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ABSTRACT 

 

Gemini monomer, a new monomeric class that consists of two monomeric units 

connected by a covalent linker, can offer a highly dense polymeric framework. Moreover, 

their ability to form twice the number of covalent bonds than the conventional monomer 

can afford polymers with high thermal and mechanical strength. The desired Gemini 

monomer, ethylene 1,2-bis (2,4-pentadienoate) (EBP), was synthesized in two steps. First, 

an acid precursor 2,4-pentadienoic acid was synthesized by the condensation of malonic 

acid and acrolein. Second, ethylene glycol was used to connect two 2,4-pentadienoic acid 

units to obtain the monomer. Later, EBP was polymerized in ambient and solvent-free 

conditions to yield poly[ethylene 1,2-bis(2,4-pentadienoate)] (PEBP). This polymer was 

found to be inert with most of the organic solvents (DMSO, DMF, etc.), and was thermally 

stable (T5% > 300 °C) and displayed high Young’s modulus of up to 10.9 GPa with the 

mechanical strength of 159MPa. 

Semi-rigid, thermally stable, symmetrical aliphatic building blocks suitable for 

materials synthesis are uncommon. One such class of structures is cyclobutane-containing 

building blocks (CBs). They bridge the gap between their flexible aliphatic chain and rigid 

aromatic counterparts. The presence of one or more conformational strained four-

membered aliphatic rings in CBs gives them a unique blend of rigidity and processability, 

making them viable in designing and synthesizing novel polymers, metal-organic material, 

etc. Herein, we report a novel strategy to synthesize a CB, trans-1,3-cyclobutane
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dimethanol (CBDO-1), a versatile building block that may also serve as a phenol-free BPA 

replacement. It was synthesized using a facile photoreaction and subsequent reduction. 

Specifically, an initial photodimerization of trans-cinnamic acid using 365 nm blacklight 

was carried out to form a trans-1,3-cyclobutane diacid, CBDA-1, which was then reduced 

with either NaBH4 in the presence of I2, or by catalytic hydrogenation using CuO-CrO3, to 

give the desired CBDO-1 in excellent yield. To highlight the potential application of this 

useful primary diol, CBDO-1 and various diacids were used to synthesize novel polyesters 

via conventional melt polymerization. The thermal properties of this new series of 

polyesters were studied, including the glass transition temperature, which ranged from 33 

to 114 °C, and the decomposition temperature, which ranged from 381 to 424 °C. The ease 

of synthesis of this cyclobutane-containing CBDO-1 monomer, coupled with its desirable 

properties, will help develop alternatives for the widely used BPA, and lead to novel and 

useful materials that are not accessible employing thermal reactions alone. 

A diamine functionalized CB such as trans-1,3-cyclobutane diamine (CBAM-1) 

was obtained by the solid-state photodimerization trans-nitrostyrene in the slurry state 

using brine as a medium for forming a suspension. The characterization of CBAM-1 was 

done using NMR, FT-IR spectroscopy. For the first time, its structure was also determined 

by using SC-XRD. It was reckoned that semi-rigid CBAM-1 has the right balance of 

rigidity and flexibility, which can be translated into polyamides with increased 

processability and desired Tg suitable for various applications. Polyamides were 

synthesized using CBAM-1 and diacids such as succinic acid and terephthalic acid. 

Spectroscopic techniques were employed to characterize the polyamides, and their thermal 

properties were studied. 
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A biomass-derived CB such as rctt-di-2-furanyl-1,2-cyclobutanedicarboxylic acid 

(CBDA-2) was used as a semi-rigid polytopic ligand to the synthesis of two different green 

metal-organic materials with Cu2+ and Co2+ as the metal centers via a solution method. 

Both the 2D coordination polymers have been characterized by X-ray crystal structure 

determination and FT-IR spectroscopy. Also, their thermal properties were studied by 

using TGA and DSC. During this thermal study, both materials showed visual 

thermochromic behavior.   
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Chapter 1                                                                    

A High-Performance Polymer Synthesized from 

Sustainable Feedstock-derived Gemini Monomer, 

Ethylene 1,2-Bis(2,4-pentadienoate) 

1.1 INTRODUCTION 

High-performance polymers (HPPs) are a unique class of polymers. These 

materials are designed to have excellent attributes when compared to standard and 

engineering plastics, and are known for their high mechanical strength and high thermal 

and chemical resistance.1 In the past, diverse strategies have emerged to synthesize and 

characterize these HPPs with a unique combination of properties for a distinct range of 

military, industry, and electronics applications. Typical examples of HPPs, to name are 

epoxy resins, polyimides, and polyarylene ethers. In these HPPs, the monomers consist of 

rigid aromatic rings and are most commonly polymerized via solution condensation. 

However, the very structural principles that provide the above-mentioned outstanding 

combinations of properties are also responsible for many problems concerning 

processability. For instance, the melting and dissolving of stiff chains result in an 

insignificant change of entropy.2 Hence, these polymers have high melting point and are
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only sparingly soluble in most commonly used solvents.3 The monomeric precursors for 

most HPPs are obtained or derived from expensive and hazardous raw materials. For 

example, one of the popular classes of HPPs, polyimides, contributes almost 35% to the 

total market shares of HPPs and is used in all major industries such as aerospace, 

automotive, and medical device manufacturing.4 Polyimides are typically synthesized from 

an aromatic tetra carboxylic anhydride such as pyromellitic anhydride (PMDA), 

accounting for 90% of polyimide synthesis.5 The thoroughly investigated adverse public 

health and environmental effects of PMDA,6 on the other hand, have minimized its 

production and persuaded investigators to find more benign substitutes leading to polymers 

with properties similar to polyimides.7 

Among the diverse approaches in developing novel HPPs, monomers derived from 

natural products such as carbohydrates have attracted many polymer chemists due to their 

natural abundance, being non-hazardous, and higher sustainability at low costs. For 

example, isosorbide, a synthon that contains two cis-fused tetrahydrofuran rings,8 has been 

used to develop high-performance thermosetting via gylcidylation with similar thermal and 

mechanical properties to known high-performance epoxy resins.9 Another widely studied 

monomer is 2,5-furandicarboxylic acid (FDCA), which can be derived from sucrose as a 

primarily available biomass feedstock by a sequential process.10 FDCA based high-

performance polyamides exhibit thermal and mechanical properties similar to aromatic 

polyamides such as poly(p-phenylene terephthalamide) (Kevlar) used in high-tech 

applications.11 Additionally, trehalose and β-cyclodextrin based monomers have been used 

to design and develop novel HPPs with high mechanical and adhesion strength.12 
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Our research group recently developed a novel monomer system called Gemini 

monomers derived from inexpensive and commercially available synthons. This new 

monomer class can be envisioned as two identical monomeric units separated by a covalent 

spacer. The unification of two monomer units results in unique bonding characteristics, 

which have been utilized to yield vital materials, such as polyladdranes13, 

polycyclobutanes14, and two-dimensional polymers.15 These materials possess excellent 

thermal and electronic properties making them suitable candidates for future applications. 

If we consider the properties of HPPs, the significant factors which contribute the most are 

the number of primary bonds and their strength. So for a given material, higher the number 

of high energy primary bonds it have, higher is the thermal, mechanical and chemical 

resistance.16 We previously showed that Gemini monomers tend to form more covalent 

bonds per monomer than conventional monomers.13-15 Based on the ability to form multiple 

covalent bonds, it can be hypothesized that a polymer resulted from Gemini monomer 

would have desired thermal, mechanical, and chemical stability similar to some known 

HPPs. At the same time, this unique bonding characteristic of Gemini monomer will help 

the whole polymeric structure stay intact even if some bonds were lost during the 

application, making Gemini monomer-based polymers a strong candidate for HPPs. In this 

study, we report the successful synthesis of novel HPP, poly[ethylene 1,2-bis(2,4-

pentadienoate)] (PEBP) from symmetric diester Gemini monomer, ethylene 1,2-bis(2,4-

pentadienoate) (EBP) prepared from inexpensive and readily available building blocks 

such as malonic acid, acrolein and ethylene glycol in good yield. The performance of EBP 

in synthesizing PEBP, as well as its chemical resistance, thermal stability, and mechanical 

strength were investigated.  
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1.2 EXPERIMENTAL SECTION  

1.2.1 Materials and methods  

All the chemicals and solvents were purchased from Alfa Aesar and Aldrich and 

used without further purification. NMR spectroscopic experiments were performed on a 

Bruker AVANCE 500 NMR spectrometer at 500 MHz for 1H and 125 MHz for 13C{1H}. 

Thermo Scientific Nicolet iS5 ATR spectrometer was employed for FT-IR spectroscopic 

experiments. TGA analyses were carried out on a Hi-Res TGA Q500 thermogravimetric 

analyzer from TA Instruments at a heating rate of 5 °C/ min, 10 °C/ min & 20 °C/ min 

under a nitrogen flow of 100 mL/min with a sample weight of ∼10 mg. DSC experiments 

were performed on a Perkin Elmer Jade differential scanning calorimeter using a hermetic 

aluminum pan, indium standard for calibration, nitrogen as a purge gas, sample weight of 

~ 5 mg, from -30 oC to 250 oC, and 10 oC/min heating rates. Tensile testing was performed 

using a universal testing system with a 5 kN load cell on samples with a dog bone geometry 

at a 5 mm/min crosshead rate. Scanning electron microscopy (SEM) was used to study the 

surface properties of polymer on a Hitachi SU8010 UHR cold-emission field emission 

scanning electron microscope. 

1.2.2 Synthesis  

1.2.2.1 Synthesis of (E)-2,4-pentadienoic acid 

Malonic acid (2.31 mol) was dissolved in 250 mL of pyridine at 30 – 40 °C in a 1-

L, three-necked round-bottom flask fitted with a stirrer, reflux condenser, and dropping 
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funnel. To this stirring solution, a 100 mL (1.50 mol) portion of acrolein was added. After 

the addition of this first portion of acrolein, the temperature rose to between 65 and 75 °C, 

and the reaction mixture was stirred for another 15 min. In an analogous manner, second 

and third portions of acrolein (75 and 25 mL, respectively) were added. After the addition 

of acrolein, the reaction mixture was allowed to cool down to room temperature, and 

approximately 1500 g of ice and 500 mL of DCM were added to it. Then the reaction 

mixture was acidified by dropwise addition of 175 mL of concentrated H2SO4. The original 

500 mL of DCM was separated, and the aqueous solution was extracted with DCM (50 mL 

x 3). Hydroquinone (1.5 g) was added to the combined extracts and dried for 12 h over 

Na2SO4.  After removing DCM, a yellow residue was transferred to a 2 L Erlenmeyer flask 

containing 1200 mL of warm (40 °C) petroleum ether, and resulting solution was stirred 

for 20 min. The solution was then filtered and stored in a refrigerator to allow 

crystallization. Evaporation of the mother liquor and treatment with more petroleum ether 

afforded additional (E)-2,4-pentadienoic acid. The combined fractions (1.61 mol, 60%) 

were white crystalline solids and had a melting point range of 71-72 °C. The FT-IR (solid) 

𝜈max (cm-1): 3000 (br, O—H), 1685 cm-1 (vs, C=O), 1640–1600 (s, C=C), 1400 (w, O—H 

in plane bending), 1220 (m, C—O), and 690 (m, O—H out-of-plane). 1H NMR (CDCl3, 

500 MHz,): δ, ppm 12.20 (s, 1H), 7.35 (m, 1H), 6.48 (m, 1H). 

1.2.2.2 Synthesis of (E)-2,4-pentadienoyl chloride 

2,4-Pentadienoic acid (0.20 mol), 80 mL of DCM, and 12 g of molecular sieves (3 

Å) were added to a 500 mL, three-necked flask fitted with a stirrer, reflux condenser, 

dropping funnel, and external sodium hydroxide trap. (COCl)2 (0.42 mol) was then added 
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dropwise to the reaction mixture. After the addition of (COCl)2, it was stirred continuously 

for two hours, and the solution was then allowed to stand. The solution was filtered, and 

removal of solvent yielded (E)-2,4-pentadienoyl chloride (0.15 mol, 73%). The FT-IR 

(KBr, thin film) 𝜈max (cm-1): 1735 (vs, C=O), 1615–1575 (s, C=C), 1020 (s, O=C—C) and 

628 (m, C—Cl) The spectrum was devoid of absorption above 3000 cm-1, near1400 cm-1, 

and 1200 cm-1.  

1.2.2.3 Synthesis of the Gemini monomer 

Ethylene glycol (0.06 mol), 280 mL of DCM, and 30 g molecular sieves (3Å) were 

added to a 500 mL, three-necked round bottom flask fitted with a stirrer, reflux condenser, 

and dropping funnel. The reaction was stirred for 30 min at room temperature followed by 

dropwise addition of a solution of 15 g of 2,4-pentadienoyl chloride in 30 mL of DCM. 

The reaction was exothermic, and temperature rose to 40-45°C during the addition of the 

acid chloride. After the addition, the reaction mixture was stirred for an additional 72 h 

while temperature was maintained at 60-65 °C. The molecular sieves were then removed 

by filtration, and flash chromatography by using ethyl acetate /hexane (1% ethyl acetate) 

as eluent afforded the symmetric diester Gemini monomer, ethylene 1,2-bis(2,4-

pentadienoate) (EBP), with a total yield of 70%. The FT-IR (solid) 𝜈max (cm-1):1712 (vs, 

C=O), 1641 – 1600 (m, C=C), 1140 (s, C—O), and 745 (w, C=C—H bending). 1H NMR 

(CDCl3): δ 7.21 (m, 2H), 6.40 (m, 2H), 5.87 (d, J = 15 Hz, 2H), 5.55 (dd, J = 15 Hz, 2H), 

5.45 (d, J = 10 Hz, 2H), 4.33 (s, 4H). 13C{1H} NMR (CDCl3, 125 MHz): δ 165, 144, 133, 

124, 120, 61. 
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1.2.3 Polymerization and tensile bars preparation  

1.2.3.1 Method A, thermal preparation  

The monomer EBP was weighed and put into a 20-mL scintillation glass vial, which 

was subsequently heated at 50 °C under a high vacuum in a convection oven for 2 h 

yielding PEBP. 

1.2.3.2 Method B, room temperature synthesis:  

The monomer EBP was weighed and was put into a 20-mL scintillation glass vial 

which kept closed at room temperature for 72 h, yielding PEBP. In the same way, EBP was 

transferred to a dog-bone shape mold of chlorinated polyethylene (CPE) and allowed to 

polymerize at room temperature for 72 h. Later it was removed from molds and post cured 

at 170 °C overnight and used for testing mechanical properties.  

1.3 RESULTS AND DISCUSSION 

1.3.1 Synthesis of the Gemini monomer  

(E)-2,4-Pentadienoic acid was synthesized in good yield by the direct 

Knoevenagel-Doebner condensation between acrolein and malonic acid in the presence of 

pyridine. The stereocontrol of the reaction in favor of thermodynamically more stable E- 

isomer was achieved at 50 °C in dark. Afterward, the carboxylic acid was converted into 

corresponding acyl chloride by reacting with an excess of oxalyl chloride at room 

temperature. Later, acyl chloride went under esterification reaction with ethylene glycol in 
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DCM containing molecular sieves (3Å). A 2:1 mole equivalent ratio of acyl chloride to 

ethylene glycol and low reactants concentrations were optimal to obtain EBP in 77 % yield. 

The chemical structure of EBP was confirmed by 1H, 13C NMR, and FT-IR spectroscopy. 

The proton signal at about 4.33 ppm was assigned to the methylene protons of the linker. 

The resonances at 5.44 to 7.23 ppm were attributed to the protons attached to the double 

bonded carbons. Moreover, the observed integral ratio of all protons was in accord with 

expected values. 

 

Scheme 1.1. Synthesis of the Gemini monomer EBP from malonic acid, acrolein and 

ethylene glycol. 

 

Figure1-1 presents the FT-IR spectra of EBP. The characteristic absorptions of conjugated 

ester, including strong stretching vibration of the C=O group around 1708 cm-1, medium 

intensity absorption of C=C bonds around 1640 and 1600 cm-1, the C–O bond around 1010 

cm-1, and weak out-of-plane bending vibration of C–H near to 745 cm-1, were observed, 

confirming the desired functional groups in the EBP. 
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1.3.2 Synthesis of polymer from EBP  

EBP was polymerized in the absence of light at different temperatures without any 

solvents making it a sustainable process to obtain the polymer PEBP. The polymerization 

process was monitored by using FT-IR. It was found that the temperature of 50 °C for two 

hours (Figure 1.1) was optimal for the polymerization, which was marked by the 

disappearance of C=C bond stretching vibration and out-of-plane C–H bending vibrations 

at 1600 cm-1 and 950 cm-1, respectively. No further change was observed at temperature 

and time higher than 50 °C.  

 

Figure 1.1. FT-IR spectra of EBP showing the polymerization completed by heating. 
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Also, due to the high reactivity of EBP, it was found to undergo polymerization at 

room temperature. Interestingly, the final polymer obtained by this method was transparent 

when compared with opaque product formed at elevated temperatures. The resulting 

polymer had similar IR characteristics in both processes, indicating both PEBP samples 

are chemically identical, but they might differ structurally. Also, it was found that the 

room-temperature method of polymerizing EBP at room can be an effective way to obtain 

different forms of PEBP depending upon application or requirement, as shown in Figure 

1.2. 

 

 

Figure 1.2. Photographs of the PEBP in different shapes. 

1.3.3 Thermal properties of PEBP 

Thermal properties of the PEBP were initially investigated by differential scanning 

calorimetry (DSC) under N2 atmosphere. A PEBP sample was heated from -25 to 250 °C 

at a rate of 20 °C per min. After heating at that rate, it was isothermally held at 250 °C for 

5 min, then allowed to cool down to -25 °C at a rate of 20 °C per min. PEBP did not show 

any melting and glass transition temperature in three continuous DSC cycles. However, an 

exothermic peak around 150 °C was observed in the first heating cycle, as shown in Figure 

1.3, which was not present in the subsequent second and third heating cycles. Also, with 
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the decrease in heating rate, the curing peak became broad and dropped to a lower 

temperature. This exothermic transition reflected in the DSC thermogram was attributed to 

the curing, where the polymer chain cross-links. In practical application, post-curing can 

be extremely important in that it not only expedites the cross-linking process, but let the 

polymer chains align in a more organized way.17 In order to determine an activation energy 

(Ea) to cross-link the PEBP, multiple DSC experiments were performed at different heating 

rates to measure the cross-linking temperature. These cross-linking peak temperatures were 

fitted in to the Kissinger’s equation18 which relates the Ea to the peak temperatures of 

exothermic processes observed in DSC as shown in equation 1.1: 

 

 

 
−𝑙𝑛 (

𝑞

𝑇𝑝
2

) =  
𝐸𝑎

𝑅𝑇𝑃
 +  𝑙𝑛

𝐴𝑅

𝐸𝑎
 

1.1 

 

Where q is the heating rate DSC scans, Tp is the exothermic peak temperature, Ea is the 

activation energy, R is the gas constant (8.314 J mol-1 K-1), and A is the pre-exponential 

factor.  

A plot of -ln(q/Tp
2) versus 1/Tp allows the determination of the apparent activation 

energy from the slope of the equation 1.1.19 The linear fit of Kissinger’s equation is shown 

in Figure 1.3b. Accordingly, the Ea for the thermal curing reaction for the sample of PEBP 

was calculated as 8.4 kJ.mol-1. This value Indicates that PEBP can easily be cured at 

elevated temperatures and can be used with other prepolymers to introduce thermal 

curability. Therefore, a hybrid polymer with valuable properties can be tailored with an 

adept combination of a different class of polymers.20  
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Figure 1.3. (a) DSC thermograms of PEBP under nitrogen showing the crosslinking at 

different heating rates. (b) Linear plot of - ln (q/Tp
2) versus 1/Tp based on Kissinger’s 

equation  

 

High thermal decomposition temperature is an important property of polymers and 

probably the most distinguished property of HPPs.21 Therefore, we have evaluated the 

thermal stability of PEBP by thermogravimetric analysis (TGA) under a N2 atmosphere 

(Figure 1.4a). PEBP exhibited high thermal stability without any weight loss below 300 

°C. The onset decomposition temperature (T5%) was found to be in the range of 370 to 380 

°C, and the maximal decomposition temperature of PEBP was in the range of 412 to 433 

°C. The plausible explanation for this unusually high thermal stability can be attributed to 

the lower shearing forces at the middle of polymer chains induced during thermal motion, 

resulting in the free rotation of a flexible aliphatic linker connecting the monomers.22 To 

understand decomposition behavior of PEBP and how it is related to the polymeric 

structure of PEBP, thermal decomposition kinetics were performed using TGA and 

differential thermogravimetry (DTG) (Figure 1.4b). According to Kissinger’s method 

described by the equation 1.2, dynamic heating experiments can be quantitatively used to 

calculate activation energy, Ea of the solid-state reactions such as decomposition.20a, 23 
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𝑙𝑛 (

𝛽

𝑇𝑝
2

) = 𝑙𝑛
𝐴𝑅

𝐸𝑎
+ 𝑙𝑛[𝑛(1 − 𝛼)𝑛−1] −

𝐸𝑎

𝑅𝑇𝑃
 

1.2 

 

Where β is the heating rate (°C/min), Tp is the peak temperature from DTG, A is frequency 

factor (s-1), R is the gas constant (8.314 J mol-1 K-1), Ea is the apparent (kJ mol-1), α is 

defined as the fractional conversion at any time t, and n is reaction order.  

At maximum decomposition temperature, n(1-α)n-1n equals to 1, based on this 

approximation the equation 1.2 can be simplified to the equation 1.3. Therefore, Ea can be 

obtained by plotting ln(β/Tp
2) versus 1/Tp, as shown in Figure1.4c.  
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2
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𝐴𝑅

𝐸𝑎
 −  

𝐸𝑎
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1.3 

The slope of the line was used to calculate the Ea of the decomposition of PEBP, which 

was 84.22 kJ mol-1. The order of decomposition reaction was also estimated by Crane’s 

equation (equation 1.4), 

 

 ⅆ(𝑙𝑛 𝛽)

ⅆ(1 ∕ 𝑇𝑃)
= − (

𝐸𝑎

𝑛𝑅
+ 2𝑇𝑃) 

1.4 

 

when Ea/nR >> 2Tp, the slope of plot ln(β) vs. 1/Tp (Figure 3.4d) can be approximately 

equaled to Ea/nR. Thus, the calculated reaction order was 0.92, suggesting the 

decomposition was first-order process.  
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Figure 1.4. (a) TGA curves of PEBP at different heating rates under nitrogen. (b) DTG 

curves of PEBP at different heating rates. (c) Linear plot of -ln(q/Tp
2) versus 1/Tp based 

on Kissinger’s equation. (d) Linear plot of ln(β) vs. 1/Tp based on Crane’s equation. 

 

The above analysis indicated that a significant amount of energy was necessary to 

decompose PEBP, which is affirmed by the high decomposition temperature (Td) ranging 

from 412 to 433 °C at different heating rates. The thermal stability of PEBP was a little 

inferior to previously known HPPs.24 The possible reasons that could be accounted for the 

differences are as follow (1) The degradation of aliphatic units is easier than aromatic ones, 

as suggested by earlier studies.25 (2) The absence of strong interactions (such as hydrogen 

bonds) among PEBP chains prevented thermal motion and decomposition. (3) The relative 

lower molecular weight of PEBP. These reasons indicated that improvement in molecular 

weight by implementing various polymerization methods could further increase the heat 

resistance to the desired level because the first two reasons are intrinsic properties of 



15 

aliphatic polymers. Although the thermal stability was a little inferior, it is still high enough 

for some high-temperature applications where a temperature lower than 300 °C is required. 

1.3.4  Mechanical properties of the PEBP 

The monomer EBP was loaded onto dog-bone shape molds at room temperature 

and allowed to polymerize at the room temperature. Some PEBP tensile bars were kept in 

a convection oven for heating at 170 °C for overnight to achieve curing. After the 

preparation of tensile bars, the mechanical properties such as Young’s modulus (E), tensile 

strength at break (σ) and elongation at break (ɛ) were determined by using a universal 

testing machine (UTM) at a crosshead rate of 5 mm/min under 5 kN load cell at room 

temperature.  In general, the mechanical properties of a given polymer are significantly 

influenced by its chemical structure and cross-link density of the polymer network. As 

shown in Figure 1.5, the PEBP exhibited a high tensile strength up to 159 MPa with a strain 

of 3.9 %, while post cured PEBP showed a slightly lower tensile strength of 146 MPa with 

a strain of 2.4%.  Also, post-cure PEBP fractured without much plastic deformation 

compared to the uncured PEBP sample, as shown in the stress-strain curve (Figure1.5). 

The Young’s Moduli of the uncured and post-cured sample was ~ 10.9 GPa and 12.9 GPa. 

It is noteworthy to mention the tensile strength of uncured and post-cure PEBP was found 

to be more than that of commercially, best known, and widely used polyimide Kapton26. 
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Figure 1.5. Representative stress-strain curve of PEBP by tensile testing from polymer 

tensile bars. 

1.3.5 Chemical properties of PEBP 

The solubility of PEBP was tested in several commonly used solvents such as NMP, 

DMAc, DMSO, DMF, THF, CHCl3 and MeOH. It was found that PEBP was insoluble in 

all the tested solvents even with the addition of LiCl and heating the solution to 100 °C for 

2h in the case of DMSO and DMF. It also tolerated bases (Et3N and NaOH) and acids (1M 

HCl and TFA) at room temperature. This excellent chemical resistance can be attributed to 

a rigid framework present in PEBP and makes it suitable for developing protective coatings 

where contact with harsh chemicals, gases, detergent, or oils are intended or cannot be 

avoided. Under strongly acidic conditions, such as in the presence of conc. H2SO4, the 

PEBP, exhibited unusual behavior (Figure 1.6). PEBP swelled into a dark brown material 

about 6 – 7 times the original volume of PEBP in 24 h, as shown in Figure 1.6b.  
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Figure 1.6. Photographs of PEBP (a) before treatment with conc. H2SO4. (b) After 

treatment with conc. H2SO4. 

 

The swelled form of PEBP was further investigated. a TGA was performed on this 

swelled material after removing most of conc. H2SO4, and it was found to degrade in two 

steps. The first stage of decomposition happened at approximately 216 °C with a weight 

loss of 26%, which was near to the boiling point of sulfuric acid. The second decomposition 

occurred around 430 °C, indicating the decomposition of swelled PEBP. Interestingly, it is 

found that the thermal stability of this form of PEBP was almost similar to that of original 

PEBP. Although the char yield of this conc.H2SO4 PEBP was about 20% of the total weight 

(Figure 1.7a), while the untreated PEBP left no char product after heated above 450 oC 

(Figure 1.4a). To better understand the properties of swelled material, SEM was done to 

compare the polymer surface before and after the treatment with conc. H2SO4 (Figure 1.8). 

Before the conc H2SO4 treatment the polymer surface was smooth and plain, which is 

typical for polymers. After the treatment, a rough surface with tiny pores were observed, 

indicating the formation of a porous material. This unique swelling response to the change 

in pH has been proven instrumental in various applications ranging from superabsorbents 

to catalyst supports. Moreover, the material with this property would be suitable for 

segregation, such as filtration, gas separation, and pervaporation.27 
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Figure 1.7. TGA and DTG curves of PEBP after treatment with conc. H2SO4 under 

nitrogen. 

1.3.6 Sustainability  

The PEBP synthesized from the Gemini monomer EBP could synthesized from 

biomass-derived building blocks such as glycerol, malonic acid,28 and ethylene glycol.29 

Glycerol is a particularly important precursor because of its availability as a by-product in 

biodiesel production and its conversion into high-value chemical intermediates like 

acrolein28 and ethylene glycol. Therefore, this compound has been recognized as a valuable 

synthon in the sustainable chemical industry by the U.S. Department of Energy.30 An 

expanding demand for biodiesel will always ensure that a large amount of cheap glycerol 

is available. Moreover, malonic acid can be either obtained directly from natural sources 

like molasses of sugarbeets31 or prepared from malic acid, one of the twelve most valuable 

sugar-derived agrochemicals,32 via a multistep process including one-pot oxidative de-

carboxylation and esterification followed by hydrolysis.33 

 

 



19 

 

Figure 1.8. (a) and (b) SEM images of the PEBP surface before treatment with conc. 

H2SO4. (c) and (d) SEM images of a cross-section of PEBP after treatment with conc. 

H2SO4. 

1.4 CONCLUSION  

  The sustainably sourced ethylene 1,2-bis(2,4-pentadienoate) (EBP) Gemini 

monomer was prepared by solvent-free polymerization and formulated into the high-

performance polymer, PEBP. The synthesized HPP showed good chemical resistance 

towards most organic solvents due to its high cross-linking. The DSC experiments 

demonstrated that the synthesized HPP could undergo post-curing at approximately 170 

°C. The HPP composed from the Gemini monomer EBP exhibited excellent thermal and 

mechanical properties. Specifically, the synthesized PEBP showed the Td, E, σ, and ɛ 

values (412 °C, 11 GPa, 160 MPa, and 4%, respectively), demonstrating its enormous 
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potential for implementation as engineering plastics. Also, the Gemini monomer based 

HPP PEBP was found to swell seven times to its original volume under strongly acidic 

conditions. However, the thermal stability of the PEBP was still inferior to the known 

HPPs, suggesting efforts were still needed to improve the properties further. This study 

provided an innovative approach to synthesizing novel HPPs using a Gemini monomer. 

The results presented here might serve as clues for the future development of new HPPs 

with high chemical resistance and mechanical strength. 
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Chapter 2                                                              

Synthesis and Characterization of BPA-Free 

Polyesters by Incorporating a Semi-rigid 

Cyclobutanediol Monomer 

2.1 INTRODUCTION 

Synthetic polymers34  have become prime materials of choice around the globe 

because of their diverse applications, ranging from commodity to high tech, such as food 

and beverage packaging, electronics, as well as the automotive and architectural industries. 

Among these, bisphenol A (BPA) based polymers have proven to be essential 

thermoplastics. For example, BPA-based polycarbonates35 and epoxy resins36 exhibit 

exceptional thermal, mechanical, and optical properties, making them perfect for durable 

goods and engineering applications. Their success can be attested by their considerable 

market consumption of 2.7 billion pounds worldwide annually. Some of these uses include 

reusable water bottles, food can linings, spectacle lenses, and construction materials. The 

application of BPA-based polymers, however, has recently come under scrutiny due to the 

potential carcinogenic and disruptive endocrine effects of BPA.37 This has boosted 

widespread research and development of health- and environment-friendly polyesters with 

similar thermal and mechanical properties.14b, 38,39,40 One strategy to achieve excellent 

thermal and mechanical properties similar to those of BPA-derived polymers is to 

incorporate semi-rigid cyclic monomers such as octahydro-2,5-pentalenediol and 

isohexides into the polymer structure.14b, 38a-h These cyclic monomers bridge the gap in 
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rigidity between their flexible aliphatic chains and rigid aromatic counterparts. Some of 

them have been proven to be useful in synthesizing polyesters with the desired properties. 

Introduction of the semi-rigid aliphatic units can be used to tune the glass transition 

temperature, to improve optical clarity of the polymeric materials by reducing their 

crystallinity, and to make them more UV-stable due to the absence of phenol groups. Cyclic 

aliphatic diol monomers for example 1,4-cyclohexane dimethanol (CHDM)39, 41 and 

2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD or CBDO)40-41 have achieved significant 

commercial success (Figure 2-1). They have been used in a variety of polyester and co-

polyester products, including BPA-free water and baby bottles, which are now hugely 

popular.41,42 However, the ability to introduce functional groups onto the cyclobutane ring 

of TMCD to tune the properties of the corresponding polymers (e.g., Tritan copolyester) is 

inherently limited because TMCD is mainly produced through flash vacuum pyrolysis 

(FVP).41, 43 Moreover, it is challenging to synthesize polymers with high molecular weight 

using TMCD due to the low reactivity of the secondary diol (a mixture of trans and cis 

isomers) and its relatively high melting point (126 to 134 °C). Because of these limitations, 

copolymers are usually synthesized using a mixture of TMCD and another diol (e.g., 

CHDM).41 44 

 

 

 

 

 

Figure 2.1. Comparison of different diols with BPA: CBDO-1 shares the structural 

similarities with BPA, CHDM, and TMCD. 
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trans-1,3-Cyclobutane dimethanol (CBDO-1), on the other hand, has not gained 

much attention from researchers, although it was discovered contemporaneously with 

TMCD. Characterization of the diol was limited to melting point determination and 

elemental analysis at that time.45 To the best of our knowledge, no detailed investigation 

of CBDO-1’s physical properties and its application in synthesizing polymers can be found 

in the literature up to now. In this study, we report the synthesis and application of     

CBDO-1 monomer as a part of our systematic efforts in designing and constructing useful 

cyclobutane-containing building blocks (CBs) using photoreactions.46 The performance of 

CBDO-1 in synthesizing a series of cyclobutane-containing polyesters, as well as their 

thermal properties, molecular weight distribution, and structural details were investigated. 

On the one hand, CBDO-1 does not contain a phenol group, which enables BPA to trigger 

estrogenic pathways in the body.37b-h On the other hand, this novel primary diol building 

block has two rigid phenyl rings like BPA and shares structural similarities with both 

CHDM and TMCD. Thus, it may also serve as a novel BPA replacement like the monomers 

shown in Figure 2.1. Besides CBDO-1, other CBDOs with different substituents can also 

be readily prepared via reduction from the cyclobutane diacids (CBDAs) reported by our 

group and others,46 which allow the properties of the corresponding polymers to be tuned 

by changing the structure of the CBDOs according to specific needs. In addition, since 

CBDO-1 is a primary diol, it can be easily used in polymer synthesis without the need of 

adding another diol due to its higher reactivity and lower melting point compared to those 

of TMCD. 
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2.2 EXPERIMENTAL SECTION 

2.2.1 Materials and methods 

All chemicals were purchased from Alfa Aesar, Sigma-Aldrich, or Acros and used 

without further purification. Blacklight used in photoreactions was produced by E27 40-

watts HD 159 compact fluorescent bulbs or 15W Eiko EK15526 F15T8 blacklight bulbs. 

The solution phase nuclear magnetic resonance (NMR) spectra were recorded with a 

Bruker AVANCE 500 NMR spectrometer (1H: 500 MHz, 13C{1H}: 125 MHz). Proton and 

carbon chemical shifts were reported in ppm downfield from tetramethylsilane (TMS) or 

using the resonance of the corresponding deuterated solvent as an internal standard. 1H 

NMR data were reported as follows: chemical shift (ppm), s = singlet, d = doublet, t = 

triplet, q = quartet, dd = doublet of doublets, m = multiplet, and integration. Single crystal 

X-ray data were collected on a Bruker Kappa Apex II Duo X-Ray diffractometer with Cu 

Kα (λ = 1.54178 Å). Infrared (IR) spectra were recorded on a Thermo Scientific Nicolet 

iS5 FT-IR spectrometer. The mass spectrometric analyses were performed using a high-

resolution time of flight G1969A mass spectrometer with electrospray (atmospheric 

pressure chemical) ionization (Agilent, Santa Clara, CA, USA) and reported as m/z. All 

MALDI-MS spectra were acquired using Waters SYNAPT G2-Si MALDI-TOF mass 

spectrometer. The instrument is equipped with a laser emitting at 355 nm. Spectra were 

collected in the reflectron mode, the ion source and reflector lens potentials were fixed at 

20 and 22.5 keV, respectively. The α-cyano-4-hydroxycinnamic acid (CHCA) was used as 

matrix in all experiments. THF solution of polymer (10 mg/mL) and matrix (20 mg/mL) 

and a THF solution of sodium trifluoroacetate (5 mg/mL) were used for sample 
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preparation. The polymer, matrix, and salt solutions were mixed in a 2:10:1 ratio, and ca. 

0.50 µL of the final mixture was applied to the MALDI sample target.  

 DSC experiments were performed on a Perkin Elmer Jade differential scanning 

calorimeter using a hermetic aluminum pan, indium standard for calibration, nitrogen as a 

purge gas, sample weight of ~ 5 mg with a ramping rate of 20 °C/min. Heat flow was 

recorded from both the first heating and cooling curves. TGA analyses were carried out on 

a Hi-Res TGA Q500 thermogravimetric analyzer from TA Instruments using alumina pans 

at a heating rate of 20 °C/min under nitrogen with a sample weight of about 10 mg. 

Molecular weight distribution data were obtained using a GPC system (EcoSEC HLC-

8320GPC, Tosoh Bioscience, Japan) with a differential refractometer (DRI) detector. 

Separations were performed using two TSKgel SuperH3000 6.00 mm ID× 15 cm columns 

with an eluent flow rate of 0.35 m min−1. The columns and detectors were thermostated at 

40 ⁰C. The eluent used was Tetrahydrofuran (THF). Samples were prepared at about 10 mg 

ml−1 in THF and allowed to dissolve at ambient temperature for several hours, and the 

injection volume was 40 µL for each sample. Calibration was conducted using PS standards 

(Agilent EasiVial PS-H 4ml). 

2.2.2 Diffusion ordered spectroscopy (DOSY) experiments 

NMR tubes were flame-dried in advance, and experiments were performed at 25 ± 

1 °C. The data collection was done after stabilizing the NMR sample at RT for 30 min. For 

polystyrene standard samples, each NMR tube contained 0.5 mg of polystyrene and 1 mL 

of deuterated chloroform (CDCl3). For CBP samples, each NMR tube contained 0.5 mg of 

polyester and 1 mL of CDCl3. DOSY experiments were performed on a Bruker AVANCE 
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500 spectrometer equipped with a z-axis gradient coil. All experiments were run without 

spinning to avoid convection. The maximum gradient strength was 0.214 T/m. The 

standard Bruker pulse program, stebpgp1s, employing a stimulated echo sequence and 1 

spoil gradient, was utilized. Bipolar rectangular gradients were used with a total duration 

of 0.5−10 ms. Gradient recovery delays were 0.5−1 μs. Diffusion times were between 100 

and 2000 ms. The number of gradient steps was set to be 16. Individual rows of the quasi-

2-D diffusion databases were phased and baseline corrected. DOSY spectra were processed 

by Topspin 1.3 software. The diffusion dimension was generated using inverse Laplace 

transform driven by the maximum entropy method. Diffusion coefficients of a chosen 

narrow chemical shift range were extracted from the T1/T2 analysis module of Topspin 1.3. 

2.2.3 Synthesis of CBDA-1 

2.2.3.1 Method 1: Solid-state approach 

The solid-state method was modified from the previously reported procedure by 

our group. It involves the use of operator-friendly household blacklights as a source of 

irradiation. The photosynthesis was carried out on an 8 x 4-inch glass plate. 13.49 mmol 

of powdered trans-cinnamic acid was dispersed uniformly over the glass plate. This plate 

was irradiated with six 15W Eiko EK15526 F15T8/BL bulbs, three on top, and the other 

three on the bottom. The distance between the light source and glass plate was about 1.5 

cm, as shown in Figure 2.2. The progress of the reaction was monitored by 1H NMR 

spectroscopy. The powder was periodically re-blended uniformly to ensure even 

irradiation. After a total of about 60 h, the powder was collected and washed with 3 mL 
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ethanol to obtain the product as a white solid (6.55 mmol, 97% yield). The product was 

determined as the CBDA-1, consistent with the previous reports. 

 

 

Figure 2.2. Setup for the solid-state synthesis of CBDA-1. 

2.2.3.2 Method 2: Brine slurry approach 

The brine slurry approach is suitable for larger-scale reactions and is more operator 

friendly. Specifically, 33.74 mmol trans-cinnamic acid powder was suspended in 2 L of 

brine solution in a 2000 mL crystallizing dish or beaker with magnetic stirring. Three E27 

40W HD 159 blacklights bulbs were immersed in the crystallizing dish, as shown in Figure 

2.3. The slurry was continuously stirred under the blacklights for 72 h. To ensure that the 

brine was as transparent as possible, 25 mL water was added into the brine before the 

reaction and each day during the slurry photoreaction. The slurry was then filtered, and the 

solid was washed with 10 mL ice-cold water. After air-drying, the desired product was 

obtained as a white solid (16.02 mmol, 95% yield). The same slurry photoreaction that was 

done by suspending cinnamic acid powder in water only gave a yield of 78% (13.16 mmol) 

mainly due to the solubility of trans-cinnamic acid and CBDA-1 in water. Additionally, it 

is much easier to disperse trans-cinnamic acid powder in brine than in water because 



28 

cinnamic acid can easily accumulate on the surface of the glassware in the latter case, which 

slows down the reaction and makes it difficult to collect the product. 

 

Figure 2.3. The setup for synthesis of CBDA-1 in brine slurry. 

2.2.4 Synthesis of CBDO-1 

2.2.4.1 Method 1: Reduction with NaBH4/I2  

In a 100 mL round bottom flask fitted with a Claisen head adaptor, a magnetic stir 

bar and fine powered of NaBH4 (23.59 mmol) was added to 25 mL of THF. This suspension 

was stirred for 10 min, and then CBDA-1 (3.37 mmol) was added to the suspension. The 

addition resulted in bubbling (CAUTION: hydrogen gas is flammable). When the reaction 

mixture stopped bubbling, a solution of I2 (6.74 mmol) in THF (15 mL) was added 

dropwise using a dropping funnel attached to the Claisen head over a period of 45 – 60 

min. The addition of I2 was an exothermic reaction and resulted in significant evolution of 

H2 gas. During this addition, the color of the mixture changed from red to yellow first and 

then to colorless, indicating the disappearance of I2. After the disappearance of I2, a water 
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condenser was attached to the Claisen head, and the solution was heated to reflux. After 16 

h of refluxing, the reaction mixture was analyzed using TLC (10 % MeOH in DCM as 

eluent) to verify the absence of the starting material. Approximately 40 mL of THF was 

removed using a rotavapor, and a white solid was collected from the flask. To this white 

solid, 20 mL of cyclohexane and 30 mL of 10% aqueous solution of NaOH were added 

and the mixture was stirred until the bubble from the mixture ceased (approximately 30 

min). After 1 h, a white solid separated from the solution. It was filtered using a Buchner 

funnel and washed 3 x 10 mL with 3M NH4OH solution and later with 10 mL of 12 % 

aqueous solution of NaHSO3 to remove traces I2. The white solid obtained after filtration 

was dissolved in chloroform, and the organic layer was washed three times with a saturated 

brine solution. The chloroform removal yielded the desired product CBDO-1 (3.13 mmol; 

93% yield) as a white solid. Its structure was confirmed by NMR using CDCl3 as the 

solvent. Melting point: 106.4–107.0 °C. 1H NMR (CDCl3, 500 MHz) δ (ppm): 7.13–7.27 

(m, 12H), 3.49–3.52 (m, 2H), 3.40–3.47 (m, 4H), 3.12–3.18 (m, 2H), 1.07 (s, 2H); 13C{1H} 

NMR (CDCl3, 125 MHz) δ (ppm): 134.9, 123.9, 122.9, 121.8, 58.5, 37.6, 36.4; FT-IR 

(solid) 𝜈max (cm-1): 3307, 2931, 1448, 1496, 1014, 1600, 743, and 696. HRMS (ESI/TOF): 

Calculated for [M +Na]+, C18H20O2Na+: 291.1361; Found: 291.1370. 

2.2.4.2 Method 2: Catalytic hydrogenation  

CBDA-1 (1.69 mmol) and CuO-CrO3 (0.32 mmol) in 20 mL of water-dioxane (1:1) 

as solvent were added into a stainless-steel reactor equipped with a magnetic stirrer and 

pressure regulator. Afterwards, the reactor was sealed and purged with argon, and then with 

hydrogen, and this process was repeated three times. The hydrogen gas was introduced at 
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a pressure of 15 MPa, and then the temperature was raised to 180 °C.  The reaction mixture 

was allowed to stir for 12 h. After that, the reaction mixture was filtered through celite, and 

the filtrate was extracted with EtOAc (3 x 5 mL). The extract was dried over MgSO4, and 

then the solvent evaporation afforded the product, CBDO-1, as a white solid. 

2.2.5 General methods of polycondensation  

Polycondensation was conducted in a 15 mL two-neck round bottom flask 

containing a magnetic stir bar equipped with a Claisen head. One neck was attached to an 

argon gas inlet and the other neck was connected to a water condenser. A finely grounded 

mixture of CBDO-1 (1.06 mmol) and a dicarboxylic acid (1.28 mmol) was charged in the 

reaction flask. The setup was placed under a vacuum and purged with argon gas. This 

process was repeated three times. The method of polycondensation involves two steps. In 

the first step, the reaction was carried out under argon gas to promote the formation of 

oligomers. The reaction mixture was heated in the sand bath at 130 °C for 15 min with 

constant stirring. When complete melting of the mixture was observed, a solution of 

titanium isopropoxide  Ti(OiPr)4 (1.25 mol%) in 1 mL of toluene was then added to the 

reaction flask under the continuous flow of argon. Afterward, the temperature was 

increased to 170 °C and the reaction mixture was allowed to stir for 12 h, and finally to 

200-215 °C for 1.5 h to complete the pre-polymerization step. In the second step of 

polycondensation to connect the oligomers to form a long chain, a vacuum was gradually 

applied to the reaction setup at 210-215 °C for 2 h (Figure 2.6). After reaction completion, 

the mixture was cooled to room temperature under the flow of argon. The polymer was 

further purified by dissolving it in 5 mL of a CHCl3-TFA mixture (6:1). After the addition 
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of 50 mL of methanol polymer was precipitated. Polymer was filtered and dried in vacuum 

at 40 °C for 12 h. In the case of an external mechanical stirrer, a 3-neck 100 mL round 

bottom flask was used, one neck was attached as argon inlet and the other two necks for 

mechanical stirrer and water condenser. 

PCBO: 1H NMR (CDCl3) δ (ppm): 7.30 (s, 10H), 4.05 (s, 4H), 3.29–3.72 (m, 4H); 13C{1H} 

NMR (CDCl3) δ (ppm): 129.2, 129.0, 128.3, 128.1, 127.4, 67.0, 63.4, 41.9, 39.1; FT-IR 

(solid) 𝜈max (cm-1): 3027, 2939, 1740, 1234, 1081. 

PCBM: 1H NMR (CDCl3) δ (ppm): 7.23–7.31 (m, 10H), 3.89 (s, 4H), 3.58 (s, 2H), 3.34 

(s, 2H), 2.91 (s, 2H); 13C{1H} NMR (CDCl3) δ (ppm): 166.4, 138.9, 128.9, 128.1, 127.2, 

66.01, 42.0, 41.3, 39.1; FT-IR (solid) 𝜈max (cm-1): 2944, 1728, 1143, 1005. 

PCBS: 1H NMR (CDCl3) δ (ppm): 7.23–7.32 (m, 10H), 3.93 (m, 4H) 3.63 (s, 2H), 3.37 (s, 

2H), 2.20 (s, 4H); 13C{1H} NMR (CDCl3) δ (ppm): 172.3, 139.2, 128.9, 128.1, 127.1, 65.3, 

42.1, 39.4, 29.1; FT-IR (solid) 𝜈max (cm-1): 2925, 1728, 1151. 

PCBG: 1H NMR (CDCl3) δ (ppm): 7.22–7.32 (m, 10H), 3.94 (s, 4H), 3.64 (s, 2H), 3.39 (s, 

2H), 1.98 (s, 4H), 1.57 (s, 2H); 13C{1H} NMR (CDCl3) δ (ppm): 173.0, 139.3, 128.9, 128.2, 

127.1, 65.0, 42.2, 39.6, 33.3, 20.1; FT-IR (solid) 𝜈max (cm-1): 2942, 1727, 1147. 

PCBA: 1H NMR (CDCl3) δ (ppm): 7.23–7.32 (m, 10H), 3.94 (m, 4H), 3.67 (m, 2H), 3.43 

(m, 2H), 2.02 (s, 4H), 1.34 (s, 4H); 13C{1H} NMR (CDCl3) δ (ppm): 173.5, 139.3, 128.9, 

127.1, 65.0, 42.2, 39.5, 34.0, 24.4. FT-IR (solid) 𝜈max (cm-1): 2943, 1728, 1139. 

PCBT: 1H NMR (CDCl3) δ (ppm): 7.29 (m, 4H), 6.76-6.93 (m, 10H), 3.80 (m, 4H), 3.35 

(s, 2H), 3.16 (m, 2H); 13C{1H} NMR (CDCl3) δ (ppm): 160.6, 133.9, 128.7, 124.4, 123.8, 

123.0, 122.0, 60.6, 37.0, 34.6. FT-IR (solid) 𝜈max (cm-1): 2941, 1709, 1264, 1100. 
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PCBF: 1H NMR (CDCl3) δ (ppm): 7.18–7.24 (m, 10H), 6.83 (s, 2H), 4.16–4.24 (m, 2H), 

3.76 (m, 2H), 3.53–3.60 (m, 2H); 13C{1H} NMR (CDCl3) δ (ppm): 157.5, 146.5, 138.4, 

128.5, 127.8, 127.6, 118.1, 65.5, 41.8, 39.2. FT-IR (solid) 𝜈max (cm-1): 2943, 1716, 1267, 

1220, 1130. 

PCBC: 1H NMR (CDCl3) δ (ppm): 7.17–7.26 (m, 10H), 7.04–7.08 (m, 4H), 2.70–4.17 (m, 

6H); 13C{1H} NMR (CDCl3) δ (ppm): 172.00, 139.24, 139.16, 128.81, 128.22, 127.92, 

127.63, 127.41, 127.05, 64.74, 41.97, 41.37, 39.27. FT-IR (solid) 𝜈max (cm-1): 3028, 1724, 

1168, 695. 

2.3 RESULTS AND DISCUSSION  

2.3.1 Synthesis of CBDO-1 

Solvent-free dimerization of trans-cinnamic acid under residential blacklight (365 

nm) resulted in the rctt-2,4-diphenylcyclobutane-1,3-dicarboxylic acid (CBDA-1), in 

nearly quantitative yield. The photoreaction can also be carried out in slurry conditions, 

using brine as a medium in which the commercially available crystalline powder of 

cinnamic acid is stirred under blacklight. Compared to reported procedures,46a,47 this 

innovative slurry photoreaction using brine and blacklight has merits of simplicity and easy 

scalability Figure 2.3. CBDO-1 (rctt-2,4-diphenyl-1,3-cyclobutanedimethanol) was then 

synthesized in 93% isolated yield by the reduction of CBDA-1 using sodium borohydride 

(NaBH4) in the presence of iodine (I2) as an electrophile and tetrahydrofuran (THF) as the 

solvent (Scheme 2.1). 
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Scheme 2.1. Synthesis of CBDO-1 from trans-cinnamic acid. 

 

Although LiAlH4 is known to be able to reduce carboxylic acids to alcohols, its 

high reactivity makes it difficult to handle, and extra precautions are required.48 The milder 

reagent NaBH4 is not reactive enough to reduce carboxylic acids to alcohols by itself. 

However, the combination of NaBH4 and I2
49 reduced CBDA-1 to CBDO-1.   The role of 

I2 is unique because of its ability to work either as an electrophile or nucleophile. The 

mechanism of the reduction of acids to alcohols by metal hydrides shows that the rate-

determining step is the hydride transfer from the metal hydride to the carbonyl carbon. 

Unfortunately, the carbonyl carbon on the acid is not susceptible to a hydride attack in the 

case of the NaBH4. However, the presence of I2 can facilitate the hydride transfer in this 

reaction.50 CBDA-1 has good solubility in THF, so using this solvent gave a better yield 

(93%) of CBDO-1 when compared to the yield with diethyl ether (74%). As a side note, 

the solvent does not need to be dried before use in this reaction, unlike when using LiAiH4. 

In terms of reaction stoichiometry, for every mole of the diacid, a significant excess of the 

hydride regent (7 moles, 3.5 equivalents for each acid functional group) was required to 

assure the completion of the reduction. CBDO-1 was obtained as a white solid, which was 

further purified by recrystallization from ethyl acetate and hexane. The chemical structure 

was fully characterized by HRMS, FT-IR, and 1H and 13C{1H} NMR spectroscopy.  
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Besides having optimized reaction conditions to synthesize CBDO-1 from    

CBDA-1 in the lab using NaBH4/I2, we have also successfully applied a model protocol 

used in industry to this reduction. Specifically, the transformation was accomplished by an 

efficient and cost-effective heterogeneous catalytic hydrogenation method using an 

inexpensive and commercially available catalyst, CuO-CrO3, at elevated pressure and 

temperature in a stainless-steel reactor (47% yield). 

To further characterize this promising diol, rhombic crystals of CBDO-1 were 

obtained from a 3:1mixture of ethyl acetate and hexane by slow evaporation at room 

temperature. Single crystal X-ray diffraction was used to elucidate the structure of CBDO-

1. The crystal structure revealed that the two methanol groups are on the 1 and 3 positions 

of the cyclobutane ring and are trans to each other, which is the same configuration as their 

parent carboxylic acid groups in the starting material of CBDA-1 (Figure 2.4a). The space 

group is Pna21, and there are two molecules in each asymmetric unit cell. The two 

cyclobutane rings in each asymmetric unit adopt about 18.61 and 22.02° puckered 

conformations (Figure 2.4b and Figure 2.5), respectively, indicating a certain degree of 

flexibility of the four-membered ring structure. 51 The angles in the cyclobutane ring are 

89.00, 88.55, 90.06, and 88.13° (Figure 2.5a & b). 
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Figure 2.4. X-ray single-crystal structure of CBDO-1: (a) One molecule shown as Oak 

Ridge Thermal Ellipsoid Plot (ORTEP) representing 50% electron density; (b) The 

puckered conformation adopted by cyclobutane rings (the phenyl groups are replaced 

with carbon atoms for clarity); (c) Side view of supramolecular helix formed via 

hydrogen bonding (the molecules with the same symmetry equivalence are shown in the 

same color).   

 

Each hydroxyl group forms two hydrogen bonds with the two hydroxyl groups of 

the two neighboring molecules (Figure 2.4c) to form a supramolecular helix, which plays 

an important role in determining the melting point of CBDO-1 (m.p. 106.4–107.0 °C). For 

comparison, the melting point of its diacid parent molecule, CBDA-1, is about 175 oC 

higher. The distance between oxygen atoms in the four hydrogen bonds is 2.734, 2.758, 

2.764, and 2.769 Å, respectively. Although the hydrogen-bonded helix is chiral, each 

crystal is racemic. CBDO-1 is soluble in many common organic solvents, such as acetone, 

ethyl acetate, diethyl ether, and chloroform. Its relative low melting point and high 

solubility reinforce CBDO-1 application in polymer synthesis. 
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Figure 2.5. a) Two CBDO-1 molecules in the asymmetric unit cell (cyclobutane moiety 

highlighted in blue and the phenyl groups are omitted for clarity), b) Conformation of a 

cyclobutane ring in the crystal: The puckered cyclobutane ring of CBDO-1 with an angle 

of 18.61o, and the other one is 22.02o as shown in Figure 2.4, c) The packing of CBDO-1 

in crystal (In the unit cell, the molecules with the same symmetry equivalence are shown 

in the same color.), d) The packing of CBDO-1 in crystal with the hydrogen bonds shown 

in blue dash lines. 

2.3.2 Synthesis of CBDO-1 based polymers 

To demonstrate the potential application of CBDO-1 in synthesis of materials, a 

series of polyesters were synthesized using a conventional polycondensation procedure.52 

The two-step polycondensation was performed using titanium  isopropoxide as a catalyst 

(1.25 mol %). The pre-polymerization was first carried out at 160 °C for 12 h, followed by 

further polycondensation at 210–215 °C for 2 h under reduced pressure in the second step 
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(Scheme 2.2). This melt polycondensation involved the reaction of CBDO-1 with one 

equivalent of an aromatic or aliphatic diacid. Specifically, these diacids were oxalic, 

malonic, succinic, glutaric, adipic, terephthalic, 2,5-furandicarboxylic acid, and CBDA-1, 

which yielded eight corresponding cyclobutane-containing polymers (CBPs):15, 53 

polycyclobutane oxalate (PCBO), polycyclobutane malonate (PCBM), polycyclobutane 

succinate (PCBS), polycyclobutane glutarate (PCBG), polycyclobutane adipate (PCBA), 

polycyclobutane terephthalate (PCBT), polycyclobutane furandicarboxylate (PCBF), and 

polycyclobutane-1,3-cyclobutane dicarboxylate (PCBC). Out of the eight polyesters 

synthesized, PCBS, PCBT, and PCBC appears as white amorphous solids, PCBO had an 

earth color, and PCBM had a very distinct bright orange color. PCBF, PCBG, and PCBA 

were found to have a light yellow, tan, and brown color, respectively. 

 

Scheme 2.2. Synthesis of CBDO-1 based polyesters. 

 

The color observed in the polymers prompted us to replace magnetic stirring with 

external mechanical stirring in the polycondensations, which resulted in polyesters with 

negligible color (Figure 2.6) The success of this subtle change of the process supported our 

hypothesis that ineffective magnetic stirring of the melted reaction mixture with high 

viscosity might result in localized overheating and degradation of some polymer at high 
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temperature. The tiny amount of the degraded products might be responsible for the color 

in the final polymers although they were undetectable using NMR and FT-IR. Furthermore, 

a white translucent film (2 cm x 1 cm) of PCBS, as shown in Figure 2.7, was obtained by 

solution casting using DCM as solvent, showing the processability of these polyesters. 



39 

 

Figure 2.6. Synthesis of CBDO-1 based polyesters and the product color difference by 

using magnetic stirrer and external mechanical stirrer. 
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Figure 2.7. Images of the synthesized polycyclobutane succinate (PCBS). 

 

It is worth noting that some of the diacids, such as succinic54 and 2,5-

furandicarboxylic acid,55 used in the polyester syntheses can be produced from various 

biomass-derived precursors. The starting material for making both CBDA-1 and CBDO-1, 

trans-cinnamic acid, can also be obtained from glucose or Dried Distillers Grains with 

Solubles (DDGS), which is generated as a side product of dry mill ethanol production on 

a large scale and used as livestock feed.56 Due to the possible environmentally friendly 

origin of the starting materials, the CBPs are even greener compared to BPA-based 

polymers.   

The polymers synthesized by the polycondensation were subjected to further purification 

by first dissolving them in a solution of chloroform and trifluoroacetic acid (TFA) in a 6:1 

ratio and then precipitating them by adding methanol. All the polyesters precipitated as 

amorphous powders with excellent isolated yields of 72–87%. NMR and FT-IR 

spectroscopy confirmed the structures of the CBPs (see Appendix B). The molecular 

weight and molecular weight distribution of CBPs were measured by gel permeation 

chromatography (GPC) and compared with the weight average molecular weight (Mw) data 



41 

obtained from Diffusion Ordered NMR Spectroscopy (DOSY) data.57 DOSY linearly 

relates the 1H NMR chemical shifts to the translational diffusion coefficient of a particular 

molecular species, which could be applied to determine Mw of polymers in dilute solutions. 

In infinite dilution, viscosity and density remain consistent throughout the solution, hence 

the linear relation is observed between Log Da and Log Mw using the Stokes-Einstein 

equation.58 The commercial polystyrene (PS) standards were selected to obtain the D - Mw 

calibration curve due to its widespread use as GPC standards. CDCl3 was used as a solvent 

due to its ability to dissolve most of the polyesters. Table 2.1 and Figure 2.8 show the PS 

calibration curve in CDCl3, good linearity of Log Da - Log Mw is demonstrated by a high 

value of r2 of 0.9969. Furthermore, by extrapolating the calibration curve to the low 

molecular weight range, the Mw of CDCl3 was estimated as 122.97 g/mol with only 2.1% 

deviation of its calculated value, 120.38 g/mol. After the establishment of a calibration 

curve, diffusion coefficients of the CBPs samples were fitted to the PS calibration curve to 

calculate the Mw. As shown in Table 2.2 and Figure 2.9, the Mw of CBPs obtained from 

the DOSY spectra ranged between 7,200 and 35,600 g/mol, which were consistent with the 

results from GPC (6,900–34,900 g/mol). The polydispersity index (PDI) of CBPs were 

from 1.55 to 2.91. 
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Figure 2.8. PS calibration curve in CDCl3 for Mw prediction. 

 

Table 2.1. Diffusion Coefficient – Molecular weight results of PS calibration curve using 

DOSY spectra. 

 

         1H DOSY measurement was performed at 25 °C in CDCl3with a concentration of                 

          1 mg/mL. 
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Table 2.2. Molecular weight distribution calculated from GPC and externally referenced 

DOSY data. 

 

 

To obtain more details about the structural information, MALDI-TOF mass spectra 

of CBPs were recorded. Fragments and oligomers with low masses (< 5000 Da), which 

have the same repeat units and possible end groups as high mass components, were studied 

to get structural information. The positive ion MALDI-TOF spectra were obtained for 

PCBS, PCBT, PCBF, and PCBC, and their results are summarized in the Figures C.1–4 

(see Appendix C for the spectra and proposed structures). In general, the spectra of CBPs 

were highly asymmetric and had dispersed fragment and oligomer distributions, which was 

expected for polycondensates. The individual repeated units are well displayed, 350 Da for 

PCBS, 398 Da for PCBT, 388 Da for PCBF, and 528 Da for PCBC, respectively. 
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Figure 2.9. Comparison of Mw data of CBPs samples obtained by DOSY and GPC.  

 

In PCBS and PCBF, four main series of repeated units and oligomers are marked 

in Figures C.1 and C.3 and shown in different colors: cyclic (blue), linear with two carboxyl 

end groups (yellow), linear with one carboxyl and one hydroxyl end groups (red), and 

linear with two alcohol end groups (purple). In contrast, peaks corresponding to the cyclic 

oligomers were not found in PCBT and PCBC as shown Figures C.2 and C.4 due to the 

linear orientation and rigidity of the diacid moieties (i.e., terephthalic acid and CBDA-1). 

PCBT showed a series of high-intensity peaks from linear fragments with two alcohol end 

groups and a series of low-intensity peaks from linear fragments with both acid and alcohol 

end groups. In case of PCBC, a series of peaks from linear fragments with two acid end 

groups were prominent, and two series of medium-intensity peaks were also observed, 

corresponding to the other two possible linear fragments. Interestingly, one additional 
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series of strong peaks with the mass 148 Da less than the high-intensity peak at 2962 Da 

were observed. These peaks were presumably due to the cleavage of cyclobutane ring in 

CBDA-1 moieties present in the polymer chains during the process of MALDI experiment, 

which led to formation of the fragments with one end group as cinnamate (coded with black 

in Figure C.4 of Appendix C).   

Thermal properties of the polyesters were analyzed using differential scanning calorimetry 

(DSC) under N2 atmosphere. The samples were heated from 0 to 200 °C at a rate of 20 

°C/min. After this step, they were isothermally held at 200 °C for 5 min, then cooled to 0 

°C at a rate of 20 °C/min. DSC did not show a melting transition in any of the polymer 

samples, suggesting that all the materials are amorphous thermoplastics. As anticipated, 

the semi-rigid structure of the CBDO-1 monomer unit has a profound effect on the thermal 

properties such as the glass transition temperatures (Tgs) of the final polyesters (Figure 

2.10a). For instance, the substitution of the ethylene glycol unit with the cyclobutane unit 

increased the Tgs of the polymers substantially. The Tgs of the polyesters derived from 

CBDO-1 and aliphatic diacids such as succinic acid (PCBS) and adipic acid (PCBA) were 

approximately 50 °C and 80 °C higher than their ethylene glycol analogs: polyethylene 

succinate and polyethylene adipate, respectively (see Table 2.3). The effect of the carbon 

chain length of the homologous diacid on the Tg of the polyesters is graphically represented 

in Figure 2.10b. This representation shows a considerable decrease in Tg with an increasing 

length of the carbon chain of the diacid; the PCBG was found to have the lowest Tg of 33 

°C amongst all the aliphatic polyesters while PCBO had a highest Tg of 62 °C. This 

anticipated decrease can be attributed to the increase in chain mobility with higher flexible 

aliphatic content from 2-carbon oxalic acid to 6-carbon adipic acid. Interestingly, the 
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polyesters with an even-number carbon chain (PCBO, PCBS, and PCBA) showed a higher 

Tg than the polyesters with odd-number carbon chain (PCBM, PCBG). This odd-even 

difference in Tgs shows that the packing and stereochemical properties of the even-number 

carbon chain form a better-organized structure in a solid phase, which requires more energy 

to move apart. 59 

 

Figure 2.10. The DSC analyses of CBDO-1 polymers: a) second heating DSC curves of 

polymers derived form CBDO-1 at a heating rate of 20 °C/min under N2. b) The plot of 

Tgs of polymers against carbon chain length of aliphatic diacids showing the odd-even 

difference. 

 

Table 2.3. Thermo-physical properties of some known polyesters compared with 

synthesized polyester. 

 

 

Polyester Glass Transition Temperature, Tg (°C) 

Polyethylene Succinate -11 to -1 

PCBS 53 

Polyethylene Adipate -70 to -40 

PCBA 35 

Polyethylene Terephthalate 64 to 84 

PCBT 114 

Polyethylene Furan 2,5 dicarboxylate 80 to 87 

PCBF 109 
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Similarly, the introduction of CBDO-1 in conjunction with the rigid aromatic 

diacids also showed a clear impact on the Tg of the polyesters. It was observed that the Tgs 

of polyesters synthesized from CBDO-1 with terephthalic acid (PCBT) and 2,5-furan 

dicarboxylic acid (PCBF) were higher than those of the polyesters derived from aliphatic 

diacids, with PCBT and PCBF having Tgs of 114 and 109 °C, respectively. It should be 

noted that PET (polyethylene terephthalate) and PEF (polyethylene 2,5-

furandicarboxylate) synthesized under similar conditions were shown to have Tgs of 80 °C 

and 87 °C, correspondingly, meaning that the replacement of flexible ethylene glycol with 

the semi-rigid CBDO-1 with two phenyl substituents in the above two polymers 

significantly improved their Tgs. Furthermore, a sample of the popular Tritan copolyester, 

which is produced from polycondensation between DMT (dimethyl terephthalate) with 

both CHDM and TMCD (Figure 2.1), was shown to have a Tg of 109 °C.10a When      

CBDO-1 was used to replace CHDM and TMCD in this Tritan polyester, it was also not a 

surprise to observe higher Tg (PCBT: 114 oC) even at relatively low Mw under the current 

experimental conditions (see Table 2.2). The obvious improvement in Tg can be attributed 

to the unique structure of the CBDO-1 monomer, which contains a semi-rigid cyclobutane 

backbone as well as two rigid and bulky phenyl substituents roughly perpendicular to the 

backbone. The phenyl groups sticking out from the polymer backbone restrict the 

movement between the polyester chains, resulting in the high Tg. For the same reason, the 

Tg of PCBC (the polyester synthesized from CBDO-1 and CBDA-1) was as high as 110 

°C, which is comparable to corresponding polyesters made from CBDO-1 and a rigid 

diacid such as terephthalic acid (PCBT with Tg of 114 °C) or 2,5-furan dicarboxylic acid 

(PCBF with Tg of 109 °C). Compared to the polyesters derived from CBDO-1 and the other 
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aliphatic diacids, incorporating CBDA-1 in the polymer chain boosts Tg of the polyester by 

more than 50 °C (Figure 2.10a).   

The thermal stabilities of the CBPs were examined by comparing the temperatures 

at which the onset of decomposition occurs, T5% (5% weight loss), and maximum rate of 

decomposition (Td) occur. Thermogravimetric analysis (TGA) was employed to measure 

these characteristics under a N2 atmosphere, as shown in Figure 2.11. As expected, the 

morphology of CBDO-1 does affect the decomposition temperatures of the synthesized 

polyesters. Figure 2.11a reveals that most of the CBPs showed high thermal stability 

without any significant weight loss below 300 °C. Onset decomposition temperature (T5%) 

of PCBM was 266 °C, while PCBA exhibited the highest T5% at 350 °C. The thermal 

stability of CBPs increases slightly with the increase of the length of the linear diacids used 

in the preparation of the polyesters.60 In the case of the aromatic diacids, PCBT and PCBF 

showed similar T5%, 363 °C and 341 °C, respectively. When diacid monomer was replaced 

with CBDA-1, PCBC was obtained, having a T5% of 383 °C, among the highest of all CBPs 

synthesized in this study. Notably, the maximum decomposition temperature (Td) of the 

CBPs were in the range of 381 to 424 °C, without any significant difference as that of T5%, 

suggesting the decomposition of these polyesters might be governed by the cleavage of 

cyclobutane moieties. 
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Figure 2.11. The TGA of CBDO-1 polymers: a) TGA traces of CBDO-1 based polymers 

recorded from 30 to 600 °C at 20 °C/min under N2. b) The plot of derivative of TGA 

traces (%/°C) against temperature. 

 

It is important to point that, besides polyesters, CBDOs can also be used to produce 

other industrially relevant polymers such as polyurethanes, polycarbonates, and 

polysilylethers, which are challenging to obtain from the previously reported CBDAs. 

Thus, exemplified with CBDO-1 in this work, the use of CBDOs will largely extend the 

scope of novel polymers with desirable properties that CBs can make.  

2.4 CONCLUSION  

The trans-1,3-cyclobutane-containing diol, CBDO-1 has been synthesized and 

introduced to materials science as a versatile monomer. In the first stage of the CBDO-1 

synthesis, a diacid was yielded by dimerizing trans-cinnamic acid using 365 nm residential 

blacklight. The carboxyl group was then reduced using a reliable and operator-friendly 

NaBH4/I2 system or by catalytic hydrogenation with an inexpensive catalyst CuO-CrO3 

used in industry. This whole synthetic route is safe, efficient, and scalable. CBDO-1 was 

fully characterized, and its single crystal structure confirmed that the two methanol arms 
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attached to the cyclobutane ring are trans to each other, showing this molecule’s potential 

to serve as a monomer. As a phenol-free monomer, CBDO-1 shares structural similarities 

to BPA, as well as its replacements CHDM and TMCD, which have been used in producing 

the popular Tritan copolyester. The unique semi-rigid nature and thermal stability of the 

primary diol were then translated into a series of novel polyesters via a two-step melt 

polycondensation using titanium isopropoxide as a catalyst. The thermal properties, 

molecular weight distribution, and structural details of the CBDO-1 polyesters were 

investigated. Potential utilizations of these polymers as BPA-free polyesters were 

evaluated. Compared to the polyesters with industrial importance such as PET, PEF, and 

Tritan copolyester, the amorphous cyclobutane-containing polyesters derived from  

CBDO-1 showed excellent thermal properties (e.g., high Tg, T5%, and Td) due to the unique 

structure of CBDO-1. However, under the current polymerization conditions, the Mw was 

still inferior to commercially available Tritan-based counterparts, suggesting efforts are 

still needed to further improve the molecular weight of the CBPs. Nevertheless, the 

successful synthesis of Tritan-like polymers, possessing desirable thermal properties, and 

not relying on the required petroleum feed of TMCD monomer, support CBDO-1 as a 

promising building block for BPA-free thermoplastics. 
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Chapter 3                                                                                                 

A Cyclobutane-1,3-Diamine Building Block 

Prepared by a Slurry Photocyclizaion for 

Polymeric Materials with Enhanced Properties 

3.1 INTRODUCTION  

The design and synthesis of novel building blocks enable human beings to produce 

innovative materials that drive technological advancement and improve our daily lives. 

The nucleophilic character and polarity conferred to amines make them a key intermediates 

in various chemical industries such as agrochemicals, drugs, detergents, lubricants, food 

additives, and polymers.61 An excellent example is diamines, as they have found extensive 

applications in synthesizing polyamides. As one of the most attractive engineering plastics, 

polyamides have been widely used in developing industrial and commercial materials due 

to their comprehensive properties.62 According to the composition of their main chains, 

polyamides are classified as aliphatic and aromatic polyamides containing aliphatic and 

aromatic main chains, respectively. Due to reasonable chain regularity and the high content 

of hydrogen bonds, aliphatic polyamides or nylons such as nylon-6 and nylon-6,6 have 

remarkable properties such as good mechanical performance and processability.62a, 63 

However, the moderate thermal properties of nylon and high sensitivity to moisture limit 

its applications, mainly when used in surface mount technology and other applications.64 

Aromatic polyamides or aramids, such as Kevlar and aramid-1313, are well known for 

their excellent thermal, mechanical, and corrosion resistance.65 They are irreplaceable 
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specialty polymers but have a drawback of poor processable properties. For example rigid 

rodlike aromatic polymer chains and intermolecular hydrogen bonding in Kevlar exhibit a 

high degree of intermolecular association.62a These crystalline materials with high thermal 

transitions and poor solubility are challenging to process in melt or solution,66 which limits 

their wide applications. 

Various efforts have been made to enhance the processability and solubility of 

aromatic polyamides by decreasing the rigidity of the polymer backbone, thus reducing the 

interchain interactions by structure modification. One such approach is to design semi-

aromatic polyamides combining thermal resistance of aramids with the good processability 

of nylon.67 Nonetheless, only a few semi-aromatic polyamides, such as PA9T,68 PA10T,69 

and copolymers of PA6T/66, PA6T/6, etc.,70 are commercial and processable. Typically, 

semi-aromatic polyamides with short-chain (less than seven) diamine moieties such as 

PA4T, PA6T, etc., are difficult to process thermally due to their poor solubility and 

decomposition before the melting temperature.71 These limitations associated with semi-

aromatic polyamides has inspired the research focusing on chemical modification of the 

polyamide backbone as a way to improve their processability, such as the incorporation of 

ester units,72 sulfide groups,73 cyclodextrin units,74 long carbon chains (C12 to C18)
69a, 75 to 

lower the thermal characteristics and improve melt processability. Also, there has been 

research on the introduction of hyperbranched units,76 pendant groups,71, 77 nonplanar 

biphenyl rings75a, 78 into the main polymer chain to lower the molecular regularity, thus 

increasing solubility. The moisture sensitivity of commercial semi-aromatic polyamides 

such as the copolymer of PA6T/66 is better than that of nylons, but it can still be 

troublesome to affect the thermal and mechanical properties.79 
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Herein, we report the design, synthesis, and application of a unique semi-rigid 

cyclobutane-containing 1,3-diamine building block (CBAM-1, Figure 3.1), which can 

introduce many enhanced properties (e.g., high Tg, good solubility, and low moisture 

sensitivity) to materials that the currently popular aliphatic diamines (e.g., 

hexamethylenediamine) and aromatic diamines (e.g., p-phenylenediamine) cannot. This is 

because the cyclobutane core of trans-1,3-cyclobutane diamine (CBAM-1) monomer 

allows functional groups, such as phenyl rings, as shown in Figure 3.1, to be installed and 

stay perpendicular to the polymer backbone. We hypothesize that incorporating a four-

membered semi-rigid ring is expected to reduce interchain interactions and increase 

processability. This modification will eventually enhance the glass transition temperature, 

Tg, of the polyamides to a more desirable range for various applications when compared 

with polyamides containing analogous backbones and at the same time weaken their 

molecular arrangement to improve their solubility. Finally, the CBAM-1 based polyamides 

will have low amide content leading to reduced moisture sensitivity. 

 

 

 

 

 

Figure 3.1. a) Compared to other possible structures, cyclobutane represents an ideal 

backbone for introducing bulky group(s) to enhance Tg of a polymer. b) Comparison of 

novel CBAM-1 with three popular monomers in industry: hexamethylenediamine, p-

phenylenediamine, and 2,2,4,4-tetramethyl-1,3-cyclobutanediol. 

Nylon-6,6 monomer           Kevlar monomer                                         Tritan monomer 

 

                                                        FG = functional group 

 

 

CBAM-1 

 

X = O, NH, S 



54 

Figure 3.2 shows the retrosynthetic analysis to produce CBAM-1 from readily 

available and inexpensive starting materials. CBAM-1 can be obtained by reduction of 

trans-1,3-dinitro-2,4-diphenylcyclobutane (CBDN-1), and the corresponding CBDN-1 can 

be synthesized by photodimerization of trans-nitrostyrene, which can be yielded from 

nitromethane with benzaldehyde via Henry reaction (nitroaldol condensation). 

 

 

Figure 3.2. Designed synthetic route (retrosynthetic analysis) for making CBAM-1 from 

inexpensive starting materials: nitromethane with benzaldehyde. 

3.2 EXPERIMENTAL SECTION  

3.2.1 Materials and methods 

All chemicals were purchased from Alfa Aesar, Sigma-Aldrich, or Acros, and used 

without further purification. Blacklight used in the photoreaction was 7W Fiet electric LED 

bulb. The solution phase NMR spectra were recorded with Bruker AVANCE  500 

spectrometer (1H: 500 MHz, 13C{1H}: 125 MHz). Proton and carbon chemical shifts were 

reported in ppm downfield from TMS or using the resonance of the corresponding 

deuterated solvent as an internal standard. 1H NMR data were reported as follows: chemical 

shift (ppm), s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = 

multiplet, and integration.  Single crystal X-ray data were collected on a Bruker Apex or 

Bruker Kappa Apex II Duo X-Ray diffractometer with Cu Kα (λ = 1.54178 Å). Infrared 
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(IR) spectra were recorded on a Thermo Scientific Nicolet iS5 FT-IR spectrometer. The 

mass spectrometric analyses were performed using a high-resolution time of flight G1969A 

mass spectrometer with electrospray (atmospheric pressure chemical) ionization (Agilent, 

Santa Clara, CA, USA) and reported as m/z. DSC experiments were performed on a Perkin 

Elmer Jade differential scanning calorimeter using a hermetic aluminum pan, indium 

standard for calibration, nitrogen as a purge gas, sample weight of ~ 5 mg with a ramping 

rate of 20 °C/min. Heat flow was recorded from both the first heating and cooling curves. 

TGA analyses were carried out on a Hi-Res TGA Q500 thermogravimetric analyzer from 

TA Instruments using alumina pans at a heating rate of 20 °C/min under nitrogen with a 

sample weight of about 10 mg. 

3.2.2 Diffusion ordered spectroscopy (DOSY) experiments 

NMR tubes were flame-dried in advance, and experiments were performed at 25 ± 

1 °C. The data collection was done after stabilizing the NMR sample at RT for 30 min. For 

polymethyl methacrylate (PMMA) standard samples, each NMR tube contained 0.5 mg of 

PMMA and 1 mL of DMSO-d6. For polyamide samples, each NMR tube contained 0.5 mg 

of polyamide and 1 mL of DMSO-d6. DOSY experiments were performed on a Bruker 

AVANCE 500 spectrometer equipped with a z-axis gradient coil. All experiments were 

run without spinning to avoid convection. The maximum gradient strength was 0.214 T/m. 

The standard Bruker pulse program, stebpgp1s, employing a stimulated echo sequence and 

1 spoil gradient, was utilized. Bipolar rectangular gradients were used with a total duration 

of 0.5−10 ms. Gradient recovery delays were 0.5−1 μs. Diffusion times were between 100 

and 2000 ms. The number of gradient steps was set to be 16. Individual rows of the quasi-
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2-D diffusion databases were phased, and baseline corrected. DOSY spectra were 

processed by Topspin 1.3 software. The diffusion dimension was generated using inverse 

Laplace transform driven by the maximum entropy method. Diffusion coefficients of a 

chosen narrow chemical shift range were extracted from the T1/T2 analysis module of 

Topspin 1.3. 

3.2.3 Synthesis of trans-nitrostyrene  

A 1 L beaker packed in a crystallizing dish with a freezing mixture of ice and salt 

and containing a magnetic stirrer, thermometer, and dropping funnel, was charged with an 

equimolar mixture of 0.23 mol of nitromethane and 0.23 mol of benzaldehyde, and 50 mL 

of methanol. A solution of sodium hydroxide was prepared by dissolving 0.29 mol of 

sodium hydroxide in 50 mL of water. The NaOH solution was poured into a dropping 

funnel, and added upon stirring to the nitromethane mixture at such a rate that the 

temperature was kept at 10–15 °C. During the addition, a white precipitate formed by 

adding the alkali, which later converted to a clear solution upon addition ice water 

containing crushed ice. The resulting mixture was transferred to the dropping funnel and 

added dropwise to the hydrochloric acid solution made by diluting 50 mL of concentrated 

HCl with 100 mL of water. A pale-yellow precipitate separated immediately as the alkaline 

solution comes in contact with the acid. The precipitate was filtered by using a Buchner 

funnel and washed with water until it is free from chlorides. The crude trans-nitrostyrene 

was recrystallized using ethyl alcohol. The yield of the recrystallized is 82 % (0.19 mol). 
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3.2.4 Synthesis of CBDN-1 

In a 1000 mL crystallizing dish, 67.04 mmol g of trans-nitrostyrene powder was 

suspended in 800 mL of brine solution with magnetic stirring. Three 7W Fiet electric LED 

blacklight bulbs were immersed in the dish as shown in Figure 3.3. The resulting slurry of 

trans-nitrostyrene in brine was continuously stirred under the blacklight. After the 

completion of the reaction (8 h), the slurry was filtered, and the resulting solid was washed 

with 15 mL of ice-cold water. After drying the desired product, CBDN was obtained as a 

beige solid (32.31 mmol, 96%). ¹H NMR (DMSO-d6, 500 MHz) δ (ppm): 7.49−7.31 (m, 

10H), 6.15 (dd, J = 6.3, 9.8 Hz, 2H), 5.09 (dd, J = 6.5, 9.6 Hz, 2H). ¹3C NMR (DMSO-d6, 

125 MHz,) δ (ppm) 133.3, 128.9, 128.6, 128.2, 82.1, 47.1. 

 

Figure 3.3. Setup for the synthesis of CBDN 

3.2.5 Synthesis of CBAM-1   

In a typical procedure, 1.67 mmol of CBDN, activated zinc (48.94 mmol) and 40 

mL methanol were added in a 100 mL round bottom flask equipped with a dropping funnel, 

magnetic stirrer, and a slow stream of nitrogen. To this mixture, 30 mL of a 6N 
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hydrochloric acid was added over 30 minutes, and the reaction temperature was maintained 

at around 25 °C. The reaction mixture was allowed to stir for 3 h at room temperature under 

the nitrogen atmosphere. After the completion of the reaction, unreacted zinc was removed 

by filtration. The resulting solution was extracted with chloroform to remove methanol, 

and the aqueous layer was made strongly alkaline with a 3M sodium hydroxide solution 

and extracted four times with ethyl acetate (4 x 20 mL).  The combined organic extracts 

were dried using anhydrous magnesium sulfate, and the solvent removal afforded desired 

product CBAM-1 in 84% without any further purification. The CBAM-1 was characterized 

by NMR using CDCl3 as the solvent. ¹H NMR (CDCl3) δ (ppm): 7.41−7.27 (m, 10H), 4.06 

(dd, J = 15.0, 9.0 Hz, 2H), 3.33 (dd, J = 15.0, 9.0 Hz, 2H), 2.17 (s, 4H); 13C{1H} NMR 

(CDCl3) δ (ppm): 138.4, 129.0, 128.1, 127.1, 53.7, 51.5. FT-IR (KBr, thin film) 𝜈max (cm-

1):3338, 3181, 1664, 1643, 1619, 1097, 767, 655. HRMS (ESI/TOF): Calculated for [M 

+H] +, C16H18N2H
+: 239.1548; Found: 239.1547. It was observed that the CBAM-1 was not 

stable in air, so it was stored in nitrogen and immediately used in the polyamide synthesis. 

3.2.6 General method to synthesize CBAM-1 based polyamides 

A typical polymerization method, polyamides were synthesized in a 50 mL round bottom 

flask equipped with a mechanical stirrer and nitrogen inlet. 1 mmol of corresponding diacid 

and 2.36 mmol lithium chloride were dissolved in 5 mL N-methyl pyrrolidone (NMP), and 

an equimolar molar amount of CBAM-1 together with 2 mL pyridine and 2.21 mmol 

triphenyl phosphite (TPP) were added to the mixture to form a homogenous yellow 

solution. The mixture was then gradually heated to 130 °C and maintained at that 

temperature for 14 h under the protection of nitrogen. After the completion of the reaction, 
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the polyamide solution was precipitated by adding excess of acetone. The precipitate was 

filtered and washed with acetone and distilled water four times, after which crude 

polyamides were further purified by dissolving in 5 mL of a 1:4 solution of TFA: CHCl3. 

Then 100 mL of methanol was added to precipitate the polyamide out of the solution. After 

it was filtered and dried in a vacuum at 60 °C for 12 h to yield the desired polyamide.  

PCS ¹H NMR (DMSO-d6) δ (ppm): 8.02 (s, 2H), 7.38−7.02 (m, 10H), 4.86 (s, 2H), 3.74 

(s, 2H), 2.11−1.64 (m, 4H); 13C{1H} NMR (DMSO-d6) δ (ppm): 138.4, 129.0, 128.1, 

127.1, 53.7, 51.5; FT-IR (solid) 𝜈max (cm-1): 3303, 1641, 1533, 1451, 1032, 751, 698. 

PCT ¹H NMR (DMSO-d6) δ (ppm): 8.75 (s, 2H), 7.56 (m, 4H), 7.42 - 7.23 (m, 10H), 5.37 

(s, 2H), 4.26 (s, 2H); 13C{1H} NMR (DMSO-d6) δ (ppm): 165.8, 138.3, 128.6, 128.4, 127.2, 

126.7, 49.9, 48.8; FT-IR (solid) 𝜈max (cm-1): 3292, 1633, 1527, 1450, 1031, 863, 698. 

3.3 RESULTS AND DISCUSSION  

3.3.1 Synthesis of trans-nitrostyrene 

In the first step of the reaction sequence, the synthesis of trans-nitrostyrene was 

achieved by performing nitroaldol condensation between nitromethane and benzaldehyde 

in the presence of sodium hydroxide as a catalyst (Scheme 3.1). This method provided the 

purified trans-nitrostyrene in good yield (82%) and high purity (99% based on NMR). The 

product structure was determined using NMR and FT-IR spectroscopy, and the data were 

consistent with the literature. It should be noted that the basic solution of nitromethane and 

benzaldehyde was found to be temperature sensitive, so it is important to keep the reaction 

at low temperature using an ice-water bath. To achieve a good yield, it was essential to add 
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basic reaction mixture into the HCl aqueous solution dropwise. It was observed that the 

reverse addition, i.e., the addition of HCl aqueous solution into basic reaction mixture, 

resulted in the undesirable unsaturated nitro compound. 

 

Scheme 3.1. Nitroaldol condensation of nitromethane with benzaldehyde to obtain trans-

nitrostyrene. 

 

The crude trans-nitrostyrene upon recrystallization in ethanol resulted in yellow, 

long needle-shaped crystals, and the structure of trans-nitrostyrene was determined by 

NMR and conformed using a single-crystal X-ray diffraction (SC-XRD) analysis. The 

XRD crystallographic data were consistent with the literature report,80 but had less disorder 

and better quality, as shown in Table F.2 (Appendix F). In the crystal structure, the 

neighboring molecules with the opposite orientation were related by inversion, and the 

center to center double bond distance was 3.82 Å, which is well within the required length 

to undergo solid-state [2+2] photocycloaddition explained by Schmidt.81  

3.3.2 Solid-state photodimerization of trans-nitrostyrene 

The crystalline powder of trans-nitrostyrene was dimerized into trans-1,3-dinitro-

2,4-diphenylcyclobutane, CBDN-1, using the method reported by Cambell et al.82 with 

some modifications. In this process, CBDN-1 was synthesized in 30 % yield from a ground 

crystalline powder of trans-nitrostyrene using a medium pressure mercury lamp as the 

radiation source, as shown in Scheme 3.2 and Entry 1 of Table 3.1. Another method was 
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also employed, in which CBDN-1 was synthesized (42%) by irradiating a crystalline 

sample of dispersed on the water under magnetic agitation. Both methods suffered the 

drawback of low yields, which was initially attributed to the decomposition of trans-

nitrostyrene under the heat produced by mercury lamp. 

 

Scheme 3.2. Photocycloaddition of trans-nitrostyrene using UV radiation. 

 

The nitro group is a strong chromophore and can shift the absorbance wavelength 

of trans-nitrostyrene towards a low-energy region of electromagnetic spectrum when 

compared to that of styrene. This red shift could lead to the resonance of its UV absorbance 

with the energy produced from domestic blacklights, which do not produce the undesired 

heat as the medium pressure mercury lamp generate. Meanwhile, the blacklight generated 

much less heat than the medium-pressure mercury lamp. Thus, we replaced the medium 

pressure mercury lamp with a LED blacklights (Feit Electric 7 watts) as the source of 

irradiation in the above protocols. As a result, the isolated yields of CBDN-1 were 

improved to 73% in the solvent-free reaction and 53% in the water slurry (Entries 3 and 4 

in Table 3.1). Considering the scalability of the slurry process and the energy-efficient, 

cost-effective, and operator-friendly UV (ECO-UV) nature of blacklights, these were 

adopted for all the experiments in this study. 
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During a close examination of the photodimerization process, we noticed that the 

heat-caused decomposition was not solely responsible for the low yield of the desired dimer 

product. The photodimerization of trans-nitrostyrene gave a mixture of products as 

suggested by 1H NMR spectra (Figure 3.4). At room temperature, it was found that the 

desired dimer CBDN-1 and byproducts (including other photodimers) were in a ratio of 

2:1.  

 

Figure 3.4. 1H NMR spectra of photodimerization of trans-nitrostyrene under different 

reaction conditions. 

 

A similar observation was reported by Shechter and coworkers80a who studied the 

solid-state photodimerization of trans-nitrostyrene under winter exposure conditions. 

Later, Desiraju et al.80b, 83 obtained the same results, confirmed the structure of CBDN-1 
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by SC-XRD, and suggested that the unusual outcome of photodimerization was caused by 

the crystallographic disorder. Specifically, the disorder around the alkenic bridge in the 

trans-nitrostyrene molecule implies some free space in the crystal packing, allowing some 

molecules to undergo cis-trans isomerization before 2+2 photocycloaddition and led to the 

formation of the undesired dimers. They also found that this conversion happened during 

the early stage of irradiation and low temperature suppresses the formation of undesired 

side products to about 25%. In corroboration of these results, a mixture of products were 

also observed even when we carried out the photoreaction using LED blacklight in a water 

slurry (see Figure 3.4 and Table 3.1). It was also confirmed that a decrease in temperature 

favors the formation of dimer CBDN-1. There was a 72 % formation of the desired CBDN-

1 at room temperature with an isolated yield of 54 % (Entry 5). When the temperature is 

close to 0 °C, there was a 98% formation of CBDN-1 with a good isolated yield of 88% 

(Entry 8). 

Table 3.1. Optimization of reaction conditions of photodimerization of trans-nitrostyrene. 

Entry 
Irradiation 

Source 

Method of 

Irradiation 

Temp. 

(°C) 

Time 

(h) 

Formation 

of CBDN-1 

(%)a 

Yield of  

CBDN-1 

(%)b 

1 
medium 

pressure Hg 

lamp 

Solvent-free rt 6 47 30 

2 
medium 

pressure Hg 

lamp 

Slurry in 

water 
rt 6 56 42 

3 LED 

blacklight 
Solvent-free rt 14 84 73 

4 LED 

blacklight 

Slurry in 

water 
rt 14 65 53 

5 LED 

blacklight 

Slurry in 

water 
20 14 72 54 

6 LED 

blacklight 

Slurry in 

water 
10 14 95 78 

7 LED 

blacklight 

Slurry in 

water 
5 14 96 86 
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   a Conversion is based on the integration of the peaks in 1H NMR spectrum of reaction 

mixture. 
   b Isolated yield after washing and purification. 

 

Since this photocycloaddition was performed by irradiating a slurry of crystalline 

powder suspended in water rather than conventional solvent-free solid-state 

photocycloaddition, there was a reason to believe that isolated yield could be improved by 

reducing the solubilities of trans-nitrostyrene and CBDN-1 in water. Thus, a saturated 

sodium chloride solution (brine) was used as a reaction medium for dispersing trans-

nitrostyrene in photodimerization. The isolated yield of CBDN-1 further increased to 95% 

(Entry 9 in Table 3.1). Interestingly, the application of brine improved the overall yield of 

this process and suppressed the formation of the side products even at room temperature. 

To the best of our knowledge, it is unprecedented to use a salt solution to control product 

selectivity on solid-state photocycloaddition. We tested and compared photodimerization 

of trans-nitrostyrene in various saturated salt solutions to learn more about this interesting 

phenomenon. The results are summarized in Table 3.2 and the corresponding NMR spectra 

are compared in Figure 3.5. It was found that halide salts such as KCl and KBr showed a 

similar effect as NaCl by favoring the formation of CBDN-1 with high isolated yields of 

93% and 89%, respectively. In contrast, halide salt NaI only gave the desired dimer product 

CBDN-1 with a 30% yield and some unidentified insoluble solid byproduct. The salt with 

a bulky anion, Na2CO3 gave a high yield of 90% while Na2SO4 offered 82% yield. When 

the photodimerization of trans-nitrostyrene was performed in saturated KNO3 solution, no 

selectivity for CBDN-1 was observed. The results were almost similar to the case of slurry 

8 LED 

blacklight 

Slurry in 

water 
1 14 98 88 

9 LED 

blacklight 

Slurry in 

brine 
rt 8 > 99 95 
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in water (Entry 4, Table 3.1), indicating that bulky anions such as NO3
- do not affect 

photodimerization. 

Table 3.2. Effect of salt solution on photodimerization of trans-nitrostyrene 

   a Conversion is based on the integration of the peaks in 1H NMR spectrum of reaction     

    mixture. 

   b Isolated yield after washing and purification. 

 

 

Figure 3.5. 1H NMR spectra of photodimerization of trans-nitrostyrene reaction mixtures 

in the presence of different salt solutions. 

 

Entry Salt Solution 
Formation of CBDN-1a 

% 

Yield of CBDN-1b 

% 

1 NaCl 99 95 

2 Na2SO4 87 82 

3 KCl 97 93 

4 KBr 94 89 

5 NaI 59 30 

6 Na2CO3 97 90 

7 KNO3 62 54 
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3.3.3 Reduction of CBDN-1 to CBAM-1 

The last step of the reaction sequence in the synthesis of CBAM-1 involved the 

reduction of CBDN-1. Activated Zn in HCl (6N) solution worked well for reducing CBDN-

1 to CBAM-1. To optimize the reaction conditions, different amounts of Zn were tested 

ranging from 15 to 110 equivalents. It was found that a combination of 30 equivalents of 

Zn in the presence of 6N solution of HCl and methanol as the solvent gave the 83% isolated 

yield of CBAM-1 (Scheme 3.3). It is worth mentioning that the product diamine,       

CBAM-1, can be easily purified by performing a simple acid-base extraction. The product 

obtained was a viscous liquid at room temperature with slight yellow color, and its structure 

was characterized by NMR and FT-IR spectroscopy. The diamine was crystallized in 

CDCl3 by forming an ammonium chloride salt, which was analyzed by SC-XRD as shown 

in Figure 3.6. The CBAM-1 has good solubility in most commonly used organic solvents 

such as acetone, methanol, chloroform, and ethyl acetate. 

 

Scheme 3.3. Reduction of CBDN-1 to CBAM-1 using activated zinc and acid 
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Figure 3.6. X-ray single-crystal structure of CBAM-1: (a) One molecule shown as 

ORTEP representing 50% electron density; (b) The puckered conformation adopted by 

cyclobutane rings (the phenyl groups are replaced with carbon atoms for clarity); (c) Side 

view of supramolecular helix formed via hydrogen bonding (the molecules with the same 

symmetry equivalence are shown in the same color). 

3.3.4 Polyamide synthesis 

To demonstrate the application of CBAM-1 in material synthesis, two polyamides 

were synthesized. The polyamides were obtained by reacting CBAM-1 with two 

commercially available diacids (i.e., succinic acid and terephthalic acid, respectively) in a 

N-methyl-2-pyrrolidone (NMP) solution using Yamazaki–Higashi direct condensation84 

method in the presence of triphenyl phosphite (TPP), pyridine (Py) and lithium chloride as 

shown in Scheme 3.7. The condensation of CBAM-1 with succinic and terephthalic acids 

yielded two corresponding cyclobutane-containing polyamides: polycyclobutane 

succinamide (PCS) and polycyclobutane terepthalamide (PCT). The obtained polyamides 

were subjected to further purification by dissolving them in a 1:4 solution of TFA and 
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CHCl3. A large volume of methanol was then added to precipitate the polyamides out of 

the solution. PCS (75%) was precipitated as a white fibrous powder, while PCT (73%) was 

slightly tan in appearance. The polyamides were further washed with hot water and kept in 

ethanol overnight to remove the traces of the high boiling point NMP solvent.  

 

 

Figure 3.7 . Synthesis of CBAM-1 based polyamides. 

 

The structures of PCS and PCT were characterized by FT-IR as well as 1H and 

13C{1H} NMR. spectroscopy The NMR signals corresponding to the protons of the 

cyclobutane ring present in the polymer backbone were found in the spectra of both the 

polyamides. The chemical shifts of cyclobutane rings in PCT were slightly more downfield 

than those in PCS, as shown in Figures A.30 and A.33 (see Appendix A). The resonances 

at 8.09 ppm in the spectrum of PCS and at 8.67 ppm in PCT were assigned to the amide 

protons. Moreover, the ratios of the integral area of proton signals were as predicted based 

on the proposed structures. Figure 3.8 presents the FT-IR spectra of PCS and PCT. The 

absence of the carbonyl absorption bands of the carboxyl group at 1720 cm-1 and the 

presence of the amide vibration band at around 1660 cm-1 confirmed the presence of the 
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amido group in the polymers. The peak at 3285 cm-1 was attributed to hydrogen-bonded 

N-H stretching vibrations suggesting the presence of hydrogen bonds in these polyamides. 

 

Figure 3.8. FT-IR spectra of PCS and PCT stacked together for comparison. 

 

The solubilities of these CBAM-1 polyamides in several common solvent are listed 

in Table 2.3. It was observed that PCS and PCT not only soluble in fluorinated solvents 

such as hexafluoroisopropanol (HFIP) and trifluoroacetic acid (TFA) but also found to 

dissolve in some polar aprotic solvents, e.g., DMAc, DMSO, and DMF at room 

temperature when compared with poly(p-phenylene terephthalamide) Kevlar, and nylon-

4,4 synthesized under similar condition were insoluble in all tested solvents except HFIP 

and TFA. This characteristic solubility of PCS and PCT in organic solvents for PCS and 

PCT can be attributed to the presence of the semi-rigid CBDM-1 fragments and phenyl 
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rings moieties perpendicular to the four-membered ring which reduced the polymer chain 

rigidity and interactions, respectively.  

 

Table 3.3. Solubility of polyamides in various solventsa 

 

      

   Note: ++ soluble at room temperature; + soluble upon sonication; - insoluble 

A rotational rheometer measured the shear viscosity behavior of a PCS and PCT 

solutions in HFIP and DMF at 25 °C by employing different shear rates. Figure 3.9a shows 

simple shear viscosity data for a PCT and PCS solution in HFIP at a shear rate from 1 s-1 

to 700 s-1. The 10% w/w PCT solution showed a classic shear thinning behavior over a 

wide range of shear rates (11–0.12 Pa·s), while PCS solution at the same concentration 

appeared fairly Newtonian and showed little change (0.03–0.01 Pa·s) in the viscosity over 

a wide range of shear rates. PCT exhibited more than two orders of magnitude higher 

viscosity at a low shear rate than PCS, indicating a more robust interaction between the 

polymeric chains than in PCS. Interestingly, PCS and PCT at 10% w/w formed gels when 

dissolved in DMF. 

In contrast to the solutions, the PCS gel showed a shear thinning and a higher 

viscosity than the PCT gel (Figure 3.9b). This dramatic change in the PCS/DMF system is 

likely caused by the strong H-bonding interaction between PCS and DMF molecules. 

Therefore, the excellent solubility and shear thinning behavior make PCS and PCT 

potential candidates for the practical application in the spin-on and casting processes.  

 

Sample Acetone CH3OH CHCl3 THF DMF DMSO DMAc TFA HFIP 
CHCl3:TFA 

(4:1) 

PCT - - - - + + + ++ ++ + 

PCS - - - - + + + ++ ++ + 
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Figure 3.9.  Shear viscosity data for a) a 10% PCT and PCS solution in hexafluoro-2-

propanol at 25°C. b) a 10% PCT and PCS gel form in DMF at 25°C. 

 

  Based on the solubility in DMSO, the weight average molecular weight (Mw) of the 

PCS and PCT was determined using diffusion-ordered spectroscopy (DOSY). DOSY is a 

well-studied NMR method that linearly relates the chemical shifts of 1H NMR resonances 

to the translational diffusion coefficient (Da) of a particular molecular species. Optimizing 

the acquisition and processing parameters can be applied to determine Mw of polymers in 

dilute solutions. Dilute conditions are essential to ensure viscosity and density remain 
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consistent throughout the solution, hence the linear relation between Log Da and Log Mw 

using the Stokes-Einstein equation. Commercial polymethyl methacrylate (PMMA) 

standards were selected to obtain the Da-Mw calibration curve due to its widespread use in 

GPC standards. DMSO-d6 was used as a solvent due to its ability to dissolve both the 

polyamides and standards. The PMMA calibration curve in DMSO-d6 showed good 

linearity between logarithmic values of Da and Mw with a high value of r2 of 0.992 (Figure 

3.10).  

 

Figure 3.10. PMMA calibration curve in DMSO-d6 for Mw prediction. 

 

Two polystyrenes (PS) standards (i.e., PS 5030 and PS 17960) with narrow 

dispersity were used to verify the calibration curve. The Mw of PS 5030 and 17690 were 

estimated as 4200 Da and 15300 Da, respectively, with an approximate deviation of 13 to 

16 % from their reported Mw. After establishing the calibration curve Da of the PCS and 
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PCT samples were fitted to the PMMA calibration curve to calculate the Mw. The Mw of 

PCS and PCT obtained from DOSY are 14,400 and 11,300 Da, respectively (Table 3.5).  

Table 3.4. Molecular weight data of PS standards and polyamides sample using 

externally referenced DOSY. 

Sample 

Da 

m2/s (10-11) 

Log Da 

 

Mw 

(Da) 

PS 5030 6.753 ± 0.005 -10.171 4200 

PS 17960 3.620 ± 0.004 -10.441 15300 

PCS 3.724 ± 0.007 -10.429 14400 

PCT 4.177 ± 0.006 -10.379 11400 

 

The thermal properties of PCS and PCT were first investigated by differential 

scanning calorimetry (DSC) to determine the essential thermal parameters such as glass 

transition temperature, Tg, as shown in Figure 3.11. PCT showed a Tg of 160 °C when 

compared with Kevlar Tg ~ 370 °C, suggesting that a less rigid backbone enables the 

thermal motion of polymeric chains, hence bringing the Tg to a range where it can be 

processed without the use of advanced techniques. In comparison, PCS showed a Tg of 109 

°C, which is due to flexible succinic acid in the polyamide backbone. Meanwhile, PCS 

showed Tg approximately 50–60 °C higher than those of nylon-4,6 and nylon-6,6, two 

important aliphatic polyamides used in industry, confirming that the CBAM-1 molecule is 

more rigid than the aliphatic counterparts. The presence of rigid planer phenyl groups 

perpendicular to the backbone restricts the movement of the polymer chains, resulting in a 

high Tg while maintaining the good processability of aliphatic polyamide.  These results 

suggest that CBAM-1 represents an ideal structure designed to tune the thermal and other 
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properties (e.g., solubility) of the corresponding polyamides, considering the phenyl ring 

can be readily modified using scalable and inexpensive reactions such as Friedel-Crafts 

alkylation. 

 

Figure 3.11. DSC curves of CBAM-1 based polyamides. 

 

One characteristic property of polyamides is a high thermal decomposition 

temperature. Therefore, the thermal stability of PCS and PCT was evaluated by 

thermogravimetric analysis (TGA) and compared with the known aromatic and aliphatic 

polyamides (i.e., Kevlar and nylon-4,4) synthesized under similar conditions as shown in 

Figure 3.12. PCS exhibited an onset of decomposition temperature (T5%) at 314 °C while 

nylon-4,4 has T5% of 236 °C. PCT showed the highest T5% of 365 °C, and Kevlar has T5% 

of 323 °C. In the case of decomposition temperature (Td), nylon-4,4 has the lowest Td of 

343 °C, and Kevlar has the highest Td of 528 °C, while Td of PCS and PCT were 368 °C 

and 415 °C, respectively. These results confirmed that thermal cleavage of cyclobutane in 



75 

the polymeric backbone is a thermally forbidden process with a high energy barrier 

according to Woodward-Hoffmann rules,85 showing the high stability of the novel 

polyamides. 

 

Figure 3.12. Thermogravimetric analysis of polyamides. 

 

In polyamides, hydrogen bonding between the amido functional groups is well 

known to influence physical properties, such as excellent thermal properties, toughness, 

and abrasion resistance.  Unfortunately, these amido groups, which serve as the source of 

hydrogen bonds, also cause significant moisture absorption. The absorbed water molecules 

can effectively disrupt the hydrogen bonding between amido groups, resulting in the loss 

of excellent thermal and mechanical properties. The amount of moisture absorbed in 

aliphatic polyamides at relative humidity is high due to their high amide content. In 

contrast, for the aromatic polyamides, the packing of rigid chains often results in voids 

within the polymeric structure leading to moisture absorption. For instance, nylon-4,4 and 
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Kevlar were reported to have 15 and 7.5 weight percentage moisture content at 23 °C and 

100% relative humidity.   

Based on the structure of CBAM-1, PCS and PCT will have relatively low amide 

content and flexible polymeric chains.  They were expected to absorb a relatively low 

amount of moisture compared with classic aliphatic and aromatic polyamides. Thus, an 

experiment was designed to quantify the moisture uptake in PCS and PCT. First, the 

uniform polyamide powder samples were dried in a vacuum oven at 70 °C overnight to 

eliminate any possible moisture absorption during polyamide synthesis. Second, after 

cooling it down to room temperature, the samples were kept in the incubator with 50 % 

relative humidity, maintained at 25 °C for 24 h. After incubation, the change in weight of 

polyamide samples was recorded and correlated with TGA experiments before and after 

the moisture absorption experiment. As shown in Figure 3.13, the moisture absorption of 

PCS and PCT after exposure to moisture was 0.05, and 3.1 uptake %, respectively, which 

was significantly lower than 17.2 uptake % of nylon-4,4 and 6.1 uptake % of Kevlar 

synthesized under similar conditions. These results clearly approved that PCS and PCT 

were less sensitive to moisture than the well-known polyamides such as nylon-4,4 and 

Kevlar. 
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Figure 3.13. Thermogravimetric analysis of different polyamide samples before and after 

moisture absorption test. 

 

A crystalline film of PCS and PCT was prepared by Doctor blade coating 

technique86 using a 10% w/ w solution of PCS and PCT in HFIP, respectively, on a surface 

of indium tin oxide substrate. PCS formed a continuous film covering the substrate while 

PCT did not. In contrast to PCT being easy to peel off the substrate, PCS showed a smooth 

and stable coating. The two-dimensional grazing incidence wide-angle X-ray scattering 

(2D-GIWAXS) was employed to determine the crystallinity and orientation of the 

crystalline domains in the film. In the PCS film, the reflections were weakly observed, 

respectively, at 9.3 and 4.6 Å (Figure 3.14a–b), indicating a relatively low crystallinity. 

However, the intensity is higher along in-plane direction than that of out-of-plane direction, 
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suggesting these periodicities are primarily perpendicular to the surface. On the other hand, 

after two hours of annealing at 160 °C showed slightly increased d-spacing and more 

spread intensity along the Debye-Scherrer ring, indicating that the thermal movement 

during annealing decreased the preferred orientation of the polymer chains. Figure 3.14c-

d shows 2D X-ray diffraction patterns of PCT films. On the one hand, reflections were 

more substantial than the PCS film, suggesting PCT was more crystalline than PCS. On 

the other hand, PCT polymer chains preferred the in-plane orientation in the film without 

annealing, while the preferred orientation is diminished after annealing at 160°C for 2 h, 

similar to the case of PCS. The two broad diffraction peaks indicating periodicities of 9.5 

Å and 4.7Å were observed at room temperature without annealing. 

 

Figure 3.14. X-ray diffraction patterns of the PCT and PCS films with different annealing 

conditions. (a) PCS film without annealing. (b) PCS film after 160 °C 2 h annealing. (c) 

PCT film without annealing. (d) PCT film after 160 °C 2 h annealing. 
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Based on the 2D-GIWAXS, a schematic arrangement of a possible PCT crystalline 

model is depicted in Figure 3.15. Figure 3.15a shows the polymer repeating unit of PCT 

with a length of about 9.6 Å and the distance between two neighboring polymer chains in 

the xy plane around 4.7 Å. Figure 3.15b shows the packing of two neighboring polymer 

chains along the z-axis. Because the phenyl groups are perpendicular to the polymer 

backbone, the space between these phenyl groups on each polymer chain is filled by the 

phenyl groups of the neighboring polymer chains. As a result, the neighboring polymer 

chains are packed like meshing gears to achieve close packing. 

 

Figure 3.15. Suggested crystalline model of PCT based on the results of 2D-GIWAXS. 

3.4 CONCLUSION 

A semi-rigid cyclobutane-containing diamine (CBAM-1) building block has been 

synthesized and applied to materials science. During the synthesis of CBAM-1, the 

cyclobutane-containing dinitro compound CBDN-1 was obtained by dimerization of trans-

nitrostyrene via an operator-friendly photodimerization process using 380 nm residential 

LED blacklights in a saturated brine solution. It was found that saturated salt solutions 

promoted the formation of CBDN-1 with excellent selectivity and isolated yield even at 

room temperature. CBDN-1 was then reduced to CBAM-1 using inexpensive and readily 

available zinc metal in the presence of a dilute acid. The CBAM-1 was fully characterized, 
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and the single-crystal structure of the CBAM-1 ammonium chloride salt was reported for 

the first time. The crystal structure confirmed that CBAM-1 has a unique characteristic 

where the two phenyl groups are perpendicular to the direction of the two amine groups, 

showing its potential to introduce interactions between polymer chains to tune the thermal 

properties. The semi-rigid nature of CBAM-1 was then transferred to two novel polyamides 

via the Yamazaki-Higashi polyamidation process. The CBAM-1 based polyamides were 

characterized, and their physical and thermal properties were investigated to evaluate their 

potential utilization. Compared to polyamides of the established industrial importance, the 

cyclobutane-containing polyamides derived from CBAM-1 showed enhanced solubility in 

common organic solvents, classic shear thinning behavior, and remarkably low moisture 

sensitivity, indicating they can be processed into polymeric material using solution casting 

and spin-coating methods. These desirable properties can be attributed to the fact that the 

introduction of semi-rigid CBAM-1 provides the polymer chains with a decreased 

rotational barrier. At the same time, the phenyl rings perpendicular to the polymer 

backbone offer a means to interact between polymer chains hence allowing its Tg in the 

desired range, as evidenced by the WAXS data. Compared with previously known 

approaches to enhance the properties of polymers, the introduction of semi-rigid 

cyclobutane-containing building blocks with substitutes perpendicular to the polymer 

backbone put forward an innovative direction to achieve these desired properties of 

polymeric materials. 
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Chapter 4                                                             

Biomass-Derived rctt-3,4-Di-2-furanyl-1,2-

cyclobutanedicarboxylic Acid: a Polytopic 

Ligand for Synthesizing Green Metal-Organic 

Materials 

4.1 INTRODUCTION 

Increasing awareness of environmental protection and continuous shrinking of the 

earth’s finite fossil resources have inspired extensive studies into the use of biomass-

derived compounds to replace fossil feedstocks in the manufacture of a variety of 

products.87 Petrochemicals are still the major starting materials for synthesizing all kinds 

of ligands used in coordination chemistry. However, the inherent composition of carbon, 

hydrogen, and oxygen in biomass leads its suitability as a starting material for the synthesis 

of oxygen-rich ligands (Figure 4.1). As important members of the polytopic ligand family, 

oxygen-rich ligands,88 are crucial in constructing metal-organic materials with different 

potential applications such as catalysis, gas separation, and detection of volatile organic 

compounds.89 To the best of our knowledge, there is still no polytopic ligand specifically 

designed and synthesized from biomass-derived chemicals.90 
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Figure 4.1. Synthesis of green metal-organic materials from biomass via bioadvantaged 

chemicals and oxygen-rich ligands. 

 

In this study, we report a polytopic ligand, rctt-3,4-di-2-furanyl-1,2-

cyclobutanedicarboxylic acid (CBDA-2), synthesized from two bioadvantaged chemicals 

furfural and malonic acid.46a, 46b, 46d  Furfural is an important renewable feedstock, which 

is mainly produced from hemicellulose of crop residues such as corncobs, sugarcane 

bagasse, and wheat bran.91 Bio-production of malonic acid involves the use of genetically 

modified yeast cells to ferment sugar directly into malonic acid with up to over 100% yield 

due to carbon dioxide sequestration during the process.37g, 37h The polytopic ligand,. 

CBDA-2, yielded from biomass has the potential to become a useful green building block, 

which will make metal-organic materials more environmentally friendly. To demonstrate 

the potential application of this multifunctional ligand, two different two-dimensional (2D) 

coordination polymers have been synthesized via a conventional solution method using 

copper and cobalt salts. We hope that our study will initiate more work into the design, 

synthesis, and application of biomass-derived ligands to make coordination chemistry 

more sustainable. 
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4.2 EXPERIMENTAL SECTION  

4.2.1 Materials and methods 

All chemicals were purchased from Alfa Aesar, Sigma-Aldrich, or Acros, and used 

without further purification. Blacklight used in the photoreaction was 15W Eiko EK15526 

F15T8/BL. The solution phase NMR spectra were recorded with a Bruker AVANCE 500 

spectrometer (1H: 500 MHz, 13C{1H}: 125 MHz). Proton and carbon chemical shifts were 

reported in ppm downfield from (TMS) or using the resonance of corresponding deuterated 

solvent as an internal standard. 1H NMR data were reported as follows: chemical shift 

(ppm), s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = 

multiplet, and integration. SC-XRD data were collected on a Bruker Kappa Apex II Duo 

X-Ray Diffractometer with Cu Kα (λ = 1.54178 Å). FT-IR was recorded on Thermo 

Scientific Nicolet iS5 FT-IR spectrometer. Abbreviations used in the description of FT-IR 

data are as follows: br, broad; s, strong; m, medium; w, weak. DSC experiments were 

performed on a Perkin Elmer Jade differential scanning calorimeter using a hermetic 

aluminum pan, indium standard for calibration, nitrogen as a purge gas, sample weight of 

~ 5 mg with a ramping rate of 20 °C/min. Heat flow was recorded from both the first 

heating and cooling curves. TGA analyses were carried out on a Hi-Res TGA Q500 

thermogravimetric analyzer from TA Instruments using alumina pans at a heating rate of 

20 °C/min under nitrogen with a sample weight of about 10 mg.  
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4.2.2 Synthesis of rctt-3,4-di(furan-2-yl)cyclobutane-1,2-dicarboxylic acid (CBDA-

2) 

The synthetic procedure of CBDA-2 reported herein is developed by improving our 

previous approach.46b Specifically, CBDA-2 was synthesized by photodimerization of 2-

furanacrylic acid in a slurry using hexane as a reaction medium. The typical process 

involves suspending 5.0 g of crystalline FAA in the hexane in a 250 mL Erlenmeyer flask 

with magnetic stirring. The vigorously stirred suspension was kept between six 15-watt 

Eiko blacklights for 12 hours. The powder clustered on the inside wall of the flask was 

loosened using a spatula or sonication when necessary, during the reaction. The slurry was 

then filtered and CBDA-2 was obtained as a white solid in 91 % yield (4.5 g, m.p. 170 – 

171 °C).1H NMR (DMSO-d6) δ (ppm): 12.52 (s, 2H), 7.43 (d, J = 2.5 Hz, 2H), 6.28 (dd, J 

= 3.3, 1.1 Hz, 2H), 6.11 (d, J = 3.5 Hz 2H), 4.03(m, 2H), 3.68 (m, 2H); 13C{1H} NMR 

(DMSO-d6) δ (ppm): δ 173.6, 153.1, 142.6, 110.4, 107.9, 43.0, 38.3; FT-IR (solid) 𝜈max 

(cm-1): 3072 (br, O—H) 2959 (w, C—H), 1696 (s, C=O), 1503–1415 (s, C=C aromatic 

str), 1257 (m, C—O), 1011 (m, in-plane O—H). 
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Scheme 4.1. Synthesis of a polytopic ligand, CBDA-2, from two bioadvantaged 

chemicals: furfural and malonic acid. 



85 

4.2.3 Synthesis of CBDA-2·Et3N 

CBDA-2 (1 mmol) was dissolved in 5 mL methanol. Triethylamine (2 mmol) was 

first diluted with 3 mL methanol, and then added into the CBDA-2 solution dropwise upon 

magnetic stirring. After filtration, the solution was kept in a 15 mL vial with a porous lid. 

Colorless crystals formed in two weeks. Only one of the two carboxylic acid was 

deprotonated although two equivalents of triethylamine were used (see Figure 4.2). 

 

Figure 4.2. X-ray crystal structure of CBDA-2·Et3N: a) image with labels of the atoms, a) 

image with hydrogen bonds. 

4.2.4 Synthesis of Cu-CBDA-2 complex I 

CBDA-2 (2 mmol) was dissolved in a 10 mL of methanol and to this a solution of 

Cu(NO3)2·3H2O (0.1 mmol) in 10 mL of deionized water was added dropwise. Then this 

reaction mixture was allowed to stir for 30 minutes. After that, a 1M aq NaOH solution 

was added dropwise to the reaction mixture until a slight amount of precipitate began to 

form. The precipitate was then filtered out, and the filtrate was kept at room temperature.92 

After several days, the turquoise crystals were produced. The crystals were washed with 

water and methanol, respectively, and then dried in vacuum overnight. The yield of 
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complex I was 52% based on the metal salt. FT-IR (solid) 𝜈max (cm-1): 3147 (br, O—H), 

2943 (w, C—H), 1696 (s, C=O from carboxyl), 1549 (m, C=O asymmetric for carboxylate 

ion), 1613 (w, C=C aromatic), 1418 (m, C=O symmetric carboxylate ion), 1276 (m, C—

O), 1013 (w), 727 (s), 596 (m). 

4.2.5 Synthesis of Co-CBDA-2 complex (II) 

A similar process was used as in the case of complex I, but Co(NO3)2·6H2O (0.1 

mmol) was used with an equimolar amount of CBDA-2 (0.1 mmol). After a few days, light 

pink colored crystals of complex II were obtained. The yield was 61% based on the metal 

salt. FT-IR (solid) 𝜈max (cm-1): 3316 (br, O—H water), 1564 (s, C=O asymmetric for 

carboxylate ion), 1435 (m, C=O symmetric carboxylate ion), 1019 (w), 722 (s). 
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Table 4.1. Crystal data of CBDA-2, CBDA-2 Et3N, complexes I and II. 

 

Crystal CBDA-2* CBDA-2·Et3N 

Cu-CBDA-2 

Complex (I) 

Co-CBDA-2 

Complex (II) 

CCDC # 1578122 2049902 2049903 2049905 

Formula  C14H12O6 C20H27NO6 C30H30CuO14 C30H32Co2O16 

FW  276.24 377.42 678.08 766.41 

Crystal size [mm]  0.34*0.08*0.04 0.39*0.23*0.20 0.20*0.15*0.04 0.19*0.14*0.04 

Crystal system Monoclinic Triclinic Orthorhombic Orthorhombic 

Space group P 21/c P-1 Pbca Pna21 

a (Å)  15.8528(7)  9.1495(3) 7.5903(3)  6.9274(3)  

b (Å)  5.4219(3) 9.9671(4) 14.4036(7) 33.4102(12) 

c (Å)  15.2918(7) 11.0579(4) 26.3037(11) 6.8234(3) 

α (°)  90 82.6770(10) 90 90 

β (°)  113.218 76.9120(10) 90 90 

γ (°)  90 75.4290(10) 90 90 

V (Å3)  1207.92 947.97(6) 2875.72 1579.25 

Temp. (K)  100(2) 100(2) 106(2) 105(2) 

ρcalc (g·cm-3)  1.519 1.322 1.566 1.612 

μ (mm-1)  1.023 0.804 1.736 8.913 

Radiation type  CuK\a CuK\a CuK\a CuK\a 

F(000)  576 404 1404 788.0 

No of measured refl.  7726 12048 14792 7413 

No of independent 

refl.  

2099 3264 2541 2368 



88 

4.3 RESULTS AND DISCUSSION 

4.3.1 Description of CBDA-2 structure 

The crystal structure of CBDA-2 is revealed in Figure 4.3a, while Figure 4.3b 

displays a CBDA-2 anion with one of the two carboxylic acids deprotonated. The 

disordered counter ion, triethylammonium, is omitted in Figure 4.3b for clarity. Both 

crystal structures are shown in ORTEP at the 50% probability level except for the hydrogen 

atoms. While the two furan rings in Figure 4.3a are roughly pointing towards the same 

direction, they are orientated towards the opposite directions in Figure 4.3b, confirming the 

furan rings can rotate around the carbon-carbon single bond between the five and four 

membered-rings. 

 

Figure 4.3. Crystal structures of (a) CBDA-2 and (b) CBDA-2 anion (a disordered 

Et3NH+ is omitted for clarity) in (ORTEP) at the 50% probability level except for the 

hydrogen atoms.  

 

As shown in Figure 4.4, each CBDA-2 molecule contains two carboxylic acids and 

two furan rings, which can interact with metals or metal cations to form complexes. Figure 

4.4b-c displays that the two sp2 hybridized oxygen atoms in the furan rings of CBDA-2 
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may interact with metal collaboratively or individually.38i, 93 Figure 4.4d-h exhibits five 

different ways that the two carboxylic acids or the corresponding carboxylate ion may 

interact with metal or metal cation.94 Although the furan rings and carboxylic acids within 

the same CBDA-2 molecule may interact with different metal atoms or cations 

simultaneously, it is unlikely that they will interact with the same metal/metal cation since 

they are bonded to the same cyclobutane ring and trans to each other. It is worth mentioning 

that, besides what are shown in Figure 4.4, there are other possible ways that CBDA-2 may 

interact with metal or metal cation. For example, the electron-rich furan ring may interact 

with metal cation via its π electrons.95 

 

Figure 4.4. Chemical structure of CBDA-2 (shown in black and red), and seven 

coordination modes that furan rings and carboxylic acid/carboxylates of CBDA-2 may 

adopt to interact with metal or metal cation (shown in black, red, and gray). 

 

Meanwhile, the cyclobutane core/linker of CBDA-2 has two exchangeable 

conformations (i.e., puckered vs. planar) with approximately 23° difference between 

them.46a-c, 51, 96 The semi-rigid nature of cyclobutane will offer CBDA-2 a unique and useful 
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balance between typical flexible aliphatic or rigid aromatic linkers in forming metal-

organic materials. 

4.3.2 Structure description of Cu-CBDA-2 complex I 

Figure 4.5a presents the asymmetric unit of Cu-CBDA-2 Complex I in ORTEP.  

The ratio of Cu:CBDA-2:MeOH in the complex is 1:2:2. As shown in Figure 4-5b, the 

Cu2+ center adopts an octahedral geometry with four CBDA-2 molecules interacting with 

the metal cation in the equatorial basal plane and two methanol molecules at the axial 

positions. Two of the four CBDA-2 molecules are deprotonated, which balance the charges 

on the Cu cation. The two deprotonated carboxylate oxygen atoms are located on the 

opposite sides of the Cu2+ center with the O—Cu2+—O angle 180.0° and O—Cu2+ bond 

distance 1.923 Å. The two carbonyl groups of the non-deprotonated carboxyl acid group 

and two oxygen atoms in the two MeOH molecules are also located at the exact opposite 

direction of the Cu2+ center, with O—Cu2+ bond distances 2.446 and 1.984 Å, respectively.   

 

Figure 4.5. a) Asymmetric unit of Cu-CBDA-2 Complex (I) in ORTEP at the 50% 

probability level except for the hydrogen atoms; b) Octahedral Cu2+ center with four 

CBDA-2 molecules and two MeOH molecules. 
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The Cu2+ ion interacts with CBDA-2 in the way as illustrated in Figure 4-4f, 

forming a 2D coordination polymer. Figure 4-6b shows a top view of one layer of the 2D 

structure with the furan substituents omitted for clarity. The Cu2+ center is highlighted in 

polyhedral style. Figure 4-6c shows the side view of the 2D coordination polymer along 

the crystallographic a axis. In the 2D structure, the Cu2+ cations are sandwiched between 

two layers of CBDA-2 molecules with the furan substituents pointing outward.97 The 

oxygen atom in the furan ring does not participate in the interactions with Cu2+ cation or 

any hydrogen bond. However, the oxygen atom in the carbonyl group of the deprotonated 

acid forms two hydrogen bonds (Figure 4-6a): one with the hydrogen atom in the acid of a 

neighboring CBDA-2 molecule [O···OH distance: 2.601(6) Å] and the other with the 

hydrogen atom in the hydroxyl group of a MeOH molecule [O···OH distance: 2.604(5) Å].   
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Figure 4.6. X-ray crystal structure of Cu-CBDA-2 complex II with hydrogen bonds; b) 

Top view of the Cu-CBDA-2 complex (II) shown in polyhedral style (the furan 

substituents are omitted for clarity); c) Side view of the 2D complex (II) along 

crystallographic an axis shown in Capped Sticks style. 
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4.3.3 Structure description of Co-CBDA-2 complex II 

SC-XRD analysis of complex II revealed that the ratio of Co:CBDA-2:MeOH:H2O 

in the compound is 1:1:1:1. Figure 4.7a exhibits the asymmetric unit of Complex II 

ORTEP. As shown in Figure 4.7b, the Co2+ center adopts a slightly distorted octahedral 

geometry with three CBDA-2 molecules interacting with the metal cation in the equatorial 

basal plane while one MeOH and one H2O molecule occupy the two opposite axial 

positions. The O—Co2+—O angle of MeOH, Co2+, and H2O is 172.4(1)°, and the O—Co2+ 

distances are 2.163(4) and 2.132(4) Å, respectively. Both of the carboxylic acid groups in 

each CBDA-2 molecule are deprotonated, and they are bonded to the same Co2+ cation 

balancing the charges. The O—Co2+—O- angle is 95.1(1)°, and the two O—Co2+ bond 

distances are 2.051(4) and 2.112(3) Å, respectively. Two carbonyl groups from two 

neighboring CBDA-2 molecules’ carboxylates occupy the other two corners of the 

equatorial basal plane of the octahedral, and the two corresponding O—Co2+ distances are 

nearly identical, which are 2.077(3) and 2.077(4) Å. 
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Figure 4.7. a) Asymmetric unit of Co-CBDA-2 Complex (II) in ORTEP at the 50% 

probability level except for the hydrogen atoms; b) Octahedral Co2+ center interacting 

with three CBDA-2 molecules, one MeOH, and one H2O molecule. 

 

The Co2+ cation interacts with CBDA-2 in the way as illustrated in Figure 4.4h, 

which is completely different from that (Figure 4.4f) of Complex (I). Nevertheless, 

Complex (II) is also a 2D coordination polymer. Figure 4.8c presents a top view of one 

layer of the 2D structure with the furan substituents omitted for clarity. The Co2+ center is 

highlighted in polyhedral style. Figure 4.8b displays the side view of the 2D coordination 

polymer along crystallographic axis. Just as the Complex (I), the Co2+ cations are 

sandwiched between two layers of CBDA-2 molecules with the furan substituents pointing 

outside. The oxygen atom in the furan ring does not participate in the interactions with 

Co2+ cation or any hydrogen bond. However, the MeOH molecule in complex II forms a 

hydrogen bond with a carboxylate group of a neighboring CBDA-2 ion with a O···OH 

distance of 2.792(5) Å (Figure 4.8a). The H2O in the complex II forms two hydrogen bonds 

with two different carboxylate groups from its two neighboring CBDA-2 ions with O···OH 

distances of 2.655(5) and 2.991(5) Å.  
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Figure 4.8. a) X-ray crystal structure of complex II with hydrogen bonds; b) Top view of 

the complex II shown in polyhedral style (the furan substituents are omitted for clarity); 

c) Side view of the 2D complex II along crystallographic axis shown in Capped Sticks 

style. 
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4.3.4 FT-IR spectrum of the complexes 

The FT-IR spectra of complex I and II are reported in Figure 4.9 for comparison. 

The strong band at 1698 cm-1 in the spectrum of complex I is characteristic to the carbonyl 

stretching of a carboxylic acid because only one of the two acid groups in CBDA-2 ligand 

is deprotonated in the compound. In contrast, the peaks at 1564 and 1453 cm-1 in the 

spectrum of complex II are attributed to symmetric and asymmetric stretching vibrations 

of the carboxylate anion, respectively, since both carboxylic acid groups of CBDA-2 are 

deprotonated in the complex. The broad absorption at 3200–3500 cm-1 indicates the 

presence of coordinated H2O and MeOH molecules in complex II, which is consistent with 

its single-crystal X-ray structure. For the spectrum of complex I, the signals of hydroxyl 

stretching vibration of the carboxylic acid are shown beside a weak, broad peak of the 

hydroxyl stretching of the coordinated MeOH molecules in the copper 2D coordination 

polymer. 

 

 

Figure 4.9. FT-IR spectra of CBDA-2, complex I and II. 
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4.3.5 Thermal properties of the complexes 

TGA and DSC curves of complex I and II under a nitrogen atmosphere at a heating 

rate of 20 °C/min are shown in Figure 4.10. The thermal decomposition profile of CBDA-

2 reported in our previous study indicated no degradation below 200 °C.46b According to 

the TGA curves in Figure 4.10a, both complexes were found to undergo decomposition in 

two stages. Complex I exhibited a weight loss of 9.1% due to removal of the coordinated 

MeOH molecules (calcd.: 9.4%) in the crystalline sample around 150 °C, and started to 

decompose at approximately 200 °C. The TGA curve of complex II showed a weight loss 

of 12.5%, which accounts for the loss of coordinated MeOH and H2O molecules in the 

complex around 140 °C (calcd.: 13.1%), but did not decompose until near 300 °C. The 

latter observations were in accordance with the endothermic transitions seen in the DSC 

curve shown in Figure 4.10b. Interestingly, the DSC curve of complex I displays three 

overlapped peaks between 120 and 180 °C, indicating possible phase transitions due to the 

loss of MeOH in the complex. Thermal analysis results indicated a similar thermal 

decomposition behavior of both the complexes, among which the complex I decomposes 

faster than the complex II, presumably due to the different ways CBDA-2 coordinates to 

the two metals (i.e., Figure 4.4f vs. 4.4h). In short, the two-step decomposition pattern of 

these 2D coordination polymers is consistent with the SC-XRD structural results in terms 

of ligands’ coordination to the metal centers. 
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Figure 4.10. a) TGA curves of complex I and II with a heating rate of 20 °C min−1 under 

N2 atmosphere. b) DSC curves of the two complexes from 25 to 200 °C with a heating 

rate of 20 °C min−1 under N2 atmosphere. 

4.3.6 Thermochromic properties 

At room temperature, the microcrystalline powder of complex I is turquoise while 

complex II is pink. The single crystals of the two complexes exhibited the same colors, 

respectively, but they appeared somewhat lighter. Both complexes I and II showed 

fascinating visual thermochromic behaviors during the study of their thermal properties. 
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When heated to 200 °C for 15 minutes in a vacuum oven, complexes I and II turned into 

black and purple, respectively (see Figure 4.11). Complex II was chosen for further 

investigation considering its desolvated form showed higher thermal stability and exhibited 

more interesting color change. In addition, cobalt complexes are present in nature and are 

included in many synthetic materials with varied applications.98 For example, cobalt is the 

principle metal center of four vitamers of B12, which are deeply red-colored complexes 

essential to the function of cells. 

 

Figure 4.11. Thermochromic behavior of complex I and II: left) samples at room 

temperature; right) sample after heated at 200 °C under vacuum for 15 min. 

 

The purple color of complex II-a did not change even when the sample was cooled 

down to room temperature and exposed to air. Color changes of metal complexes resulting 

from temperature variation are mainly caused by solid-solid phase transition due to changes 

in metal coordination geometry, coordination number, and/or the coordinated ligands.99 

The FT-IR spectrum of complex II-a qualitatively indicates that this thermochromic 

process is likely due to the loss of coordinated MeOH and H2O molecules, which might 



100 

have caused the Co2+ center to go under coordination geometry change (Figure 4.12). The 

TGA curve of complex II in Figure 4.10a also confirmed that most of the coordinated 

MeOH and H2O molecules were removed at 250 °C. 

 

Figure 4.12. Comparison of the FT-IR spectra of complex II before and after the thermal 

treatment. 

 

Visual thermochromic materials have found applications in designing security 

markers in currency bills and bonds,100 smart coatings,101 thermal printing,102 and leuco 

dyes.103 The successful synthesis and characterization of visual thermochromic complexes 

I and II, whose ligand was obtained from bioadvantaged starting materials, may stimulate 

more research and development more environmentally friendly ligands in the field of 

coordination chemistry.104  
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4.4 CONCLUSION 

A promising biomass-derived ligand, CBDA-2, was introduced to coordination chemistry 

in this study. This polytopic ligand was yielded from furfural and malonic acid, which are 

two bioadvantaged chemicals. A scalable and straightforward synthetic method of CBDA-

2 was documented, and single-crystal X-ray data of a mono-carboxylate triethylammonium 

derivative of CBDA-2 was reported for comparison with other crystal structures. The 

potential application of CBDA-2 in preparing green metal-organic materials (GMOM) has 

been demonstrated through the synthesis of two 2D coordination polymers via a 

conventional solution method using Cu(NO3)2 and Co(NO3)2 as metal sources. The two 2D 

complexes have been characterized using single-crystal X-ray diffraction analysis, FT-IR, 

and TGA/DSC. Although both Cu2+ and Co2+ in the two 2D structures adopt octahedral 

geometry while interacting with CBDA-2 and two solvent molecules, this novel ligand 

coordinates with the metal cations in two different ways demonstrating its flexibility and 

adaptability. Moreover, both complexes exhibited visual thermochromic behaviors when 

heated at 200 °C under vacuum. This oxygen-rich ligand, CBDA-2, and its congeners 

provide opportunities to make various GMOM,90b, 105 electronic and optoelectronic 

devices,106 and functional nanostructured materials with interesting properties and potential 

applications in the future.107 
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Chapter 5                                                             

Summary and Outlook 

 

Cyclobutane-containing bifunctional building blocks (CBs) and the Gemini 

monomer are uncommon. It is especially true for CBs despite their ubiquity in many 

synthetic drugs and natural products.108 During the metabolism, cyclobutane derivatives 

are generated, which play a vital role in ensuring proper biological functions.108a, 108c, 109 

Due to their inherent ring strain and lower stability compared to five- and six-membered 

rings, they are rarely employed in developing industrially relevant materials. Based on the 

concepts of conservation of orbital symmetry devised by Woodward and Hoffmann, 

cyclobutane is stable towards thermal [2+2] cycloelimination and near UV radiation.85 This 

thermal and photochemical stability substantiates their candidacy in developing materials 

of choice. In addition, their unique semi-rigid characteristics due to the planer and puckered 

conformation of the cyclobutane ring110 bridge the performance gap between flexible 

aliphatic and rigid aromatic counterparts and provide CBs the balance of processability and 

rigidity, which is crucial in synthesizing novel materials with desired properties, as shown 

in Figure 5.1. Moreover, the solid-state photochemical process to synthesize CBs limits 

organic solvents and harsh conditions creating a more environmental-friendly approach for 

synthesizing materials.111   
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Figure 5.1. Classification of bifunctional building blocks based on rigidity. 

 

This dissertation describes the synthesis of bifunctional CBs such as CBDO-1, 

CBAM-1, and CBDA-2 using an interdisciplinary approach of modern photochemical 

methods and conventional organic synthesis. To highlight the potential applications of 

these valuable CBs, different materials were synthesized, e.g., high Tg polyesters as an 

alternative to BPA-based polyesters, polyamides with enhanced physical and processing 

properties, and 2-D green metal-organic materials with interesting morphology (Figure 

5.2). This study focuses on synthesizing various CBs and novel materials and 

characterizing and comparing their properties with similar and commercial materials. 
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Figure 5.2. Applications of CBs in the synthesis of novel materials. 
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The examples mentioned in this dissertation will pave the way to explore other 

possible CBs with different substituents synthesized under similar conditions (Figure 5.3). 

This approach can be used to tune the properties of the corresponding materials by 

changing the structure of the CBs according to specific needs. Also, it will allow 

exploration of other industrially relevant materials such as polyurethanes, polycarbonates, 

and polysilylethers.  

 

Figure 5.3. Diverse CBs that can be synthesized using the method studied in this study. 

CBs with green highlights can be derived from biomass. 
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Selected NMR spectra 

 



107 

 

Figure A.1. 1H NMR spectrum of CBDO-1 in CDCl3 at room temperature. 
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Figure A.2. 1H NMR D2O exchange spectrum of CBDO-1 in CDCl3 at room temperature. 
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Figure A.3. DEPT 45, 90 and 135 spectra of CBDO-1 in CDCl3 at room temperature. 
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Figure A.4. 1H NMR spectrum of PCBO in CDCl3 at room temperature. 
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Figure A.5. 13C{1H} NMR spectrum of PCBO in CDCl3 at room temperature. 

P
C

B
O

 



112 

 

Figure A.6. COSY and CH-correlation spectra of PCBO in CDCl3 at room temperature. 
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Figure A.7. 1H NMR spectrum of PCBM in CDCl3 at room temperature. 
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Figure A.8. 13C{1H} NMR spectrum of PCBM in CDCl3 at room temperature. 
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Figure A.9. COSY and CH-correlation spectra of PCBM in CDCl3 at room temperature. 
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Figure A.10. 1H NMR spectrum of PCBS in CDCl3 at room temperature. 
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Figure A.11. 13C{1H} NMR spectrum of PCBS in CDCl3 at room temperature. 
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Figure A.12. COSY and CH-correlation spectra of PCBS in CDCl3 at room temperature. 
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Figure A.13. 1H NMR spectrum of PCBG in CDCl3 at room temperature. 
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Figure A.14. 13C{1H} NMR spectrum of PCBG in CDCl3 at room temperature. 
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Figure A.15. COSY and CH-correlation spectra of PCBG in CDCl3 at room temperature. 
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Figure A.16. 1H NMR spectrum of PCBA in CDCl3 at room temperature. 
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Figure A.17. 13C{1H} NMR spectrum of PCBA in CDCl3 at room temperature. 
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Figure A.18. COSY and CH-correlation spectra of PCBA in CDCl3 at room temperature. 
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Figure A.19. 1H NMR spectrum of PCBT in CDCl3 at room temperature. 
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Figure A.20. 13C{1H} NMR spectrum of PCBT in CDCl3 at room temperature. 
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Figure A.21. COSY and CH-correlation spectra of PCBT in CDCl3 at room temperature. 
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Figure A.22. 1H NMR spectrum of PCBF in CDCl3 at room temperature. 
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Figure A.23. 13C{1H} NMR spectrum of PCBF in CDCl3 at room temperature. 
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Figure A.24. COSY and CH-correlation spectra of PCBF in CDCl3 at room temperature. 
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Figure A.25. 1H NMR spectrum of PCBC in CDCl3 at room temperature. 
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Figure A.26. 13C{1H} NMR spectrum of PCBC in CDCl3 at room temperature. 
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Figure A.27. COSY and CH-correlation spectra of PCBC in CDCl3 at room temperature. 
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Figure A.28. 1H NMR spectrum of CBAM-1 in DSMO-d6 at room temperature. 
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Figure A.29. 13C{1H} NMR spectrum of CBAM-1 in DSMO-d6 at room temperature. 
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Figure A.30. 1H NMR spectrum of PCS in DSMO-d6 at room temperature. 
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Figure A.31. 13C{1H} NMR spectrum of PCS in DSMO-d6 at room temperature. 
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Figure A.32. COSY and CH-correlation spectra of PCS in DSMO-d6 at room 

temperature. 
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Figure A.33. 1H NMR spectrum of PCT in DSMO-d6 at room temperature. 



140 

 

Figure A.34. 13C{1H} NMR spectrum of PCT in DSMO-d6 at room temperature. 
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Figure A.35. COSY and CH-correlation spectra of PCT in DMSO-d6 at room 

temperature. 

 

 



142 

  

 

Selected FT-IR spectra  
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Figure B.1. FT-IR spectrum of CBDO-1 using ATR detector. 

 

C
B

D
O

-1
  



144 

 

Figure B.2. FT-IR spectrum of PCBO using ATR detector. 
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Figure B.3. FT-IR spectrum of PCBM using ATR detector. 
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Figure B.4. FT-IR spectrum of PCBS using ATR detector. 
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Figure B.5. FT-IR spectrum of PCBG using ATR detector. 
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Figure B.6. FT-IR spectrum of PCBA using ATR detector. 
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Figure B.7. FT-IR spectrum of PCBT using ATR detector. 
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Figure B.8. FT-IR spectrum of PCBF using ATR detector. 
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Figure B.9. FT-IR spectrum of PCBC using ATR detector. 
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Figure B.10. FT-IR spectrum of CBAM-1 using ATR detector. 
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Figure B.11. FT-IR spectrum of PCS using ATR detector. 
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Figure B.12. FT-IR spectrum of PCT using ATR detector. 
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Figure B.13. FT-IR spectrum of 2,4-pentadienoic acid  using ATR detector. 
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Figure B.14. FT-IR spectrum of 2,4-pentadienoic acid chloride using ATR detector. 
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Figure B.15. FT-IR spectrum of EBP using ATR detector. 
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Figure B.16. FT-IR spectrum of EBP after heating at 40 °C using ATR detector. 
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Figure B.17. FT-IR spectrum of EBP after heating at 50 °C using ATR detector. 
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Figure B.18. FT-IR spectrum of PEBP after treating with H2SO4 using ATR detector. 
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Figure B.19. FT-IR spectrum of PEBP after curing at 170 °C using ATR detector. 
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Figure B.20. FT-IR spectrum of CBDA-2 using ATR detector. 
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Figure B.21. FT-IR spectrum of Cu-CBDA-2 Complex (I) using ATR detector. 
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Figure B.22. FT-IR spectrum of Cu-CBDA-2 Complex (I) after heating at 200 °C in 

vaccume oven using ATR detector. 
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Figure B.23. FT-IR spectrum of Co-CBDA-2 Complex (II) using ATR detector. 
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Figure B.24. FT-IR spectrum of Co-CBDA-2 Complex (II) after heating at 200 °C in 

vaccume oven using ATR detector. 
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Selected MALDI-TOF-MS Spectra  
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Figure C.1. MALDI-TOF-MS spectrum of PCBS. 
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Figure C.2. MALDI-TOF-MS spectrum of PCBT. 
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Figure C.3. MALDI-TOF-MS spectrum of PCBF. 
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Figure C.4. MALDI-TOF-MS spectrum of PCBC. 
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Selected GPC traces 
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Figure D.1. GPC chromatogram report of PCBO. 
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Figure D.2. GPC chromatogram report of PCBM. 
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Figure D.3. GPC chromatogram report of PCBS. 
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Figure D.4. GPC chromatogram report of PCBG. 
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Figure D.5. GPC chromatogram report of PCBA. 
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Figure D.6. GPC chromatogram report of PCBT. 
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Figure D.7. GPC chromatogram report of PCBF. 
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Figure D.8. GPC chromatogram report of PCBC. 
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Selected DOSY Spectra 
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Figure E.1. 2-D DOSY spectrum of PCBO in CDCl3. 

 



183 

 
Figure E.2. 2-D DOSY spectrum of PCBM in CDCl3. 
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Figure  E.3. 2-D DOSY spectrum of PCBS in CDCl3. 
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Figure E.4. 2-D DOSY spectrum of PCBG in CDCl3. 
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Figure E.5. 2-D DOSY spectrum of PCBA in CDCl3. 
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Figure E.6. 2-D DOSY spectrum of PCBT in CDCl3. 
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Figure E.7. 2-D DOSY spectrum of PCBF in CDCl3. 
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Selected SC-XRD data 
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Table F.1. Crystal data of CBDO-1 

 

Crystal 

Parameters 
CBDO-1 

Formula C36H40O2 

FW 536.68 

Cryst. Size [mm] 0.06*0.121*0.375 

Crystal system Orthorhombic 

Space Group Pna 21 

a (Å) 17.9617(7) 

b (Å) 7.6761(3) 

c (Å) 21.5205(9) 

α (° ) 90 

β (° ) 90 

γ (° ) 90 

V (Å3 ) 2967.1(2) 

Z 4 

Temp. (K) 110 

ρcalc [g/cm3 ] 1.201 

μ [mm-1] 0.604 

Radiation Type CuKα (λ = 1.54178) 

F(000) 1152.0 

No of measured refl 5263 

No of independent refl. 2716 

No of refl. (I ≥ 2σ) 4930 
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Table F.2. Crystal data of trans-nitrostyrene 

 

Crystal 

Parameters 
trans-nitrostyrene 

Formula C8H7NO2 

FW 149.15 

Cryst. Size [mm] 0.1*0.17*0.32 

Crystal system Monoclinic 

Space Group P121/n1 

a (Å) 8.003(2) 

b (Å) 5.6863(15) 

c (Å) 16.158(4) 

α (° ) 90 

β (° ) 94.251(3) 

γ (° ) 90 

V (Å3 ) 733.3(3) 

Z 4 

Temp. (K) 110 

ρcalc [g/cm3 ] 1.351 

μ [mm-1] 0.099 

Radiation Type CuKα (λ = 0.71073) 

F(000) 312.0 

No of measured refl 1727 

No of independent refl. 1206 

No of refl. (I ≥ 2σ) 1722 
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Table F.3. Crystal data of CBDN-1 

 

Crystal 

Parameters 
CBDN-1 

Formula C16H14N2O4 

FW 298.29 

Cryst. Size [mm] 0.17*0.18*0.19 

Crystal system Monoclinic  

Space Group P121/c1 

a (Å) 9.1634(4) 

b (Å) 8.1746(3) 

c (Å) 10.0631(4) 

α (° ) 90 

β (° ) 110.190(2) 

γ (° ) 90 

V (Å3 ) 707.48(5) 

Z 2 

Temp. (K) 111 

ρcalc [g/cm3 ] 1.400 

μ [mm-1] 0.851 

Radiation Type CuKα (λ = 1.54178) 

F(000) 312.0 

No of measured refl 1248 

No of independent refl. 1095 

No of refl. (I ≥ 2σ) 1203 
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Table F.4. Crystal data of CBAM-1 

 

Crystal 

Parameters 
CBAM-1 

Formula C17H20Cl4N2 

FW 394.15 

Cryst. Size [mm] 0.171*0.206*0.239 

Crystal system Orthorhombic 

Space Group Pbca 

a (Å) 8.2386(3) 

b (Å) 17.5277(6) 

c (Å) 25.7833(8) 

α (° ) 90 

β (° ) 90 

γ (° ) 90 

V (Å3 ) 3723.2(2) 

Z 8 

Temp. (K) 110 

ρcalc [g/cm3 ] 1.406 

μ [mm-1] 5.769 

Radiation Type CuKα (λ = 1.54178) 

F(000) 1632.0 

No of measured refl 3301 

No of independent refl. 2676 

No of refl. (I ≥ 2σ) 3123 
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