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ABSTRACT 

Computational electronic structure theory has become an inexorable engine for 

understanding and even predicting the properties of novel molecules and materials. In this 

dissertation, two types of novel metal-containing systems, one a material and one a 

molecule, were examined using ab initio methods. In addition, progress on using machine 

learning (ML) to systematize the selection of qualitatively correct descriptions of molecular 

systems were examined. 

The ever-increasing demand for smaller, faster, and cheaper electronics has fueled 

the ongoing search for new materials. Silicene, a two-dimensional (2D) monolayer of 

silicon (Si) atoms arranging in a honeycomb lattice, has attracted much attention because 

of its compatibility with the current Si-based technologies. To enrich the properties of 

silicene, transition metals (TMs) are often integrated into the silicene network. Binary 

monolayers of Si with different TMs are known as TM silicides. By using density 

functional theory (DFT) calculations, the structural, electronic, and mechanical properties 

of iridium (Ir)-silicide monolayers were investigated. Different plausible 2D structures of 

Ir-Si with various atomic ratios were modelled and the cohesive energies were then 

calculated for the geometry optimized structures with the lowest equilibrium lattice 

constants. Among a large number of candidate structures, we identified several 

mechanically (via elastic constants and Young’s modulus), dynamically (via phonon 

calculations) and thermodynamically stable Ir-Si monolayer structures. Ir2Si4 (called r- 

IrSi2) with a rectangular lattice (Pmmn space group) had the lowest cohesive energy of 



xx 
 

−0.248 eV (per IrSi2 unit) with respect to bulk Ir and bulk Si. The band structure suggested 

that metallic properties could be detected within Ir2Si4 monolayer. Hexagonal (P-3m1) and 

tetragonal (P4/nmm) cell structures were also found to be stable structures with 0.12 and 

0.20 eV (per formula unit) higher cohesive energies, respectively. The interactions of stable 

Ir-Si monolayers with O2 and H2O molecules were also investigated. We found that Ir-Si 

monolayers are reactive to these molecules. 

The search for new materials does not stop at Earth. Many astrophysical molecules 

have been detected and studied in recent years. Alkaline earth metal monohydroxide 

radicals, especially calcium monohydroxide (CaOH) and strontium monohydroxide 

(SrOH), have attracted much attention due to their expected presence on rocky exoplanets, 

and by their potential applications in laser cooling and trapping technologies. Since 

samples of these interstellar molecules are not easily accessible, it is very challenging to 

study them using experimental methods. Theoretical approaches often become the more 

viable option, especially for providing detailed insights into the mechanisms of formation 

and dissociation of these radicals. Multireference perturbation theory (MRPT) methods are 

better alternatives to DFT for studying these electronic structures because a carefully 

balanced dynamical and non-dynamical (or static) electron correlations, starting from 

multiconfigurational self-consistent field (MCSCF), is needed. The second-order 

generalized van Vleck perturbation theory (GVVPT2), one of the MRPT approaches, was 

utilized to study CaOH and SrOH monomers. The dimerization of CaOH was also 

considered. The optimized geometry parameters of the ground state CaOH monomer as 

well as the vertical excitation energy of the first low-lying excited state are in good 

agreement with other ab initio methods and experimental data. On the other hand, the 
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optimized geometry of the ground state of SrOH appears to be quasilinear as opposed to 

the linear geometry described in published literature. In addition, by applying relativistic 

corrections, the GVVPT2 optimized geometry of SrOH became more bent by 

approximately 6°. 

The biggest challenge of MRPT methods is to find a proper active space which is 

unique for each electronic structure and heavily dependent on user’s choice. If the active 

space is too big, the computational cost may be prohibitively expensive. If the active space 

is too small, the chemical properties of the structure may not be described appropriately, 

leading to inaccurate results. Hence, an improvement to these methods is much needed. 

Recently, ML has entered and is revolutionizing the quantum chemistry field. With the 

ability to automatically process a large amount of data and improve through experience, 

ML offers a solution to the user-specified active space problem of MRPT methods. This 

means that studying challenging and extensive chemical systems could become feasible in 

the near future while maintaining the accuracy of the underlying methods. In this study, we 

built our ML protocol to find a list of feasible active space configurations to be starting 

inputs for the GVVPT2 method. By implementing the reinforcement learning algorithm 

within ML, the machine was allowed to explore the unknown dynamical environment of 

the input chemical systems and receive feedback for each action it took. As a result, the 

machine gradually learned how to choose a proper active space. So far, we have used our 

ML algorithm to find the active space of the ground state water, triplet ground state 

methylene, and stretched water model systems. Good starting point active space 

configurations were found for all these three molecules which confirmed the active space 

selection ability of our ML model.
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CHAPTERS 

I. INTRODUCTION 

 

Theoretical and Computational Chemistry 

 There are many important chemistry problems which cannot be solved by 

experimental methods alone. This has fueled the rapid evolution of theoretical and 

computational chemistry over the last century to provide complementary alternatives for 

studying a variety of challenging chemical systems, such as transition-metal complexes,1–

3 organometallic substances,4–6 semiconductors,7–10 and biological molecules.11,12 The 

developments of all of the theoretical approaches have centered around one core problem, 

which is to find a sufficiently accurate description of the electrons and nuclei contained in 

the chemical systems of interest.13,14 Regrettably, only one-electron models, such as the 

hydrogen atom and the molecular hydrogen cation H2
+, can be described and solved exactly 

with the Schrödinger equation.14,15 For many-body problems which involve numerous 

electron interactions, different types of approximations have to be developed to include 

electron correlations as close to the ones in the real systems as possible, from both a 

technical perspective and considering available computer resources.14,16,17 

The Hartree–Fock (HF) approximation18–20 is one of the first approaches which was 

introduced to solve many-body problems.21 HF uses an electron wave function in the form 

of a single Slater determinant20 to turn the many-body time-independent Schrödinger 

equation into many single-particle equations.21,22 By using the mean-field approach in 
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which each electron moves in an average field made up of the remaining electrons, HF 

cannot compute electron correlations with sufficient accuracy for nearly all practical 

applications.22,23 Many post-HF methods, such as single-reference approaches (e.g., 

configuration interaction (CI),24–27 second-order Møller–Plesset perturbation theory 

(MP2),28 and single-reference coupled cluster (CC)29), and multireference approaches (e.g., 

multireference CI (MR-CI),24,25,30,31 multireference perturbation theory (MRPT),32–36 

multiconfigurational self-consistent field (MCSCF),31,37,38 and multireference CC (MR-

CC)39,40), have been developed to give better descriptions of correlation effects. However, 

maintaining a balance between accuracy and computational cost for these post-HF methods 

is a challenge in itself. 

Another popular method that belongs in the first-principles or ab initio methods 

with the wave function theory (WFT) approaches mentioned above is density functional 

theory (DFT).41–47 While the HF and post-HF methods employ electron wave functions, 

DFT uses electron density instead.45,48 A tremendous effort has been put in the derivation 

of density functionals to calculate the electron correlation effects in DFT, since the true 

density functional is in general unknown except for certain model problems. In 2017, a 

total of 200 exchange-correlation functionals were benchmarked.46 Since DFT is 

computationally efficient and can provide reasonably accurate results for many chemical 

systems containing a large number of electrons, DFT has become a widely-used method in 

solid-state physics and quantum chemistry.46,49,50 

Despite the great balance between accuracy and computational cost that DFT 

offers, DFT is not necessarily a good fit for studying systems of more than 1,000 

atoms.23,51,52 Semi-empirical methods (e.g., Modified Neglect of Diatomic Overlap 
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(MNDO),53 Austin Model 1 (AM1),54 and Parametric Method 3 (PM3)55,56) and molecular 

mechanics (MM) methods (or force field methods) (e.g., MM257 and Assisted Model 

Building with Energy Refinement (AMBER)58) have become the methods of choice for 

studying large organic molecules and biological systems.23,51,59,60 However, DFT, semi-

empirical, and force field methods require dispersion corrections because their standard 

versions do not take van der Waals interactions into account. The D3 method has been 

shown to improve the accuracy of DFT (i.e., DFT-D3)61 and quantum mechanics 

(QM)/MM calculations.61–67 For our DFT studies of iridium silicide monolayers presented 

in chapter III of this dissertation, we used the DFT-D3 method with Becke-Johnson 

damping68 to describe the van der Waals interactions between iridium silicide surfaces and 

O2 and H2O molecules. Becke-Johnson damping helps avoid repulsive interatomic forces 

at shorter distances and often provides better results for cases of medium-range electron 

correlations.68 In summary, depending on the size of the chemical system of interest, 

desired level of accuracy, and available computational resources, a proper method needs 

to be chosen. Since the ab initio methods like HF, post-HF, and DFT are more suited for 

studying our targeted systems, the methodology chapter of the dissertation will focus on 

these methods. 

 

Theoretical Studies of Two-Dimensional Materials 

Technology is the heart and soul of our modern world. To keep up with the fast-

growing rate of technology changes, better electronic components are needed. This demand 

for more efficient electronics has become the driving force for many scientists to develop 

new types of materials. The discovery of graphene by Andre Geim and Kostya Novoselov 
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in 200469,70 has marked the beginning of a new generation of candidates, two-dimensional 

(2D) materials. Graphene is a monolayer of carbon atoms tightly packed together in a 

honeycomb lattice (see Figure I-1(a) and 1(b)).70 Its high charge carrier mobility is the key 

factor in developing graphene’s potential electronics applications.70–74 However, for a 

direct integration to the existing silicon-based technologies, graphene might not be the best 

contender.75 

 

 

Figure I-1. Comparison of the crystal structures between (a) top view and (b) side view of 
graphene and (c) top view and (d) side view of silicene. The graphene has a 
perfect planar structure, while silicene possesses a slightly out-of-plane 
buckling structure (h denotes the buckling distance). (Image taken from Ref.76) 

 

Silicene,77–79 a silicon-based equivalent of graphene, on the other hand, suggests a 

high compatibility with the present semiconductor technologies.75,80,81 Theoretical 

calculations have shown that similar to graphene, free-standing silicene exhibits extremely 

high charge carrier mobility,60,61,69 topological Dirac insulator characteristics,84–87 and 

quantum spin and anomalous Hall effects.88–92 Experiments have shown that silicene can 
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grow epitaxially on various substrates such as Ag(111),79,93–97 Ir(111),98 ZrB2(0001),99 

MoS2,100 ZrC(111),101 and Au(111) surfaces.102 However, in contrast to graphene, silicene 

has highly reactive buckled hexagonal structures (see Figure I-1(c) and 1(d)), resulting in 

strong orbital hybridization between silicene and these metal atoms.103,104 Consequently, 

the electronic properties of silicene drastically changed on these metallic substrates.103,104 

To weaken the interactions between silicene and these metal atoms in order to preserve the 

novel properties of silicene, alkali metals can be intercalated between silicene and the metal 

surfaces.103 

This has inspired many research groups to integrate a variety of metals, especially 

transition metals (TMs), into the silicene network with the intention of enriching the 

properties of silicene further. A new family of 2D nanomaterials, called transition metal 

(TM) silicides, has emerged. Many TM silicides, binary monolayers of Si with different 

TMs, have been investigated using ab initio methods and have shown promising 

applications in spintronic and magnetic electronic devices.105–113 

Chapter III of this dissertation describes our published work in studying iridium 

silicide (Ir-Si) monolayers.114 By using DFT methods, we modelled different plausible 

structures of Ir-Si monolayers and calculated cohesive energies on the geometry optimized 

structures.114 Subsequently, phonon dispersions, band structures, density of states, and 

mechanical analyses were computed on the stable structures to assess their physical and 

chemical properties.114 
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Theoretical Studies of Astrophysical Molecules 

 Space is vast and complex. Despite all the time and resources that are directed 

towards space exploration programs, much of space remains a mystery to humanity. Could 

it be that the answer to our search for better types of materials can be found in space? Up 

to now, more than 200 astrophysical molecules have been detected in various environments 

like planetary atmospheres, circumstellar envelopes, protoplanetary disks, and interstellar 

medium.115,116 These molecules contain several different elements with a variety of size 

and charge.116 Hence, studying astrophysical environments could help discover new 

molecules, leading to a better understanding of the types of matter that made up the 

universe, and possible ways to advance life on Earth. 

Astronomical observations and spectroscopic detection are one thing, collecting 

samples for experimentation is quite another. Even for planets and regions that are 

relatively close to Earth, launching a space probe to collect samples is without a doubt 

expensive and time-consuming. For instance, the NASA Cassini-Huygens mission 

launched in 1997 was a long two-decade journey to planet Saturn and its moons.117,118 The 

cost of the mission was about $3.9 billion.119 Therefore, samples of astrophysical molecules 

are certainly not easy to access and preserve. While there have been significant advances 

in the laboratory synthesis and characterization of molecules of astrophysical interest120–

124, some molecules have proven difficult to study via so-called laboratory astrophysics.  

Moreover, even for molecules that can be synthesized in conditions similar to space, they 

are often difficult to fully characterize. 

 Over the years, theoretical methods have helped overcome this limitation. 

Computational modelling and theoretical calculations have made it possible to study highly 
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reactive and short-lived astrophysical radicals and ions.115,125 Theoretical approaches also 

help make predictions for additional characteristics of these species like emission spectra, 

rotational constants, and possible mechanisms of their formation and dissociation.23,115,116 

This helps develop new technologies on Earth, such as inertial confinement fusion126,127 

and laser cooling.128,129 Theoretical methods have become valuable assets in the field of 

astrophysics and astrochemistry. 

 Chapter IV of this dissertation describes our theoretical studies of two astrophysical 

radicals: calcium monohydroxide (CaOH) and strontium monohydroxide (SrOH) 

monomers. Aside from their inherent interest as astrophysical molecules, the molecules are 

of interest as exemplars of systems in which simplified descriptions of chemical bonding 

(e.g., ionic, covalent) are challenged, and predictions of properties are unusually sensitive 

to methodology used. Hence, our calculations were performed by using second-order 

generalized van Vleck perturbation theory (GVVPT2)36,130–134 – a variant of the MRPT 

method, which balances dynamic (e.g., instantaneous) electron correlation with 

nondynamic (or static) electron correlation which is long-range.  Moreover, different 

electronic states of CaOH have differing mixes of ionic vs. covalent characteristic, hence 

necessitating the use of methodology that can describe excited electronic states on an even 

footing with the description of the ground state. GVVPT2 is implemented in our in-house 

computational chemistry software named UNDMOL,36 which also provides significant 

flexibility in construction of MCSCF wave functions and has the capability of all-electron, 

spin-free relativistic methodology.  The discussion of CaOH radical is extended to chapter 

V where our GVVPT2 calculations for the CaOH dimers are presented. One of the 

motivating factors for examination of CaOH, which had been studied by more 
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computationally expensive methods, is the validation of the GVVPT2 method for studies 

of groupings of multiple CaOH monomers for which calculation by the more expensive 

methods become quickly overwhelming. 

 

Development of Machine Learning in Computational Chemistry 

 Machine learning (ML) is no longer a futuristic dream. Voice assistants,135 image 

recognition,136 intelligent gaming,137 autonomous driving,138 etc. are all different 

applications of ML in our daily lives. ML refers to an algorithm in which a machine is 

given a specific task so that it will automatically improve its task performance through 

training experiences.139 There are three main types of ML methods: supervised learning, 

unsupervised learning, and reinforcement learning.139 Supervised learning algorithm uses 

a set of input variables to train a machine to produce desired outputs.139,140 On the other 

hand, unsupervised learning uses unlabeled data so that the machine can discover 

underlying patterns within the data set.139,141 Reinforcement learning uses rewards as 

pointers for the machine to figure out which actions to take in an unknown dynamical 

environment.139,142,143 Many current research studies also use hybrid forms of these three 

learning algorithms,139 such as semi-supervised learning144,145 and active learning.146,147 

 With great abilities of ML in processing vast amount of data and yielding optimized 

outputs, let’s imagine all the potential applications that ML could bring to the field of 

quantum chemistry. In recent years, theoretical chemists and physicists have brought some 

of these applications into reality, for instance, solving certain electronic structure problems 

using ML.148–151 ML has been used to predict electron charge density and density of states 

in DFT, given just atomic configurations of target systems,152 or to obtain more accurate 
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levels of theory energies from DFT.153 ML has also been making strides in improving 

multireference methods.150,154,155 Although these multireference methods can often provide 

high level of accuracy for small- to medium-sized chemical systems, their major drawback 

lies in the difficulty of active space selection procedure.150,154  Each electronic structure has 

a unique active space and requires the user to have great knowledge and experience to 

make a proper selection.150,154 With ML, this limitation can be overcome. The ultimate goal 

is to establish a universal automatic protocol in selecting complex active space within these 

multireference methods. 

 Chapter VI of this dissertation describes how we incorporated ML to solve the user-

oriented active space problem within GVVPT2 method. We used a reinforcement learning 

algorithm, implemented in PyTorch software package,156 to train the machine to select a 

proper active space. The machine first explored the unknown environment for each target 

chemical system. Rewards were then given when it reached certain desired outputs. On the 

other hand, if the machine chose a wrong way of redistributing the orbitals, resulting in bad 

active space configurations which did not satisfy certain pre-determined conditions, it 

would be penalized. Our ML routine was built as a pre-processor program to generate good 

starting inputs for the GVVPT2 method, which is encoded in the UNDMOL software. The 

active space selection ability of the ML was evaluated by comparison with well-studied 

model problems: the case of ground state water, triplet ground state methylene, and 

stretched water. 
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Dissertation Framework 

This section outlines the structure of the dissertation. The introduction chapter gave 

an overview of theoretical and computational chemistry along with the methods that were 

used in theoretical studies of 2D materials and astrophysical molecules. The chapter also 

highlights recent advances of ML in computational chemistry, and hence, the inspiration 

to apply ML to our work. Chapter II provides a synopsis of the ab initio methods which 

lay the foundation for our theoretical studies, such as the HF approximation, DFT, MCSCF, 

MRPT, and its variant, GVVPT2. The spin-free exact two-component method, an approach 

to study scalar relativistic effects within GVVPT2, will also be discussed there. In addition, 

the chapter reviews important developments of ML in active space selection within the 

multireference-multiconfigurational methods. Chapter III presents our theoretical studies 

of iridium silicide monolayers using DFT. Chapter IV discusses our GVVPT2 studies of 

CaOH and SrOH monomers. The discussion of CaOH will be continued in chapter V where 

we show our GVVPT2 calculations for CaOH dimers. In chapter VI, an extensive 

description of how we incorporated ML to solve the user-oriented active space problem 

within GVVPT2 will be provided. The chapter also presents the ML’s active space 

selection ability in the case of ground state water, triplet ground state methylene, and 

stretched water. The final chapter delivers concluding remarks and future directions. 
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II. METHODS 

 

Time-Independent Schrödinger Equation 

 The main objective of quantum chemistry is to solve the electronic Schrödinger 

equation for molecules and molecular ions.15 The time-independent Schrödinger equation 

can be written in the form of bra-ket notation as: 

 ��|Ψ	 = �|Ψ	 (Eq. II-1) 

where �� is the Hamiltonian operator, operating on the wave function |Ψ	 of the system of 

interest to produce the corresponding energy �. The non-relativistic Hamiltonian operator 

can be written as the sum of the kinetic energy operator, �
 , and potential energy operator, 

�
 : 

 �� = �
 + �
  (Eq. II-2) 

in which 

 �
 = �
� + �
� = − � 12�� ∇��
��

��� − � 12 ∇��
��

���  
 

(Eq. II-3) 

 

and 

 �
 = �
�� + �
�� + �
�� = � � ���� ��
��

�!�
��

��� − � � ��"��
��

���
��

��� + � � 1"�#
��
#!�

��
���  

 

(Eq. II-4) 
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where �
� and �
� are the kinetic energy operator of the nuclei and electrons; �
��, �
��, and 

�
�� are the potential energy operator for the interactions between nuclei-nuclei, electron-

nuclei, and electron-electron, respectively; $� and $� represent the number of nuclei and 

electrons; ∇�� and ∇�� are the Laplacian operators of nucleus % and electron &; �� denotes 

the ratio of the mass of nucleus % to the mass of an electron, �� and �� represent the atomic 

number of nucleus % and nucleus '; and  ��, "��, and "�# designate the distances between 

nucleus % and nucleus ', electron & and nucleus %, and electron & and electron (, 

respectively.157,158 

 To simplify the non-relativistic time-independent Schrödinger equation further, 

Born–Oppenheimer approximation159 is often applied. In this approximation, due to 

significant differences between the masses of the nuclei and the electrons, the fast electrons 

are perceived to be moving in a field of stationary nuclei.157,159 As a result, the terms �
� 

and �
�� can be neglected, and Eq. II-2 becomes:157 

 �� = − � 12 ∇��
��

��� − � � ��"��
��

���
��

��� + � � 1"�#
��
#!�

��
���  

 

(Eq. II-5) 

However, as mentioned in chapter I, the above equation can only be solved exactly for one-

electron models.14 For many-body problems, the term �
�� that represents the electron-

electron interactions turns out to be quite complicated and requires approximations.14,16,17 

 

Hartree–Fock Approximation 

One of the first and simplest approaches which was derived to solve many-body 

electronic problems is the Hartree–Fock (HF) approximation.18–20 The $-electron 
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Hamiltonian operator can be approximated using the form of a single Slater determinant20 

of $ spin-orbitals )�*+�,: 

 Ψ*+�, +�, … , +�, = 1√$! 1)�*+�, )�*+�, ⋯ )�*+�,)�*+�, )�*+�, ⋯ )�*+�,⋮)�*+�, ⋮)�*+�, ⋱⋯ ⋮)�*+�,1  

(Eq. II-6) 

where 
�√�! represents the normalization factor and +� includes space and spin coordinates 

of &th electron.157 Eq. II-6 satisfies the Pauli exclusion principle160 in which the 

indistinguishability of electrons is preserved and the requirement for antisymmetric 

character of the total wave function is met.157 According to the variational principle, the 

ideal set of spin orbitals will give us the lowest possible energy, �5:157,161 

 �5 = 6Ψ57��7Ψ58 (Eq. II-7) 

By considering the &th electron to be moving in an average field made up of the 

remaining electrons, the HF approximation uses the HF potential, 9:;*&,, which represents 

the average field of $ − 1 electrons experienced by the &th electron.157 Thus, the one-

electron Hamiltonian operator is: 

 <=� = − 12 ∇�� − � ��"��
��

��� + 9:;*&, = ℎ*&, + 9:;*&, 
 

(Eq. II-8) 

where the Fock operator, <=�, is an effective one-electron operator, and ℎ*&, includes the 

kinetic energy of one electron & and its potential energy due to the interaction between 

electron & and the nuclei.157 Let’s choose the &th electron to be electron 1 in the set of spin-

orbitals, )�, then we have:157,162 

 <=�)�*+�, = ?�)�*+�, (Eq. II-9) 

or 
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 @ℎ*+�, + 9:;*+�,A)�*+�, = ?�)�*+�, (Eq. II-10) 

The term 9:;*+�, can be expanded in terms of the Coulomb operator, B#*+�,, and the 

exchange operator, C#*+�,. Hence, Eq. II-10 becomes:48,157 

 Dℎ*+�, + � B#*+�,#E� − � C#*+�,#E� F )�*+�, = ?�)�*+�, 
 

(Eq. II-11) 

Based on the types of spin orbitals – restricted or unrestricted, HF method can be 

categorized as either restricted HF (RHF) or unrestricted HF (UHF).157 While UHF 

employs different spatial functions for a spin-up G and a spin-down H, RHF uses the same 

spatial function as shown below:157 

 )�*+, = IJ�  *L,G*M,J� *L,H*M, 
(Eq. II-12) 

where J� represents the spatial function for the spin orbital )�, and L and M indicate the 

space and spin coordinates of the electrons, respectively. Within RHF, the spin functions 

G*M, and H*M, can often be integrated out, and the spatial molecular orbitals (MOs) J� 
written as a linear combination of atomic orbitals (AOs) as follows: 

 J� = � NO�PO
Q

O��  
 

(Eq. II-13) 

in which NO� represents the coefficient for the Rth AO basis function, PO, with S is the total 

number of basis functions in the basis set, the HF equation that appeared in Eq. II-9 turns 

out to be:157,163 

 <=� � NO�PO
Q

O�� *+�, = ?� � NO�PO
Q

O�� *+�, 
 

(Eq. II-14) 

Eq. II-14 usually appears in the compact form of Roothaan-Hall matrix equation:163,164 
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 TU = ?VU    (Eq. II-15) 

where F symbolizes the matrix representation of the Fock operator; C is a square matrix of 

the expansion coefficients, NO�; S denotes the overlap matrix between the basis functions; 

and ? is the diagonal matrix containing the orbital energies, ?�. 
Because the HF approximation is a mean-field method, the $-electron wave 

function needs to be solved iteratively using a self-consistent field (SCF) method.21,157 This 

means an initial guess of MOs needs to be established in order to calculate the term 9:; 

included in the Fock operator. By solving the Roothaan-Hall matrix equation, a new set of 

MOs can be obtained. The process needs to be repeated until the new set of MOs is not 

different than the one found in the previous iteration within a certain margin of error, in 

which we say self-consistency has been reached.157 As mentioned in Chapter I, the 

accuracy level of HF method is not sufficient for most practical applications. However, HF 

can provide a decent starting guess for post-HF calculations which are generally much 

more computationally expensive. For the work described in this dissertation, we used RHF 

to generate the starting MOs to help reduce the computational cost for our post-HF 

calculations. 

 

Density Functional Theory 

The story of density functional theory (DFT) began with Thomas-Fermi theory in 

1926.165,166 The theory used electron density of a uniform electron gas to solve the 

Schrödinger equation, but unfortunately, it could not describe characteristics of chemical 

bonds in molecules accurately.49,50,165–167 In 1964, Hohenberg and Kohn41 introduced two 

theorems; theorem I states that the external potential, ��WX*L,, and thus the total energy is 
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a unique functional of the electron density, Y*L,; and theorem II embodies the variational 

principle wherein the lowest total energy can only be obtained with the true electron 

density.48–50,168 Hohenberg–Kohn (HK) theorems led to a method called orbital-free 

DFT.49,169,170 However, this method lacks the ability to calculate electronic energies for 

many electronic problems.49,50 In 1965, Kohn and Sham42 proposed an alternative approach 

to overcome the limitations of the orbital-free DFT.45,48 This approach has turned into the 

most widely-used version of DFT known as Kohn–Sham (KS)-DFT or just DFT as many 

researchers prefer to call it.46,49,50 The DFT method used in our work in this dissertation is 

KS-DFT, which we will also call DFT for short. 

Similar to HF theory, DFT is a mean-field method in which one electron is 

considered to be moving in the average field made up of all other electrons.22 However, 

instead of using electron wave functions, DFT uses electron density, Y*L,.45,48 By using 

KS orbitals, a system of many interacting electrons is converted into a fictitious system of 

non-interacting electrons in a way that the one-electron density, Y*L,, is the same for both 

interacting and non-interacting systems.171 The one-electron density, Y*L,, is given 

by:171,172 

 Y*L, = �7PZ*L,7��
Z��  

 

(Eq. II-16) 

Because the KS orbitals are obtained using a Slater determinant, the fermionic character of 

the wave function is preserved to a greater extent than orbital-free DFT and becomes 

applicable to many chemical systems. The electronic energy of the target system can then 

be described in terms of the non-interacting kinetic energy, �[, of the one-electron KS 

orbitals, PZ*L,; the external energy (or electron-nuclei attraction energy), ��WX@ Y*L,A; the 
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Hartree (or Coulomb) energy, �:@ Y*L,A; and the exchange–correlation (XC) energy, 

�\]@ Y*L,A, as shown below:45,151,156 

 � = �[^ PZ*L,_ + ��WX@ Y*L,A + �:@ Y*L,A + �\]@ Y*L,A (Eq. II-17) 

 To find the electronic energy of the target system, the KS equation:42 

 `− 12 ∇Z� + a[*L,b PZ*L, = ?ZPZ*L, 
(Eq. II-18) 

needs to be solved self-consistently.49 The effective KS potential, a[*L,, is the sum of the 

external potential, a�WX*L,; the Hartree potential, a:*L,; and the XC potential, a\]*L,, as 

follows:42,167,171,172 

 a[*L, = a�WX*L, + a:*L, + a\]*L, (Eq. II-19) 

where: 

 a�WX*L, = − � �c"Zc
�def
c��  

 

(Eq. II-20) 

($Qgh: number of nuclei; �c: the atomic number of nucleus �; "Zc: the distance between 

electron i and nucleus �), and 

 a:*L, = j kLl Y*Ll,|L − Ll| (Eq. II-21) 

and 

 a\]*L, = m�\]@ Y*L,AmY*L,  
(Eq. II-22) 

The SCF routine173 for solving KS equation starts with an initial electron density used to 

calculate the KS potential, which in turn generates a new electron density. The process is 

repeated until there is a negligible difference between the new electron density and the one 

in the previous iteration which means self-consistency has been reached. 
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Although DFT is a mean-field method, it is an exact theory in principle because if 

an exact XC functional was used, an exact electronic energy would be acquired.22,48 

Unfortunately, the exact XC functional is unknown, and therefore, many approximate XC 

functionals have emerged based on experimental data or computationally modelled 

systems.48 These approximate XC functionals are defined based on the exchange-energy 

functional, �\, and the correlation-energy functional, �], in a sum relationship as shown 

below:171 

 �\] = �\ + �]  (Eq. II-23) 

There are three commonly used types of XC functionals: local functionals, 

gradient-corrected functionals, and hybrid functionals.48 Local functionals such as the local 

density approximation (LDA) and local spin density approximation (LSDA) are XC 

functionals of only electron density, Y.50,171 Within LDA, the correlation part, �], is 

calculated based on Vosko–Wilk–Nusair (VWN) parametrization,174 and the exchange 

part, �\, can be expressed as:171 

 �\no� = − 34 r3st�/v j@Y*L,Aw/vkL 
(Eq. II-24) 

 

For LSDA, �] can be computed based on either VWN5,174,175 Perdew–Zunger 1981 

(PZ81),176 or Perdew–Wang 1992 (PW92)177 parametrizations; and �\ is calculated using 

both spin G and H and the uniform (or homogeneous) electron gas (UEG) exchange-energy 

density per unit volume, xW,yz{|:46 

 �\n[o� = � j xW,yz{|kL},~
y = − 32 r 34st�/v � j Yyw/vkL},~

y  
 

(Eq. II-25) 
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The XC functionals implemented in LDA and LSDA were derived from UEG, so they are 

not accurate enough for molecular systems which involve inhomogeneous electron density 

distributions.46,171 

 Gradient-corrected functionals like generalized gradient approximation (GGA) are 

derived with inclusion of the density gradient, ∇Y, to overcome the UEG limitations of 

LDA and LSDA.46,50 The exchange functional, �\, for GGA often appears in the general 

form given below: 

 �\||� = � j xW,yz{|�W,y||�kL},~
y  

 

(Eq. II-26) 

where �W,y||� is the inhomogeneity correction factor (ICF).46 The ICF takes on different 

forms in different exchange functionals.46 Becke 1988 (B88),178 Perdew–Wang 1991 

(PW91),179 and Perdew–Burke–Ernzerhof (PBE)180 are among the most well-known GGA 

exchange functionals.  The mainstream GGA correlation functionals include Perdew 1986 

(P86),181 Lee–Yang–Parr (LYP),182 PW91,179 and PBE.180 Meta-GGA functionals are 

another type of gradient-corrected functionals, but they improve upon GGA by using 

second derivatives of the electron density, such as the kinetic energy density, �,46,50 or 

Laplacian. 

 Hybrid functionals are XC functionals which mix in the HF exchange (or exact 

exchange) component, �\:;.50 For example, the most popular global hybrid GGA density 

functional B3LYP (B88 + three parameters183 + LYP) can be described as follows:  

 �\]�vn�� = �\]no� + ��*�\:; − �\no�, + ��Δ�\���
+ �v*�]n�� − �]����no�, 

 

(Eq. II-27) 
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in which �� = 0.20, �� = 0.72, and �v = 0.81 represent the mixing ratio.50 The global hybrid 

density functionals are often used for calculations of molecular properties because the 

descriptions of bond interactions and kinetics are improved significantly by the HF 

exchange part.46 In order to compare the accuracy level of hybrid functionals with the local 

and gradient-corrected functionals, one could look at Perdew’s metaphorical Jacob’s 

Ladder184 illustrated in Figure II-1 in which the accuracy increases as we go up the ladder. 

 

 

Figure II-1. Perdew’s metaphorical Jacob’s Ladder of XC functionals. (Image taken from 
Ref.184) 

 

A significant number of density functionals (up to 200 functionals in 2017)46 has 

been derived to calculate the XC effects in DFT. Due to a great balance between level of 

accuracy and computational cost, DFT has become the dominant method for studying 

ground-state molecules and solids.46,49,50 That is the reason why we employed DFT in our 

theoretical studies of iridium silicide monolayers which will be discussed further in chapter 
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III. However, instead of using coordinate-space representations as described above, we 

used momentum-space functions called plane waves in our calculations. Plane wave DFT 

is more suited for studies of solid states because solids often have repeated arrangements 

of atoms, molecules, or ions, and plane waves can describe the periodicity of crystal lattices 

through periodic boundary conditions185 and Bloch's theorem.186 Periodic boundary 

conditions help simulate a large lattice by using a periodic lattice of identical unit cells.185 

The unit cells, after being translated through lattice vectors: � = S��� + S��� + Sv�v (S�, 

S�, and Sv are integers, and ��, ��, and �v are primitive translation vectors of the crystal 

lattice), fill the lattice space without any gaps or overlapping.187 As seen in Figure II-2, the 

basis contains two different ions (2(b)) and each basis occupies one lattice point in 2(a) to 

make up the crystal structure in 2(c). 
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Figure II-2. The crystal structure (c) is form by the basis (b) occupying each lattice point 
of the space lattice (a). (Image taken from Ref.187) 

 

The lattice described above exists in real space and is called direct lattice. By 

applying Fourier transform, the direct lattice is transformed into a reciprocal lattice which 

exists in reciprocal space or momentum space.187 The form of a reciprocal lattice vector is: 

 � = ���� + ���� + �v�v (Eq. II-28) 

where ��, ��, and �v are integers, and ��, ��, and �v are primitive translation vectors of 

the reciprocal lattice which are defined as below: 

(a) Space lattice 

(b) Basis, containing two different ions 

(c) Crystal structure 
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 �� = 2s �� × �v�� ∙ *�� × �v, (Eq. II-29) 

 �� = 2s �v × ���� ∙ *�� × �v, (Eq. II-30) 

 �v = 2s �� × ���� ∙ *�� × �v, (Eq. II-31) 

and the choice of ��, ��, and �v needs to satisfy the orthogonality condition: 

 �� ∙ �# = 2sm�# (Eq. II-32) 

in which m�# = 1 if & = ( and m�# = 0 if & ≠ (.187 Since the lattice is periodic, the plane 

wave, x��∙L, will have the periodicity of the lattice:187 

 x��∙*L��, = x��∙L (Eq. II-33) 

 Based on Bloch's theorem,186 the solutions to the Schrödinger equation in a periodic 

potential have the form of a plane wave, x��∙L, transformed by the periodic function of the 

lattice, �Q,�*L,:  

 JQ,�*L, = x��∙L�Q,�*L, (Eq. II-34) 

where 

 �Q,�*L + �, = �Q,�*L, (Eq. II-35) 

and JQ,�*L, is the wave function with S being the band index and k is the Bloch vector or 

momentum vector. Due to the periodicity of the lattice, we have: 

 JQ,�*L + �, = x��∙�JQ,�*L, (Eq. II-36) 

The plane wave expansion of KS states is given by: 

 JQ,�*L, = 1√Ω � ��Q�� x�*���,∙L 
(Eq. II-37) 
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where 
�√� is the normalization constant and ��Q� represents the expansion coefficients. The 

electron density, Y*L,, is also expanded using the plane waves: 

 Y*L, = � Y�� x��∙L (Eq. II-38) 

In practice, the size of plane wave basis sets is limited by the kinetic energy cutoff, ������� : 
 12 |� + �|� < �������  (Eq. II-39) 

For most chemical systems, there are two distinguishable regions in a valance 

wavefunction: atomic core region and interstitial region (see Figure II-3).188 Since the core 

region often exhibits strong oscillations, large plane wave basis sets are needed to describe 

this region accurately.188,189 The use of pseudopotentials190–198 replaces the Pauli repulsion 

effects between the core electrons and the nucleus with an effective potential, and therefore, 

reduces the number of basis functions required.189 However, the characteristics of wave 

functions and charge densities near the nucleus are not included in the pseudopotentials.189 

On the other hand, augmented plane wave (APW) method199–201 uses atom-like partial 

waves to describe the atomic core region and envelop functions to describe the interstitial 

or bonding region. The projector augmented wave (PAW) method189,202–205 is a 

generalization of the APW method and is combined with the pseudopotential approach. 
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Figure II-3. Illustration of the atomic core and interstitial regions in a valence 
wavefunction. (Image taken from Ref.188) 

 

The PAW method uses a linear transformation � to map the true KS one-particle 

wave functions, |Ψ�	, onto the auxiliary (or pseudo) wave functions, 7Ψ �8:189 

 |Ψ�	 = �7Ψ �8 (Eq. II-40) 

The KS equation is transformed into:189 

 �¡���7Ψ �8 = ?��¡�7Ψ �8 (Eq. II-41) 

Since the transformation � needs to modify the auxiliary wave functions in the atomic core 

region, the transformation can be rewritten as identity plus a sum of local, atom-centered 

contributions, ��:189,202 

 � = 1 + � ���  (Eq. II-42) 

where �� only has effects within some augmentation region Ω� enclosing the atom %. 

Within Ω�, the auxiliary wave functions can be expanded into auxiliary partial waves, 

7ϕ #�8:202 
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 7Ψ ��8 = � �#7ϕ #�8#  (Eq. II-43) 

where �# represents the expansion coefficients. By utilizing the same transformation �, 

 7ϕ#�8 = �7ϕ #�8 (Eq. II-44) 

and we have:202 

 7Ψ��8 = �7Ψ ��8 = � �#7ϕ#�8#  (Eq. II-45) 

Since the transformation � is linear, the coefficients, �#, must be linear functionals of the 

auxiliary wave functions, 7Ψ ��8, and thus, can be written as:202 

 �# = 6i£#�7Ψ ��8 (Eq. II-46) 

in which 6i£#�7 are projector functions. There is only one projector function for each 

auxiliary partial wave, and within Ω�, 

 �7ϕ #�86i£#�7# = 1 (Eq. II-47) 

in order to have one-center expansion ∑ 7ϕ #�86i£#�7# Ψ ��8 of an auxiliary wave function to be 

equal to the auxiliary wave function, 7Ψ ��8, itself.202 This also implies the condition 

below:189,202 

 6i£#�7ϕ ¥�8 = m#¥ (Eq. II-48) 

Consequently, by using the linear transformation �: 

 � = 1 + �¦7ϕ#�8 − 7ϕ #�8§6i£#�7#  (Eq. II-49) 

the true KS one-particle wave functions, 7Ψ��8, can be obtained:189,202 
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 7Ψ��8 = 7Ψ ��8 + �¦7ϕ#�8 − 7ϕ #�8§6i£#�7Ψ ��8#  (Eq. II-50) 

For our studies of iridium silicide monolayers which will be described further in 

chapter III, the PAW method was used to simulate interactions between ion cores and 

valence electrons. The plane wave DFT approach was utilized because iridium silicide 

monolayers are solids. Both coordinate-space and plane wave DFT methods are used 

widely in modern computational chemistry. Despite many of DFT’s great advantages, DFT 

often falls short in studying excited states and multiconfigurational electronic structures, 

in general. Considerable research efforts have been dedicated to developing time-

dependent DFT (TD-DFT)206–209 and its extensions with the hope of eliminating the 

shortcomings of DFT. Many successful studies have been reported, but much improvement 

is still needed.48,210–213 

 

Second-Order Møller–Plesset Perturbation Theory 

Møller–Plesset perturbation theory (MPPT)28 is one of the post-HF methods, and 

was originally derived by Møller and Plesset in 1934. By adding in electron correlation 

effects through the implementation of Rayleigh–Schrödinger perturbation theory 

(RSPT),15,214 MPPT greatly improves the HF results for situations in which it is valid. The 

time-independent Hamiltonian, ��, within RSPT can be written as the sum of the reference 

Hamiltonian, ��5, and the perturbation term, ¨©
 : 

 �� = ��5 + ¨©
  (Eq. II-51) 
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in which ¨ is a real parameter between 0 and 1, signifying the strength of the 

perturbation.215 The case of ¨ = 0 results in the zeroth-order of MPPT or the unperturbed 

problem where:216 

 �� = ��5 = � <=��
��� = �@ℎ*&, + 9:;*&,A�

���  
 

(Eq. II-52) 

with $ being the total number of electrons. Since ��5 can be defined as the sum of Fock 

operators, <=�, as described above, the corresponding zeroth-order energy, �ª*5, (the number 

in the parenthesis indicates the order of MPPT), can be calculated by solving the eigenvalue 

problem:157,216 

 ��5 «Ψª*5,¬ = �ª*5, «Ψª*5,¬ (Eq. II-53) 

where 

 �ª*5, = � ?�
�

���  
(Eq. II-54) 

with ?� being the orbital energy of the &th electron. For the case of ̈ ≠ 0 which means there 

is a perturbation, the perturbed wave function and the perturbed energy of the target system 

can be expanded using a Taylor series shown in Eq. II-55 and Eq. II-56, respectively:157 

 |Ψª	 = «Ψª*5,¬ + ¨«Ψª*�,¬ + ¨�«Ψª*�,¬ + ⋯ (Eq. II-55) 

 �ª = �ª*5, + ¨�ª*�, + ¨��ª*�, + ⋯ (Eq. II-56) 

Let’s set ¨ = 1 to demonstrate the case of full-strength perturbation. The first-order 

correction to the system energy can be computed using the perturbation operator, ©
 :216 

 �ª*�, = ­Ψª*5,«©
«Ψª*5,¬ (Eq. II-57) 

in which 
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 ©
 = �� − ��5 = � 1"�#
�

�®# − � 9:;*&,�
���  

 

(Eq. II-58) 

The next step is best expressed in terms of square-bracket notations for the one- and two-

electron integrals over spin orbitals. But first, it is important to understand the differences 

between round brackets, angle brackets, and square brackets. The round brackets are used 

for the one- and two-electron integrals over spatial orbitals as shown below:157 

• One-electron integral: 

 *&|ℎ|(, = j kL�J�∗*L�,ℎ*L�,J#*L�, 
(Eq. II-59) 

• Two-electron integral: 

 *&(|°±, = j kL� j kL�J�∗*L�,J#*L�, 1"�� J�∗ *L�,J¥*L�, 
(Eq. II-60) 

While the angle brackets are used in the physicists’ notation, the square brackets are 

employed in the chemists’ notation for the one- and two-electron integrals over spin 

orbitals. The physicists’ notation for the two-electron integral over spin orbitals, )�, )#, )�, 

and )¥, is:157 

 ²&(|°±	 = j k+� j k+�)�∗*+�,)#∗*+�, 1"�� )�*+�,)¥*+�, 
(Eq. II-61) 

On the other hand, the chemists’ notation for the two-electron integral over spin orbitals, 

)�, )#, )�, and )¥, is:157 

 @&(|°±A = j k+� j k+�)�∗*+�,)#*+�, 1"�� )�∗*+�,)¥*+�, 
(Eq. II-62)  

However, the expressions for the one-electron integral over spin orbitals in both the 

physicists’ and chemists’ notations are the same:157 
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 ²&|ℎ|(	 = @&|ℎ|(A = j k+�)�∗*+�,ℎ*L�,)#*+�, 
(Eq. II-63) 

From here on out, the chemists’ notation will be used to express the one- and two-electron 

integrals over spin orbitals. The results of evaluating matrix elements using Slater-Condon 

rules can be expressed in terms of square-bracket notations for the two-electron integral 

over spin orbitals, )�, )#, )�, and )¥:157 

 ­Ψª*5,« � 1"�#
�

�®# «Ψª*5,¬ = 12 �*@&&|((A − @&(|(&A,�#  
 

(Eq. II-64) 

and 

 ­Ψª*5,« � 9:;*&,�
��� «Ψª*5,¬ = �*@&&|((A − @&(|(&A,�#  

 

(Eq. II-65) 

Then the first-order correction term, �ª*�,, can be simplified as: 

 �ª*�, = − 12 �*@&&|((A − @&(|(&A,�#  
(Eq. II-66) 

The system energy provided by the first-order Møller–Plesset perturbation theory (MP1) 

turns out to be the same as the HF energy:216 

 �ªc�� = �ª*5, + �ª*�, = ­Ψª*5,«��5«Ψª*5,¬ + ­Ψª*5,«©
«Ψª*5,¬ 
= ­Ψª*5,«��5 + ©
«Ψª*5,¬ 

= ­Ψª*5,«��«Ψª*5,¬ = �5:;  

 

 

 

(Eq. II-67) 

Second-order Møller–Plesset perturbation theory (MP2)216–218 is actually the one to 

provide the first meaningful correction to the HF energy: 

 �ªc�� = �ª*5, + �ª*�, + �ª*�, = �5:; + �ª*�, (Eq. II-68) 

The second-order correction to the system energy can be determined by:157 
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 �ª*�, = � «­Ψª*5,«©
«ΨQ*5,¬«�
�ª*5, − �Q*5,Q!ª  

 

(Eq. II-69) 

in which �Q*5, is the eigenvalue corresponding to the eigenfunction «ΨQ*5,¬. The wave 

function «ΨQ*5,¬ represents the excited state with respect to the HF reference state. Due to 

the Brillouin theorem wherein the single excitation determinant, |Ψ�³	, does not have a 

direct interaction with the HF ground-state electron configuration, we have:50,157,216 

 ­Ψ5*5,«©
«Ψ�³¬ = 0 (Eq. II-70) 

As a result, only double excitation determinants, 7Ψ�#³´8, contribute to the system energy 

via:157 

 ­Ψ5*5,« � 1"�#
�

�®# 7Ψ�#³´8 = 12 *@&�|(µA − @&µ|(�A, 
 

(Eq. II-71) 

and 

 ­Ψ5*5,« � 9:;*&,�
��� 7Ψ�#³´8 = @&�|(µA − @&µ|(�A  

(Eq. II-72) 

along with 

 ��57Ψ�#³´8 = ¶�5*5, − ¦?� + ?# − ?³ − ?´§· 7Ψ�#³´8 (Eq. II-73) 

Hence, the second-order correction term, �5*�,, with respect to the HF ground-state wave 

function, Ψ5*5,, can be written as:157,216 

 �5*�, = 14 � � |@&�|(µA − @&µ|(�A|�?� + ?# − ?³ − ?´³®´�®#  
 

(Eq. II-74) 
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Similar to HF, MP2 has restricted and unrestricted versions. For the work described 

in this dissertation, we used restricted MP2 (RMP2) where the spin-up and spin-down 

electrons share the same spatial function. Although RMP2 does not characterize electron 

correlations well enough for our desired accuracy, especially static electron correlations, it 

was used to generate starting guesses of MOs, via diagonalizations of approximate one-

particle density matrices,219 for the next level of calculations utilizing the 

multiconfigurational self-consistent field (MCSCF) method which will be discussed in the 

next section. 

 

Multiconfigurational Self-Consistent Field 

 In practice, chemical systems which have quasi-degenerate ground states with low-

lying excited states are often of interest, e.g., in many molecules that contain one or more 

metal atoms. Besides that, many research studies are centered around the formation and 

dissociation pathways of these types of systems. Due to the inability to describe correlation 

effects accurately, RHF and RMP2 are not sufficient for such investigations. As discussed 

earlier, DFT is also not a good fit for studying excited states and multiconfigurational 

systems in general. Parenthetically, we note that although time-dependent DFT is often 

useful for describing excited states that are related to nondegenerate ground states by one-

electron excitations, it is not useful for general excited states or for multiconfigurational 

ground states. Thus, we need a method that can describe electronic states that even 

qualitatively have multiple electron configurations. Multiconfigurational self-consistent 

field (MCSCF)31,37,38 is one of those methods where multiconfigurational characters are 
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captured in the form of multiple Slater determinants (in practice, spin-adapted linear 

combinations of Slater determinants (called configuration state functions (CSFs)) are used. 

 The MCSCF wave function, |Ψc][];	, can be written as a linear combination of 

CSFs:37,157 

 |Ψc][];	 = � �¸|Ψ¸	¸  (Eq. II-75) 

in which �¸ represents the configuration mixing coefficient corresponding to the ¹th CSF, 

|Ψ¸	. The CSFs are defined in terms of fixed linear combinations of Slater determinants 

which are themselves anti-symmetrized linear combinations of MOs, J�:37 

 Ψ¸ = % º» J��⊂¸ ½ 
 

(Eq. II-76) 

where J� can be written as a linear combination of AOs as shown in Eq. II-13. The MCSCF 

energy is obtained by employing the variational principle in which  
6Ψc][];7��7Ψc][];8 is minimized.157 Given a set of robust computational routines or 

programs, the most challenging task when applying the MCSCF method lies in the 

selection of active spaces (or model spaces).150 An active space is often spanned by 

multiple electron configurations which allow excitations from specific high-occupancy 

orbitals to certain low-occupancy orbitals.50 The selection of an active space has to be 

carried out manually by deciding how many active electrons and active orbitals are needed 

to make up a meaningful active space.150 

 The most two popular variants of the MCSCF methods are the complete active 

space self-consistent field (CASSCF)220 and the restricted active space self-consistent field 

(RASSCF).221 In CASSCF, all possible excited CSFs generated from the valence electrons 

of the target system are included in the complete active space (CAS).50 Within this 
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approach, the orbitals are divided into three subspaces as shown in Figure II-4: (a) inactive 

space, where all the orbitals are doubly occupied, (b) active space, where a full 

configuration interaction (CI),24–27 with all possible CSFs being considered (the occupancy 

is between 0 and 2), and (c) virtual space, where the orbitals are unoccupied.222 The 

CASSCF method brings two major advantages to the field of computational electronic 

structure theory. The first one resides in its ability to capture the multireference and 

multiconfigurational natures of many chemical systems within its complete active 

space.50,150 The second advantage exists in its decent descriptions of static electron 

correlations which are missing in the RHF and RMP2 methods.50,150 These two advantages 

have made the CASSCF method an excellent starting point when studying complex 

systems such as transition metals223–225 and biomolecules.226,227  

 

 

Figure II-4. Three subspaces of a CASSCF ansatz (the arrow represents electron excitations 
for generating a full CI within the active space). (Image taken from Ref.222) 
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 With that being said, the CASSCF approach cannot be applied to many chemical 

systems because the more complex the target system becomes, the higher the number of 

MOs needed in the active space, resulting in the exponential scaling of the required number 

of CSFs within the CASSCF ansatz.50,228 In order to reduce the number of CSFs, a RASSCF 

is often used. Similar to CASSCF, a RASSCF ansatz has three subspaces: inactive, active, 

and virtual space. However, the active space in the RASSCF approach is divided further 

into three restricted active space (RAS) parts as shown in Figure II-5: (i) RAS1, where only 

a limited number of holes is allowed, (ii) RAS2, just like the active space in the CASSCF 

ansatz, and (iii) RAS3, where only a limited number of electrons is allowed.221 
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Figure II-5. Schematic representation of a RASSCF ansatz (the arrows represent electron 
excitations within the active space). 

 

 For our studies described in this dissertation, we used either CAS or the 

macroconfiguration approach.134 The macroconfiguration approach, which was developed 

in our group, is a systematic way of generating incomplete model spaces that retain certain 

permutational symmetries. A RASSCF can be viewed as a special case of the 

macroconfiguration approach. In this approach, active orbitals are partitioned into subsets 

RAS1 

RAS3 

RAS2 

Inactive space 

Virtual space 

Active space 



37 
 

(called groups for historical reasons) and active electrons are distributed among these 

groups:134 

 ¾*¿,: ÁÂ�QÃÂ�QÄ … ÂÅQÆÇ (Eq. II-77) 

where ¾*¿, symbolizes a macroconfiguration with ¿ being a vector that specifies the 

distribution of active electrons over subsets of orbitals, Â�, Â�, … , ÂÅ representing the active 

orbital groups, and S�, S�, … , SÅ denoting the active electrons assigned to each group. The 

numbers of active electrons in the orbital groups must obey two conditions:134 

(i) 0 ≤ S� ≤ 2É�           *& ∈ @1, �A, (Eq. II-78) 

(ii) S� +  S� + ⋯ + SÅ = ¿ (Eq. II-79) 

in which S� represents the number of active electrons in the active orbital group, Â�, and 

É� denotes the number of active orbitals in Â�. So, unlike RASSCF, the macroconfiguration 

approach does not constrain the number of active electrons in any groups of active orbitals 

or the number of active orbitals in each group which gives the user more flexibility in 

choosing the active space of the system of interest. However, the use of 

macroconfigurations does not eliminate the limitations of the MCSCF method. The biggest 

problem still lies in the procedure of choosing a proper active space for the target system. 

Too small of an active space can lead to inaccurate results because the chemical properties 

of the system may not be described appropriately. Too big of an active space can result in 

prohibitively high computational cost. Therefore, the selection of a proper active space is 

not an easy task. It requires expert knowledge and years of experience. Another limitation 

within the MCSCF method is that it only accounts for static electron correlations but still 

misses most dynamic correlation effects. In fact, one of the subtler difficulties of using 

MCSCF is that the amount of dynamic correlation (i.e., relative to RHF) that is included 
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can be a function of nuclear geometry. That is the reason why we applied the GVVPT2 

method to add in the dynamic electron correlations, to a consistent and high level, which 

will be discussed more in the next section. Nonetheless, the MCSCF method with the 

macroconfigurations gave us improved MOs compared to the ones obtained from our 

RMP2 calculations. These improved MOs significantly improve the accuracy of the 

GVVPT2 calculations. 

 

Second-Order Generalized van Vleck Perturbation Theory 

 Second-order generalized van Vleck perturbation theory (GVVPT2)36,130–134 is a 

subspace-specific approach of the multireference perturbation theory (MRPT) method.229 

By adding dynamical correlation effects into a starting MCSCF system, GVVPT2 provides 

a balanced description of dynamical and non-dynamical (or static) electron correlations.133 

GVVPT2 follows the “perturb-then-diagonalize” scheme, in which perturbative 

corrections are added to the active space term of the unperturbed Hamiltonian to construct 

an effective Hamiltonian matrix, which is then diagonalized to obtain the energies of 

electrons.132,133 

 In the GVVPT2 method, a configuration space, Ë, is spanned by a set of target wave 

functions, |Ì�	: 
 |Ì�	 = 7Ψ�, Ψ�, … , Ψ�Í8 (Eq. II-80) 

where Ψ�, Ψ�, … , Ψ�Í are the target wave functions, and $� represents the number of low-

lying electronic states of the system of interest.133 There are two subspaces within Ë: (i) 

model space, Ëc (dimension of Ëc is greater than $�), and (ii) external space, ËÎ, being 

connected with Ëc through electron excitations.133 An MCSCF space can also be used as 
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a spanning basis for the model space, Ëc, of which a subset of reference functions, 

ÏΦ�Ñ����Í , are of interest.132,133 Consequently, the model space, Ëc, can be further divided 

into two subspaces: (i) primary subspace, Ë�, and (ii) secondary subspace, Ë[, being the 

orthogonal complement to Ë�, so we have:133 

 Ëc = Ë�⨁Ë[ (Eq. II-81) 

The set of reference functions, |Ó�	, can be mapped onto the set of target wave 

functions, |Ì�	, by using the unitary wavelike operator, Ω:133,230 

 |Ì�	 = x\|Ó�	 (Eq. II-82) 

where: 

 Ω = x\             *Ô¡ = −Ô, (Eq. II-83) 

and Ô represents an anti-Hermitian operator and describes the primary-external (Õ-Ö) 

rotations. By using the projection operators: 

 Õ = |Ó�	²Ó�| (Eq. II-84) 

 × = |Ó[	²Ó[| (Eq. II-85) 

 Ö = 7ÓÎ86ÓÎ7 (Eq. II-86) 

on Ë�, Ë[, and ËÎ, respectively, and considering the Õ − Ö interactions to first-order in the 

target system’s wave function, the block structure of the Hamiltonian matrix in the Ë�⨁ËÎ 

space can be used to express the unperturbed Hamiltonian, �5, as:231 

 �5 = Õ�Õ + Ö�Ö (Eq. II-87) 

and the off-diagonal block, ©, to be a perturbation, determined by: 

 © = Õ�Ö + Ö�Õ (Eq. II-88) 

we arrive at the expressions for the second-order perturbatively corrected Hamiltonian 

matrices:133 
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 Ø���ÙÙ = Ø�� + 12 ¦Ø�ÎÚÎ� + ÚÎ�¡ ØÎ�§ 
(Eq. II-89) 

 Ø[��ÙÙ = Ø�[�ÙÙ = Ø[ÎÚÎ� (Eq. II-90) 

 Ø[[�ÙÙ = Ø[[ (Eq. II-91) 

The Õ-Ö rotation parameters included in the anti-Hermitian matrix, ÚÎ�, satisfy the system 

of linear equations:133 

 ¦ØÎÎ − �5�§ÚÎ� = −ØÎ� (Eq. II-92) 

with Õ ∈ @1, $�A and Ï�5� = ²Φ�|�|Φ�	Ñ����Í  being the energies of the reference states (i.e., 

MCSCF energies within Ëc). The diagonalization scheme of the GVVPT2 method is 

demonstrated in Figure II-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

Ø���ÙÙ Ø�[�ÙÙ 

ØcÎ Ø[��ÙÙ Ø[[�ÙÙ 

ØÎc 
ØÎÎ 

 

 

Figure II-6. Schematic representation of the subspaces labelled with their corresponding 
Hamiltonian matrices within a GVVPT2 ansatz. 

(The Û���ÙÙ, Û[��ÙÙ, Û�[�ÙÙ, and Û[[�ÙÙ make up the effective Hamiltonian matrix, Ûcc�ÙÙ, in the model space, and the blue diagonal line signifies that only the 
diagonal elements of the Hamiltonian matrix, ÛÎÎ, in the external space are 
kept (Õ: primary subspace, ×: secondary subspace, �: model space, Ö: 
external space)). 

 

Since the subspaces can act as a buffer (in the energy spectrum) between the 

unperturbed MCSCF states and the external CSFs, the existence of intruder states is greatly 

diminished and can be eliminated entirely by judicious choice of nonlinear responses (see 

original articles for further detail).36,132,133 Other advantages of GVVPT2 include 

continuous, differentiable ground and excited potential energy surfaces, ability to adapt 

spins, and no restrictions on the active space structure.36,133 Above these, the most 

important advantage of GVVPT2 is the implementation of macroconfigurations.134 This 

allows the use of incomplete active spaces, resulting in higher computational efficiency, 

especially for the evaluation of dynamic electron correlations.133 GVVPT2 can be applied 
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for large systems which have up to 20 active orbitals and 1000 external orbitals.36 In this 

dissertation, we used the GVVPT2 method which was implemented in our in-house 

software package named UNDMOL36 to carry out the calculations on CaOH and SrOH 

monomers along with CaOH dimers. Details about these computational studies will be 

provided in chapter IV and V. Even though GVVPT2 has many great advantages 

mentioned above, it still suffers from the tedious and error-prone protocol of active space 

selection, just like in the case of the MCSCF method. Without in-depth knowledge, the 

user could arrive at many improper choices for the active space, resulting in inaccurate 

results or extremely high computational cost. This problem can be overcome with machine 

learning which will be described in the last section of this chapter. 

 

The Spin-Free Exact Two-Component Method 

Up till now, we have discussed only the nonrelativistic side of the Born-

Oppenheimer approximation to the time-independent Schrödinger equation because 

relativistic effects are normally not dominant in the usual observables, such as positions, 

momenta, energies, and so on of molecules comprised entirely of lighter elements.232 

However, in the case of heavier elements (e.g., transition metals), relativistic effects could 

play an important role in the manifestations of certain observables such as spectroscopic 

and magnetic properties.232 For our theoretical studies of SrOH described in this 

dissertation, the relativistic effects of strontium were considered. We used the spin-free 

exact two-component (sf-X2C) approach233–242 within the GVVPT2 method to include 

scalar relativistic effects. 

The sf-X2C Hamiltonian can be written in second quantization as follows: 
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 � = �^Ü�,ÝÙ\�] _ZÞ�Z��ÞZÞ + 12 � *i"|ßà,�Z��Þ��Ý�áZÞáÝ  
(Eq. II-93) 

in which the first term denotes the one-electron spin-free (sf) part of the exact two-

component (X2C) Hamiltonian with Ü�,ÝÙ\�]  being the sf-X2C Hamiltonian for positive 

energy states, and the second term is responsible for the two-electron Coulomb 

interactions.234 In order to define Ü�,ÝÙ\�] , we must first define the modified Dirac 

Hamiltonian, Üo, which is the sum of the sf part, ÜÝÙo , and spin-dependent (sd) part, ÜÝâo , 

as shown below:239 

 Üo = ÜÝÙo + ÜÝâo = ãä åå G�4 æÝÙ − åç + ã0 00 G�4 æÝâç 
 

(Eq. II-94) 

where ä is the matrix of the external nuclear attraction potential operator, �
 = − èáé (�: 

charge of nucleus, "é: distance between electron and nucleus), å is the matrix of the kinetic 

energy operator, �
 = ZéÄ�  (ié: momentum), G is the fine-structure constant, and æ is the 

matrix of the ê�  operator coupling momenta and the Pauli spinors, 

(with Dirac identity being applied). The sf part, ê�ÝÙ, of ê�  describes the scalar relativistic 

effects, and the sd part, ê�Ýâ, represents the spin-orbit coupling effects.239 The modified 

Dirac Hamiltonian, Üo, satisfies the one-electron Dirac equation:239 

 ÜoU = ëUì (Eq. II-96) 

where U is the matrix of the Dirac bispinor, spanned by the large (A) and small (B) 

component coefficient matrices: 

ê� = *íé ⋅ ié,�
*íé ⋅ ié, = ié ⋅ �
ié + &íé ⋅ ¦ié�
 × ié§ = ê�ÝÙ + ê�Ýâ (Eq. II-95) 
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 U = rïðt 
(Eq. II-97) 

and M is the nonrelativistic metric: 

 ë = ãV 00 G�2 åç 
 

(Eq. II-98) 

in which S represents the overlap matrix in the kinetically balanced basis, Á�OÇ: 

 VOñ = 6�O7�ñ	 (Eq. II-99) 

If the spin-orbit coupling effects are neglected, Üo will only contain ÜÝÙo , so Eq. II-96 will 

simply become:239 

 ÜÝÙo U = ëUì (Eq. II-100) 

In the Schrödinger picture, the sf-X2C Hamiltonian for positive energy states, 

Ü�,ÝÙ\�] , can now be expressed as:234 

 Ü�,ÝÙ\�] U� = VU�ì (Eq. II-101) 

where V represents the nonrelativistic metric. To incorporate the relativistic terms into the 

nonrelativistic Schrödinger equation, the relativistic metric, Vò�, in the Dirac picture needs 

to be ultilized:234 

 Vò� = V + `G�4 b Ú¡åÚ 
(Eq. II-102) 

The sf normalized elimination of small component (NESC) Hamiltonian, ó�,ÝÙ�{[], given 

by:233 

 ó�,ÝÙ�{[] = ä + åÚ + Ú¡å + Ú¡ ôG�4 æÝÙ − åõ Ú 
(Eq. II-103) 

is then introduced, where Ú describes the relation between the small and large component 

coefficient matrices as follows: 
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 Ú = ð�ï��� (Eq. II-104) 

Thus, the expression for the sf NESC Hamiltonian, ó�,ÝÙ�{[], in the Dirac picture turns out to 

be:234 

 ó�,ÝÙ�{[]ï� = Vò�ï�ì (Eq. II-105) 

With the picture-change transformation, R, given by: 

 � = ¦V��Vò�§��� = V��� rV���Vò�V���t��� V�� 
 

(Eq. II-106) 

the sf NESC Hamiltonian, ó�,ÝÙ�{[], in the Dirac picture can be transformed into the sf-X2C 

Hamiltonian for positive energy states, Ü�,ÝÙ\�] , in the Schrödinger picture, by using the 

relation:234 

 Ü�,ÝÙ\�] = ��¡ ó�,ÝÙ�{[]�� (Eq. II-107) 

By implementing NESC within the modified Dirac equation, a single matrix relating the 

small and large component coefficient matrices can be constructed for the whole set of 

positive energy states which is then obtained with just a single diagonalization.233 The 

method has shown to be successful in incorporating the relativistic terms into the 

nonrelativistic Schrödinger equation.233,235,236,240–246 

 

Advances in Active Space Selection using Machine Learning 

 As mentioned in the previous sections, the biggest drawback in which MCSCF, 

GVVPT2, along with other multireference methods all suffer from is the tricky protocol of 

active space selection. The procedure of choosing a proper active space requires 

professional expertise in order to acquire high level of accuracy while retaining 

computational efficiency. As the complexity of the chemical systems of interest increases, 
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the more electrons the systems contain, leading to more possible pathways the user could 

take to arrive at an appropriate active space for each of these systems. Thus, even with 

expert knowledge, it is still time-consuming to go through trials and errors to experiment 

with different active spaces and determine which one is the ideal one. As a result, this has 

hindered the studies of many complex chemical systems. 

 To achieve the ultimate goal of creating a black-box method in the field of active 

space selection for all chemical systems, an automatic process with data-driven technique 

is needed. Machine learning (ML) turns out to be a good fit for this job because ML 

algorithms are data-driven and can possibly operate without human intervention if being 

provided with sufficient training data.150,154 However, the incorporation of ML into 

multireference methods is very new and there is still a lot of work needed to be done to 

reach the ultimate goal. So far, the supervised ML model has been used to predict if an 

active space chosen for a system of interest is good or bad, a routine for which was 

developed by Jeong et al.154 In this routine, data points at specific internuclear distances 

were first extracted from CASSCF/ complete active space second-order perturbation theory 

(CASPT2)33,34 calculations conducted on a training set of diatomic molecules; and then the 

corresponding active spaces to these data points were labelled as either good or bad based 

on the comparison of bond dissociation energies, equilibrium bond lengths, and vibrational 

constants to experimental data.154 By applying the scalable gradient-boosting system called 

XGBoost,247 which is an algorithm used to make a final prediction by combining the 

predictions from previous trees in the decision-tree system, a classification ML model was 

built and trained for active space screening.154 
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Golub et al.,248 on the other hand, used the neural network (NN) approach within 

ML to predict the importance of orbitals. They employed density matrix renormalization 

group (DMRG)249–251 (a variation of the multireference methods) to generate the training 

data for chemical systems of transition metal complexes.248 After training, their NN models 

were able to predict which strongly correlated orbitals were important and needed to be 

included in the active spaces of other systems, which were not parts of the training sets.248 

Although the work of Jeong et al.154 and Golub et al.248 described above have helped reduce 

the number of trials involved in the active space selection procedure for investigating 

certain systems, their protocols have not yet reached the goal of being universal for all 

chemical systems because there are still problems in the transferability between the training 

sets and the systems of interest. This has inspired us to develop a ML routine using 

macroconfigurations within the GVVPT2 method. Since macroconfigurations enable the 

use of incomplete active spaces and have no restrictions on the number of active electrons 

in each active orbital group,133,134 many more complicated systems could be used without 

trading off essential accuracy for low computational cost. A training set with a wider 

variety of size and composition would ensure better transferability from the training data 

to the target systems. For our ML models described in this dissertation, we used 

reinforcement learning approach to solve the user-specified active space problem within 

GVVPT2. The calculations of ground state water, stretched water (i.e., ground state water 

in which the bonds were symmetrically elongated), and triplet ground state methylene have 

validated the active space selection ability of our ML model as well as the high degree of 

transferability that the model offers. Further discussions are provided in chapter VI. 
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III. THEORETICAL STUDIES OF IRIDIUM SILICIDE MONOLAYERS 

USING DENSITY FUNCTIONAL THEORY 

 

Introduction 

Ever increasing markets for smaller, faster, and cheaper electronics have created 

and are expected to continue to foster a constant demand for new materials. The latest 

excitement in the field is over two-dimensional (2D) materials with novel electronic 

structures such as graphene,69,70,73,74 silicene,77–79 and germanene,209–211 which exhibit 

extremely high charge carrier mobility,71,72,82,83 topological Dirac insulator 

characteristics,84–87 and quantum spin and anomalous Hall effects.88–92 Among these 2D 

materials, silicene, a monolayer of silicon atoms arranging in a honeycomb lattice, has a 

special place due to relative ease of incorporating it into existing Si-based 

technologies.75,80,81 Experimentally, silicene has been reported to grow epitaxially on 

various substrates such as Ag(111),79,93–97 Ir(111),98 ZrB2(0001),99 MoS2,100 ZrC(111),101 

and Au(111) surfaces.102 Theoretical calculations on free-standing silicene suggest that this 

2D system is stable with properties similar to graphene. However, in contrast to graphene, 

the interaction between metal atoms and the silicene is quite strong due to highly reactive 

buckled hexagonal structures which drastically modify the electronic properties of 

silicene.103,104 One possible way to preserve novel properties of silicene is to intercalate 

alkali metals between the silicene and the metal surface, which makes it possible to weaken 

the interaction between silicene and the metal surface.103  
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A possible method to enrich properties of silicene is to integrate metals, especially 

transition metals, into the silicene network. Binary monolayers of silicon with different 

transition metals have given rise to a new family of 2D nanomaterials that is known as 

transition metal (TM) silicides. Twenty 3d and 4d TM silicides with a chemical formula of 

TMSi2 (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, 

and Cd) have been investigated by applying first-principles calculations.105 The TM 

silicides have exhibited a variety of magnetic properties, with TiSi2, VSi2, CrSi2, NbSi2, 

and MoSi2 being ferromagnetic, MnSi2 and FeSi2 antiferromagnetic, and the rest possessing 

nonmagnetic properties.105 Other theoretical studies have also showed diverse magnetic 

properties of different TM silicides, indicating promising applications in spintronic and 

magnetic electronic devices.106–113 

This chapter of the dissertation describes our published work in studying iridium 

silicide (Ir-Si) monolayers.114 By using density functional theory (DFT)43,47 calculations, 

we investigated structural, electronic, and mechanical properties of iridium (Ir) silicide 

monolayers. In bulk form, the Ir-silicide/Si interface has the lowest (highest) Schottky 

barrier for holes (electrons), which indicates that the 2D form of the material might be 

expected to exhibit novel properties, including in-plane anisotropy,255,256 ultra-high carrier 

mobility,73 strong-light matter interaction,257 extreme mechanical stability,258 high 

flexibility,259 and so on.  Different plausible structures of Ir-Si monolayers with various 

atomic ratios were first modelled, with their lattice constants varied to explore structure 

relaxations. The cohesive energies were then calculated on the geometry optimized 

structures with the lowest energy equilibrium lattice constant to determine their relative 

stabilities. Subsequently, the computation of phonon dispersions, band structures, density 
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of states, and mechanical analyses were conducted on the stable structures to explore their 

physical and chemical properties.  

 

Computational Methods 

The projector augmented wave (PAW) method189,202–205 was used to simulate 

interactions between ion cores and valence electrons. The exchange-correlation (XC) 

potential was treated using Perdew-Burke-Ernzerhof (PBE) formalism within generalized 

gradient approximation (GGA).180 Because periodic boundary conditions185 were applied, 

a vacuum region of 15 Å was placed along the z-direction to avoid spurious interactions 

between periodic images. Structure relaxation was performed until a force of less than 0.01 

eV/Å on each atom was obtained. The kinetic energy cutoff for plane waves and the total 

energy convergence criteria were set to 500 eV and 10-6 eV, respectively. The spacing of 

k-points in Monkhorst-Pack grids was 0.01 Å��. To confirm the energetic stability of the 

Ir-Si monolayers, we calculated the cohesive energies using the following equation; 

  �h÷ø = �X÷X³¥¦¹"W×&ù§ − ú�X÷X³¥´g¥� *¹", − û�X÷X³¥´g¥� *×&, (Eq. III-1) 

where �X÷X³¥¦¹"W×&ù§, �X÷X³¥´g¥� *¹",, and �X÷X³¥´g¥� *×&, are the total energies of the IrxSiy 

monolayer, of the bulk Ir (per atom), and of the bulk Si (per atom), respectively. The 

interatomic force constants and elastic moduli were obtained using density functional 

perturbation theory (DFPT) as implemented in the VASP code.260 Here, the convergence 

criterion of the self-consistent field calculations was set to 10-8 eV, atomic positions and 

lattice constants were optimized until the Hellmann-Feynman forces were less than 

0.00001 eV/Å and the pressure on the supercell was decreased to values less than 1 kbar. 
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Finally, the vibrational frequencies were obtained by using the phonopy code,261 which can 

directly use the force constants obtained by either DFPT or the force constant method. 

 

Results and Discussion 

 Different plausible structures of Ir-silicide monolayers with various Ir:Si ratios and 

lattice types (rectangular, square, and hexagonal) were modeled, including relaxation of 

the structures, to find their optimal values with the lowest equilibrium lattice constants. 

The cohesive energies of these optimized structures were then calculated using Eq. III-1. 

We found that the ground state of all considered structures is spin-unpolarized. Among 

these structures, the Ir2Si4 monolayer (r-IrSi2) with Pmmn space group was identified as 

the lowest energy structure, with a cohesive energy of −0.495 eV (or −0.248 eV per 

formula unit (f.u.)) with respect to bulk Ir and bulk Si (Figure III-1). This can be attributed 

to the strong Si-Si bonding within this structure. A negative cohesive energy means that 

the chemical reaction of 2Ir (bulk) + 4Si (bulk) � Ir2Si4 (monolayer) is exothermic, i.e., 

such reaction is thermodynamically favorable in experiments. The structure also has a 

geometry that is slightly buckled. Therefore, we opine that it should be possible to 

experimentally synthesize the Ir2Si4 monolayer. 
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Figure III-1. The top and side views of rectangular r-IrSi2 monolayer. The optimized lattice 
constants are a = 6.18 Å and b = 2.84 Å. (Image taken from Ref.114) 

 

The optimized lattice constants of the r-IrSi2 monolayer are a = 6.18 Å and b = 2.84 

Å. The thickness of this monolayer (t), calculated using the distance between the topmost 

Si surface atoms, is 2.38 Å. In addition, the calculated Si-Si distance within the dimer and 

the inter-plane (in-plane) Ir-Si bond lengths are 2.30 and 2.53 (2.41) Å, respectively. Such 

a bond length between silicon atoms indicates that there is a single bond between Si atoms 

so that one can qualitatively describe the bonding in terms of Si2 dimers. Since semi-local 

functionals can be expected to overestimate the lattice parameters, we performed test 

calculations to check the effect of varying XC functionals on the structural parameters of 

r-IrSi2. The lattice constants became a = 6.12 Å and b = 2.81 Å when we used the screened 

Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional.262 In addition, the interatomic 

lengths within the Si-Si dimer and in-plane Ir-Si bond length are 2.28 and 2.38 Å, 

respectively, which can be seen to be very close to PBE values. Additionally, we repeated 

a 

b 
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the band structure calculation using the HSE06 hybrid functional, which is expected to be 

more accurate in describing the XC energy of electrons. We found that both the GGA and 

HSE06 functionals lead to similar dispersion curves of bands. Of special note, the metallic 

property is preserved. Thus, we believe that PBE is sufficient to capture the properties of 

Ir-Si monolayers.  

            Figure III-2 shows the electron localization function (ELF), which takes values 

between 0.00 and 1.00. Generally, values of 1.00 and 0.50 denote the fully localized and 

fully delocalized electrons, respectively. The values near 0.00 correspond to very low 

charge densities. Here, the ELF isovalue is set to 0.7. Localization of a charge density 

between Si atoms corroborates the geometrical evidence of strong covalent bonding within 

Si dimers. Note that Si dimers on the same plane also interact with each other. 

 

Figure III-2. The top and side views of the ELF for the r-IrSi2 monolayer. The ELF isovalue 
is set to 0.7. (Image taken from Ref.114) 

          

To further investigate the mechanical stability of the r-IrSi2 monolayer, we 

calculated its elastic constants as well as the direction-dependent Young’s modulus, Y*θ,, 

and Poisson’s ratio, þ*θ,, based on the elastic constants using Eq. III-2 and Eq. III-3: 
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 Y*θ, = C��C�� − C���
C��àw + C���w + *C��C�� − C���

Cww − 2C��,��à� 
(Eq. III-2) 

 þ*θ, = − rC�� + C�� − C��C�� − C���
Cww t ��à� − C��*àw + �w,

C��àw + C���w + *C��C�� − C���
Cww − 2C��,��à�  

 

(Eq. III-3) 

where � = cosθ and à = sinθ. We first calculated the elastic constants and found them to 

be C11 = 246.8 N/m, C22 =148.5 N/m, C12 = 68.9 N/m, and C44 = 53.7 N/m. They satisfy the 

Born criteria: namely C11, C22, C44 > 0, and C��C�� − C��� > 0, which implies that r-IrSi2 

is mechanically stable. In Figure III-3, we show the direction-dependent Y*θ, and þ*θ,. 

The Young’s modulus for the r-IrSi2 monolayer in the x (θ = 0∘) and y (θ = 90∘) directions 

are calculated to be YW*θ = 0∘, = 214.8 N/m and Yù*θ = 90∘, = 129.3 N/m, respectively. 

Since all the Si-Si dimers are aligned parallel in the x direction, Y*θ, and þ*θ, deviate from 

perfect circles and display a mechanical anisotropy of the r-IrSi2 sheet. Along the x-

direction, Ir atoms bind to Si-Si dimers, leading to much stronger interaction as compared 

to the y-direction, thereby giving rise to a large value of Y along the x-direction. Comparing 

these results to those of MoS2 (with C11 = 132.7 N/m, C12 = 33 N/m, Y = 124.5 N/m, and þ 

= 0.25),263 the r-IrSi2 monolayer is stiffer. The corresponding Poisson’s ratios (the ratio 

between the lateral contraction and the longitudinal extension) in the x (θ = 0∘) and y (θ =
90∘) directions are þW *θ = 0∘, = 0.46 and þù*θ = 90∘, = 0.28, respectively.  
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Figure III-3. Direction-dependent (a) Young’s modulus (N/m) and (b) Poisson’s ratio for 
the r-IrSi2 monolayer. (Image taken from Ref.114) 

 

To make a reliable comparison with experimentally measured Young’s modulus 

values of other 2D materials, we recalculated Young’s modulus of r-IrSi2 using Y3D=Y/t. 

With this definition, we are able to compare the stiffness against uniaxial stress of various 

2D and three-dimensional (3D) materials. By using this definition, Young’s modulus 

becomes 902.5 GPa along the x-direction and 543.3 GPa along the y-direction. The 

effective thickness of Ir2Si4 monolayer is likely be larger than 2.38 Å due to the effective 

decay of electron density into vacuum.264 Therefore, we can suggest that our calculated 

values are the upper limits for Young’s modulus.  

With the help of elastic theory, the gravity induced out-of-plane deformation (h) 

can be estimated by using Eq. III-4: 

 ℎË ≈ rY�ËY t�/v
 

(Eq. III-4) 

where � is the gravitational acceleration, ρ = 4.7 ×10-6 kg/m2 is the density of the 2D r-

IrSi2 crystal, and L is the size of the nanosheet. When taking L ≈ 100 µm and Y = 129.3 
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N/m (which is the smallest value of Young’s modulus), we obtain h/L ≈ 3.29×10-4, 

comparable to that of graphene.265 Therefore, it should be expected that the Ir2Si4 nanosheet 

can withstand its own weight and retain a freestanding planar structure.  

Phonon dispersion spectra and phonon density of states (PDOS) were computed for 

the r-IrSi2 monolayer to investigate its dynamical stability. As shown in Figure III-4, all 

vibrational modes are real in the whole Brillouin zone, which indicates dynamical stability 

of this structure. While longitudinal acoustic (LA) and transverse acoustic (TA) modes 

have a linear dispersion for small q values (i.e., in the long wavelength limit), which 

represent in-plane vibrations, the flexural acoustic (ZA) mode shows a quadratic 

relationship, which demonstrates out-of-plane vibrations. The highest frequency optical 

mode approaches 16 THz and corresponds to the Si-Si vibration within Si2 dimers. Due to 

its greater atomic weight, the Ir atom mainly contributes to the vibrational modes below 5 

THz. The two highest optical modes are separated from other optical modes by a phonon 

gap of 5 THz. 
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Figure III-4. Phonon spectra and PDOS of the rectangular r-IrSi2 monolayer. (Image taken 
from Ref.114) 

             

Band structure and density of states (DOS) were also calculated for the r-IrSi2 

monolayer. As can be seen in Figure III-5, there is no band gap in its band structure, 

indicating that the rectangular Ir2Si4 monolayer displays metallic properties. Orbital 

decomposed DOS shows that the bands near the Fermi level are dominated by Ir 5d (red) 

and Si 3p (blue) orbitals. It can also be seen that the majority of the Ir 5d-orbitals 

contributions lie about 1 eV below the Fermi level and are localized within a range of 4 

eV, which indicates a charge transfer from the less electronegative Si atom to more 

electronegative Ir atom. Bader charge analysis266–269 confirmed that Si atoms (Ir) lose 

(gain) electrons. The DOS also indicates apparent hybridization between Ir 5d-orbitals and 

Si-3p orbitals. In addition, we calculated the work function as 4.69 eV, meaning that r-IrSi2 

is a high work-function material.  
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Figure III-5. Band structure and orbital decomposed DOS of the r-IrSi2 monolayer. The 
Fermi level marks the zero energy. (Image taken from Ref.114) 

 

In addition to the lowest energy r-Ir2Si4 structure, numerous other higher energy 

monolayer structures with different unit-cell symmetries were investigated; see Figure III-

6 for the fully optimized structures. Some of candidate structures were based on bulk IrSi2, 

such as structures shown in Figure III-6(b) and 6(e).270 Other silicide monolayer structures 

were based on the most stable structures for Fe-Si (Figure III-6(c) and 6(h)),271 Ti-Si 

(Figure III-6(d) and 6(f)),113 Cu-Si,272 and Ni-Si.273 But, these are energetically less stable 

for Ir-Si than r-Ir2Si4. 
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Figure III-6. The top and side views of several optimized Ir-Si monolayers. Cohesive 

energies (eV) per formula unit are given for each structure. (Image taken from 
Ref.114) 

 
Akin to our predicted ground-state structure, all other candidate structures exhibit 

metallic behavior. In contrast to the planar Cu2Si monolayer, one atom thick planar 

structures are highly unstable.272  If one compares the structures shown in Figure III-6(a) 

with 6(h) and Figure III-6(c) with 6(e), the formation of Si-Si bonds apparently enhances 

the stability of the monolayer structures. Although the Si-Si distances are 2.79 and 4.35 Å 

in Figure III-6(e), they become 3.99 and 2.67 Å in Figure III-6(c). Our ground-state 

structure (r-IrSi2) can be qualitatively described as a combination of two nearly planar 

structures on top of each other that maximize the coordination number of Ir and Si atoms. 

In addition to this structure, we also checked dynamical and mechanical stabilities of the 

structures shown in Figure III-6(a) (h-Ir2Si) and Figure III-6(b) (t-IrSi). The former is 
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energetically more stable than the latter. Calculated lattice constants are 2.81 Å for h-Ir2Si 

and 4.10 Å for t-IrSi; h-Ir2Si consists of trilayer sheets with a hexagonal-like unit cell, 

where the “Si” layer is sandwiched by two “Ir” metal layers with a �vâ point group 

symmetry. The Si-Ir-Si bond angle and Ir-Si bond length are 71° and 2.40 Å, respectively. 

The structure in Figure III-6(h) can be described as a low buckled version of h-Ir2Si, in 

which the bond angle becomes 107°. Due to the hexagonal symmetry of h-Ir2Si, there are 

only two independent elastic constants, namely C11 = 253.0 N/m and C12 = 55.5 N/m. The 

stability of the h-Ir2Si monolayer is also confirmed by the phonon dispersion curves shown 

in Figure III-7(a), where there is no appreciable imaginary phonon mode. The ZA mode is 

slightly negative for small wave numbers (or in long wavelength limit). The extent of the 

region of imaginary frequencies around the �-point depends, to some extent, on 

computational parameters, such as k-mesh, the size of the vacuum region, the energy cut-

off, the size of simulation cell, and so on. Therefore, a categorical analysis of computational 

parameters should be done to be sure that the calculated imaginary frequencies are not 

artifacts of the calculation. If this is not due to computational accuracy limitations, then 

this situation may be interpreted as the instability against long-wavelength transversal 

waves. This instability can be removed in experimental realizations by the formation of the 

defects, including ripples. In addition, by reducing the flake size under which long-

wavelength transversal waves do not occur, it is possible to stabilize the h-Ir2Si monolayer. 

The highest frequency of the h-Ir2Si sheet approached 15.1 THz. Similarly, the mechanical 

and dynamical stabilities of the t-IrSi monolayer, with an isotropic zigzag-shaped buckled 

structure, were confirmed via elastic constants and phonon calculations, see Figure III-

7(b). This structure has a square unit cell where each Ir atom is four-coordinated. The 
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buckling parameter, distance between the topmost Si atoms, is 2.24 Å. The calculated 

elastic constants are C11 = 94.8 N/m, C22 = 69.1 N/m, and C12 = 55.3 N/m. These elastic 

constants are substantially smaller than those of graphene (C11 = 341 N/m) but comparable 

to silicene (C11 = 62 N/m).  

 

 

Figure III-7. Phonon spectra of (a) h-Ir2Si and (b) t-IrSi monolayers. (Image taken from 
Ref.114) 

 

To check the temperature-dependent stability of dynamically stable Ir-Si 

monolayers, we computed thermodynamic properties. The calculated Debye temperatures 

(Θo = ø���� , where Mo is the Debye frequency) are 269, 245, and 297 K for r-IrSi2, t-IrSi, 

and h-Ir2Si, respectively. Here, the Debye temperature is a temperature above which all 

vibrational modes begin to be excited. In addition, using phonon frequencies in the whole 

Brillouin zone, we calculated thermodynamic properties, namely, Helmholtz free energy F 

and entropy S using following formulas:263 
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� = −°��ln� = 12 �ℏM*�þ,

�ñ
+ °�� � ln ô1 − exp `−ℏM*�þ,°�� bõ

�ñ  

 

 

(Eq. III-5) 

 × = −��

�� = 12� �ℏM*�þ, coth`ℏM*�þ,2°�� b
�ñ

− °� � ln ô2 sinh`ℏM*�a,2°�� bõ
�ñ  

 

 

(Eq. III-6) 

 

where T, °�, q, and þ are the temperature, the Boltzmann constant, the wave vector, and 

the band index, respectively. Figure III-8 shows the calculated Helmholtz free energy and 

entropy as functions of temperature. Consistent with the third law of thermodynamics, the 

Helmholtz free energy increases with increasing temperature. � is positive around 0 K. 

However, when we add the calculated cohesive energy, which is negative, � becomes 

negative for r-IrSi2 and t-IrSi, which indicates the stability of these monolayers over the 

considered temperature range. � is still slightly positive for h-Ir2Si, which indicates that 

stability of this monolayer depends on temperature and it can be stabilized above 200 K, 

see Figure III-8(c). Consistent with the calculated �h÷ø values, � is the lowest for the r-

IrSi2 monolayer. At T = 0 K, � only includes the contribution of the zero-point energy (the 

first term in Eq. III-5). Due to the presence of Si-Si dimers, r-IrSi2 has the highest zero-

point energy.      
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Figure III-8. Calculated Helmholtz free energies and entropies for (a) r-IrSi2, (b) t-IrSi, and 
(c) h-Ir2Si monolayers. (Image taken from Ref.114) 
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It is known that Si-based surfaces can be very reactive to O2 and H2O molecules. 

We investigated the interaction of O2 and H2O with the stable Ir-Si monolayers. Since the 

O2 molecule has a triplet ground state, we considered spin-polarization for O2 absorption. 

In addition, the van der Waals interactions were included using the DFT-D3 method (DFT 

with dispersion corrections),61 including Becke-Johnson damping.68 For the sake of 

brevity, we only discussed the r-IrSi2 case. Figure III-9 displays the ground-state adsorption 

structures for both the H2O and O2 molecules. To minimize coupling between molecules 

in the periodic images, the interaction of these molecules with Ir-Si monolayers were 

considered using large supercells. Thus, our results can be interpreted to mimic the effects 

of an isolated molecule. The binding energy, �´, of molecules were calculated using Eq. 

III-7: 

 �´ = ��@monolayer + moleculeA − ��@monolayerA − ��@moleculeA (Eq. III-7) 

Here, the first term is the calculated total energy of the monolayer with an adsorbed 

molecule. The second and third terms are the total energies of the bare monolayer and 

isolated molecule, respectively. A negative value of �´ indicates binding of a molecule to 

the Ir-Si monolayer. We found that O2 exothermically dissociates on the free-standing r-

IrSi2. The dissociated O atoms form strong bonds with Si atoms, which substantially lowers 

the energy of the system; �´ is -3.71 eV/oxygen. However, the interaction of H2O molecule 

with the r-IrSi2 monolayer is mainly van der Waals type, with a binding energy of -0.42 

eV/molecule. In the case of O2 molecule, the dissociated O atoms reside at a position above 

the midpoint of Si-Si dimer bond (i.e., bridge site) with a Si-O bond length of 1.68 Å, 

which is slightly longer than the Si-O bond length in crystalline SiO2 (ranging from 1.55 

to 1.61 Å). The Si-Si bond length in the dimer enlarges from 2.30 to 2.53 Å. H2O 
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molecularly binds to the monolayer via an O-Si bond with a bond length of 2.07 Å. 

Kinetically, the dissociation of O2 molecule occurs without the need to overcome any 

energy barrier, which means that freestanding Ir-Si monolayers are unstable in the presence 

of O2, which is similar to silicene.274  We have similar absorption behavior for O2 and H2O 

molecules on the t-IrSi and h-Ir2Si monolayers. For instance, the dissociated O atoms sit at 

the hollow sites on the h-Ir2Si monolayer. H2O molecule always binds to a surface via the 

O atom of the molecule. 

 

 

Figure III-9. The lowest energy adsorption structure of (a) H2O and (b) O2 on the free-
standing r-IrSi2 monolayer. (Image taken from Ref.114) 
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We identified three different mechanically and dynamically stable Ir-Si 

monolayers. Unlike transition metal dichalcogenides (for example, the 1H and 1T phases 

of MoS2), we do not expect a spontaneous structural transformation from t-IrSi/h-Ir2Si to 

r-IrSi2. This is because all three structures have significantly different crystal structures 

(i.e., different coordination numbers for atoms and different symmetries) and they are well 

separated in configuration space. Therefore, for each stable monolayer, it may be possible 

to find suitable substrates on which to grow them. For instance, the substrate with a 

tetragonal surface symmetry can be used to grow t-IrSi. Similarly, h-Ir2Si can be 

synthesized on the (111) surface of substrates that have an FCC crystal structure. 

Importantly, the cohesive energies of these monolayer structures are approximately 1.3–

1.4 eV/f.u. higher than that of bulk IrSi2. The difference of 1.27 eV/f.u. for silicene shows 

its viability to be synthesized on Ag (111) surfaces,79,93–97 which indicates the fabrication 

of Ir-Si monolayers should be experimentally feasible on suitable substrates.   

 

Conclusions 

In this work, we explored stable Ir-Si monolayers using state-of-the-art first 

principles’ calculations. Among the large number of candidate materials, a new type of 2D 

Ir silicide, namely, r-IrSi2, was identified as the lowest energy structure. It contains Si2 

dimers in which Si atoms have single bonds. We demonstrated that this sheet is not only 

dynamically and mechanically stable, but also exhibits a metallic band structure and has 

anisotropic elasticity. The r-IrSi2 sheet is stiffer along the direction in which the Si2 dimers 

are aligned. In addition to this ground-state structure, we also predicted higher energy 

dynamically stable structures that have hexagonal and square unit cell structures. Due to 
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their quite different structures, once they are synthesized, it may be expected that these 

structures will not transform to each other. We found that Ir-Si monolayers are unstable in 

an oxygen environment, with the barrierless dissociation of the O2 molecule into two O 

atoms. However, we found that the H2O molecule interacts only weakly with Ir-Si 

monolayers. Its binding energy are rather small and have predominantly van der Waals 

character. 



68 
 

 

 

IV. THEORETICAL STUDIES OF CALCIUM MONOHYDROXIDE AND 

STRONTIUM MONOHYDROXIDE MONOMERS USING GVVPT2  

 

Introduction 

Astrophysical environments, such as planetary atmospheres on other planets, 

circumstellar envelopes, protoplanetary disks, and interstellar medium, have gained 

increasing interest in recent years due to the growing number of new molecules being 

discovered in these regions.115,116 So far, more than 200 astrophysical molecules,  

containing different elements with various sizes and charges, have been dectected.116 

However, that number is still insignificant compared to the amount of unidentified spectral 

features in spectroscopic data.116 To interpret these spectra lines, a large amount of 

laboratory work should be done, which is not always feasible due to the difficulty in 

collecting and preserving samples of astrophysical molecules. Even for planets and regions 

that are relatively close to Earth, launching a space probe to collect samples is extremely 

expensive and time-consuming. Many NASA missions have costs in the range of hundreds 

of millions to billions of dollars and often takes years to complete.275 Thus, theoretical 

methods have risen as alternatives for completing molecular line lists, especially for 

complex polyatomic molecules.276 Theoretical studies have continued to play a major role 

in aiding the detection of new astrophysical molecules. And, even in the area of so-called 

laboratory astrophysics, in which terrestrially unstable molecules are synthesized in 
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ultrahigh vacuum and generally very cold environments, theoretical studies often play 

essential roles. 

The case of calcium monohydroxide (CaOH) radical has called for theoretical 

work. Its presence is expected on hot rocky super-Earth exoplanets, but its detection was 

hindered due to a lack of spectral data in the molecular line lists.277,278 CaOH is also the 

suspected source of missing opacity around 18,000 cm�� from the benchmark BT-Settl 

model, which is used to simulate stellar atmospheres of stars, brown dwarfs, and planets. 

129,279–281 The missing opacity was found in a 2013 M-dwarf study.280 There have been 

theoretical studies devoted to completing the spectroscopic data for CaOH to assist with 

future detection of this astrophysical radical.129,281–289  

The missing opacity is not the only motivation for theoretical investigations of 

CaOH. Its potential applications in laser cooling and trapping technologies have provided 

additional motivation why CaOH has been actively studied lately. The complicated 

rotation-vibration-electronic (rovibronic) energy level structure of CaOH fits well in 

systems of laser cooling and trapping.290–293 Not only CaOH, but other alkaline earth metal 

monohydroxides, especially strontium monohydroxide (SrOH), have also attracted much 

attention because of their high Franck-Condon factors and strong photon cycling, which 

are essential elements for designing laser cooling and trapping systems.294–298 SrOH was 

one of the first ultracold polyatomic molecules which were created under direct laser 

cooling.296,299 With laser cooling, full control of quantum states and longer experimental 

times are possible which help provide insights to chemical reactivities, dynamics, and 

reaction pathways of many molecular systems.296,297,300–302 
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As a result, complete and accurate lists of electronic energies across various 

electronic states, especially excited states, for these alkaline earth metal monohydroxides 

could prove useful in aiding the designs of laser cooling and trapping schemes as well as 

astronomical detection of these radicals in the future.281 To this end, we used the second-

order generalized van Vleck perturbation theory (GVVPT2) method36,130–134 to investigate 

the ground state ¦Ô   �Σ�§ of CaOH and SrOH monomers along with the first low-lying 

excited state (%   �Π) of CaOH. In addition, we applied the scalar relativistic effects 

integrated in the spin-free exact two-component (sf-X2C) approach233–239 to study the 

impact of scalar relativity on SrOH. Although the ground state and many low-lying excited 

states of CaOH were previously studied using theoretical methods,129,281–289 our plan is to 

reinvestigate these two states to compare the accuracy level of the GVVPT2 method to the 

other ab initio methods used in those previous studies (i.e., multireference configuration 

interaction (MR-CI),129 multireference double-excitation configuration interaction (MRD–

CI),288 effective valence shell Hamiltonian *��,,289 and spin-restricted coupled cluster with 

single, double, and perturbative triple excitations (RCCSD(T))287) with the intention of 

establishing the accuracy baseline for our studies of SrOH because to the best of our 

knowledge, SrOH have not been intensively studied using theoretical methods. Moreover, 

because of the lower computational scaling of GVVPT2 (i.e., O(n5) vs. e.g., O(n7) for 

RCCSD(T) for computational costs, where n is representative of system size), GVVPT2 

offers advantages for larger studies, such as the CaOH dimerization described in the 

following chapter. The properties of the ground state ¦Ô   �Σ�§ of SrOH were compared to 

the results from RCCSD(T) method297 and experimental data.303 
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Computational Methods 

We used the cc-pVTZ basis set287,304 for calcium (Ca), oxygen (O), and hydrogen 

(H) while the cc-pVTZ-X2C basis set305,306 was utilized for strontium (Sr). The restricted 

Hartree–Fock (RHF) approximation18–20,157 was used for an initial optimization of 

equilibrium geometries of CaOH and SrOH monomers as well as to generate their initial 

molecular orbitals (MOs). Then the restricted second-order Møller–Plesset perturbation 

theory (RMP2) method28,157,216–218 was employed to add some electron correlation and 

obtain approximate natural orbitals. The actual calculations involve geometry optimization 

at the GVVPT2 level, using our in-house program called UNDMOL.36 At each nuclear 

geometry, multiconfigurational self-consistent field (MCSCF)31,37,38 calculations were 

conducted with these active space configurations to further refine the orbitals. When 

geometries were relatively close, the MOs of the previous geometry were used as initial 

guesses for the current geometry. Subsequently, to provide balanced descriptions of 

dynamic and static electron correlations, we applied the GVVPT2 method on the MCSCF 

optimized orbitals. The sf-X2C method was applied at the time of calculating integrals over 

atomic basis functions, and so was included in all calculations for SrOH. To assess the 

effect of relativistic corrections, a series of calculations was run in which the X2C 

corrections were deliberately turned off. 

 

Results and Discussion 

A. Calcium Monohydroxide (CaOH) 

The geometry optimization of CaOH equilibrium structure was obtained using NÝ 

point group symmetry in the GVVPT2 method and the cc-pVTZ basis set. A complete 
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active space (CAS) was used for both the ground state and the first excited state of CaOH. 

The CAS for the ground state ¦Ô   �Σ�§ included 8 orbitals (7–10a’ and 4–7a”) with 11 

electrons. The first excited state (%   �Π) using 10 orbitals in its CAS (7–12a’ and 3–6a”) 

with 13 electrons. 

 

Figure IV-1. Equilibrium structure of CaOH optimized at the GVVPT2/cc-pVTZ level. 

 

The ground state of CaOH was found to be linear (see Figure IV-1), which is 

consistent with the results from the other ab initio methods and experimental data shown 

in Table IV-1. The equilibrium Ca–O bond length (RCa–O) calculated at the GVVPT2 level 

is 2.008 Å, which is slightly longer than the experimental value by approximately 0.033 Å. 

The equilibrium O–H bond length (RO–H) from our GVVPT2 calculations was computed 

to be 0.9336 Å, which is shorter than the experimental value by 0.0200 to 0.0226 Å. The 

results also agree well with the other theoretical studies, which used highly correlated 

methods, shown in Table IV-1. Our GVVPT2 RCa–O is longer than the values from the MR-

CI, ��, and RCCSD(T) method, but shorter than the one from the MRD–CI calculations. 

On the other hand, the GVVPT2 RO–H is shorter than all the results from these theoretical 

studies. 

 

 

O H Ca 

0.9336 Å 
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Table IV-1. Comparison of geometry parameters (Å and degrees) of the ground state of 
CaOH optimized at the GVVPT2/cc-pVTZ level with other ab initio methods 
and with experimental data. 

 RCa–O RO–H ∠(Ca–O–H) 

GVVPT2/cc-pVTZ 2.008 0.9336 180.0 

MR-CI/cc-pV5Z129 1.975 0.952 180.0 

MRD–CI/AO basis set288 2.03 0.953 180 

��/3-21G augmented289 1.938 0.9568 180 

��/6-311G**289 1.989 0.9528 180 

RCCSD(T)/cc-pVQZ287 1.9776 0.9519 180 

RCCSD(T)/cc-pV5Z287 1.9778 0.9520 180 

Experiment307,308 1.9746 – 1.9751 0.9536 – 0.9562 180 
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 The data from Table IV-2 shows that the vertical excitation energy *��, for the first 

low-lying excited state (the 2 �Al of %   �$) of CaOH computed at the GVVPT2/cc-pVTZ 

level agrees very well with the value from the �v%&��%&'%� /6-311G** calculations, only 

varying by 0.001 eV. However, the GVVPT2 �� value is higher than the results from the 

�v%&��%&'%� /3-21G augmented method by 0.027 eV, and higher than the experimental value 

by 0.029 eV, which are still minor differences. The data from the MRD–CI method with 

custom AO basis set appears to be the lowest of all (1.94 eV), compared to the experimental 

value (1.984 eV) and the other ab initio methods (1.986 – 2.013 eV). In general, our 

GVVPT2 �� data for the first CaOH excited state agrees with the results from published 

literature. We are also in the process of studying the second excited state (B   �)�, of CaOH. 

Unfortunately, we have not been able to find an appropriate active space to describe the 

nature of this state. This illustrates the rationale for the motivation for us to build our 

machine learning (ML) algorithm to help us automate the active space selection process. 

Further discussions about our ML protocol are provided in chapter VI of this dissertation. 

 

Table IV-2. Comparison of vertical excitation energies *��, for the first low-lying excited 
state of CaOH calculated at the GVVPT2/cc-pVTZ level with other ab initio 
methods and with experimental data. �� = 0 eV for the ground state. 

 �� (eV) 

GVVPT2/cc-pVTZ 2.013 

MRD–CI/AO basis set288 1.94 

�v%&��%&'%� /3-21G augmented289 1.986 

�v%&��%&'%� /6-311G**289 2.012 

Experiment308 1.984 
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B. Strontium Monohydroxide (SrOH) 

 The geometry optimization of the SrOH ground state ¦Ô   �Σ�§ equilibrium 

structure was obtained with NÝ point group symmetry using the GVVPT2 method. For the 

Sr atom, we utilized the cc-pVTZ-X2C basis set, while the cc-pVTZ basis set was applied 

to the O and H atoms. A complete active space (CAS) was configured in the MCSCF and 

GVVPT2 calculations. The CAS included 9 orbitals (15–21a’ and 6–7a”) with 9 electrons, 

for both the cases of with and without relativistic corrections. 

 

(a) With relativistic corrections 

 

 

(b) Without relativistic corrections 

 

Figure IV-2. Equilibrium structure of SrOH optimized at the GVVPT2/cc-pVTZ level (a) 
with and (b) without relativistic corrections. 

 

The ground state of SrOH without relativistic effects was found to be a slightly bent 

geometry with a bond angle of 178.2° (see Figure IV-2(b)), as opposed to the linear 

geometry found by the RCCSD(T) method and the experiment shown in Table IV-3. The 

Sr O H 

0.9541 Å 
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Sr 
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equilibrium Sr–O bond length (RSr–O) calculated at the GVVPT2 level without relativistic 

corrections is 2.127 Å, which is slightly longer than both the experimental value and the 

RCCSD(T) results by approximately 0.016 Å. The equilibrium O–H bond length (RO–H) 

from our GVVPT2 calculations was computed to be 0.9541 Å, which is also longer than 

the experimental value (by 0.0321 Å) and the RCCSD(T) results (by 0.0316 Å). 

 

Table IV-3. Comparison of geometry parameters (Å and degrees) of the ground state of 
SrOH optimized at the GVVPT2/cc-pVTZ level with other ab initio methods 
and with experimental data. 

 RSr–O RO–H ∠(Sr–O–H) 

GVVPT2a 2.127 0.9541 178.2 

GVVPT2/relativistica 2.128 0.9470 172.1 

RCCSD(T)297,b 2.1110 0.9225 180 

Experiment303 2.111 0.922 180 

aSr: cc-pVTZ-X2C, O and H: cc-pVTZ 
bSr: aug-cc-PV5Z-PP + ECP28MDF, O and H: aug-cc-pCVTZ 

 

By including the relativistic adjustments, the change in the Sr–O bond length was 

negligible (0.001 Å) – the RSr–O slightly increased to 2.128 Å. On the other hand, the change 

in the O–H bond length was more apparent (0.0071 Å) – the RO–H decreased to 0.9470 Å 

(see Figure IV-2(a) and Table IV-3). The bond angle also shifted under the relativistic 

effects, in which the geometry of SrOH became more bent with an angle of 172.1°. It could 

be because the relativistic corrections tend to contract the s and p atomic orbitals, which 

decreased the bond angle of Sr–O–H by 6.1°. 
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Conclusions 

In this work, we used the GVVPT2 method to investigate the ground state ¦Ô   �Σ�§ 

of CaOH and SrOH monomers along with the first low-lying excited state (%   �Π) of CaOH. 

Our GVVPT2 results show that the optimized geometry parameters of CaOH as well as the 

vertical excitation energy of its first excited state are in good agreement with other ab initio 

methods and experimental data. However, the GVVPT2 calculations of the SrOH ground 

state indicate a quasilinear geometry as opposed to the linear characteristics described in 

the published literature. Since Sr is a heavy element, we suspected the scalar relativity 

could have a major impact on the equilibrium properties of SrOH. With that in mind, we 

used the scalar relativistic effects in the sf-X2C approach to study this impact. The 

optimized geometry of SrOH shifted more towards the bent geometry with a bond angle of 

172.1°. For future work, experiments with different basis sets and active space 

configurations for SrOH could be investigated if this bent geometry is resistant to changes 

in these types of input parameters. In addition, more low-lying excited states of CaOH 

should be explored to have a better understanding of the characteristics of this radical.
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V. THEORETICAL STUDIES OF CALCIUM MONOHYDROXIDE 

DIMERIZATION USING GVVPT2 

 

Introduction 

In recent years, calcium monohydroxide (CaOH) has been actively studied because 

of its potential applications in laser cooling and trapping systems. Laser cooling is a 

technology in which atomic and molecular samples are cooled down to sub-milliKelvin 

temperatures.291,296,297,309–311 Different trapping techniques, such as magnetic 

trapping,312,313 optical trapping,314,315 and magneto-optical trapping316–318 help confine 

these ultracold atoms and molecules at ultracold temperatures. These technologies enable 

full control over quantum states and help lengthen experimental times, resulting in better 

understanding of chemical reactivities, dynamics, and reaction pathways of many chemical 

systems.296,297,300–302 Alkaline earth metal monohydroxides are great candidates because 

they have dense rotation-vibration-electronic (rovibronic) energy level structures, high 

Franck-Condon factors, and strong photon cycling.290–298  

 The ground state ¦Ô   �Σ�§ and several of the lowest-lying excited states of CaOH 

monomers have been studied using theoretical methods with the hope that more efficient 

laser cooling and trapping could be designed with CaOH.129,281–289 Besides obtaining 

accurate descriptions of multiple electronic states, investigating the collisions of CaOH at 

ultracold temperatures is essential because controlled collisions could lead to desirable 

elastic and inelastic scattering rates which are important factors in designing these cooling 
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systems as demonstrated in previous collision studies of different polyatomic 

molecules.291,294,297,319,320 High elastic scattering rates will help achieve thermal 

equilibrium and low inelastic scattering rates will prevent the molecules from two-body 

losses.291 For the collisions between certain molecules, we also need to consider the 

possibility of undesirable chemical reactions occurring. For instance, in the case of CaOH 

monomers colliding with each other, the chemical equation of CaOH + CaOH � Ca(OH)2 

+ Ca is considered to be unlikely because the repulsive components of the dipole–dipole 

interactions could be expected to prevent the reaction from happening; available 

information about the potential energy surface for the reaction does not support its 

occurence.291 

 The work of Augustovičová et al.,291 in which they studied the elastic and inelastic 

scattering rates as functions of electric field, has become the inspiration for our theoretical 

studies of CaOH dimerization. To this end, we used second-order generalized van Vleck 

perturbation theory (GVVPT2) method36,130–134 to investigate the dimers of CaOH. The 

starting CaOH monomers were first investigated with the GVVPT2 level of theory and the 

results were then compared with other ab initio calculations to establish the accuracy 

baseline for our GVVPT2 calculations. This chapter of the dissertation will only focus on 

our theoretical work on the dimerization of CaOH. The details of our calculations on CaOH 

monomers were previously provided in chapter IV. 

 

Computational Methods 

We used the cc-pVTZ basis set287,304 for calcium (Ca), oxygen (O), and hydrogen 

(H). The restricted Hartree–Fock (RHF) approximation18–20,157 was used for an initial 
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optimization of equilibrium geometries of CaOH dimers as well as to generate their initial 

molecular orbitals (MOs). Then the restricted second-order Møller–Plesset perturbation 

theory (RMP2) method28,157,216–218 was employed to add some electron correlation and 

obtain approximate natural orbitals. Next, we used the macroconfiguration approach134 

which was developed in our group to configure the active space for the dimers of CaOH. 

The actual calculations involve geometry optimization at the GVVPT2 level, using our in-

house UNDMOL program.36 At each nuclear geometry, multiconfigurational self-

consistent field (MCSCF)31,37,38 calculations were conducted with these active space 

configurations to further refine the orbitals. When geometries were relatively close, the 

MOs of the previous geometry were used as initial guesses for the current geometry. 

Subsequently, to provide balanced descriptions of dynamic and static electron correlations, 

we applied the GVVPT2 method on the MCSCF optimized orbitals for CaOH dimers. This 

helped provide insights to the dimerization pathways of CaOH as well as the transformation 

between various isomers of CaOH dimers. 

 

Discussion and Future Directions 

 The study of CaOH dimerization started with optimizing CaOH monomers in their 

ground states. The geometry optimization of the CaOH monomers was obtained with NÝ 

point group symmetry using the GVVPT2 method and the cc-pVTZ basis set. A complete 

active space (CAS) was used in these monomer calculations which included 8 orbitals (7–

10a’ and 4–7a”) with 11 electrons. As discussed in chapter IV, the ground state of the 

CaOH monomer was found to be linear with the equilibrium Ca–O and O–H bond lengths 

being 2.008 Å and 0.9336 Å, respectively (see Figure IV-1), which is in good agreement 
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with the results from the other ab initio methods and experimental data shown in Table IV-

1. It indicates that the active space we used in the calculations of CaOH monomers could 

be a good starting point for each monomer in the computation of CaOH dimerization. 

 To begin the calculations of CaOH dimers, we placed two CaOH monomers 

approximately 6 bohr apart. We kept the Ca–O and O–H bond lengths to be the same as in 

the optimized ground state of CaOH monomers while decreasing the Ca–O–H bond angles 

to approximately 150° to account for the van der Waals interactions between two 

monomers. We partitioned the active space of the CaOH dimer into two groups: Â� = {13–

16a’ and 7–10a”} with 11 electrons, and Â� = {17–20a’ and 11–14a”} with 11 electrons. 

Since the total number of configuration state functions (CSFs) are 636,608, which is much 

higher than the total number of CSFs in the calculations of CaOH monomers (504 CSFs) 

and of SrOH monomers (4508 CSFs), calculations with this active space are lengthy and 

there are no good estimates of how long these calculations will take to complete. In 

addition, for a large system like the CaOH dimer, there are many possible ways of 

configuring its active space which requires a large number of trials and errors to reach an 

appropriate configuration. It can be noted that the brute force complete active space of 22 

electrons in 16 orbitals is beyond the capabilities any current supercomputer. This type of 

problem has motivated us to develop our machine learning model with the aim that we 

could automate the active space selection process. Further discussions are given in chapter 

VI. 

  



82 
 

 

Figure V-1. The starting arrangement of two CaOH monomers in our study of CaOH 
dimerization. 

 

Subsequent studies could explore more isomers of CaOH dimers and their 

transition states, in particular optimization of geometry parameters as well as electronic 

energies in order to determine which isomer is the most stable. Moreover, collisions of 

CaOH monomers to form Ca(OH)2 are of interest. Answers to these questions will further 

characterize systems of CaOH radicals, and especially its potential in applications of 

cooling and trapping systems.
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VI. DEVELOPMENT OF MACHINE LEARNING IN ACTIVE SPACE 

SELECTION WITHIN GVVPT2 

 

Introduction 

Many multireference and multiconfigurational methods, such as multireference CI 

(MR-CI),24,25,30,31 multireference perturbation theory (MRPT),32–36 and multireference CC 

(MR-CC)39,40, have been widely used in the field of computational electronic structure 

theory to study small- to medium-sized chemical systems because they can provide high 

levels of accuracy with decent computational cost, if the starting molecular orbitals (MOs) 

have already been optimized with lower levels of theory ahead of time, such as using 

Hartree–Fock (HF)18–20,157 or multiconfigurational self-consistent field (MCSCF)31,37,38 

orbitals. Further approximations can also be applied for specific methods to help reduce 

the computational cost further. For example, incomplete active spaces can be employed 

(e.g., in the restricted active space self-consistent field (RASSCF) method221) to reduce the 

exponential scaling of the required number of configuration state functions (CSFs) relative 

to the complete active space self-consistent field (CASSCF) ansatz.220 The 

macroconfiguration approach134 has also been proven to be effective in exploring complex 

chemical systems because it allows the use of more specialized incomplete active spaces. 

Since macroconfigurations do not constraint the number of active electrons in any groups 

of active orbitals or the number of active orbitals in each orbital group,134 the user has more 

flexibility in choosing an active space compared to even the restricted active space 
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approach (i.e., RASSCF). With macroconfigurations, calculations using high level 

methods like MR-CI with single and double excitations (MR-CISD), and especially O(n5) 

methods such as second-order generalized van Vleck perturbation theory (GVVPT2),36,130–

134 can be carried out at reasonable computational cost, as demonstrated in published 

studies.321–324 

However, without expert knowledge and years of experience, the procedure of 

choosing a proper active space can be very tricky for these multireference-

multiconfigurational methods. As the complexity of chemical systems of interest increases, 

the number of possible arrangements for the electrons in different orbital groups also 

increases, resulting in more trial and error cycles the user must go through to arrive at an 

ideal active space for the systems of interest. Unfortunately, a universal protocol for active 

space selection has not yet been established. Recently, the question of whether the process 

of active space selection can be automated has been put back on the table because there is 

a new rising technology that is data-driven and can help with the automatic process. It is 

called machine learning (ML).139 ML algorithms are data-driven and can possibly operate 

without human intervention if being provided sufficient training data.150,154 Since ML has 

already revolutionized many aspects of our daily life, including the use of voice 

assistants,135 image recognition,136 intelligent gaming,137 autonomous driving,138 and so on, 

why not quantum chemistry? 

Evidently, ML has opened the gate to new ways of solving electronic structure 

problems.148–155 Yet there is a long way to go to achieve a black-box method which can be 

used on any chemical system. Although the incorporation of ML into multireference 

methods is still new, the works of Jeong et al.154 and Golub et al.248 have proven that ML 
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could help automate the process of active space selection. The routine developed by Jeong 

et al.154 used a supervised ML model to predict if an active space chosen for a system of 

interest is good or bad. Golub et al.,248 on the other hand, used the neural network (NN) 

approach within ML to predict the importance of orbitals, and hence, which orbitals should 

be included in the active space. Unfortunately, their protocols have not yet reached the goal 

of being universal for all chemical systems because there are still problems in the 

transferability between the training sets and the systems of interest. 

This has inspired us to develop our own ML routine to solve the user-specified 

active space problem within the GVVPT2 method. Since macroconfigurations allow the 

use of incomplete active spaces and have no restrictions on the number of electrons in each 

orbital group, a wider variety of challenging and complicated systems could be used in the 

set of training data while maintaining the balance between accuracy and computational 

cost. A training set with a broader variation of size and composition would ensure better 

transferability from the training data to the systems of interest. To this end, we intend to 

use macroconfigurations within GVVPT2 for the machine to configure different active 

spaces. However, to simplify our problem at this early state of designing our ML model, 

we used complete active space (CAS) approach instead. The reinforcement learning 

approach with convolutional neural network (CNN),139,142,143 in which rewards and 

penalties were utilized as pointers for the machine to figure out which actions to take in the 

unknown dynamical environment of different chemical systems, was employed to build 

our ML model. So far, we have studied ground state water (H2O), triplet ground state 

methylene (3CH2), and stretched H2O (i.e., water in which the bond angle was fixed at the 

equilibrium value and the bond lengths symmetrically enlarged to 1.5 times their 
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equilibrium values). These three model systems are widely used in quantum chemistry to 

assess new methods, since they test a number of complementary challenges. The active 

space selection ability of our ML algorithm was then validated by comparing the suggested 

active space configurations from our model with the widely used configurations from 

published studies. 

 

Computational Methods 

Our ML model was built with the reinforcement learning algorithm, which was 

implemented in the PyTorch software package.156 The ML model was used as a pre-

processor program to our UNDMOL molecular software package36 to generate several 

suggested active space configurations and provide good inputs for the GVVPT2 method. 

The initial optimization of equilibrium geometries as well as the initial molecular orbitals 

(MOs) of each molecular system were obtained with the restricted Hartree–Fock (RHF) 

approximation18–20,157 ahead of time. The restricted second-order Møller–Plesset 

perturbation theory (RMP2) method28,157,216–218 was then employed to include some of the 

effects of electron correlation to improve these MOs. The CNN in our ML model then 

generated different active spaces for each chemical system. MCSCF calculations were then 

carried out with these active space configurations to figure out which ones would generate 

good starting MOs for the GVVPT2 calculations. For our ML model, good active space 

configurations would satisfy four conditions which would work for most chemical systems: 

1. The energy of highest occupied MO (HOMO) in the frozen core is lower than the 

energy of the lowest occupied MO in the valance space. 
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2. The energy of highest occupied MO (HOMO) in the frozen core is lower than the 

energy of the lowest unoccupied MO (LUMO) in the virtual space. 

3. By adding in an extra orbital to the valence space, condition 1 and 2 are still 

satisfied, which means the energy surface can be extrapolated smoothly. 

4. The dimension of the null and concave subspaces of the MCSCF both equal zero 

(i.e., dim(null space) = 0 and dim(concave space) = 0), which means that a local 

minimum (and not just stationary point) has been found. 

Our ML routine started with the machine generating random configurations for the 

active space until a workable configuration, which did not result in an abnormal 

termination of the MCSCF calculation, was found. The workable configuration helped set 

a good starting point for the machine to learn from. The machine did not receive any 

rewards or suffer from any penalties during this random phase. When the machine arrived 

at the first workable configuration, its learning phase begun. It then proceeded to compare 

the energies of the orbitals to see if condition 1 and 2 were satisfied. If condition 1 was 

met, it would earn 2 points as a reward. If both condition 1 and 2 were met, it would receive 

5 points and proceed to test condition 3 and 4. A reward of 5 points would be distributed 

if condition 3 was met. If condition 4 was also satisfied, the configuration would become 

one of the suggested configurations for the active space and would be appended into the 

computer’s memory. The machine would also receive 15 points as a big reward for finding 

this configuration and end the first episode. 

If the workable configuration failed one of the four conditions, the machine would 

take one of these four actions: (i) move one orbital from the frozen core to the valence 

space, (ii) move one orbital from the valence space to the frozen core, (iii) move one orbital 
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from one symmetry to another symmetry in the same frozen core group (redistribute frozen 

core orbitals), and (iv) move one orbital from one symmetry to another symmetry in the 

same valence space group (redistribute valence orbitals), to arrive at the next configuration. 

If the action the machine took resulted in one of these failures: (i) abnormal termination of 

the MCSCF calculation, (ii) the number of valence electrons equals or is less than zero, 

and (iii) a negative value for virtual orbitals, the machine would suffer a 10-point loss as a 

penalty and end the episode. The machine would start the next episode by generating 

random configurations until it found the next workable configuration. If none of these three 

failures occurred, the machine would earn 5 points as a reward and continue to check the 

four conditions. The episode would end if one of these conditions was not satisfied and the 

machine went back to the random phase. If the machine found a viable configuration which 

met all the four conditions mentioned above, then the episode would also end. The rewards 

would be distributed for each satisfied condition as described earlier and the feasible 

configuration found by the machine would be appended to the computer’s memory. 

In the next episode, the machine would use the feasible configuration found in the 

last episode as a starting point, and then it would take one of the four actions to arrive at 

the next configuration. After that, it would go through the checking process for the three 

failure events and the four conditions. The machine would receive either rewards or 

penalties depending on the outcomes, and a new episode would begin. Every time the 

machine found a new viable configuration that met the four conditions, it would compare 

the MCSCF energy with the one from all the previous feasible configurations appended to 

the memory. If the MCSCF energy was lower than the previous ones, the machine would 

earn an extra 5-point reward for finding a better viable configuration. The routine continued 
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until the maximum number of episodes pre-determined by the user had been reached. All 

the viable configurations which had been appended to the memory would be printed out 

with the number of times the machine arrive at the same configuration. The schematic for 

our ML routine is shown in Figure VI-1. The suggested configurations found by the 

machine were compared with the widely used configurations from published studies to 

validate the active space selection ability of our ML model. Different parameters such as 

number of episodes and learning rates were also evaluated to determine which settings 

were optimal for the ground state H2O, then these settings were used in the learning process 

for the triplet ground state 3CH2 and the stretched H2O. 
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Figure VI-1. Schematic representation of our ML model. 
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Results and Discussion 

 The active space selection ability of our ML model was tested with ground state 

H2O, triplet ground state 3CH2, and stretched H2O. The calculations of these three 

molecules was carried out with the DH (Dunning/Huzinaga double zeta) basis set325 and 

N�� point group symmetry. For the H2O molecule, the ML model was run three times each 

for different maximum number of episodes. Then the occurrence probabilities of the widely 

used configurations were determined for each of these maximum episode settings, using 

the formula below: 

Õ"*µ�µ&±&+û*%, = ,���"xS�xà *< �*S<&��"�+&*S %�*+�± S�Éµx" *< xi&à*kxà  
(Eq. VI-1) 

When the optimal episode parameter was established, different learning rates were then 

evaluated by also using the occurrence probabilities for finding the desired configurations. 

The learning rate (LR) determines how fast the machine can learn and has a value between 

0 and 1. If LR = 0, the machine would not learn anything new. If LR = 1, the machine 

would completely discard the old experiences it had gained previously and would not learn 

from its mistakes. When testing different maximum number of episodes, we fixed LR to 

be 10-8, which is a slow LR so that the machine could learn from many of its good and bad 

configurations it had found in previous episodes. After the optimal number of maximum 

episodes was determined for each molecule, we fixed the episode setting while changing 

the LR. A faster LR of 10-4 and a slower LR of 10-12 were tested to determine which LR 

the machine learned best at. The optimal episode and LR settings determined in the study 

of H2O were then applied in the investigations of 3CH2 and stretched H2O. 

In order to evaluate the learning process of our ML model, we used the mean 

squared error (MSE) loss function326 implemented in PyTorch to calculate the loss the 
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machine suffered from in each episode due to the wrong actions it took, which would result 

in it finding bad active space configurations. The loss, ±Q, was calculated as the average of 

the squared differences between the actual values, úQ, and the target (or predicted) values, 

ûQ, as given below: 

 ±Q = *úQ − ûQ,� (Eq. VI-2) 

with S being the total number of episodes. In each episode, the machine predicted the next 

active space configuration, given the current configuration it had then and the action it 

planned to take. If the machine made a wrong prediction, the predicted value, ûQ, would 

accumulate large number of penalties compared to its current state, reflected in úQ, 

resulting in a higher loss. The objective of the learning process is to minimize the loss, 

which means the machine had learnt from its mistakes and could make better prediction 

for the active space configurations in the next episode. At this early state of designing the 

ML model, we had to introduce random actions quite frequently during its learning phase, 

in which the machine would go back to the random phase every time it reached a 

configuration that would result in a negative value of electrons in the valance space. The 

purpose of the random actions is to prevent the machine from continuing to explore those 

bad configurations. However, since the model spaces of our three tested molecules are 

quite small, there are many configurations which would result in forcing the machine back 

to the random phase. Consequently, it is very difficult to graph the loss function due to 

much randomness and too many data points. In our future work, we intend to reduce the 

randomness by providing the machine with more conditions and more information about 

the target chemical systems so that the number of electrons will no longer trigger for the 

machine to go back to its random phase. We will also plan to pre-process the data points, 
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so that when we run larger sample sizes, the number of data points will not be one of our 

drawbacks. 

 

A. Ground State Water (H2O) 

For the ground state H2O molecule, the full valence active space contains 6 orbitals 

constructed from the 2s and 2p of oxygen (O), 1s of the first hydrogen (H), and 1s of the 

second H) with a total of 8 electrons. The most widely used configuration for the active 

space of H2O is (3 0 1 2), which means the 2–4a1, 1b1, and 1–2b2 are in the valence space, 

with only the 1a1 orbital left in the frozen core (i.e., (1 0 0 0)).327–330 By moving the 2a1 

orbital back into the frozen core (i.e., (2 0 0 0)), a smaller but also feasible active space 

configuration can be used for H2O: (2 0 1 2) with 6 electrons.327 These are the two 

configurations we focused on to validate the active space selection ability of our ML model. 

We ran the ML three times for each of the three maximum episode settings (i.e., 

25,000, 50,000, and 75,000 episodes) to see how long the machine needed to be trained for 

in order to provide us with the two desired configurations for the active space of H2O (see 

Table VI-1). The learning rate was fixed to be 10-8. For a learning duration of 25,000 

episodes, our ML model found the first configuration 14 times on average, and only 

encountered the second configuration twice on average. This means the average chance the 

machine could find the first configuration is 0.057% and the second one is 0.009% if the 

machine was only allowed to learn in 25,000 episodes. When the learning duration was 

increased to 50,000 episodes, the machine discovered the first configuration 42 times on 

average, which equals to an average of 0.085% chance, much higher than in the previous 

setting. However, configuration 2 can only be found 5 times on average, which is the same 
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as the probability of 0.009% in the 25,000-episode setting. When we increased the 

parameter to 75,000 episodes, the probabilities of finding these configurations were slightly 

lower – 0.080% (60 times on average) for configuration 1 and 0.006% (4 times on average) 

for configuration 2. 
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Table VI-1. The occurrences (times) and the occurrence probabilities (%) that our ML 
model found the desired configurations for H2O in different learning 
durations. 

 25,000 episodes 50,000 episodes 75,000 episodes 

Configuration 1: Frozen core – (2 0 0 0), active space – (2 0 1 2) 

Trial 1 11 times 48 times 67 times 

 0.044% 0.096% 0.089% 

Trial 2 17 times 35 times 59 times 

 0.068% 0.070% 0.079% 

Trial 3 15 times 44 times 55 times 

 0.060% 0.088% 0.073% 

Average 14 times 42 times 60 times 

 0.057% 0.085% 0.080% 

Configuration 2: Frozen core – (1 0 0 0), active space – (3 0 1 2) 

Trial 1 2 times 6 times 4 times 

 0.008% 0.012% 0.005% 

Trial 2 2 times 3 times 5 times 

 0.008% 0.006% 0.007% 

Trial 3 3 times 5 times 4 times 

 0.012% 0.010% 0.005% 

Average 2 times 5 times 4 times 

 0.009% 0.009% 0.006% 
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Table VI-1 shows that increasing the learning duration did not necessarily increase 

the probabilities of finding the desired configurations. This could be because as the learning 

duration got longer, it became more apparent that the machine tended to go back to some 

of the configurations that it had successfully found and received the most rewards in the 

previous episodes, instead of exploring more new configurations. Unfortunately, not all 

these successfully found configurations are feasible although they met all the conditions 

that we pre-determined for our machine. For instance, the configuration of (3 0 0 1) for the 

frozen core and (3 0 0 1) for the active space was discovered 36 times (0.144% finding 

chance) in trial 1 of the 25,000-episode run, although this is not a good configuration for 

the ground state H2O due to the presence of too many a1 orbitals but no b1 orbitals. For our 

ML algorithm to eliminate these types of configurations, we would need to provide the 

machine with more information about orbital types along with their symmetries, which is 

plan for future work. At this state of the program, our ML can provide the user with a list 

of configurations in which some of them represent the appropriate active spaces, as shown 

in the case of the ground state H2O (Table VI-1), the triplet ground state 3CH2, and the 

stretched H2O (shown in section B and C below). In the 25,000-episode runs, there was an 

average of 77 total configurations discovered by the machine. This number went up to 80 

and 82 as the learning duration increased to 50,000 and 75,000 episodes, respectively (see 

Table VI-2), since the machine had more time to explore more configurations. However, 

as mentioned earlier, it does not necessarily indicate that the probabilities of finding the 

right configurations can be increased. More trials with more episode settings should be 

carried out to get a better understanding of the relation of sample size with orbital 

partitioning success. With some chemistry knowledge, the user could narrow down the lists 
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to a few appropriate configurations which would be good starting inputs for GVVPT2 

calculations. 

 

Table VI-2. The total number of configurations found by our ML model that met all the 
predetermined conditions. (LR = 10-8) 

 25,000 episodes 50,000 episodes 75,000 episodes 

Trial 1 78 77 81 

Trial 2 76 83 83 

Trial 3 77 80 83 

Average 77 80 82 

 

Based on Table VI-1, 50,000 episodes is a good setting to evaluate the effects of 

different LRs. We ran the ML three times each at a faster LR of 10-4 and a slower LR of 

10-12 to determine which LR the machine learned best at. The data from Table VI-3 shows 

that, with LR = 10-4, configurations 1 and 2 were found 39 and 3 times on average, 

respectively. This means there are 0.079% chance our ML protocol would find the first 

configuration, and 0.005% chance it would encounter the second one at this LR. These 

values are smaller than the ones from a slower LR of 10-8. It indicates that a faster LR did 

not improve the chances of finding the desired configurations. The reason is that the 

machine continued discarding too much of the old data, so it did not learn a lot from its old 

mistakes. Consequently, the model kept starting over on bad configurations and did not 

improve its own learning progress. 

As a result, we lowered the LR to 10-12. The machine identified the first 

configuration 34 times on average, which equals 0.067% finding chance, and configuration 
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2 twice on average, which is 0.005%. By using a slower LR, the probabilities of finding 

the desired configurations decreased drastically. This is because with such a slow LR for a 

50,000-episode learning duration, the algorithm did not have enough time to learn new 

pathways which could lead to the discoveries of more new active space configurations. 

Therefore, different LRs are suitable for different learning durations. However, in order to 

draw a better conclusion, more trials with larger testing samples (different molecules, LRs, 

and maximum numbers of episodes) need to be conducted. With the data we obtained so 

far, we decided to use LR = 10-8 and maximum episodes = 50,000 as the fixed parameters 

to test the active space selection ability of our ML model in the case of the triplet ground 

state 3CH2 and the stretched H2O. 
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Table VI-3. The occurrences (times) and the occurrence probabilities (%) that our ML 
model found the desired configurations for H2O using different LRs with 
50,000 as the maximum number of episodes. 

 10-4 10-8 10-12 

Configuration 1: Frozen core – (2 0 0 0), active space – (2 0 1 2) 

Trial 1 38 times 48 times 30 times 

 0.076% 0.096% 0.060% 

Trial 2 42 times 35 times 31 times 

 0.084% 0.070% 0.062% 

Trial 3 38 times 44 times 40 times 

 0.076% 0.088% 0.080% 

Average 39 times 42 times 34 times 

 0.079% 0.085% 0.067% 

Configuration 2: Frozen core – (1 0 0 0), active space – (3 0 1 2) 

Trial 1 2 times 6 times 4 times 

 0.004% 0.012% 0.008% 

Trial 2 3 times 3 times 2 times 

 0.006% 0.006% 0.004% 

Trial 3 3 times 5 times 1 time 

 0.006% 0.010% 0.002% 

Average 3 times 5 times 2 times 

 0.005% 0.009% 0.005% 
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There is another feasible active space configuration that could be used for H2O 

molecule. It contains 3–4a1 and 1–2b2 (i.e., (2 0 0 2)) with 4 electrons and the 1–2a1 and 

1b1 are in the frozen core (i.e., (2 0 1 0)).327 Our ML model did not find this configuration 

because condition 1 strictly forbade the machine from choosing a configuration that would 

result in a frozen core orbital with higher energy than the valence orbitals. We implemented 

this condition because it will work for most cases. However, for this special case with (2 0 

0 2) as an active space, the 1b1 orbital remains in the frozen core but has higher energy than 

the lowest occupied MOs in the valence space. Thus, our future plan is to modify condition 

1 to allow a small overlap of energies between the frozen core and the valence space with 

the purpose that our ML model could find the configurations for these special cases. 

 

B. Triplet Ground State Methylene (3CH2) 

For the triplet ground state 3CH2 radical, the full valence active space contains 6 

orbitals (i.e., 2s and 2p of carbon (C), 1s of the first hydrogen (H), and 1s of the second H) 

and 6 electrons. The configuration often used for its active space is (3 0 1 2), which means 

the 2–4a1, 1b1, and 1–2b2 are in the valence space, with only the 1a1 orbital left in the frozen 

core (i.e., (1 0 0 0)).331,332 Similar to H2O, a smaller active space configuration can also be 

used for 3CH2, which is (2 0 1 2) with 4 electrons and the frozen core contains the 1–2a1 

orbitals (i.e., (2 0 0 0)). This active space might be too small, but it is a good starting point 

that the machine should have in its list of feasible configurations. Hence, these are the two 

desired configurations for the 3CH2 radical. 

Since 50,000 episodes and a LR of 10-8 are the best settings we found so far for our 

model, we applied these parameters in the calculations of the triplet ground state 3CH2. 
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Unfortunately, with these settings, the machine did not find either of these desired 

configurations. The configuration that it identified with the most number occurrences (112 

times with 0.224% finding chance) is (3 0 0 0) for the frozen core and (2 0 1 1) for the 

active space with 2 electrons. This means 1–3a1 orbitals are left inactive while the valence 

space includes 4–5a1, 1b1, and 1b2 orbitals. The configuration that looks very close to the 

optimal ones is (2 0 0 0) for the frozen core and (1 0 2 2) for the active space (i.e., 1–2a1 

orbitals are left inactive while the valence space includes 3a1, 1–2b1, and 1–2b2 orbitals). 

This configuration was found by the machine 33 times, which equals to a probability of 

0.066%. 

In order to evaluate the two most feasible active space configurations that our ML 

model had discovered, we carried out GVVPT2 calculations using these configurations and 

the DH basis set, and then compare their energies with the GVVPT2 energy obtained from 

the optimal configuration (frozen core – (1 0 0 0), active space – (3 0 1 2)). For these 

calculations, we used the experimental values of the ground state 3CH2 geometry 

parameters (i.e., the C–H bond length = 1.078 Å and the H–C–H bond angle = 136°)333–337 

(see Figure VI-2). The comparison of these electronic energies is shown in Table VI-4. 

 

Figure VI-2. Equilibrium structure of 3CH2 constructed from the experimental values of its 
geometry parameters. 

C 

H H 
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The electronic energy of the triplet ground state 3CH2 calculated at the 

GVVPT2/DH level using the optimal configuration (configuration 1) is -38.6730 a.u. (see 

Table VI-4). When the second configuration, which is the one our ML model had found 

with the greatest number of occurrences, was used, the GVVPT2 energy of 3CH2 turned 

out to be higher (by approximately 1.0923 a.u.). It indicates that this configuration is not 

as good as the optimal one. The energy computed using configuration 3, which is also in 

the list of configurations suggested by the machine, is much closer to the result from the 

optimal configuration (higher by 0.2233 a.u.). This means the ML algorithm had found us 

a good starting active space configuration for GVVPT2 calculations. Although the machine 

did not successfully locate the optimal one, both configuration 2 and 3 would help the user 

come close to finding a proper active space. Additionally, it is possible that the learning 

parameter of 50,000 episodes and the LR of 10-8 are not the right settings for the 3CH2 

radical. We might need to experiment with different settings to figure out what is the 

average probability for our ML model to reach to optimal configuration. We also included 

the electronic energy of 3CH2 from the parametric two-electron reduced density matrix 

(P2RDM)/cc-pV5Z method337 to provide better comparisons. The reason that our GVVPT2 

electronic energies are all higher when being compared to the data from this published 

study is due in part to method and to the larger basis set for these calculations. 
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Table VI-4. Comparison of electronic energies of 3CH2 computed with different active 
space configurations at the GVVPT2/DH level. The data from published 
literature is also included. 

Configuration Energy (a.u.) 

1: Frozen core – (1 0 0 0), active space – (3 0 1 2) -38.6730 

2: Frozen core – (3 0 0 0), active space – (2 0 1 1) -37.5807 

3: Frozen core – (2 0 0 0), active space – (1 0 2 2) -38.4497 

P2RDM/cc-pV5Z337 -39.1236 

 

C. Stretched Water (H2O) 

For the stretched H2O, we kept the bond angle fixed to the equilibrium value of the 

ground state H2O (104.5°),338 and the O–H bond lengths were stretched to 1.466 Å, which 

is approximately 1.5 �, with the equilibrium O–H bond lengths ( �) equal 0.958 Å)328,338 

as shown in Figure VI-3. In order to describe this symmetric stretching of both O–H single 

bonds, larger active spaces than the one used for the ground state H2O are often used. 

Instead of the 6 orbitals (i.e., 2s and 2p of carbon (O), 1s of the first hydrogen (H), and 1s 

of the second H) with 8 electrons as included in the full valence active space of the ground 

state H2O, two extra Rydberg orbitals are often added to the active space for the stretched 

H2O. There are three active spaces that have been described in previously published 

studies:328,329 (4 0 2 2) for the 1A1 states (i.e., the 2–5a1, 1–2b1, and 1–2b2 are in the valence 

space); (5 0 1 2) for the 1B1 states (i.e., the 2–6a1, 1b1, and 1–2b2 are in the valence space); 

and (3 1 1 4) for the 1A2 states (i.e., the 2–4a1, 1a2, 1b1, and 1–4b2 are in the valence space). 

The 1a1 orbital is left inactive in the frozen core (i.e., (1 0 0 0)) for all these three 

configurations. However, we only used the configuration for the 1A1 states as the desired 
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configuration to test the active space selection ability of our ML model in the case of the 

stretched H2O. 

 

Figure VI-3. Structure of the stretched water constructed from the experimental values of 
its geometry parameters. 

 

In the case of ground state H2O and triplet ground state 3CH2, we placed an input 

of 7 orbitals as a starting number for the machine to begin exploring different 

configurations. However, for the stretched H2O, we increased that number to 9 orbitals, so 

that the machine could have a better starting point for its search. Since 50,000 episodes and 

a LR of 10-8 are the best settings we had found so far for the case of ground state H2O, we 

applied these parameters in the calculations of the stretched H2O. Unfortunately, with these 

settings, the machine did not find the desired configuration. The configuration that it 

discovered with the most number occurrences (37 times with 0.074% finding chance) is (3 

0 0 0) for the frozen core and (4 0 1 1) for the active space with 4 electrons. This means 

the 1–3a1 orbitals are left inactive while the valence space includes 4–7a1, 1b1, and 1b2 

orbitals. The configuration that looks very close to the optimal one is (1 0 0 0) for the frozen 

core and (3 0 2 3) for the active space (i.e., the 1a1 orbital is left inactive while the valence 

space includes 2–4a1, 1–2b1, and 1–3b2 orbitals). This configuration was found by the 

machine 14 times, which equals to a probability of 0.028%. To evaluate the two most 

feasible active space configurations that our ML model had identified, we carried out 

H H 104.5° 

O 
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GVVPT2 calculations using these configurations and the DH basis set, and then compared 

their energies with the GVVPT2 energy obtained from the optimal configuration (frozen 

core – (1 0 0 0), active space – (4 0 2 2)). 

The electronic energy of the stretched H2O calculated at the GVVPT2/DH level 

using the optimal configuration (configuration 1) is -75.8443 a.u. (as shown in Table VI-

5). The energy from the second configuration, which is the one our ML model had found 

with the greatest number of occurrences, is slightly higher (by approximately 0.0308 a.u.). 

It indicates that this configuration is not a bad one when being compared to the optimal 

one. The energy computed using configuration 3, which is also in the list of configurations 

suggested by the machine, is very close to the result from the optimal configuration (only 

higher by 0.0017 a.u.). This means the ML algorithm had found us a very good starting 

active space configuration for GVVPT2 calculations. Similar to the case of the triplet 

ground state 3CH2, the machine did not successfully locate the optimal one, and it could 

happen due to inappropriate settings for the learning process. However, both configuration 

2 and 3 are comparable to the optimal configuration because their differences in energies 

are negligible. 

 

Table VI-5. Comparison of electronic energies of the stretched H2O computed with 
different active space configurations at the GVVPT2/DH level. 

Configuration Energy (a.u.) 

1: Frozen core – (1 0 0 0), active space – (4 0 2 2) -75.8443 

2: Frozen core – (3 0 0 0), active space – (4 0 1 1) -75.8135 

3: Frozen core – (1 0 0 0), active space – (3 0 2 3) -75.8426 
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Conclusions 

In this work, we used the reinforcement learning approach to design our ML model 

with the objective that we could solve the user-specified active space problem within the 

GVVPT2 method. In every run of the ML routine, the machine would set out to explore 

the unknown dynamical environment of the target chemical systems. The rewards and 

penalties were provided during its learning process as pointers to help it figure out which 

actions to take. So far, we have tested the ML algorithm on three molecules: the ground 

state water (H2O), the triplet ground state methylene (3CH2), and the stretched H2O. For 

the case of ground state H2O, 50,000 episodes and a LR of 10-8 appeared to be the optimal 

settings for the machine to find the desired configurations. However, these settings seemed 

to fail for the other two molecules. On the other hand, the machine did find other feasible 

configurations that are comparable to the desired ones for these two cases. The active space 

selection ability of our ML algorithm was validated by comparing the GVVPT2 energies 

calculated using the configurations suggested by the machine with the values from the 

optimal ones. The results indicate that these suggested configurations could be good 

starting points for GVVPT2 calculations. 

For our future work, we plan to test our ML model with more complicated chemical 

systems as well as different learning parameters to determine the degree of transferability 

that the model has to offer. In addition, we intend to provide the machine with more 

information, including the characteristics of each element in the target chemical systems, 

as well as the types of orbitals and their corresponding symmetries, so that the ML model 

could find more proper active spaces. Also, we would like to implement the 

macroconfiguration approach into the ML protocol. This would enable the ability to test 
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larger chemical systems, compared to the CAS ansatz currently employed in the machine’s 

active space configuring process. Our goal is to build a smarter and more efficient ML 

model which could help systematize the active space selection and explore more unknown 

systems. 
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CONCLUDING REMARKS AND FUTURE DIRECTIONS 

 The projects described in this dissertation have showcased the ability of ab initio 

electronic structure methods in studying different types of chemical systems. The 

theoretical studies of Ir-Si monolayers presented in chapter III illustrate the effectiveness 

of the DFT method in exploring new solid-state materials. While DFT continues to be 

rightfully regarded as effective and efficient for stable molecular and larger systems, the 

search for efficient, systematically improvable wavefunction-based approaches remains an 

important goal for studying molecules with unusual electronic structures. Concomitantly, 

identifying molecules that require such precise methods is an on-going challenge. In this 

dissertation, it was shown that the reactive astrophysical radicals CaOH and SrOH, which 

were hitherto only well described by very computationally resource intensive methods such 

as MRCI and CCSD, could be studied by the GVVPT2 method. The GVVPT2 has the 

ability to provide balanced descriptions of dynamic and static electron correlations, as 

shown in chapter IV. This is particularly important for studying larger systems for which 

MRCI and CCSD are no longer feasible. In addition to choosing the right method for the 

right systems, it is important to choose the right basis sets and model spaces. Improper 

choices could lead to inaccurate results or incapability to reach convergence. 

The challenges in the active space selection protocol have motivated us to use ML 

to systematize this process. We chose the reinforcement learning algorithm as the 

foundation to build our ML routine so that the model can later be implemented in the 

studies of different unknown systems. Although the ML program is still in its early state, 
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chapter VI has demonstrated that our model could help solve the user-specified active space 

problem within GVVPT2. 

For the studies of CaOH and SrOH, our future plan is to investigate their low-lying 

excited states and their dimerization pathways to have a better understanding of the 

characteristics of these molecules along with their potential applications in the laser cooling 

technologies. The future directions for the ML project include programing the machine to 

have more awareness of the chemical environments around target molecules as well as 

testing the model on larger systems to determine its transferability between different 

molecular structures. If we could improve the active space selection ability of the machine, 

it would open more opportunities for the search of new materials on Earth and in space.  

 

 



110 
 

 

 

REFERENCES 

(1)  Niu, S.; Hall, M. B. Theoretical Studies on Reactions of Transition-Metal 

Complexes. Chem. Rev. 2000, 100, 353–406. 

(2)  Comba, P.; Kerscher, M. Computation of Structures and Properties of Transition 

Metal Compounds. Coord. Chem. Rev. 2009, 253, 564–574. 

(3)  Vogiatzis, K. D.; Polynski, M. V; Kirkland, J. K.; Townsend, J.; Hashemi, A.; Liu, 

C.; Pidko, E. A. Computational Approach to Molecular Catalysis by 3d Transition 

Metals: Challenges and Opportunities. Chem. Rev. 2019, 119, 2453–2523. 

(4)  Kodikara, M. S.; Stranger, R.; Humphrey, M. G. Computational Studies of the 

Nonlinear Optical Properties of Organometallic Complexes. Coord. Chem. Rev. 

2018, 375, 389–409. 

(5)  Sperger, T.; Sanhueza, I. A.; Kalvet, I.; Schoenebeck, F. Computational Studies of 

Synthetically Relevant Homogeneous Organometallic Catalysis Involving Ni, Pd, 

Ir, and Rh: An Overview of Commonly Employed DFT Methods and Mechanistic 

Insights. Chem. Rev. 2015, 115, 9532–9586. 

(6)  González, L.; Escudero, D.; Serrano-Andrés, L. Progress and Challenges in the 

Calculation of Electronic Excited States. ChemPhysChem 2012, 13, 28–51. 

(7)  Hafner, J. Ab-Initio Simulations of Materials Using VASP: Density-Functional 

Theory and Beyond. J. Comput. Chem. 2008, 29, 2044–2078. 

(8)  Zhu, Z.; Guan, J.; Tománek, D. Strain-Induced Metal-Semiconductor Transition in 

Monolayers and Bilayers of Gray Arsenic: A Computational Study. Phys. Rev. B 



111 
 

2015, 91, 161404. 

(9)  Groves, C. Simulating Charge Transport in Organic Semiconductors and Devices: 

A Review. Reports Prog. Phys. 2016, 80, 26502. 

(10)  Wang, X.; Li, T.; Cheng, Z.; Wang, X.-L.; Chen, H. Recent Advances in Dirac Spin-

Gapless Semiconductors. Appl. Phys. Rev. 2018, 5, 41103. 

(11)  Hu, H.; Yang, W. Free Energies of Chemical Reactions in Solution and in Enzymes 

with Ab Initio Quantum Mechanics/Molecular Mechanics Methods. Annu. Rev. 

Phys. Chem. 2008, 59, 573–601. 

(12)  Cole, D. J.; Hine, N. D. M. Applications of Large-Scale Density Functional Theory 

in Biology. J. Phys. Condens. Matter 2016, 28, 393001. 

(13)  Dirac, P. A. M.; Fowler, R. H. Quantum Mechanics of Many-Electron Systems. 

Proc. Math. Phys. Eng. Sci. 1929, 123, 714–733. 

(14)  Tew, D. P.; Klopper, W.; Helgaker, T. Electron Correlation: The Many-Body 

Problem at the Heart of Chemistry. J. Comput. Chem. 2007, 28, 1307–1320. 

(15)  Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. 

Phys. Rev. 1926, 28, 1049–1070. 

(16)  Raghavachari, K.; Anderson, J. B. Electron Correlation Effects in Molecules. J. 

Phys. Chem. 1996, 100, 12960–12973. 

(17)  Pople, J. A.; Binkley, J. S.; Seeger, R. Theoretical Models Incorporating Electron 

Correlation. Int. J. Quantum Chem. 1976, 10, 1–19. 

(18)  Hartree, D. R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. 

Part I. Theory and Methods. Math. Proc. Cambridge Philos. Soc. 1928, 24, 89–110. 

(19)  Fock, V. Näherungsmethode Zur Lösung Des Quantenmechanischen 



112 
 

Mehrkörperproblems. Z. Phys. 1930, 61, 126–148. 

(20)  Slater, J. C. Note on Hartree’s Method. Phys. Rev. 1930, 35, 210–211. 

(21)  Echenique, P.; Alonso, J. L. A Mathematical and Computational Review of Hartree–

Fock SCF Methods in Quantum Chemistry. Mol. Phys. 2007, 105, 3057–3098. 

(22)  Ghosh, S.; Verma, P.; Cramer, C. J.; Gagliardi, L.; Truhlar, D. G. Combining Wave 

Function Methods with Density Functional Theory for Excited States. Chem. Rev. 

2018, 118, 7249–7292. 

(23)  Rimola, A.; Ferrero, S.; Germain, A.; Corno, M.; Ugliengo, P. Computational 

Surface Modelling of Ices and Minerals of Interstellar Interest—Insights and 

Perspectives. Minerals 2021, 11, 26. 

(24)  Shavitt, I. The Method of Configuration Interaction. In Methods of Electronic 

Structure Theory; Schaefer III, H. F., Ed.; Springer US: Boston, MA, 1977; pp 189–

275. 

(25)  Shavitt, I. The History and Evolution of Configuration Interaction. Mol. Phys. 1998, 

94, 3–17. 

(26)  Sherrill, C. D.; Schaefer III, H. F. The Configuration Interaction Method: Advances 

in Highly Correlated Approaches. In Advances in Quantum Chemistry; Löwdin, P.-

O., Sabin, J. R., Zerner, M. C., Brändas, E., Eds.; Academic Press: San Diego, 1999; 

Vol. 34, pp 143–269. 

(27)  Čársky, P. Configuration Interaction. In Encyclopedia of Computational Chemistry; 

Schleyer, P. v. R., Clark, N. L., Gasteiger, J., Schaefer III, H. F., Schreiner, P. R., 

Eds.; Wiley: Chichester, 1998; pp 485–497. 

(28)  Møller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron 



113 
 

Systems. Phys. Rev. 1934, 46, 618–622. 

(29)  Gauss, J. Coupled-Cluster Theory. In Encyclopedia of Computational Chemistry; 

Schleyer, P. v. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer 

III, H. F., Schreiner, P. R., Eds.; Wiley: Chichester, 1998; pp 615–636. 

(30)  Buenker, R. J.; Peyerimhoff, S. D.; Butscher, W. Applicability of the Multi-

Reference Double-Excitation CI (MRD-CI) Method to the Calculation of Electronic 

Wavefunctions and Comparison with Related Techniques. Mol. Phys. 1978, 35, 

771–791. 

(31)  Szalay, P. G.; Müller, T.; Gidofalvi, G.; Lischka, H.; Shepard, R. Multiconfiguration 

Self-Consistent Field and Multireference Configuration Interaction Methods and 

Applications. Chem. Rev. 2012, 112, 108–181. 

(32)  Roos, B. O.; Linse, P.; Siegbahn, P. E. M.; Blomberg, M. R. A. A Simple Method 

for the Evaluation of the Second-Order-Perturbation Energy from External Double-

Excitations with a CASSCF Reference Wavefunction. Chem. Phys. 1982, 66, 197–

207. 

(33)  Andersson, K.; Malmqvist, P. A.; Roos, B. O.; Sadlej, A. J.; Wolinski, K. Second-

Order Perturbation Theory with a CASSCF Reference Function. J. Phys. Chem. 

1990, 94, 5483–5488. 

(34)  Andersson, K.; Malmqvist, P.; Roos, B. O. Second‐order Perturbation Theory with 

a Complete Active Space Self‐consistent Field Reference Function. J. Chem. Phys. 

1992, 96, 1218–1226. 

(35)  Werner, H.-J. Third-Order Multireference Perturbation Theory The CASPT3 

Method. Mol. Phys. 1996, 89, 645–661. 



114 
 

(36)  Jiang, W.; Khait, Y. G.; Hoffmann, M. R. Configuration-Driven Unitary Group 

Approach for Generalized Van Vleck Variant Multireference Perturbation Theory. 

J. Phys. Chem. A 2009, 113, 4374–4380. 

(37)  Schmidt, M. W.; Gordon, M. S. The Construction and Interpretation of MCSCF 

Wavefunctions. Annu. Rev. Phys. Chem. 1998, 49, 233–266. 

(38)  Shepard, R. The Multiconfiguration Self-Consistent Field Method. In Advances in 

Chemical Physics; Lawley, K. P., Ed.; John Wiley & Sons: New York, 1987; pp 63–

200. 

(39)  Köhn, A.; Hanauer, M.; Mück, L. A.; Jagau, T.-C.; Gauss, J. State-Specific 

Multireference Coupled-Cluster Theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 

2013, 3, 176–197. 

(40)  Čárský, P.; Paldus, J.; Pittner, J. Recent Progress in Coupled Cluster Methods : 

Theory and Applications; Springer: Dordrecht; New York, 2010. 

(41)  Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, 

B864–B871. 

(42)  Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and 

Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. 

(43)  Pople, J. A.; Gill, P. M. W.; Johnson, B. G. Kohn—Sham Density-Functional 

Theory within a Finite Basis Set. Chem. Phys. Lett. 1992, 199, 557–560. 

(44)  Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford 

University Press: New York, 1995. 

(45)  Kohn, W.; Becke, A. D.; Parr, R. G. Density Functional Theory of Electronic 

Structure. J. Phys. Chem. 1996, 100, 12974–12980. 



115 
 

(46)  Mardirossian, N.; Head-Gordon, M. Thirty Years of Density Functional Theory in 

Computational Chemistry: An Overview and Extensive Assessment of 200 Density 

Functionals. Mol. Phys. 2017, 115, 2315–2372. 

(47)  Bickelhaupt, F. M.; Baerends, E. J. Kohn-Sham Density Functional Theory: 

Predicting and Understanding Chemistry. In Reviews in Computational Chemistry; 

Lipkowitz, K. B., Boyd, D. B., Eds.; John Wiley & Sons: New Jersey, 2007; pp 1–

86. 

(48)  Dreuw, A.; Head-Gordon, M. Single-Reference Ab Initio Methods for the 

Calculation of Excited States of Large Molecules. Chem. Rev. 2005, 105, 4009–

4037. 

(49)  Yu, H. S.; Li, S. L.; Truhlar, D. G. Perspective: Kohn-Sham Density Functional 

Theory Descending a Staircase. J. Chem. Phys. 2016, 145, 130901. 

(50)  Tsuneda, T. Density Functional Theory in Quantum Chemistry; Springer: Tokyo, 

Japan, 2014. 

(51)  Thiel, W. Semiempirical Quantum–Chemical Methods. Wiley Interdiscip. Rev. 

Comput. Mol. Sci. 2014, 4, 145–157. 

(52)  Pan, J. Scaling up System Size in Materials Simulation. Nat. Comput. Sci. 2021, 1, 

95. 

(53)  Dewar, M. J. S.; Thiel, W. Ground States of Molecules. 38. The MNDO Method. 

Approximations and Parameters. J. Am. Chem. Soc. 1977, 99, 4899–4907. 

(54)  Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. Development and 

Use of Quantum Mechanical Molecular Models. 76. AM1: A New General Purpose 

Quantum Mechanical Molecular Model. J. Am. Chem. Soc. 1985, 107, 3902–3909. 



116 
 

(55)  Stewart, J. J. P. Optimization of Parameters for Semiempirical Methods I. Method. 

J. Comput. Chem. 1989, 10, 209–220. 

(56)  Stewart, J. J. P. Optimization of Parameters for Semiempirical Methods II. 

Applications. J. Comput. Chem. 1989, 10, 221–264. 

(57)  Allinger, N. L. Conformational Analysis. 130. MM2. A Hydrocarbon Force Field 

Utilizing V1 and V2 Torsional Terms. J. Am. Chem. Soc. 1977, 99, 8127–8134. 

(58)  Case, D. A.; Cheatham, T. E. 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M. J.; 

Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. The Amber Biomolecular 

Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. 

(59)  Christensen, A. S.; Kubař, T.; Cui, Q.; Elstner, M. Semiempirical Quantum 

Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical 

Applications. Chem. Rev. 2016, 116, 5301–5337. 

(60)  Zheng, M.; Waller, M. P. Adaptive Quantum Mechanics/Molecular Mechanics 

Methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 369–385. 

(61)  Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio 

Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 

Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. 

(62)  Schwabe, T.; Grimme, S. Theoretical Thermodynamics for Large Molecules: 

Walking the Thin Line between Accuracy and Computational Cost. Acc. Chem. Res. 

2008, 41, 569–579. 

(63)  Antony, J.; Grimme, S.; Liakos, D. G.; Neese, F. Protein-Ligand Interaction 

Energies with Dispersion Corrected Density Functional Theory and High-Level 

Wave Function Based Methods. J. Phys. Chem. A 2011, 115, 11210–11220. 



117 
 

(64)  Lonsdale, R.; Harvey, J. N.; Mulholland, A. J. Effects of Dispersion in Density 

Functional Based Quantum Mechanical/Molecular Mechanical Calculations on 

Cytochrome P450 Catalyzed Reactions. J. Chem. Theory Comput. 2012, 8, 4637–

4645. 

(65)  Moellmann, J.; Grimme, S. DFT-D3 Study of Some Molecular Crystals. J. Phys. 

Chem. C 2014, 118, 7615–7621. 

(66)  Zhang, H.-M.; Chen, S.-L. Include Dispersion in Quantum Chemical Modeling of 

Enzymatic Reactions: The Case of Isoaspartyl Dipeptidase. J. Chem. Theory 

Comput. 2015, 11, 2525–2535. 

(67)  Goerigk, L. Chapter 6 - A Comprehensive Overview of the DFT-D3 London-

Dispersion Correction. In Non-Covalent Interactions in Quantum Chemistry and 

Physics; Otero de la Roza, A., DiLabio, G., Eds.; Elsevier: Amsterdam, Netherlands, 

2017; pp 195–219. 

(68)  Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion 

Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. 

(69)  Novoselov, K. S.; Geim, A. K.; Morozov, S. V; Jiang, D.; Zhang, Y.; Dubonos, S. 

V; Grigorieva, I. V; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon 

Films. Science (80-. ). 2004, 306, 666–669. 

(70)  Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat Mater 2007, 6, 183–191. 

(71)  Novoselov, K. S.; Geim, A. K.; Morozov, S. V; Jiang, D.; Katsnelson, M. I.; 

Grigorieva, I. V; Dubonos, S. V; Firsov, A. A. Two-Dimensional Gas of Massless 

Dirac Fermions in Graphene. Nature 2005, 438, 197–200. 

(72)  Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; 



118 
 

Stormer, H. L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State 

Commun. 2008, 146, 351–355. 

(73)  Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The 

Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162. 

(74)  Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Electronic Transport in Two-

Dimensional Graphene. Rev. Mod. Phys. 2011, 83, 407–470. 

(75)  Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; 

Molle, A.; Akinwande, D. Silicene Field-Effect Transistors Operating at Room 

Temperature. Nat Nano 2015, 10, 227–231. 

(76)  Zhang, X.; Xie, H.; Hu, M.; Bao, H.; Yue, S.; Qin, G.; Su, G. Thermal Conductivity 

of Silicene Calculated Using an Optimized Stillinger-Weber Potential. Phys. Rev. B 

2014, 89, 54310. 

(77)  Guzmán-Verri, G. G.; Lew Yan Voon, L. C. Electronic Structure of Silicon-Based 

Nanostructures. Phys. Rev. B 2007, 76, 75131. 

(78)  Zhao, J.; Liu, H.; Yu, Z.; Quhe, R.; Zhou, S.; Wang, Y.; Liu, C. C.; Zhong, H.; Han, 

N.; Lu, J.; Yao, Y.; Wu, K. Rise of Silicene: A Competitive 2D Material. Prog. 

Mater. Sci. 2016, 83, 24–151. 

(79)  Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. 

C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling Experimental Evidence for 

Graphenelike Two-Dimensional Silicon. Phys. Rev. Lett. 2012, 108, 155501. 

(80)  Kara, A.; Enriquez, H.; Seitsonen, A. P.; Voon, L. C. L. Y.; Vizzini, S.; Aufray, B.; 

Oughaddou, H. A Review on Silicene — New Candidate for Electronics. Surf. Sci. 

Rep. 2012, 67, 1–18. 



119 
 

(81)  Le Lay, G. 2D Materials: Silicene Transistors. Nat Nano 2015, 10, 202–203. 

(82)  Shao, Z.-G.; Ye, X.-S.; Yang, L.; Wang, C.-L. First-Principles Calculation of 

Intrinsic Carrier Mobility of Silicene. J. Appl. Phys. 2013, 114, 93712. 

(83)  Ye, X.-S.; Shao, Z.-G.; Zhao, H.; Yang, L.; Wang, C.-L. Intrinsic Carrier Mobility 

of Germanene Is Larger than Graphene’s: First-Principle Calculations. RSC Adv. 

2014, 4, 21216–21220. 

(84)  Kane, C. L.; Mele, E. J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 

2005, 95, 226801. 

(85)  Ezawa, M. A Topological Insulator and Helical Zero Mode in Silicene under an 

Inhomogeneous Electric Field. New J. Phys. 2012, 14, 33003. 

(86)  Tahir, M.; Schwingenschlögl, U. Valley Polarized Quantum Hall Effect and 

Topological Insulator Phase Transitions in Silicene. Sci. Rep. 2013, 3, 1075. 

(87)  Ezawa, M. Monolayer Topological Insulators: Silicene, Germanene, and Stanene. J. 

Phys. Soc. Japan 2015, 84, 121003. 

(88)  Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. Experimental Observation of the 

Quantum Hall Effect and Berry’s Phase in Graphene. Nature 2005, 438, 201–204. 

(89)  Liu, C.-C.; Feng, W.; Yao, Y. Quantum Spin Hall Effect in Silicene and Two-

Dimensional Germanium. Phys. Rev. Lett. 2011, 107, 76802. 

(90)  Liu, C.-C.; Jiang, H.; Yao, Y. Low-Energy Effective Hamiltonian Involving Spin-

Orbit Coupling in Silicene and Two-Dimensional Germanium and Tin. Phys. Rev. 

B 2011, 84, 195430. 

(91)  Ezawa, M. Valley-Polarized Metals and Quantum Anomalous Hall Effect in 

Silicene. Phys. Rev. Lett. 2012, 109, 55502. 



120 
 

(92)  Pan, H.; Li, Z.; Liu, C.-C.; Zhu, G.; Qiao, Z.; Yao, Y. Valley-Polarized Quantum 

Anomalous Hall Effect in Silicene. Phys. Rev. Lett. 2014, 112, 106802. 

(93)  Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. 

Epitaxial Growth of a Silicene Sheet. Appl. Phys. Lett. 2010, 97, 223109. 

(94)  Feng, B.; Ding, Z.; Meng, S.; Yao, Y.; He, X.; Cheng, P.; Chen, L.; Wu, K. Evidence 

of Silicene in Honeycomb Structures of Silicon on Ag(111). Nano Lett. 2012, 12, 

3507–3511. 

(95)  Lin, C.-L.; Arafune, R.; Kawahara, K.; Tsukahara, N.; Minamitani, E.; Kim, Y.; 

Takagi, N.; Kawai, M. Structure of Silicene Grown on Ag(111). Appl. Phys. Express 

2012, 5, 45802. 

(96)  Jamgotchian, H.; Colignon, Y.; Hamzaoui, N.; Ealet, B.; Hoarau, J. Y.; Aufray, B.; 

Bibérian, J. P. Growth of Silicene Layers on Ag(111): Unexpected Effect of the 

Substrate Temperature. J. Phys. Condens. Matter 2012, 24, 172001. 

(97)  Chen, L.; Liu, C.-C.; Feng, B.; He, X.; Cheng, P.; Ding, Z.; Meng, S.; Yao, Y.; Wu, 

K. Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon. Phys. 

Rev. Lett. 2012, 109, 56804. 

(98)  Meng, L.; Wang, Y.; Zhang, L.; Du, S.; Wu, R.; Li, L.; Zhang, Y.; Li, G.; Zhou, H.; 

Hofer, W. A.; Gao, H.-J. Buckled Silicene Formation on Ir(111). Nano Lett. 2013, 

13, 685–690. 

(99)  Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, 

Y. Experimental Evidence for Epitaxial Silicene on Diboride Thin Films. Phys. Rev. 

Lett. 2012, 108, 245501. 

(100)  Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, 



121 
 

M.; Houssa, M.; Molle, A. Two-Dimensional Si Nanosheets with Local Hexagonal 

Structure on a MoS2 Surface. Adv. Mater. 2014, 26, 2096–2101. 

(101)  Aizawa, T.; Suehara, S.; Otani, S. Silicene on Zirconium Carbide (111). J. Phys. 

Chem. C 2014, 118, 23049–23057. 

(102)  Sadeddine, S.; Enriquez, H.; Bendounan, A.; Kumar Das, P.; Vobornik, I.; Kara, A.; 

Mayne, A. J.; Sirotti, F.; Dujardin, G.; Oughaddou, H. Compelling Experimental 

Evidence of a Dirac Cone in the Electronic Structure of a 2D Silicon Layer. Sci. Rep. 

2017, 7, 44400. 

(103)  Quhe, R.; Yuan, Y.; Zheng, J.; Wang, Y.; Ni, Z.; Shi, J.; Yu, D.; Yang, J.; Lu, J. 

Does the Dirac Cone Exist in Silicene on Metal Substrates? Sci. Rep. 2014, 4, 5476. 

(104)  Satta, M.; Colonna, S.; Flammini, R.; Cricenti, A.; Ronci, F. Silicon Reactivity at 

the Ag(111) Surface. Phys. Rev. Lett. 2015, 115, 26102. 

(105)  Han, N.; Liu, H.; Zhao, J. Novel Magnetic Monolayers of Transition Metal Silicide. 

J. Supercond. Nov. Magn. 2015, 28, 1755–1758. 

(106)  Dzade, N. Y.; Obodo, K. O.; Adjokatse, S. K.; Ashu, A. C.; Amankwah, E.; Atiso, 

C. D.; Bello, A. A.; Igumbor, E.; Nzabarinda, S. B.; Obodo, J. T.; Ogbuu, A. O.; 

Femi, O. E.; Udeigwe, J. O.; Waghmare, U. V. Silicene and Transition Metal Based 

Materials: Prediction of a Two-Dimensional Piezomagnet. J. Phys. Condens. Matter 

2010, 22, 375502. 

(107)  Zhang, X.-L.; Liu, L.-F.; Liu, W.-M. Quantum Anomalous Hall Effect and Tunable 

Topological States in 3d Transition Metals Doped Silicene. Sci. Rep. 2013, 3, 2908. 

(108)  Sahin, H.; Peeters, F. M. Adsorption of Alkali, Alkaline-Earth, and 3d Transition 

Metal Atoms on Silicene. Phys. Rev. B 2013, 87, 85423. 



122 
 

(109)  Bui, V. Q.; Pham, T.-T.; Nguyen, H.-V. S.; Le, H. M. Transition Metal (Fe and Cr) 

Adsorptions on Buckled and Planar Silicene Monolayers: A Density Functional 

Theory Investigation. J. Phys. Chem. C 2013, 117, 23364–23371. 

(110)  Kaloni, T. P.; Singh, N.; Schwingenschlögl, U. Prediction of a Quantum Anomalous 

Hall State in Co-Decorated Silicene. Phys. Rev. B 2014, 89, 35409. 

(111)  Lee, Y.; Yun, K.-H.; Cho, S. B.; Chung, Y.-C. Electronic Properties of Transition-

Metal-Decorated Silicene. ChemPhysChem 2014, 15, 4095–4099. 

(112)  Sun, X.; Wang, L.; Lin, H.; Hou, T.; Li, Y. Induce Magnetism into Silicene by 

Embedding Transition-Metal Atoms. Appl. Phys. Lett. 2015, 106, 222401. 

(113)  Wu, Q.; Zhang, J.-J.; Hao, P.; Ji, Z.; Dong, S.; Ling, C.; Chen, Q.; Wang, J. Versatile 

Titanium Silicide Monolayers with Prominent Ferromagnetic, Catalytic, and 

Superconducting Properties: Theoretical Prediction. J. Phys. Chem. Lett. 2016, 7, 

3723–3729. 

(114)  Popis, M. D.; Popis, S. V; Oncel, N.; Hoffmann, M. R.; Çakır, D. Study of Iridium 

Silicide Monolayers Using Density Functional Theory. J. Appl. Phys. 2018, 123, 

74301. 

(115)  Roueff, E. Microphysics and Astrophysical Observations: The Molecular 

Perspective. J. Phys. Conf. Ser. 2005, 4, 1–9. 

(116)  McGuire, B. A. 2018 Census of Interstellar, Circumstellar, Extragalactic, 

Protoplanetary Disk, and Exoplanetary Molecules. Astrophys. J. Suppl. Ser. 2018, 

239, 17. 

(117)  Matson, D. L.; Spilker, L. J.; Lebreton, J.-P. The Cassini/Huygens Mission to the 

Saturnian System. In The Cassini-Huygens Mission: Overview, Objectives and 



123 
 

Huygens Instrumentarium Volume 1; Russell, C. T., Ed.; Springer Netherlands: 

Dordrecht, 2003; pp 1–58. 

(118)  NASA’s Jet Propulsion Laboratory - California Institute of Technology 

https://www.jpl.nasa.gov/missions/cassini-huygens (accessed Sep 14, 2021). 

(119)  NASA Science - Solar System Exploration  

https://solarsystem.nasa.gov/missions/cassini/mission/quick-facts/ (accessed Sep 

14, 2021). 

(120)  Petrie, S.; Bohme, D. K. Ions in Space. Mass Spectrom. Rev. 2007, 26, 258–280. 

(121)  de Barros, A. L. F.; Bordalo, V.; Seperuelo Duarte, E.; F da Silveira, E.; Domaracka, 

A.; Rothard, H.; Boduch, P. Cosmic Ray Impact on Astrophysical Ices: Laboratory 

Studies on Heavy Ion Irradiation of Methane. A&A 2011, 531, A160. 

(122)  Allodi, M. A.; Baragiola, R. A.; Baratta, G. A.; Barucci, M. A.; Blake, G. A.; 

Boduch, P.; Brucato, J. R.; Contreras, C.; Cuylle, S. H.; Fulvio, D.; Gudipati, M. S.; 

Ioppolo, S.; Kaňuchová, Z.; Lignell, A.; Linnartz, H.; Palumbo, M. E.; Raut, U.; 

Rothard, H.; Salama, F.; Savchenko, E. V; Sciamma-O’Brien, E.; Strazzulla, G. 

Complementary and Emerging Techniques for Astrophysical Ices Processed in the 

Laboratory. Space Sci. Rev. 2013, 180, 101–175. 

(123)  López, A.; Tercero, B.; Kisiel, Z.; Daly, A. M.; Bermúdez, C.; Calcutt, H.; 

Marcelino, N.; Viti, S.; Drouin, B. J.; Medvedev, I. R.; Neese, C. F.; Pszczółkowski, 

L.; Alonso, J. L.; Cernicharo, J. Laboratory Characterization and Astrophysical 

Detection of Vibrationally Excited States of Vinyl Cyanide in Orion-KL. A&A 2014, 

572, A44. 

(124)  Danger, G.; Fresneau, A.; Abou Mrad, N.; de Marcellus, P.; Orthous-Daunay, F.-R.; 



124 
 

Duvernay, F.; Vuitton, V.; Le Sergeant d’Hendecourt, L.; Thissen, R.; Chiavassa, 

T. Insight into the Molecular Composition of Laboratory Organic Residues 

Produced from Interstellar/Pre-Cometary Ice Analogues Using Very High 

Resolution Mass Spectrometry. Geochim. Cosmochim. Acta 2016, 189, 184–196. 

(125)  Wilson, S. Theoretical Studies of Interstellar Radicals and Ions. Chem. Rev. 1980, 

80, 263–267. 

(126)  Kang, D.; Hou, Y.; Zeng, Q.; Dai, J. Unified First-Principles Equations of State of 

Deuterium-Tritium Mixtures in the Global Inertial Confinement Fusion Region. 

Matter Radiat. Extrem. 2020, 5, 55401. 

(127)  Weber, S.; Wu, Y.; Wang, J. Recent Progress in Atomic and Molecular Physics for 

Controlled Fusion and Astrophysics. Matter Radiat. Extrem. 2021, 6, 23002. 

(128)  Wan, M.; Yuan, D.; Jin, C.; Wang, F.; Yang, Y.; Yu, Y.; Shao, J. Laser Cooling of 

the AlCl Molecule with a Three-Electronic-Level Theoretical Model. J. Chem. Phys. 

2016, 145, 24309. 

(129)  Owens, A.; Clark, V. H. J.; Mitrushchenkov, A.; Yurchenko, S. N.; Tennyson, J. 

Theoretical Rovibronic Spectroscopy of the Calcium Monohydroxide Radical 

(CaOH). J. Chem. Phys. 2021, 154, 234302. 

(130)  Hoffmann, M. R. Canonical Van Vleck Quasidegenerate Perturbation Theory with 

Trigonometric Variables. J. Phys. Chem. 1996, 100, 6125–6130. 

(131)  Hoffmann, M. R.; Helgaker, T. Use of Density Functional Theory Orbitals in the 

GVVPT2 Variant of Second-Order Multistate Multireference Perturbation Theory. 

J. Phys. Chem. A 2015, 119, 1548–1553. 

(132)  Theis, D.; Khait, Y. G.; Hoffmann, M. R. GVVPT2 Energy Gradient Using a 



125 
 

Lagrangian Formulation. J. Chem. Phys. 2011, 135, 44117. 

(133)  Khait, Y. G.; Song, J.; Hoffmann, M. R. Explication and Revision of Generalized 

Van Vleck Perturbation Theory for Molecular Electronic Structure. J. Chem. Phys. 

2002, 117, 4133–4145. 

(134)  Khait, Y. G.; Song, J.; Hoffmann, M. R. Macroconfigurations in Molecular 

Electronic Structure Theory. Int. J. Quantum Chem. 2004, 99, 210–220. 

(135)  Hoy, M. B. Alexa, Siri, Cortana, and More: An Introduction to Voice Assistants. 

Med. Ref. Serv. Q. 2018, 37, 81–88. 

(136)  Darabant, A. S.; Borza, D.; Danescu, R. Recognizing Human Races through 

Machine Learning—A Multi-Network, Multi-Features Study. Mathematics 2021, 9, 

195. 

(137)  Sharma, A.; Meena, U. Undefeatable System Using Machine Learning. In 

Intelligent Computing and Applications; Dash, S. S., Das, S., Panigrahi, B. K., Eds.; 

Springer Singapore: Singapore, 2021; pp 759–767. 

(138)  García Cuenca, L.; Sanchez-Soriano, J.; Puertas, E.; Fernandez Andrés, J.; Aliane, 

N. Machine Learning Techniques for Undertaking Roundabouts in Autonomous 

Driving. Sensors 2019, 19, 2386. 

(139)  Jordan, M. I.; Mitchell, T. M. Machine Learning: Trends, Perspectives, and 

Prospects. Science (80-. ). 2015, 349, 255–260. 

(140)  Bzdok, D.; Krzywinski, M.; Altman, N. Machine Learning: Supervised Methods. 

Nat. Methods 2018, 15, 5–6. 

(141)  Ceriotti, M. Unsupervised Machine Learning in Atomistic Simulations, between 

Predictions and Understanding. J. Chem. Phys. 2019, 150, 150901. 



126 
 

(142)  Sutton, R. S. Introduction: The Challenge of Reinforcement Learning. In 

Reinforcement Learning; Sutton, R. S., Ed.; Springer US: Boston, MA, 1992; pp 1–

3. 

(143)  Liu, R.; Nageotte, F.; Zanne, P.; de Mathelin, M.; Dresp-Langley, B. Deep 

Reinforcement Learning for the Control of Robotic Manipulation: A Focussed Mini-

Review. Robotics 2021, 10, 22. 

(144)  Hady, M. F. A.; Schwenker, F. Semi-Supervised Learning. In Handbook on Neural 

Information Processing; Bianchini, M., Maggini, M., Jain, L. C., Eds.; Springer 

Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 215–239. 

(145)  Daniels, M. W.; Dvorkin, D.; Powers, R. K.; Kechris, K. Semi-Supervised Learning 

Using Hierarchical Mixture Models: Gene Essentiality Case Study. Math. Comput. 

Appl. 2021, 26, 40. 

(146)  Yu, H.; Sun, C.; Yang, W.; Yang, X.; Zuo, X. AL-ELM: One Uncertainty-Based 

Active Learning Algorithm Using Extreme Learning Machine. Neurocomputing 

2015, 166, 140–150. 

(147)  Gubaev, K.; Podryabinkin, E. V; Shapeev, A. V. Machine Learning of Molecular 

Properties: Locality and Active Learning. J. Chem. Phys. 2018, 148, 241727. 

(148)  Behler, J. Perspective: Machine Learning Potentials for Atomistic Simulations. J. 

Chem. Phys. 2016, 145, 170901. 

(149)  von Lilienfeld, O. A.; Burke, K. Retrospective on a Decade of Machine Learning 

for Chemical Discovery. Nat. Commun. 2020, 11, 4895. 

(150)  Westermayr, J.; Marquetand, P. Machine Learning for Electronically Excited States 

of Molecules. Chem. Rev. 2021, 121, 9873–9926. 



127 
 

(151)  Schleder, G. R.; Padilha, A. C. M.; Acosta, C. M.; Costa, M.; Fazzio, A. From DFT 

to Machine Learning: Recent Approaches to Materials Science–a Review. J. Phys. 

Mater. 2019, 2, 32001. 

(152)  Chandrasekaran, A.; Kamal, D.; Batra, R.; Kim, C.; Chen, L.; Ramprasad, R. 

Solving the Electronic Structure Problem with Machine Learning. npj Comput. 

Mater. 2019, 5, 22. 

(153)  Bogojeski, M.; Vogt-Maranto, L.; Tuckerman, M. E.; Müller, K.-R.; Burke, K. 

Quantum Chemical Accuracy from Density Functional Approximations via 

Machine Learning. Nat. Commun. 2020, 11, 5223. 

(154)  Jeong, W.; Stoneburner, S. J.; King, D.; Li, R.; Walker, A.; Lindh, R.; Gagliardi, L. 

Automation of Active Space Selection for Multireference Methods via Machine 

Learning on Chemical Bond Dissociation. J. Chem. Theory Comput. 2020, 16, 

2389–2399. 

(155)  Hermann, J.; Schätzle, Z.; Noé, F. Deep-Neural-Network Solution of the Electronic 

Schrödinger Equation. Nat. Chem. 2020, 12, 891–897. 

(156)  Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; 

Desmaison, A.; Antiga, L.; Lerer, A. Automatic Differentiation in PyTorch. NIPS-

W 2017. 

(157)  Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry : Introduction to Advanced 

Electronic Structure Theory; Dover: Mineola, New York, 1996. 

(158)  Shikano, Y.; Watanabe, H. C.; Nakanishi, K. M.; Ohnishi, Y. Post-Hartree–Fock 

Method in Quantum Chemistry for Quantum Computer. Eur. Phys. J. Spec. Top. 

2021, 230, 1037–1051. 



128 
 

(159)  Born, M.; Oppenheimer, R. Zur Quantentheorie Der Molekeln. Ann. Phys. 1927, 

389, 457–484. 

(160)  Pauli, W. Über Den Zusammenhang Des Abschlusses Der Elektronengruppen Im 

Atom Mit Der Komplexstruktur Der Spektren. Z. Phys. 1925, 31, 765–783. 

(161)  Lieb, E. H. Variational Principle for Many-Fermion Systems. Phys. Rev. Lett. 1981, 

46, 457–459. 

(162)  Löwdin, P.-O. Quantum Theory of Many-Particle Systems. II. Study of the Ordinary 

Hartree-Fock Approximation. Phys. Rev. 1955, 97, 1490–1508. 

(163)  Roothaan, C. C. J. New Developments in Molecular Orbital Theory. Rev. Mod. 

Phys. 1951, 23, 69–89. 

(164)  Hall, G. G.; Lennard-Jones, J. E. The Molecular Orbital Theory of Chemical 

Valency VIII. A Method of Calculating Ionization Potentials. Proc. Math. Phys. 

Eng. Sci. 1951, 205, 541–552. 

(165)  Thomas, L. H. The Calculation of Atomic Fields. Math. Proc. Camb. Philos. Soc. 

1927, 23, 542–548. 

(166)  Fermi, E. Eine Statistische Methode Zur Bestimmung Einiger Eigenschaften Des 

Atoms Und Ihre Anwendung Auf Die Theorie Des Periodischen Systems Der 

Elemente. Z. Phys. 1928, 48, 73–79. 

(167)  Burke, K. Perspective on Density Functional Theory. J. Chem. Phys. 2012, 136, 

150901. 

(168)  Sholl, D. S.; Steckel, J. A. Density Functional Theory : A Practical Introduction; 

Wiley: Hoboken, NJ, 2009. 

(169)  Wang, Y. A.; Govind, N.; Carter, E. A. Orbital-Free Kinetic-Energy Density 



129 
 

Functionals with a Density-Dependent Kernel. Phys. Rev. B 1999, 60, 16350–16358. 

(170)  Xia, J.; Huang, C.; Shin, I.; Carter, E. A. Can Orbital-Free Density Functional 

Theory Simulate Molecules? J. Chem. Phys. 2012, 136, 84102. 

(171)  Levine, I. N. Quantum Chemistry; Prentice Hall: Upper Saddle River, N.J., 2000. 

(172)  Kryachko, E. S.; Ludeña, E. V. Density Functional Theory: Foundations Reviewed. 

Phys. Rep. 2014, 544, 123–239. 

(173)  Woods, N. D.; Payne, M. C.; Hasnip, P. J. Computing the Self-Consistent Field in 

Kohn–Sham Density Functional Theory. J. Phys. Condens. Matter 2019, 31, 

453001. 

(174)  Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid 

Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. 

J. Phys. 1980, 58, 1200–1211. 

(175)  Vosko, S. H.; Wilk, L. Influence of an Improved Local-Spin-Density Correlation-

Energy Functional on the Cohesive Energy of Alkali Metals. Phys. Rev. B 1980, 22, 

3812–3815. 

(176)  Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional 

Approximations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048–5079. 

(177)  Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the 

Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45, 13244–13249. 

(178)  Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct 

Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. 

(179)  Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, 

D. J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the 



130 
 

Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 

1992, 46, 6671–6687. 

(180)  Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made 

Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 

(181)  Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the 

Inhomogeneous Electron Gas. Phys. Rev. B 1986, 33, 8822–8824. 

(182)  Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-

Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 

785–789. 

(183)  Becke, A. D. A New Mixing of Hartree–Fock and Local Density‐functional 

Theories. J. Chem. Phys. 1993, 98, 1372–1377. 

(184)  Perdew, J. P.; Schmidt, K. Jacob’s Ladder of Density Functional Approximations 

for the Exchange-Correlation Energy. AIP Conf. Proc. 2001, 577, 1–20. 

(185)  Makov, G.; Payne, M. C. Periodic Boundary Conditions in Ab Initio Calculations. 

Phys. Rev. B 1995, 51, 4014–4022. 

(186)  Bloch, F. Über Die Quantenmechanik Der Elektronen in Kristallgittern. Z. Phys. 

1929, 52, 555–600. 

(187)  Kittel, C. Introduction to Solid State Physics, 7th ed.; Wiley: New York, NY, 1996. 

(188)  Bylaska, E. J. Chapter Five - Plane-Wave DFT Methods for Chemistry. In Annual 

Reports in Computational Chemistry; Dixon, D. A., Ed.; Elsevier: Amsterdam, 

Netherlands, 2017; Vol. 13, pp 185–228. 

(189)  Blöchl, P. E.; Först, C. J.; Schimpl, J. Projector Augmented Wave Method: Ab Initio 

Molecular Dynamics with Full Wave Functions. Bull. Mater. Sci. 2003, 26, 33–41. 



131 
 

(190)  Herring, C. A New Method for Calculating Wave Functions in Crystals. Phys. Rev. 

1940, 57, 1169–1177. 

(191)  Antončík, E. Approximate Formulation of the Orthogonalized Plane-Wave Method. 

J. Phys. Chem. Solids 1959, 10, 314–320. 

(192)  Phillips, J. C.; Kleinman, L. New Method for Calculating Wave Functions in 

Crystals and Molecules. Phys. Rev. 1959, 116, 287–294. 

(193)  Phillips, J. C. Energy-Band Interpolation Scheme Based on a Pseudopotential. Phys. 

Rev. 1958, 112, 685–695. 

(194)  Austin, B. J.; Heine, V.; Sham, L. J. General Theory of Pseudopotentials. Phys. Rev. 

1962, 127, 276–282. 

(195)  Bachelet, G. B.; Hamann, D. R.; Schlüter, M. Pseudopotentials That Work: From H 

to Pu. Phys. Rev. B 1982, 26, 4199–4228. 

(196)  Yin, M. T.; Cohen, M. L. Theory of Ab Initio Pseudopotential Calculations. Phys. 

Rev. B 1982, 25, 7403–7412. 

(197)  Hamann, D. R. Generalized Norm-Conserving Pseudopotentials. Phys. Rev. B 1989, 

40, 2980–2987. 

(198)  Troullier, N.; Martins, J. L. Efficient Pseudopotentials for Plane-Wave Calculations. 

Phys. Rev. B 1991, 43, 1993–2006. 

(199)  Slater, J. C. Wave Functions in a Periodic Potential. Phys. Rev. 1937, 51, 846–851. 

(200)  Korringa, J. On the Calculation of the Energy of a Bloch Wave in a Metal. Physica 

1947, 13, 392–400. 

(201)  Kohn, W.; Rostoker, N. Solution of the Schrödinger Equation in Periodic Lattices 

with an Application to Metallic Lithium. Phys. Rev. 1954, 94, 1111–1120. 



132 
 

(202)  Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–

17979. 

(203)  Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector 

Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. 

(204)  Holzwarth, N. A. W.; Matthews, G. E.; Dunning, R. B.; Tackett, A. R.; Zeng, Y. 

Comparison of the Projector Augmented-Wave, Pseudopotential, and Linearized 

Augmented-Plane-Wave Formalisms for Density-Functional Calculations of Solids. 

Phys. Rev. B 1997, 55, 2005–2017. 

(205)  Valiev, M.; Weare, J. H. The Projector-Augmented Plane Wave Method Applied to 

Molecular Bonding. J. Phys. Chem. A 1999, 103, 10588–10601. 

(206)  Runge, E.; Gross, E. K. U. Density-Functional Theory for Time-Dependent 

Systems. Phys. Rev. Lett. 1984, 52, 997–1000. 

(207)  Petersilka, M.; Gossmann, U. J.; Gross, E. K. U. Excitation Energies from Time-

Dependent Density-Functional Theory. Phys. Rev. Lett. 1996, 76, 1212–1215. 

(208)  van Leeuwen, R. Causality and Symmetry in Time-Dependent Density-Functional 

Theory. Phys. Rev. Lett. 1998, 80, 1280–1283. 

(209)  van Leeuwen, R. Mapping from Densities to Potentials in Time-Dependent Density-

Functional Theory. Phys. Rev. Lett. 1999, 82, 3863–3866. 

(210)  Burke, K.; Werschnik, J.; Gross, E. K. U. Time-Dependent Density Functional 

Theory: Past, Present, and Future. J. Chem. Phys. 2005, 123, 62206. 

(211)  Silva-Junior, M. R.; Schreiber, M.; Sauer, S. P. A.; Thiel, W. Benchmarks for 

Electronically Excited States: Time-Dependent Density Functional Theory and 

Density Functional Theory Based Multireference Configuration Interaction. J. 



133 
 

Chem. Phys. 2008, 129, 104103. 

(212)  Laurent, A. D.; Jacquemin, D. TD-DFT Benchmarks: A Review. Int. J. Quantum 

Chem. 2013, 113, 2019–2039. 

(213)  Adamo, C.; Jacquemin, D. The Calculations of Excited-State Properties with Time-

Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845–856. 

(214)  Rayleigh, J. W. S. B. The Theory of Sound; Macmillan and Co.: London, 1877. 

(215)  Sakurai, J. J.; Napolitano, J. Modern Quantum Mechanics; Cambridge University 

Press: Cambridge, 2020. 

(216)  Cremer, D. Møller–Plesset Perturbation Theory: From Small Molecule Methods to 

Methods for Thousands of Atoms. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 

1, 509–530. 

(217)  Head-Gordon, M.; Pople, J. A.; Frisch, M. J. MP2 Energy Evaluation by Direct 

Methods. Chem. Phys. Lett. 1988, 153, 503–506. 

(218)  Grimme, S. Improved Second-Order Møller–Plesset Perturbation Theory by 

Separate Scaling of Parallel- and Antiparallel-Spin Pair Correlation Energies. J. 

Chem. Phys. 2003, 118, 9095–9102. 

(219)  Jensen, H. J. A.; Jørgensen, P.; Ågren, H.; Olsen, J. Second‐order Møller–Plesset 

Perturbation Theory as a Configuration and Orbital Generator in Multiconfiguration 

Self‐consistent Field Calculations. J. Chem. Phys. 1988, 88, 3834–3839. 

(220)  Roos, B. O.; Taylor, P. R.; Sigbahn, P. E. M. A Complete Active Space SCF Method 

(CASSCF) Using a Density Matrix Formulated Super-CI Approach. Chem. Phys. 

1980, 48, 157–173. 

(221)  Olsen, J.; Roos, B. O.; Jørgensen, P.; Jensen, H. J. A. Determinant Based 



134 
 

Configuration Interaction Algorithms for Complete and Restricted Configuration 

Interaction Spaces. J. Chem. Phys. 1988, 89, 2185–2192. 

(222)  Townsend, J.; Kirkland, J. K.; Vogiatzis, K. D. Chapter 3 - Post-Hartree-Fock 

Methods: Configuration Interaction, Many-Body Perturbation Theory, Coupled-

Cluster Theory. In Developments in Physical & Theoretical Chemistry; Blinder, S. 

M., House, J. E., Eds.; Elsevier: Amsterdam, Netherlands, 2019; pp 63–117. 

(223)  Gérard, H.; Davidson, E. R.; Eisenstein, O. Comparison of α CH and CF Activation 

in Alkyl Transition Metal Complexes: A DFT and CASSCF Study. Mol. Phys. 2002, 

100, 533–540. 

(224)  Chen, M.; Dixon, D. A. Low-Lying Electronic States of Irn Clusters with n = 2–8 

Predicted at the DFT, CASSCF, and CCSD(T) Levels. J. Phys. Chem. A 2013, 117, 

3676–3688. 

(225)  Blaziak, K.; Tzeli, D.; Xantheas, S. S.; Uggerud, E. The Activation of Carbon 

Dioxide by First Row Transition Metals (Sc–Zn). Phys. Chem. Chem. Phys. 2018, 

20, 25495–25505. 

(226)  Sobolewski, A. L.; Domcke, W.; Dedonder-Lardeux, C.; Jouvet, C. Excited-State 

Hydrogen Detachment and Hydrogen Transfer Driven by Repulsive 1πσ* States: A 

New Paradigm for Nonradiative Decay in Aromatic Biomolecules. Phys. Chem. 

Chem. Phys. 2002, 4, 1093–1100. 

(227)  Francés-Monerris, A.; Segarra-Martí, J.; Merchán, M.; Roca-Sanjuán, D. Complete-

Active-Space Second-Order Perturbation Theory (CASPT2//CASSCF) Study of the 

Dissociative Electron Attachment in Canonical DNA Nucleobases Caused by Low-

Energy Electrons (0-3 EV). J. Chem. Phys. 2015, 143, 215101. 



135 
 

(228)  Olsen, J. The CASSCF Method: A Perspective and Commentary. Int. J. Quantum 

Chem. 2011, 111, 3267–3272. 

(229)  Friesner, R. A. Ab Initio Quantum Chemistry: Methodology and Applications. Proc. 

Natl. Acad. Sci. U.S.A. 2005, 102, 6648–6653. 

(230)  Shavitt, I.; Redmon, L. T. Quasidegenerate Perturbation Theories. A Canonical van 

Vleck Formalism and Its Relationship to Other Approaches. J. Chem. Phys. 1980, 

73, 5711–5717. 

(231)  Kuhler, K.; Hoffmann, M. R. A Nondiagonal Quasidegenerate Fourth-Order 

Perturbation Theory. J. Math. Chem. 1996, 20, 351–364. 

(232)  Autschbach, J. Perspective: Relativistic Effects. J. Chem. Phys. 2012, 136, 150902. 

(233)  Dyall, K. G. Interfacing Relativistic and Nonrelativistic Methods. I. Normalized 

Elimination of the Small Component in the Modified Dirac Equation. J. Chem. Phys. 

1997, 106, 9618–9626. 

(234)  Liu, W. Ideas of Relativistic Quantum Chemistry. Mol. Phys. 2010, 108, 1679–

1706. 

(235)  Liu, W.; Peng, D. Exact Two-Component Hamiltonians Revisited. J. Chem. Phys. 

2009, 131, 31104. 

(236)  Cheng, L.; Gauss, J. Analytic Energy Gradients for the Spin-Free Exact Two-

Component Theory Using an Exact Block Diagonalization for the One-Electron 

Dirac Hamiltonian. J. Chem. Phys. 2011, 135, 84114. 

(237)  Li, Z.; Suo, B.; Zhang, Y.; Xiao, Y.; Liu, W. Combining Spin-Adapted Open-Shell 

TD-DFT with Spin–Orbit Coupling. Mol. Phys. 2013, 111, 3741–3755. 

(238)  Li, Z.; Xiao, Y.; Liu, W. On the Spin Separation of Algebraic Two-Component 



136 
 

Relativistic Hamiltonians: Molecular Properties. J. Chem. Phys. 2014, 141, 54111. 

(239)  Li, Z.; Xiao, Y.; Liu, W. On the Spin Separation of Algebraic Two-Component 

Relativistic Hamiltonians. J. Chem. Phys. 2012, 137, 154114. 

(240)  Autschbach, J.; Peng, D.; Reiher, M. Two-Component Relativistic Calculations of 

Electric-Field Gradients Using Exact Decoupling Methods: Spin–Orbit and Picture-

Change Effects. J. Chem. Theory Comput. 2012, 8, 4239–4248. 

(241)  Cheng, L.; Stopkowicz, S.; Gauss, J. Analytic Energy Derivatives in Relativistic 

Quantum Chemistry. Int. J. Quantum Chem. 2014, 114, 1108–1127. 

(242)  Saue, T. Relativistic Hamiltonians for Chemistry: A Primer. ChemPhysChem 2011, 

12, 3077–3094. 

(243)  Cheng, L.; Gauss, J.; Stanton, J. F. Treatment of Scalar-Relativistic Effects on 

Nuclear Magnetic Shieldings Using a Spin-Free Exact-Two-Component Approach. 

J. Chem. Phys. 2013, 139, 54105. 

(244)  Cheng, L.; Gauss, J. Perturbative Treatment of Spin-Orbit Coupling within Spin-

Free Exact Two-Component Theory. J. Chem. Phys. 2014, 141, 164107. 

(245)  Peng, D.; Middendorf, N.; Weigend, F.; Reiher, M. An Efficient Implementation of 

Two-Component Relativistic Exact-Decoupling Methods for Large Molecules. J. 

Chem. Phys. 2013, 138, 184105. 

(246)  Iliaš, M.; Jensen, H. J. A.; Kellö, V.; Roos, B. O.; Urban, M. Theoretical Study of 

PbO and the PbO Anion. Chem. Phys. Lett. 2005, 408, 210–215. 

(247)  Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings 

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and 

Data Mining; KDD ’16; Association for Computing Machinery: New York, NY, 



137 
 

USA, 2016; pp 785–794. 

(248)  Golub, P.; Antalik, A.; Veis, L.; Brabec, J. Automatic Selection of Active Spaces 

for Strongly Correlated Systems Using Machine Learning Algorithms. arXiv Prepr. 

arXiv2011.14715 2020. 

(249)  White, S. R. Density Matrix Formulation for Quantum Renormalization Groups. 

Phys. Rev. Lett. 1992, 69, 2863–2866. 

(250)  White, S. R. Density-Matrix Algorithms for Quantum Renormalization Groups. 

Phys. Rev. B 1993, 48, 10345–10356. 

(251)  Schollwöck, U. The Density-Matrix Renormalization Group. Rev. Mod. Phys. 2005, 

77, 259–315. 

(252)  Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Lay, G. Le. Germanene: A Novel 

Two-Dimensional Germanium Allotrope Akin to Graphene and Silicene. New J. 

Phys. 2014, 16, 95002. 

(253)  Acun, A.; Zhang, L.; Bampoulis, P.; Farmanbar, M.; van Houselt, A.; Rudenko, A. 

N.; Lingenfelder, M.; Brocks, G.; Poelsema, B.; Katsnelson, M. I.; Zandvliet, H. J. 

W. Germanene: The Germanium Analogue of Graphene. J. Phys. Condens. Matter 

2015, 27, 443002. 

(254)  Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and One-

Dimensional Honeycomb Structures of Silicon and Germanium. Phys. Rev. Lett. 

2009, 102, 236804. 

(255)  Çakır, D.; Sahin, H.; Peeters, F. M. Tuning of the Electronic and Optical Properties 

of Single-Layer Black Phosphorus by Strain. Phys. Rev. B 2014, 90, 205421. 

(256)  Çakır, D.; Sevik, C.; Peeters, F. M. Significant Effect of Stacking on the Electronic 



138 
 

and Optical Properties of Few-Layer Black Phosphorus. Phys. Rev. B 2015, 92, 

165406. 

(257)  Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; 

Kim, Y.-J.; Gorbachev, R. V; Georgiou, T.; Morozov, S. V; Grigorenko, A. N.; 

Geim, A. K.; Casiraghi, C.; Neto, A. H. C.; Novoselov, K. S. Strong Light-Matter 

Interactions in Heterostructures of Atomically Thin Films. Science (80-. ). 2013, 

340, 1311–1314. 

(258)  Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and 

Intrinsic Strength of Monolayer Graphene. Science (80-. ). 2008, 321, 385–388. 

(259)  Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS2. ACS 

Nano 2011, 5, 9703–9709. 

(260)  Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and Related 

Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod. Phys. 

2001, 73, 515–562. 

(261)  Togo, A.; Tanaka, I. First Principles Phonon Calculations in Materials Science. Scr. 

Mater. 2015, 108, 1–5. 

(262)  Paier, J.; Marsman, M.; Hummer, K.; Kresse, G.; Gerber, I. C.; Ángyán, J. G. 

Screened Hybrid Density Functionals Applied to Solids. J. Chem. Phys. 2006, 124, 

154709. 

(263)  Çakır, D.; Peeters, F. M.; Sevik, C. Mechanical and Thermal Properties of H-MX2 

(M = Cr, Mo, W; X = O, S, Se, Te) Monolayers: A Comparative Study. Appl. Phys. 

Lett. 2014, 104, 203110. 

(264)  Yu, L.; Ruzsinszky, A.; Perdew, J. P. Bending Two-Dimensional Materials To 



139 
 

Control Charge Localization and Fermi-Level Shift. Nano Lett. 2016, 16, 2444–

2449. 

(265)  Booth, T. J.; Blake, P.; Nair, R. R.; Jiang, D.; Hill, E. W.; Bangert, U.; Bleloch, A.; 

Gass, M.; Novoselov, K. S.; Katsnelson, M. I.; Geim, A. K. Macroscopic Graphene 

Membranes and Their Extraordinary Stiffness. Nano Lett. 2008, 8, 2442–2446. 

(266)  Tang, W.; Sanville, E.; Henkelman, G. A Grid-Based Bader Analysis Algorithm 

without Lattice Bias. J. Phys. Condens. Matter 2009, 21, 84204. 

(267)  Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved Grid-Based 

Algorithm for Bader Charge Allocation. J. Comput. Chem. 2007, 28, 899–908. 

(268)  Henkelman, G.; Arnaldsson, A.; Jónsson, H. A Fast and Robust Algorithm for Bader 

Decomposition of Charge Density. Comput. Mater. Sci. 2006, 36, 354–360. 

(269)  Yu, M.; Trinkle, D. R. Accurate and Efficient Algorithm for Bader Charge 

Integration. J. Chem. Phys. 2011, 134, 64111. 

(270)  Fatima; Can Oguz, I.; Çakır, D.; Hossain, S.; Mohottige, R.; Gulseren, O.; Oncel, 

N. On the Structural and Electronic Properties of Ir-Silicide Nanowires on Si(001) 

Surface. J. Appl. Phys. 2016, 120, 95303. 

(271)  Sun, Y.; Zhuo, Z.; Wu, X.; Yang, J. Room-Temperature Ferromagnetism in Two-

Dimensional Fe2Si Nanosheet with Enhanced Spin-Polarization Ratio. Nano Lett. 

2017, 17, 2771–2777. 

(272)  Yang, L.-M.; Bačić, V.; Popov, I. A.; Boldyrev, A. I.; Heine, T.; Frauenheim, T.; 

Ganz, E. Two-Dimensional Cu2Si Monolayer with Planar Hexacoordinate Copper 

and Silicon Bonding. J. Am. Chem. Soc. 2015, 137, 2757–2762. 

(273)  Yang, L.-M.; Popov, I. A.; Frauenheim, T.; Boldyrev, A. I.; Heine, T.; Bacic, V.; 



140 
 

Ganz, E. Revealing Unusual Chemical Bonding in Planar Hyper-Coordinate Ni2Ge 

and Quasi-Planar Ni2Si Two-Dimensional Crystals. Phys. Chem. Chem. Phys. 2015, 

17, 26043–26048. 

(274)  Liu, G.; Lei, X. L.; Wu, M. S.; Xu, B.; Ouyang, C. Y. Is Silicene Stable in O2? —

First-Principles Study of O2 Dissociation and O2-Dissociation–Induced Oxygen 

Atoms Adsorption on Free-Standing Silicene. EPL 2014, 106, 47001. 

(275)  McCurdy, H. E. Faster, Better, Cheaper : Low-Cost Innovation in the U.S. Space 

Program; Johns Hopkins University Press: Baltimore, 2001. 

(276)  Tennyson, J.; Yurchenko, S. N. ExoMol: Molecular Line Lists for Exoplanet and 

Other Atmospheres. Mon. Not. R. Astron. Soc. 2012, 425, 21–33. 

(277)  Bernath, P. F. Molecular Astronomy of Cool Stars and Sub-Stellar Objects. Int. Rev. 

Phys. Chem. 2009, 28, 681–709. 

(278)  Tennyson, J.; Yurchenko, S. N. Laboratory Spectra of Hot Molecules: Data Needs 

for Hot Super-Earth Exoplanets. Mol. Astrophys. 2017, 8, 1–18. 

(279)  Allard, F. The BT-Settl Model Atmospheres for Stars, Brown Dwarfs and Planets. 

Proc. Int. Astron. Union 2013, 8, 271–272. 

(280)  Rajpurohit, A. S.; Reylé, C.; Allard, F.; Homeier, D.; Schultheis, M.; Bessell, M. S.; 

Robin, A. C. The Effective Temperature Scale of M Dwarfs. Astron. Astrophys. 

2013, 556, A15. 

(281)  Wang, Y.; Owens, A.; Tennyson, J.; Yurchenko, S. N. MARVEL Analysis of the 

Measured High-Resolution Rovibronic Spectra of the Calcium Monohydroxide 

Radical (CaOH). Astrophys. J. Suppl. Ser. 2020, 248, 9. 

(282)  Bauschlicher, C. W.; Partridge, H. On the Dissociation Energy of CaOH and LiOH. 



141 
 

Chem. Phys. Lett. 1984, 106, 65–68. 

(283)  Bauschlicher, C. W.; Langhoff, S. R.; Partridge, H. Ab Initio Study of the Alkali 

and Alkaline‐earth Monohydroxides. J. Chem. Phys. 1986, 84, 901–909. 

(284)  Bauschlicher, C. W.; Langhoff, S. R.; Steimle, T. C.; Shirley, J. E. The Permanent 

Electric Dipole Moment of CaOH. J. Chem. Phys. 1990, 93, 4179–4186. 

(285)  Ortiz, J. V. Ground and Excited States of CaCH3, CaNH2, CaOH, and CaF through 

Electron Propagator Calculations. J. Chem. Phys. 1990, 92, 6728–6731. 

(286)  Kong, J.; Boyd, R. J. The 2Σ+ States of HBeO, HMgO, and HCaO. J. Chem. Phys. 

1996, 104, 4055–4060. 

(287)  Koput, J.; Peterson, K. A. Ab Initio Potential Energy Surface and 

Vibrational−Rotational Energy Levels of X2Σ+ CaOH. J. Phys. Chem. A 2002, 106, 

9595–9599. 

(288)  Theodorakopoulos, G.; Petsalakis, I. D.; Liebermann, H.-P.; Buenker, R. J.; Koput, 

J. Ab Initio Calculations on Electronic States of CaOH. J. Chem. Phys. 2002, 117, 

4810–4819. 

(289)  Taylor, C. M.; Chaudhuri, R. K.; Freed, K. F. Electronic Structure of the Calcium 

Monohydroxide Radical. J. Chem. Phys. 2005, 122, 44317. 

(290)  Kozyryev, I.; Steimle, T. C.; Yu, P.; Nguyen, D.-T.; Doyle, J. M. Determination of 

CaOH and CaOCH3 Vibrational Branching Ratios for Direct Laser Cooling and 

Trapping. New J. Phys. 2019, 21, 52002. 

(291)  Augustovičová, L. D.; Bohn, J. L. Ultracold Collisions of Polyatomic Molecules: 

CaOH. New J. Phys. 2019, 21, 103022. 

(292)  Baum, L.; Vilas, N. B.; Hallas, C.; Augenbraun, B. L.; Raval, S.; Mitra, D.; Doyle, 



142 
 

J. M. 1D Magneto-Optical Trap of Polyatomic Molecules. Phys. Rev. Lett. 2020, 

124, 133201. 

(293)  Baum, L.; Vilas, N. B.; Hallas, C.; Augenbraun, B. L.; Raval, S.; Mitra, D.; Doyle, 

J. M. Establishing a Nearly Closed Cycling Transition in a Polyatomic Molecule. 

Phys. Rev. A 2021, 103, 43111. 

(294)  Kozyryev, I.; Baum, L.; Matsuda, K.; Olson, P.; Hemmerling, B.; Doyle, J. M. 

Collisional Relaxation of Vibrational States of SrOH with He at 2 K. New J. Phys. 

2015, 17, 45003. 

(295)  Kozyryev, I.; Baum, L.; Matsuda, K.; Hemmerling, B.; Doyle, J. Radiation Pressure 

Force from Optical Cycling on a Polyatomic Molecule. J. Phys. B At. Mol. Opt. 

Phys. 2016, 49, 134002. 

(296)  Kozyryev, I.; Baum, L.; Matsuda, K.; Augenbraun, B. L.; Anderegg, L.; Sedlack, A. 

P.; Doyle, J. M. Sisyphus Laser Cooling of a Polyatomic Molecule. Phys. Rev. Lett. 

2017, 118, 173201. 

(297)  Morita, M.; Kłos, J.; Buchachenko, A. A.; Tscherbul, T. V. Cold Collisions of Heavy 

2Σ Molecules with Alkali-Metal Atoms in a Magnetic Field: Ab Initio Analysis and 

Prospects for Sympathetic Cooling of SrOH (2Σ+) by Li (2S). Phys. Rev. A 2017, 95, 

63421. 

(298)  Li, M.; Kłos, J.; Petrov, A.; Kotochigova, S. Emulating Optical Cycling Centers in 

Polyatomic Molecules. Commun. Phys. 2019, 2, 148. 

(299)  Kozyryev, I.; Lasner, Z.; Doyle, J. M. Enhanced Sensitivity to Ultralight Bosonic 

Dark Matter in the Spectra of the Linear Radical SrOH. Phys. Rev. A 2021, 103, 

43313. 



143 
 

(300)  Augenbraun, B. L.; Doyle, J. M.; Zelevinsky, T.; Kozyryev, I. Molecular 

Asymmetry and Optical Cycling: Laser Cooling Asymmetric Top Molecules. Phys. 

Rev. X 2020, 10, 31022. 

(301)  Krems, R. V. Cold Controlled Chemistry. Phys. Chem. Chem. Phys. 2008, 10, 4079–

4092. 

(302)  Tscherbul, T. V; Kłos, J. Magnetic Tuning of Ultracold Barrierless Chemical 

Reactions. Phys. Rev. Res. 2020, 2, 13117. 

(303)  Anderson, M. A.; Barclay, W. L.; Ziurys, L. M. The Millimeter-Wave Spectrum of 

the SrOH and SrOD Radicals. Chem. Phys. Lett. 1992, 196, 166–172. 

(304)  Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. 

I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–

1023. 

(305)  Feng, R.; Peterson, K. A. Correlation Consistent Basis Sets for Actinides. II. The 

Atoms Ac and Np–Lr. J. Chem. Phys. 2017, 147, 84108. 

(306)  Lu, Q.; Peterson, K. A. Correlation Consistent Basis Sets for Lanthanides: The 

Atoms La–Lu. J. Chem. Phys. 2016, 145, 54111. 

(307)  Li, M.; Coxon, J. A. High‐resolution Analysis of the Fundamental Bending 

Vibrations in the Ã 2Π and X̃ 2Σ+ States of CaOH and CaOD: Deperturbation of 

Renner–Teller, Spin–Orbit and K‐type Resonance Interactions. J. Chem. Phys. 

1995, 102, 2663–2674. 

(308)  Li, M.; Coxon, J. A. Dye Laser Excitation Studies of the Ã 2Π(100)/(020)–

X̃ 2Σ+(020)/(000) Bands of CaOD: Analysis of the Ã 2Π(100)∼(020) Fermi 

Resonance. J. Chem. Phys. 1996, 104, 4961–4977. 



144 
 

(309)  Shuman, E. S.; Barry, J. F.; DeMille, D. Laser Cooling of a Diatomic Molecule. 

Nature 2010, 467, 820–823. 

(310)  Zeppenfeld, M.; Englert, B. G. U.; Glöckner, R.; Prehn, A.; Mielenz, M.; Sommer, 

C.; van Buuren, L. D.; Motsch, M.; Rempe, G. Sisyphus Cooling of Electrically 

Trapped Polyatomic Molecules. Nature 2012, 491, 570–573. 

(311)  Prehn, A.; Ibrügger, M.; Glöckner, R.; Rempe, G.; Zeppenfeld, M. Optoelectrical 

Cooling of Polar Molecules to Submillikelvin Temperatures. Phys. Rev. Lett. 2016, 

116, 63005. 

(312)  Williams, H. J.; Caldwell, L.; Fitch, N. J.; Truppe, S.; Rodewald, J.; Hinds, E. A.; 

Sauer, B. E.; Tarbutt, M. R. Magnetic Trapping and Coherent Control of Laser-

Cooled Molecules. Phys. Rev. Lett. 2018, 120, 163201. 

(313)  McCarron, D. J.; Steinecker, M. H.; Zhu, Y.; DeMille, D. Magnetic Trapping of an 

Ultracold Gas of Polar Molecules. Phys. Rev. Lett. 2018, 121, 13202. 

(314)  Anderegg, L.; Augenbraun, B. L.; Bao, Y.; Burchesky, S.; Cheuk, L. W.; Ketterle, 

W.; Doyle, J. M. Laser Cooling of Optically Trapped Molecules. Nat. Phys. 2018, 

14, 890–893. 

(315)  Cheuk, L. W.; Anderegg, L.; Augenbraun, B. L.; Bao, Y.; Burchesky, S.; Ketterle, 

W.; Doyle, J. M. Λ-Enhanced Imaging of Molecules in an Optical Trap. Phys. Rev. 

Lett. 2018, 121, 83201. 

(316)  Hummon, M. T.; Yeo, M.; Stuhl, B. K.; Collopy, A. L.; Xia, Y.; Ye, J. 2D Magneto-

Optical Trapping of Diatomic Molecules. Phys. Rev. Lett. 2013, 110, 143001. 

(317)  Barry, J. F.; McCarron, D. J.; Norrgard, E. B.; Steinecker, M. H.; DeMille, D. 

Magneto-Optical Trapping of a Diatomic Molecule. Nature 2014, 512, 286–289. 



145 
 

(318)  Norrgard, E. B.; McCarron, D. J.; Steinecker, M. H.; Tarbutt, M. R.; DeMille, D. 

Submillikelvin Dipolar Molecules in a Radio-Frequency Magneto-Optical Trap. 

Phys. Rev. Lett. 2016, 116, 63004. 

(319)  Tscherbul, T. V; Kłos, J.; Buchachenko, A. A. Ultracold Spin-Polarized Mixtures of 

2Σ Molecules with S-State Atoms: Collisional Stability and Implications for 

Sympathetic Cooling. Phys. Rev. A 2011, 84, 40701. 

(320)  Tscherbul, T. V; Grinev, T. A.; Yu, H.-G.; Dalgarno, A.; Kłos, J.; Ma, L.; Alexander, 

M. H. Cold Collisions of Polyatomic Molecular Radicals with S-State Atoms in a 

Magnetic Field: An Ab Initio Study of He + CH2 (X̃) Collisions. J. Chem. Phys. 

2012, 137, 104302. 

(321)  Song, J.; Khait, Y. G.; Wang, H.; Hoffmann, M. R. Low-Lying Electronic States of 

Difluorodioxirane. J. Chem. Phys. 2003, 118, 10065–10072. 

(322)  Wang, H.; Khait a, Y. G.; Hoffmann, M. R. Low-Lying Quintet States of the Cobalt 

Dimer. Mol. Phys. 2005, 103, 263–268. 

(323)  Mbote, Y. E. B.; Khait, Y. G.; Hardel, C.; Hoffmann, M. R. Multireference 

Generalized Van Vleck Perturbation Theory (GVVPT2) Study of the NCO +  

HCNO Reaction: Insight into Intermediates. J. Phys. Chem. A 2010, 114, 8831–

8836. 

(324)  Mokambe, R. M.; Hicks, J. M.; Kerker, D.; Jiang, W.; Theis, D.; Chen, Z.; Khait, 

Y. G.; Hoffmann, M. R. GVVPT2 Multireference Perturbation Theory Study of 

Selenium Oxides. Mol. Phys. 2013, 111, 1078–1091. 

(325)  Dunning Jr., T. H.; Hay, P. J. Gaussian Basis Sets for Molecular Calculations. In 

Methods of Electronic Structure Theory; Schaefer III, H. F., Ed.; Plenum: New 



146 
 

York, NY, 1977; pp 1–28. 

(326)  PyTorch  

https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html (accessed Nov 5, 

2021). 

(327)  Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic-Structure Theory; 

Wiley: Chichester, 2000. 

(328)  Rubio, M.; Serrano-Andrés, L.; Merchán, M. Excited States of the Water Molecule: 

Analysis of the Valence and Rydberg Character. J. Chem. Phys. 2008, 128, 104305. 

(329)  Leszczynski, J. Handbook of Computational Chemistry; Springer: Dordrecht; New 

York, 2012. 

(330)  da Cruz, V. V.; Ertan, E.; Couto, R. C.; Eckert, S.; Fondell, M.; Dantz, M.; Kennedy, 

B.; Schmitt, T.; Pietzsch, A.; Guimarães, F. F.; Ågren, H.; Gel’mukhanov, F.; 

Odelius, M.; Föhlisch, A.; Kimberg, V. A Study of the Water Molecule Using 

Frequency Control over Nuclear Dynamics in Resonant X-Ray Scattering. Phys. 

Chem. Chem. Phys. 2017, 19, 19573–19589. 

(331)  Reuter, W.; Engels, B.; Peyerimhoff, S. D. The Reaction of Singlet and Triplet 

Methylene with Ethene. A Multireference Configuration Interaction Study. J. Phys. 

Chem. 1992, 96, 6221–6232. 

(332)  Shiozaki, T.; Werner, H.-J. Communication: Second-Order Multireference 

Perturbation Theory with Explicit Correlation: CASPT2-F12. J. Chem. Phys. 2010, 

133, 141103. 

(333)  Herzberg, G. The Bakerian Lecture, The Spectra and Structures of Free Methyl and 

Free Methylene. Proc. Math. Phys. Eng. Sci. 1961, 262, 291–317. 



147 
 

(334)  Petek, H.; Nesbitt, D. J.; Darwin, D. C.; Ogilby, P. R.; Moore, C. B.; Ramsay, D. A. 

Analysis of CH2 ã 1A1 (1,0,0) and (0,0,1) Coriolis‐coupled States, ã 1A1–X̃ 3B1 

Spin–Orbit Coupling, and the Equilibrium Structure of CH2 ã 1A1 State. J. Chem. 

Phys. 1989, 91, 6566–6578. 

(335)  Yamaguchi, Y.; Sherrill, C. D.; Schaefer, H. F. The X̃ 3B1, ã 1A1, b̃ 1B1, and c̃ 1A1 

Electronic States of CH2. J. Phys. Chem. 1996, 100, 7911–7918. 

(336)  Jensen, F. Introduction to Computational Chemistry; Wiley: Hoboken, NJ, 2017. 

(337)  Montgomery, J. M.; Alexander, E.; Mazziotti, D. A. Prediction of the Existence of 

LiCH: A Carbene-like Organometallic Molecule. J. Phys. Chem. A 2020, 124, 9562–

9566. 

(338)  Hertzberg, G. Molecular Spectra and Molecular Structure III, Electronic Spectra 

and Electronic Structure of Polyatomic Molecules; van Nostrand: New York, NY, 

1966. 

 


	Computational Studies Of Metal-Substituted Systems And Development Of Machine Learning Within GVVPT2
	Recommended Citation

	Microsoft Word - 867505_pdfconv_0ce2a9b0-cee4-4ff0-b560-67b335d2ee36.docx

