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ABSTRACT

Rapid digitization of modern vehicles using electronic control units (ECUs) has made the
modern automobile to realize autonomous operations. ECUs within a vehicle are capable of
handling multiple functions within the vehicle pertaining to vehicular control, infotainment sys-
tem, or electronic control of mirrors, wipers, and seats. Such data are relayed through various
communication buses within a vehicle that allows for wired communication between multiple
ECUs when referring to in-vehicle communication or wireless communication between a ve-
hicle’s ECUs and other vehicles and/or roadside infrastructure. Though network traffic can be
intercepted from these communication buses, identifying an ECU responsible for a particular
function is an open problem and is proprietary to auto manufacturers.

Present day automobiles are equipped with a myriad of functionalities that allows for au-
tomation and sensing capabilities through on-board sensors and their respective sub-systems.
Accurate and timely relay of such data in ideal ambient conditions such as adequate light, ab-
sence of fog/haze, and objects that do not interrupt with sensor inputs is critical to the safety of
the passengers and passersby.

While sensors on-board the vehicle are known for having fairly high lifespans, especially
on higher-end vehicles, the data relayed through these sensors via communication buses can be
intercepted and analyzed in order to identify usage patterns and make recommendations based
on the observations. To obtain this data from an in-vehicle communication bus, this research
uses Linux open-source tools and a cost effective commercial off-the-shelf (COTS) hardware
to read streaming data from the Controller Area Network (CAN). Analyzing multiple vehicle
types from various makes is ideal for robust training data to identify similar patterns between

automobile manufacturers.

XV



Therefore, the collected CAN data included are from 3 Nissan sedans, 1 Honda sports utility
vehicle (SUV), and 1 Toyota sedan. ECUs responsible for functions related to the powertrain
system of the vehicle, namely speed, tachometer, and steering were identified and mapped to
actual values in miles per hour (mph), revolutions per minute (RPM), and newton-metre (Nm)
respectively based on available original equipment manufacturer (OEM) technical manuals.
Using waveform patterns for the speed ECU signature from Nissan, threshold equations were
designed for Honda and Nissan makes using unsupervised learning methods i.e. k-means++
and mean shift algorithms. The results from these methods show an agreement between the
two clustering methods based on descriptive statistical parameters and the lowest errors were
obtained for the speed and steering ECU signatures for the 10-minute and 5-minute driving
datasets respectively.

Manually identifying ECUs and their signatures is possible for a certain number of test
vehicles but cannot work at scale. To automate this process, three supervised machine learning
algorithms were identified and compared based on their performances to solve a categorical
or classification problem. Comparisons were done using evaluation metrics, namely accuracy,
F1-score, and computation time for two cases. The first two metrics are essential for assessing
the performance of classification algorithms while the third metric will play a significant role
if such algorithms are to be deployed in a real-time streaming environment. Results from the
classification algorithms show that the distance based k nearest neighbor (kNN) algorithm gives
the highest performance followed by the Decision Tree algorithm and lastly the Gaussian Naive
Bayes. Cross validation was used to identify whether the higher performing algorithms i.e.
kNN and Decision Tree are prone to underfitting or overfitting; results show that using 5-fold
cross validation, both these models generalize fairly well enough during their training sets to
produce accuracy and F1-scores that are higher than 70% and 0.65 respectively. These findings
indicate that the non-linear models like KNN and Decision Tree show potential for identifying

ECU signatures at scale.

XVi



CHAPTER 1
INTRODUCTION AND BACKGROUND

1.1 Introduction

This decade has seen an unprecedented rise in automobiles. From electronic vehicles to self-
driving cars, the feature-rich capabilities of these vehicles seek to ensure comfort, performance,
reliability, and particularly safety. According to a report by Deloitte [1], safety features within
a vehicle such as the lane keep assist (LKA) and the adaptive cruise control (ACC) are still in a
growth phase as they are typically implemented in high-end vehicles. These additional functions
within a vehicle increase the semiconductor footprint and the need for analog-to-digital converters
(ADC). Previously used functions such as adjusting seat positions or driver/passenger windows
through mechanical means are now handled by electronic control units (ECUs) which offer greater
degrees of freedom and more precise, fine-tuned usage. It has to be noted that the acronym ECU
is sometimes used to refer to an engine control unit so the context of usage of should be referred
to before enabling further discussion.

In a typical modern vehicle that has no autonomous function, ECUs digitize analog data read
by sensors and relay these data using communication buses within a vehicle. Automotive com-
munication buses that are prevalent in the modern automobile are controller area network (CAN),
local interconnect network (LIN), media oriented systems transport (MOST), and ethernet. These
various buses have varying operating speeds (bit rates) depending on the function(s) they handle.
For instance, the CAN bus works at low (10 kbps - 125 kbps) and high (125 kbps - 1 Mbps) speeds
[2]. All these buses or protocols are encapsulated within a diagnostics interface called the sec-
ond generation onboard diagnostics (OBD-II). The OBD-II interface is a vehicle’s self-diagnostics
tool that produces a set of diagnostic trouble codes (DTCs) when a OBD-II reader is used to help

technicians to address issues such as those related to internal circuits or electronics.



Semi-autonomous vehicles typically use ethernet as their mode of communcation on domain
controllers to aggregate sensor data received by multiple, less powerful ECUs [3]. Domain con-
trollers handle highly specialized functions such as active safety to obtain data from radar, camera,
or LiDAR sensors to model the environment around the vehicle in order to make real-time de-
cisions such as to autonomously apply the brakes or inform the driver in the presence of a risk.
Limitations in modern automobiles present key challenges as outlined by Sagstetter et al. [4] and

Han and colleagues [5]:

1. Limited computation resources: ECUs within a vehicle are automotive industry-grade
micro-controllers that can handle computational workloads over IoT devices installed in
smart home but are still constrained by their ability to ensure any cryptographic or security
mechanisms to secure data relayed by the ECUs on the CAN or LIN buses. For instance,
data transmitted on the CAN bus obscure the IDs of the transmitting nodes so there is no

authentication mechanism in place to ensure the legitimacy of relayed data.

2. Single point of access: The OBD-II port is the central point of access (PoA) within a vehicle
that provides direct exposure to some of the internal networks (like CAN) within the vehicle
[6]. Though physical access is required to hack this interface, a threat actor can relatively
easily perform passive (insertion of a monitoring device) or active (command injections to

ECUs) actions to eavesdrop or sabotage the vehicle [7].

3. Increased connectivity: Wireless networks such as dedicated short range communication
(DSRC), cellular, or wireless fidelity (WiFi) enables vehicles to communication with one an-
other and exchange dynamic state information. An external device such as a mobile phone
that is malware-infected can connect to such vehicles and corrupt the vehicle. According to
a report by the Ponemon Institute [8], over 50% of the manufacturers surveyed said they plan
to implement over-the-air (OTA) updates; OTA updates are sent remotely to patch vulnera-
bilities but can be wireless intercepted and exploited [9]. Currently, there isn’t an automotive

standard to secure OTA updates which further expands the attack surface to attackers.



With these factors in mind, threat actors can exploit communications that have few (such as the
implementation of security gateway modules in the newer FCA automobiles from 2018 onwards)
or no security mechanisms in place to handle threats. Such data can be monitored passively and
reverse engineered to map ECU IDs with their respective functions and can then be subject to
injection attacks from an external device such as a portable computer or eavesdropping on data to

obtain the vehicle’s owner personal information or driving habits.

1.2 Related Works

One of the key characteristics of data transmitted on the CAN bus is that the receiver and sender
nodes are obscured: the source and destination ECUs cannot be identified explicitly. As such,
one way to identify the ECUs broadcasting their data on the CAN bus is through bit-level analysis
based on timing. Zhou and colleagues [10] identify a fingerprint for each ECU based on its clock
characteristics such as frequency, skew, and synchronicity to detect masquerade and cloaking at-
tacks. Statistical parameters in the time domain such as mean, variance, standard deviation, etc.
were extracted as features for the IDS. The IDS produces a classification output based on the multi-
nomial logistics regression (MLR) model which identified each ECU as its own entity. 11 ECUs
in total were tested by the model (8 ECUs built-in and 3 ECUs were custom made and externally
connected to the OBD-II port) and the precision produced by the model in identifying each of these
ECUs was upwards of 98%. There isn’t a defense mechanism by the IDS after identification of
attacks are done.

Ning et al. [11] present an intrusion detection system (IDS) based on a concept called as local
outlier factor (LOF) in order to classify different samples of the dataset under factors. Factors
clustered close to one another indicate normal behaviour whereas outliers have factors that deviate
from the cluster. Three types of attacks, namely, spoofing, bus-off, and physical attack to the
ECUs were performed. Bus-off attacks are denial-of-service (DoS)-based attacks that exploit the
functionality of the CAN protocol: during arbitration, when two ECUs made to have the same ID

transmit dominant (bit 0) and recessive (bit 1) data bits at the same time, the ECU interprets the



bit it sent as opposite to the one it sent prior to arbitration, thereby increasing the error counter
and shutting the ECU off from the network if it reaches a threshold. The support vector machine
(SVM) model achieved an average identification rate of 87.9% for all three attacks.

Choi and colleagues [12] address the issue of the CAN protocol to authenticate data by propos-
ing a solution that takes its premise on the inconsistencies in digital and analog output signals
produced by the ECUs. Recording and using these signals as characteristics of ECUs associated
with a particular vehicle allows the identification of malicious ECUs by their corresponding and
unique output signal behaviours. The monitoring of ECU signals is performed by a monitoring unit
that receives the same input signals multiple times to train and classify signal characteristics from
a particular ECU as unique to that ECU. There were 17 time and frequency domain features that
were used (e.g., skewness, mean, flatness, etc.) to train classification algorithms like the support
vector machine (SVM), neural network (NN), and bagged decision tree (BDT) deployed on a PC
running Matlab 2016a. These classifiers showed accuracies of 90% and above in identifying two
adversary models: 1) When data is injected into the CAN bus via the hardware OBD-II port, and
2) Malicious data being transmitted by a "hostage” or hijacked ECU.

Park and Choi [13] present a machine learning-based intrusion detection system (IDS) to stop
malware from propagating through self-driving vehicles to smart infrastructure or other connected
vehicles. Specifically, the vehicle-to-device (V2D) attack vector is explored wherein an Android-
based smartphone connects to the in-vehicle infotainment (IVI) system through wireless means
and as such, the dataset for training and testing was obtained from the Android "AdWare and
General Malware” database. The IDS is installed at the gateway between the Android device and
the internal controller area network (CAN) within the vehicle and is based on three steps; firstly,
the data is pre-processed through feature selection to pick out only the most relevant attributes to
classify the malware. Secondly, the data are modeled through cross validation and trained/tested
through a 75%/25% split respectively. Finally, the IDS classifies the behaviour of the software as
malware, benign, or adware. Six machine learning algorithms are tested for their F1 score (the

harmonic mean of the precision and recall metrics) accuracies in multi-tier classifications (benign,



malware, or adware) and binary classifications (benign or adware). Performance results show that
given the strict real-time requirement of detection in operating vehicles, the algorithms had an
average elapsed detection time of 0.049s for detection which is suitable according to the authors.
Though gradient boost (GB) was determined to be suitable for binary classification, Random forest
(RF) was shown to be the ideal candidate for the IDS due to its computational time of 19.4s for
learning time and high accuracy of 93% in detecting malware. The hardware aspect of this analysis
is left unaddressed.

King [14] deploys cryptography in the form of a hashed message authentication code (HMAC)
to authenticate ECUs sending messages over the CAN bus. The author acknowledges that the
CAN frame cannot accommodate a standard HMAC as the data field within a CAN frame can
have only 8 bytes of data while a secure HMAC is at least 20 bytes in length. As a workaround,
the solution here was to send three CAN messages (24 bits) and a timestamp. The HMAC is
a SHA-1 based digest that is produced by hashing the data fields of the 3 messages and their
associated timestamp. The test setup used Arduino microcontrollers and CAN bus shields and
showed acceptable performance in decreasing the success of DoS and replay attacks.

Tackling the message authentication flaw within the CAN bus networks, Matsumoto et al. [15]
present a self-identification method for ECUs to transmit error messages (in the form of bits) should
the ECU be hijacked and to combat unauthorized data transmission. A few of the evaluation criteria
used for this method include cost of implementation, real-time response, and detection accuracy.
An authorized ECU listens on the CAN bus for a data frame sent from any other ECU. If the
ECU successfully transmits its ID field by setting a flag, the ECU is considered to be authorized.
If the flag is off, the ECU self-identifies this anomaly, sends an error frame, and overrides data
transmission. The authors project that there is a 100% detection accuracy as long as the sender
nodes are equipped with this method and the cost of implementation is low as it requires a simple

modification within CAN controllers.



1.3 Problem Statement

From a data-driven standpoint, there are four fundamental limitations of the CAN 2.0 standard and

are open research areas:

1. The data transmitted on the CAN bus is unencrypted and can be intercepted by anyone with
the appropriate hardware and software tools. Particularly, one can listen on the CAN bus
at specified bit rates to obtain information about the message primarily through its data and
arbitration fields. While several solutions to encrypting this data are proposed, appropriate
standards to enable encryption of CAN message frames are not available and this function-

ality is not being seriously considered.

2. Vehicle specific information such as time reliant sensor inputs/outputs, enabled functions
within a vehicle during idle/driving states, and driving behaviour can be obtained from the
vehicle if there is a method to translate the hexadecimal data in the data fields to original
equipment manufacturer (OEM)-specific physical values. The manual process of identify-
ing these data will be tedious and cannot work at scale thereby warranting a need for an
automated method to identify the ECUs and their corresponding data payloads within a ve-

hicle.

3. Valuable data obtained through a vehicle’s OBD-II port is currently not being used but for
the purposes of troubleshooting. These data can be leveraged to create driver profiles in

order to map users’ driving behaviours.

4. In addition to creating driving “behavioral” profiles, historical data from the tachometer,
speedometer, and function usages such as ACC, braking, and light settings can be used to

forecast or predict future behavioral tendencies for a particular driver.



1.4 Research Objectives

The objectives of this thesis was to investigate the information within raw CAN data through the
use of machine learning data to identify underlying patterns using economical and open source

tools. The objectives are threefold:

1. Gather CAN data from multiple vehicle makes and integrate different ECU signatures. The

makes investigated were Nissan and Honda from the years 2010, 2013, 2015, and 2016.

2. Characterize and automate identified ECU signatures by exploring byte positions in CAN
data frame. Perform byte position and magnitude analyses to identify operating ranges and

waveform patterns.

3. Investigate the applicability of unsupervised (clustering) and supervised machine learning
methods to group ECU signatures. Verify performance of algorithms through distance tests

and multi-scenario analyses.

1.5 Paper Organization

The introduction of the research area is stated in Chapter I, providing also the problem statement
and open areas for research in automotive CAN. Chapter II expands on the the internal and external
communication technologies used in the automotive industry. Chapter III provides the sensor
systems widely used in the modern automobile and their relevance to the CAN bus. Chapter IV
provides threshold equations that attempt to accurately estimate the typical driving behaviour of a
user using mathematical equations that are based on two unsupervised learning methods. Chapter
V highlights the use of supervised machine learning algorithms to classify ECU signatures based
on specific functions such as brake, lighting, steering, etc. Chapter VI offers concluding remarks

and future work.



CHAPTER 2
REVIEW OF VEHICULAR COMMUNICATION PROTOCOLS

2.1 Introduction

An automobile consists of various subsystems that communicate internally and externally, and al-
low for efficient and critical operations in real-time. Categorizing the functional elements within
an automobile into their respective subsystems allows for a clearer understanding of each modu-
lar element when looked at holistically. For the purposes of this paper, the framework proposed
by Zeinab et al. [16] termed “AutoVSCC” will be used. Following the bottom-up approach, the
fundamental layer to the automobile is the sensing layer which handles the “sensory” functions
of a vehicle (see Figure 2.1). This includes ambient sensors such as RADAR, ultrasonic, LiDAR,
camera, temperature, global positioning system (GPS), etc. or those that are responsible for op-
timizing engine control by controlling air/fuel intake such as pulse and oxygen sensors. Sensors
essential for the basic operation of a vehicle are characteristic to the vehicles of the past while am-
bient sensors allow for better control of the vehicle, occupant comfort, and safety to surrounding
entities.

The next layer is called the communication layer which handles the critical tasks of relaying
data collected by the sensory units of a vehicle to various subsystems for further processing and
action. Depending on the vehicle and its features, various subsystems for lighting, seating/mirror
adjustments, airbags, tire pressure monitoring system (TPMS), cruise control (CC), etc. require
different operating speeds based on the criticality and time-constraints of information being re-
layed. This is possible by setting operating speeds for the most prevalent communication protocols
in the modern automobile. If drawing parallels to the common paradigm used in the information
technology (IT) sphere with the Open Systems Interconnect (OSI) model, the communication layer

can be mapped to the data-link, network, and transport levels of the OSI model.



The final layer in the hierarchy is the control layer that puts the data communicated by the
lower layers to handle actuator control. For instance, inputs from the braking and LiDAR sensory
subsystems are used to dynamically control the vehicle when adaptive cruise control (ACC) is
enabled; this application has highly dynamic operating requirements and is dependent on real-time
constraints in the driving environment. Similarly, the anti-lock braking system (ABS) enables the
driver of the vehicle to possess/regain control of the vehicle in case of an emergency brake so
the wheels of the vehicle do not lock thereby shutting off inputs from the steering wheel. The
functions in this layer can further be mapped to whether it is an open or closed loop system. An
open loop system is one where a given input will usually produce a set, predefined output. For
instance, applying the brake on older automobiles will result in the vehicle slowing down as a
direct response to the demand from the driver’s seat. A closed loop system produces outputs based
on a feedback loop that serves as the input. A good example of this would be the ACC function
whether the vehicle dynamically shifts its acceleration/braking magnitudes to safely maneuver the
vehicle.

With the increase in the number of electronically-controlled systems such as traction control,
engine management (engine oil pressure monitoring, throttle position checking, engine temper-
ature sensing and others), active suspension (real-time adjustments of the mechanical controls
between a vehicle’s chassis and the wheel axles), and multimedia all rely on broadcasting their
data on the high speed CAN bus [17]. Another way to address the communication mechanism
taking place between these systems is through the concept of multiplexing. Multiplexing of data in
in-vehicle networks allows multiple subsystems within a vehicle to communicate with one another
over the same signal path and while these signals can be read by all the control systems connected
to the signal path, only signals relevant to a particular sub-unit will be used to produce desired
responses. How these signals are timed, arbitrated based on ECU priority, and error checking and
correction mechanisms are specified in the CAN protocol. However, the CAN protocol is one of

five in-vehicle communication buses that are used in automobiles today.
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Figure 2.1: Three-layer operating framework for automobiles.

2.2 In-vehicle (Wired) Communication Technologies

In vehicle network (IVN) buses like LIN, MOST, FlexRay, and CAN work on what is commonly
known as a central gateway architecture. This form of communication takes places when the afore-
mentioned buses and their respective subsystems communicate with one another when they send
their traffic to a gateway. There are two types of architectures for in-vehicle networks: centralized
and backbone architectures. There are multiple methodologies to implement a centralized gateway
[18]; for example, Seo et al.[19] categorize functions related to comfort, body control, real-time
operations, and safety critical systems into 4 different classes which communicate with one an-
other to enable information interchange between networks that are fundamentally heterogeneous
in terms of the data they transmit and the functions they handle. The gateway proposed is based
on the OSEK operating system (OS) and intuitively, places emphasis on fault tolerance (erroneous
transmitting node due to electromagnetic interference (EMI)) and real-time operating benchmarks.
A backbone architecture works with domain controllers that collect and relay data from domain-
specific ECUs that are then sent to a main gateway to allow for connections to the external world
such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications [20] and is

a viable candidate for future vehicular applications.
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Figure 2.2: CAN frame structure.

22.1 CAN

The CAN network is a multi-master multiplexing bus that enables the ECUs within a vehicle to
simultaneously broadcast their data on the bus. An important part of CAN’s networks consists of
ECU that handle critical functions within a vehicle based on a principle of event-driven commu-
nication: a priori commmunication between ECUs is not required and access to the bus is given
based on event occurrence. The CAN uses a method of transmission called differential signalling
with two signals called CAN-high (CAN-H) and CAN-low (CAN-L). During transmission, the bus
is either at the “recessive” voltage (typically 2.5V) to transmit a binary 1 or at what is known as
the “dominant” state when the CAN-H signal is pulled to 3.5V while the CAN-L is brought down
to 1.5V. This differential in voltage represents a binary 0 and message frames starting with this
dominant state are given a preference. This method of data transmission gives the CAN its key
attributes of high integrity or robustness to noise and an arbitration-based mechanism that allows
higher priority ECUs (or nodes) to transmit data first. A typical structure of a CAN message (or
data frame) is shown in Figure 2.2. The fields highlighted in blue will be most relevant to analyses
in the following chapters.

When a node begins transmission on the bus, it sends a dominant bit on the bus to initiate
message relay (frame initiation). According to the CAN 2.0a standard, the arbitration field (also
known as the identifier which is in hexadecimal) is a 11 bit segment that represents the unique
identifier for the node. Arbitration or message priority is assigned based on this field. A remote
tranmission request (RTR) field has a dominant bit (bit ‘0’) if the frame is a data frame and a
recessive bit (bit ‘1’) if the frame is a remote frame based on the type of control field; the control
field is a 6-bit identifier that specifies the type of message being transmitted: data frame (a typical

type that transmits valuable data to multiple receivers), remote frame (solicits a data frame response
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from a corresponding identifier), error frame (flag used when a node detects an error on the bus),
and overload frame (which enables smooth data flow by requesting additional time delay before
the transmission of a data or remote frame). The data field relays O - 64 bits of hexadecimal data
that other nodes on the network can use to perform responsive actions. The next field is the cyclic
redundancy check (CRC) field which is 15 bits in length and is used a checksum used when there
error checking is required. This CRC is obtained as the remainder when all the bits from the start of
frame till the end of the data field is added with 15 zeros and is divided by a generator as specified
by the Bosch specification [21]. The fifth field called as acknowledgment (ACK) consists of two
bits: the first bit is used by receivers to acknowledge that they have received the message by sending
a dominant bit. The second bit is a delimiter that separates this field from the last field which is the
end of frame that consists of 7 bits. There is also the extended CAN frame standard as specified by
CAN?2.0b that supports an extended (higher payload) identifier of 29 bits but is otherwise similar
to the CAN2.0a. The classical CAN standard used in the modern automobile typically uses an
operating baud rate of 1 Mbps which poses as a limitation to the increasing functionalities in the
modern vehicle. As a workaround to this, the CAN-FD (flexible data rate) was introduced in 2012
and allows for higher operating baud rates of upto 8 Mbps and higher data payloads of upto 64

bytes.

22.2 LIN

The LIN protocol was originally developed the LIN consortium that consisted of manufacturers
from Europe, namely Volkswagen, DaimlerChrysler, BMW, Audi, and Volvo. The consortium’s
objective with LIN was to identify a low cost universal asynchronous receiver-transmitter (UART)
based communication bus that handles low-speed (typically 5 to 20 kbps) communication. Accord-
ing to Volvo [22], LIN serves as an alternative to CAN and is made to primarily handle non-critical
operations such as the electronic control of windows, mirrors, or windshield wipers. In contrast
to CAN, the LIN protocol follows a single-master and multi-slave (with a maximum of 16 nodes)

architecture that allows for bidirectional communication and a physical interface that consists of
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a single wire that is referenced to a common ground, and uses data payloads of 2-8 bytes. An
important feature of the bus is the elimination of high accuracy clock sources to be used on mem-
ber nodes [23]. This negates the expense of an external crystal or ceramic oscillator that serve
well in circuits that are sensitive to timing requirements. Additionally, the slave ECUs on the LIN
network regress to a “sleep” mode if not broadcasting any data for a specified period of time. The
data sent, received, and used by these nodes are managed by the master node. The master node
also maintains a schedule table [24] that provides information about which nodes are connected to
the LIN bus, what messages can be sent, and the respective transmission time slots for each node
on the bus. Like CAN, a LIN frame has two key elements in a data packet which are the header
and message segments.

Master nodes synchronize the data received by these ECUs using a synchronize field within a
LIN frame’s header segment so that messages are received correctly. A synchronization interrupt
(also called as a break) within the header is used to wake sleeping ECUs and an identifier is
broadcasted to provide information about the contents of the message. The message segment in a
LIN frame consists of a data field that carries bit-level information about the data payload and a

checksum that is used to perform error checks in case of erroneous data transmission.

2.2.3 FlexRay

Similar to CAN in terms of its relevance in high-speed and critical applications, FlexRay is pro-
jected to be the next successor to CAN. It is most useful in high-speed vehicle control applications
related to body control, chassis, or power train. The FlexRay protocol was jointly spearheaded by
DaimlerChrysler and BMW to allow for a protocol that is deterministic and highly fault tolerant.
FlexRay follows a dual channel architecture where each channel handles either an event driven re-
sponse or a time driven response. An event driven response is when a node’s response is expected
prior to the happening of an event, such as gear shifting. A time driven response is expected when
a message from the node has to be transmitted before a a specific time [24] i.e. each ECU has a

time slot within which a response is required. These dual channels support data rates of 10 Mbps
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each.

A FlexRay data frame consists of three distinct elements: header, trailer, and the payload.
The header contains sub-elements of a 11-bit frame ID, a 7-bit payload length field, a header-
specific CRC, and a cycle count. A FlexRay data frame can carry a payload of 254 bytes. The
trailer element consists of 24-bit CRC that is frame-specific. Additionally, an unique transmission
characteristic of the FlexRay protocol is what is known as a communication segment for each
communication cycle. Nodes on a FlexRay network can follow a static segment or a dynamic
segment. A static segment pre-allocates time slots for transmitting nodes hence giving the aspect
of determinism to communicating nodes while a dynamic segment allows for more flexibility in
transmission in terms of relay period(s) and payload length. There is another component called
the sliding window which is used only when the FlexRay network needs to be managed. An
important feature of the static segment is its ability to accommodate components from OEMs
and their suppliers under subsystems that will continue to function effectively due to the timing
requirements of the static segment [25]. However, the complexity and high costs related to the

implementation of a FlexRay network should be weighed with its benefits prior to implementation.

224 MOST

A less critical but significant feature of the modern automobile is its ability to provide entertain-
ment and/or more broadly infotainment for passenger comfort. The in-vehicle protocol well known
for this is MOST founded by BMW and DaimlerChrysler. The MOST protocol is the de-facto com-
munication bus for automobiles and allows for the relay of audio, video, and navigation data that fit
into user-targeted applications like music players, video displays, and in-vehicle GPS respectively.
Depending on the version of MOST being used (MOST25, MOSTS50, or MOST150), such data can
be relayed at data rates of 25, 50, or 150 Mbps. In addition to being low cost and easy to imple-
ment, the MOST protocol’s physical uses a plastic fibre optic (PFO) cable that is highly resistant to
electromagnetic interference (EMI). A maximum of 64 nodes can be connected to the MOST bus

and these nodes report a master node that needs to be determined beforehand. The master node is
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called the “Timing Master” and controls the synchronization of messages between different nodes.
Similarly, “Network™, “Connection”, and ‘“Power” Masters handle network requirements, set up
of synchronization channels, and the powering up and powering down of nodes respectively.[26].
Additionally, communication channels in MOST can handle three data types: synchronous (e.g.
for real-time applications that rely on audio/video), control data (e.g. pressing of control buttons
on the multimedia unit to switch on/off system) or asynchronous that handle data with varying

bandwidths. These types also define a MOST data frame.

2.2.5 Ethernet

The last wired network that is in use today in modern automobiles albeit to a smaller degree is
the automotive ethernet. Driven again by increasing complexity in today’s vehicles, the ethernet
protocol was used not only to deliver adequate data rates to applications, but to also lower the
costs of wiring harnesses used to implement the physical layer requirements of the network. As
of 2021, the automotive ethernet physical layer works on 5 implementations: 100-BASET1, 1000-
BASET]I, 10-BASETI, and xGBASE-T1 where ‘x’ can be 2.5, 5, or 10 gigabits. The first three
channels work on 100, 1000, and 10 megabit respectively. Depending on the channel, there are
stringent design requirements that should be taken into consideration. Though Porter [27] suggests
that 100-BASET1 can be implemented only using an unshielded twisted pair, the physical layer
implementing 100-BASET]1 is highly susceptible to EMI and requires proper shielding; shielding
may not be necessary across the entire length of the bus but only for regions of high EMI such as
those near an antenna subsystem. Additionally, the wiring harnesses should be tested in a realistic
environment that brings parameters such as temperature, voltage, cable material, insulation, etc.
to optimize the higher level data being relayed through the physical medium when deployed. An
ethernet frame is much larger in size than its other counterparts with a maximum size of 1522
bytes. An ethernet frame has 6 fields: media access control (MAC) addresses for receiver and

sender addresses, ether type, vlan tag, payload, and a CRC checksum.

15



2.3 External (Wireless) Communication Technologies

One of the key benefits of using wireless technologies not just intra-vehicle but also inter-vehicle is
that it can meet highly mobile and dynamic requirements for real-time applications. For instance,
vehicles moving at various speeds on roadways can function as sensors that relay traffic infor-
mation and driving/road conditions to alert other drivers on the motorway [28] or communicate
with roadside infrastructure such as tollbooths to wireless initiate payments. These applications
are broadly defined under vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communi-
cation respectively. Based on the use-case, applications such as traffic management or collision
avoidance will have different requirements and considerations for the optimal technologies to im-

plement have to be taken into account [29].

2.3.1 DSRC/Wave

Dedicated short range communication (DSRC) is a wireless communication technology derived
from WiFi and provides low latency and high reliability to traffic safety or emergency services [30]
primarily used in vehicle to infrastructure (V2I) applications. A dedicated bandwidth of 7SMHz
has been allocated for DSRC applications in the 5.850 - 5.925 GHz frequency. Apart from provid-
ing high data rates and requiring low power, there is flexibility in the data rates that can be used.
Depending on the width of the channels (10 MHz or 20 MHz), a maximum of 27 and 54 Mbps
respectively may be allocated. According to Cash [31], DSRC can be used to notify drivers in situ-
ations of public hazard such as work zone and road condition warnings, traffic information, optimal
speed advisory, etc. in addition to private use cases such as toll collection, parking lot payments,
and rental car processing. The U.S. Department of Transporation [32] provides an illustration of
DSRC’s interoperability with the other subsystems in the modern vehicle where a DSRC radio,
cables, and antennae are needed to interface with the vehicle’s GPS receiver and safety system.
This safety system may connect with the vehicle’s internal networks such as CAN or FlexRay to

meet real-time and high speed requirements of DSRC.
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Wireless access in vehicular environments (WAVE) is a technology that is based on 802.11p
and serves as the foundation for DSRC. Developed by the Institute of Electrical and Electronics
Engineers (IEEE), 802.11p defines the requirements of the physical and medium access control
(MAC) layers [33] and its typically applications are network modeling for connected vehicles,
routing decisions, network congestion monitoring, etc. It provides a maximum capacity of 27

Mbps, with a range of 10 - 300m, at a frequency of 5.850 - 5.925 GHz.

2.3.2  Cellular (4G LTE/5G)

Cellular technologies like 4G LTE and its evolved counterpart (5G) are becoming increasingly
prominent in vehicle to everything (V2X) communications. A major benefit to using cellular com-
munications for V2X applications like road safety and traffic management is that no existing infras-
tructure needs to be replaced. However, unlike technologies that can work with an internal clock
for synchronization, LTE relies on synchronous communication with stringent clock requirements
that may need expensive hardware. Though LTE is touted for having low latency and a peak data
rates of 1 Gbps, it may not be appropriate for critical safety applications due to its speculated
inability to accommodate resources to work at scale [34].

5G adds to the advantages of 4G LTE by providing higher data rates of 20 Gbps, low latencies
of under Ims, and can work at scale with 1 million devices per square kilometer [34]. It builds on
existing multi-input-multi-output (MIMO) technology by adding more antennas (in the magnitudes

of 10 or 100) within each MIMO system to enable increased capacity [35].

2.3.3 Zigbee

Zigbee is a low power (1 mW or less), lost cost technology developed by the Zigbee alliance and
is based on the IEEE 802.15.4 standard. A Zigbee system consists of routers, end devices, and a
coordinator where end devices can broadcast their data periodically in what is known as a beacon
mode, or can broadcast their data at any point as long as the channel is free. Despite its low power

requirements, it is able to transmit data at a distance of 150 m at data rates of 20, 40, and 250 kbps
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[36]. This is due to its use of direct sequence spread spectrum (DSSS) which can negate the effects
of interference and improve performance by increasing the bandwidth [37] in the Shannon-Hartley

Theorem:

C' = B x Logy(1 + %) (2.1)

where C is the channel capacity (in bps), B is the bandwidth, and S/N is the signal-noise-ratio
(SNR).

Zigbee can be used in non-critical applications and in V2I communications such as for iden-
tifying vacant parking spaces in high density parking lots [38] or for more dynamic applications

such like speed control as proposed by Kochar and Supriya [39].

234 WiFi/WiMAX

Wireless Fidelity (WiFi) is a well established standard whose specifications are given in IEEE’s
802.11 set of standards. Its ease of implementation and ubiquity in terms of hardware makes it a
viable candidate for vehicular ad hoc networks (VANETSs). Tufail and colleagues [40] assess the
possibility of using WiFi in fast moving vehicles. Preliminary finds shows that WiFi data transfer
rates decrease as relative speed between the vehicles increases and careful considerations should
be made for the type of applications at different speeds.

The Worldwide Interoperability for Microwave Access (WiMAX) is a technology specified in
IEEE 802.16 and is thought to have better throughput and a greater communication range than
WiFi in most settings. Some findings indicate that though WiFi may have a higher throughput for
arange of 200m, WiMAX supersedes its performance by making data transfer possible at a rate of

1 Mbps even at ranges of 1000m [41].
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CHAPTER 3
VEHICULAR SENSORS

3.1 Introduction

This chapter will introduce the sensing technologies used in the modern automobile. These tech-
nologies enable a vehicle to operate with more safety and precision either autonomously/semi-
autonomously and allow drivers to derive more information about the environment around them
in addition to improving the occupants’ comfort. To have a clearer conceptualization, the sensing
technologies in this chapter will be divided according to the classification method proposed by

Zeinab and colleagues [42] (see Figure 3.1):
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Figure 3.1: Sensor technologies onboard the modern automobile.

1. Environment Sensors: Sensors that observe and respond accordingly to changing condi-

tions in a vehicle’s immediate surroundings during static or dynamic operations.
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2. Vehicle Dynamics Sensors: Sensors that provide information about the vehicle’s current

operating state.

Alternatively, sensors onboard vehicles can be categorized further based on the functions they
handle. For instance, Hamid et al. [43] classify sensors based on safety (responsible for de-
creasing fatal incidents), diagnostics (data that can be used to troubleshoot subsystems), conve-
nience (passenger comfort), and monitoring functions (ambience monitoring). With no exception,
autonomous vehicles rely extensively on these sensor systems to solve the key problems in au-
tonomous driving (AD) which are localization, object detection and tracking, and mission planning
[44]. Localization in the context of AD requires sensor fusion [45], which is an amalgamation of
multiple sensors’ data, and a sensor system like 3D light detection and ranging (LiDAR) that cre-
ates a 3D point cloud; this can be used to create a 3D map that can be frequently updated based on
the vehicle’s position [46]. Sensory data gathered from these sensors serve as the basis for other
services such as wireless data relay between vehicles or infrastructure, and cloud computing and

storage.

3.2 Environment Sensors

3.2.1 LIDAR

LIDAR (previously known as airborne laser scanning sensors) was initially developed in the 1990s
for the primary purpose of mapping terrain [47]. LIDAR sensors generate precise spatial mapping
of an operating environment’s by sensing its surface and shape characteristics by rapidly emitting
near infrared (NIR) pulses to the surrounding environment and measuring the time taken for the
reflections to be observed at the source. These reflections produce 3D coordinates (in the X, vy,
and z axes or latitude, longitude, and elevation respectively). A collection of these coordinates is
referred to as a “point cloud” and can be used to accurately gauge an environment’s surface and
features [48]. LIDAR can have ranges up to 60 meters [49] and are of two types: mechanical and

solid-state. Mechanical LIDAR sensor systems rely on a gimbal to steer the direction of emitted
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and subsequently received pulses and are the systems primarily in use today. Solid state LIDAR do
not have moving parts, are compact, provide greater degrees of freedom and higher fields of view
(FoV), and will be the future of LIDAR systems used for AD and features such as advanced driver

assistance system (ADAS), ACC, and collision avoidance systems [50].

3.2.2 RADAR

Similar to the working principle for LiDAR, radio detection and ranging (RADAR) systems use
electromagnetic pulses periodically transmitted to and reflected from objects in the environment.
Unlike LIDAR, RADAR sensors can penetrate foggy or cloud ambiences to determine the presence
of objects such as pedestrians, buildings, or other vehicles which is otherwise obscured due to
factors that limit clear vision. Today, RADAR sensors in vehicles operate in the millimeter wave
(mmWave) and use the frequency modulated continuous wave (FMCW) technology as opposed
to continuous wave (CW) technology which allows for dynamic adjustment and more efficient
usage of the frequency ranges which can vary from 900 MHz to 80 GHz [51]; however, the two
frequency bands used by RADARSs are 24 GHz and 77 GHz. The types of RADAR sensors in
use are either short-range systems, long-range systems, or ultra short-range systems. Short-range
RADAR sensors are typically installed on the sides or at the “B Pillars” of a vehicle for collision
avoidance and blind spot detection, long-range sensors for ACC at a range of 200 meters and above
[52], and ultra short-range sensors are used for parking and lane change assistance at ranges under

40 meters [53][54].

3.2.3 Ultrasonic

Ultrasonic (also known as sonar) sensors measure the distance between the transceiver and sur-
rounding objects using ultrasonic sound waves at frequencies beyond the range of human audi-
bility at approximately 50 kHz. Unlike RADAR or LIDAR, ultrasonic sensors are low cost and
have detection ranges upto 2.5 meters [55]. Ultrasonic sensors’ accuracies are affected by surface

texture and temperature but unlike LIDAR, work well in low lighting conditions and poor visibil-
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ity. Ultrasonic systems are used for tasks that will typically be considered non-critical tasks at low
speeds, such as when a driver is reversing (object detection to avoid collision) or parking and are
typically mounted on a vehicle’s bumper [56]. Wagh and colleagues [57] propose a five-tier safety
measure system where the first tier is the ultrasonic sensing subsystem that uses CAN due to its

robust error handling and fault confinement capabilities.

3.2.4 Camera

Cameras are now ubiquitous and essential components within a vehicle and are used for parking
assistance, blind spot detection, traffic sign detection, ACC, etc. depending on where the cameras
are installed. Cameras can be installed front-facing, rear-facing, or in locations that provide a
360° surround view when the vehicle is typically operating under parking conditions or under 15
miles per hour [58]. More recently, manufacturers are exploring the option of replacing side wing
mirrors with camera monitoring systems (CMS) in consumer automobiles which will allow for
greater fields of view and improve the aerodynamic performance of the vehicle thus leading to
higher fuel savings. Unlike traditional mirrors, the driver has little control over the adjustment of
the CMS apart from brightness adjustment. However, strict guidelines need to be set with regards
to lighting and operation in all weather conditions [59], and regulatory approvals need to be sought
before implementation. A “context-aware” benchtop setup using CAN that mimics the embedded
systems in an automobile is presented by [60] where a camera system is used in tandem with a
tire pressure monitoring system (TPMS) to alert the driver of the proximity of the vehicle with an

object in addition to wirelessly relaying such data to other vehicles through Zigbee and WLAN.

325 GPS

Global positioning system (GPS) is a navigational technology that is based on the principle of
trilateration and is used extensively for aviation, marine, railroads, roads and highways, and agri-
cultural applications. Trilateration is the principle that a GPS receiver on the earth’s surface can be

located given that there are atleast 3 satellites that it relays data with. The GPS receiver uses the
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time difference between the time it broadcasted its position and the time it received a response from
the satellite to estimate the distance (or range) between itself and the satellite. If there are three
satellites, the receiver can identify its 3D location. A fourth satellite is used in order to synchronize
the received GPS signals to the atomic clocks onboard the satellites; this way, the latitude, longi-
tude, altitude, and time can be obtained by the GPS receiver. Given how ubiquitous GPS-enabled
devices are, it is the defacto navigational tool used within automobiles to travel to/from destina-
tions. From an in-vehicle network perspective, GPS data can be derived from CAN traffic and are
classified as sensitive data as they can be used to identify vehicle routes and operators’ driving

patterns [61].

3.3 Vehicle Dynamics Sensors

3.3.1 Magnetic Encoders

Magnetic encoders are used for automobile engine control and associated functions such as the
measurement of wheel speed, direction, and angular position. Optical encoders were more com-
monly used in the past either through a linear (encoding motion along a particular axis) or rotary
(encoding rotational motion about an axis) mechanism in high precision devices such as medical
equipment or in less demanding hardware such as computer mice. Magnetic encoders are the supe-
rior counterparts to the optical encoder due to their low power dissipation, high response, resistance
to high working temperatures, and compact form factor [62]. The other significant distinction be-
tween magnetic encoders and optical encoders is how they generate a feedback signal: magnetic
encoders produce signals based on the change in the resistance of its individual components which
depends on magnitude of the ambient magnetic field [62], while optical encoders produce a feed-
back signal based on the interruption of light from a source such as an light emitting diode (LED).
One use case of magnetic encoders is to measure torque [63](force that causes rotation about an
axis) which directly influences how powerful an automobile is to undertake tasks such as climbing

steep grades.
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3.3.2 Inertial Sensors

Inertial sensors typically consists of an accelerometer, which measures the vibrations or rate of
change of velocity of a particular object, and gyroscopes which measure the orientation and an-
gular velocity of that particular object in a three dimensional frame. Accelerometers currently
function through an electro-optical (EO) principle and are in wide use due to EO’s low cost. For
instance, they are used in airbags so that quick deployment is made in case of a sudden shock to
the vehicle such as in the case of an accident. However, inertial sensors are prone to what is known
as drift errors [64] which are deviant and erroneous measurements and thus require information

from complementary sensors through sensor fusion in order to relay data of higher accuracy.

3.3.3 Tire Pressure Monitoring System (TPMS)

TPMS is a subsystem within the modern automobile that is made to recognize pre-specified pres-
sure value and notifies the user through the vehicle’s instrument cluster (IC) or infotainment system
if the measured value is above or below this threshold. There are three types of TPMS present in
the modern automobile: the indirect type, where the TPMS gathers information either through soft-
ware that reads the differences in air pressure by measuring the rotational speed at each wheel, the
direct type where pressure sensors are deployed at each tire which relay data to the TPMS through
the CAN bus [65], or the hybrid type which combines the benefits of the direct and indirect types.

Please see Table 3.1 for a summary of the sensing systems used in automobiles. The ‘usage’
attribute refers to whether the corresponding sensor is used in high range (H), mid range (M), or
low range (L) vehicles. It’s generally observed that vehicle dynamics sensors are common to all
modern automobiles. ‘Constraint’ refers to the operating limitations the corresponding sensor is

subject to.
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Table 3.1: Sensing systems used in automobiles.

Sensor Type Usage Function Constraint
LiDAR M-H 2D/3D Ambient Mapping 0 - 250 Meters
RADAR M-H Object Detection by Sound 30 - 250 Meters
Ultrasonic Environment M-H Object Detection by Sound 0 - 2.5 Meters
GPS L-M-H Localization Satellite Coverage
Ambience Fog/Haze
Camera L-M-H Imaging & Obstructions
Control Through Sensitive to
Magnetic Encoders L-M-H Detection of Magnetic and
Mechanical Motion Radio Interference
. Vehicle Dynamics ABS, Air Bag System, .
Inertial Sensors L-M-H Electronic Static Control (ESC) Drift Errors
Inaccurate or
L-M-H ) False Readings

TPMS
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CHAPTER 4
THRESHOLD RANGE ESTIMATION FOR ECU SIGNATURES

To identify underlying patterns in ECU signatures to estimate thresholds, two specific clustering
algorithms were studied. The ECU signatures had a high speed (HS) CAN bus operating at a bit
rate of 500 kbps. The ECU signatures analyzed were those were for speed (mph), steering (Nm),
and tachometer (RPM).

ECU signatures for IDs 280, 1F9, and 300 were captured for 1-minute (idle state), S-minute
(driving), 10-minute (driving), and 15-minute intervals (driving), analyses were broken down on
a bin-wise basis to understand the transmission frequencies of the ECUs. There were 10 bins for
each of these signatures where each bin was 6 seconds, 30 seconds, 60 seconds, and 90 seconds in
duration respectively for the datasets.

Based on histogram and box plots, two of the ECUs transmitted periodically on the network
regardless if there were any actions relevant to the ECUs were being applied. The lighting ECU
(60D), however, had a different range of transmission frequencies when a function associated to
them such as blinkers, hazards, headlights, and high beam were applied. Preliminary findings
indicate that the more safety-critical and body control ECUs such as those for steering, tachometer,
and speedometer seem to be transmitting consistently and periodically regardless of any changes
in their usage and thus will be the focus of this chapter.

Input features to clustering algorithms such as k-means++ ideally need to be normalized as
the two features (time along the x-axis and speed, steering, or tachometer along the y-axis) in
the feature vector are of different units (such as time or tire pressure) and magnitudes. This is
done to prevent the clustering algorithm from biasing its selection towards data points with higher
magnitudes. For the purposes of this research work, minimum-maximum scaling was utilized and

is given by:
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Xi = (XSAD X (Xmax - Xmm)) + Xm'm

X, represents the feature sample, Xg p is the standard deviation for that feature, X,,;, is the
minimum value for that feature, X,,,,, 1s the maximum value for that feature, and 7 = 1...N where

‘N’ is the size of the feature vector.

4.1 k-means++ Clustering

Given a set of points ‘p’ in a ‘d” dimensional space, the objective of the k-means problem is to
find ‘’k’ number of centroids or centers that minimizes the sum of squared distance (SSD) between
each point in a cluster (also known as distortion) and its respective center. The classical k-means
algorithm computes these centers randomly from a data space and keeps iterating through the entire
space until the algorithm has converged to a reasonable solution. This random selection of centers
implies that the results produced for a given dataset might vary if made to run multiple times i.e.
the SSD cannot be defined by an interval even when fixed values are specified for the number of
data points and number of centroids ‘k’. Moreover, though this approach works fairly well with its
level of simplicity and speed, it fails to perform accurately as there is no pre-initiation procedure
that is followed prior to assigning cluster centroids. For this reason, the algorithm used in this
paper is based on the k-means++ rendition of the original k-means algorithm.

Algorithm 1 shows the functional basis of the k-means++ algorithm as proposed by Arthur and

Vassilvitskii [66].

Algorithm 1 k-means++

Require: Specifying cluster space ‘D’, data points x;, and ‘N’ number of data points.
1: Randomly choose a centroid C'

2: for z; wherei=1,2,,..., N in cluster space ‘D’ do

d
3: Compute probability distance function from centroid C'; using equation %
4: Choose a new center (', based on the largest probability l
5: end for
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4.2 Mean Shift Clustering

Mean shift clustering is a non-parametric (i.e. no specified parameters at run-time besides band-
width of kernel) clustering technique that is based on a fundamentally distinct framework called
hierarchical clustering when compared to the k-means++ algorithm. This is a form of clustering
that creates a hierarchy from an overarching cluster or “parent” cluster is broken down further at
each iteration into sub-clusters that are distinct.

There are distinct kernels such as the Gaussian or flat kernels which are functions that map the
defined feature space using weights for each data point in the feature space. This is performed
using a kernel density estimation (KDE) using a specified kernel. Algorithm 2 shows the working
principle behind the mean shift algorithm. The mean shift algorithm is repeated for all elements in
the finite set until it gets closer to the sample means [67] or to the regions of higher density until it

reaches convergence.

Algorithm 2 Mean Shift

Require: Finite set ‘S’ in Euclidean space ‘X’ where x € X, s € .S, K is a defined kernel

1: for s € Sdo
ZSES Kx(s—x)s

2: m(x) = DO Spm

3: Compute mean shift m(z) — x based on sample set

4: Create centroids and shift centroid closer to mean location
5. end for

4.3 Pre-processing

The original raw CAN datasets needed to be pre-processed before clustering algorithms could be

carried out (please see Figure 4.4). The pre-processing step consisted of 4 sub-steps, namely:

1. Packet timestamping and slotting: Each sample (or packet) within the original raw CAN
dataset needed to be identified by a timestamp that started from the Oth second. Since the
raw packets captured 32-bit system timestamps which are floating point values that had 10

integer digits and 6 decimal digits, these system timestamps had to be truncated to derive
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meaningful time instants. The system timestamp of the first very packet was used as the
initiation instant and was subtracted from every subsequent system timestamp (please see
Figure 4.1). This produced datasets with time instants 0..n, where n = 60, 300, and 900.
Additionally, time instances were slotted to allow “bin-wise” analysis where each bin was

1/10th of the total duration for the 5, 10, and 15 minute datasets.

Timestamp » Modified Timestamp
1629155636.146207 ‘ Next Timestamp ‘ —_— ‘ Initial Timestamp |
T L J

T
‘ Initial Timestamp | | Subtract ‘

Figure 4.1: Timestamp conversion.

. Decimal conversion: Raw packets captured for the “ID” and “Data” features are in standard
hexadecimal format as specified by the CAN protocol and need to be converted to a dec-
imal format to serve as inputs to supervised learning algorithms which cannot work with

alphanumeric strings.

. Support computation: In order to identify the packets which had high, medium, and low
frequencies of transmission on the CAN bus, the support i.e. the ratio of transmitted packets
for ID ‘A’ to the total number of packets for all the transmitting nodes was computed. Support

is computed as follows:

F;
Support(%) = T % 100

where F; is the data packets corresponding to ECU ID ¢ and T is the total number of data
packets. See Figure 4.2: the x-axis represents the ECUs detected on the CAN bus for Nissan

Versa 2010 and the y-axis represents the support.

. Physical value mapping: Standard hexadecimal data for each ECU gives the total length

of the transmitting payload (1 - 8 bytes). Further analyses can be done to graph each byte
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Figure 4.2: Stem plot - Support for Nissan Versa 2010.

in order to observe its behaviour in a time-series. However, physical values i.e. the actual
operating values for certain ECUs like engine speed or tachometer can only be obtained after
using a OEM-defined equation to convert specific bytes in the hexadecimal data to real-world

physical values. The equations below are used in order to obtain the physical values.

Torque = DEC(B)

(DEC(HB) x 256) + DEC(LB)
10

Tachometer =

DEC(HB + LB)

Speed = 10

where B, LB, and H B represent a single byte input, low byte, and high byte inputs respec-

tively. Please see Figure 4.3 for the speed, tachometer, and steering torque outputs.

30



Steering

o

200 400 600 800
RPM

1800

1600

1400

1200
1000 |

800

0 200 400 600 800
Vehicle Speed (mph)

0 200 400 600 800
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4.4 Application of Clustering Methods

Once these pre-processing steps are complete, we obtain a dataset as shown in Table 4.1 which rep-
resents the first and last 5 samples of the 10-minute driving dataset for Nissan Altima 2015. The
column values for ECUs 300, 1F9, and 280 (steering torque, tachometer, and speed respectively)
represent physical values. The columns “ModID” and “ModData” represent the decimal equiva-
lents of the captured hexadecimal data. It can be observed that the column values for ECUs 300
and 280 (steering torque and speed respectively) have negative values. This was a pre-processing
step added to suggest that at that particular time instant, that ECU was not active. It can also be
inferred that at a particular time instant, say 0, there are a minimum of 500 packets or being trans-
mitted by 49 different nodes. Nodes with lower arbitration IDs tend to transmit more frequently
than nodes with greater IDs and tend to be responsible for handling safety critical and body control
functions.

Table 4.1: Sample dataset for Nissan Altima 2015.

ModTime | DataSize | ModID | ModData | ECU300 | ECU1F9 | ECU280
0 8 386 1.84E+19 -1 -1 -1
0 8 505 7.49E+18 -1 545 -1
0 6 533 2.81E+14 -1 -1 -1
0 8 534 4349984 -1 -1 -1
0 8 2 7.21E+18 -1 -1 -1

605 7 352 1.72E+16 -1 -1 -1
605 8 384 2.68E+18 -1 -1 -1
605 8 372 9.1E+18 -1 -1 -1
605 8 386 1.84E+19 -1 -1 -1
605 8 375 1.83E+19 -1 -1 -1

It was deemed appropriate to evaluate the k-means++ clustering algorithm for each signature
separately. Additionally, the k-means++ algorithm requires a 2 feature input for each signature and
cannot function if a high dimensional input is passed. For instance, k-means++ clustering for the

speed ECU signature requires only the timestamp (“ModTime”) and physical value (“ECU280”)
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features. The other requirement for the k-means++ algorithm is to specify the number of clusters.
Rather than working with a range of clusters to evaluate the clustering efficiencies of the method,
a 2-step process was used to specify ‘k’ i.e. the number of clusters.

The first step was to evaluate the optimal number of clusters for a given dataset ‘D’. This
step is well known and is called the elbow evaluation method. The objective of this method is to
find the optimal number of clusters at which the sum of squared error (SSE) of specified number
of centroids and the data points belonging to those centroids is minimized. This simple method
works intuitively to minimize the distance between points belong to a particular centroid or cluster.
To keep a consistent basis for choosing the right number of clusters, the error difference (ED) was
calculated as the % difference between the error at cluster 'k’ and cluster ‘k+1’ and was set to be

under 15%.

EDy(%) = L5y 9 4.1)
€ + €i+1

where i = 1,2,3,..(N — 1) and j = 1,2,3,..N where ‘N’ is the number of clusters being
evaluated.

To verify whether the appropriate number of clusters inferred by the elbow evaluation method
is optimal, the silhouette coefficient (SC) is defined by:

bi — Q;

SC = 4.2)

mazx(a;, b;)
where b is the average inter-cluster distance and a is the average intra-cluster distance. Silhou-
ette scores are measured at three significant markers: a score of -1 implies that the clusters are
incorrectly assigned, a score of 0 suggests that the inter-cluster distance is not significant and that
too many or too clusters are assigned, and a score of 1 shows that the clusters are well separated.
In order to validate the clustering equations for speed and steering, the error % was obtained

for each duration and was calculated by the following equation:

33



Actual; — Calculated;
Actual,

Error = x 100% 4.3)

where Actual, = py and Calculated, is the value obtained from Equation 4.6, Equation 4.7,
or Equation 4.8 (when we consider the speed signature for make ‘A’) based on duration ‘t” where

t =15, 10, or 15.

4.4.1 Speed Signature (Make A)

Figure 4.5 shows elbow plots for 5, 10, and 15-minute durations for the speed signature of make
‘A’ (Nissan). The SSE gets lower progressively as expected from an elbow plot but to identify the
optimal number of clusters can be ambiguous in certain cases simply by inspecting the elbow plot.
To validate the chosen number of clusters to be the optimal value for the number of clusters when
using the elbow method, silhouette coefficients for increasing number of clusters starting from
k = 2to k = 4 is shown in Figure 4.6. In all these cases, it can be observed that the optimal value
for 'k’ = 4; though the differences between each incremental cluster is negligible, the optimal
silhouette scores was chosen to be k = 4.

Table 4.2 indexes the error differences for the speed signature across multiple durations. Speci-
fying the number of clusters > 4 for this signature yielded no significant difference. As mentioned
in the previous section, a difference of under 15% was kept as a reference and it can be observed
that the ED is under this reference percentage when comparing the difference between cluster
numbers 3 & 4 and 4 & 5. For instance, the difference is 3.7% when comparing the difference for
cluster numbers 3 & 4 and 4 & 5. Overlaying the ED for multiple durations as displayed in Fig-
ure 4.7 shows that the speed signature has different ED line plots across the 5, 10, and 15 minute
durations but they all give a difference of under 15% at indexes or rows 3 and 4 for each duration.

Following the optimal number of clusters for the speed signature (ECU280) to be k = 4,
clustering plots for each of the durations are shown in Figure 4.8. It was observed that, as opposed
to clustering when the data is not normalized and the clustering process simply segments the three

clusters into roughly even intervals when referring to the ‘x’ axis (duration), the clustering process
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Figure 4.5: Elbow plots for make A’s speed signature.
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Figure 4.6: Silhouette scores for 2, 3, and 4 clusters for different durations (speed).
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Figure 4.7: Error differences (%) for multiple durations for speed signature.

Table 4.2: Inter-cluster percentage error differences for increasing number of clusters (speed).

Cluster Numbers | Error Difference (%) | Duration
1&2 92.3
2&3 118.2
3&4 60.0 .
1&5 563 5 Minutes
5&6 29.9
6&7 254
1&2 70.3
2&3 45.8
3&4 37.8 .
185 753 10 Minutes
5&6 27.8
6&7 17.5
1&2 56.8
2&3 55.7
3&4 26.3 .
1&5 534 15 Minutes
5&6 21.4
6&7 16.1
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post-normalization yields cluster centers that are statistically different from one another for each

duration (please see Table 4.3 and Table 4.4).

TR e v o

00 [¥) 04 06 08 10 ) 02 04 06 08 10
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(a) k-means++ clustering for speed signature for 5 (b) k-means++ clustering for speed signature for 10
minute duration. minute duration.

aaaaaaa

(c) k-means++ clustering for speed signature for 15
minute duration.

Figure 4.8: k-means++ clustering results for 5, 10, and 15 minute durations (speed).

The clusters and their relative statistics identified by k-means++ and mean shift algorithms are
shown in Table 4.3 and Table 4.4 respectively. The numbers of clusters identified by each of the
algorithms differ for the 5 and 15 minute durations and hence, the requirement of a color scheme
to identify similar clusters was defined. The color schemes in these tables indicate which clusters
between the two clustering methods match well in terms of their average values. For instance, for
the 5 minute duration, we see that clusters 1 and 2 of Table 4.3 when combined with cluster 1 of
Table 4.4, equate closely in terms of their averages i.e. within one S.D. Similarly, cluster 1 and

cluster 1 of the k-means++ and mean shift algorithms respectively for the 10 minute duration match
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well despite varying in the number of data points. It can be consistently observed that the average
values for each cluster and for each duration (left most column) are within one standard deviation
of the mean standard deviation (mean S.D.) for each of the durations; this can be considered to be

within reasonable bounds for the formulation of threshold equations for this signature.

Table 4.3: k-means++ cluster analysis for multiple durations for speed signature.

5 Minutes

15.7 (k=4)
10 Minutes

14.5 (k=4) 6.6
15 Minutes

14.6 (k=4)

Table 4.4: Mean Shift cluster analysis for multiple durations for speed signature.

5 Minutes
(C=2)

10 Minutes
(€=3)

16.9
6.6

15 Minutes
C=4

18.2

The threshold equation for the speed signature can be formulated as follows:
Tspeed, = pug, = (m x S.Dy) 4.4)
where

tE — ML
m=———
Hs.D

4.5)

and g, iz, ps.p. represent the highest mean for a cluster, the lowest mean for a cluster, and
the mean of the standard deviations for the different durations respectively. S.D; represents the

standard deviations for durations 't’ = 5, 10, 15.
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Using Equation 4.4, mathematical representations for these thresholds of the speed signature
are shown below using Equation 4.6, Equation 4.7, and Equation 4.8 for the 5, 10, and 15 minute
durations respectivel for vehicle of make ‘A’ and year 2015. These equations estimate the thresh-
olds with an error of under 3% when the % difference between S.Dy and S.Dy, is below 11%,
where S.Dy is the highest standard duration among the 3 durations and S.Dy, is the lowest stan-

dard deviation.

Tspeeds = pg, + (2.17 x S.Ds) (4.6)
Tspeedyg = pug £+ (2.65 x S.Dqg) 4.7)
T8p66d15 = Ur + (224 X S.D15) (48)

To validate the equations shown above, two different vehicles from years 2010 and 2013 but
the same make were used for the same durations as shown in Table 4.5. The “S.D. Difference” is

defined as

S.Dy — S.Dy,

PUH T O UL
SDu+SD;

S.D.Dif ference =

where S.Dy is the highest standard deviation among the 5, 10, and 15 minute duration and
S.Dy, is the lowest standard deviation among the three durations. The percentage error for each
duration was obtained by calculating the error from the result of the threshold equation for that
duration and the py using both the clustering methods as shown in Equation 4.3. The lowest
errors obtained for each duration are reported. As expected, we can see errors of under 6% for
the 2015 vehicle when using the threshold equations for speed whereas higher errors for the older
2010 vehicle. The lowest error reported by the equations for the 2010 and 2013 vehicles is for

the 10-minute duration for the 2013 vehicle which is at 25%. The errors for the 2010 and 2013
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vehicles for the 5 and 10 minute durations are similar; this is because the highest means obtained by
clustering are similar in magnitude for both these vehicles and their respective durations. Higher
S.D. differences are not effective indicators of lower validation errors and can be appropriately

disregarded.

Table 4.5: Validation percentage errors using speed threshold equations for 2 different vehicles of
the same make.

Vehicle Year | T,pcci; | Tspeedry | Tspeedrs | S-D. Difference
2015 4.8% 2.0% 2.1% 11.0%
2010 359% | 35.3% | 48.9% 20.6%
2013 29.9% | 25.0% | 39.4% 37.5%

4.4.2 Steering Signature (Make A)

Evaluating the ideal number of clusters, Figure 4.9 shows elbow plots for 5, 10, and 15-minute
durations for the speed signature. Similar to the speed signature, the elbow is not particularly
obvious from the graphs but ‘i’ = 4 is chosen to be the optimal number of clusters.

Table 4.6 indexes the distance errors for the steering signature across multiple durations. Fig-
ure 4.10 shows the silhouette coefficients for cluster £ = 2 to & = 4. Plotting the DE for multiple
durations as shown in Figure 4.11 shows that the steering signature percentage differences are sim-
ilar to the speed signature in that the % difference falls below the benchmark of 15% for k = 4.
Performing the silhouette coefficient test, it is evident that following the optimal number of clusters
for the steering signature (ECU300) is k£ = 4. Clustering plots for each of the durations based on
k = 4 are shown in Figure 4.12.

The validation percentage errors for the steering signature are shown in Table 4.7. Like the val-
idation for the speed equations, the percentage error for each duration was obtained by calculating
the error from the result of the threshold equation for that duration and the py using clustering
as shown in Equation 4.3. The lowest error obtained for each duration is reported. Similar to the
speed threshold, the S.D. difference (measure of spread in the data) is not an effective indicator of

validation error; though the 2010 vehicle has a lower S.D. difference, the average validation error
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Figure 4.9: Elbow plots for make A’s steering signature.

across the 3 durations is slightly higher than that of the 2013 vehicle. The 5 minute duration for
the 2013 vehicle reports the relative lowest validation error of 45.9%.

The clusters and their relative statistics identified by k-means++ and mean shift algorithms
are shown in Table 4.8 and Table 4.9 respectively. Like for the speed signature, a color scheme
was used to match the varying number of clusters identified by the two algorithms. The duration
average values for each duration are within one mean standard deviation for each of the multiple
durations except for the 5 minute duration of the mean shift cluster analysis.

Based on Equation 4.4, the threshold equations (with an error under 1.2%) for the steering

signature for vehicle 1 of make ‘A’ are as follows:
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Figure 4.10: Silhouette scores for 2, 3, and 4 clusters for different durations (steering).

Table 4.6: Inter-cluster percentage error differences for increasing number of clusters (steering).

Cluster Numbers | Error Difference (%) | Duration
1&2 85.4
2&3 36.3
Z z ;_L 2(2)2 5 Minutes
5&6 33.6
6 &7 15.2
1&2 108.0
2&3 57.2
i z ;.1 géz 10 Minutes
5&6 26.8
6&7 21.6
1&2 104.1
2&3 50.5
i z g ;gg 15 Minutes
5&6 18.1
6&7 19.3
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Figure 4.11: Error differences (%) for multiple durations for steering signature.

Table 4.7: Validation percentage errors using steering threshold equations for 2 different vehicles
of the same make.

2015 3.5% 0.07% 5.3% 7.5%
2010 54.8% 89.5% 95.4% 17.7%
2013 45.9% 91.6% 96% 44.7%

Table 4.8: k-means++ cluster analysis for multiple durations for steering signature.

5 Minutes
11.8 (k=4)
10 Minutes
74 (k=4) 53
15 Minutes
79 (k=4)
4 0 40

T'steerings = pr, + (3.49 x S.Ds)

T'steering;o = pr, + (0.86 x S.Dyp)
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Figure 4.12: k-means++ clustering results for 5, 10, and 15 minute durations (steering torque).

Table 4.9: Mean shift cluster analysis for multiple durations for steering signature.

5 Minutes
24.1 c-3
. 1 0 53 10.6 15846 10 Minutes -
: 0 103 13.15 14234 (C=2) :
7.9
T'steerings = pr, = (0.39 x S.Ds5) 4.11)

44



4.4.3 Tachometer Signature (Make A)

Figure 4.13 shows elbow plots for 5, 10, and 15-minute durations for the tachometer signature.
The optimal ‘k’ for this signature could not be coherently determined by the elbow evaluation
plots in Figure 4.13 and required silhouette coefficients for clusters £ = 2 to k = 4 as shown in
Figure 4.14. The highest silhouette coefficient scores are for when £ = 4; thus, we can conclude

from these graphs that the optimal k£ = 4 for the 5, 10, and 15 minute durations.
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(a) Optimal ‘k’ for steering signature for 5 (b) Optimal ‘k’ for steering signature for 10
minute duration. minute duration.
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(c) Optimal ‘k’ for steering signature for 15
minute duration.

Figure 4.13: Elbow plots for make A’s tachometer signature.

Table 4.10 indexes the distance errors for the steering signature across multiple durations. It
is observed, particularly in the case for the 10 minute duration, that though the ED % between
each cluster may be large, it may not indicate that the optimal cluster is the greater cluster number
of the two clusters being differenced. Plotting the DE for multiple durations as shown in unlike
the signatures for steering and speed, Figure 4.16 shows that the tachometer signature percentage

differences vary between each cluster is different and there is little to no agreement between mul-
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Figure 4.14: Silhouette scores for 2, 3, and 4 clusters for different durations (tachometer).

tiple durations. Clustering plots for each of the durations are shown based on k£ = 4 are shown in

Figure 4.15.
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Figure 4.15: k-means++ clustering results for 5, 10, and 15 minute durations (tachometer).
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Table 4.10: Inter-cluster percentage error differences for increasing number of clusters (tachome-
ter).

Cluster Numbers | Error Difference (%) | Duration
1 &2 80.7
2&3 31.0
i z ;L ?g; 5 Minutes
5&6 20.9
6&7 22.9
1&2 81.3
2&3 29.5
i i g ?gg 10 Minutes
5&6 19.3
6&7 14.8
1&2 104.1
2&3 50.5
i z ;_L ;Zg 15 Minutes
5&6 18.1
6&7 19.3
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Figure 4.16: Error differences (%) for multiple durations for tachometer signature.

47



Table 4.11: k-means++ cluster analysis for multiple durations for tachometer signature.

Duration Average | Cluster No. | Minimum | Maximum | Average | No. of Data Points Duration Mean S.D.

1 572.5 1360 936.2 9988
2 535 1247.5 869 8607 .

1028.4 3 650 1217.5 903 8520 5 Minutes
4 1120 1735 1405.4 2309
1 510 1165 871.4 9988
2 527.5 1215 877.7 17750 .

1006.3 3 505 1670 9735 18867 10 Minutes 188.7
4 1040 1692.5 1302.8 5490
1 545 1127.5 874.8 29114
2 537.5 1612.5 1039.1 26324 .

1093.9 3 790 1662.5 1159.8 20210 15 Minutes
4 1022.5 1752.5 1302 12569

4.4.4 Speed Signature (Make B)

To compare the threshold equation obtained for make ‘A’ with another vehicle manufacturer, a
10-minute dataset was obtained for a vehicle of make ‘B’ (Honda) and the signature analyzed was
the speed signature. Figure 4.17 shows the elbow plot and the corresponding silhouette scores for
2, 3, and 4 clusters. The optimal k for this signature using the elbow plot and the silhouette scores
is k = 4. The corresponding clustered plot for the speed signature is shown in Figure 4.18.

The corresponding threshold equation for this signature is a special case of Equation 4.4 where

ws.p = ps.p, where t = 10. So, we modity the equation to

Tspeedyg = pp + (m X i) (4.12)

where f. is the average of the means of the clusters identified by k-means++ within the 10

minute speed dataset. The threshold equation thus obtained for the speed signature of make ‘B’ is

Tspeedyg = pp £ (2.59 X i) (4.13)

Table 4.12: Validation percentage errors using speed threshold equations for 2 sub-datasets of the
same make.

Vehicle Year | k-means++ | S.D. Difference
2016, 13.5% 12.7%
201641 13.6% 13.4%
201644 79% 10.8%
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To verify this equation, the 10-minute dataset (2016,) was split into two 5-minute sub-datasets
201644, and 201644. The validation errors using the speed threshold equation for make ‘B’ is
shown in Table 4.12. Unlike the case for the previous signatures of speed for make ‘A’, there is an
increase in % error as shown by the k-means++ algorithm though the S.D. difference is low. The
high error of 26.2% for the main dataset suggests that the dependent variables in Equation 4.13

need to be reevaluated to accommodate for lower errors atleast on the original dataset.

10000

2000

1 2 3 3 5 & 7
Cluster

(a) k-means++ clustering for speedometer signature for 10 minute duration.

w2 Clusters 083
w3 Clusters
0825 1 mem 4 Clusters

0775

0.750

Silhouette Coefficient

0725

0700

0.675

0.650

10 Minute
Duration

(b) Silhouette scores for 2, 3, and 4 clusters for 10 minute duration

Figure 4.17: k-means++ elbow plot and silhouette scores for Honda (speed signature).
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Figure 4.18: k-means++ clustering results and silhouette coefficients for speed signature of make
‘B b .
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CHAPTER §
ECU CLASSIFICATION USING MACHINE LEARNING

5.1 Introduction

Supervised and unsupervised machine learning algorithms have been used for binary and multi-
class classification problems in literature to identify different ECUs within a vehicle. For instance,
Young and colleagues [68] use a hybrid supervised and unsupervised machine learning approach to
identify ECUs based on vehicular function (driving or idle states). Three CAN datasets were col-
lected from simulation, Oak Ridge National Laboratory traffic logs, and a John Deere tractor. The
vehicle setup was on a dynamometer to simulate driving conditions. This data was preprocessed to
label the raw CAN data into headers such as ID, timestamp, data, and vehicular function. Agglom-
erative clustering is used in order to make this classification by grouping together ECU IDs which
are similar in function. However, no supervised learning algorithm was used and the ECU classifi-
cation broadly classifies similar ECUs into driving and idle states without individually identifying
the ECUs responsible for specific functions such as lighting or seatbelt. Similarly, Avatefipour et
al. [69] posit that each electronic control unit (ECU) and the physical medium (CAN bus) that it
uses to transmit the data produces unique time and spectral “artifacts” that can be classified to cor-
rectly identify the source ECU based on power characteristics of the ECU from different channels
on the CAN bus. Features in the time and frequency domain were used as inputs to the machine
learning classifier used i.e. a multi-layer perceptron (ML). Accuracies of 95% and upwards were
observed in identifying the channel and the respective ECUs within that channel. However, only
one classifier was used to assess the performance which gives little to no information about how
other algorithms not based on a neural network architecture will perform. Additionally, the number
of samples per ECU isn’t mentioned i.e. whether the ECUs are evenly sampled or not; this is an

important observation in such datasets as CAN samples will be unbalanced for each ECU.

51



Input Processing Classification Assessment

Dataset 1 (Nissan) Sample sizing

Define model Learning curves
specific
parameters Metrics

Dataset 2 (Honda) —> Shuffling

Dataset 3 (Toyota) Feature selection

Figure 5.1: Machine-learning workflow for ECU identification.

In this section, three machine learning classifiers are presented in order to identify ECUs from
homogeneous (single make) and heterogeneous (multi-make) datasets (please see Figure 5.1). The
second case is unique in that the same classifiers trained on identifying ECUs from Nissan will
be tested to identify ECUs from the Honda and Toyota datasets. The datasets are first shuffled
sample-wise, and then sampled based on the number of frames per ECU to test for both unbalanced
and balanced classes. The features selected are shown in Table 5.1. While the dimensionality
problem (where accuracy progressively decreases with the increase in features) is not well known
for datasets used for ECU classification, minimizing the number of input features to the machine
learning classifiers was one of the objectives in order to assess how the performance of the models
are when limited but significant features were given for the classification task. Model specific
parameters such as number of neighbors, distance metric (Euclidean/Manhattan), maximum depth
of each tree, and variance smoothing are chosen to maximize accuracy. In order to assess the
models in terms of their learning (overfitting or underfitting), learning curves based on a 5-fold
cross validation is performed. Depending on whether the datasets used are balanced or unbalanced,

the metrics used were accuracy, balanced accuracy, and weighted F1-score.

Table 5.1: Features and characteristics.

Feature Size Description
Time | 10-bit floating point | Timestamp of transmitted frame
Size 3-bit floating point | Size of transmitted frame in bytes
Data | 32-bit floating point | Data payload of transmitted frame
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5.2 Machine Learning Models and Evaluation

5.2.1 Decision Tree

The Decision Tree (DT) model is a machine learning algorithm that can be used for classification
and regression tasks and is based on dividing a dataset and progressively narrowing the input
sample to a specific output based on a decision function. The general architecture of of a DT
model is comprised of a root node (where the input is given), interior nodes (where feature tests are
performed based on a decision function), and leaf nodes which provide the final output of the task.
Figure 5.2 shows the general (classification or regression) architecture for a DT model. Secondly,
the internal (or decision) node splits the input into further sub-nodes based on the features (or
attributes) selected for splitting that node. This feature selection is done using criteria such as
entropy, information gain, or Gini index. For each internal node, the node should be split in a way

that ensures that each descending nodes are “purer” than their parents nodes.

Root
Node

Depth
Leaf
Node

Figure 5.2: Architecture of a Decision Tree model.

This purity represents the goodness of the split. Lastly, the leaf (or terminal) nodes represent
the final outcome of the decision tree. In a classification task, leaf nodes are pure if all the input

samples belong to the same class. The maximum depth refers to the number of layers created for
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the decision-making process. In Figure 5.2, the depth is 4.
For this classification task, the Gini index was used. Consider that a training sample has a
probability p(c;|T") of being assigned to a class ¢; at a given node T. Then, the Gini index is given

by:
G(T)=1- pla|T)
i=1
The Gini index varies from O to 1 where 0 indicates purity and is usually found at a leaf node.

5.2.2 k-nearest Neighbor

k-nearest Neighbor (kNN) is a simple but effective supervised learning classification algorithm
that works on the premise of finding k “neighbors” for an input test sample from a distribution of

training samples.

Algorithm 3 kNN algorithm

Require: A training set ‘S’, training set samples 5;, and test set samples 73,7 = 0..N, j = 0..M
‘N’ is the size of the training set, ‘k’ is the number of neighbors, and ‘M’ is the size of the test
set

1: for T; € T do

2 Compute Euclidean or Manhattan distance from 7} to ‘k’ neighbors

3 Consider neighbors based on the Euclidean distance from 7

4: Count each neighbor belonging to each class

5

6:

Assign Tj to class with max. no. of neighbors
end for

The primary sorting criterion used by kNN is based on distance and the two most commonly
used distance metrics for kNN are the Euclidean and Manhattan distances. The choice of ‘k’ is
non-trivial and there isn’t a specific number that can be identified based on statistical methods.
Rather, it is advised to start off with a lower value of ‘k’ and slowly increase the ‘k’ value if the
performance is poor. Increasing the value of ‘k’ leads to smoother decision boundaries that allows
for better classification. For the classification problem in this research, k& = 3 was chosen as a

starting point to benchmark model performance.
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Since the kNN algorithm performs its classification based on distance, appropriate scaling had
to be performed so that the classification output would not be biased for features with higher
magnitudes. For the following cases, a standard scaler was used to set the variance for each feature
to be of unit magntiude and the mean was set to 0. The standard scaler is given by the following

equation:

where S is the standardized output, / represents the input sample, p is the mean of the data,

and o is the standard deviation.

5.2.3 Gaussian Naive Bayes

The Gaussian Naive Bayes algorithm is a variation of the Naive Bayes algorithm that is suited for
data which follow a normal (or Gaussian) distribution and that have continuous variables in its
feature space. The Naive Bayes algorithm is based on the probabilistic Bayes theorem. Used for
a variety of classification tasks such as spam filtering and detecting fraudulent activity on a credit
card, it is specifically called “Naive” due to the algorithm considering each feature in the feature
space to be independent of one another.
The Bayes theorem is given by:
(AnB) P(A) x P(B|A)

P
PAB = =5 = pB)

where P(A) is the probability of occurrence for event ‘A’ (variable to be predicted), P(B) is the
probability of occurrence for event ‘B’ (known variable), P(A|B) is the probability of occurrence
of event ‘A’ given event ‘B’, P(B|A) is the probability of occurrence of event ‘B’ given event ‘A’,
and P(A N B) is the probability of both events happening.

The Gaussian Naive Bayes algorithm uses the following probability density function:

55



where sigma? and pi, are the variance and the mean respectively of a continuous variable ‘B’

for a particular class ‘c’ for a test sample ‘A’.
5.2.4 Evaluation Metrics
In order to evaluate the classification performance of the models, two metrics were chosen. The

first evaluation metric is the F1-score [70] (or F-measure) and is given by:

Precision X Recall
Fl— =2 5.1
seore % Precision + Recall ©-1)

where Precision represents the fraction of actually positive classes given the number of positive
predictions, and is given by
TP

Precision = ——— 5.2
recision TP FP (5.2)

and Recall represents the fraction of actually positive classes given the number of positive
predictions, and is given by
TP

Recall = m—m (53)

where T'P is true positive, F'P is false positive, and F'N is false negative.

Since the F1-score is the harmonic mean of the precision and recall scores and a high F1-score
implies high precision and recall scores, the precision and recall metrics have not been directly
evaluated on the models.

The second evaluation metric is accuracy [70] and is given by:

TP+ TN

A _ 5.4
Y = TP Y TN + FP+ FN SA
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Accuracy is only used in classification problems and specifically in datasets where the no.
of samples in the dataset for each class is balanced. If the no. of samples was unbalanced, the
accuracy score would be biased and show an overall higher score that will represent the dominant

class.

5.3 Results

5.3.1 Case 1 - Balanced Dataset (Nissan)

The first case for ECU identification was considered for the homogeneous Nissan dataset. The
details of this dataset are shown in Table 5.2. The ‘Class’ represents the numerical class for each
function as done during input, ‘No. of Samples’ represents the number of rows identified for that
respective class, ‘Class Function’ represents the vehicular functions identified for the numerical
class, and ‘Features’ represents the three features considered as inputs: time, data size, and data

payload. The models were trained and tested on a 60/40 split.

Table 5.2: Original input Nissan dataset.

Class | No. of Samples | Class Function Features Split
Class O 173,433 Brake

Class 1 346,785 Steering

8222 g 24712:322 Tacslf)oeriiter Time, Size, Data | 60% and 40%
Class 4 72,296 Lighting

Class 5 8,351,625 Other

As mentioned in Table 5.1, the input features needed to be converted to appropriate floating
point types to serve as valid inputs to each classifier. Please see Figure 5.3 for a pairwise plot that
represents each of the features in the dataset as pairwise combinations. The diagonal plots show
the distribution plot for feature (univariate). The significant inferences that can be made from the
figure are that the distribution for the size of the data follows a right skewed distribution and that the
classes (designated as “function” on the right hand side of the figure) are distributed non-linearly

when considering the plots for time (“ModTime”)/size (“DataSize”), time/data (“ModData”), and
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Figure 5.3: Feature-wise pair and distribution plots for Nissan dataset.

size/data.

It can be seen from Table 5.2 that the sample distribution for each class is uneven and providing
these as inputs to the machine learning algorithm would bias the classifier performance in favor
of the dominant class (class 5). Class 5 represents other ECU IDs that could not be mapped to
a function and is the dominant class for this research work. Thus, to assess the models’ perfor-
mance on a balanced dataset, 30,000 samples were chosen for each class as shown in Figure 5.4.
Figure 5.5 shows the first five samples of the balanced dataset. The first three attributes represents
the three features used for the classification task as mentioned in Table 5.1: “ModTime” is the
modified timestamp, “DataSize” is the size of the data frame in bytes, and “ModData” is the data

payload for that data frame. “Function” is the class label that represents the data frame is the target

58



Class Sizes based on Number of Samples
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25000

20000
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10000

Class

Figure 5.4: Balanced classes for Nissan dataset.

variable.
ModTime DataSize ModDtata Function
543.00 8.0 T2339103382771033 5
483.00 2.0 4080218927531 5
284.00 2.0 18374758E48254882144 5
5.00 2.0 429002221681891822812 5
544.00 8.0 9728975881377 719042 5

Figure 5.5: Snapshot of the first five samples of the Nissan dataset.

Decision Tree Performance

The performance for the DT algorithm was assessed using the metrics of Fl-score and accuracy.
Additionally, a clearer representation of DT’s performance on the Nissan dataset can be seen in
Figure 5.6. The x-axis represents the predicted labels whereas the y-axis represents the ground
truth. Decision Tree identifies classes 1, 2, and 3 (steering, speed, and tachometer respectively)
well whereas the lowest performance is shown for classes 4 and 5 (lighting and other ECUs re-

spectively). The accuracy, F1-score, and processing times are shown in Table 5.3.
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Figure 5.6: Confusion matrix for Decision Tree (Nissan dataset).

Table 5.3: Performance for Decision Tree (Nissan dataset).

Accuracy | Fl-score | Training Time | Testing Time
83.1 % 83.5 76.7 ms 3.9 ms

kNN Performance

The confusion matrix for kNN is shown in Figure 5.7. Unlike DT, the kNN algorithm shows near
perfect scores for classes 1, 3, and 4 while still performing well in identifying classes 0, 2, and 5.

The accuracy, F1-score, and processing times are shown in Table 5.4.

Table 5.4: Performance for kNN (Nissan dataset).

Accuracy | Fl-score | Training Time | Testing Time
94.3 % 94.3 219 ms 1580 ms
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Figure 5.7: Confusion matrix for kNN (Nissan dataset).

Gaussian Naive Bayes Performance

It can be observed from Figure 5.8 that the Gaussian Naive Bayes classifier identifies classes 1 and
2 well but fails to identify the other classes. The reason for this may be due to the distribution of
the 3-dimensional data. Since Gaussian Naive Bayes works well for datasets that have a PDF that
is represented by a Gaussian distribution, it may perform poorly when the dataset follows other
distributions such as binomial or skewed distributions. The accuracy, F1-score, and processing
times are shown in Table 5.5.

Table 5.5: Performance for Gaussian Naive Bayes (Nissan dataset).

Accuracy | Fl-score | Training Time | Testing Time
54.9 % 61.5 28.9 ms 27.9 ms
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Figure 5.8: Confusion matrix for Gaussian Naive Bayes (Nissan dataset).

5.3.2 Case 2 - Balanced Dataset (Nissan, Honda, and Toyota)

The second case for ECU identification used datasets from the three makes of Nissan, Honda,
and Toyota in order to create one heterogenous dataset. The details of this dataset are shown in
Table 5.6.

Table 5.6: Original input Nissan, Honda, and Toyota dataset.

Class | No. of Samples | Class Function Features Split
Class 0 173,433 Brake

Class 1 346,785 Steering

Class 2 346,918 Speed (Nissan)

gzzz i 67727”279663 Ti‘;l;‘l’l‘t?ﬁ;er Time, Size, Data | 60% and 40%
Class 5 8,351,625 Other

Class 6 60,036 Speed (Honda)

Class 7 30,057 Speed (Toyota)

Similar to Case 1, 30,000 samples were chosen for each class as shown in Figure 5.10. Please
see Figure 5.9 for a pairwise plot that represents the each of the features in the dataset. The diagonal

plots show the distribution plot for feature (univariate). The significant inferences that can be made
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from the figure are that the distributions for the size and time features follow a skewed distribution.
Unlike Case 1, when looked at closely, there is another distribution that is represented for classes
6 and 7 which does not follow a skewed pattern unlike the distributions for classes O through
5. Similar to Case 1, the classes (designated as “function” on the right hand side of the figure)
are distributed non-linearly when considering the plots for time (“ModTime”)/size (“DataSize”),

time/data (“ModData”), and size/data.
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Figure 5.9: Feature-wise pair and distribution plots for Nissan, Honda, and Toyota dataset.
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Class Sizes based on Number of Samples
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Figure 5.10: Balanced classes for Nissan, Honda, and Toyota dataset.

Decision Tree Performance

As can be observed from Figure 5.11, the performance for DT is consistent in terms of identifying
classes 1, 2, 3, and even class 7 which represents the speed ECU for the Toyota dataset. It is also
inferred from Table 5.7 that there was a drop of 7.8% and 9.4% respectively in accuracy and F1-
score. This can be considered negligible as it is under 10% and the model still continues to show

potential for improvement through hyperparameter optimization.

Table 5.7: Performance for Decision Tree (Nissan, Honda, and Toyota dataset).

Accuracy | Fl-score | Training Time | Testing Time
75.3 % 74.1 128.6 ms 6.9 ms
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Figure 5.11: Confusion matrix for Decision Tree (Nissan, Honda, and Toyota dataset).

kNN Performance

The kNN algorithm performs well in identifying all classes and has near identical performance
when compared to Case 1. Please see Figure 5.12 for the confusion matrix for KNN. The tradeoff

with high accuracy and F1-score is the high computation time of kNN as shown in Table 5.8.

Table 5.8: Performance for kNN (Nissan, Honda, and Toyota dataset).

Accuracy | Fl-score | Training Time | Testing Time
94.5 % 94.4 740 ms 2317 ms
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Figure 5.12: Confusion matrix for KNN (Nissan, Honda, and Toyota dataset).
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Gaussian Naive Bayes Performance
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Gaussian Naive Bayes continues to identify classes 1 and 2 well while performing fairly well in

identifying class 3. However, there is a significant drop of 22.2% in the F1-score when compared

to Case 1. The training and test times have seen an increase due to the increased number of samples

under classes 6 and 7.

Table 5.9: Performance for Gaussian Naive Bayes (Nissan, Honda, and Toyota dataset).

Accuracy

F1-score

Training Time

Testing Time

46.5 %

0.39

740 ms

2317 ms
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Figure 5.13: Confusion matrix for Gaussian Naive Bayes (Nissan, Honda, and Toyota dataset).

Discussion

Figure 5.14 and Figure 5.15 show the classifier performance for Case 1 (homogeneous dataset)
and Case 2 (heterogeneous dataset) respectively. The highest performing model was identified to
be kNN, followed by DT, and Gaussian Naive Bayes. kNN remains the highest performing model
due to its ability to perform well in identifying non-linear relationships between features albeit at a
higher computation cost as shown in Table 5.10. It is thus implied by these preliminary results that
kNN’s distance-based approach to classifying each sample shows higher accuracy in contrast to
the independency assumption of the Gaussian Naive Bayes model where each feature is assumed
to be independent of one another. Though the Naive Bayes classifier has been shown to perform
well in many domains, and sometimes even better than kNN [71][72], kNN and Decision Tree hint
at being better choices for this classification task. It has to be noted, however, that the Gaussian

Naive Bayes performance is not necessarily a reflection of strong feature-dependence in this dataset
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and that measuring information loss [73] (i.e. the difference in class information when Naive
Bayes assumption is made when compared to a benchmark that measures the mutual information
between the input features and the categorical variable) is a better step in understanding the latent
relationships within the dataset and improving the Gaussian Naive Bayes performance.

In order to assess whether kNN and Decision Tree models are overfitting, 5-fold cross vali-
dation was performed using accuracy and Fl-score as metrics. The results for the accuracy and
F1-scores using cross validation are shown in Figure 5.16. The results for accuracy and F1-score
obtained are the average scores from the 5 folds. Decision Tree gave scores of 75% and 0.66 for
the accuracy and F1-scores respectively, while kNN showed high performance again with 95.2%
and 0.95 for the accuracy and F1-scores respectively. Since these scores are relatively similar to
the ones obtained in both the cases, it can be reasonably inferred that the results obtained for KNN
and Decision Tree Cases 1 and 2 are representative of a learning method that is neither underfitting
nor overfitting [74] and are the first step in concluding that the models are generalizing well to
the training data [75]. DT and kNN may exhibit similar or better performance when cross vali-
dation is used in tandem with after hyperparameter optimization methods such as GridSearch or
RandomizedSearch to identify the optimal tunable parameters that lowers error and/or increases

accuracy/F1-scores.

Table 5.10: Performance for Decision Tree, kNN, and Gaussian Naive Bayes for Cases 1 and 2.

Accuracy | Fl-score | Training Time | Testing Time Model Case
83.1% 0.83 76.7 ms 3.9 ms Decision Tree
94.3% 0.94 219 ms 1580 ms kNN Case 1
54.9% 0.61 28.9 ms 27.9 ms Gaussian Naive Bayes
75.4% 0.74 128.6 ms 6.9 ms Decision Tree
94.5% 0.94 740 ms 2317 ms kNN Case 2
46.5 % 0.39 89.4 ms 98.6 ms Gaussian Naive Bayes
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Classifer Performance in ECU Identification (Case 1)

Accuracy

Decision Tree Gaussian NB
Classifier

(a) Accuracy scores for Decision Tree, Gaussian Naive Bayes, and kNN for classification (Nissan
dataset).

Classifer Performance in ECU Identification (Case 1)

F1-Score

Decision Tree Gaussian NB
Classifier

(b) F1-Scores for Decision Tree, Gaussian Naive Bayes, and kNN for classification (Nissan dataset).

Figure 5.14: Model performance for Decision Tree, Gaussian Naive Bayes, and kNN (Case 1).
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Classifer Performance in ECU Identification (Case 2)

Accuracy

Decision Tree Gaussian NB
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(a) Accuracy scores for Decision Tree, Gaussian Naive Bayes, and kNN for classification (Nissan,
Honda, and Toyota dataset).
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(b) F1-Scores for Decision Tree, Gaussian Naive Bayes, and kNN for classification (Nissan, Honda,
and Toyota dataset).

Figure 5.15: Model performance for Decision Tree, Gaussian Naive Bayes, and kNN (Case 2).
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5-fold Cross-validation Accuracy Scores for Decision Tree and kNN
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(a) 5-fold cross-validation accuracy scores for Decision Tree and kNN.

5-fold Cross-validation F1-Scores for Decision Tree and kNN
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(b) 5-fold cross-validation F1-scores for Decision Tree and kNN.

Figure 5.16: Model performance for Decision Tree, Gaussian Naive Bayes, and kNN using cross
validation.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

A vehicle can have multiple CAN buses that typically operate at bus speeds from 125 kbps to 1
Mbps. This research work analyzed the CAN bus to gather ECU data from multiple makes. The

main contributions of this research work are as follows:

1. Data acquisition and processing: Analyzing and drawing meaningful conclusions from
the CAN data required a methodology. The first step was data collection where data were
acquired for three vehicles of Nissan, one vehicle of Honda, and one vehicle of Toyota using
COTS hardware and Linux open-source tools to handle the software interface. The 1-, 5-, 10-
, and 15-minute datasets were pre-processed to enhance readability, processed to gather ECU
ID support, display byte-level waveforms, and remove incompatible data (negative integers
and alphanumeric data) to make it feasible for further processing in machine learning tasks

such as classification and forecasting.

2. Application of unsupervised learning: Two clustering algorithms were analyzed (namely
k-means++ and mean shift) for three ECU signatures (speed, steering, and RPM) for two dif-
ferent makes. This two-step approach provides a way for multiple ECUs to be distinguished
from one another in order to automate and optimize ECU operations. The ideal number of
clusters for the speed and steering ECU signatures was & = 4 for the Nissan and Honda
makes. There was close agreement on the ranges for the maximum, minimum, and average
values (under 1 S.D.) for all but one duration for both the ECU signatures i.e. the 5 minute
duration for the steering signature. Average validation errors of 35.7% and 78.8% were ob-
served for speed and steering ECU signatures respectively while the average errors for the
2015 vehicle (based on which the threshold equations were created) were 2.95% and 2.96%

for the speed and steering signatures respectively. The lowest errors of 29.9% and 45.9%
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for the speed and steering signatures respectively were observed for the 2013 vehicle of the
Nissan make at the 5 minute duration. Threshold equations for the RPM signature could not

be formulated due to the inability of the mean shift algorithm to identify multiple clusters.

3. Application of supervised learning: Three machine algorithms (kNN, Gaussian Naive
Bayes, and Decision Tree) were analyzed to classify 5 different ECU signatures (braking,
steering, speed, tachometer, and lighting) from various makes based on two cases. The
highest performance was shown by the kNN model with average accuracy and F1-scores of
94.4% and 0.94 respectively, followed by Decision Tree with 79.2% and 0.78 respectively,
and finally the Gaussian Naive Bayes with 50.7% and 0.50 respectively. A cross validation
check was performed to recognize early signs of bias or variance for the kNN and Decision
Tree models. The preliminary results show that the models have generalized well based on

3 feature inputs (time, size, and data payload).

Formulating and empirically verifying the effectiveness of the given threshold equations that
may vary depending on automobiles’ year and make is a complex problem and warrants further
research. The limitations of this works are: optimal usage of ECU resources such as energy, time,
and latency from the results presented warrants further insight. Secondly, this study only analyzed
a limited dataset of five vehicles but preliminary results indicate that there is a positive consensus
of similar threshold ranges to some degree of confidence. Thirdly, a robust vehicular CAN dataset
needs to be developed to validate the claims in this research work and for large scale analyses for
optimal ECU operation and deducing approximate thresholds based on various ECU signatures.
Lastly, the cases studied for the classification task assumed that the dataset(s) contain a balanced

number of samples for each class which is less likely to be reflective of real-time CAN traffic.
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