Number of incorrect key strokes on HDD task 1 

[text box] 
Post_Inc_2 Number of incorrect key strokes on HDD task 2 

[text box] 
Post_Inc_3 Number of incorrect key strokes on HDD task 3 

[text box] 
. 

. 

. 

 

Post_Inc_25 Number of incorrect key strokes on HDD task 25 

[text box] 
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Post_Skip_1 HDD task 1 was skipped. 

(0) No 
(1) Yes 

Post_Skip_2 HDD task 2 was skipped. 

(0) No 
(1) Yes 

Post_Skip_3 HDD task 3 was skipped. 

(0) No 
(1) Yes 

. 

. 

. 

 

Post_Skip_25 HDD task 25 was skipped. 

(0) No 
(1) Yes 

Post_Time_1 Elapsed time – in seconds – on HDD task 1 

[text box] 
Post_Time_2 Elapsed time – in seconds –  on HDD task 2 

[text box] 
Post_Time_3 Elapsed time – in seconds –  on HDD task 3 

[text box] 
. 

. 

. 

 

Post_Time_25 Elapsed time – in seconds –  on HDD task 25 

[text box] 
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Codebook for Study II 

 

Demographic variables. 

Name  Item 

Age Please state your age. 

[text box] 

Gender  What is your gender? Circle an answer. 

(0) Male 
(1) Female 

Education What is your education level? Circle all that apply 

(0) High School 
(1) College Freshman 
(2) College Sophomore 
(3) College Junior 
(4) College Senior 
(5) Associate Degree 
(6) Bachelor Degree 
(7) Master’s Degree 
(8) Doctoral Degree 
(9) Other Post Graduate Advanced Certification 

Ethnicity What is your ethnic identification? 

(0) White 
(1) Black or African American 
(2) American Indian or Alaska Native 
(3) Asian 
(4) Native Hawaiian and Other Pacific Islander 
(5) Other 

 

 Aviation experience variables. 

Name  Item 

Pilot Do you hold an FAA Pilot Certificate? 

(0) No 
(1) Yes 

Certificate If so, what Pilot Certificate do you hold? 

(0) None 
(1) Private 
(2) Commercial 
(3) Airline Transport Pilot  

Hours_Total If so, what is your total flight time? 

(0) 0-50 hours 
(1) 50-100 hours 
(2) 100-150 hours 
(3) 150-200 hours 
(4) 200-300 hours 
(5) 300-500 hours 
(6) 500-1000 hours 
(7) More than 1000 hours 
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Medical Do you hold an FAA Aviation Medical Certificate? 

(0) No 
(1) Yes 

Class If so, what class is your Aviation Medical Certificate? 

(1) First 
(2) Second 
(3) Third 
(4) Expired 

Instrument Do you hold an instrument rating? 

(0) No 
(1) Yes 

Hours_Inst_ 

Actual 

Please estimate your total instrument time 

[text box] 

Hours_Inst_ 

Simulated 

Please estimate your total number of simulated instrument time (i.e. hood time) 

[text box] 

Hours_Inst_ 

FTD 

Please estimate your total number of hours in a Ground Training Device or 

Aircraft Simulator. 

[text box] 

 

 Modality and learning efficiency variables. 

Name  Item 

Modality Modality used to deliver HDD instruction. 

(0) Traditional 
(1) Distance 
(2) Blended 

Study Hours of self-study reported by the participant. 

[text box] 

Percent_Gain Percent Change from Pre-test to Post-test Score 

 

 Learner knowledge variables – HDD menu trainer pretest. 

Name  Item 

Pre_Score Participant’s Pretest Score 

[text box] 

Pre_Inc_1 Number of incorrect key strokes on HDD task 1 

[text box] 

Pre_Inc_2 Number of incorrect key strokes on HDD task 2 

[text box] 
Pre_Inc_3 Number of incorrect key strokes on HDD task 3 

[text box] 
. 

. 

. 

 

Pre_Inc_25 Number of incorrect key strokes on HDD task 25 

[text box] 

Pre_Skip_1 HDD task 1 was skipped. 

(0) No 
(1) Yes 
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Pre_Skip_2 HDD task 2 was skipped. 

(0) No 
(1) Yes 

Pre_Skip_3 HDD task 3 was skipped. 

(0) No 
(1) Yes 

. 

. 

. 

 

Pre_Skip_25 HDD task 25 was skipped. 

(0) No 
(1) Yes 

Pre_Time_1 Elapsed time – in seconds – on HDD task 1 

[text box] 

Pre_Time_2 Elapsed time – in seconds –  on HDD task 2 

[text box] 
Pre_Time_3 Elapsed time – in seconds –  on HDD task 3 

[text box] 
. 

. 

. 

 

Pre_Time_25 Elapsed time – in seconds –  on HDD task 25 

[text box] 

 

 

 Learner knowledge variables – HDD menu trainer posttest. 

Name  Item 

Post_Score Participant’s Posttest Score 

[text box] 

Post_Inc_1 Number of incorrect key strokes on HDD task 1 

[text box] 
Post_Inc_2 Number of incorrect key strokes on HDD task 2 

[text box] 
Post_Inc_3 Number of incorrect key strokes on HDD task 3 

[text box] 
. 

. 

. 

 

Post_Inc_25 Number of incorrect key strokes on HDD task 25 

[text box] 

Post_Skip_1 HDD task 1 was skipped. 

(1) No 
(2) Yes 

Post_Skip_2 HDD task 2 was skipped. 

(0) No 
(1) Yes 

Post_Skip_3 HDD task 3 was skipped. 

(0) No 
(1) Yes 
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. 

. 

. 

 

Post_Skip_25 HDD task 25 was skipped. 

(0) No 
(1) Yes 

Post_Time_1 Elapsed time – in seconds – on HDD task 1 

[text box] 
Post_Time_2 Elapsed time – in seconds –  on HDD task 2 

[text box] 
Post_Time_3 Elapsed time – in seconds –  on HDD task 3 

[text box] 
. 

. 

. 

 

Post_Time_25 Elapsed time – in seconds –  on HDD task 25 

[text box] 

 

 Learner attitude variables. 

“Below are a number of statements, which may or may not apply to you regarding the coursework you 

have recently completed. For example, I felt well prepared for the final assessment? Please write a 

number next to each statement which indicates the extent to which you agree or disagree with that 

statement.” 

 

1 (Strongly disagree) to 5 (Strongly agree) 

Name  Item 

Att_Sum Sum of participant’s responses regarding the course. 

Att_1 I felt I understood the subject well. 

Att_2 Course material was presented in an appropriate and effective way. 

Att_3 Presentation of course material kept my attention. 

Att_4 I was motivated to work and learn in this course. 

Att_5 I was satisfied with the pace that material was presented to me. 

Att_6 I was satisfied with the amount and availability of instructor feedback. 

Att_7 I gained a satisfactory amount of knowledge regarding the course topic. 

Att_8 I felt well prepared for the final assessment. 

 Please describe specific aspects of the course or instruction which promoted 

your learning. 

[text box] 

 Please describe improvements, if any, which would better assist your learning of 

the course material. 

[text box] 
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Codebook for Study III 

 

Demographic variables. 

Name  Item 

Age Please state your age. 

[text box] 

Gender  What is your gender? Circle an answer. 

(0) Male 
(1) Female 

Education What is your education level? Circle all that apply 

(0) High School 

(1) College Freshman 

(2) College Sophomore 

(3) College Junior 

(4) College Senior 

(5) Associate Degree 

(6) Bachelor Degree 

(7) Master’s Degree 

(8) Doctoral Degree 

(9) Other Post Graduate Advanced Certification 

Ethnicity What is your ethnic identification? 

(0) White 

(1) Black or African American 

(2) American Indian or Alaska Native 

(3) Asian 

(4) Native Hawaiian and Other Pacific Islander 

(5) Other 

 

 Aviation experience variables. 

Name  Item 

Pilot Do you hold an FAA Pilot Certificate? 

(0) No 

(1) Yes 

Certificate If so, what Pilot Certificate do you hold? 

(0) None 

(1) Private 

(2) Commercial 

(3) Airline Transport Pilot  

Hours_Total If so, what is your total flight time? 

(0) 0-50 hours 

(1) 50-100 hours 

(2) 100-150 hours 

(3) 150-200 hours 

(4) 200-300 hours 

(5) 300-500 hours 

(6) 500-1000 hours 

(7) More than 1000 hours 
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Medical Do you hold an FAA Aviation Medical Certificate? 

(0) No 
(1) Yes 

Class If so, what class is your Aviation Medical Certificate? 

(1) First 
(2) Second 
(3) Third 
(4) Expired 

Instrument Do you hold an instrument rating? 

(0) No 
(1) Yes 

Hours_Inst_ 

Actual 

Please estimate your total instrument time 

[text box] 

Hours_Inst_ 

Simulated 

Please estimate your total number of simulated instrument time (i.e. hood time) 

[text box] 

Hours_Inst_ 

FTD 

Please estimate your total number of hours in a Ground Training Device or 

Aircraft Simulator. 

[text box] 

 

Mental rotation and WAIS III 

Name  Item 

MRT Participant’s Score on the Mental Rotation A or B 

[text box] 

WAIS_III Participant’s Score on the Wechsler Adult Intelligence Scale-Third Edition 

[text box] 
 

 Learner knowledge variables – HDD menu trainer pretest. 

Name  Item 

Pre_Score Participant’s Pretest Score 

[text box] 

Pre_Inc_1 Number of incorrect key strokes on HDD task 1 

[text box] 

Pre_Inc_2 Number of incorrect key strokes on HDD task 2 

[text box] 
Pre_Inc_3 Number of incorrect key strokes on HDD task 3 

[text box] 
. 

. 

. 

 

Pre_Inc_25 Number of incorrect key strokes on HDD task 25 

[text box] 

Pre_Skip_1 HDD task 1 was skipped. 

(0) No 
(1) Yes 

Pre_Skip_2 HDD task 2 was skipped. 

(0) No 
(1) Yes 
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Pre_Skip_3 HDD task 3 was skipped. 

(0) No 
(1) Yes 

. 

. 

. 

 

Pre_Skip_25 HDD task 25 was skipped. 

(0) No 
(1) Yes 

Pre_Time_1 Elapsed time – in seconds – on HDD task 1 

[text box] 

Pre_Time_2 Elapsed time – in seconds –  on HDD task 2 

[text box] 
Pre_Time_3 Elapsed time – in seconds –  on HDD task 3 

[text box] 
. 

. 

. 

 

Pre_Time_25 Elapsed time – in seconds –  on HDD task 25 

[text box] 

 

 

 Learner knowledge variables – HDD menu trainer posttest. 

Name  Item 

Post_Score Participant’s Posttest Score 

[text box] 

Post_Inc_1 Number of incorrect key strokes on HDD task 1 

[text box] 
Post_Inc_2 Number of incorrect key strokes on HDD task 2 

[text box] 
Post_Inc_3 Number of incorrect key strokes on HDD task 3 

[text box] 
. 

. 

. 

 

Post_Inc_25 Number of incorrect key strokes on HDD task 25 

[text box] 

Post_Skip_1 HDD task 1 was skipped. 

(0) No 
(3) Yes 

Post_Skip_2 HDD task 2 was skipped. 

(0) No 
(1) Yes 

Post_Skip_3 HDD task 3 was skipped. 

(0) No 
(1) Yes 

. 

. 

. 
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Post_Skip_25 HDD task 25 was skipped. 

(0) No 
(1) Yes 

Post_Time_1 Elapsed time – in seconds – on HDD task 1 

[text box] 
Post_Time_2 Elapsed time – in seconds –  on HDD task 2 

[text box] 
Post_Time_3 Elapsed time – in seconds –  on HDD task 3 

[text box] 
. 

. 

. 

 

Post_Time_25 Elapsed time – in seconds –  on HDD task 25 

[text box] 

 

 NASA task load index. 

Name  Item 

TLX_T1_PW_Mental Sum of Participant’s pairwise selection for Mental Demand at 

time 1. 

[text box – range 1:5] 

TLX_T1_PW_Physical Sum of Participant’s pairwise selection for Physical Demand 

at time 1. 

[text box – range 1:5] 
TLX_T1_PW_Temporal Sum of Participant’s pairwise selection for Temporal Demand 

at time 1. 

[text box – range 1:5] 
TLX_T1_PW_Performance Sum of Participant’s pairwise selection for Performance at 

time 1. 

[text box – range 1:5] 
TLX_T1_PW_Effort Sum of Participant’s pairwise selection for Effort at time 1. 

[text box – range 1:5] 
TLX_T1_PW_Frustration Sum of Participant’s pairwise selection for Frustration at time 

1. 

[text box – range 1:5] 
TLX_T1_RS_CL_Mental Participant’s raw score for Mental Demand while completing 

the Checklist at Time 1. 

[text box – range 0:100] 
TLX_T1_RS_CL_Physical  Participant’s raw score for Physical Demand while 

completing the Checklist at Time 1. 

[text box – range 0:100] 
TLX_T1_RS_CL_Temporal Participant’s raw score for Temporal Demand while 

completing the Checklist at Time 1. 

[text box – range 0:100] 
TLX_T1_RS_CL_Performance Participant’s raw score for Performance while completing the 

Checklist at Time 1. 

[text box – range 0:100] 
TLX_T1_RS_CL_Effort Participant’s raw score for Effort while completing the 

Checklist at Time 1. 

[text box – range 0:100] 
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TLX_T1_RS_CL_Frustration Participant’s raw score for Frustration while completing the 

Checklist at Time 1. 

[text box – range 0:100] 
TLX_T1_AR_CL_Mental Participant’s adjusted rating for Mental Demand while 

completing the Checklist at Time 1. 

[text box – range 0:500] 
TLX_T1_AR_CL_Physical  Participant’s adjusted rating for Physical Demand while 

completing the Checklist at Time 1. 

[text box – range 0:500] 
TLX_T1_AR_CL_Temporal Participant’s adjusted rating for Temporal Demand while 

completing the Checklist at Time 1. 

[text box – range 0:500] 
TLX_T1_AR_CL_Performance Participant’s adjusted rating for Performance while 

completing the Checklist at Time 1. 

[text box – range 0:500] 
TLX_T1_AR_CL_Effort Participant’s adjusted rating for Effort while completing the 

Checklist at Time 1. 

[text box – range 0:500] 
TLX_T1_AR_CL_Frustration Participant’s adjusted rating for Frustration while completing 

the Checklist at Time 1. 

[text box – range 0:500] 
TLX_T1_WR_CL Participant’s weighted rating for workload while completing 

the Checklist at Time 1. 

[text box] 

TLX_T1_RS_FP_Mental Participant’s raw score for Mental Demand while completing 

the Flight Pattern at Time 1. 

[text box – range 0:100] 
TLX_T1_RS_FP_Physical  Participant’s raw score for Physical Demand while 

completing the Flight Pattern at Time 1. 

[text box – range 0:100] 
TLX_T1_RS_FP_Temporal Participant’s raw score for Temporal Demand while 

completing the Flight Pattern at Time 1. 

[text box – range 0:100] 
TLX_T1_RS_FP_Performance Participant’s raw score for Performance while completing the 

Flight Pattern at Time 1. 

[text box – range 0:100] 
TLX_T1_RS_FP_Effort Participant’s raw score for Effort while completing the Flight 

Pattern at Time 1. 

[text box – range 0:100] 

TLX_T1_RS_FP_Frustration Participant’s raw score for Frustration while completing the 

Flight Pattern at Time 1. 

[text box – range 0:100] 
TLX_T1_AR_FP_Mental Participant’s adjusted rating for Mental Demand while 

completing the Flight Pattern at Time 1. 

[text box – range 0:500] 
TLX_T1_AR_FP_Physical  Participant’s adjusted rating for Physical Demand while 

completing the Flight Pattern at Time 1. 

[text box – range 0:500] 
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TLX_T1_AR_FP_Temporal Participant’s adjusted rating for Temporal Demand while 

completing the Flight Pattern at Time 1. 

[text box – range 0:500] 
TLX_T1_AR_FP_Performance Participant’s adjusted rating for Performance while 

completing the Flight Pattern at Time 1. 

[text box – range 0:500] 
TLX_T1_AR_FP_Effort Participant’s adjusted rating for Effort while completing the 

Flight Pattern at Time 1. 

[text box – range 0:500] 
TLX_T1_AR_FP_Frustration Participant’s adjusted rating for Frustration while completing 

the Flight Pattern at Time 1. 

[text box – range 0:500] 
TLX_T1_WR_FP Participant’s weighted rating for workload while completing 

the Flight Pattern at Time 1. 

[text box] 
TLX_T2_PW_Mental Sum of Participant’s pairwise selection for Mental Demand at 

time 2. 

[text box – range 1:5] 
TLX_T2_PW_Physical Sum of Participant’s pairwise selection for Physical Demand 

at time 2. 

[text box – range 1:5] 

TLX_T2_PW_Temporal Sum of Participant’s pairwise selection for Temporal Demand 

at time 2. 

[text box – range 1:5] 

TLX_T2_PW_Performance Sum of Participant’s pairwise selection for Performance at 

time 2. 

[text box – range 1:5] 
TLX_T2_PW_Effort Sum of Participant’s pairwise selection for Effort at time 2. 

[text box – range 1:5] 
TLX_T2_PW_Frustration Sum of Participant’s pairwise selection for Frustration at time 

2. 

[text box – range 1:5] 
TLX_T2_RS_CL_Mental Participant’s raw score for Mental Demand while completing 

the Checklist at Time 2. 

[text box – range 0:100] 
TLX_T2_RS_CL_Physical  Participant’s raw score for Physical Demand while 

completing the Checklist at Time 2. 

[text box – range 0:100] 

TLX_T2_RS_CL_Temporal Participant’s raw score for Temporal Demand while 

completing the Checklist at Time 1. 

[text box – range 0:100] 
TLX_T2_RS_CL_Performance Participant’s raw score for Performance while completing the 

Checklist at Time 2. 

[text box – range 0:100] 
TLX_T2_RS_CL_Effort Participant’s raw score for Effort while completing the 

Checklist at Time 2. 

[text box – range 0:100] 
TLX_T2_RS_CL_Frustration Participant’s raw score for Frustration while completing the 

Checklist at Time 2. 

[text box – range 0:100] 
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TLX_T2_AR_CL_Mental Participant’s adjusted rating for Mental Demand while 

completing the Checklist at Time 2. 

[text box – range 0:500] 
TLX_T2_AR_CL_Physical  Participant’s adjusted rating for Physical Demand while 

completing the Checklist at Time 2. 

[text box – range 0:500] 
TLX_T2_AR_CL_Temporal Participant’s adjusted rating for Temporal Demand while 

completing the Checklist at Time 2. 

[text box – range 0:500] 
TLX_T2_AR_CL_Performance Participant’s adjusted rating for Performance while 

completing the Checklist at Time 2. 

[text box – range 0:500] 
TLX_T2_AR_CL_Effort Participant’s adjusted rating for Effort while completing the 

Checklist at Time 2. 

[text box – range 0:500] 
TLX_T2_AR_CL_Frustration Participant’s adjusted rating for Frustration while completing 

the Checklist at Time 2. 

[text box – range 0:500] 

TLX_T2_WR_CL Participant’s weighted rating for workload while completing 

the Checklist at Time 2. 

[text box] 

TLX_T2_RS_FP_Mental Participant’s raw score for Mental Demand while completing 

the Flight Pattern at Time 2. 

[text box – range 0:100] 

TLX_T2_RS_FP_Physical  Participant’s raw score for Physical Demand while 

completing the Flight Pattern at Time 2. 

[text box – range 0:100] 

TLX_T2_RS_FP_Temporal Participant’s raw score for Temporal Demand while 

completing the Flight Pattern at Time 2. 

[text box – range 0:100] 

TLX_T2_RS_FP_Performance Participant’s raw score for Performance while completing the 

Flight Pattern at Time 2. 

[text box – range 0:100] 

TLX_T2_RS_FP_Effort Participant’s raw score for Effort while completing the Flight 

Pattern at Time 2. 

[text box – range 0:100] 

TLX_T2_RS_FP_Frustration Participant’s raw score for Frustration while completing the 

Flight Pattern at Time 2. 

[text box – range 0:100] 

TLX_T2_AR_FP_Mental Participant’s adjusted rating for Mental Demand while 

completing the Flight Pattern at Time 2. 

[text box – range 0:500] 

TLX_T2_AR_FP_Physical  Participant’s adjusted rating for Physical Demand while 

completing the Flight Pattern at Time 2. 

[text box – range 0:500] 

TLX_T2_AR_FP_Temporal Participant’s adjusted rating for Temporal Demand while 

completing the Flight Pattern at Time 2. 

[text box – range 0:500] 

TLX_T2_AR_FP_Performance Participant’s adjusted rating for Performance while 

completing the Flight Pattern at Time 2. 
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[text box – range 0:500] 

TLX_T2_AR_FP_Effort Participant’s adjusted rating for Effort while completing the 

Flight Pattern at Time 2. 

[text box – range 0:500] 

TLX_T2_AR_FP_Frustration Participant’s adjusted rating for Frustration while completing 

the Flight Pattern at Time 2. 

[text box – range 0:500] 

TLX_T2_WR_FP Participant’s weighted rating for workload while completing 

the Flight Pattern at Time 2. 

[text box] 

 

 ABM cognitive state metrics – workload. 

Name  Item 

EEG_T1_CL_Workload.1 ABM’s probability of average workload in epoch 1 during 

the Checklist at Time 1. 

[text box] 
EEG_T1_CL_Workload.2 ABM’s probability of average workload in epoch 2 during 

the Checklist at Time 1. 

[text box] 

EEG_T1_CL_Workload.3 ABM’s probability of average workload in epoch 3 during 

the Checklist at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_CL_Workload.N ABM’s probability of average workload in epoch N during 

the Checklist at Time 1. 

[text box] 
EEG_T1_FP.1_Workload.1 ABM’s probability of average workload in epoch 1 during 

leg 1 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.1_Workload.2 ABM’s probability of average workload in epoch 2 during 

leg 1 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.1_Workload.3 ABM’s probability of average workload in epoch 3 during 

leg 1 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.1_Workload.N ABM’s probability of average workload in epoch N during 

leg 1 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.2_Workload.1 ABM’s probability of average workload in epoch 1 during 

leg 2 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.2_Workload.2 ABM’s probability of average workload in epoch 2 during 

leg 2 of the Flight Pattern at Time 1. 

[text box] 
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EEG_T1_FP.2_Workload.3 ABM’s probability of average workload in epoch 3 during 

leg 2 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.2_Workload.N ABM’s probability of average workload in epoch N during 

leg 2 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.3_Workload.1 ABM’s probability of average workload in epoch 1 during 

leg 3 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.3_Workload.2 ABM’s probability of average workload in epoch 2 during 

leg 3 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.3_Workload.3 ABM’s probability of average workload in epoch 3 during 

leg 3 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.3_Workload.N ABM’s probability of average workload in epoch N during 

leg 3 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.4_Workload.1 ABM’s probability of average workload in epoch 1 during 

leg 4 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.4_Workload.2 ABM’s probability of average workload in epoch 2 during 

leg 4 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.4_Workload.3 ABM’s probability of average workload in epoch 3 during 

leg 4 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.4_Workload.N ABM’s probability of average workload in epoch N during 

leg 4 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.5_Workload.1 ABM’s probability of average workload in epoch 1 during 

leg 5 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.5_Workload.2 ABM’s probability of average workload in epoch 2 during 

leg 5 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.5_Workload.3 ABM’s probability of average workload in epoch 3 during 

leg 5 of the Flight Pattern at Time 1. 

[text box] 



 

A-18 
 

. 

. 

. 

 

EEG_T1_FP.5_Workload.N ABM’s probability of average workload in epoch N during 

leg 5 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.6_Workload.1 ABM’s probability of average workload in epoch 1 during 

leg 6 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.6_Workload.2 ABM’s probability of average workload in epoch 2 during 

leg 6 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.6_Workload.3 ABM’s probability of average workload in epoch 3 during 

leg 6 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.6_Workload.N ABM’s probability of average workload in epoch N during 

leg 6 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.7_Workload.1 ABM’s probability of average workload in epoch 1 during 

leg 7 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.7_Workload.2 ABM’s probability of average workload in epoch 2 during 

leg 7 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.7_Workload.3 ABM’s probability of average workload in epoch 3 during 

leg 7 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.7_Workload.N ABM’s probability of average workload in epoch N during 

leg 7 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.8_Workload.1 ABM’s probability of average workload in epoch 1 during 

leg 8 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.8_Workload.2 ABM’s probability of average workload in epoch 2 during 

leg 8 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.8_Workload.3 ABM’s probability of average workload in epoch 3 during 

leg 8 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 
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EEG_T1_FP.8_Workload.N ABM’s probability of average workload in epoch N during 

leg 8 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.9_Workload.1 ABM’s probability of average workload in epoch 1 during 

leg 9 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.9_Workload.2 ABM’s probability of average workload in epoch 2 during 

leg 9 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.9_Workload.3 ABM’s probability of average workload in epoch 3 during 

leg 9 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.9_Workload.N ABM’s probability of average workload in epoch N during 

leg 9 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.10_Workload.1 ABM’s probability of average workload in epoch 1 during 

leg 10 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.10_Workload.2 ABM’s probability of average workload in epoch 2 during 

leg 10 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.10_Workload.3 ABM’s probability of average workload in epoch 3 during 

leg 10 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.10_Workload.N ABM’s probability of average workload in epoch N during 

leg 10 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.11_Workload.1 ABM’s probability of average workload in epoch 1 during 

leg 11 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.11_Workload.2 ABM’s probability of average workload in epoch 2 during 

leg 11 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.11_Workload.3 ABM’s probability of average workload in epoch 3 during 

leg 11 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.11_Workload.N ABM’s probability of average workload in epoch N during 

leg 11 of the Flight Pattern at Time 1. 

[text box] 
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EEG_T1_FP.12_Workload.1 ABM’s probability of average workload in epoch 1 during 

leg 12 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.12_Workload.2 ABM’s probability of average workload in epoch 2 during 

leg 12 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.12_Workload.3 ABM’s probability of average workload in epoch 3 during 

leg 12 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.12_Workload.N ABM’s probability of average workload in epoch N during 

leg 12 of the Flight Pattern at Time 1. 

[text box] 
 

 ABM cognitive state metrics – engagement. 

Name  Item 

EEG_T1_CL_Engagement.1 ABM’s probability of high engagement in epoch 1 during the 

Checklist at Time 1. 

[text box] 
EEG_T1_CL_Engagement.2 ABM’s probability of high engagement in epoch 2 during the 

Checklist at Time 1. 

[text box] 

EEG_T1_CL_Engagement.3 ABM’s probability of high engagement in epoch 3 during the 

Checklist at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_CL_Engagement.N ABM’s probability of high engagement in epoch N during 

the Checklist at Time 1. 

[text box] 
EEG_T1_FP.1_Engagement.1 ABM’s probability of high engagement in epoch 1 during leg 

1 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.1_Engagement.2 ABM’s probability of high engagement in epoch 2 during leg 

1 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.1_Engagement.3 ABM’s probability of high engagement in epoch 3 during leg 

1 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.1_Engagement.N ABM’s probability of high engagement in epoch N during 

leg 1 of the Flight Pattern at Time 1. 

[text box] 
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EEG_T1_FP.2_Engagement.1 ABM’s probability of high engagement in epoch 1 during leg 

2 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.2_Engagement.2 ABM’s probability of high engagement in epoch 2 during leg 

2 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.2_Engagement.3 ABM’s probability of high engagement in epoch 3 during leg 

2 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.2_Engagement.N ABM’s probability of high engagement in epoch N during 

leg 2 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.3_Engagement.1 ABM’s probability of high engagement in epoch 1 during leg 

3 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.3_Engagement.2 ABM’s probability of high engagement in epoch 2 during leg 

3 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.3_Engagement.3 ABM’s probability of high engagement in epoch 3 during leg 

3 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.3_Engagement.N ABM’s probability of high engagement in epoch N during 

leg 3 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.4_Engagement.1 ABM’s probability of high engagement in epoch 1 during leg 

4 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.4_Engagement.2 ABM’s probability of high engagement in epoch 2 during leg 

4 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.4_Engagement.3 ABM’s probability of high engagement in epoch 3 during leg 

4 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.4_Engagement.N ABM’s probability of high engagement in epoch N during 

leg 4 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.5_Engagement.1 ABM’s probability of high engagement in epoch 1 during leg 

5 of the Flight Pattern at Time 1. 

[text box] 
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EEG_T1_FP.5_Engagement.2 ABM’s probability of high engagement in epoch 2 during leg 

5 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.5_Engagement.3 ABM’s probability of high engagement in epoch 3 during leg 

5 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.5_Engagement.N ABM’s probability of high engagement in epoch N during 

leg 5 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.6_Engagement.1 ABM’s probability of high engagement in epoch 1 during leg 

6 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.6_Engagement.2 ABM’s probability of high engagement in epoch 2 during leg 

6 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.6_Engagement.3 ABM’s probability of high engagement in epoch 3 during leg 

6 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.6_Engagement.N ABM’s probability of high engagement in epoch N during 

leg 6 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.7_Engagement.1 ABM’s probability of high engagement in epoch 1 during leg 

7 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.1_Engagement.2 ABM’s probability of high engagement in epoch 2 during leg 

7 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.7_Engagement.3 ABM’s probability of high engagement in epoch 3 during leg 

7 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.7_Engagement.N ABM’s probability of high engagement in epoch N during 

leg 7 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.8_Engagement.1 ABM’s probability of high engagement in epoch 1 during leg 

8 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.8_Engagement.2 ABM’s probability of high engagement in epoch 2 during leg 

8 of the Flight Pattern at Time 1. 

[text box] 
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EEG_T1_FP.8_Engagement.3 ABM’s probability of high engagement in epoch 3 during leg 

8 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.8_Engagement.N ABM’s probability of high engagement in epoch N during 

leg 8 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.9_Engagement.1 ABM’s probability of high engagement in epoch 1 during leg 

9 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.9_Engagement.2 ABM’s probability of high engagement in epoch 2 during leg 

9 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.9_Engagement.3 ABM’s probability of high engagement in epoch 3 during leg 

9 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.9_Engagement.N ABM’s probability of high engagement in epoch N during 

leg 9 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.10_Engagement.1 ABM’s probability of high engagement in epoch 1 during leg 

10 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.10_Engagement.2 ABM’s probability of high engagement in epoch 2 during leg 

10 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.10_Engagement.3 ABM’s probability of high engagement in epoch 3 during leg 

10 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.10_Engagement.N ABM’s probability of high engagement in epoch N during 

leg 10 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.11_Engagement.1 ABM’s probability of high engagement in epoch 1 during leg 

11 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.11_Engagement.2 ABM’s probability of high engagement in epoch 2 during leg 

11 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.11_Engagement.3 ABM’s probability of high engagement in epoch 3 during leg 

11 of the Flight Pattern at Time 1. 

[text box] 
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. 

. 

. 

 

EEG_T1_FP.11_Engagement.N ABM’s probability of high engagement in epoch N during 

leg 11 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.12_Engagement.1 ABM’s probability of high engagement in epoch 1 during leg 

12 of the Flight Pattern at Time 1. 

[text box] 
EEG_T1_FP.12_Engagement.2 ABM’s probability of high engagement in epoch 2 during leg 

12 of the Flight Pattern at Time 1. 

[text box] 

EEG_T1_FP.12_Engagement.3 ABM’s probability of high engagement in epoch 3 during leg 

12 of the Flight Pattern at Time 1. 

[text box] 

. 

. 

. 

 

EEG_T1_FP.12_Engagement.N ABM’s probability of high engagement in epoch N during 

leg 12 of the Flight Pattern at Time 1. 

[text box] 
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