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ABSTRACT	

Quality-assured	satellite	aerosol	data	have	been	shown	to	improve	aerosol	analysis	and	

forecasts	in	Chemical	Transport	Models. However,	biases	present	in	the	satellite-based	aerosol	data	

can	also	introduce	non-negligible	uncertainties	in	the	downstream	aerosol	forecasts	and	impact	

model	forecast	accuracy. Therefore,	in	this	study	we	evaluated	uncertainties	in	Moderate	Imaging	

Spectroradiometer	(MODIS)	Multi-Angle	Implementation	of	Atmospheric	Correction	(MAIAC)	

aerosol	products	and	developed	a	deep	neural	network	(DNN)	based	method	for	quality	control	of	

Terra	and	Aqua	MODIS	MAIAC	Aerosol	Optical	Depth	(AOD)	data	using	the	version	3	level	2	AErosol	

RObotic	NETwork	(AERONET)	data	as	the	ground	truth.	This	method	is	done	using	14	years	of	

Aqua	MODIS	(2002-2016)	and	16	years	of	Terra	MODIS	(2000-2016)	MAIAC	data	which	are	

collocated	with	the	AERONET	observations.	The	resulting	trained	network,	which	is	tested	on	one	

year	of	Aqua/Terra	data,	can	detect	and	significantly	reduce	noisy	retrieval	in	MAIAC	AOD	data	

resulting	in	an	approximate	31%/27%	reduction	in	Root-Mean-Square-Error	in	Aqua/Terra	MODIS	

MAIAC	AOD	with	an	associated	14%/16%	data	loss.	A	sensitivity	study	performed	in	this	effort	

suggests	that	reducing	the	number	of	output	categories	and	hidden	layers	can	significantly	improve	

performance	of	the	deep	neural	network	in	this	case.		This	study	suggests	that	DNN	can	be	used	as	

an	effective	method	for	quality	control	of	satellite	based	AOD	data	for	potential	modeling	

applications.	
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CHAPTER	1	

INTRODUCTION	

Atmospheric	aerosols,	which	are	fine	particles	suspended	in	air,	originate	from	natural	

sources	such	as	dust,	sea	salt,	volcanic	ash,	and	wildfires	as	well	as	from	anthropogenic	sources	like	

fossil	fuel	burning	(Rabha	and	Saikia	2020).		Due	to	their	size	(generally	100nm	to	10µm)	aerosols	

can	remain	aloft	in	the	atmosphere	for	a	day	or	several	days	(Williams	et	al.	2002).		During	this	

time,	aerosols	may	be	transported	long	distances,	absorbing	and	redirecting	solar/	terrestrial	

radiation	along	the	way.		For	example,	studies	have	shown	aerosols	frequently	travel	from	the	

Sahara	across	the	Atlantic	Ocean	and	impact	the	United	States,	and	winds	often	carry	a	mixture	of	

dust	and	biomass	burning	aerosols	from	Asia	over	Japan	and	into	the	central	Pacific	Ocean	(Chin	et	

al.	2007).		

Aerosols	can	absorb	and	redirect	incoming	solar	and	outgoing	terrestrial	radiation	

(Kaufman	et	al.	2002).		This	interaction	and	its	effects	on	earth’s	climate	are	of	interest	to	the	

climate	science	community.	Besides	their	climate	impacts,	aerosol	particles	attenuate	solar	

radiation	and	thus	affect	visibility	(Eck	et	al.	1998).		Near	surface	aerosol	particles	with	diameters	

less	than	2.5	µm	can	cause	respiratory	diseases	(Xu	et	al.	2021;	Maji	et	al.	2017;	Brunekreef	and	

Holgate	2002)	and	are	considered	a	major	sources	of	air	pollution	(Particulate	Matter	with	

diameters	less	than	2.5	µm	or	PM2.5).		For	these	reasons,	aerosol	particles	are	studied	by	both	

modeling	and	observation-based	methods.		

Due	to	the	spatial	and	temporal	extent	of	aerosols,	remote	sensing	based	methods	are	

frequently	used	for	monitoring	and	quantifying	the	spatial	coverage	as	well	as	transport	of	
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atmospheric	aerosol	particles.		Of	the	many	satellite-derived	aerosol	properties,	Aerosol	Optical	

Depth	(AOD),	which	measures	the	extinction	of	solar/terrestrial	radiation	due	to	scattering	and	

absorption	by	aerosols,	is	widely	used	for	measuring	the	significance	of	aerosol	events	of	a	region.	

AOD	is	a	unitless	parameter	with	values	typically	ranging	from	0	to	5	(or	greater,	at	the	550	nm	

spectral	channel).		For	a	pristine	marine	environment,	AOD	values	are	around	0.06	(at	550	nm),	

with	AOD	values	of	above	0.2	considered	as	aerosol	polluted	skies.				

One	of	the	direct	applications	of	satellite	derived	AOD	data	is	for	assisting	aerosol	analyses	

and	forecasts	through	aerosol	data	assimilation.		Past	studies	suggest	that	the	accuracy	of	aerosol	

analyses	and	forecasts	from	chemical	transport	models	can	be	drastically	improved	through	the	

assimilation	of	satellite	derived	AOD	into	those	models.		For	example,	Zhang	et	al.	(2008)	reported	a	

40%	reduction	in	absolute	error	in	modeled	AOD	at	the	analysis	time	and	~20%	reduction	for	48-

hour	forecasts.		However,	it	was	found	that	significant	biases	and	uncertainties	could	exist	in	

satellite	derived	AOD	data	that	associate	with	cloud	contamination,	observational	conditions,	poor	

surface	characterization,	and	the	use	of	inaccurate	aerosol	model	retrievals	exist	in	the	satellite	

aerosol	retrievals	(Zhang	and	Reid	2006).		Those	biases	and	noises	in	satellite	AOD	data	can	

introduce	non-trivial	biases	in	downstream	aerosol	analyses	and	forecasts	from	chemical	transport	

models.		Still,	recent	studies	suggest	that	the	accuracy	of	aerosol	analyses	and	forecasts	from	

chemical	transport	models	can	be	improved	through	the	assimilation	of	high-quality	satellite-based	

AOD	data	(Lyapustin	et	al.	2012;	Lee	2019),	or	through	assimilation	satellite	AOD	that	are	carefully	

quality	controlled	(e.g.	Zhang	et	al.,	2008).		

While	AOD	values	are	retrieved	from	both	passive	and	active	sensors,	such	as	Multi-angle	

Imaging	SpectrorRadiometer	(MISR)	and	Cloud-Aerosol	Lidar	with	Orthogonal	Polarization	

(CALIOP),	one	of	the	corner	stone	satellite	AOD	datasets	for	aerosol	modeling	and	aerosol	data	

assimilation	are	the	AOD	data	from	the	Moderate	Imaging	Spectroradiometer	(MODIS)	instrument.		

Note	that	there	are	two	MODIS	instruments	currently	in	operation,	with	one	on	board	the	Aqua	
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satellite	that	has	an	equatorial	cross	time	of	~1:30	pm	and	the	other	on	board	the	Terra	satellite	

that	has	an	equatorial	cross	time	of	~10:30	am.		Both	Terra	and	Aqua	are	polar	orbiting	satellites	

that	observe	the	entire	earth	every	one	to	two	days	and	allow	for	a	near	continuous	collection	of	

AOD	on	large	scales	which	is	useful	for	visibility,	air	quality	and	climate	studies	involving	aerosols.		

There	are	three	standard	AOD	products	from	MODIS:	the	Dark	Target	(DT);	Deep	Blue	(DB);	

and	the	Multi-Angle	Implementation	of	Atmospheric	Correction	(MAIAC)	aerosol	products.		AOD	

retrievals	from	the	DT	products	are	limited	to	non-bright	surface	and	utilize	the	fact	that	aerosol	

plumes	increase	Top-Of-Atmosphere	albedo	over	non-bright	regions	such	as	global	oceans	and	

vegetated	areas.		AOD	retrievals	from	the	DB	products	are	derived	using	blue	channels	(e.g.	~400	

nm)	where	bright	surfaces	such	as	desert	regions	at	the	visible	channel	look	dark	at	blue	channels.		

Note	that	Both	the	DT	and	DB	aerosol	products	have	been	evaluated	for	their	application	in	aerosol	

modeling	and	aerosol	data	assimilation,	and	data-assimilation	quality	DT	and	DB	data	have	been	

developed	through	stringent	QA	and	QC	steps	(e.g.	Shi	et	al.	2011;	Hsu	et	al.,	2013).			

The	MODIS	MAIAC	aerosol	product	is	a	newer	aerosol	dataset.		Different	from	the	MODIS	DT	

and	DB	aerosol	data,	MODIS	observations	are	layered	over	time	in	the	MODIS	MAIAC	aerosol	

retrievals	to	characterize	the	surface	properties.	This	allows	for	high	resolution	AOD	of	1km	over	

traditional	dark	and	vegetative	surfaces	as	well	as	bright	deserts	(Lyapustin	et	al.	2011).		Yet,	

MAIAC	AOD	retrievals	have	not	been	adopted	for	aerosol	analyses	and	forecasts.	This	is	because	the	

MODIS	MAIAC	data	have	not	been	thoroughly	evaluated	for	the	application	of	AOD	assimilation.		

Clearly,	MODIS	MAIAC	data	need	to	be	evaluated	and	quality	control	processes	need	to	be	

developed	for	constructing	data-assimilation	quality	MAIAC	data	for	use	in	data	assimilation.	

Therefore,	in	the	first	part	of	the	study,	we	evaluate	the	uncertainties	in	MAIAC	AOD	

retrievals	using	16	years	of	Terra	MODIS	(2000-2016)	and	14	years	of	Aqua	MODIS	(2002-2016)	

data.		The	MODIS	MAIAC	data	are	collocated	with	ground-based	AErosol	RObotic	NETwork	

(AERONET)	level	2	Version	3	data	and	inter-compared	for	examining	uncertainties	in	MODIS	
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MAIAC	data	with	respect	to	observed	conditions	for	6	selected	regions	including	Africa,	China,	

Europe,	Mid-Asia,	North	America,	and	South	America.		Uncertainties	in	MAIAC	AOD	related	to	cloud	

contamination,	surface	characteristics,	and	aerosol	models	used	in	the	retrieval	process	are	

explored.		Knowing	the	uncertainties	in	MAIAC	AOD	data,	an	innovative	neural	network	(NN)	based	

approach	is	developed	in	the	second	part	of	this	study	for	the	quality	control	of	MAIAC	data.	The	

purpose	of	this	approach	is	to	develop	a	reliable	and	efficient	process	to	quality-assure	MAIAC	data,	

using	a	NN,	for	data	assimilation	applications.
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CHAPTER	2	

DATASET	AND	METHODOLOGY	

2.1	MODIS	MAIAC	Data	

	 The	Moderate	Resolution	Imaging	Spectroradiometer	(MODIS)	instrument	is	a	passive-

based	imager	onboard	the	Aqua	and	Terra	satellites.		The	MODIS	instrument	provides	total	earth	

coverage	every	1	to	2	days	in	36	spectral	bands	with	resolutions	from	1km	to	250m	depending	on	

the	band.		MODIS	provides	large	swaths	(~2,330km)	of	observable	data	via	a	rotating	mirror	

design.	The	combination	of	total	earth	coverage,	large	scanning	swaths,	and	multiple	band	options	

makes	it	ideal	for	the	characterization	and	observation	of	atmospheric	aerosols	(Levy	et	al.	2010).		

	 The	retrieval	of	aerosol	properties	using	the	Multi-Angle	Implementation	of	Atmospheric	

Correction	(MAIAC)	algorithm	is	based	on	the	MODIS	Level	1B	data.		MAIAC	is	an	encoded	generic	

algorithm	which	uses	pixel-	and	image-based	processing	with	a	time	series	analysis	of	MODIS	data	

to	produce	more	accurate	aerosol	retrievals	as	well	as	other	atmospheric	products	(Lyapustin	et	al.	

2011;		2012;		2018).		The	algorithm	corrects	for	atmospheric	effects	and	detects	aerosols	by	placing	

MODIS	data	in	a	fixed	grid	at	1km	resolution	in	a	running	que	(Wolfe	et	al.,	1998).		The	MAIAC	

algorithm	stores	from	4	(at	poles)	to	16	(at	the	equator)	days	of	past	observations	in	operational	

memory,	supplying	a	detailed	knowledge	of	the	surface	conditions.		This	allows	for	the	observation	

of	an	area	over	time	using	polar-orbiting	satellites	as	if	they	were	geostationary	and	benefitting	

from	the	higher	resolution	imagery	due	to	the	lower	orbiting	altitude.		Using	multiple	days	allows	

for	the	correction	of	atmospheric	effects	by	providing	a	way	to	filter	out	
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transient	conditions	such	as	weather	systems	and	clouds.		Additionally,	bidirectional	reflectance	

(BR)	can	be	collected	from	the	multiple	days	of	MODIS	data	as	many	different	angles	of	each	

location	are	collected	(Lyapustin	et	al.	2011).		MAIAC	retrieves	the	BR	factor	using	the	time	series	of	

MODIS	data	in	an	image-based	versus	a	pixel-based	process.		This	allows	the	precise	characterizing	

the	surface	reflectance	during	the	aerosol	retrieval	process	(Lyapustin	et	al.	2011).		The	spectral	

regression	coefficient	(SRC)	is	also	derived	by	relating	the	BR	factor	for	the	blue	(0.47µm)	and	

shortwave	infrared	(2.1µm)	bands.		Using	all	of	this,	AOD	values	are	thus	derived,	based	on	the	

multi-day	que	of	MODIS	data,	for	a	given	area	after	characterizing	the	BR	and	SR	factors.		The	

MAIAC	aerosol	retrieval	algorithm	can	provide	higher	spatial	resolution	retrievals,	on	the	order	of	1	

km,	compared	to	traditional	methods	at	3-10	km	resolution	aerosol	products	from	MODIS	DT	and	

DB.		

For	processing,	the	MAIAC	data	from	the	polar	orbiting	satellites	(Aqua	and	Terra)	are	split.		

The	Aqua	dataset	downloaded	for	this	study	includes	data	from	2002-2016	and	the	Terra	dataset	

from	2000-2016.	The	geographic	areas	covered	by	both	satellites	in	this	study	are	Africa,	China,	

Europe,	Mid-Asia,	North	America,	and	South	America.		MAIAC	products	are	downloaded	from	the	

Level	1	and	Atmospheric	Archive	&	Distribution	System	(LAADS)	Distributed	Active	Archive	Center	

(DAAC)	site.	As	an	example,	Figure	1a	shows	the	Terra	MODIS	true	color	image	over	Africa	on	

August	4,	2020.		Smoke	plumes	over	central	Africa	are	clearly	visible.		Figure	1b	shows	the	

corresponding	MAIAC	AOD	retrievals.		Note	that	no	retrievals	are	available	over	MODIS	detected	

cloudy	regions.		Still,	retrievals	are	available	over	the	Saharan	desert,	where	the	surface	is	bright	at	

the	visible	spectrum.				
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Figure	1:	Example	Modis	True-color	image	(a)	with	corresponding	MAIAC	AOD	overlay	(b)	
under	partly	cloudy	(top)	and	clear	(bottom)	conditions	on	August	4,	2021	(burning	season)	over	
central	and	southern	Africa.	These	images	are	obtained	from	the	NASA	worldview	webpage	
(https://worldview.earthdata.nasa.gov/).	
	

2.2	AERONET	Data	

	 The	use	of	MAIAC	data	in	this	project	is	evaluated	against	the	AErosol	RObotic	NETwork	

(AERONET)	data	(Holben	et	al.	1998).	AERONET	is	a	global,	ground-based	sun	photometer	network	

which	provides	15	minute	AOD	measurements	at	eight	wavelengths	(340nm,	380nm,	440nm,	500	

nm,	675	nm,	870	nm,	1020	nm,	and	1640	nm)	for	direct	sun	(solar	irradiance)	along	with	other	

optical	properties	(Holben	et	al.	1998).		The	eight	wavelengths	are	measured	via	a	rotating	filter	

wheel	and	a	pre-programed	sequence	from	7:00	am	to	7:00	pm	at	each	location	(local	time)	across	

the	globe.	AOD	is	calculated	using	spectral	extinction	of	the	direct	solar	beam	per	wavelength	

referencing	Beer-Bouguer’s	Law.	Estimates	are	made	for	Rayleigh	scattering,	ozone	absorption,	and	

pollution	gases	and	used	to	remove	attenuation	and	isolate	the	AOD	(System	Description	-	Aerosol	

Robotic).	This	study	uses	Version	3	level	2.0	(cloud	screened	and	quality	assured)	AERONET	data.	

Version	3	implements	a	full	automation	of	cloud	screening	and	instrument	anomaly	quality	control	

which	allows	for	near	real	time	data	(within	one	month)	and	estimated	uncertainty	(Giles	et	al.	

2019).		The	uncertainties	in	AERONET	AOD	are	on	the	order	of	0.02	(Giles	et	al.	2019).	
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2.3	Collocation	of	MAIAC	and	AERONET	

	 The	MAIAC	AOD	observations	are	validated	using	the	AERONET	AOD	observations.	This	is	

done	via	a	comparison	of	collocated	observations.		For	a	MAIAC	and	AERONET	observation	to	be	

considered	collocated,	they	must	be	within	a	predetermined	spatiotemporal	window	of	0.3	degrees	

distance	and	±30	minutes.	Additionally,	collocated	observations	are	compared	on	similar	

wavelengths	even	though	AERONET	and	MAIAC	AOD	are	not	collected	in	the	same	wavelengths.		

MAIAC	AOD	is	collected	at	470nm	and	550nm	wavelengths.	This	study	uses	only	the	550nm	

wavelength	as	it	is	one	of	the	most	commonly	used	wavelengths	for	quantifying	aerosol	properties.		

To	compare	using	the	same	wavelength,	AERONET	data	that	fall	within	the	spatiotemporal	window	

are	examined	for	valid	data.		While	AERONET	collects	AOD	at	eight	wavelengths,	certain	

wavelengths	for	a	given	observation	may	be	flagged	as	invalid	by	the	AERONET	V3	automated	

quality	control	process	(System	Description	-	Aerosol	Robotic	).		Once	the	nearest	two	valid	

AERONET	wavelengths	to	compare	with	MAIAC	AOD	of	550nm	are	found,	a	conversion	using	the	

Angstrom	exponent	(𝛼),	which	is	commonly	used	to	highlight	the	wavelength	reliance	of	AOD	and	

to	gain	information	on	the	aerosol	size	distribution,	is	performed	(Eck	et	al.	1999).		Here,	the	AOD	

value	for	a	given	wavelength	is	interpolated	assuming	the	Angstrom	exponent	(𝛼)	remains	

unchanged.		Given	two	AERONET	AOD	measurements	(𝜏)	at	different	wavelengths	(𝜆),	the	𝛼	value	

can	be	derived	using	equation	2.1.	

																																					𝛼	 = 	−
!"	(!"	!2

)

!"	($1	$2
)
																																																						(2.1)	

The	AERONET	AOD	at	550nm	is	thus	derived	by	reversing	equation	2.1	and	by	assuming	𝛼	is	a	

constant	within	the	given	wavelength	range.		This	calculation	is	performed	for	all	valid	collocated	

data.		

The	collocated	data,	consisting	of	twenty-nine	variables	(Table	1),	are	formatted	into	

Network	Common	Data	Form	(NetCDF)	files,	with	one	NetCDF	file	for	each	year	containing	all	of	the	
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respective	collocated	files	for	that	year.		Some	of	the	key	parameters	listed	in	Table	1	are	latitude	

and	longitude	for	both	AERONET	and	MAIAC,	AOD	taken	at	a	variety	of	wavelengths,	and	the	

viewing	geometry	variables	for	MAIAC.		Each	NetCDF	file	contains	one	year	of	collocated	

observations	for	a	single	study	region.		The	NetCDF	files	contain	all	information	collected	by	MODIS	

MAIAC	observations	for	both	470	nm	and	550nm	and	all	measurements	from	AERONET	for	each	of	

the	eight	collection	wavelengths.		This	NetCDF	database	serves	as	the	input	data	for	the	Neural	

Network	and	was	chosen	so	that	large	amounts	of	data	could	be	stored	and	easily	referenced	in	

single	files.		The	NetCDF	format	is	a	set	of	software	libraries	and	machine-independent	data	formats	

that	support	the	creation,	access,	and	sharing	of	array-oriented	scientific	data.		It	is	also	a	

community	standard	for	sharing	scientific	data	maintained	by	Unidata	for	programming	interfaces	

such	as	Python	(Unidata).	

Table	1:	Collocated	file	contents,	including	both	AERONET	(left)	and	MAIAC	(right)	
AERONET MAIAC 

Julian Day Latitude 

AOD 1640 Longitude 

AOD 1020 AOD 470 

AOD 870 AOD 550 

AOD 675 AOD Uncertainty 

AOD 667 Fine Mode Fraction 

AOD 555 Column Water Vapor 

AOD 551 Injection Height 

AOD 532 QA rating 

AOD 531 AOD Model 

AOD 500 cos Solar Zenith Angle 

Water (cm) cos Viewing Zenith Angle 

Latitude Relative Azimuth Angle 

Longitude Scattering Angle 

 Glint Angle 
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2.4	Methods	for	Analyzing	MAIAC	and	AERONET	data	

	 Prior	to	developing	a	deep-learning	network-based	quality	control	method,	an	analysis	of	

the	MAIAC	AOD	data	is	performed	to	gain	a	comprehensive	understanding	of	the	data,	Initially,	a	

one-to-many	analysis	(one	AERONET	observation	is	compared	to	multiple	MAIAC	observations	that	

fit	in	the	collocation	window)	is	applied	to	evaluate	the	performance	of	MAIAC	AOD	data	against	

AERONET.	This	is	done	by	taking	any	MAIAC	data	points	which	fall	within	the	spatiotemporal	

window	of	an	AERONET	measurement	and	comparing	them	all	to	that	one	AERONET	measurement	

for	a	given	time.		A	similar	analysis	method	was	also	taken	by	Cheng	et	al.	(2012)	to	compare	the	

AOD	from	multiple	satellites	with	AERONET	as	well	as	by	Kokhanovsky	et	al.	(2007)	to	obtain	the	

difference	in	instantaneous	AOD	retrievals	from	different	algorithms.		The	one-to-many	results	can	

reveal	occurrence	and	extent	to	which	the	MAIAC	and	AERONET	AOD	differ.		Only	one	year	(2015)	

of	data	is	used	for	this	analysis	due	to	the	large	data	volume.		

Next,	a	one-to-one	analysis	is	performed.	In	this	case,	an	AERONET	AOD	observation	is	

compared	to	the	mean	value	of	all	MAIAC	AOD	retrievals	within	the	collocation	bounds.		This	allows	

for	the	comparison	of	two	single	values,	namely	AERONET	and	mean	MAIAC	AOD	for	a	given	time.	

The	one-to-one	analysis	is	performed	based	on	region	and	satellite	(Aqua	and	Terra)	and	

performed	for	the	entire	time	frame	of	downloaded	data	(2002-2016	Aqua,	2000-2016	Terra).		In	

addition,	the	linear	correlation	between	the	mean	MAIAC	(AODMAIAC)	and	AERONET	(AODAERONET)	

AOD,	as	well	as	the	Root	Mean	Square	Error	(RMSE)	of	the	MAIAC	AOD	are	computed.		The	MAIAC	

AOD	RMSE	values	are	computed	using	Equation	2.2.		

	

																				𝑅𝑀𝑆𝐸	 = ,1
"
Σ"(𝐴𝑂𝐷&'()*'+ − 𝐴𝑂𝐷,&-&.)2																																		(2.2)	

	



 

11 
 

Both	RMSE	and	linear	correlation	are	also	used	for	evaluating	the	performance	of	the	DNN	in	a	later	

section.		An	increase	in	linear	correlation	and	a	decrease	in	RMSE	between	MAIAC	and	AERONET	

after	the	DNN	process	is	indicative	of	the	DNN	properly	filtering	the	MAIAC	data.		

2.5	Neural	Network	

2.5.1	The	Basic	Structure	of	a	Deep	Neural	Network	System	

An	innovative	neural	network	(NN)	based	approach	is	developed	for	the	quality	control	of	

MAIAC	data.	This	approach	uses	a	NN	which	is	trained	on	a	combined	MAIAC	and	AERONET	dataset	

to	select	reliable	MAIAC	retrievals.	This	NN	based	implementation	uses	the	basic	principles	of	a	NN	

where	input	values	are	passed	to	a	layer	made	of	connected	nodes,	which	give	an	output	to	the	next	

layer,	and	finally	render	an	outcome,	in	this	case,	a	classification.		A	Deep	NN	(DNN,	Figure	2)	is	any	

network	of	neurons	(nodes)	which	has	more	than	one	layer.		At	each	layer	a	number	of	nodes	exist	

with	each	having	three	basic	attributes:	inputs,	weights,	and	a	bias.		These	three	values	are	used	to	

pass	information	along	a	unique	weighted	connection	between	that	node	and	the	next	layer	of	

nodes.		As	that	information	is	being	passed	it	goes	through	the	activation	function	for	the	layer	it	is	

leaving.		The	DNN	uses	this	process	of	passing	inputs	to	nodes,	calculating	outputs,	and	then	

passing	them	through	activation	functions	along	weighted	connections	to	filter	information	through	

the	network.		This	filtering	process	is	what	can	be	tuned	to	achieve	the	desired	effect	the	network	

has	on	the	input	data.		The	individual	settings	used	to	tune	the	DNN	are	referred	to	as	parameters.		

The	parameters	used	for	tuning	in	this	study	not	already	discussed	include	the	following.		Hidden	

Layers	is	a	parameter	which	denotes	the	number	of	model	layers	that	pass	data	from	the	input	to	

the	output	layer.		Nodes	refers	to	the	number	of	neurons	per	layer	that	process	the	data.		Classes	is	

a	parameter	denoting	the	number	of	possible	outputs.		Epochs	is	a	term	to	denote	how	many	

iterations	occur	during	a	given	training	instance	where	the	learned	weights	and	biases	are	back	

propagated	during	training.			
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Figure	2:	Structure	of	the	Sequential	Deep	Neural	Network	where	inputs	i1	through	in	(left)	are	
given	to	the	input	layer	(a)	,	then	to	the	formatting	layer	(b)	which	normalizes	the	data	for	the	
hidden	layers	cj	through	ck	which	feed	eventual	outputs	to	output	layer	(d)	with	a	number	of	
outputs	o1	through	om	(right).	
	

2.5.2	The	Implementation	of	a	DNN	for	Quality	Control	of	MODIS	MAIAC	Aerosol	Retrievals	

For	this	study	the	DNN	predicts	the	difference	between	a	MAIAC	AOD	value	and	the	

collocated	AERONET	AOD.		This	is	known	as	the	target.		The	DNN	is	trained	on	the	actual	

differences	between	a	training	set	of	MAIAC	and	AERONET	data,	then	tested	on	new	data.		This	

training	and	testing	is	accomplished	via	a	step	by	step	process.	

The	process	of	this	DNN	is	broken	down	into	four	components:	initializing	the	data,	building	

the	network	and	its	layers,	running	and	evaluating	the	network,	and	making	predictions.		Data	

initialization	begins	with	defining	the	input	data,	arbitrarily	referred	to	as	X	and	Y	in	the	network	

code.		The	input	values	stored	in	X	are	all	input	data	relating	to	MAIAC	retrievals	which	are	listed	in	

Table	1.		Y	is	filled	with	the	differences	between	collocated	AERONET	and	MAIAC	AOD	that	are	
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linked	to	values	in	X.		These	differences	are	placed	in	bins	according	to	their	magnitude	and	sign	

(positive	or	negative)	where	the	bins	have	increasing	width	departing	from	zero,	as	lower	data	

density	is	expected	for	higher	AOD	values.				Therefore,	smaller	differences	are	assigned	to	

corresponding	bins	close	to	zero	and	larger	differences	are	in	bins	farther	from	zero.		This	creates	a	

distribution	of	differences	between	MAIAC	and	AERONET	where	the	MAIAC	values	corresponding	

to	the	smallest	differences	(closest	to	zero)	are	considered	good	data.		The	values	stored	in	Y	are	

the	target	values	the	DNN	is	trained	to	predict,	as	the	goal	is	for	the	network	to	correctly	predict	the	

difference	between	any	MAIAC	and	AERONET	AOD.		This	allows	for	any	threshold	to	be	set	for	the	

variance	of	MAIAC	from	a	given	AERONET	site	in	future	use.		Next,	the	data	initialization	ends	with	

X	being	split	and	normalized.		X	is	split	into	a	testing	and	training	set	so	that	a	portion	of	the	data	

remains	unseen	by	the	network	for	later	testing.		Normalization	of	the	X	values	is	done	using	the	L2	

normalization	so	that	all	values	in	X	fall	within	a	range	while	retaining	distinction,	making	it	much	

easier	for	the	DNN	to	process.		

The	next	component	of	the	DNN	process	is	the	network	structure.	This	network	is	built	as	a	

sequential	model,	meaning	information	is	passed	from	start	to	finish	though	a	stack	of	layers	for	

every	epoch.		The	stack	of	layers	used	in	this	DNN	consists	of	an	input	layer,	a	number	of	hidden	

layers,	and	an	output	layer	as	shown	previously	in	Figure	2.		The	input	layer	flattens	the	

multidimensional	matrix	of	input	data	into	an	array	to	pass	through	the	hidden	layers.		The	hidden	

layers	are	densely	connected	layers,	meaning	at	each	node	the	performed	operation	is	

	𝑜𝑢𝑡𝑝𝑢𝑡	 = 	𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛[(𝑖𝑛𝑝𝑢𝑡 ∙ 𝑤𝑒𝑖𝑔ℎ𝑡) 	+ 	𝑏𝑖𝑎𝑠]                           (2.3)	

activation:					𝑓(𝑥) = H𝑥, 𝑥 > 0
0, 𝑥 ≤ 0																																																								(2.4)	

where	Equation	2.3	describes	how	the	output	of	a	node	is	calculated	and	Equation	2.4	refers	to	the	

activation	function	used	in	the	calculation.		The	activation	function	used	is	a	REctified	Linear	Unit	

(ReLU)	function	(Equation	2.4)	which	is	a	piecewise	linear	function	that	will	output	the	input	
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directly	if	it	is	positive,	otherwise,	it	will	output	zero.		This	function	is	used	for	its	balance	of	having	

greater	sensitivity	than	a	traditional	step	function	while	avoiding	the	vanishing	gradient	issues	of	a	

sigmoid	function.		The	ReLU	activation	function	is	used	for	the	input	layer	and	all	hidden	layers.		

Each	layer	has	a	specified	number	of	nodes	and	is	connected	to	the	next	layer.		The	output	layer	is	

important	and	is	separate	from	the	hidden	layers.	It	specifies	the	number	of	classifications	desired	

and	frames	the	answer	the	DNN	is	able	to	provide.		This	requires	a	clear	understanding	of	the	

problem	being	solved	as	well	as	the	input	data.		This	output	layer	has	classifications	(nodes)	equal	

to	the	number	of	bins	which	are	storing	the	difference	between	the	MAIAC	and	AERONET	AOD	data.		

This	is	chosen	so	that	the	output	layer	will	generate	a	bin	location	for	the	predicted	difference.		

The	next	component	of	the	DNN	is	running	and	evaluating	the	network.	This	is	done	by	

choosing	an	optimizer	and	a	learning	rate	(LR)	and	tracking	loss	and	accuracy.		Choices	for	the	

optimizer	and	learning	rate	are	manually	changed	as	part	of	the	training	process.		For	this	DNN	the	

optimizer	Adam	is	used,	which	adjusts	the	LR	throughout	training	with	an	initial	LR	of	0.001	

(Kingma	and	Ba	2014).		The	LR	determines	how	fast	the	optimal	weights	for	the	model	are	

calculated	by	the	optimizer.		A	smaller	LR	may	lead	to	more	accurate	weights,	but	it	may	take	more	

time	to	compute	than	is	worthwhile.		The	DNN	system	can	also	be	trapped	into	a	regional	minimum	

rather	than	the	global	minimum	by	using	a	small	LR.		Running	the	model	is	done	through	the	

compile	and	fit	function.		These	initiate	the	sending	of	input	data	(training	portions	of	X	and	Y)	and	

the	activation	of	the	layers.		At	this	point	the	DNN	makes	a	prediction	for	each	(attempts	to	fit	each)	

MAIAC	AOD	value	as	to	how	close	it	is	to	the	true	AOD.		Each	prediction	is	checked	using	the	

collocated	AERONET	data.		Errors	in	predicted	values	are	propagated	back	to	DNN	for	altering	

various	weights	in	the	system.		The	process	is	repeated	until	errors	in	the	predicted	values	are	

smaller	than	a	given	threshold	for	a	given	set	of	inputs.		This	process	is	how	the	DNN	is	trained.		
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Once	a	suitable	training	accuracy	is	reached	by	adjusting	the	DNN	parameters,	the	network	

may	be	tested.	Testing	is	performed	by	evaluating	the	trained	DNN	system	using	the	collocated	

MAIAC	and	AERONET	data	that	are	not	used	in	the	training	process	as	described	above.			

Finally,	using	the	pre-trained	DNN	system,	predictions	are	achieved	by	passing	MAIAC	data	

into	the	system,	and	the	DNN	can	predict	the	difference	between	the	provided	MAIAC	and	

AERONET	AOD.		The	goal	is	for	the	network	to	have	learned	how	to	use	the	other	variables	

associated	with	a	MAIAC	AOD	measurement	such	as	MODIS	latitude	and	longitude,	and	viewing	

geometry,	to	recognize	valid	MAIAC	AOD	values.		A	prediction	estimates	the	difference	between	

each	MAIAC	AOD	value	and	its	corresponding	AERONET	value.		For	MAIAC	AOD	values	similar	to	

AERONET,	the	DNN	estimates	are	placed	in	a	bin	near	zero	(small	difference)	while	MAIAC	values	

dissimilar	to	AERONET	are	placed	in	bins	farther	from	zero	corresponding	to	the	magnitude	of	the	

difference.		Note	that	in	the	prediction	process,	we	are	not	using	the	AERONET	data;	only	MAIAC	

data	are	used	as	inputs	to	the	system	during	prediction.		Still,	in	theory,	the	DNN	system	should	

quantify	the	quality	of	the	MAIAC	AOD	retrieval	by	predicting	the	difference	between	the	given	

MAIAC	AOD	and	the	true	AOD	value	(assumed	based	on	the	AERONET	data).	

This	DNN	is	trained	only	on	the	collocated	data	from	Africa.	Training	is	performed	

independently	for	Aqua	and	Terra	datasets	and	tested	accordingly.	While	the	scope	of	the	

collocated	dataset	includes	six	global	regions,	the	scope	of	the	DNN	data	is	limited	to	Africa	Aqua	

and	Africa	Terra	datasets	for	this	study.
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CHAPTER	3	

RESULTS	

3.1	Evaluation	of	MAIAC	AOD	data	against	ground	based	AERONET	data	

	 In	the	first	part	of	the	study,	we	evaluate	the	uncertainties	in	MAIAC	AOD	retrievals	using	

16	years	of	Terra	MODIS	(2000-2016)	and	14	years	of	Aqua	MODIS	(2002-2016)	data	and	

collocated	Level	2	Version	3	AERONET	data.		First,	the	one-to-many	analysis	is	performed	on	a	

single	year	(2015)	of	MAIAC	AOD	for	all	selected	regions	as	shown	in	Figures	3-8.		Both	Terra	and	

Aqua	MODIS	data	are	used	in	the	analysis.		Interestingly,	although	large	regional	differences	can	be	

found,	for	a	given	region,	differences	between	Aqua	and	Terra	MAIAC	AOD	data	are	rather	marginal.		

Still,	large	spikes	are	found	in	those	one-to-many	analyses.		This	is	not	a	surprise	as	for	one	

AERONET	data	point,	there	might	be	multiple	MAIAC	AOD	data	with	different	observing	conditions	

such	as	different	viewing	geometries	and	surface	properties	fit	in	the	predefined	collocation	

windows.		Also,	aerosol	properties	may	vary	both	spatially	and	temporally,	even	with	the	given	

small	collocation	windows	in	both	space	and	time.		Still,	linear	or	near	linear	patterns	between	

MAIAC	and	AERONET	AOD	(550	nm)	can	be	found	for	all	regions,	indicating	that	the	MAIAC	aerosol	

retrieval	method	has	skill	in	retrieving	AOD	values	with	reasonable	accuracy	in	all	selected	regions.		

In	particular,	the	China	region,	with	its	complex	surface	features,	is	a	problematic	region	for	some	

of	the	other	aerosol	retrieval	methods	such	as	the	MODIS	DT	method.		Reasonable	AOD	retrievals,	

as	suggested	from	Figures	3-8,	indicate	that	the	MAIAC	aerosol	retrieval	algorithm	performs	well	in	

complex	surface	environments	such	as	over	China.
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Also,	non-linear	patterns	between	MODIS	MAIAC	and	AEORNET	AOD	over	Europe	and	

South	America	are	visible,	which	indicates	that	aerosol	models	used	for	those	regions	may	not	be	

optimal	for	aerosol	retrievals	over	those	two	regions.				

The	Root	Mean	Square	Error	(RMSE)	and	Linear	Correlation	Coefficient	(CC)	are	also	

calculated	for	each	region	and	satellite	for	the	one-to-many	MODIS	MAIAC	and	AERONET	analyses	

as	mentioned	above.	Previously,	this	evaluation	has	been	performed	on	MAIAC	AOD	data	using	

collocated	AEROENT	Version	2	(AERO	V2)	data	(Skaer	et	al.,	2018).		Skaer	et	al.	(2018)	found	that	

MAIAC	AOD	is	fairly	consistent	with	AERO	V2	in	the	collocated	dataset	based	on	trend	analysis,	

RMSE,	and	correlation	coefficient	values.			During	the	completion	of	Skaer	et	al.	(2018),	AERONET	

Version	3	(AERO	V3)	dataset	was	released.			The	same	investigation	of	RMSE	and	CC	is	performed	in	

this	study	using	the	newer	AERO	V3	data.	The	resulting	RMSE	and	CC	of	this	investigation	on	AERO	

V3	data	are	shown	in	Table	2.	
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Table	2:		Calculated	Root	Mean	Square	Error	(RMSE)	and	Linear	Correlation	Coefficient	for	the	raw	
collocated	AOD	data	organized	by	region	and	satellite	collection	with	14/16	years	of	Aqua/Terra	data.	
	 	

Raw	Collocated	AOD	Data	RMSE	and	Correlation	

Data	 RMSE	 Correlation	

Africa	Aqua	 0.124946	 0.802405	

Africa	Terra	 0.130374	 0.803023	

China	Aqua	 0.205514	 0.880494	

China	Terra	 0.195869	 0.89339	

Europe	Aqua	 0.123471	 0.571263	

Europe	Terra	 0.108113	 0.664751	

Mid	Asia	Aqua	 0.178164	 0.850602	

Mid	Asia	Terra	 0.170669	 0.847134	

North	America	Aqua	 0.0861933	 0.775441	

North	America	Terra	 0.0881225	 0.799738	

South	America	Aqua	 0.0969982	 0.915371	

South	America	Terra	 0.0941247	 0.935363	
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	 In	general,	the	best	performance	is	found	over	South	America,	where	the	highest	

correlations	of	above	0.9	and	relatively	small	RMSE	values	of	less	than	0.1	are	found	for	both	Terra	

and	Aqua	MAIAC	AOD	retrievals.		The	worst	correlations	of	below	0.6	are	found	for	both	Terra	and	

Aqua	data	over	Europe,	yet	with	RMSE	values	of	around	0.1.		This	indicates	that	aerosol	loading	is	

overall	low	over	the	region.		Therefore,	low	correlations	but	with	marginal	RMSE	values	in	MAIAC	

AOD	are	found	for	this	region.		Highest	RMSE	values	of	above	0.16	are	found	over	China	and	Mid-

Asia,	although	reasonable	correlations	of	above	0.8	between	MAIAC	and	AERONET	AOD	are	also	

reported.		This	is	also	not	a	surprise,	as	both	regions	pose	challenges	for	aerosol	retrievals	from	

traditional	passive-based	aerosol	retrieval	methods	due	to	high	surface	albedos	at	the	visible	

channel	for	both	regions.		For	example,	high	RMSE	values	in	AOD	retrievals	are	also	expected	in	

western	and	northern	Asia	where	deserts	or	dry	and	arid	or	semi-arid	surfaces	are	located.		It	is	

worth	noting	that	correlation	values	of	above	0.8	are	found	over	Africa	with	averaged	RMSE	values	

of	around	0.12-0.13.		Still,	we	expected	higher	RMSE	values	over	North	Africa	because	of	the	

Saharan	desert.		
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Figure	3:	One-to-Many	plots	comparing	MAIAC	AOD	(y-axis)	vs	AERONET	AOD	(x-axis)	showing	Aqua	
(left)	and	Terra	(right)	for	Africa	2015	data.	

	

	
Figure	4:	One-to-Many	plots	comparing	MAIAC	AOD	(y-axis)	vs	AERONET	AOD	(x-axis)	showing	Aqua	

(left)	and	Terra	(right)	for	China	2015	data.		
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Figure	5:	One-to-Many	plots	comparing	MAIAC	AOD	(y-axis)	vs	AERONET	AOD	(x-axis)	showing	Aqua	
(left)	and	Terra	(right)	for	Europe	2015	data.	

	
	

Figure	6:	One-to-Many	plots	comparing	MAIAC	AOD	(y-axis)	vs	AERONET	AOD	(x-axis)	showing	Aqua	
(left)	and	Terra	(right)	for	South	America	2015	data.	
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Figure	7:	One-to-Many	plots	comparing	MAIAC	AOD	(y-axis)	vs	AERONET	AOD	(x-axis)	showing	Aqua	
(left)	and	Terra	(right)	for	Mid	Asia	2015	data.			

	
	

Figure	8:	One-to-Many	plots	comparing	MAIAC	AOD	(y-axis)	vs	AERONET	AOD	(x-axis)	showing	Aqua	
(left)	and	Terra	(right)	for	North	America	2015	data.	
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Note	that	the	results	presented	above	are	largely	consistent	with	those	reported	by	Skaer	et	

al.	(2018),	in	which	the	version	2	AERONET	data	were	used.		Skaer	et	al.	(2018)	also	studied	the	

variations	of	MAIAC	AOD	retrievals	as	a	function	of	observing	conditions	including	column	water	

vapor,	fine	mode	fraction	over	ocean,	cosine	of	solar	zenith	angle,	cosine	of	solar	viewing	angle,	

relative	azimuth	angle,	and	scattering	angle,	using	version	2	AERONET	data.		Although	version	3	

AERONET	data	are	used	in	this	study,	no	major	differences	are	found	in	comparing	MAIAC	and	

AERONET	AOD	using	version	2	and	version	3	AERONET	data,	although	better	cloud	screening	and	

noise	removal	are	expected	for	the	Version	3	AERONET	data.		Thus,	we	expect	similar	relationships	

even	with	the	use	of	the	Version	3	AERONET	data.		Still,	for	the	sake	of	completeness,	we	

summarized	findings	from	Skaer	et	al.	(2018)	as	follows.	It	was	found	by	Skaer	et	al.	(2018)	that	

while	the	number	of	observations	is	greater	at	smaller	solar	zenith	angles,	there	is	no	range	of	solar	

zenith	angle	where	MAIAC	AOD	has	a	higher	or	lower	bias	relative	to	AERONET	data.		It	was	also	

found	that	no	viewing	zenith	angle	promotes	a	high	or	low	bias.		Additionally,	Skaer	et	al.	(2018)	

found	that	no	relative	azimuth	angles	caused	a	high	or	low	bias	in	MAIAC	AOD.	Finally	for	scattering	

angle,	it	was	found	that	no	scattering	angles	caused	a	particular	higher	or	lower	bias	than	the	

corresponding	AERONET	AOD.			

3.2	Development	of	a	Neural	Network	based	method	for	Quality	Control	of	MAIAC	AOD	
	

In	the	second	part	of	this	study,	we	train	and	test	DNN	to	quality	control	the	Terra	and	Aqua	

MODIS	MAIAC	Aerosol	data.		A	DNN	based	method	is	developed	to	quantify	uncertainties	in	MAIAC	

AOD	as	functions	of	observing	conditions.		Also,	sensitivity	studies	are	conducted	to	investigate	the	

system	performance	with	respect	to	parameter	settings	in	the	DNN	system.	
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3.2.1	Performance	of	the	Deep	Neural	Network	for	Quality	Control	of	MODIS	MAIAC	AOD		

	

The	evaluation	of	the	DNN	is	performed	separately	for	the	Aqua	and	Terra	datasets.	The	

training	is	initially	done	using	one	year	(2014)	of	MODIS	MAIAC	Aqua	data.	In	order	to	limit	the	

time	required	to	test	the	model,	a	small	portion	(30%)	of	the	2014	data	is	set	aside	for	testing.	This	

testing	portion	is	untouched	by	the	network	until	after	the	network	has	trained	on	the	other	70%.	

Using	this	method,	the	training	portion	of	the	data	is	then	used	to	adjust	and	tune	the	model	before	

testing.	The	resulting	trained	DNN	is	able	to	begin	distinguishing	MAIAC	AOD	which	are	close	to	

AERONET	with	moderate	accuracy	as	seen	in	Figure	9.		Figure	9a	shows	the	comparison	of	MODIS	

MAIAC	and	AERONET	AOD	using	the	testing	portion	of	the	data	which	was	set	aside	during	training.	

Figure	9b	is	similar	to	Figure	9a	but	shows	only	the	MAIAC	data	that	are	predicted	to	be	within	+/-	

0.15	of	AEROENT	AOD	by	the	DNN	system.		The	DNN	system	settings	for	this	initial	run	include	7	

hidden	layers	with	nodes	for	each	layer	equaling	512,	256,	128,	128,	128,	64,	and	32	respectively,	a	

learning	rate	of	0.001,	10	epochs,	rectified	linear	activation	function,	and	12	output	classes.	Clearly,	

noisy	data	as	shown	in	Figure	9a,	are	largely	removed	as	suggested	by	Figure	9b,	suggesting	that	

the	DNN	system	performs	as	designed.			
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Figure	9:	Initial	test	results	of	the	network	trained	on	Africa	Aqua	2014	data,	with	the	raw	test	data	
(a)	compared	to	the	network	predictions	(b)	for	which	MAIAC	AOD	were	closest	to	AERONET	as	

classified	by	the	DNN	system.				

	

While	Figure	9	shows	the	performance	of	the	DNN	system	that	is	trained	and	tested	using	

one	year	of	collocated	MODIS	MAIAC	and	AERONET	AOD	data,	we	also	evaluate	the	DNN	system	by	

training	with	multiple	years	of	collocated	Aqua	MODIS	MAIAC	and	AERONET	data	and	then	testing	

the	system	using	similar	collocated	data	from	a	different	year.		All	but	one	year	(2016)	of	Africa	

Aqua	data	are	used	for	training	in	this	section,	making	an	input	data	set	of	13	years	total	(2002-

2015)	for	the	Aqua	dataset.		The	DNN	system	is	then	tested	using	the	collocated	Africa	Aqua	and	

AERONET	data	from	2016.			

The	resulting	trained	DNN	for	this	longer	period	of	data	can	more	clearly	distinguish	those	

MAIAC	AOD	which	are	close	to	AERONET	(within	+/-	0.15)	as	seen	in	Figure	10.	Figure	10	shows	

the	performance	of	the	DNN	system,	on	collocated	MODIS	and	AERONET	data	for	2016,	which	is	

trained	using	the	13-year	collocated	Aqua	MODIS	and	AERONET	data	over	Africa.		The	red	dots	in	

Figure	10	represent	the	comparison	of	Aqua	MODIS	MAIAC	and	AERONET	AOD	from	the	
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collocated	2016	data	and	the	blue	dots	in	Figure	10	show	those	data	pairs	that	passed	the	filtering	

process	based	on	the	DNN	system	(predicted	difference	of	MODIS	MAIAC	and	AERONET	AOD	

within	+/-	0.15).		In	this	case,	the	number	of	hidden	layers	is	set	to	3,	with	512,	64	and	32	nodes	in	

each	respective	layer.	The	other	settings	include	a	learning	rate	of	0.001,	20	epochs,	and	9	output	

classes.	In	this	case,	roughly	86%	of	the	data	passed	the	filter	with	a	reduction	in	RMSE	of	31%.	

	

Figure	10:	Filtered	Aqua	MAIAC	AOD550	(blue)	versus	the	whole	2016	test	dataset	(red	

	
Performing	a	similar	analysis	on	the	Terra	dataset	we	found	similar	results.	Initially,	as	in	

Figure	9	with	collocated	Aqua	data,	the	DNN	analysis	is	done	using	one	year	(2014)	of	MODIS	

MAIAC	Terra	data.	The	resulting	trained	DNN	can	begin	distinguishing	Terra	MAIAC	AOD	which	are	

close	to	AERONET	with	moderate	accuracy	as	seen	in	Figure	11.	The	settings	for	this	initial	DNN	

run	are	the	same	as	those	used	in	the	initial	DNN	run	for	Aqua	2014	data.	As	in	Figure	9,	Figure	11	

shows	that	noisy	data	in	Figure	11a	are	largely	removed	in	11b,	suggesting	that	the	DNN	system	

performs	as	designed	for	Terra	data	as	well.
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Figure	11:	Initial	test	results	of	the	network	trained	on	Africa	Terra	2014	data,	with	the	raw	test	data	
(a)	compared	to	the	network	predictions	(b)	for	which	MAIAC	AOD	were	closest	to	AERONET	as	

classified	by	the	DNN	system.	

	

We	also	evaluate	the	DNN	system	on	multiple	years	of	collocated	Terra	MODIS	and	

AERONET	data	using	all	but	one	year	(2016)	for	training,	making	a	training	data	set	of	15	years	

(2000-2015).	The	resulting	trained	DNN	for	this	longer	period	of	Terra	data	is	also	able	to	clearly	

distinguish	those	MAIAC	AOD	which	are	close	to	AERONET	(within	+/-	0.15)	as	shown	in	Figure	12.	

In	this	case,	the	number	of	hidden	layers	is	set	to	3,	with	512,	64	and	32	nodes	in	each	respective	

layer.	The	other	settings	include	a	learning	rate	of	0.001,	20	epochs,	and	9	output	classes.	Note	that	

this	is	identical	to	the	parameter	settings	for	the	Aqua	dataset	in	Figure	9.	In	this	case,	roughly	84%	

of	the	data	passed	the	filter,	with	a	27%	reduction	of	RMSE.	
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Figure	12:	Filtered	Terra	MAIAC	AOD550	(blue)	versus	the	whole	2016	test	dataset	(red)		

3.2.2	Optimization	of	the	Performance	of	the	Deep	Neural	Network	

Note	that	the	performance	of	the	DNN	system	varies	as	functions	of	parameters	used	for	the	

DNN	system,	including	but	not	limited	to	different	numbers	of	hidden	layers	and	nodes,	different	

learning	rates,	different	sets	of	input	parameters,	and	different	quantification	of	outputs.		To	select	

an	optimal	parameter	set	for	the	DNN	system,	a	sensitivity	study	is	performed	for	both	Aqua	and	

Terra	data	separately.		The	optimization	is	a	step-by-step	process	of	DNN	runs	where	one	or	two	

model	parameters	are	adjusted	for	each	DNN	run	so	that	the	effect	of	each	change	is	quantifiable.	

This	is	referred	to	as	tuning.		We	use	RMSE,	Linear	Correlation	Coefficient,	and	the	comparison	of	

MAIAC	and	AERONET	to	quantify	the	tuning	process.		

For	the	Aqua	dataset,	the	parameter	settings	for	each	step	of	the	process	are	shown	in	Table	

3	with	the	resulting	filtered	MAIAC	AOD	plotted	in	Figure	13.		In	Table	3,	Models	A-F	correspond	to	

Figure	13a-13f	showing	the	progression	of	skill.		Each	row	in	Table	3	represents	the	parameter	
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values	for	a	training	instance,	and	the	columns	define	the	parameters.		In	Table	3,	the	column	titled	

Model	Name	gives	the	name	which	connects	each	row	in	Table	3	to	a	plot	in	Figure	13.		The	column	

titled	Test	Year	is	a	column	displaying	the	year	of	Africa	Aqua	data	used	for	testing	the	trained	

network.		The	column	labeled	as	Other	is	for	miscellaneous	changes	that	fit	in	standalone	categories	

detailed	below	Table	3	(Table	Key).		Finally,	the	right	most	two	columns,	RMSE	and	correlation	

display	the	Root	Mean	Square	Error	and	correlation	(respectively)	discussed	in	chapter	3.1.		The	

key	features	of	Table	3	are	the	individual	cells	outlined	in	bold	as	well	as	the	RMSE	and	correlation	

columns.		The	bolded	cells	indicate	which	parameter	is	changed	for	a	given	instance	of	training.	The	

RMSE	and	correlation	columns	are	the	indicators	of	how	well	a	certain	training	instance	performed.		

Model	A	shown	in	Table	3	gives	the	parameter	settings	for	the	first	multi-year	model	run.	

Additionally	Figure	13a	shows	the	resulting	comparison	plotted	in	the	same	manner	as	Figure	9.	

Initially,	the	model	accuracy	decreased	given	the	larger	input	dataset,	as	input	parameters	may	be	

correlated	and	contain	redundancy.		Also,	some	input	parameters	may	be	unrelated	to	final	outputs.		

The	number	of	nodes	per	layer	in	Model	A	are	in	a	descending	gradient	of	512,	256,	128,	64,	and	32	

nodes	in	each	of	the	5	hidden	layers	respectively.		This	resulted	in	an	RMSE	of	0.104	and	a	

correlation	of	0.815	as	seen	in	Table	3.		It	is	seen	in	Figure	13a	that	although	some	of	the	noisy	

retrievals	are	excluded	with	the	use	of	the	DNN	system,	there	are	still	significant	percentages	of	

noisy	retrievals	that	passed	the	DNN-based	filtering.		In	Model	B	we	set	the	learning	rate	parameter	

from	0.001	to	0.0001.		This	yields	a	worse	performance,	which	is	indicated	by	the	increase	in	spikes	

in	Figure	13b	that	are	far	away	from	the	one-to-one	line	of	the	MODIS	MAIAC	and	AERONET	AOD	

plot.		Additionally,	Table	2	shows	that	the	RMSE	increased	to	0.111	and	correlation	decreased	to	

0.809.		In	Model	C	we	increased	the	percentage	of	input	data	used	for	training	from	70%	to	90%	and	

therefore	decreased	the	percentage	used	for	testing	from	30%	to	10%.		We	found	this	gave	slightly	

better	performance	as	is	found	in	Figure	13c	indicated	by	fewer	spikes	away	from	the	one-to-one	
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trend	line.		The	RMSE	and	correlation	in	this	case	remained	relatively	the	same	with	scores	of	0.112	

and	0.805	respectively.		

In	general,	having	many	dimensions	in	the	input	data	can	introduce	unnecessary	complexity	

to	the	network	(Verleysen	et	al.	2003).	Therefore,	in	Model	D	we	eliminate	MODIS	Latitude,	MODIS	

Longitude,	and	Fine	Mode	Fraction	(FMF)	from	the	input	data	to	assess	the	importance	of	having	

location	in	the	input	data	and	because	FMF	is	a	byproduct	of	the	retrieval	process.		This	omission	is	

in	addition	to	two	other	variables	which	are	omitted	for	the	entirety	of	training,	MAIAC	AOD	at	470	

nm	and	MAIAC	Uncertainty.		MAIAC	AOD	at	470	nm	is	omitted	because	the	network	is	specifically	

being	trained	to	recognize	AOD	at	550	nm.		MAIAC	Uncertainty	is	based	only	on	AOD	at	470	nm	

surface	reflectance,	and	thus	gives	only	a	general	indication	of	possible	increase	of	error	over	

brighter	surfaces.		Additionally,	the	number	of	Epochs	is	decreased	from	50	to	20.	The	Model	D	

parameters	result	in	RMSE	increasing	to	0.125	and	correlation	decreasing	to	0.785.		This	decrease	

in	network	skill	is	visible	in	Figure	13d	with	the	inclusion	of	smaller	MAIAC	values	at	higher	

AEROENT	values	in	the	filtered	data	(blue).		Based	on	these	results,	Model	E	continues	the	omission	

of	Latitude,	Longitude,	and	FMF	but	includes	MAIAC	AOD	at	470	nm	and	MAIAC	Uncertainty.		This	

does	not	significantly	increase	network	skill	as	Figure	13e	shows	only	a	marginal	decrease	in	the	

number	of	low	MAIAC	values	at	high	AERONET	included	in	the	filtered	data.		The	resulting	RSME	of	

0.122	shown	in	Table	2	as	well	as	the	correlation	of	0.783	confirm	the	lack	of	improvement	in	

network	skill.		

Therefore,	in	Model	F	a	new	approach	is	taken.		First,	MAIAC	AOD	at	470	nm	and	MAIAC	

Uncertainty	are	removed	once	again	from	the	input	data,	while	Latitude,	Longitude,	and	FMF	are	re-

included.	In	order	to	decrease	the	potential	strain	on	the	network,	the	complexity	of	the	data	(now	

13	input	dimensions)	may	be	having	on	the	model,	the	number	of	output	classes	is	decreased	

(Verleysen	et	al.	2003).		By	decreasing	in	the	number	of	output	classes	given	to	the	network	from	

12	[(<-9999),	(-9999,	-1.0),	(-1.0,	-0.5),	(-0.5,	-0.05),	(-0.05,	-0.02),	(-0.02,	0),	(0,	+0.02)	…	(+1.0,	
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+9999),	(>+9999)]	to	10	[(<-9999),	(-9999,	-0.15),	(-0.15,	-0.05),	(-0.05,	-0.02),	(-0.02,	0),	(0,	+0.02)	

…	(+0.15,	+9999),	(>+9999)],	a	significant	reduction	in	noisy	data	pairs	are	clearly	visible	in	Figure	

13f.		This	is	substantiated	by	the	decrease	in	RMSE	to	0.091	shown	in	Table	2	and	the	increase	in	

correlation	to	0.799.	However,	to	achieve	an	acceptable	value	for	correlation,	a	final	model	version	

is	created	named	Final	in	Table	2	and	already	shown	in	Figure	9.		To	further	decrease	the	

dimensionality	of	the	model,	the	number	of	layers	is	taken	from	5	to	3.		The	finalized	DNN	settings	

include	3	hidden	layers	with	512,	253,	and	32	nodes	respectively,	an	output	layer	with	10	

classifications,	a	learning	rate	of	0.001,	and	20	iterations	(epochs).	An	RMSE	of	0.0857	and	a	

correlation	of	0.802	are	found	for	the	filtered	data	shown	in	Figure	9.			

The	RMSE	and	correlation	achieved	in	this	instance	are	in	line	with	the	desired	output	from	

the	network	predictions,	where	RMSE	reduced	by	~31%	and	correlation	remained	consistent	

compared	to	the	initial	RMSE	and	correlation	of	the	data	shown	in	the	upper	right	of	Table	2.		As	

seen	in	the	table,	other	instances	of	training	produce	higher	correlation	but	saw	a	less	desirable	

change	in	RMSE	or	in	some	cases	an	increase	in	RMSE.		

A	similar	step	by	step	process	is	performed	for	the	Africa	Terra	dataset	for	collocated	

MODIS	MAIAC	and	AERONET	data.		Table	4	and	Figures	14a-14f	display	the	progression	of	training	

for	Terra	data	as	previously	detailed	with	the	Aqua	dataset.		Note	that	while	changes	are	made	to	

the	DNN	each	run	only	small	changes	are	visible	between	each	resulting	plot	in	Figure	14.		The	

sensitivity	tests	show	that	similar	RMSE	and	linear	correlation	are	achievable	with	the	Terra	

dataset	compared	to	what	is	seen	with	the	Aqua	data.		However,	Terra	shows	slightly	worse	RMSE	

and	linear	correlation	in	the	DNN.		Finally,	while	slight	differences	are	seen	in	the	RMSE	and	

correlation,	the	final	trained	version	of	the	DNN	for	Terra	includes	the	exact	same	parameters	as	

the	final	trained	Aqua	model.		
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Figure	13:	Africa	Aqua:	Filtered	MAIAC	AOD550	(blue)	versus	the	test	dataset	(red)	where	(a)	through	
(f)	show	the	progression	of	increasing	skill	with	each	version	of	the	trained	model.	
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Table	3:	Africa	Aqua:	This	table	shows	the	change	in	each	Deep	Neural	Network	parameter	(columns)	
for	each	version	of	the	Network	Model	(row)	with	the	resulting	RMSE	and	Linear	Correlation	for	each	

Network	Model	in	the	rightmost	two	columns.	

Sensitivity	Study	Progression		
Row:	Training	Instance		
Column:	Parameter	Value		

Training	Data:	Africa	Aqua	
2002-2015	
	

Model	
Name	

Hidden	
Layers	 Nodes	 Activ	 Classes	 Opt	 LR	 Epochs	

Test	
Year	 Other	 RMSE	 Corr	

Raw	 -	 -	 -	 -	 -	 -	 -	 -	 -	 0.125			 0.802	

A	 5	 α*	 relu	 12	 Adam	 0.001	 50	 2016	 	 0.104	 0.815	

B	 5	 α*	 relu	 12	 Adam	 0.0001	 50	 2016	 	 0.111	 0.809	

C	 5	 α*	 relu	 12	 Adam	 0.001	 50	 2016	 β*	 0.112	 0.805	

D	 5	 α*	 relu	 12	 Adam	 0.001	 20	 2016	 γ*	 0.125	 0.785	

E	 5	 α*	 relu	 12	 Adam	 0.001	 20	 2016	 δ*	 0.122	 0.783	

F	 5	 α*	 relu	 10	 Adam	 0.001	 20	 2016	 ε*	 0.091	 0.799	

Final	 3	 ζ*	 relu	 10	 Adam	 0.001	 20	 2016	 	 0.0857	 0.802	

Table	Key	
α*		 512,	256,	128,	64,	32	
β*		 Test	size	during	training	changed	from	30%	to	10%	
γ*		 omit	latitude,	longitude,	fine	mode	fraction	from	input	data	
δ*		 d*	+		include	MAIAC	AOD	470,	MAIAC	AOD	uncertainty	in	input	data		
ε*	 bins	adjusted	to	(-9999,	-0.15,	-0.05,	-0.02,	0,	0.02,	0.05,	0.15,	9999),	e*	and	d*	reverted	
ζ*	 512,	64,	32	
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Figure	14:	Africa	Terra:	Filtered	MAIAC	AOD550	(blue)	versus	the	test	dataset	(red)	where	(a)	through	
(f)	show	the	progression	of	increasing	skill	with	each	version	of	the	trained	model.	
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Table	4:	Africa	Terra:	This	table	shows	the	change	in	each	Deep	Neural	Network	parameter	(columns)	
for	each	version	of	the	Network	Model	(row)	with	the	resulting	RMSE	and	Linear	Correlation	for	each	

Network	Model	in	the	rightmost	two	columns.	

Sensitivity	Study	Progression		
Row:	Training	Instance		
Column:	Parameter	Value		

Training	Data:	Africa	Terra	
2000-2015	
	

Model	
Name	

Hidden	
Layers	 Nodes	 Activ	 Classes	 Opt	 LR	 Epochs	

Test	
Year	 Other	 RMSE	 Corr	

Raw	 -	 -	 -	 -	 -	 -	 -	 -	 -	 0.131			 0.803	

A	 5	 𝛂*	 relu	 10	 Adam	 0.001	 50	 2016	 	 0.103	 0.797	

B	 3	 β*	 relu	 10	 Adam	 0.001	 20	 2016	 	 0.102	 0.793	

C	 4	 γ*	 relu	 10	 Adam	 0.001	 30	 2016	 	 0.096	 0.785	

D	 3	
δ*	

relu	 10	 Adam	 0.001	 30	 2016	 	 0.100	 0.791	

E	 3	 δ*	 relu	 10	 Adam	 0.001	 50	 2016	 	 0.099	 0.789	

Final	 3	 δ*	 relu	 10	 Adam	 0.001	 20	 2016	 	 0.096	 0.793	

	
Table	Key	
𝛂*		 512,	256,	128,	64,	32	
β*	 512,	128,	32	
γ*	 512,	128,	64,	32	
δ*		 512,	64,	32	
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CHAPTER	4	

CONCLUSIONS	

Previous	studies	have	found	that	aerosol	analyses	and	forecasts	can	be	improved	through	

assimilation	of	high-quality	satellite	based	AOD	data	(Lyapustin	et	al.	2012;	Lee	2019),	or	through	

assimilation	of	satellite	AOD	that	are	carefully	quality	controlled	(e.g.	Zhang	et	al.,	2008).		However,	

it	has	also	been	found	that	biases	in	satellite	aerosol	data	can	introduce	non-negligible	uncertainties	

in	the	downstream	aerosol	analysis	and	forecasts	(Zhang	and	Reid	2006).		Therefore,	in	this	study,	

we	quantify	uncertainties	in	the	Aqua	and	Terra	MODIS	MAIAC	AOD	data	using	the	version	3	level	2	

AERONET	data.		We	further	develop	a	deep	neural	network-based	method	for	quality	control	of	

MODIS	MAIAC	aerosol	data	for	aerosol	modeling	applications.	This	is	done	using	14	years	of	Aqua	

MODIS	(2002-2016)	and	16	years	of	Terra	MODIS	(2000-2016)	MAIAC	data.		

The	findings	of	this	study	are	as	follows:	

1. Validated	against	version	3,	level	2	AERONET	data,	reasonable	performance	in	

MODIS	MAIAC	AOD	retrievals	is	found	as	RMSEs	in	MAIAC	AOD	(550	nm)	range	

from	~0.1	to	0.2	and	correlations	between	MAIAC	and	AERONET	AOD	range	

between	~0.6	to	0.9.		RMSE	values	of	lower	than	0.1	are	found	over	South	and	North	

American	and	the	region	with	the	worst	RMSE	values	of	~0.2	are	found	to	be	China	

and	Mid-Asia.		Given	that	both	China	and	Mid-Asia	are	regions	with	bright	surfaces	

that	pose	difficulties	for	traditional	aerosol	retrievals	using	passive	sensors,	the	

performance	of	MODIS	MAIAC	AOD	over	those	regions	is	quite	reasonable	as	well.		
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2. A	DNN	system	for	quality	control	of	the	MODIS	MAIAC	AOD	data	is	developed.		The	

input	parameters	are	taken	from	the	MODIS	MAIAC	dataset	and	the	outputs	are	

predicted	differences	between	MAIAC	and	AERONET	AOD,	where	AERONET	AOD	

values	are	considered	as	the	ground	truth	in	this	study.	Using	collocated	MODIS	

MAIAC	and	AEORNET	data	from	2014,	we	find	the	DNN	system	has	skills	in	

detecting	noisy	MAIAC	AOD	data.		We	further	test	the	DNN	system	using	13	

years/15	years	of	collocated	Aqua/Terra	MODIS	MAIAC	AOD	and	AERONET	data	as	

training	samples	and	use	the	remaining	one	year	of	collocated	Aqua/Terra	MODIS	

MAIAC	AOD	and	AERONET	data	as	testing	samples.		Our	study	suggests	that	the	

DNN	system	can	detect	and	significantly	reduce	noisy	retrieval	in	MAIAC	AOD	data.		

An	approximate	31%/27%	reduction	in	Aqua/Terra	MODIS	MAIAC	AOD	is	found	

with	the	use	of	the	DNN	system,	but	with	an	approximate	14%/16%	data	loss.	

3. To	select	the	optimal	parameter	settings	for	the	DNN	system,	a	sensitivity	study	is	

performed.		This	study	suggests	that	the	reduction	in	number	of	output	categories	

can	significantly	improve	the	performance	of	the	DNN	system.		The	improvement	in	

performance	of	the	DNN	system	is	also	observed	by	reducing	the	number	of	hidden	

layers	from	7	to	3.		However,	marginal	changes	are	found	by	altering	number	of	

notes,	altering	input	parameters,	modifying	learning	rates	and	reducing	epoch	

times.									

This	study	suggests	that	both	Terra	and	Aqua	MODIS	MAIAC	AOD	data	compare	

reasonably	well	with	ground	based	AERONET	data	for	all	6	study	regions	(Europe,	

Africa,	China,	Mid-Asia,	South	America,	North	America).		Yet	larger	noises	still	exist.		A	

DNN	can	be	used	as	an	effective	quality	control	method	for	further	reducing	

uncertainties	and	biases	in	MODIS	MAIAC	AOD	data.		The	quality	controlling	method	

developed	in	this	study	may	be	used	for	aerosol	data	assimilating	applications.			
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	 Myriad	options	exist	for	investigating	the	performance	of	the	network	given	

alternate	starting	conditions,	as	well	as	to	quality	control	the	input	data.		First,	further	

sensitivity	study	focused	on	the	influence	of	viewing	geometry	input	parameters	(solar	

zenith,	relative	azimuth)	could	reveal	an	elevated	dependence	on	these	parameters	

leading	to	the	possible	elimination	of	other	input	parameters	and	therefore	a	decrease	

dimensionality	in	the	network	which	is	shown	to	increase	performance.		Additionally,	

performing	a	similar	process	on	other	regions	(Mid-Asia,	China,	North	and	South	

America)	as	is	performed	here	using	Africa	could	inform	the	regional	dependence	of	

such	studies	as	this.		Finally,	altering	the	network	target	from	finding	the	difference	

between	a	given	MAIAC	and	AERONET	AOD	to	instead	predicting	the	corrected	output	

MAIAC	AOD	based	on	a	given	input	MAIAC	AOD	is	possible	with	this	network	and	could	

have	a	different	result.		Those	remain	to	be	studied	in	future	efforts.
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