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Abstract 

We collected and developed an SDNET2021 dataset, a rare combination of annotated non-

destructive evaluation (NDE) data, from five in-service bridge decks in Grand Forks as a feed for 

validating, benchmarking, developing, training, and testing artificial intelligence (AI) models to 

evaluate, monitor, and assess bridge conditions. The developed dataset, which serves as ground 

truth, contains sound concrete as class 1 and delaminated sub-surface concrete as classes 2 and 3. 

The SDNET2021 dataset consists of 488 delaminated (class 2 and 3) and 1,448 sound (class 1) 

Impact Echo (IE) signals, 214,943 delaminated (class 2 and 3) and 448,159 sound (class 1) 

Ground Penetrating Radar (GPR) signals, and 1,718,083 delaminated (class 2 and 3) and 

2,862,597 sound (class 1) pixels from Infrared thermography (IRT). SDNET2021 is publicly 

freely available. The dataset was annotated autonomously to reduce human errors and increase 

reliability. This study presents an adaptative image processing-based model for bridge deck sub-

surface delamination evaluations. The proposed method adopts the IRT dataset and annotated 

ground truth generated from the in-service bridge decks. The model was developed by iterating 

the sensitivity (s) parameter and optimized by selecting s-values based on performance 

evaluation metric interactions. The evaluated 2- and 3-clustered optimized s-values ranged from 

0.365 to 0.38 and 0.459 to 0.486, respectively. An average accuracy of 69% was obtained for the 

model. The study revealed that several factors, such as delamination depth and spatial 

dimensions, ambient weather conditions such as wind speed, temperature, and humidity, and 

mosaic image quality affect the IRT model’s performance.  

 



 

 

1. CHAPTER 1. Introduction and Background 

One in five miles, or 173,000 total miles of highways and major roads, as well as more than 

45,000 bridges in the US, are in poor condition. There are more than 617,000 bridges across 

the United States. Of these, 42% are at least 50 years old, and 7.5% are 

considered structurally deficient. Significant nationwide bridge repair funding deficiencies 

are also approximately $125 billion, with a 58% projected increase in annual rehabilitation 

funding necessary to improve conditions. These repairs will take until 2071 to complete at the 

current expenditure rate. An overwhelming increase in additional deterioration over 50 years 

has been projected by the ASCE (2021). 

This issue has motivated the federal government to propose a $1.2 trillion infrastructure bill. 

Approximately $110 billion has been assigned to rehabilitate large bridges, highways, roads, 

and main streets, and modernize approximately 20,000 miles of road that have a critical need 

for reconstruction and repair. The bill, which the Senate passed on August 10, 2021, will 

mitigate bridge deterioration (Secretary of Transportation 2022 budget Highlights, 2021 & 

Holland & Knight Alert, 2021).  

Approximately 86% of the existing 4,377 bridges are in fair or good condition, while 14% are 

classified as structurally deficient in North Dakota alone, according to a 2019 infrastructure 

report card by the ASCE of the North Dakota section (ASCE Report, 2019). Bridge element 

deterioration is caused by the continuous imposed traffic load, exposure to environmental 

elements, uncommon harsh frost action, and de-icing chemicals.  

In-service bridge maintenance requires significant bridge deck repair and rehabilitation, since 

these elements are more susceptible to deterioration than other bridge parts. A section of 

existing bridge in ND, Forest River North Bound, that is scheduled for deck repair is depicted 

in Figure 1.  

https://aashtojournal.org/2021/08/13/senate-passes-1-2t-infrastructure-bill-awaits-houses-vote/


 

 

Continued bridge distress and deterioration is becoming a growing concern. Stakeholders in 

bridge management face the challenges of developing and deploying feasible techniques, 

from conceptual stages to construction and maintenance phases, to ensure that bridges are 

safe, serviceable, durable, and stable.  

It is critically important for government agencies, Departments of Transportation (DOT’s), 

and all other concerned parties to create a systematic bridge evaluation, defect detection, 

monitoring, repair, and maintenance program. The repair and rehabilitation of existing 

deteriorating bridge elements must be effectively prioritized, which will ensure the proper 

and timely disbursement of funds and prevent bridges from further deterioration and distress.  

Physical and visual inspections have shortcomings in reliability and accuracy, with 

significant variability in condition rating assignments by different inspectors. Factors that 

affect inspection results are traffic fears, near visual acuity, color vision, formal training on 

bridge inspections, dependency on inspector skill or experience, accessibility, and complexity 

(Graybeal et al., 2002; Dorafshan et al., 2018a&b; Rens et al.,1997). Assessments using these 

methods are usually through contact, which involves significant setbacks, lane closures, and 

traffic disruptions. 

 

Figure 1. Approach and concrete bridge deck captured using a UAS during Summer 2020 



 

 

 

1.1 Motivation and Problem Statement 

Traditional bridge evaluation techniques are destructive, which generally involves collecting 

bridge deck samples by coring through the bridge, compromising the bridge’s integrity. 

These samples, collected from localized portions of the bridge decks, are used as the basis for 

evaluating the entire bridge’s condition. These evaluations, if not well interpreted by an 

expert, may result in false recommendations and imminent challenges. Destructive tests using 

core extractions may provide useful information about a deck’s condition; however, they are 

labor-intensive, time-consuming, alter the structure’s condition, and cannot be applied 

ubiquitously over large bridge deck areas. 

Other traditional inspection methods, such as physical and visual, chain dragging, and 

sounding, rely on the inspector’s experience and subjective judgment to differentiate the 

defective sub-surface or surface regions from the sound deck parts. Other concerns are 

difficulties in accessing bridge parts that are out of reach by physical inspection, safety issues 

during inspection due to heights, or open traffic and lane closures. The interpretation of field 

data inspection results can be cumbersome with a likelihood of errors and inconsistencies. 

Other advanced non-destructive evaluation (NDE) techniques, such as Infrared 

Thermography (IRT), Ground Penetrating Radar (GPR), and Impact Echo (IE), which have 

been adopted in past bridge projects and studies, have not been well validated over entire 

bridge deck areas, resulting in varying degrees of accuracy when detecting delaminations. 

NDE studies have been primarily performed on laboratory specimens, with very few studies 

performed on in-service bridge decks. 

Several drawbacks have led to the adoption of advanced NDE techniques and remote 

structural evaluation methods, and the collection of reliable ground truth annotated datasets 

for detecting, assessing, and monitoring structural sub-surface bridge deck defects.  



 

 

Recent advances in Unmanned Aerial Systems or Vehicles (UAS’s/UAV’s), robotics, and 

Artificial Intelligence (AI) can address these limitations; however, the development and 

adoption of proper NDE techniques for quality data collection, the development of reliable 

annotated datasets, processing, and interpretation is essential when evaluating in-service 

bridges. A combination of technologically advanced tools, such as infrared and visual camera 

sensors mounted on UAS to collect thermal and visual images, allows professionals and 

inspectors to perform bridge condition assessments at high altitudes without disrupting traffic 

flow. 

Data collection and the development of reliable ground truth datasets is an important aspect 

of bridge deck NDE testing. The NDE dataset serves as an input for AI model training, 

validating, and testing. Datasets of surface defects exist; however, “ground truth” datasets 

have been limited to laboratory specimens and destructive methods. We have developed a 

reliable annotated dataset for subsurface defect detection using IRT, GPR, and IE NDE 

methods. The data were collected from five in-service Grand Forks, ND bridges scheduled 

for repair and maintenance. The collected IRT data were benchmarked for delamination 

detection using image processing and machine learning techniques. 

1.2 Study Goals and Overview 

Two broad bridge evaluation aspects were explored for this work: NDE data acquisition, 

validation, and annotation, and benchmarking the IRT dataset with the validated ground truth 

for delamination detection using image processing and machine learning techniques.  

1.3 Organization of the Thesis 

The thesis includes four chapters: 

Chapter One consists of the introduction, motivation and problem statement, study goals, 

overview, and thesis organization. 



 

 

Chapter Two consists of the study’s first part, entitled “SDNET2021: An Annotated Dataset 

of Subsurface Structural Defects in Concrete Bridge Decks.” This section contains the reports 

for the NDE dataset acquisition, conditions and methodology, data quality, data annotation, 

data validation, and study summary. This portion of the study has been submitted to a peer-

reviewed journal. 

Chapter Three consists of the second part of this study, entitled “Investigating the 

Effectiveness of Infrared Thermography in Delamination Detection for Concrete Bridge 

Decks.” This section contains the study’s goals and objectives, delamination detection 

methodology, model development and image enhancement, model evaluation metrics, results, 

and discussion. This portion of the study has also been submitted to a peer-reviewed journal. 

Chapter Four consists of the conclusion, recommendations, and future work. 

  



 

 

2 CHAPTER 2. SDNET2021 Dataset Acquisition and Annotation 

2.1 An Annotated Dataset for Subsurface Structural Defects in Concrete Bridge 

Decks. 

This section contains the developed SDNET2021 dataset and reports the NDE dataset 

acquisition methods, conditions and methodology, data quality, data annotation, data 

validation, and study summary. This portion of the report has been submitted to a peer-

reviewed journal for publication and is publicly freely available.  

2.2 Introduction and Past Study Review  

The Code of Federal Regulations mandates periodic bridge inspections to ensure public 

safety. Inspectors must periodically inspect four billion square meters of reinforced concrete 

bridges (Dorafshan & Azari, 2020a). The recent demand for automation in infrastructure 

construction, inspection, and planning has led to artificial intelligence (AI) implementation 

for bridge evaluations. Supervised deep learning networks, such as convolution neural 

networks (CNNs), are the most promising of these AI methods due to their high accuracy. A 

comprehensive bridge deck evaluation requires the detection of both surface and subsurface 

defects. Many AI models have been developed for surface defect detection; however, 

effective AI models for subsurface defect detection have been hindered. AI-enabled bridge 

deck subsurface defect detection evaluations require annotated realistic NDE datasets. 

Datasets for surface defects, such as concrete cracks (Dorafshan et al., 2018), exist, where 

images are labeled to a class, such as cracked or intact. Other datasets for surface defects 

were annotated at the pixel level, where each pixel was assigned to a class (Liu et al., 2019), 

while others attempted to capture surface defects using a bounding box (Mei & Gül, 2019). 

NDE datasets are rare. McLaughlin (et al. 2019) developed a dataset consisting of 500 IRT 

images with 512x640 pixel resolution taken from four reinforced concrete bridges. The 

images consisted of 261 images with potential delamination and 239 with no delamination. 

The images were annotated using a semantic pixel-wise method into two classes, sound and 



 

 

delaminated; however, the annotation was not based on actual delaminations. Dorafshan & 

Azari (2020a, 2020b) presented an annotated impact echo dataset (IE2020) of laboratory-

created specimens for studying deep learning models to evaluate concrete bridge decks. The 

IE data was subdivided into three major categories: Sound (S), Defective (D), and De-

Bonded (DB), with 736, 715, and 2092 samples in each class, respectively. 

IE2020 was an effective dataset for deep learning model development; however, the defects 

were artificially made, which could negatively affect the accuracy of the models tuned on this 

dataset if used to classify real IE data.  

Kalogeropoulos et al. (2013) collected GPR data for 0.08 m thick concrete slabs exposed to 

chloride contamination. Cores were taken from the concrete slabs using a drilling rig, and the 

free chloride ion content of eight slices that were 0.01 m thick was calculated using the water 

extraction procedure to validate the dataset. Dinh et al. (2016) used GPR data from twenty-

four in-service bridge decks that was collected during the Federal Highway Administration’s 

(FHWA’s) Long-Term Bridge Performance (LTBP) Program. The data were collected with a 

ground-coupled 1.5-GHz GPR antenna on cast-in-place concrete bridge decks. The study's 

objective was to characterize the corrosive environment and create an overall bridge deck 

condition assessment; however, this dataset was validated with other NDE methods, not the 

actual bridge defect state. Liu et al. (2020) collected GPR data and converted them into 

segmented grayscale images of 300×300 pixels. The final dataset contained 3,992 images of 

13,026 rebar targets, 2,370 of which were utilized for training and 1,622 for testing. The 

dataset had only two categories, hyperbola and background, and was labeled using the 

bounding box method. 

Publicly available datasets specifically designed to evaluate crack and delamination detection 

algorithms are limited. Most of the datasets have been processed and simplified since they do 

not depict real life scenarios (Eisenbach et al., 2017). Some of these datasets manually 

https://www.sciencedirect.com/topics/engineering/cast-in-place


 

 

exclude any disturbance and focus only on pavement surfaces using static images (Amhaz et 

al. 2016, Shi et al., 2016, Yang et al. 2020), and others are not publicly available or are not 

validated with ground truth (Chambon & Moliard 2011 & Amhaz et al. 2016). A summary of 

existing structural defect datasets and their descriptions are listed in Table 1. There are few 

open-source datasets, and those that exist are primarily visual images for crack detection with 

sparse pixel-level annotations. Mei & Gül  (2020) claimed that the bounding box method is 

not appropriate for defect annotation because of the irregular crack shapes. Too many details 

are lost if a rectangular bounding box is used to cover these irregular cracks.  These open 

subsurface defect datasets are predominantly created using laboratory specimens. 

Table 1. Review of NDE datasets 

References 
Data Type and 

Description 
Defect types 

Material or 

Structure 
Annotation method Limitation 

RGB Images (Surface Defects) 

SDNET2018 

Dorafshan et al. (2018) 

Image-56,000 sub-

images (256×256 px) 

Crack (widths 

from 0.06 to 
25 mm) 

Concrete 
bridge decks, 

walls, and 

pavements 

Labeling 

Limited to crack 
defects. Not 

validated with 

ground truth 

Özgenel et al.(2018) 

40,000 images having 

227x227 pixels 

generated from a 
4,032x3,024 resolution 

camera 

Cracks on 

buildings 

METU 

Campus 
Buildings 

Labeling  
Dataset is based 

on buildings only 

CrackForest Dataset 

and AigleRN. 

(Fan et al., 2020) 

CFD contains 118 

RGB, and the AigleRN 
database contains 38 

gray-level images. 

Cracks 
Asphalt 
Pavements  

 
Labeling 

Only surface 
defects 

EdmCrack600 
(Mei et al. 2019) 

600 RGB images Crack Pavement 
Pixel level 
annotation 

Only surface 
defects 

COncrete DEfect 

BRidge IMage 

(CODEBRIM) dataset. 
(Mundt et al. 2019) 

Over 17,754 RGB 

images 

Cracks, spall, 
exposed bars, 

corrosion stain 

Concrete 

bridges 

Bounding box 

labeling 

Only surface 

defects 

Zhang et al. (2019)  
6,500 3D pavement 
images  

Cracks 
Asphalt 
pavement  

Labeling 

Not publicly 

available and 
limited to asphalt 

pavement 

Majidifard et al. 

(2020) 

7,237 RGB images of 
pavement sections 

extracted from Google 

maps 

Structural cracks 

Asphalt 

pavement 

surface 

Bounding box 

labeling 

Not publicly 
available, dataset 

not validated with 

ground truth, 

without 

delamination 

defect 

NDE (IRT/IE/GPR) Subsurface Defects 

IE2020 

Dorafshan et al (2020a 
and b) 

Impact Echo-  

2,016 IE signals 

Debonding and 

subsurface defects 

Laboratory 

concrete 
specimens 

Signal labeling 

Limited to 

laboratory 

specimens, dataset 
not validated with 

ground truth 

Kalogeropoulos et al. 
(2013) 

GPR signals 
Chloride migration 
detection 

Laboratory 
concrete decks 

Signal labeling 

Limited to 

laboratory 
specimens, dataset 

was validated 

using a destructive 
method on core 

samples 



 

 

Dinh et al. (2016) 

GPR signals collected 

within the FHWA’s 
LTBP Program 

Characterize the 

corrosive 
environment 

Asphalt and 

Concrete 
bridge decks 

Signal labeling 

Dataset not 

validated with 

ground truth but 

was validated with 
other NDE 

methods and 

bridge decks 

Liu et al. (2020) 

GPR signals converted 

into 3,992 grayscale 
images  

Detection and 

localization of 
rebar 

Residential 
buildings 

under 

construction 

Bounding box 

labeling 

Dataset not 

validated with 
ground truth 

McLaughlin et al. 

(2019) 
500 infrared images 

Sub-surface 

delamination 

Reinforced 
concrete 

bridges 

Semantic pixel-wise 

image labeling 

Dataset is not 

publicly available 

and was not 
validated 

 

SDNET2021 is the only publicly available NDE dataset annotated based on different classes 

of delamination in reinforced concrete bridge decks and validated by the actual state of 

delamination in the field, to the best of the author’s knowledge. SDNET2021 was collected to 

represent challenges faced by bridge inspectors in the field, such as i) Change in weather 

conditions, ii) Significant environmental effects and noise, such as shadows, occlusion, 

stains, texture difference, and low contrast due to overexposure, iii) Blurring effects due to 

UAS movement and poor lighting conditions, iv) Inclusions of disturbances during data 

collection, and v) Manual annotation limitations. 

SDNET2021 contains three types of NDE data; IRT, IE and GPR for existing in-service 

bridges, validated by ground truth. The combination of these rare and state-of-the-art 

validated datasets, made publicly available, will be useful to benchmark, develop, train, and 

test AI models for bridge evaluation, monitoring, and condition assessment.  

2.3 Objectives of the Study 

The main goal for developing the novel SDNET2021 dataset is to provide a means for 

autonomous bridge deck evaluations using NDE. The research activities performed to achieve 

this goal include: (1) A literature review on existing NDE datasets, (2) Brief description and 

current bridge deck conditions, (3) NDE data acquisition of field IE, GPR, and IRT field data, 

(4) NDE data quality control, and (5) NDE data annotation. 



 

 

2.4 Experimental Program 

A brief description of the bridges investigated, and the NDE data acquisition methods are 

discussed in this section. 

2.4.1 Investigated Bridges.  

The North Dakota Department of Transportation (NDDOT) scheduled five bridges for deck 

repair during the Summer of 2020. These bridges were between 47 and 49 years old at the 

time of repair and were built along the I-29 corridor, except for the Park-River median 

designed to provide access to the rest area (Figures 2a and 2b). The bridge lengths range from 

64 m (Forest River bridge) to 142m (Park River bridge). An information summary is listed in 

Table 2. Inspectors rated the bridges according to the National Bridge Inventory (NBI) and 

National Bridge Element (NBE) level guidelines (Nebme, 2019), and reported the Health 

Index (HI) and Condition State (CS).  The concrete bridge decks are supported on steel beam 

girders with expansion joints at appropriate intervals. This investigation only focused on 

concrete bridge decks and did not include the steel girder supports, vertical supporting piers, 

and sub-structure.  

 

 
(a) 

 

 
(b) 

Figure 2. Google earth map depicting the (a) Forest River bridges (b) Park River bridges. (Source: Google Earth) 

 

 

 
 

 

 
 

 

 
 

 

 
 



 

 

Table 2. Summary of bridge condition ratings according to The NBE and NBI Rating System, 2019. (Source: FHWA infobridge) 

 

Bridge 
ID 

Structure 

Number/Year 

Built 

Width x 

Length 

(m2) 

Last 
Inspection  

Deck and Bridge 
Rate 

Deck 

Area 
(sqm) 

Condition State 

(CS) 

Health 

Index 
(HI) 

FR_SB 
0029168629 L 

(1971) 
12.7x64 Nov. 2019 

NBI: 6/Satisfactory 

Bridge condition: 
Fair 

816 CS1- Good 100%-

816 

HI-

100% 

FR NB 
0029168632 R 

(1971) 
12.7x64 Nov. 2019 

NBI: 6/Satisfactory 
Bridge condition: 

Fair 

816 CS1-Good-99% -

813.2, 
CS2-Fair-1%-2.8 

HI-

99.8% 

PR NB 
0029179087 L 
(1973) 

11.3x141.7 Dec. 2019 

NBI: 5/Fair 

Bridge condition: 

Fair 

1,806 CS1-Good-99%-

1,794,  

CS2-Fair-1%-12.1 

HI-

99.78% 

PR M 
0029179123 M 

(1973) 
7.3x111.3 Dec. 2019 

NBI: 5/Fair 
Bridge condition: 

Fair 

977 CS1-Good-92% -
907,  

CS2-Fair-7%-70 

HI-
97.65% 

PR SB 
0029179147 R 

(1973) 
14.9x120.4 Dec. 2019 

NBI: 5/Fair 

Bridge condition: 

Fair 

1,974 CS1-Good-99%-

1,966,  

CS2-Fair-1%-8 

HI-

99.87% 

Note - FR SB: Forest River South Bound, FR NB: Forest River North Bound, PR NB: Park River North Bound, PR SB: Park River South 
Bound, PR M: Park River Median. 

 

Bridge condition has continually declined from good in 2015 to fair in 2019, according to the 

NBE and NBI rating System; therefore, the NDDOT planned to rehabilitate these decks 

during the Summer and Fall of 2020.   

2.4.2 IRT Data Acquisition   

IRT is commonly used to detect subsurface delaminations without contact. IRT cameras 

convert emitted electromagnetic radiation to temperature. The rate at which this energy is 

emitted is a function of the material’s temperature and emissivity. A material’s emissivity 

defines the correlation between the true kinetic temperature and the object’s radiant 

temperature (Robert 1982).  

M = ε σ T 4 (1) 

where M = Total energy emitted from the surface of a material, ε = Emissivity, σ = Stefan-

Boltzmann constant, and T = Temperature of the emitting material in Kelvin. Defective areas 

will have different electromagnetic radiation than the intact areas, visualized as a change in 

pixel intensity. The thermography reveals that all objects with a temperature higher than 

absolute zero emit radiation in the infrared range, at wavelengths of 700 nm–1 mm 



 

 

corresponding to frequencies of 430 THz–300 GHz, which is between visible radiation and 

the microwave range.  

The IRT data was collected using a UAS mounted with a thermal camera at an average 

altitude of 18m. The environmental details for the IRT data collection are listed in Table 3.   

Table 3. IRT data collection ambient weather condition on the inspection date 
 

Bridge ID Time  Temperature (C) Humidity (%) Wind Speed (kmph) 

FR_SB 9:55-10:25am 26.0 47.0 10.5 

FR_NB 10:26-10:44am 26.7 44.0 12.9 

PR_NB 11:36-11:55am 27.0 47.0 12.9 

PR_MD 12:09-12:32pm 27.8 44.5 14.5 

PR_SB 12:34-12:55pm 27.8 45.0 16.1 

 

The UAS and camera specifications used are presented in Table 4. Figure 3(a) illustrates the 

crew collecting IRT using an Unmanned Aerial System.  

Table 4. UAS and camera specifications 

 

DJI Matrice 210 UAV 

UAS Specification Description 

Takeoff Weight Maximum 6.14 kg. 

Maximum Flight Altitude 2,500 m (above sea level) 

Maximum Flight Time Thirty-two minutes (approx.) with TB55 batteries and no payload 

Maximum Tilt Angle P-mode (GPS) 35° (Forward Vision System enabled: 25°) 

Hovering Accuracy (GPS Mode) 

 

Vertical: ±0.5 m (±0.1 m, with Downward Vision System enabled) 

Horizontal: ±1.5 m (± 0.3 m, with Downward Vision System enabled) 

Operating Temperature -20 to 45°C 

Dimensions Unfolded 887x880 x408 mm 

FLIR XT V2 Thermal Camera 

Characteristics Specifications 

Thermal Resolution  640×512 pixels 

Full Frame Rates  30 Hz (NTSC) 25 Hz (PAL)  

Spectral Band   7.5 - 13.5 μm 

Pixel Pitch  17 μm 

Thermal Imager/ Detector type  Uncooled VOx Microbolometer 

Digital Zoom  2x, 4x 

Field of View 24°×19° 

 

2.4.3 IE and GPR Data Acquisition   

IE is a widely used nondestructive testing (NDT) method that has been used successfully to 

evaluate concrete structures (Kee et al., 2012, Dorafshan et al., 2020). IE uses elastic waves 

to identify and characterize delaminations in concrete structures. This method uses the 

transient vibration response of a plate-like structure subjected to a mechanical impact. IE was 

implemented for deck evaluation by conducting point testing on a pre-defined grid. The 



 

 

transient time response of a solid structure is measured with an accelerometer placed on the 

surface close to an impact source.  

Similarly, GPR can be used to qualitatively assess bridge decks by detecting suspected 

delamination or corrosive deterioration. The GPR technique works by transmitting 

electromagnetic radio waves through the concrete, with frequencies ranging from 10 MHz to 

2.5 GHz. The reflected electromagnetic waves are then recorded when the reflector’s 

dielectric constants, such as in rebar or delamination, are different from the concrete. The 

GPR data usually consists of changes in reflection strength and the arrival times of specific 

reflections, source wave distortions, and signal attenuations. 

IE and GPR data were collected from portions of aforementioned bridge decks ermarked for 

repairs. The evaluation was caried out while the decks were closed to traffic flow. The 

environmental conditions during these data collection are presented in Table 5. Average 

values for each inspection day were used to represent temperature and humidity during data 

collection.  

Table 5. IE and GPR data collection ambient weather and deck condition 

 

Bridge ID Date Collected  Temperature (C) Humidity (%) Deck Condition 

FR_SB 7/6/2020 18.3 67.0 Dry 

FR_NB 7/7/2020 27.8 43.0 Dry 

PR_NB 7/8/2020 25.6 66.5 Dry 

PR_MD 7/6/2020 - 7/7/2020 23.1 55.0 Dry 

PR_SB 7/9/2020 22.8 56.0 Dry 

 

GPR data were collected during the investigation by scanning along the longitudinal and 

transverse sections of the bridges using GSSI GPR Equipment with a ground-coupled 

antenna. Other information associated with GPR data collection and equipment used is grid 

arrangement (600x3,000mm), a GSSI SIR-3000 Data Acquisition System, a GPR Antenna 

Frequency of 2600MHz, Horizontal Parameters (Scans/meter – 200), Vertical Parameters 

(Samples/Scan-512), Bits per Sample (16-bit), Dielectric Constant (6.25), Range (12.00ns), 



 

 

Depth to direct coupling (2.1ns), Surface Type, and the condition of a concrete surface free 

from debris. 

IE signal data were collected with a PCB 353B15 Accelerometer. IE equipment and 

specifications include a NI-USB-4431 USB DAQ System, Laptop with LabView software, a 

PCB 353B15 Accelerometer, Samples per Scan (204800), Sampling Rate (102.4 kHz., Grid), 

and 300mmx300mm test grid.  Figures 3b and 3c depict the IE and GPR field data collection 

setup.   

 

 

(a) (b) 

  

(c) 
Figure 3. (a) UAS flight crew collecting IRT data, (b) Crew collecting IE data on bridge deck, and (c) GPR scanning equipment for data 

collection 

2.4.4 NDE Data Acquisition Conditions  

NDE data collection needs to be properly performed to maximize efficiency. Several 

standardized codes and past publications were reviewed to provide a guide for effective NDE 

data acquisition (Table 6). 

 

 



 

 

Table 6. Comparison of parameters for data collected in this study with past studies 

 

Method Data Collection for Past Studies Data Collection in this Study Reference 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
IRT 

Weather conditions (Ambient Tempt. Change, 

Tempt., RH, wind speed): 
8°C-10°C, 6-19 km/h. 47%-71%  

 

 
 

 

-4.4° C -27.8° C, 1.6kmh-22.5 km/hr, 
49-96.5% . 

 

 

 

 
 

 

(Washer et al., 2009; 
Washer et al., 2013, 

ASTM 2013) 

Solar loading:  
An ambient temperature rises of 20°F with four 

hours of sun and winds less than 24 km/h on PCC. 

No testing: Ambient air temperatures are less than 

0 °C, and wind velocity exceeds 50 km/hr. 

Camera specifications: 

Thermal IR 640 × 480 pixels res. 

FLIR 640 × 512 pixels res. (Hiasa et al., 2017; 

Vaghefi et al., 2012) 

Altitude: 

2-8 meters above 

18m AGL (Hing & Halabe, 2010, 

Farrag et al. 2016, 
Tran et al., 2018, 

Vaghefi et al. 2012) 

Overlapping rates: 
60% -65% for end lap and 30% ±15% for side lap. 

65-80% (Vaghefi et al. 2013),  

Angles and offset distances and number of images 

taken: 
Angles ranging from 0 to 45°, offset distances of 

20–40 m, and a total of 295 images taken in 3 

flights. 

Angles ranging from 0 to 35°, and a 

total of 1064 thermal images taken in 3 
flights. 

(Vaghefi et al. 2012),  

 
 

 

 
 

 

 
 

 

 
 

 

 
GPR 

 

 
 

 
 

Surface Type and condition: Air-dried surface of 
the asphalt concrete layer 

 

Concrete surface-dried cleared of 
debris. 

(Abouhamad et al. 
2017, Rhee et al. 

2019). 

Weather and grid arrangement: 
RH 76%, 10 oC -14oC 

600x3000mm spacing grid 
RH 43-67%, 18 oC -27oC 

(Abouhamad et al. 
2017, Rhee et al. 2019) 

Antenna Type and Frequency: For Ground 

coupled, 1.5GHz, GPR inspection passes should 

either be parallel or perpendicular to the direction 
of the traffic 

2600MHz.Equipment: 

GSSI SIR-3000 Data Acquisition 

System. 
GPR Antenna 

 

(Abouhamad et al. 

2017, 

Hing et al. 2010, 
Maierhofer 2003) 

 

Scanning rate: 12 scans/m in the longitudinal 
direction at a speed of 80–100 km/h. 

Samples per scan 

512 Samples/Scan 
 

Horizontal Parameters: (20scans/m). 
Vertical Parameters: 

512 Samples/Scan 

(Diamanti et al. 2017, 
ASTM 2010) 

 

GPR sampling window: 8 -12 ns for a ground-

coupled, and up to 40 ns for an air-coupled 
antenna. 

 

12 ns range, 6.25 Dielectric Constant, 

2.1ns Depth to Direct Coupling, 16-
bit/sample. 

 

(Rhee et al. 2019) 

 

 

 
 

 

 
 

IE 

Grid: 

300mm × 300 mm - 900x900mm 
Contact time: 

20 to 100 µs 

 

300mm x 300mm test grid. 
 

 

(Gucunski et al. 2008, 

ASTM 2010). 
 

Sampling frequency: 
200, 500 kHz 

 

Samples/Scan: 204800. 
Sampling Rate: 102.4 kHz., Grid: 

(Azari & Lin 2019, 
Zhang et al. 2016, 

Gucunski et al. 2008). 

Surface condition: 

Concrete polished carefully with sandpaper and 
then rinsed with water. 

 

Concrete surface-dried cleared of debris (Azari & Lin 2019, 

Zhang et al. 2016, 
Gucunski et al. 2008). 

 

 

2.4.5 Ground Truth for Data Validation 

The NDDOT surveyed all five decks to identify subsurface delamination locations and sizes 

using chain dragging. The locations susceptible to delamination were marked, and their 

locations were mapped using GPS (Figure 4a). The asphalt overlay of all five bridge decks 

was removed by milling off the top 75 mm of each deck prior to chain dragging. The marked 

regions were then prepared for removal by jackhammering to a depth just above the top of the 



 

 

reinforcement bars. These areas were classified as class two (2) removal (Figure 4b) and 

chain dragged again to detect possible deeper delamination. Observed delaminated areas 

within the class 2 regions were removed to a depth below the rebar reinforcement, called 

class three (3) removal (Figure 4c). These definitions were used to define delamination 

classes for annotating the data collected during this study: Class 1 Sound, with no 

delamination; Class 2 Delamination, with delamination above the top bar mat; and Class 3 

Delamination, with delamination below the top bar mat. A typical cross-bridge section 

depicting the levels of delamination removal is illustrated in Figure 5. 

 
 

 

(a) (b) (c) 
Figure 4. (a) Markings of delaminated portions, (b) Class 2 sub-surface delamination removal, and (c) Class 2 sub-surface delamination 

removal 

 

 
Figure 5. Bridge section depicting a delaminated sub-surface with embedded rebar 

 

A set of delamination maps that indicated each delamination's location and class, were 

generated for each bridge deck and used as ground truth for NDE data classification. Figure 6 

depicts the ground truth map for Forrest River South Bound as an example. Classes 2 and 3 

were distinguished from sound concrete by dashed and solid boundaries, respectively.  



 

 

 
Figure 6. Layout plan depicting the delamination survey for the Forest River South Bound bridge 
 

2.4.6 NDE Data Quality Control  

The performance of an AI model constructed using a dataset is often influenced by the data’s 

quality; therefore, a set of known quality assessment metrics were used to assess the IRT, IE, 

and GPR data. The collected data was classified into time series and image data; therefore, 

appropriate quality control methods were used for each type.   

The output of the IE signals is time and acceleration (g) with 204,800 rows and each testing 

point saved in an ‘lvm’ file format. A total of 1,936 IE test points (files) were acquired for the 

entire bridge sections. The time duration varied from a minimum value of zero (0) to a 

maximum value of 1.99990 with time steps of 9.765625E-6 seconds, approximately 0.00001 

seconds. The IE data were checked for null, duplicate, void or missing values, correctness, 

repetitiveness, and other pre-processing operations deemed fit for quality checks.  The same 

quality checks were conducted on the GPR raw data. Each testing signal was saved in an ‘MS 

Excel’ format, for a total of 663,102 signals. The signals have a vertical time sale of 12 ns 

with 512 samples per trace. The longitudinal signal scans along the length of the bridges 

resulted in an output file with 16,383 amplitudes. The transverse signals, which scan across a 

bridge’s width, result in an output file with approximately 1,225 amplitude signals. All files 

and signal outputs were checked for null, missing, and duplicate values, and the quality was 

satisfactory with no observed irregularities in the data files. A preliminary investigation was 

performed to ensure that the collected IE and GPR data were consistent with the class. An 

example of this investigation is presented in Figures 7 (a) and (b), where IE and GPR signals 



 

 

collected from areas with different degrees of subsurface delamination have similar origins 

and waveform matches. 

 

(a) 

 

 
 

      (b) 
Figure 7. Selected samples of (a) IE signal for Park River Median classes 1, 2, and 3, and (b) GPR signal for Park River file_004 for Forest 

River SB. 
 

Subjective and objective methods are the two broad classifications for image quality 

assessment. Non-reference objective assessment metrics, such as Perception based image 

quality evaluator (Pique), Naturalness image quality evaluator (Niqe), and 

Blindness/reference less image spatial quality evaluator (Brisque), were selected to evaluate 

IRT image quality. Brisque compares an image to a default model computed from images of 
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natural scenes with similar distortions. A smaller score indicates better perceptual quality. 

The metric scores for Brisque range from Excellent [0,20] to Bad [81,100] (Taylor et al., 

2020). Pique is a local feature-based image quality assessment tool that calculates the Mean 

Subtracted Contrast Normalized (MSCN) coefficient.  Brisque and Niqe are based on 

spatial features derived from natural scene statistics. Niqe compares an image to a default 

model computed from images of natural scenes. The pixel intensity distribution of natural 

images differs from distorted images. This difference in distribution is significantly 

pronounced when pixel intensities are normalized and the distribution is calculated. The pixel 

intensities of natural images after normalization follow a Gaussian distribution, while pixel 

intensities of unnatural or distorted images do not. The deviation of the distribution from an 

ideal bell curve measures the amount of distortion in the image. A lower Niqe score indicates 

better perceptual quality, ranging from 1 (very unnatural) to 7 (very natural). Figures 8 (a) 

and (b) depict sample IRT images collected at different ambient weather conditions with 

excellent and good Brisque scores for their quality categories. Figures 8 (c) and (d) depict fair 

and poor Pique scores of thermal image samples. Figure 9 (a) depicts a thermal image with 

poor natural or unnaturalness, and 9 (b) depicts thermal image samples with excellent or good 

naturalness. 

  

(a) (b) 



 

 

  

(c) (d) 

Figure 8. Samples of IRT images with (a) Excellent or (b) Good Brisque scores, and (c) fair or (d) poor Pique Scores 
 

 

 

(a) (b) 

Figure 9. Sample of IRT images with (a) poor natural or unnaturalness, and (b) Excellent or good naturalness 

 

The quality assessment results for IRT, IE, and GPR collected for the studied bridges are 

summarized in Table 7.  The IRT data indicates that Piqe, Niqe, and Brisque quality metrics 

are satisfactory, with excellent or good values ranging from 82-100%.  

Table 7. Summary of quality assessment of NDE data  

 

Metrics Excellent/Good% Fair 

% 

Poor/Bad 

% 

Image data quality 

PIQE 97 3 0 

NIQE 82 18 0 

BRISQUE 100 0 0 

GPR and IE signals 

Null Values  100 0 0 

Missing values 100 0 0 

Duplicate values 100 0 0 

 



 

 

2.5 Data Annotation  

Data annotation is the process of assigning collected NDE data to one of the defined classes 

of delamination using the ground truth maps. AI training data must be categorized 

appropriately and annotated for autonomous bridge deck defect detection. An overwhelming 

majority of AI models used or applied to bridge deck evaluations rely heavily on the 

availability of high-quality and accurately labeled training data.  

2.5.1 IRT Image Annotation 

Image annotation can be completed in three different ways: 1) image labeling, where an 

entire image is assigned to a specific class, 2) object detection using bounding boxes, where a 

rectangular box is placed around a group of pixels in each class, and 3) semantic 

segmentation, where each pixel is assigned to a specific class. Semantic segmentation 

provides the most information about the data; however, it is the most time-consuming since 

every pixel must be labeled.  A pixel-based semantic annotation method was developed to 

annotate IRT images autonomously. The primary reason for this methodology was to 

superimpose the ground truth maps to thermal stitched maps for each bridge. Fast and 

accurate image annotation in a semantic manner remains a problem in computer vision and 

related fields; however, the procedure developed in this study can be effectively used to 

assign delamination classes to each pixel accurately.  

Other semantically segmented image datasets rely on image labelers to assign pixels (Wang 

et al. 2014 and Qin et al. 2018). These methods can be time-consuming and labor-intensive 

proportional to the level of detail required, and possible inconsistencies between different 

annotators can occur. The proposed annotation method can effectively remove the role of IRT 

image labeler. 

The primary steps devised for annotating IRT images are depicted in Figures 10 and 11 (a-g). 

Individual images are stitched together to generate a single-view presentation of each thermal 



 

 

image in the entire deck. The authors used commercial software, Agisoft 2021 © Professional 

Version, to create appropriate stitched maps for each bridge deck (Figure 11 (a and b)). 

Stitched maps were generated by adopting relevant metadata for the set of selected images 

that produced the highest quality. This process can also be completed using computer vision 

techniques to remove lens distortion, extract features, and then stitch them together. The 

generated stitched maps for each bridge were aligned with their corresponding ground truth 

maps (Figure11 (c and d)). This method requires using the geometrical transformation 

described in Equations 2 through 4.   

T = [
1 0 0
0 1 0
𝑋 𝑌 1

]    
(2)  

 

R = [
𝑐𝑜𝑠𝑑 𝑠𝑖𝑛𝑑 0

−𝑠𝑖𝑛𝑑 𝑐𝑜𝑠𝑑 0
0 0 1

] 

 

 

(3) 

S = [
𝑎 0 0
0 𝑏 0
0 0 1

]  
 

(4) 

where T is Translation, R is Rotation, and S is scale. Equations 2, 3, and 4 determine the 

Affine transformation matrix for translation, rotation, and scale used. ‘X’ and ‘Y’ are 

displacements along the x- and y-axis, ‘d’ is the angle of rotation, and ‘a’ and ‘b’ are scale 

factors along the x- and y-axis. Table 8 summarizes the Affine transformation tuned 

parameters adopted prior to image registration. 

 

 
 

 

 
 

 

 
 

 



 

 

Table 8. Summary of Affine transformation tuned parameters for registration. 

 

Bridge ID Translation (X, Y) (Pixels) Rotation (Degree) Scale 

FR_SB [-474, 220] -4.5 1.33 

FR NB [-200, 105] -1.9 1.12 

PR_NB [-105 -5] -87.4 2.6 

PR_M [0 0] 2.8 1 

PR_SB [-360 -20] -2 2.88 

 

 
Figure 10. Flowchart for image processing and IRT annotation  

 



 

 

An algorithm was developed to register thermal stitched maps against the ground truth 

images. Affine transformation, including scaling, translation, and rotation matrices were then 

developed for each bridge through iterations. This process resulted in the generation of a set 

of stitched maps with the same geometric properties as the ground truth maps (Figure 11b). 

The original stitched maps were completed in computer aided design format; however, they 

have been converted to RGB images for computer vision processing. Define all terms on first 

use. 

The location of the pixels within these regions were extracted for each class, resulting in two 

binary images that represent classes 2 and 3 (Figure 11e-f). The stitched maps were aligned 

with the ground truth maps; therefore, these pixels depict the actual locations where classes 2 

and 3 were removed on the stitched maps (Figure 11e-f), which were later superimposed on 

the IRT maps (Figure 11g). The pixels in the final image were annotated pixels-wise as G (0 

255 0) for all class 2 delamination pixels and R (255 0 0) for class 3 delamination pixels, 

while the remaining pixels were annotated as sound. The class 2 and 3 pixels are denoted as 

green and red respectively.  



 

 

 

Figure 11. Workflow for annotation (a) input n-number of raw images, (b) stitched image, (c) ground truth survey map for class 2, and (d) 

aligned and registered ground truth with the stitched map. 

 

2.5.2 IE Annotation 

The IE datapoints are point-wise measurements, unlike IRT images. The collected IE data 

were annotated and validated by cross-referencing the location of the IE signals against the 

ground truth. Figure 12a-d depicts the IE test regions for the Forest River NB bridge deck 

layout with removal classes. The IE tests were performed at each point of a set of 3mx3m 

grids with 0.3m intervals on each bridge. The IE test defined three regions, A, B, and C, on 

the Forest River North Bound bridge. The exact locations of the IE test points and GPR scans 

were mapped on the ground truth layout. The class for each signal was determined with the 



 

 

aid of a computer program, using the ground truth maps for each bridge deck (Figure 12e-g). 

The annotation output was cross-referenced with the mapped regions on the ground truth 

layout for consistency. 

(a)

 

(b) 

 

(c)

 

(d)

 

(e) 

 

(f) 

 

(g) 

 

Figure 12. (a) IE test points, (b), (c), and (d) Regions A, B, and C IE test regions on ground truth, (e), (f), and (g) computer outputs of the IE 

annotation, and (i) computer outputs of the GPR annotation. 
 

2.5.3 Ground Penetrating Radar (GPR) Annotation 

A similar approach to IE data annotation was used for GPR signals; however, the GPR device 

scanned each bridge deck along a designated scan line, unlike the method used for IE. The 

coordinate of each GPR signal was extracted before annotation using Equations 5 and 6.  

   



 

 

dux = Lx 

𝑛
                                               duy = L𝑦 

𝑛
 (5) 

Xi  = Xx−i + dux                                       Y𝑖   = Yy−i + duy (6) 

where, 

dux , duy = signal sub-divisions for longitudinal and transverse signals, respectively. 

Lx , Ly = length of signal scans for longitudinal and transverse signals, respectively. 

n = number of signal amplitudes; 

Xx−i , Yy−i =   initial coordinates of the longitudinal and transverse scans, respectively. 

Xi , Y𝑖 = cumulative coordinates of the longitudinal and transverse scans, respectively. 

 The scan lines were plotted on the ground truth maps for each bridge (Figure 13a-b). The 

intersections of each GPR line scan with the class 2 and 3 delamination regions were 

extracted automatically with the aid of computer programs and computer-aided design 

applications. 
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Figure 13. (a) GPR scan signals for Forest River NB, (b) Magnified section of 51 signal scans lines in Forest River NB 

 

 



 

 

A summary of SDNET2021 annotation results is presented in Table 9. The annotation 

consists of a large dataset with 448,159, 177,483, and 37,460 GPR signals; 1,448, 426, and 

62 IE signals; and 2,862,597, 1,252,313, and 465,770 IRT pixels associated with classes 1 

(sound), 2 and 3 (delaminated), respectively. 

Table 9. Summary of SDNET2021 annotation 
 

GPR 

Classes of 

delamination 
PR_M FR_NB PR_NB PR_SB FR_SB Total signals 

class 1 171,085 66,334 94,978 61,732 54,030 448,159 

class 2 56,528 39,577 26,590 38,510 29,885 177,483 

class 3 13,478 6,945 443 6,674 7,392 37,460 

Total 241,091 141,500 141,500 106,916 91,307 663,102 

IE 

Classes of 

delamination 
PR_M FR_NB PR_NB PR_SB FR_SB Total signals 

class 1 291 301 273 326 257 1,448 

class 2 61 49 74 146 96 426 

class 3 12 13 16 11 10 62 

Total 364 363 363 483 363 1,936 

IRT 

Classes of 
delamination 

PR_M FR_NB PR_NB PR_SB FR_SB Total pixels 

class 1 898,758 344,771 802,348 572,455 244,265 2,862,597 

class 2 298,544 189,280 215,113 411,147 138,229 1,252,313 

class 3 79,294 80,619 49,640 200,968 55,249 465,770 

Total Pixels 1,276,596 614,670 1,067,101 1,184,570 437,743 4,580,680 

 

2.5.4 Significance and Potential Use of Dataset 

Bridges in North Dakota and the US are deteriorating due to the initiation and propagation of 

surface and subsurface defects that undermine the stability and serviceability of the bridge 

elements. Data from LTBP Info bridge reveals the condition state of Park River bridge at 

about 48 years in-service (Figure 14). The condition has been declining steadily since 2015 

due to a combination of high average daily traffic, freeze-thaw cycles, and harsh 

environmental conditions. The current rating for approximately 50% of ND bridges is fair 

(Figure 15b). Only 54% of ND bridges are in good condition: in the next 20-40 years, over 

90% of the existing bridges will be older than 50 years. The condition rating for bridge decks 

has declined since 2015 from very good, or a condition rating of 8, to fair, or a condition 

rating of 5. Bridge maintenance, repair budget, and expenditures will rise exponentially if not 



 

 

well planned; therefore, the NDDOT and other DOT’s must prioritize bridge repairs 

accordingly and monitor deterioration for effective maintenance.  

A combination of reliable NDE and AI applications can help bridge stakeholders as they plan 

for more effective inspections, maintenance, and asset management. This publicly available 

dataset will help advance studies and research to improve maintenance management systems 

when prioritizing bridges for repair.   

 
Figure 14. Bridge condition rating history (Source: LTBP FHWA infobridge data) 

 

The role of validated, annotated datasets for AI is critical when benchmarking and developing 

effective and feasible models with high accuracy. 

 

Figure 15. (a) Bridge ages and (b) Bridge condition to FAST Act condition-based performance management system for North Dakota in 

2018 (adapted from ASCE, 2019). 
 



 

 

Figure 16 demonstrates a delamination survey layout for the Forest River SB bridge. Ground 

truth can be useful as a benchmark when assigning a more reliable condition rating for the 

bridge decks compared to the rating developed by NBI and NBE, which is based on visual 

inspection.   

 

Figure 16. Delamination map for Forest River SB 

 

SDNET2021 will play a significant role in developing and benchmarking AI for bridge deck 

evaluation using NDE. Some of the applications of this dataset are listed below:  

• SDNET2021 will provide data for in-service bridge decks in contrast with most 

available NDE data generated from laboratory models and specimens.  

• The IRT, IE, and GPR datasets have been annotated with reliable and validated 

ground truth. This dataset will create a benchmark for evaluating bridge deck sub-

surface defects. 

• The dataset will be essential for the continued development of concrete bridge deck 

evaluations with the aid of AI models, especially convolutional neural networks 

(CNNs) training, which is still in its explorative stages. CNNs have significant 

potential for providing unbiased and inexpensive methods to analyze and interpret 

bridge evaluation data without operator input, compared to conventional methods.   

• The dataset will provide reliable data for investigating the relationships between the 

concrete deck surface and subsurface defects using AI models.   



 

 

• The dataset will be a remarkable resource for the development of data fusion for the 

different types of NDE datasets, allowing researchers to investigate the reliability and 

precision of one method relative to the other.  

• SDNET2021 can be used for algorithm training, validation, and benchmarking for 

autonomous concrete crack detection.  

• A deep learning model trained on SDNET2021 can identify sub-surface delaminations 

of varying sizes and depths.  

2.6 Summary  

SDNET2021 contains the following annotated signals from five in-service bridge decks in 

Grand Forks, ND, USA: 

• IE  

o Class 1 - 1,448 sound  

o Class 2&3 - 488 delaminated 

• GPR  

o Class 1 - 448,159 sound  

o Class 2&3 - 214,943 delaminated  

• IRT image pixels 

o Class 1 - 2,862,597 sound 

o Class 2&3 - 1,718,083 delaminated   

All NDE data were collected before the bridges were repaired. The quality of the collected 

data was evaluated using standard data quality metrics for images and signals. The evaluation 

indicated that the data presented in SDNET2021 were high-quality.  

The dataset was validated and annotated using a set of ground truth maps obtained as the 

investigated bridges were repaired, illustrating the deck removal class. The delaminated area 

GPS location, size, and removal class were collected during the repair. The ground truth was 



 

 

developed on site prior to repair to establish the status of areas as: Class 1, sound with no 

delamination; Class 2, shallow delamination with delamination above the top bar mat; and 

Class 3, deeper delamination with delamination below the top bar mat. 

IRT images of each bridge deck were stitched together to create an Orthomosaic map. The 

maps were aligned with the ground truth maps using computer vision techniques. The ground 

truth maps were analyzed using a developed image processing algorithm to find pixels in 

each removal class successfully, then each pixel was labeled based on a ground truth map 

location, providing a unique semantically segmented IRT map for each bridge deck. The 

ground truth data developed during the investigation has also created the basis for comparing 

the condition state developed by NBE to the results obtained from our study. The HI of the 

NBE rating indicates that the investigated ND bridge values range from 97.7% -100%. The 

HI values is contrary to the motivation for carrying out the repairs work by the NDDOT. Our 

bridge deck evaluation, based on the generated ground truth delamination survey, yields an 

HI range of 86-90%, which is more representative of the bridge’s condition. 

The IE and GPR signal data were annotated and validated with the ground truth maps.  The 

locations of each IE and GPR signal were determined based on the geometrical properties of 

the decks and data acquisition information.  The delamination classes were assigned to each 

of the 1,936 IE and 663,102 GPR signals. The dataset represents actual on-site conditions 

such as light sources, disturbances, varying weather conditions, occlusions, and other field 

conditions expected during the investigation.  

SDNET2021 will be a significantly important dataset for further AI development studies to 

classify and detect concrete bridge deck delaminations and defects. The development of these 

models is critical for continued research in advanced NDE and structural health monitoring. 

SDNET2021 is publicly freely. 

We have introduced an extensive data set for the Park and Forest River bridges in North 



 

 

Dakota. The data acquired during the project have been organized and uploaded to the UND 

repository platform for research data and are available for download. The DOI given in this 

paper will be permanently linked to the database and will direct users to the latest version of 

the data. The version history will be visible on the repository, and previous versions will be 

accessible. 

  



 

 

3 CHAPTER 3. Delamination Detection 

3.1 Effectiveness of IRT in Delamination Detection. 

This chapter presents the IRT technique adopted for the sub-surface delamination detection of 

in-service bridge decks and reports the goals, objectives, methodology, model development, 

and evaluation metrics for delamination detection. This part of the report has been submitted 

to a peer-reviewed journal. 

3.2 Introduction and Review of Past Studies 

The demand of NDE techniques for bridge assessment appears to have increased compared to 

visual and physical inspections  (Lee et al. 2014; Rolander et al. 2001). NDE techniques are 

used to assess and evaluate the condition of bridge decks without human involvement, 

possibly even autonomously. These evaluations include detecting surface and sub-surface 

defects, such as corrosion, cracks, delamination, and other anomalies, and evaluating 

structural properties, such as modulus (La et al. 2017; Lim et al. 2011). Concrete bridges may 

be evaluated using contact and non-contact NDE techniques, such as Ultrasonic Testing 

(UT), GPR, IE, IRT, Radiography Testing (RT), and the half-cell method to avoid the 

shortcomings of visual and physical inspections (Dorafshan et al., 2018b). DOTs and 

concerned stakeholders are continuously seeking new non-contact techniques (NCT) for 

automatic defect detection in place of contact techniques (CT). Past studies have indicated 

that NCTs, such as laser scanning, close range photogrammetry, air-coupled vehicle-mounted 

NDT, robotic platforms such as Robotic Crack Inspection and Mapping, Robotic Assisted 

Bridge Inspection Tools, and Unmanned Aerial Systems (UASs) mounted with several 

spectral sensor types can be used for the NDE of defective bridge decks (Dorafshan et al., 

2018b; Gucunski et al., 2014; Dabous et al. 2020).  

Unmanned and autonomous bridge inspections are a potentially feasible and effective 

alternative to physical and manned inspections compared to manned inspections, which are 



 

 

costly, time-consuming, and labor-intensive (Dorafshan et al. 2018b). UAS and robots used 

for image or video data acquisition are usually mounted with sensors such as visual or RGB, 

thermal infrared, Light Detection and Ranging (LiDAR), multispectral and hyperspectral, 

magnetic, sound navigation and ranging (SONAR), radio detection and ranging (RADAR), or 

synthetic aperture RADAR (SAR) sensors depending on the mission requirements.  

RGB sensors are mounted on a UAS to collect images for crack detection and other surface 

defects, which can then be evaluated and processed further (Dorafshan et al., 2021). The 

spectral range of these sensors is in the visible range, from wavelengths of 390–700 nm. 

Special sensors, such as thermal cameras, are mounted on a UAS to collect thermographs for 

sub-surface defects that are not within the visible light rays, which can then be evaluated and 

processed further.  

Image-based evaluations require images to be processed and reviewed using several methods, 

including: 1) raw image inspection, which is usually performed by an experienced inspector, 

2) image enhancements, which are typically performed using one or more of several image 

processing operations, such as filtering, smoothening, denoising, binarization, thresholding, 

and region of interest to magnify the visibility of delamination within images, and 3) 

autonomous image processing, which refers to the use of machine learning (ML) algorithms 

or other artificial intelligence (AI) models to automatically detect delaminations within 

images.  

IRT is an image-based technique that utilizes a UAS mounted with thermal sensors. IRT 

sensors are used as a non-contact method to detect and identify sub-surface defects such as 

delaminations and voids. (Hiasa et al., 2016).  

Past studies have used thermal images to identify sub-surface concrete delaminations in 

laboratory specimens based on temperature differences between damaged and undamaged 



 

 

areas depicted in the image. The false color image temperature matrix is extracted and 

transformed into grayscale, then normalized to pixel values ranging from 0 to 255 

(Montaggioli et al., 2021). The delamination results are presented in plan-view images 

displaying portions of the defective bridge deck with colored maps or contour lines 

(Gucunski et al. 2013). Defect detection using IRT is performed using visual, image 

enhancement, or automatic methods. Table 10 presents a summary of selected studies for IRT 

delamination detection.  

Table 10. Summary of past delamination detection using IRT 
 

References Nature of Defects Method of 

Detection  

Data Type/Material or 

Structure 

Validation 

Method 

Limitation 

Farrag et al. 

(2018) 

Delamination, 

voids, cracks, 

corrosion, 
honeycombing, 

and missing bars 

Visual IRT images of 16 nos. of 

1.22-mx1.22-mx20-cm 

reinforced slabs laboratory 
specimens  

Sound 

laboratory 

sample 

Laboratory 

specimen used 

and no ground 
truth for 

validation 

Omar et al. 

(2017) 

Delamination Image enhancement 

(stitching, 
segmentation) 

IRT images (640×512 pix 

resolution) for two full-scale 
in-service RC bridge decks 

in Ontario, Canada 

Validated 

using NDE 
data (HCP and 

hammer) 

No ground truth 

for validation 

Omar et al 
(2018) 

Delamination Image enhancement 
(filtering, 

enhancement, 

thresholding, 
clustering, image 

registration) 

IRT images (640×480 pix 
resolution) for full-scale in-

service RC bridge decks in 

Quebec, Canada 

Validated 
using IRT data 

from three 

bridge decks 
located in 

Wisconsin, 

USA 

No ground truth 
for validation 

Montaggioli et 
al. (2021) 

Delamination Image enhancement 
(thresholding)  

IRT false-color images in 
temperature matrix 

converted to grayscale 

images 

Validated with 
IRT dataset 

from different 

concrete 
structures 

No ground truth 
from the same 

bridge deck 

McLaughlin et 

al. (2020) 

Spalls and 

delamination 

Convolutional 

Neural Network 
(CNN) 

Platform mounted with RGB 

and IRT sensors for mobile 
data collection, generate 

point cloud maps and sets of 

synchronized and calibrated 
images of in-service bridge 

Validated with 

IRT images 
from a 

beam/girder 

concrete 
structure 

No ground truth 

for the 
inspected 

bridge 

Gu et al. (2021) Delamination Image enhancement 

and noise reduction 
algorithm 

IRT images of 100×80×30 

cm carbon fiber reinforced 
polymers (CFRP) laboratory 

specimens 

No validation  Laboratory 

specimen used 
and no ground 

truth for 

validation 

Pozzer et al 

(2021) 

Delamination, 

cracks, spalling, 

and patches 

CNN Optical and IRT images of a 

concrete dam in Thunder 

Bay, Canada 

Validated with 

IRT dataset 

from two 

concrete 
bridge decks 

in Tapejara, 

Brazil 

No ground truth 

from the 

inspected 

bridge 

 



 

 

3.3 Research Goals and Objectives 

The primary goal of this research was to develop an automated adaptive image processing-

based algorithm to detect subsurface delaminations of in-service concrete bridge decks under 

ambient environmental conditions.  

The following objectives were pursued to achieve this goal:  

(a) Develop an optimized image-based processing model with appropriate operations 

to detect sub-surface delaminations based on pixel gradient. 

(b) Benchmark IRT delamination detection with reliable ground truth generated from 

in-service bridge dimensions, locations, and data.  

(c) Consider the effects of delamination depth area, image quality, and ambient 

weather conditions, such as temperature, humidity, and wind speed, on the 

model’s performance.  

3.4 IRT for Delamination Detection 

IRT technology is based on the principle of heat flow through two different material media 

with different thermal properties. The radiant energy can be dissipated through absorption, 

transmission, and reflection. Materials with null transmissivity and reflectivity are called 

blackbodies because the radiant energy is absorbed. Most objects with temperatures above 

absolute zero (-273.15o Celsius or 0 Kelvin) emit infrared radiation (Kuenzer et al. 2013, 

Madding 1983). Infrared radiation lies between the visible and microwave portions of the 

electromagnetic spectrum, approximately 0.8 to 14 µm. This range can be further subdivided 

into the near-infrared (0.8–1.5 µm), short-wavelength infrared (1.5–2.5 µm), mid-wavelength 

infrared (2.5–8 µm), and long-wavelength infrared (8–14 µm). The intensity of the infrared 

radiation emitted by an object is a function of the material’s temperature and its emissivity, 

according to the Stefan-Boltzmann equation (Madding 1983).  



 

 

A perfect black body has an emissivity value of unity, but for concrete the value is typically 

greater than 0.92 (Chen et al., 2016). 

The defects and subsurface delaminations disrupt the heat flow and transfer through the 

concrete medium, influencing the amount of radiant energy emitted and measured by the IRT 

sensor. Radiant energy from the sun causes the defective portions to warm up or cool down 

faster than the surrounding deck due to the difference in the thermal properties of the 

delaminated and sound portions during the day and at night (Washer et al. 2009). The 

presence of subsurface delaminations can produce a thermal contrast (ΔT) between 

delaminated and sound regions.  A thermal contrast of 0.2-0.5oC is suitable to detect 

subsurface delaminations using IRT. A grayscale image is generated from the temperature 

matrix of the IRT image in false color, then the pixel values are normalized to between 0 

(black pixels) to 255 (white pixels) utilizing the camera's parameters. Human IRT image 

inspection is often subjective and depends on an operator’s visual assessment (ASTM-D4788 

2013, Hiasa et al. 2017, Montaggioli et al. 2021).  

Solar loading, temperature, and wind speed affect delamination detection accuracy when 

using IRT. Its testing is not suitable at ambient air temperatures less than 0oC and wind 

velocities greater than 50 km/hr (ASTM-D4788 2013, Washer et al. 2009). Condition and 

subsurface defect characteristics, such as depth, delamination thickness, materials present in 

the delamination, concrete properties, and the presence of asphalt overlays are important 

considerations for IRT testing (Hiasa et al. 2017, Washer et al. 2013). 

IRT images were evaluated for sub-surface delaminations using direct prediction and 

refinement by applying a conditional random field (CRF) method for augmented and non-

augmented data. Automatic segmentation based on a deep learning model was adopted to 

detect delaminations. Direct prediction established values of 15.8, 21.09, and 42.14% for 

IoU, precision, and recall for non-augmented data, respectively; however, these values 



 

 

increased to 36.9, 44.01, and 69.61%, respectively, for augmented data (Cheng et al. 2020). 

An image-based algorithm for automatically detecting delaminations that takes the 

temperature difference between damaged and undamaged parts in a thermal image into 

account was developed to evaluate bridge decks. Canny edge detector, local intensity 

weighing operator, and image processing techniques, among others, were used in deck 

assessment (Montaggioli et al., 2021). Most of these studies adapted contrast difference as the 

primary criterion for developing delamination detection models (Table 10).  

3.5 IRT Data Acquisition  

An FLIR XT V2 infrared thermal camera was used to capture IRT images for the NDE of 

defective and delaminated sub-surface regions of five in-service reinforced concrete bridge 

decks in Grand Forks, North Dakota. The thermal sensor was mounted on a DJI Matric 210 

UAS at an average altitude of 17m above ground level (AGL).  Five mosaic stitched images 

of the bridge decks were generated using commercial mosaic stitching software.  The 

specifications of the FLIR XT V2 infrared thermal camera used for IRT data collection are 

summarized in Table 11. The number of pixels computed within the region of interest (ROI) 

for the delaminated and sound regions of the mosaic-generated IRT images are presented in 

Table 12. SDNET2021 (Ichi and Dorafshan, 2021a&b) was used in this study. The UAS and 

IRT camera specifications, weather conditions, data quality, and annotation details are listed 

in Tables 4, 5,7 & 9  

A sample map illustrating delaminated and undelimitated portions, as well as the color 

representation of the sound and delaminated pixels, is illustrated in Figure 17.  

 

 

 

     Sound pixels-                    Class 2 delamination (0-100mm)-                Class 3 delamination (100-150mm)-  

Figure 17. Ground truth map for Forest River SB 



 

 

 

3.6 Research Methodology  

This section further discusses the experiment, model development, image enhancement, and 

model performance evaluation metrics sections.  

3.6.1 Model Development  

All computations were performed on a desktop computer with a 64-bit operating system, 32 

GB of memory, and a 3.80 GHz processor running an intel ® Core™ i7-9800X CPU. Image 

processing operations were programmed and performed in MATLAB R2020a.  A novel 

image processing technique was developed to detect delaminations in the IRT images of the 

bridge decks. The images collected were benchmarked and validated with ground truth on a 

pixel-by-pixel basis. Extracting quantitative information, such as the area and location of the 

delaminated areas, from a set of IRT images is a critical component of thermal data analysis. 

Developing an automated procedure and algorithm capable of detecting subsurface defects 

regardless of temperature or pixel intensity range was challenging. The procedure developed 

to achieve this goal consists of several steps. 

The methodology to achieve the objectives of this study were developed using the following 

MATLAB script:  

a) Input image.  

b) Read the ground truth and IRT image to perform several initial pre-processing 

operations, such as the rotation and conversion of the image to grayscale. 

c) Pre-processing. 

i) Ground truth: generate a binarized and segmented thermal image of the ground 

truth by creating a mask based on chosen thresholds for each bridge deck. The 

ground truth image was converted into a binary coded image of “0” (black for 

sound pixels) and “1” (white for delaminated pixels) by changing the intensities of 

the ground annotated pixels. 



 

 

ii) IRT image: image enhancement operations, such as smoothening, contrast limited 

adaptive histogram equalization (CLAHE), an adaptive histogram equalization 

operator, and a fast-local Laplacian filter were applied to an IRT image for higher 

pixel intensity gradient. 

d) Image Processing for delamination detection. 

i) Image thresholding and segmentation: the gray image pixels for the entire image 

were assigned a value between 0 and 1 after pre-processing, which reduced the 

computation complexity for subsequent computation and segmentation. An 

adaptative thresholding operation was adopted for segmenting the binary IRT 

images into two clusters of sound (black, “0”) and delaminated pixels (white, “1”) 

based on the pixel intensity contrast. The sensitivity factor for adaptive 

thresholding, specified as the comma-separated pairs consisting of 'Sensitivity' 

and a number between [0, 1], was iterated and its effect investigated. A stepwise 

increase of 0.001 was iterated for the sensitivity factor, implying that each image 

was iterated over 1,001 sensitivity values. A high sensitivity value leads to 

thresholding more pixels as the foreground at the risk of including some 

background pixels. An optimum value was determined. 

ii) Morphological operations: appropriate morphological operations for further IRT 

image cleaning and processing were adopted. 

iii) Condition map: a condition map for the detected delaminations was created, the 

number of delaminations by pixel were quantified, and the accuracy and other 

metrics of the generated model were evaluated. 

e) Metric evaluation: 

i) Region of interest (ROI): the ROI for the ground truth was created, the IRT image 

was processed, and the image pixels were mapped.  



 

 

ii) Quantify delamination and Confusion matrix: the predicted and actual image sets 

were mapped, and the pixel index numbers were compared. The true positives 

(TP), true negatives (TN), false positives (FP), and true negatives (FN) were 

determined for each bridge deck. The developed MATLAB script read every 

white (delaminated) pixel as 1 (positive pixel), and black (sound) pixels as 0 

(negative pixel). Figure 18 depicts the flow chart used for methodology and model 

development. 

If BW_im(t)=1 & BW_gt(t)=1); TP, 

If BW_im(t)=1 & BW_gt(t) =0; FP, 

If BW_im(t)=0 & BW_gt(t)=1; TN, 

If BW_im(t)=0 & BW_gt(t)=0); FN, 

BW_im = IRT image for delamination detection; BW_gt = IRT ground truth image for 

validation; t=pixel index within common ROI. 

a) The results from the confusion matrix were used to develop the performance 

evaluation metrics: i) Accuracy (ACC), (ii) Positive Predictive value/Precision (PPV), 

(iii) F1-value, (iv) Sensitivity/Recall/True positive rate (TPR), (v) Specificity/True 

negative rate (TNR), (vi) False Positive Rate (FPR), (vii) False Negative Rate (FNR).  

b) Selected sensitivity-values and optimization: The metrics were plotted against the 

sensitivity (s) values for 1,001 points. Various intersection points from the graphs 

generated were observed and recorded. An optimized value was selected from the 

selected sensitivity values. The images for the optimized delamination detection were 

generated and compared to the ground truth. 



 

 

 
Figure 18. Flow chart for the methodology and model development  

 



 

 

3.6.2 Image Enhancements 

Several image enhancement operations used in this study were binarization, image 

thresholding and segmentation, filtering, and Contrast Limited Adaptive Histogram 

Equalization (CLAHE). CLAHE was introduced to improve contrast and generate an 

enhanced IRT image, while others were primarily used to segment the features of interest as 

foreground or background (Hou et al., 2016). Thresholding is one of the most widely used 

methods, partly due to its effectiveness (Sezgin et al., 2004). Some known thresholding 

methods include Otsu’s method, minimum error method, and maximum entropy method.  

The Otsu (1979) thresholding method is a non-parametric and unsupervised automatic 

threshold selection method for image segmentation. An image f(x,y) of size M×N is 

represented in L gray levels. Its corresponding average image g(x,y) is defined by Equations 

(3)-(5). 

𝑔(𝑥, 𝑦) =
1

𝑘2
 ∑  

(𝑘−1)/2

𝑎=−(𝑘−1)/2

∑ 𝑓(𝑥 + 𝑎, 𝑦 + 𝑏)

(𝑘−1)/2

𝑏=−(𝑘−1)/2

 (3) 

We obtain a gray level pair (i,j) for each pixel by denoting the gray level at pixel (x,y) in 

image f(x,y) and g(x,y) as i and j, respectively. Let Fij be the frequency of the pair (i,j). 

Its joint probability is given by 

𝑝𝑖 =
Fij 

MxN
 (4) 

where i,j=0,1,……..,L-1 and 

∑.

𝐿−1

𝑖=0

∑ 𝑃𝑖𝑗

𝐿−1

𝑗=0

= 1 (5) 

The contrast enhancement phase is completed using the contrast limited adaptive histogram 

equalization (CLAHE), which is a refinement of the adaptive histogram (Zuiderveld et al. 

https://www-sciencedirect-com.ezproxy.library.und.edu/topics/engineering/maximum-entropy
https://www-sciencedirect-com.ezproxy.library.und.edu/topics/engineering/joint-probability
https://www-sciencedirect-com.ezproxy.library.und.edu/topics/computer-science/histogram-equalization
https://www-sciencedirect-com.ezproxy.library.und.edu/topics/computer-science/histogram-equalization


 

 

1994). The CLAHE method reduces the noise and edge-shadowing effect produced in 

homogeneous areas. This method has been used for enhancement to remove noise and reduce 

the edge-shadowing effect in the pre-processing of digital mammograms (Wang et al. 2005 & 

Ball et al. 2007). 

The histogram of a digital image with intensity levels in the range (0, L – 1) is a discrete 

function: 

h(rk) = nk    (6) 

Where rk is the kth intensity value and nk is the number of pixels in the image with an 

intensity rk. A normalized histogram is given by: 

Pr (rk) = nk  / MN  (7) 

where k=0,1,2……..., L-1     

is an estimation of the occurrence probability for the intensity level rk in an image. The sum 

of all components of a normalized histogram is equal to 1. 

The histogram equalization is obtained by Equation 8: 

𝑆𝑘 = (𝐿 − 1 ) ∑ .𝑘
𝐽=0 Pr (rj)      (8) 

where sk is the new distribution of the histogram. 

3.6.3 Model Evaluation Metrics 

The model was evaluated with the performance evaluation metrics of (i) Accuracy (ACC), 

(ii) Positive Predictive Value/Precision (PPV), (iii) F1-value, (iv) Sensitivity/Recall/True 

Positive Rate (TPR), (v) Specificity/True Negative Rate (TNR), (vi) False Positive Rate 

(FPR), and (vii) False Negative Rate (FNR). 

The metrics are calculated using Equations (9)-(13): 

https://www-sciencedirect-com.ezproxy.library.und.edu/topics/medicine-and-dentistry/mammography


 

 

 

𝐴𝐶𝐶 =
TP + TN

TP + FP + TN + FN
 

(9) 

𝑃𝑃𝑉 =
TP

TP + FP
 (10) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2TP

2TP + FP + FN
 (11) 

𝑇𝑃𝑅 =
TP

TP + FN
 (12) 

𝑇𝑁𝑅 =
TN

TN + FP
 (13) 

The model’s ACC indicates the correction detection rate for the delaminations with respect to 

the total detections. The PPV and TPR are metrics often used to increase the understanding of 

the prediction outcome. PPV measures what fraction of the detected delaminations have been 

correctly detected given the ground truth, and TPR indicates what fraction of the real 

damages are correctly detected among the positives (Kumar et al. 2018).  Low PPV rates 

indicate a high number of false positives, such as when many areas are incorrectly classified 

as delaminated. Models with high PPV results are preferred to minimize false detections. 

Low TPR rates indicate a high number of false negatives, such as when many of the existing 

delaminations were missed. 

3.7 Results and Discussions 

A summary of the results for the image-based delamination detection for the five in-service 

bridges is presented in Table 14. The evaluation metrics for the developed model are pixel-

based, unlike other image-based studies that visually evaluate delaminations by comparing 

the pixel contrast between the delaminated and un-delaminated portions. This study also 

evaluates and validates the delamination detection of the studied IRT images that are well 

annotated and with reliable ground truth data.  Table 11 presents the performance evaluation 



 

 

metrics for selected optimized s- values with corresponding intersecting curves: ACC, PPV, 

F1-Score, TPR, TNR, FPR, FNR.  

Table 11. Summary of delamination metrics 
 

Bridge 
Name 

Intersecting 
Curves 

Nominated 
s-value ACC PPV F1-score TPR TNR FPR FNR 

FR NB 

TPR/PPV/ 

F1 score 0.452 0.703 0.254 0.211 0.180 0.851 0.149 0.820 

FPR/PPV 0.464 0.699 0.262 0.228 0.201 0.840 0.160 0.799 

FPR/F1 

score 0.486 0.691 0.275 0.260 0.248 0.816 0.184 0.753 

TPR/FNR 0.560 0.626 0.276 0.337 0.433 0.680 0.320 0.567 

FR SB 

TPR/PPV/ 

F1 score 0.459 0.716 0.140 0.099 0.077 0.879 0.121 0.924 

FPR/TNR 0.581 0.5634 0.202 0.265 0.386 0.609 0.391 0.614 

TPR/TNR/ 

ACC 0.584 0.560 0.204 0.270 0.399 0.601 0.394 0.601 

FNR/ F1 
score 0.625 0.500 0.224 0.325 0.590 0.477 0.523 0.410 

PR MD 

TPR/PPV/ 

F1 score 0.380 0.655 0.141 0.131 0.123 0.799 0.201 0.877 

FPR/TPR 0.544 0.564 0.207 0.267 0.373 0.616 0.384 0.627 

TPR/FNR 0.545 0.615 0.240 0.293 0.375 0.680 0.321 0.625 

ACC/FNR 0.566 0.549 0.213 0.283 0.420 0.584 0.417 0.581 

FNR/TPR 0.580 0.593 0.248 0.319 0.450 0.631 0.369 0.550 

PR NB 

TPR/PPV/ 

F1 score 0.480 0.696 0.330 0.287 0.254 0.836 0.164 0.746 

FPR/PPV 0.514 0.666 0.310 0.314 0.315 0.778 0.223 0.685 

FPR/ F1 

score 0.532 0.646 0.3000 0.324 0.352 0.739 0.261 0.648 

TPR/FNR 0.559 0.607 0.283 0.335 0.411 0.670 0.330 0.589 

TPR/TNR/ 
ACC 0.572 0.587 0.277 0.341 0.443 0.632 0.368 0.557 

FPR/FNR 0.572 0.587 0.277 0.341 0.443 0.632 0.368 0.557 

PR SB 

FPR/PPV 0.345 0.740 0.156 0.134 0.117 0.869 0.131 0.883 

TPR/PPV/ 

F1 score 0.365 0.731 0.161 0.148 0.136 0.853 0.147 0.864 

TPR/TNR/ 

ACC 0.580 0.529 0.169 0.248 0.446 0.546 0.454 0.554 

FPR/FNR 0.580 0.529 0.169 0.248 0.446 0.546 0.454 0.554 

ACC/FNR 0.590 0.517 0.169 0.248 0.465 0.527 0.473 0.535 

 

The performance metrics for the bridge decks were plotted against the s-values, which varied 

from 0 to 1.0 at 0.001 steps. The generated curves are illustrated in Figures (19)-(23).  



 

 

 

 
Figure 19. Forest River NB evaluation metrics vs. sensitivity values 

 

 
Figure 20. Forest River SB evaluation metrics vs. sensitivity values 



 

 

 

 

Figure 21. Park River Median bridge evaluation metrics vs. sensitivity values 

 

 
Figure 22. Park River NB bridge evaluation metrics vs. sensitivity values 



 

 

 

 
Figure 23. Park River SB bridge evaluation metrics vs. sensitivity values 

 

The performance metric curves exhibit a similar sigmoid curve pattern. The FNR, TNR, and 

ACC decrease from 1 to 0 as the s-values increase from 0 to 1. The TPR and FPR increase 

from 0 to 1, conversely. The F1-score increases from 0 to a maximum steady value of 0.4, 

while the PPV slopes upwards to a maximum value of 0.4.  

The bridges’ selected s-values were plotted against the corresponding accuracies (Figure 24).  

This plot shows a correlation between the parameters, with an R-squared value of 0.7588. 

This shows a possible relationship between the s-values and accuracy of the model. 

  

Figure 24. Graph of selected s-values for bridge decks vs. accuracy 



 

 

 

3.7.1 Optimized S-Value(s) Selection 

The s-value is a parameter in the adaptative Otsu thresholding operation that determines the 

number of pixels segmented as foreground and background. The s-values for each bridge 

were selected at various intersecting points of the various curves. The image with a higher 

sensitivity has higher pixels segmented as foreground or sound pixels (Figure 25); therefore, 

a higher sensitivity value leads to thresholding more pixels as foreground at the risk of 

including some background pixels, implying that higher s-values may not yield acceptable 

results since it may result in increased FP. 

The s-vales were selected for FR NB where TPR and PPV intersect, FPR and PPV intersect, 

FPR and F1 scores intersect, and TPR and FNR intersect at s-values of 0.452, 0.464, 0.486, 

and 0.56, respectively. The s-values and intersecting curves for other bridges are depicted as 

well in Figure (21-23). The s-values for the models vary from the lowest value of 0.365 for 

PR MD to the greatest value of 0.625 for FR SB. 

The intersection of the TPR, PPV, and F1-score curves was common for all five bridges 

evaluated. The s-values at these points were extracted and investigated further: 0.452, 0.459, 

0.380, 0.480, and 0.365 for FR NB, FR SB, PR MD, PR NB, and PR SB, respectively. The 

PR SB had the lowest selected s-value of 0.365, while the PR NB had the highest value of 

0.48. Other bridges possessed similar s-values at this point of intersection.  

The images for the values generated by the model are presented for FR NB and FR SB in 

Figures 26 (1a-2c). 
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Figure 25. (a) IRT image for delamination detection, delamination detection for (b)s-value=0.459, (c) s-value=0.58, and (d) binarized 

ground truth. 
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Figure 26. (1a&2a) IRT images for FR NB and FR SB, (1b&2b) Condition maps for 0.452 and 0.459 s-values, and (1c&2c) Ground truth 
images for FR NB and FR SB. 

 

The selected s-vales for the studied bridges are the lowest, compared to the s-values 

generated at other points of intersection, except for the PR SB bridge deck, which had a value 

that was 0.02 higher than the lowest value. The FR NB s-value of 0.452 was the lowest for 

the intersecting curves of TPR, PPV, and F1-score compared to 0.464 for FPR and PPV, 

0.486 for FPR and F1-score, and 0.56 for TPR and FNR. The selected optimized values for 

each bridge deck are depicted in Figure 27. 

  

Figure 27. Selected s-values and evaluation metrics for Forest River NB 
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The FR SB s-value of 0.459 was the lowest at the intersecting curves TPR, PPV, and F1-

score compared to 0.581 for FPR and TNR, 0.584 for TPR, TNR, and ACC, and 0.625 for 

FNR and F1-score, which is a similar trend for the PR MD, PR NB, and PR SB bridges.   

3.7.2 Selected S-Value(s) and Evaluation Performance Metrics  

We also considered the effect of optimized s-values on the performance evaluation metrics 

when selecting the value used. An increased s-value segments more pixels to the foreground, 

likely causing an increase in FP.  The confusion matrix for the selected s-values of the five 

bridges investigated is presented in Table 12(i)-(v). The TP, FP, TN, and FN of the actual 

IRT image are listed in reference to the ground truth.  

Table 12. Summary of confusion matrix for selected s-values 

 

(i)               Confusion matrix for s=0.452 for FR-NB 

   Predicted IRT pixels 
 

    1 0 
 

Actual 

Ground 
truth 

pixels 

1 
35,284 160,372 

Total= 
886,271 
pixels 

4% 18% 

0 
102,825 587,790 

12% 66% 
 

(ii)              Confusion matrix for s=0.459 for FR-SB 

   Predicted IRT pixels 
 

    1 0 
 

Actual 

Ground 
truth 

pixels 

1 
10,088 121,918 

Total= 
647,077 
pixels 

2% 19% 

0 

83,180 431,891 

13% 67% 

 

(iii)             Confusion matrix for s=0.38 for PR-MD 

   Predicted IRT pixels 
 

    1 0 
 

Actual 
Ground 

truth 

pixels 

1 
46,294 350,913 

Total= 
1,775,027 
pixels 

3% 20% 

0 
281,625 1,096,195 

16% 62% 
 

(iv)             Confusion matrix for s=0.480 for PR-NB 

   Predicted IRT pixels 
 

    1 0 
 

Actual 
Ground 

truth 

pixels 

1 
67,347 197,408 

Total= 
1,100,012 
pixels 

6% 18% 

0 
137,013 698,244 

12% 63% 
 

(v)            Confusion matrix for s=0.3650 for PR-SB 

   Predicted IRT pixels 
 

    1 0 
 

Actual 
Ground 

truth 

pixels 

1 
43,762 277,084 

Total= 
1,873,838 
pixels 

2% 15% 

0 
227,879 1,325,113 

12% 71% 
 

 

 



 

 

The change in the selected optimized s-values and their effect on the confusion matrix 

parameters was evaluated. A 2.7% increase in the FR NB s-value caused an increase in the 

TP and FP by 11% and 8%, respectively, and a reduction in FN and TN by 3% and 1%, 

respectively. A 27% increase, from 0.459 to 0.581, for the FR SB s-value resulted in a 405% 

and 142% increase in TP and FP, and a 34% and 127% reduction in FN and TN, respectively. 

There was also a significant decrease in the ACC values, from 0.716 to 0.563, resulting in a 

15.3% reduction. An increase in the s-values for the PR MD bridge, from 0.38 to 0.544 

(43%), caused an increase in TP and FP of 203% and 91%, respectively, and a 33% and 21% 

reduction in FN and TN, respectively. An increase in the PR NB s-value, from 0.48 to 0.514 

(7%), caused an increase in TP and FP of 24% and 36%, respectively, and an 8% and 7% 

reduction in FN and TN, respectively. An increase in the PR SB bridge s-value, from 0.365 to 

0.58 (59%), caused an increase in TP and FP of 227% and 210%, respectively, and a 36% 

reduction in FN and TN. 

Changes in s-values caused significant changes in the performance evaluation metrics (Table 

11). A 7.5% increase in the FR NB s-value, from 0.452 to 0.486, caused no significant 

reduction in ACC (1.8%). The F1-score, TPR, and FPR increased significantly from this 

change in s-value, by 24%, 38%, and 24%, respectively, while TNR and FNR reduced by 4% 

and 8%, respectively; therefore, a selected value of 0.486 was more appropriate since it 

caused a significant increase in TPR and FI-score and a drop in TNR, while ACC was 

relatively the same even though the value of 0.452 was the optimized value selected, with an 

ACC value of 70%.  There was an increase in the FR SB F1-score, TPR, and FPR (173%, 

422%, and 226%, respectively), while ACC, TNR, and FNR were reduced by 21.3%, 32%, 

and 35%, respectively. There was an increase in the PR MD F1-score, TPR, and FPR (123%, 

205%, and 59%, respectively), while ACC, TNR, and FNR were reduced by 14%, 15%, and 

29%, respectively. There was also an increase in the PR NB F1-score, TPR, and FPR (13%, 



 

 

38%, and 59%) while ACC, TNR, and FNR were reduced by 4.3%, 11%, and 13%, 

respectively. There was an increase in the PR SB F1-score, TPR, and FPR (68%, 227%, and 

210%, respectively), while ACC, TNR, and FNR were reduced by 1.3%, 36%, and 36%, 

respectively. The model’s average ACC was 0.6976; therefore, the optimized s-values 

selected for FR SB, PR MD, PR NB, and PR SB were 0.459, 0.38, 0.48, and 0.365, 

respectively.  

An R-squared (R2) value of 75.88% was calculated after the range of the selected s-values 

were evaluated and compared to the accuracy, suggesting that the model was a relatively 

good fit for evaluating the model’s ACC (Table 13). A modified ACC value can be calculated 

and determined using the generated graph and model depicted in Figure 24 (Table 13).  

There is a slight variance in the modified ACC values generated using the model but with 

similar average values, implying that the ACC for the detection model is approximately 69%. 

Table 13. Modified accuracy values from accuracy vs. s-values graph 

 

 

Optimized s-

value ACC Modified ACC 

FR NB 0.486 0.6907 0.6491 

FR SB 0.459 0.7156 0.6716 

PR MD 0.38 0.6552 0.7375 

PR NB 0.48 0.696 0.6541 

PR SB 0.365 0.7305 0.7500 

Average 0.6976 0.6926 

 

3.7.3 Factors Affecting the Performance of the Model 

It is important to consider possible factors that may affect the model’s performance for all 

bridges evaluated. The optimized s-values indicate a slight variance between FR NB, FR SB, 

and PR NB, while PR MD and PR SB exhibit similarly optimized s-values, indicating the 

relative uniformity of the model when detecting defects with two clusters. The average s-

values for these clusters is 0.475 and 0.3725. 



 

 

Several possible factors may have influenced the model’s performance: depth of 

delamination; spatial dimension of delamination; ambient weather conditions such as wind 

speed, temperature, and humidity; and quality of the original and mosaic images (Table 14). 

Table 14. Summary of factors affecting delamination detection 
 

Classes of 

Delamination 
FR_NB (1) FR_SB (2) PR_MD (3) PR_NB (4) PR_SB (5) 

class 1 (Sound) 344,771 56% 244,265 56% 898,758 70% 802,348 75% 572,455 48% 

class 2 189,280 31% 138,229 32% 298,544 23% 215,113 20% 411,147 35% 

class 3 80,619 13% 55,249 13% 79,294 6% 49,640 5% 200,968 17% 

Total Pixels 614,670 100% 437,743 100% 1,276,596 100% 1,067,101 100% 1,184,570 100% 

Optimized s-

value 
0.486 0.459 0.38 0.48 0.365 

Performance Evaluation Metrics 

ACC 0.6907 0.7156 0.6552 0.6960 0.7305 

Depth of Delamination 

% Class 3:2 
ratio 

0.426 0.400 0.266 0.231 0.489 

Ambient Weather Conditions 

Temperature 
(oC) 

26.7 26.0 27.8 27.0 27.8 

Humidity (%) 44.0 47.0 44.5 47.0 45.0 

Wind Speed 
(kmph) 

12.9 10.5 14.5 12.9 16.1 

Image Quality 

Brisque 44.0 (Fair) 49 (Fair) 48 (Fair) 40 (Fair) 34 (Good) 

Piqe 68.0 (poor) 81 (Bad) 72 (Poor) 36 (Fair) 39 (Fair) 

 

An evaluation of the original reference image revealed Brisque and Pique results of 24 and 

31, respectively; therefore, they are categorized as ‘good’ based on the evaluation metrics 

(Taylor et al., 2020). An evaluation of the mosaic image’s quality, when compared to the 

original frames generated, indicated that the quality had decreased, from ‘good’ to 

‘poor/bad.’  

The effect of wind on the model’s performance was evaluated with respect to accuracy. A 

plot of the accuracy and ambient wind speed is illustrated in Figure 28. The plot indicates an 

inverse relationship with a high R-squared value. Similar studies completed by Raja et al. 

(2020) indicate that wind significantly impacts absolute thermal contrast (ΔT) development, 



 

 

demonstrating that an increase in wind velocity resulted in a decreased thermal contrast. The 

Figure 28 indicates that the highest accuracy was derived from the lowest recorded wind 

speed 

  

Figure 28. Effect of wind speed on model accuracy 

 

The ambient temperature for the 2-bridge cluster, PR MD and PR SB, is 27.8 oC (Table 17). 

This cluster's wind speed and humidity range are 14.5-16.1 kmph and 44.5-45%, respectively. 

The values for the 3-bridge clusters, FR-NB, FR_SB and PR-MD, range from 26-27 oC, 44-

47%, and 10.5-12.9 kmph for the temperature, humidity, and wind speed, respectively. 

Ambient weather conditions affected the s-values adopted for the studied bridges compared 

to the optimized s-value range for the 2-cluster and 3-cluster bridges (0.365-0.38 and 0.459-

0.48, respectively).  

The effect of the delamination depth area was also evaluated. The class 3:class 2 values for 

all studied bridges, in ascending order, are 0.231, 0.266, 0.40, 0.426, and 0.489 for PR NB, 

PR MD, FR SB, FR NB, and PR SB, respectively (Table 8). Figure 29 illustrates a positive 

R2 value trend of approximately 50%, possibly due to the likelihood of the class 3:class 2 

delamination proportion on the model’s ACC.  



 

 

  

Figure 29. (a)&(b) Effect of delamination depth area on the model’s performance  
 

Similar past studies have revealed that the delamination size and the depth are the critical 

factors for IRT detection. Some studies indicate that as the size of delamination increases, the 

temperature gradient between the sound and delaminated pixel increases, improving the 

detectable depth of the sub-surface delaminations (Washer et al. 2010, Maierhofer et al. 

2005, Cheng et al. 2008). Tran et al. (2017) also demonstrated that delamination detection 

increases with increased ambient temperature in large and shallow delamination than small 

and deep delaminations, and might be greater under a highly humid atmosphere.  

Delamination size also has a significant effect on these outcomes. A 32 mm deep 

delamination (14.5mm2) was not detected in the work completed by Abdel-qader, et al. 

(2008). Washer et al. (2010) revealed that a delamination area of 900 mm2  was detected up 

to a 7.6 mm depth but was not detected at 127 mm. Most of the delamination studies were 

based on laboratory specimens and may not be indicative of results from field investigations, 

which are influenced by several factors such as occlusion, background interference, light 

control, quality and resolution of the image, and ambient weather conditions.  



 

 

3.7.4 Summary  

This study presents an adaptative image processing-based model for the sub-surface bridge 

deck delamination evaluation of five in-service concrete bridge decks in North Dakota. The 

proposed method is conceptually different than most of the recent image-based algorithms 

and models developed, which did not use reliable ground truth or were primarily based on 

laboratory specimens. We have investigated the effectiveness of IRT in delamination 

detection with reliable and validated ground truth data. The developed model was optimized 

by iterating the sensitivity (s) parameter and selecting s-values based on the interactions of 

the performance evaluation metrics: Accuracy (ACC), Positive Predictive value (PPV), F1-

value, True Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR), and 

False Negative Rate (FNR). The 2-clustered and 3-clustered optimized s-values ranged from 

0.365 to 0.38 and 0.459 to 0.486, respectively. An average accuracy of 69% was obtained for 

the model. The true positive rate and true negative rate ranged from 0.077 to 0.254 and 0.799 

to 0.879, respectively. The study revealed that several factors, such as the depth and spatial 

dimensions of the delaminations; ambient weather conditions such as wind speed, 

temperature, and humidity; and mosaic image quality affect the model’s performance. Our 

results indicate that adopting deep learning and data fusion methods to improve the model’s 

accuracy and performance regarding delamination detection is promising. 

One known limitation of the model is the adoption of low-resolution and quality mosaic IRT 

images. Investigating the use of a higher quality image with increased resolution may 

improve the model’s performance, which will be necessary for future studies. 

Data fusion of IRT with visual/RGB images or other NDE methods would be instrumental in 

developing and improving models for delamination detection. Past studies indicate that 

delamination can be observed by GPR and IRT and can be used together for accurate 

anomaly identification (Maser et al. 2009, Washer et al. 2013). Future work could explore 



 

 

and combine other NDE data, such as visual images, impact Echo, and GPR with IRT data in 

the SDNET2021 dataset to increase TPR and ACC. Further studies could establish the effect 

of delamination depth by considering different delamination classes.  

Exhaustively trained models are increasingly available as deep learning (DL)-based methods 

increase in popularity. Re-using these models and combining them with image processing 

methods to optimize delamination detection may be more feasible. The results from this study 

indicate that the future adoption of convolutional neural network (CNN) methods for image-

based delamination detection in concrete bridge decks is promising.  

  



 

 

4 CHAPTER 4. Conclusions and Future Work 

4.1 Conclusions  

Advanced non-destructive evaluation (NDE) techniques are feasible and established methods 

for bridge evaluation, monitoring, and assessment. This report has investigated existing in-

service bridge decks and presented a potential framework and methodology for evaluating 

sub-surface defects, such as delaminations. The primary objective of this research was to 

assess the condition of the existing bridges. The assessment was preceded with reliable data 

acquisition, quality evaluation, validation, and annotation, which is the basis for evaluating 

the condition of the bridge deck’s sub-surface.  

NDE techniques, such as unmanned aerial systems/vehicles (UAS/UAV’s) mounted with 

infrared thermography or visual sensors, GP), and IE, are useful for bridge deck condition 

assessments. A well-validated SDNET2021 dataset has been developed that contains the 

following summary dataset information 

• IE  

o Class 1 - 1,448 sound  

o Class 2&3 - 488 delaminated 

• GPR  

o Class 1 - 448,159 sound  

o Class 2&3 - 214,943 delaminated  

• IRT image pixels 

o Class 1 - 2,862,597 sound 

o Class 2&3 - 1,718,083 delaminated   

 The dataset is publicly available. The study also developed a reliable ground truth and 

annotation technique for the collected NDE dataset, which is useful for validating Artificial 



 

 

intelligence (AI) models. The dataset annotation was performed autonomously to avoid 

possible dataset errors or misrepresentations.  

This study also confirms the feasibility of IRT applications for concrete bridge deck 

delamination detection. The method applied in this study is conceptually different than most 

recently developed image-based algorithms and models that have no reliable ground truth or 

were created using laboratory specimens. We have investigated the effectiveness of IRT 

when detecting delamination with reliable and validated ground truth data. The developed 

model, which was optimized by iterating the sensitivity (s) parameters and selecting s-values, 

revealed the ability to detect delaminations with an accuracy of approximately 70%. The 

study revealed that several factors, such as delamination depth and spatial dimension; 

ambient weather conditions such as wind speed, temperature, and humidity; and mosaic 

image quality may have affected the model’s performance. The study indicates that adopting 

deep learning and data fusion methods to improve model accuracy and performance is 

promising. 

One known limitation of the model is the adoption of low-resolution and quality mosaic IRT 

images. Investigating quality images with higher resolution may improve the model’s 

performance, which is an important consideration for future studies. 

Using the SDNET2021 dataset, IRT techniques, and other advanced techniques in bridge 

evaluation may significantly benefit the structural health monitoring (SHM) and longevity of 

bridge infrastructure.  

4.2 Future Work 

i. Fine-tune and improve the model to increase the accuracy, possibly using other 

evaluation metrics. The model can be optimized by fine-tuning the pre-processing 

parameters to yield an optimum delamination detection model. 



 

 

ii. Adopt techniques, such as NDE data fusion between IRT with visual/RGB images or 

other NDE datasets to increase and explore the effectiveness of IRT techniques. The 

IRT technique will augment RGB sensors to aid in removing noise or unnecessary 

artifacts that may not be defects or delaminations. 

iii. Improve existing deep learning (DL)-based models or develop new models that will 

effectively detect delaminations and defects, ensuring that they are benchmarked with 

a validation ground truth dataset, which has been developed. 

iv. Evaluate the effect of weather conditions, such as wind speed, ambient temperature, 

humidity, and other prevailing conditions. Optimum ambient weather conditions exist 

that will yield optimum delamination detection accuracy results. The NDE dataset 

should be recorded under varying ambient weather conditions and evaluated to 

determine the effect of these conditions on the model performance. 

v. Evaluate the effect of delamination sizes and depth on the model’s performance. The 

size and depth of the delaminations can influence the prediction of the optimal time 

window for passive infrared thermography inspections. Both factors must be further 

studied to precisely predict the best time window for data collection. 

vi. Investigate and develop an objective and reliable health index for bridge decks and 

elements. The health index developed for bridges should be reviewed and evaluated 

based on reliable and objective methods that have been well validated. This work will 

form a proper basis for bridge stakeholder management and policy decisions and help 

prioritize repairs and budget decisions, which are crucial aspects of DOT, 

government, and private institution bridge management systems. 
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