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ABSTRACT 

Lignin may serve as a potential source of renewable chemicals and as a possible 

wealth of materials for replacement of petroleum-based fuel and petrochemicals. Lignin is a 

plant component that constitutes the second most common natural polymer on earth, behind 

only cellulose, and is the most common natural polymer with an aromatic network. Technical 

lignins (isolated from chemical processing of raw lignin) are produced as waste in the 

papermaking and biorefinery industries; an estimation of U.S. waste lignin is about 24 million 

tons yearly, more than the estimated 10.5 million tons of plastics discarded annually.  

The exact structures of natural lignin and technical lignins are still not known, thus 

research continues on characterization of the many forms of technical lignins, which can 

differ substantially.  

In this work, we have developed a gel permeation chromatography (GPC) method by 

HPLC with a variable wavelength UV-Vis detector; this was applied to raw lignin and 

technical lignins in order to establish a feasible method of determining molecular weights for 

a polymer which is insoluble in a pure aqueous or a pure organic solvent. 

Characterization of lignin was continued with a modified Folin-Ciocalteu method for 

quantification of phenolic hydroxyl groups in lignin model compounds and technical lignins. 

Additionally, analysis of four factors of the experiment were statistically evaluated using a 

24 full factorial (ANOVA) design of experiment, giving information on main influences and 

interactions of the method. 

Fractionation of lignins was carried out by preparative size exclusion 

chromatography. Further analysis of molecular weight distribution in the individual fractions 

was performed by electrospray ionization high resolution time-of-flight mass spectrometry 
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(ESI HR TOF-MS), thermal carbon analysis (TCA) and thermal desorption-pyrolysis-gas 

chromatography-mass spectrometry (TD-Py-GC-MS). Additional information about 

phenolic and aliphatic hydroxyl groups was supplied through phosphitylized standards and 

lignin samples evaluated via 31PNMR analysis.  

Oxidative depolymerization of alkali lignin was accomplished through addition of 

hydrogen peroxide to a water matrix at various percentages (v/v), also with variation of added 

methanol as a co-solvent.  Lignin samples with initial pH values of 3, 7 and 11 were evaluated 

for wt% of solubilized (depolymerized) material under two sets of filtration, and analyzed 

for pH change as well.  

Depolymerization was also done through subcritical water (SW) treatment of alkali 

lignin. TCA and TD-Py-GC-MS analyses of 300 °C SW samples were performed as 

described above, while the mass range for MS analysis was 10 – 550 m/z.  This range had a 

lower limit which allowed monitoring of noncondensable gases (H2O, N2, O2, CO2). In 

addition, a novel method of mass balance was implemented through normalization of TCA 

and TD-Py-GC-MS data. SW treated samples were compared to untreated lignin profiles to 

determine the predominant species yielded at each temperature fraction. The process of 

condensation with concomitant gas formation through the temperature fractions was 

monitored through elemental analysis as C/H and C/O ratios. 

A summary of results finds that GPC method development allowed a determination 

of THF:water ratios which in turn led to complete solubilization in extraction solvents. FC 

method development resulted in quantitative phenolic OH count per nmol carbon in whole 

technical lignins and solubilized alkali lignin samples.  
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Fractionation methodology was found to effectively limit MW ranges within individual 

fractions, although not to the extent expected.  Both hi-MW and low-MW compounds outside 

expected ranges were found in every fraction. 

Oxidation of lignin by hydrogen peroxide did show depolymerization of samples, but 

this may have been due primarily to thermal effects. Peroxide reactions resulted in excessive 

ring-opening which in turn allowed a large amount of condensation and an actual increase in 

MW and a loss of solubilized material due to filtration of condensed material. Additionally, 

the lignin in basic and acidic solutions showed a very noticeable buffering effect.  

Subcritical water treatment of lignin samples resulted in a good mass balance for 

depolymerized materials in the liquid fraction; the extent of degradation was found to be 

more extensive than thought when looking at the GPC profiles. 
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CHAPTER I. Introduction 

I.1. Significance of Lignin and Lignin Derivatives 

Lignin, a plant component that constitutes the most common natural polymer 

containing an aromatic network, has been of interest in terms of chemical properties since 

the mid nineteenth century; early work centered on its structure and reactions.1 Although 

many functional groups and linkages are known, the exact structures of natural lignin and 

technical lignins (byproducts of lignocellulosic refineries) are still not known, and research 

continues on lignin characterization.2    

With the advent of papermaking mills, interest in lignin as a waste material that 

could be industrially utilized in the early twentieth century resulted in simple applications, 

with lignin used as a dispersive, tanning agent, adhesive and as a source of vanillin. By 

1970, interest had turned to possible higher level uses for lignin.1 Lignin was perceived as a 

compound which could be transformed into biodegradable products, as well as 

depolymerized into phenols for the chemical industry if separation into monomer species, 

e.g. containing one aromatic ring, from a complex crosslinked matrix could be 

accomplished.3   

Lignin production is plentiful enough to serve as an industrial feedstock, and 

sources estimate that production could be increased.4 Worldwide production of lignin was 

estimated at 60 million tons a year in 2006.5 U.S. production of pulp at 40% of world total 

(in 2012)6 allows an estimation of U.S. lignin at about 24 million tons at about the same 

time.7 Thus lignin production in the U.S. is greater than the estimated 3.4 million tons of 

electronic waste8 and 10.5 million tons of plastics9 produced in the U.S., out of a total of 

260 million tons of municipal waste dumped per year.10  
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I.2. Sources of Technical Lignins 

The main source of lignin as waste is from the papermaking industry, although 

some lignin waste also emanates from liquid-fuel biorefineries. The majority of 

papermaking operations in the U.S. use the kraft delignification process or “sulfate 

process,” which relies on the use of sodium hydroxide and sodium sulfide.11 A less 

common delignification process in the U.S. produces lignosulfonates as a side product of 

papermaking; the reaction combines sulfur dioxide and hydrogen sulfite with wood in the 

“sulfite process.” Both processes produce sulfur-containing lignin, although sulfur content 

in kraft lignin is less than 3%, while lignosulfonates contain up to 8% sulfur.6 Currently, 

low-grade applications and combustion constitute the major uses for the sulfur lignins.12  

Most papermaking and biofuel operations combust lignin byproducts for energy13  

and the amounts of lignin consumed are not well documented. Kraft lignin, with a higher 

energy content by weight than carbohydrates, is usually used on site at paper mills to fuel 

the mill itself.  After wood residues are pulped by a chemical mix called white liquor and 

heated, cellulose and hemicellulose are separated as the main products for paper making, 

while lignin remains in a waste solution called black liquor. After a partial evaporation 

process, the liquor consists of 80% solids, but is conventionally burned in this liquid form 

in a kraft recovery boiler, which provides steam energy to the mill and also allows recovery 

of several pulping chemicals.14  

Low-grade applications other than combustion are almost exclusively limited to 

lignosulfonates and include its continued utilization in low-grade applications, but it is also 

found more recently  as a component in ceramics, dyes, drywall, and pesticides, usually as 
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an emulsifier.15 Lignosulfonates have also been successfully used as dust reducers on 

unpaved roads and as a binder in particle board.16  

Interesting uses for lignosulfonates have also been found in the agriculture field as 

binders in animal feed pellets, and there has been some success in using lignin as an outside 

protective layer for slow-release fertilizers,17 especially if combined with calcium-

containing compounds.18 Lignosulfonates have been used as matrices for chelating 

micronutrients,19 and some of these materials are sold commercially, although there are few 

published studies on the testing of the lignosulfonate-micronutrient complexes.  N-Carrying 

fertilizers composed mainly of lignosulfonates, through the processes of ammonization and 

ammoniation of lignin, have been found to be beneficial to plants in at least one study.20 

Non-sulfur lignins are also extant: (1) soda lignin is produced from biomaterial 

treated with NaOH alone, (2) Klason lignin results from processing wood with sulfuric acid 

to solubilize the cellulose, (3) while cellulolytic enzyme lignin is obtained from wood 

treatment with carbohydrate-digesting enzymes. Milled wood lignin is produced by 

mechanical grinding by ball mill followed by extraction with a dioxane/water solvent.21  

Organosolv lignin is produced through wood treatment with an aqueous organic solvent at 

140 °C to 220 °C, and has the advantage of recovery of the solvent through distillation.6  

Isolation processes for lignin (from lignocellulosic biomass) are sumarized in Table 

1, which also lists basic effects on lignin introduced by these treatments.  Molecular weight 

(MW) as number-average molecular weight (Mn) and weight-average molecular weight 

(Mw) are also included, as well as the polydispersity index (PI), defined as Mw/Mn, an 

indication of how wide the distribution in molecular sizes exists within that type of lignin, 

post processing.   
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Table 1. General delignification process descriptions and Mn, Mw values for four types of technical 

lignins.  

Technical Lignin 
Production/References 

Kraft lignin Sulfonate lignin Soda alkaline lignin Organosolv lignin 

     

Process name Sulfate Sulfite  Soda (alkaline 
hydrolysis) 

Organosolv 

Process agents NaOH, Na₂S metal sulfite, SO₂,  NaOH  Organics: methanol, 
ethanol, acetic acid, 
formic acid (acid 
catalyst) 

Process description15, 

22,23  
High pH (basic), 150-
170 °C, ether bonds 
cleaved, some 
condensation, lignin 
precipitated at pH 5 - 
7.5 

Hydroxyl groups 
sulfonated, lignin is 
solubilized; 140 - 160 
°C, pH 1.5–2.0; ether 
bonds cleaved, benzyl 
carbocations formed. 

Primarily non-wood 
biomass used; placed 
in pressurized 
reactor at 140–70 °C 
with about 15 wt% 
alkali base (usually 
NaOH) 

Cleavage of ether 
bonds resulting in 
small MW species 
enables solubilization; 
90 - 220 °C depending 
on source, ethanol (if 
used) 25 - 75% (v/v) 

Chemical 
characterization15,24   

Sulfur content 1- 2 
wt% as thiols; 
hydrophobic; C=C 
bonds, fewer ether 
bonds, fewer 
methoxy groups 

Highly crosslinked 
product (carbocation-

 electrons 
attraction), 5 wt% 
sulfur as sulfonate 

groups (SO₃-), 
preserving solubility 

High carboxylic acid 
content, very 
dispersed, must be 
heated to coagulate. 
No sulfur, very pure 
(no hemicellulose) 

Smaller MW, higher 
purity, hydrophobic, 
no sulfur 

Mn (g mol-1)15   Softwood 3000 Not available Wheat straw 1700 Hardwood 800 

Mw (g mol-1)22   1000–3000 20,000–50,000 800–3000 500–4000 

Polydispersity  
Index (PI) (g mol-1)22 
(Mw/Mn) 

2.5–3.5 6–8 2.5–3.5 1.3–4.0 

 

 Additional details of technical lignin processing were necessary for GPC method 

development (Section I.C.) and interpretation of results of molecular weight (MW) 

distribution. Parameters of processing are often supplied by manufacturers, with more or 

less detail.  

 The kraft process, as indicated in Table 1, utilizes NaOH and Na2S in a heated 

solution.  This method dissolves lignin in a highly alkaline solution; if kraft lignin is not 

further treated and is dried, it has a pH of 8-10 if redissolved.25,26  
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Alkaline or soda lignin, as indicated, involves use of NaOH or another strong base, 

and produces a sulfur-free lignin. Protobind 1000 ™ (GreenValue, Granit, Switzerland) is a 

mixed wheat straw/Sarkanda grass lignin processed by NaOH, which guarantees a product 

with a minimum of 90% lignin, so that cellulose and hemicellulose are still present (< 4%), 

although there is no sulfur present.27,28  

Occasionally a product marketed as “alkali or alkaline lignin” contains sulfur or is 

listed as “kraft lignin.”  “Alkaline lignin” sold by TCI America (Portland, OR) has a stated 

pH of 8- 10, but also contains 20-29% sulfonate in the anhydrous form.29 Sigma Aldrich, 

(St. Louis, MO) sells a “low sulfonate alkali (kraft) lignin” (product # 471003) with sulfur 

level specified as < 3.6% (at 3% water content) and a pH of 10 – 11. Sigma Aldrich also 

markets an “alkali (kraft) lignin” (product # 370959) with a pH of 5.5 – 7.5 and an 

unspecified sulfur content (at 10% water content.30 The pH value of 5.5 – 7.5 reflects that 

fact that alkali lignin is typically retrieved from black liquor, the original alkaline solution, 

through acidification and precipitation.   

Indulin AT lignin, distributed until recently by Meadvestvaco, Inc., and now 

supplied by Ingevity, Inc. (Charleston, NC), is an acidified kraft pine lignin produced as a 

byproduct of the paper industry.31 The acid hydrolysis process removes sodium and 

hemicellulose, although sulfur remains intact.32 The pH of indulin AT lignin (5–7) is 

slightly lower than that of alkali kraft lignin.  Indulin C, also marketed by Ingevity, Inc., is 

an unsulfonated kraft lignin, advertised by the company as highly purified and highly 

functionalized in carboxylic acids as well as aliphatic and aromatic hydroxyl groups, with 

an alkaline pH of 9 –10.  
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Lignosulfonate lignin is produced during delignification processes in which 

primarily -O-4’ ether bonds are cleaved by sulfurous acid (formed from SO2 addition to 

the aqueous solution used in the sulfite process), where proton combines with a hydroxyl 

group removed from lignin to form water, and the remaining bisulfite group bonds to the 

lignin at the residual carbocation site to produce a sulfonate. The process may also use a 

sulfite salt of Ca, Mg, Na, Al or NH4 along with, or in place of, sulfurous acid.  The sulfite 

pulping reaction results in a higher percentage of sulfur, 3.5–8%, compared to alkali lignin, 

which is typically listed as 1–3%. The presence of sulfonate groups makes this type of 

lignin water-soluble.33 

A lignosulfonate lignin used in this study is produced by Borregaard Lignotech 

(Sarpsborg, Norway). Aro et al. stated that the typical pH of a sulfite process (and the lignin 

produced therein) as 1–5, although a neutralizing process entails a pH of 4 –7.  A 

commercial site listed its dark brown lignosulfonate product which contains sulfur as a 

“grade three” lignosulfonate, with a pH of 4 –7;34 however, additional lignosulfonate 

products had a variety of pH levels dependent upon the processing parameters enlisted. An 

additional product by Lignotech, marketed as Lignotech D-2495 (CAS 8061-53-8 for 

ammonium version and 8061-51-6 for the sodium version) is lighter in color than the dark 

brown lignosulfonate product, and has a pH listed in a Lignotech company missive as being 

between 4 – 6.5. The sulfur content is 6.8% and it is listed as an “ammonium/sodium 

lignosulfonate powder for use as a general dispersant or binder.” 

Dealkaline lignin is produced through dealkalization of black liquor, a solution of 

solubilized lignin produced during the papermaking process. TCI America (Portland, OR) 

describes dealkaline lignin marketed by their company as starting out as sodium 
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lignosulfonate (TCI product # L0098) which is subjected to desulfonation (partial), 

oxidation, hydrolysis and demethylation. The result is a lignin which still retains sulfate (10 

– 20% based on anhydrous mass) and has a pH of 3 – 4. The TCI dealkaline lignin (TCI 

product # L0045) is then used as a base to produce TCI alkaline lignin (TCI product # 

L0082) by adjusting pH up to 8 – 10.  

 

I.3. Chemical Structure of Lignin 

The exact structure of native lignin and technical lignins (industrial derivatives of 

lignin) has been elusive, although several early studies have provided evidence as to many 

of the functional groups and linkages within the crosslinked mass of lignin; researchers 

included Klason (1898, lignosulfonates),35 Erdtman (1933, phenol and coniferyl alcohol 

reactivity),36 Lange (1944, spruce lignin),37 and Freudenberg (1965, spruce lignin),38 as 

well as Adler (1977, numerous wood types).39 More advanced instrumental techniques have 

been utilized since the 1990s; researchers who pioneered instrumental analysis of lignin 

from the 1950s to 1990s include Goldschmid (UV-Vis),40 Hergert (FTIR),41 Lundquist 

(NMR),42 and Gellerstedt (SEC).43 Simulation programs are now validated with HSQC-

NMR spectra of compounds with specific functional groups and linkages.44 It is best to 

recall, however, that lignin structure, particularly of technical lignins, can vary widely, 

depending on the source of lignin (feedstock), the isolation process used to obtain the 

lignin, and the preparation for analytical studies. 

Lignin consists of three basic phenylpropanoid (monolignol) units of p-coumaryl 

alcohol, coniferyl alcohol, and sinapyl alcohol. Once linked together by several different 

linkages, the monolignols become p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) 
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units, respectively (see Table 2 for structures).45 The lignin network forms randomly within 

the plant cell wall and serves as support and as a barrier to outside attack. Percentages of 

compositional lignin (as opposed to cellulose and hemicellulose) and percentages of H, G 

and S units for hardwoods, softwoods and herbaceous plants are shown in Table 2.  

 

Table 2. Softwood, hardwood and herbaceous plant composition as percentages of cellulose, 

hemicellulose and lignin,46 as well as H, G, S unit percentages.47  

 

                                          
48 

  

 
OH

OH

OH

OH

OH

OH
OH

OH

OO

OH O

O

O

n  

 

OH

OH

OH

O

OH

OOH

O

OOH
OH

O

O

O

O

O

O

n  

 

OH

O

O

O O

OH  

   OH   

O

OH  

O O

OH  

Biomass Cellulose 
(%) 

Hemicellulose 
(%) 

Lignin 
(%) 

Hydroxy- 
phenyl (H) 

Guaiacyl (G) Syringyl (S) 

Softwoods 33 - 42 22 - 40 27 - 32 < 5 >95 0 

Hardwoods 38 - 51 17 - 38 21 - 31 0 - 8 25 -50 46 -75 

Herbaceous plants 0 – 40 20 - 50 25 -95 5 - 33 33 – 80 20 – 54 

 

 

Eight main linkage groups are illustrated in Figure 1.  Other linkages also occur, but 

are found in low percentages. Among the eight types listed, the -O-4’ linkage is by far the 

most important, constituting 43 – 84% of the linkages in trees and plants. This is followed 

by the -5’ bond which ranges from 3 – 12%, and is quite a bit less abundant.  The other 

linkages are less abundant than the -5’ bond. 

 



9 

 

Figure 1. Major linkage groups in lignin with outlines of the exact linkages. Figures based on the 

data by Doherty et al.15  

 

 

An illustration of the -O-4’ ether bond is shown in Figure 2, with , , and  carbon 

positions in relation to the aromatic ring and numbering for both rings in relation to the bond. 
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Figure 2. A section of lignin with two aromatic rings, showing the -O-4’ ether bond with ring 

numbering and carbon designations. 

 

 

The percentages of each linkage in hardwoods, softwoods and plants differ according to the 

source.  Table 3 shows linkage percentages presented in a study by Rinaldi et al.49 

Table 3.  Lignin linkage occurrence by percentage in softwoods, hardwoods and plants,15 ‘nd’ 

denotes ‘not determined.’ 

 

Biomass % -O-4'  % 5-5' % -5' % 4-O-5' % - 1'   -O-4' % -' 

Softwoods 43 - 50 5 - 7 9 - 12 4 1 - 9 5 - 7 2 - 6 

Hardwoods 50 - 65 < 1 3 - 11 6 - 7 1 - 7 < 1 3 - 12 

Herbaceous plants 74 - 84 nd 5 - 11 nd nd nd 1 - 7 

 

A study by Constant et al. determined the -linkages and H, G, S content in 

technical lignins by combined FTIR, pyrolysis-GC-MS and 2D HSQC-NMR analyses, as 

shown in Table 4;50 note that the occurrence of linkages and monolignol groups are 

reported as number per 100 aromatic groups. This gives a good insight into relative linkage 

and monolignol content for several technical lignins. 
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Table 4. Number of linkages and monolignol units per 100 aromatic rings for several technical 

lignins.50  

 

Technical lignin -O-4' -5' - ’ H G S 

Indulin kraft 6.1 0.3 1 3 97 0 

Soda 3.4 0 0.7 11 39 50 

Organosolv Alcell 5.3 0.8 2.8 0 37 63 

  

The linkage most often cleaved is the -O-4’ bond, which constitutes 43 - 84% of lignin 

linkages in trees and plants, but breakdown does not necessarily produce monomers as 

products.  However, the low bond dissociation energy of the -O-4’ bond makes it a primary 

target, followed by other ether bonds.  Carbon-carbon bond energies are higher and require 

typically high temperatures or catalysts in order for bond disruption to take place. Bond 

dissociation energies of several lignin linkages are listed in Table 5; Parthasarathi calculated 

bond energies using DFT theory -based M06-2X hybrid exchange-correlation functional and 

the 6-311++G(d,p) Gaussian basis set.51 Values supplied by Huang et al. were theoretically 

calculated through computational simulation by using the density functional theory basis set 

B3P86/6-31G(d,p).52  

 

Table 5. Bond dissociation energies (kcal/mol) for common lignin linkages. *The -1’linkage 

reported here for the Parthasarathi et al. study was based on their C - 1' bond dissociation energy.51  

 

Bond dissociation 
energies 
(kcal/mole)  

-O-4' 5-5' -5' 4-O-5' - 1'   -O-4' 

Bond in linkage (C - O) (5 - 5')  (4 - O) (C - 1') (C - O) 
Parthasarathi et al. 
(2010)51  

65 115 130 81 70* 53 

Huang et al.  
(2015)52  

50  116  
 

68  83 44 

 

It is of note that the values provided by the computer simulations were based on the 

actual chemical bond, not the linkage group. Beta and alpha carbon linkages to oxygen in 
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the ether links had lower dissociation energies than the connecting oxygen bond to a carbon 

on benzene, the other half of the ether linkages.  This established where the cleavage occurs 

in the ether linkage groups.  Parthasarathi et al. determined average bond energies for a 

variety of compounds.51 The Huang et al. study averaged the values for 63 lignin model 

compounds and the average values are reported here in Table 5.52 Simulations for a number 

of compounds showed that methoxy groups had little influence on the bond energy if they 

occurred on the ring connected to the aliphatic carbon in the ether bonds, but did have 

influence if they occurred on the ring connected to the oxygen in the ether bond.  

Additionally, substituents located on aliphatic carbons influenced the ether bonds, 

particularly carbonyl groups which lowered the energy of the bond, while substituents on 

the aromatic rings had little influence.52  

There are a number of proposed structures for lignin, although the overall structure 

may differ somewhat depending on the wood or plant source for the lignin. Two examples 

are shown in Figure 3, where 3a represents lignin with bond angles that are most likely, 

while 3b shows a version where linkages are emphasized. 

 

  (a)    
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  (b) 

Figure 3. (a) Lignin (general),53 (b) European Beech (hardwood) lignin.54  

 

 

Kraft lignin, the primary lignin investigated in this study, has been studied 

extensively for structure, linkages and reactions; it has been characterized fairly well by 

researchers such as Marton (1971, softwood kraft lignin),55 Gierer (1985; kraft, soda and 

sulfite lignins),56 and Sjostrom (1993, many applications),57 and others. Several researchers 

have proposed possible structures for kraft lignin (Figure 4).   
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  (a)  

  (b)   

Figure 4. Proposed structures of kraft lignin by (a) Rak et al.58 and (b) Zakzeski et al.59  

 

The main differences between unadulterated lignin and kraft technical lignin are: (1) 

a reduction in -O-4’ bonds, (2) an increase in free phenolic OH groups, (3) fewer methoxy 

groups, (4) increased number of C = C bonds and (5) added sulfur bonded to aliphatic 

carbon (1-3%).24 A study by Xue et al. monitored the incidence of eucalyptus (hardwood) 

lignin after one hour and five hours of soda (alkaline) processing, closely related to kraft 

processing (alkaline NaOH used as depolymerization agent, without Na2S) with results 

shown in Table 6. The beta linkages clearly decline during the soda process and 

demethoxylation is indicated by the decreasing S/G ratio.60 
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Table 6. Semiquantitative estimation of relative content of interunit linkages in lignin during soda 

processing, using 2D HSQC-NMR spectra.60  

 

Kraft processing % -O-4'  % - 5' % -' S/G ratio 

1 hour processing 23.3 1.0 10.4 1.8 

5 hours processing 16.4 0.4 7.1 1.6 

 

Major chemical reactions of the kraft process have been outlined by a number of 

researchers.61, 62 Functional groups can be added to the structure of lignin through attack by 

the OH- and/or HS- ions. These include carbon-carbon double bonds between the alpha and 

beta carbons (or beta and gamma carbons) to the phenol ring as well as sulfur addition to 

the alpha carbon.59  

 Changes produced in technical lignins by isolation processes are significant for 

strategies to further depolymerize the lignin and for its reactivity and use in industrial 

applications. Increase in OH groups can affect viability as a possible fuel source or 

reactivity in composites, while increased C=C groups also affect reactivity. 

Demethoxylation during the process leads to increased bonding sites, although it may 

eliminate certain monomers from being available upon depolymerization. The content of 

sulfur in kraft and lignosulfonate lignins limits the uses of either, and the deleterious effect 

of sulfur on catalysts may limit certain forms of depolymerization. molecular weight is a 

particularly crucial aspect of lignin, especially if the polydispersity index is large. For 

industrial applications, a limited range of molecular weight is generally required, while in 

laboratory applications it is an indication of the effectiveness of a depolymerization 

method. 
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I.4. Molecular Weight Determination of Lignin 

I.4.1. Overview of Methods Used to Determine Molecular Weight 

I.4.1.1 Non-SEC based methods 

Several methods are currently used for the determination of molecular weight of 

lignin samples; the most common include evaluation by osmometry, viscometry, end-group 

analysis, light scattering and size-exclusion chromatography (SEC), which includes gel 

permeation chromatography (GPC) and gel filtration chromatography (GFC).62, 63 Methods 

can be absolute or secondary; the former does not require calibration, while the latter 

method requires calibration with standards. Osmometry, viscometry and light scattering are 

absolute methods, which yield an average molecular weight for a sample.  If molecular 

weight distribution is needed, these methods have to be combined with SEC, typically as 

gel permeation chromatography (GPC), which is a secondary, or inferred method.  Light 

scattering is absolute only if SEC is not used in conjunction with it.62, 63  

Of the main methods of MW determination, end-group analysis is possible only if 

end-groups are able to be chemically analyzed, and the method also loses accuracy with the 

presence of long chain lengths in the sample.62 Vapor-pressure osmometry (VPO), 

dependent upon colligative properties (concentration) of the solution,64 is considered to be 

effective for molecules with weights less than 25,000 g/mol.63 Cryoscopy, a more unusual 

method of MW determination, is also a method dependent on colligative properties 

(concentration) of the solution; both osmometry and cryoscopic methods are detrimentally 

influenced by lignin-solvent associations.64 However, osmometry, by use of osmotic 
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pressure calculations, can give important information on whether molecules are aggregated 

or homogeneous in solution.62  

Viscometric methods for determining MW are used widely in industry.62 Capillary 

viscometry works on the assumption that longer chains are proportional to viscosity; the 

flow time of the solution is compared to the flow time of the solvent alone.  As long as 

solution concentration is low and similar to solvent density, the flow time ratio is assumed 

to be equal to the viscosity ratio. Intrinsic viscosity (the inverse of molecular density) and 

the Mark-Houwink equation are used to determine MW of the sample. 

Static light scattering (SLS) with a viscometer allows calculation of intrinsic 

viscosity which relates molecular size to MW, although the relationship is not always in 

constant proportion.72 Some software packages are capable of backcalculating MW when 

using differential viscometry; elution volume and intrinsic viscosity are measured directly 

and hydration response is established with standards.65 

Molecular size is not to be confused with molecular weight; however, the 

measurements of particles referred to as hydrodynamic radius and radius of gyration are 

associated in some cases with molecular weight measurements.  Common methods for 

particle size analysis include differential static light scattering (DSLS), multi-angle light-

scattering (MALS) and SLS/intrinsic viscosity, which are all light-scattering methods.  SLS 

molecular size is based on the radius of gyration (Rg), also called root-mean-square radius. 

Hydrodynamic radius (HR) is based on the comparison of a sphere that diffuses at the same 

rate as the sample molecule and is calculated from intrinsic viscosity or DLS.  DLS 

calculates diffusion velocities from scattered light intensity, gathered in real time (typically 
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for batch modes).  The diffusion velocities, when entered into the Stokes-Einstein equation, 

yield particles sizes.63 

Light scattering is an absolute method of Mw determination (average MW); 

however, SEC is needed if a MW distribution is desired. If calibration is required, the 

method is no longer an absolute method. A light source, typically a laser source, is shone 

on the sample, resulting in absorption and re-emission as scattered light (emitted in many 

directions and not as a coherent beam). Scattered light intensity is detected and measured 

against the incident light intensity.  The incident light can be shone from several angles, 

which is reflected in the method name:  low-angle light scattering (LALS), right-angle light 

scattering (RALS) and multi-angle light scattering. The latter method is the most used 

among these methods.62 

Light scattering is also categorized by how light intensity is processed; static light-

scattering measures average intensity over a defined time period, while dynamic light 

scattering (DLS) measures intensity fluctuation over very short time intervals. SLS is the 

only one of the two methods that is usually used with SEC because the acquisition time is 

manageable. Light scattering can also be combined with a viscometer.63 

RALS works on the assumption that intensity from scattered light is equal from all 

directions, which is not well suited to anisotropic scatterers (substances which produce 

varied intensities in different directions). LALS attempts to correct for anisotropic 

scattering but does not detect well for smaller molecules; RALS/LALS in combination are 

often used.  MALS is efficient for all molecules but does not work well for very small 

particles.63 
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I.4.1.2. SEC methodology and advantages/disadvantages 

Gel permeation chromatography (GPC) and gel filtration chromatography (GFC) 

are types of size exclusion chromatography (SEC), although some studies refer to GPC and 

SEC as being interchangeable terms.62, 66 Gel filtration chromatography (GFC) is a type of 

chromatography done via liquid chromatography (LC) with low pressure aqueous mobile 

phases and is used often for analysis of biological compounds,67 while synthetic polymers 

and plastics require an organic mobile phase and GPC customarily is used for these 

applications, also via LC.68 An advantage of SEC is the short analysis time, where flow rate 

can be set to enhance resolution and the amount of solvent used is minimal.  However, the 

rapidity of the method also leads to a loss of resolution, particularly for similar sized 

compounds. Resolution can be improved, however, with a larger volume column or several 

columns linked together.69  

GPC methodology employs a size exclusion principle to separate analyte particles 

principally on the basis of steric interaction with a microporous gel layer. Dissolution of the 

sample into an appropriate solvent (the mobile phase) is a preparative step for injection into 

a mobile phase; for GPC the solvent is organic and can include alcohols, ketones and esters, 

as well as solvents known to work well with lignin: moderately polar tetrahydrofuran 

(THF) and polar aprotic solvents dimethylformamide (DMF), dimethylacetamide (DMAc) 

and dimethyl sulfoxide (DMSO). Solvents sometimes used include hexane, diethyl ether, 

dioxane, dichloromethane and other related compounds, but these are discouraged due to 

safety and environmental concerns.70 
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 Subsequent elution (via LC pump pressure) of the mobile phase through a column 

lined with an adsorbent bed consisting of a gel material of varying pore sizes (stationary 

phase), prompts the size exclusion effect. This effect allows larger molecules (larger 

hydrodynamic radius) to elute first by bypassing small, more tortuous pathways which are 

traversed by smaller molecules. Column stationary phases consist of porous gel beads 

which are semipermeable; the gel can consist of polystyrene-divinylbenzene (PS-DVB), 

silica and other specialized phases. The range of pore sizes is well defined and the material 

must be stable, inert, and have a uniform particle and pore size for better resolution.69 

Columns can be analytical, primarily used for determination of molecular weight 

distribution, and preparatory, whereby separation of compounds is accomplished for 

separate collection. Ideally, separation is based solely on particle size and not on chemical 

interactions between molecules themselves or with the stationary phase.   

The elution is based on the retention of the particle within the pore pathways, but 

may also depend on “absorption” to the gel material coating the passageways; the attraction 

of the solute to the gel will produce a non-ideal situation where travel is slowed and/or 

material is retained. This is more likely to occur when solvents like DMF, which are at least 

somewhat hydrophilic, interact with PS-DVB gels.69 Equally undesirable are “association” 

effects where separate particles of the sample become bound together and give a falsely 

large particle weight. Lignin contains hydroxyl, carboxyl and ether groups, and can be 

susceptible to hydrogen bonding, stereoregular association (van der Waals attraction along 

well-ordered chains), and possibly charge transfer (electrostatic attraction); these can be 

difficult to manage in aqueous solutions.71 However, organic solvents/mixtures, particularly 
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THF/water, can be effective solubilization agents, minimizing interactions with 

biopolymers (and self-interaction).72  

In concentration detectors (RI, UV), signals are based on the fact that the analytes 

have been effectively separated on the column, tend to form a coil conformation, and 

produce a signal which has an intensity proportional to the concentration of particles of 

various sizes. The signal is temporally related to a “retention” time (or more appropriately, 

retention volume) of the particles.63, 67 

UV/Vis, refractive index (RI), viscosity and light scattering are common detectors, 

and can be used in combination for more accurate results.  The most effective detection of 

molecular weight combines a concentration detector (UV/Vis, RI) with a molar mass 

detector (viscometer, light scattering) in order to compare molecular weights determined in 

different ways, or at least to combine two concentration detectors.64, 73 

Solvents used with SEC can be categorized primarily as either aqueous (typically 

with buffers), for GFC analysis, or organic; the latter are varied and range from polar 

solvents such as DMF and DMSO to nonpolar organic solvents such as THF, chloroform or 

toluene.  Ovens on some LC models can heat columns and detectors to impose thermal 

conditioning, which decreases thermal fluctuation, which in turn may improve retention 

time and detector response consistency. Heating also decreases the viscosity of solvents and 

thus backpressure, particularly the very viscous such as trichlorobenzene.  Solubility of 

samples can be problematic, especially for samples with organic and polar components 

which vary with pH, such as lignin.  
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GPC columns are manufactured by several companies and typical stationary phases 

include polystyrene, poly(styrene-co-divinylbenzene), silica, or cross-linked poly(methyl 

methacrylate), with a vast array of pore sizes and column diameters.  The poly(styrene-co-

divinylbenzene) column is the most common as the absorptive properties towards 

commercial polymers is low.74 The specific arrangement is proprietary to the company, as 

are additional groups which act as deactivators or perform some other function related to a 

specific solute. 

Polymethacrylate-based stationary phases are usually used for aqueous mobile 

phases alone, while silica and polyimide-based columns are used for aqueous, nonpolar and 

polar organics, depending upon modifications. 

GPC does not evaluate molecular weight in an absolute sense and analysis of data 

requires that a calibration curve be constructed for the samples in a sequence run through 

the instrument.  The choice of calibration standards tends to be based on narrow-

distribution molecular weight standards which comprise a discrete range of molecular 

weights which are predicted to be represented in the sample.  Many standards chosen for 

calibration are commercially available and are designated by the Mp (molecular weight of 

the peak of a narrow distribution curve) of the standard.  

Once samples are analyzed within a sequence containing the standards, a calibration 

curve is made which relates log(Mp) vs retention volume in a linear equation, and unknown 

sample retention times yield a molecular weight by comparison to the curve.  The 

molecular weight resulting from the curve can be used to calculate several different types of 

molecular weights which depend on the mathematical operation performed; these include 
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Mn (number average), Mw (weight-average) and Mz (z or centrifuge-average) molecular 

weights as the most commonly calculated forms:75 

Mn = 
∑ 𝑁𝑖 𝑀𝑖

∑ 𝑁𝑖

                                                                                                    [1] 

Mw =  
∑ 𝑁𝑖 𝑀𝑖

2

∑ 𝑁𝑖𝑀𝑖
                                                                                                  [2]     

Mz = 
∑ 𝑁𝑖 𝑀𝑖

3

∑ 𝑁𝑖𝑀𝑖
2                                                                                                     [3]   

Mn, Mw and Mz appear on a symmetrically distributed, one-mode molecular weight 

profile in Figure 5. 

 

Figure 5. Placement of Mp, Mn, Mw, Mz and Mz+1 on a symmetrically distributed, one-mode 

molecular weight profile as molecular fraction vs molecular weight.75  

 

Although GPC is considered to be a powerful method of molecular weight 

determination, with a number of advantages, there are drawbacks, as pointed out in many 

studies, as well as gray areas in terms of standardization of the method. 
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Advantages of GPC have also been enumerated by numerous researcher, these 

include having a large range of solvents and columns available for many types of analytes, 

and a relative ease of use for many forms of the method. Others have pointed out that the 

signal depends on hydrodynamic size, which is dependent on the solvent and on the solute 

relationship to the standards, and is also dependent on interaction with the stationary phase, 

as well as on the solute conformation.62 Lange et al. described SEC as an effective method 

but believed that it had a number of problems stemming from solubility, standards selection 

and detector sensitivities.64 Industrial evaluators extolled GPC as a powerful technique for 

measuring MW distribution but recommended that light scattering and/or viscometry 

should be used in conjunction with it.63  

The need for derivatization of lignin is not a universally accepted idea,62,64 although 

several studies,65,76 -78 did perform some type of derivatization of lignin, particularly 

acetylation. Derivatization in this case is comprised of replacing active hydrogens (in OH 

groups) with an acetyl group, although silyl, alkyl, and acyl units, as well as others, could 

also be used.  Derivatization can be used to protect functional groups, make the solute 

visible to detectors, improve solubility or prevent bonding to a solvent or stationary phase.  

The most cited reason for acetylation of lignin, if mentioned, was to improve solubility in 

an organic solvent like THF.74, 83 However, validation of the method by determining MW 

by a different approach was not done by any of the studies. 65,76 -78 Asikkala et al. compared 

molar masses of the pure softwood kraft lignin to the same samples with acetic acid added 

to a solution, and found little difference in molar mass, but this experiment was not 

performed with acetylated lignins.78  
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Compared to results from a number of studies with acetylated kraft lignins, a study 

by Delado et al., also with acetylated softwood alkali kraft lignin, showed a Mw value of 

15375 g/mol,77 which was quite high in comparison to the more modest range of about 

4500 to 6500 g/mol for other studies,76,78 while a study by Chen and Li, which did not 

mention any derivatization at all, had a Mw of 19650 g/mol for kraft lignin (hardwood).79 

Due to the use of different feedstocks as well as lack of comparison to other methods, it is 

not clear whether acetylation produces any advantage in MW determination.  

Oberlechner et al. believed that there was some evidence that acetylation causes a 

loss of low MW particles and degradation of high MW molecules,62 while another 

researcher objected to the practice of derivatization because it led to structural changes in 

lignin.64 A study by Schmidl showed that non-derivatized lignin yielded results via GPC 

analysis similar to results yielded in studies which used acetylation; this was achieved by 

using the appropriate column and mobile phase.80  

Another facet of the derivatization debate was addressed by Asikkala et al., who 

suggested that acetylation protocols for GPC methods with styrene-DVB stationary phases 

and THF mobile phases are problematic in a number of studies because complete 

acetylation was difficult to achieve, thus leading the author to propose some sort of 

standardization.81 

On the other hand, Asikkala et al. found that derivatization could lead to better 

control of association and absorption effects. Polar associations were minimized in aqueous 

solutions by acetylating with acetic anhydride in pyridine, although the method required 

long reaction times. Asikkala et al. also investigated a method whereby acetyl bromide in 

glacial acetic acid was used as a derivatization agent in a THF mobile phase to minimize 
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association effects.  One of the advantages of this method was the short reaction time at 

room temperature. The authors contended that if association effects did not cause extensive 

distortion, analysis without derivatization could take place with the correct column and 

conditions.78 This aligned with findings in a study by Andrianova et al.81  

Although there is substantial evidence that acetylation can be avoided by 

developing a method with a suitable column and stationary phase, a number of studies 

employed this technique despite concerns that it may produce structural changes as well as 

association and absorption effects when used. Derivatization can involve several different 

agents, and acetylation methods themselves can vary considerably as well, making the 

process non uniform.   

Another area of debate is whether aqueous (GFC) or organic (GPC) mobile phases 

are best for MW analysis.  It is clear that aqueous phases have far more problems with 

association and absorption problems; Chen and Li found that pH had to be kept at 7 or 

above for aqueous phases. If pH was lower, absorption effect was enhanced, as was made 

clear by comparing peak areas at different pH values (when the solute is absorbed on the 

column, less of it elutes).  They believed that hydrogen bonding was responsible for the 

absorption between lignin and the stationary phase, which was polar.  However, solubility 

at around pH 7 was fine for lignosulfonates, but kraft lignins had to be dissolved in an 

aqueous phase of pH 12, which proved to be deleterious to the column.79  

Hydrogen bonding was also thought to be the reason for association (linking of 

solute molecules) between lignin solute particles by Glasser et al., although this was not 

directly linked to aqueous mobile phases.65 Asikkala contended that association effects 

occur with organic solvents as well as aqueous solvents, including DMF, DMSO, and 
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THF,78 although Schmidl found association problems common in polar solvents only.80 A 

study by Andrianova et al. found that glucose-divinlybenzene (GDVB) stationary phases in 

GPC columns created retention problems for PMMA standards and lignin in comparison to 

polystyrene divinylbenzene (PSDVB) stationary phases, probably due to hydroxyl group 

interaction between analyte and mobile phase.81  

Glasser et al. found that a low hydrodynamic volume for lignin, which was more 

compact and spherical, was optimized in THF; low hydrodynamic volume is nearer to true 

volume of the solute and is more likely to represent true molecular weight. This study used 

RI and differential viscometer detectors, and utilized Viscotec Unical 2.71 software to 

calculate hydrodynamic volumes from a hydrodynamic response established through 

standards used with the viscometer; the response was represented as a linear relationship 

between elution volume and hydrodynamic volume.65  

Additional dilemmas are due to the use of an aqueous mobile phase include ion 

exclusion (some components of the solute absorb to the mobile phase while others do not), 

ion exchange, and increased hydrodynamic volume- effects that tend to be minimal with 

organic mobile phases.  The latter problems are related to the polarity of the mobile and 

stationary phase and their attraction to polar components in lignin.  Chen and Li found that 

these secondary effects were minimized through control of ionic strength as relatively high 

ionic strengths (but not too high) helped to minimize the hydrodynamic volume and reduce 

absorption.79 Although the authors tried several ionic strength values in solution, these had 

varying effects, creating the impression that ionic strength would have to be carefully tested 

for each set of method parameters being used, making it difficult to standardize an aqueous 

approach.  
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Schmidl tested an aqueous mobile phase as well and was forced to institute a very 

high pH (13) when evaluating kraft and organosolv lignin in order to make them soluble. 

He found that a significant damage occurred to quartz cells, quartz windows and column 

fittings.80,82 Many columns do not tolerate high pH or even sudden changes in pH.82 

Overall, the resolution for average MW and retention times between lignin types was 

lacking and molecular weight values were well below low-angle laser light scattering 

(LALLS) measurements.  The study noted an increased spherical shape with increased 

ionic strength, leading to increased retention times, seemingly due to charge repulsion with 

the mobile phase.80   

Although GPC may avoid common pitfalls of GFC (absorption of analyte to polar 

stationary phase, association between analyte molecules, high pH and use of buffers), this 

version of molecular weight analysis is not without problems. Some researchers find 

derivatization time-consuming and also find that the eluents are very expensive.79  

Although he did not find aqueous mobile phases effective, Schmidl believed that 

solubility of lignin in THF was inconsistent, but also contended that varying amounts of 

water as a contaminant affected the results; he preferred VPO and LALLS detectors.80  

Andrianova et al., however, found that solubility was consistent for a THF:water 1:1 ratio, 

after which THF was added until water was < 10%, and that detection via DAD and ELSD 

yielded similar results.81  

Schmidl also used DMSO as an eluent, with LiBr present, on a Jordi Gel GBR 

(glucose-divinylbenzene stationary phase) column and found that absorption was not a 

problem due to the deactivated column, and that lignin association with DMSO was broken 
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up by the use of LiBr. However, different levels of LiBr produced a wide variation in 

results and LALLS values still differed from the DMSO molecular weights.80   

The question of which detector is most suitable is also of important consideration in 

GPC methodology.  As stated earlier, Mv (viscosity molecular weight) is not equal to Mw 

(weight-average molecular weight), although viscometry is commonly used in industry.  

Because of the preference for more exactitude in research, it is used primarily as a detector 

in line with other types of detectors.  Although viscometry and light-scattering detectors are 

considered to be more sensitive to MW than UV and RI detectors,73 viscometric detectors 

are also known to be more sensitive to high MW, while RI detectors are concentration 

dependent.74 

Last, but certainly not least, of the contentious issues associated with GPC is the 

question of appropriate calibration standards. For organic mobile phases these are typically 

polystyrene (PS) commercial standards, and for aqueous systems these are often some form 

of methacrylate. There is a concern that standards that do not have the same structure and 

conformity as lignin, including hydrodynamic volume, and thus will not behave similarly in 

the porous media of the column and may also be subject to interactions with the GPC 

environment that lignin does not experience. Properties such as branching and viscosity 

may also affect retention.  Lange et al. stated that PS standards produced error in MW 

calculations because of this, although the same study also considered the difference in 

estimated MW to not be substantial.64 A number of studies looked at MW determined 

through the use of low molecular weight lignins and commercial standards and found that 

results were nearly the same or differed very little.62,66 Thus, the widespread use of 

commercial standards is continued (and even promoted) in the interests of ease, availability 
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and standardization.64 Andrianova et al. showed that polymethyl methacrylate (PMMA) 

standards (with polar sites) and polystyrene (PS) together formed linear calibration curves 

when column, mobile phase and other method parameters were chosen carefully.81  

However, several studies have instituted unusual standards or methods of 

calibration that have achieved reliable results. Sameni et al. conducted an SEC investigation 

of indulin and kraft lignin by utilizing a column with a sulfonated styrene-DVB copolymer 

stationary phase, which tolerated pH levels of 7–13, and an alkaline mobile phase (0.1 M 

NaOH).90 Sodium polystyrene sulfonates were used as standards; Mn and Mw values were 

somewhat lower than for other studies investigating kraft lignin, but values varied widely 

for the reviewed kraft studies.83  

The choice of detector is less obvious, but practicality may dictate the continued 

popular use of UV/Vis and RI detectors, although there is some indication that light-

scattering will become commonplace, especially in combination with UV or RI, within the 

near future. LALLs and viscometric results for MW values are sometimes substantially 

higher than more conventional methods for one type of lignin but are similar to other light 

scattering methods for similar types of lignin.65,84 RDI methods, although not considered to 

be particularly sensitive, produced values which were very high for some types of lignins in 

one study.79 In inspecting a fair number of studies, a great deal of variability seems to exist 

for most detectors, although this may be due to interaction with other method parameters. 

Although the choice of detector is important, it appears that UV in conjunction with 

light scattering would seem to be quite powerful; however, UV detectors alone are often 

used in lignin studies as lignin absorbs well between 250 – 280 nm (Table 7). Perhaps of 

greater priority is the question of column and mobile phase choice.  Although aqueous 
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methods seem to be effective, fine-tuning is clearly necessary and results could vary with a 

change in column or detector.  Methods with organic mobile phases seem more robust and 

less dependent on changes in other method parameters, and clearly have very little trouble 

with stationary phase interactions or association, particularly with mobile phases with little 

or no polarity.   

The main trouble with organic solvents is the question of solubility and a possible 

inconsistency in the types of particles that achieve dissolution.  Avoidance of derivatization 

is applaudable since there exists a shared opinion amongst many that structural changes in 

lignin do occur, but practically speaking it may be of more benefit to acetylate and possibly 

include higher MW particles that might not otherwise be included.   

GPC has been said to be best for determining relative molecular weights, although it 

appears that absolute methods of molecular weight evaluation also may be linked to and 

defined by the surrounding parameters of the method used. A number of studies utilizing 

GPC or GFC to investigate technical lignins are outlined in terms of methodologies and 

results for molecular weights in Table 7.  
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Table 7. Molecular weight and polydispersity comparison by lignin source and GPC method, for indulin AT, indulin C, lignosulfonate, soda pulping 

and kraft alkaline lignins. (The abbreviation r.t. is used for room temperature). 

Lignin type Mn Mw PI Lignin Source (and if 
acetylated) 

Lignin 
Concentration 

Column (GPC) Mobile 
phase 

Flow rate Volume 
injected 

Temp. Detector Standards References 

Kraft 
alkaline 

866 2565 12.34 Kraft black liquor, 
acidified to pH 2 

 PSS MCX column-
(sulfonated styrene-
divinylbenzene 
copolymer) 

0.1 M NaOH 
solution 

 25 µL r.t. UV, 280 nm. sodium 
polystyrene 
sulfonates  

Sameni et al. 
(2016)83  

  1598 15375 9.62 Pine alkali kraft, 
precip. at pH 3, 
acetylated 

0.2% (wt/v) (2 
mg/mL) 

Ultrastyragel (100, 
500, 1000 Å) in 
series 

THF 1 mL/min 100 µL  Photodiode 
array (PDA) 

PS Delgado et al. 
(2019)77  

  1000 4500 4.50 Filtered and precip. 
black liquor from kraft 
process; acetylated 

 Styragel HR2, HR1, 
Ultrastyragel 104 Å 
in series 

THF 0.8 mL/min   410 RI  PS Brodin et al. 
(2009)76 

  1000 3300 3.30 Hardwood kraft- 
derivatized with acetic 
anhydride in pyridine  

1 mg/mL Styragel HR-5E and 
Styragel HR-1, in 
series 

THF 0.5 mL/min   UV, 280 nm., 
RI 

PS Asikkala et al. 
(2012)78  

  1000 3900 3.90 Hardwood kraft- 
derivatized with acetyl 
bromide in acetic acid 

1 mg/mL Styragel HR-5E and 
Styragel HR-1, in 
series 

THF 0.5 mL/min   UV, 280 nm., 
RI 

PS Asikkala et al. 
(2012)78  

  7523 19650 2.70 Kraft Birch-from 
Tianjin Institute 

3 mg/mL; filt 
0.45 µm. 

Ultrahydrogel 250 
and 1000 columns 

0.01 M 
NaOH/aqueo
us, pH 10-12 

0.6 mL/min 100 µL  Differential 
refractometer 

Pullulan, PEG Chen and Li 
(2000)79  

  1510 2330 1.54 Alkaline-extracted 
lignin from ball-milled 
Poplar. 

2 mg/mL Plgel mixed-B, 7.5 
mm ID (styrene-DVB 
copolymer and 
derivatives) 

THF 1 mL/min  r.t. Unspecified Mono-
disperse PS 

Yuan et al. 
(2013)85  

 GPC: 
1900 
Indulin 
AT; 

1630 
Alkali 
kraft 

GPC: 
3060 
Indulin 
AT; 
2740 
Alkali 
kraft 

1.6 
Indulin 
AT; 

1.68 
Alkali 
kraft 

Indulin AT, alkali kraft 
lignin (Meadwestvaco, 
Inc., Sigma); some 
samples acetylated for 
comparison 

 1 - 10 mg/mL 
(0.1 - 1%)  
 

Jordi Gel GBR, 
PLgel 1000 or 500 Å 

THF, 
unstabilized 

1.0 mL/min 100 L r.t. UV, DAD 
detector 220 – 
750 nm. 

PS, PMMA Andrianova et 
al. (2018)81  

  313 597 1.91 TCI kraft alkaline 2.5 mg/mL Plgel Minimix-D THF 0.3 mL/min 30 µL r.t. UV, 250 nm PS, PMMA This study-                          
TCI alkaline 
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  897 6624 7.39 Sigma kraft alkali 2.5 mg/mL Plgel Minimix-D THF 0.3 mL/min 30 µL r.t. UV, 250 nm PS, PMMA This study-                 
Sigma alkali 

  1062 4542 4.28   2.5 mg/mL Plgel Minimix-D THF 0.3 mL/min 30 µL r.t. UV, 250 nm PS, PMMA This study-                 
Denmark kraft 

Indulin AT 2200 19800 9.00 Commercial lignin, 
Meadwestvaco, Inc.; 
acetylated. 

3- 6 mg/mL Three Ultrastyragel 
columns in series 
(styrene-
divinylbenzene 
copolymer) 

THF 1 mL/min 
  

 Differential 
Viscometer in 
series with RI 

PS Glasser et al. 
(1993)65  

  1191 6096 5.12 Commercial, 
Meadwestvaco, Inc. 

 
PSS MCX column-
(sulfonated styrene-
divinylbenzene 
copolymer) 

0.1 M NaOH 
solution 

 
25 µL r.t. UV, 280 nm. sodium 

polystyrene 
sulfonates  

Sameni et al. 
(2016)83  

  1700 8000 4.70 Softwood kraft- 
derivatized with acetyl 
bromide in acetic acid 

1 mg/mL Styragel HR-5E and 
Styragel HR-1, 
columns in series  

THF 0.5 mL/min 
  

UV, 280 nm., 
RI 

PS Asikkala et al. 
(2012)78  

  1600 6500 4.10 Softwood kraft- 
derivatized with acetic 
anhydride in pyridine  

1 mg/mL Styragel HR-5E and 
Styragel HR-1, 
columns in series 

THF 0.5 mL/min 
  

UV, 280 nm., 
RI 

PS Asikkala et al. 
(2012)78  

  897 6568 7.39 Commercial lignin, 
Meadwestvaco, Inc.  

2.5 mg/mL Plgel Minimix-D 
(styrene-DVB 
copolymer and 
derivatives) 

THF 0.3 mL/min 30 µL r.t. UV, 250 nm PS, PMMA This study 

Indulin  1300 3700 2.90 Commercial lignin, 
Meadwestvaco, Inc.; 
acetylated. 

3- 6 mg/mL Three Ultrastyragel 
columns in series 

THF 1 mL/min 
  

Viscotek 
Differential 
Viscometer in 
series with RI 

PS Glasser et al. 
(1993)65  

  587 3137 5.35 Commercial lignin, 
Meadwestvaco, Inc.  

2.5 mg/mL Plgel Minimix-D THF 0.3 mL/min 30 µL r.t. UV, 250 nm PS, PMMA This study-                
indulin C 

Soda 
pulping 

 
8000 4.80 Lignin ext'd from 

straw by NaOH; 
precip'd at pH 1.6. 

1 mg/mL Two PolarGel-M 
columns (styrene-
DVB and derivatives) 

DMSO with 
0.1% (w/w) 
LiBr 

1 mL/min 100 µL 60 °C UV; RI;  
viscosimetric 
detector; two-
angle LSD 

polyethylene
–glycol, 
polyethylene 
oxide, glucose 

Wormeyer et 
al. (2011)86  
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  1084 5008 4.62 Commercial non-
wood soda lignin, 
GreenValue 

 
PSS MCX column-
(sulfonated styrene-
divinylbenzene 
copolymer) 

0.1 M NaOH 
solution 

 
25 µL r.t. UV, 280 nm. sodium 

polystyrene 
sulfonates  

Sameni et al. 
(2016)83                     
(Protobind) 

  825 2563 3.11 Protobind 1000; 
GreenValue 

2.5 mg/mL Plgel Minimix-D THF 0.3 mL/min 30 µL r.t. UV, 250 nm PS, PMMA This study-                      
Comm. non-
wood soda 
lignin 

Lignosulfon
ates 

7200 64000 8.80 Borregaard Lignotech- 
Na sulfonate spruce 

2 - 5 mg/mL; 
filt 0.45 µm. 

Jordi (glucose-DVB), 
10000 Ǻ, 500 x 10 
mm 

9% DMSO/ 
aqueous (+ 
SDS) PH adj. 
to 10.5.  

1 mL/min 200 µL 60 °C Dawn-F 
MALLS (fluor. 
filter); RI. 

PSS and poly-
saccharide 

Fredheim et 
al. (2002)84  

  3441 7082 2.05 Commercial (China) 
Na lignosulfonate 

3 mg/mL; filt 
0.45 µm. 

Ultrahydrogel 250 
and 1000 columns 
(hydroxylated 
polymethacrylate) 

0.1 M 
NaNO3/aque
ous, pH 7 

0.6 mL/min 100 µL 
 

Differential 
refractometer.  

Pullulan, PEG Chen and Li 
(2000)79  

  241 1952 8.11 Ginn Mineral Tech. 2.5 mg/mL Plgel Minimix-D THF 0.3 mL/min 30 µL r.t. UV, 250 nm PS, PMMA This study- 
Lignotex                    
Lignosulfonate 

  336 3002 8.95 Borregaard Lignotech 2.5 mg/mL Plgel Minimix-D THF 0.3 mL/min 30 µL r.t. UV, 250 nm PS, PMMA This study-              
Lignotech D 

  780 3660 4.70 TCI Ligno-sulfonates 2.5 mg/mL Plgel Minimix-D THF 0.3 mL/min 30 µL rm. 
Temp. 

UV, 250 nm PS, PMMA This study- TCI             
Lignosulfonate 

  1062 4542 4.28  This study- Denmark 
kraft alkali lignin 

2.5 mg/mL Plgel Minimix-D THF 0.3 mL/min 30 µL r.t. UV, 250 nm PS, PMMA This study-                 
Denmark kraft 
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I.4.2. Sample Preparation and Lignin Solubilization for GPC Analysis  

Sameni et al. showed that diverse types of lignin displayed very different 

solubilities in a variety of solvents.83 For many studies, the choice of solvent is dependent 

only upon what works best in solubilizing the type of lignin being considered, and, if GPC 

is used for analysis, it follows that the same solvent system is used as the mobile phase.  

This choice, in turn, may dictate the type of column used for analysis.   

However, solubility studies of lignin and its extracts may present a dilemma for 

many researchers. A number of extraction solvents are not column-friendly, and if the 

researcher uses several solvents there is always the problem of which is compatible with the 

mobile phase.  Most of the information concerning solubility of lignin in a wide variety of 

solvents is part of the body of work done by researchers performing fractionation of lignin 

by strategically selected solvent(s), which is often done for the purpose of finding fractional 

MWs or of correlating hydroxyl groups or other functional groups with a particular solvent.  

A number of fractionation studies present lignin solubilities in various solvents as a 

characterization property.  

Analyzing lignin samples for MW by GPC is a process that is not standardized 

within the chemical research community,64 and particularly pressing problems are 

associated with solubilization of lignin, which is not totally soluble in pure aqueous or 

organic mobile phases; combinations of solvents is often limited by the type of column 

being used. A significant problem for some researchers is to choose a mobile phase for 

GPC analysis which is compatible with an entirely different solvent used to solubilize or 

extract lignin fractions.  
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Three basic approaches to resolve solvent incompatibility between extraction 

solvent and mobile phase solvent were implemented by the majority of studies reviewed: 

(1) The use of derivatization, primarily acetylation, applied to lignin samples.  The 

advantages of this method included the relative ease of the process and the fact 

that lignin was found to be completely soluble in THF. The primary 

disadvantages were the altered hydrodynamic volume, molecular weight and 

column interactions caused by the presence of derivatization agent functional 

groups.  The extraction solvent had to be removed and the samples dried before 

being transferred to the organic mobile phase solvent. 

(2) Dissolution of lignin samples, without derivatization, into the solvent used as 

the mobile phase for GPC analysis or a solvent compatible with the mobile 

phase. Mobile phase solvents which offer universal solubility for lignin samples 

in general, as long as lignin and base concentrations are favorable, are alkaline 

aqueous solutions with a pH of 11 or higher. Advantages of the latter solutions 

include the ability to dissolve many types of lignin completely, but 

disadvantages are numerous for aqueous solvents and include lignin association, 

ion exclusion and uncertain effects of buffering agents,79 as well as column 

incompatibility due to the caustic nature of the solution.80  

(3) Use of an organic mobile phase which is identical to or soluble with the choice 

of lignin extractant. This situation can be easily addressed by having or 

purchasing a column conducive to the solvent needed for extracting the lignin; 

however, this could readily become an expensive situation if several solvents 

must be accommodated by way of several columns. However, dissolution in 
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solvent systems (usually two solvents) that can serve as the mobile phase within 

the limits of common columns is a more realistic objective. 

 

A study by Sadeghifar et al. demonstrated the use of derivatization to purportedly 

solve the problem of incompatibility between extraction and mobile phase solvents.  Kraft 

switchgrass and pine organosolv lignin samples were fractionated/precipitated in different 

ratios of acetone and water, dried, acetylated, then solubilized in THF for GPC evaluation 

with tetrahydrofuran as the mobile phase. Solubilities of lignin, determined gravimetrically, 

are presented in Figure 6a, and can be compared to Figure 6b, the molecular weights 

determined for each solubility level.87  

 (a) 
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    (b)                                                

Figure 6. (a) Solubility percentage of original lignin in acetone-water solvent mixes, (b) MW by 

percentage of acetone in acetone-water solvent mixes; taken from Sadeghafir et al.87 

               

Not unexpectedly, MW decreased as solubility declined as, apparently, large 

molecules were the first to be excluded as solubility decreased; however, the determination 

of MW was accomplished for each fraction, as this study was intended as a method of 

determination of characteristics of solvent-fractionated lignin.87  

Allegretti et al. used a slightly different approach to derivatization by noting the 

solubility of Protobind® lignin in several organic solvents and then performing Soxhlet 

extraction of lignin by the most effective solvent (ranked by solubility, low toxicity, low 

viscosity and easy evaporation), which was methyl ethyl ketone (MEK). The liquid extract 

was fractionated via ultrafiltration, dried and then derivatized (acetylated) before being 

evaluated by GPC with a THF mobile phase. The Mn and Mw values, as expected, 

decreased as fractionation cut-off ranges decreased.88  

Derivatization of lignin was used in the above studies,87,88 although there was no 

attempt to compare the results to analyses which did not employ derivatization.   
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The second approach as outlined above was not based on derivatization but on 

solubilizing lignin samples in a mobile phase which was identical or compatible with the 

solvent used to process the samples.  A study by Ang et al. demonstrated this idea by 

subjecting alkali lignin to base-catalyzed depolymerization in a batch reactor, followed by 

sequential fractionation with 1-propanol, ethanol and methanol. The dissolved lignins were 

dried and analyzed by GPC with a water:acetonitrile, pH 11 mobile phase (with sodium 

nitrate buffer), and completely dissolved without derivatization.89  

High-pH aqueous solutions alone are often sufficient to dissolve lignin of most 

types, but are dependent on concentrations of lignin and base/buffer added to the solution. 

However, high pH is damaging to the column unless it specifically is rated for high pH. A 

study by Melro et al. demonstrated that 40% solubility of lignin occurred at pH 10, with 

efficiency increasing rapidly such that lignin was completely dissolved at pH 11.  A phase 

map from the same study showed dissolution as a function of wt% lignin vs wt% NaOH in 

Figure 7.90 
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Figure 7.  A phase map showing complete dissolution of lignin (black squares) and 

incomplete dissolution (white squares) as a function of kraft lignin wt% originally present and wt% 

of NaOH in solution.90  

 

Thus high-pH alkaline solutions are attractive as universal solvents, but the 

properties of the solution may have negative impacts on equipment and the solution must 

also meet criteria for repeatability and should not be subject to association and ion 

exclusion effects.  Aqueous systems can be problematic for interactions between lignin 

molecules (association) and for interaction with column components (ion exclusion).79,80  

A study by Liu et al. was similar to the Ang investigation in that lignin was 

extracted with a glycerol-ethanol solvent, dried, dissolved in tris-acetate buffer solution and 

placed into an aqueous solvent system (with tris-acetate buffer) in which it was soluble.91   

However, problems associated with buffer addition to control pH or ionic strength were 

clearly delineated in a study by Chen and Li; small adjustments in electrolyte or buffer 

strength resulted in lignin solubility which varied widely.79  

Klett et al. demonstrated the use of a nonaqueous GPC mobile phase, without 

derivatization, as an example of the third solubilization strategy outlined above. Kraft lignin 
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in an acetic acid-water solution was fractionated with CO2 gas expansion antisolvent 

methodology in a reactor, filtered, dried and mixed with 0.05 M LiBr in N,N-

dimethylformamide (DMF), which also served as the mobile phase for GPC analysis.  The 

researchers in this case were able to ascertain complete solubility (or an acceptable level) of 

the lignin in the solvent system of choice for use in the GPC protocol.92 

As final commentary, an interesting study by Lange et al. offered a critique of GPC 

practices in general, but also offered an in-depth look into the solubility issues surrounding 

GPC use. The overall message of the study was that, although there was a lack of 

cohesiveness and standardization in GPC protocols used currently, there were also possible 

solutions to creating a more favorable environment for mutual comparison of GPC results.  

The authors suggested a method of correcting for derivatization by applying a correction 

factor, which would account for changes in molecular weight, changes in hydrodynamic 

volume and interactions with column stationary phases.64  

Solubility issues explored by Lange et al. centered around the basic premise of 

sending a “plug” of lignin (in its own solvent system) through a “THF-based” GPC system 

as being possible, but beset with problems if the lignin solvent mixture was not soluble in 

THF, as precipitation of lignin was inevitable. Lange et al. also conceded that additions of 

solvents to the sample and the mobile phase which would ensure mutual solubility might 

also be practicable, although secondary solvents would have to be allowable on the 

column(s) of choice.64  

This viewpoint would seem to be the most astute, as various inherent problems are 

associated with the use of derivatization and with aqueous mobile phases. Although the 

reviewed studies produced molecular weight distributions that were reasonable, validation 
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was lacking in the form of molecular weight yields for the same lignins by different means 

as comparison.87-89,91  

For this study, derivatization appeared to be unnecessary for GPC analysis of 

technical lignins, and the choice was made to select solvents for extraction and for the 

mobile phase which would be compatible. Most GPC columns in present use have a limited 

number of secondary solvents which can be used as mobile phases, and often the amount of 

secondary solvent is only allowed at a restricted percentage.  
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I.5. Folin-Ciocalteu Method of Quantification of Phenolic Hydroxyls in Lignin 

Samples 

Various methods are used for determination of lignin hydroxylation, some of which 

can differentiate between hydroxyl locations on the molecule, i.e., aliphatic or phenolic in 

the case of lignin. Fairly common is NMR analysis following phosphitylation of the 

hydroxyl group.93 However, this method requires careful sample preparation and complex 

data interpretation and therefore there is an ongoing effort to find a high-throughput 

method. The Folin-Ciocalteau (F-C) reagent consists of a 

phosphotungstic/phosphomolybdic complex, which is reduced by phenols or by other 

compounds capable of reduction. F-C reagent has maximum absorption at 765 nm 

radiation, although other wavelengths are used often in literature (725, 750 and 765 nm),94 

wherein absorption intensity is presumably proportional to the concentration of the 

phenolic compounds in the solution.  

The Folin-Denis reagent, as it was initially called when created in the early part of 

the 20th century, was for the purpose of detecting proteins. The improved version, the F-C 

reagent, was developed in 1927, but a drawback of this chemical was its rapid 

decomposition in alkaline solution, which made it necessary to use an excess of reagent to 

obtain a complete reaction.  Unfortunately, this F-C excess resulted in precipitates and high 

turbidity, making spectrometric analysis difficult.  Li salts were added to the reagent, which 

cleared the turbidity.95 Improvements on the method were developed by Swain and Hills 

and also Singleton and Rossi for determination of phenolic compounds in food and wine, 

respectively.96  
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The developers of the reagent and reaction methodology, Folin and Denis, described 

the reaction as taking place in the acidic conditions present when the sample was combined 

with the F-C reagent.97 An alkali solution added as Na2CO3 was a necessary part of the 

overall reaction which produced molybdate (or tungstate) and the characteristic blue color 

of the test, which was colorimetrically determined, with intensity being proportional to 

phenol concentration.  Phenol groups are oxidized by phosphomolybic acid (Figure 8) or 

phosphotungstic acid, while the reduced metal oxides react with F-C reagent 

colorimetrically.98 
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Figure 8.  Phosphomolybdic acid, H3PMo12O40.99 Phosphotungstic acid is identical, with the 

exception of having instead a tungsten center (H3PW12O40). 

 

The F-C reagent is thought to be a mix of octahedrally complexed phosphotungstates and 

phosphomolybdates arranged around a central phosphate, in an acid solution.100 The 

phosphotungstates are colorless in the +6 state of the Mo atom, while the 

phosphomolybdates give the reagent its characteristic yellow color.  Rover et al. describe 
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reduction of MoO4+ units to MoO3+ species, with a final product of (PMoW11O40).
100 

However, Bancuta et al. describe final reduction products as W8O23 and Mo8O23,
94 and most 

researchers refer to reduction of MoO4
+6 units to MoO5

+5 units.94,96,98 Molybdates are 

considered to be more easily reduced, thus F-C reactions are probably limited to the 

molybdate component of the reagent.98  

In its simplest form, phenol acts as a reducing chemical, becoming oxidized in the 

process (thus the antioxidant reputation) and it is converted to semiquinone,96 or other 

quinones during the reaction with units of MoO4
+6 in the Folin-Ciocalteau reagent, 

producing MoO5
+5 units.  The mechanism is not fully understood, although reactions which 

convert phenols to quinones are well known. Less understood is exactly which phenol 

reaction occurs, as well as the exact phosphotungstic or phosphomolybdic reduction 

mechanism. Rangel et al. described the reduction as occurring as a reversible one- or two-

electron addition,98 while Everette et al. considered the reaction to probably involve a 

single electron which resulted in semiquinone formation (Figure 9).96 Rover et al. described 

the reaction as an electron passing to a nonbonding orbital in the phosphotungstic or 

phosphomolybdate complex.100  

 

Figure 9. Oxidation of 4-hydroxyphenol to semiquinone, followed by another oxidation step to 

benzoquinone.99  
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The Folin-Ciocalteu reagent assay for phenolics (or proteins) has numerous versions 

as determined by various researchers, and these are typically designed for UV 

spectrophotometric analysis in a cuvette as the sample holder. The challenge in this study 

was to devise a method in which microplates could be used, which would reduce reagent 

use across the board and allow multiple sample absorbance determinations per instrument 

reading. 

Rover et al. designed a micro-scale method for bio-oil by dissolving a 20-L bio-oil 

sample in ethanol, followed by filtration with a 0.45 m syringe filter. The sample was 

diluted with 1.58 mL of deionized water. Then 100 L of FC reagent was added to the 

samples, which was mixed and allowed to incubate for 1 to 8 min. After this, 300 L of   

2 M sodium carbonate solution was added to each sample, and the samples were allowed to 

incubate for two hours.  At the end of this time, light absorbance at 765 nm was determined 

in 1-cm cuvettes.100  

 Gallic acid at different concentrations is typically used as the calibration standard 

for FC assays; gallic acid has three hydroxyl groups attached to the benzene ring and 

theoretically gives an optimal response.  However, a study by Stratil et al., which evaluated 

a number of phenolic compounds with a variety of hydroxyl groups and substituent types 

by FC and several other phenolic-detecting assays, found that absorbance was not strictly 

proportional to hydroxyl presence on the ring. Gallic acid was found to have a response at 

about the same level as catechol response (with two hydroxyl groups on the ring), 

ostensibly due to substituent and bonding influence on hydroxyl reactivity.101  

 Allegretti et al. utilized Folin-Ciocalteau assay as a metric for the extent of 

monomeric production in separate lignin fractions subjected to Soxhlet extraction followed 
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by a two-membrane cascade filtration. The group hypothesized that the blue chromophore 

was unstable in strong bases, so that DMSO was used as a solvent to ensure total solubility 

under pH neutral conditions. The results were reported as gallic acid equivalents (μg gallic 

acid per mL of working solution). The study found that with the FC method, only two 

phenolic groups of gallic acid were reactive, so one GAE was considered to be two 

phenolic group equivalents.88  

 A study by Kang evaluated degradation of alkaline lignin in a batch reactor (5 g 

lignin in 60 mL water) at temperatures from 260 to 360 °C with residence times from 0 to 

60 min.  The liquid product fraction was evaluated by Folin-Ciocalteau assay; the liquid 

product included dichloroethylene-extracted bio-oil from the liquid phase and bio-oil from 

the solid phase (also extracted by dichloroethylene). Results were expressed as total mg 

gallic acid per g of lignin per sample with UV/Vis absorbance measured at 760 nm. Total 

phenol content was measured for the varied temperatures and residence times, thus the 

analysis was used primarily as a measure of degradation extent during depolymerization by 

thermal treatment. The study found that maximum production of phenol, ostensibly due to 

thermall degradation of the lignin, occurred between 280 and 320 °C.102  

Application of Folin reagent as a metric for oxidation capacity of lignin was not 

commonly encountered in the literature, although antioxidant potentials of proteins and 

other substances are often measured with this assay or another like it (DPPH, etc.).  

Devising a microplate method of Folin-Ciocalteu reaction with phenolic groups in lignin 

would be a timely undertaking, and would involve assessing phenolic content of individual 

lignin models and comparing these to whole lignins to estimate the overall phenolic 

content. 
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I.6. Methods for the Processing of Technical Lignin 

Technical lignins have been the target of intensive research aiming to develop 

methods of depolymerization in the past several decades with the idea that valorization of 

residuals would offset costs in the paper and biorefinery industries, as well as contribute to 

chemical feedstocks containing aromatics that are normally provided through petroleum 

sources. Attempts to break the recalcitrant lignin into monomers or small oligomers have 

met with mixed success.  

Various methods to depolymerize lignin exist. A number of prominent ones include 

ball milling, sonication, catalysis, microwave assisted, electrochemical, ionic liquids, 

pyrolysis, steam explosion, and subcritical/supercritical water treatment. Many methods 

make use of an oxidant, which can include some acids, peroxides and O2, while pyrolysis is 

an anoxic method). Higher temperatures usually assist in facilitation of the oxidation 

process and radical mediation of the breakdown reactions are often cited, as in a sonication 

study,103 a microwave-assisted study,104 an electrochemical study,105 a catalysis study 

utilizing a metal oxide of perovskite type,106 and a pyrolysis study,107 although high 

temperature was not always involved. For these same studies, conversion percentages 

(depolymerization of original lignin to monomers or low MW oligomers) ranged from 3 to 

60%.104,106 

While most depolymerization methods look for a way to chemically, thermally or 

physically disconnect linkages in lignin, another strategy is to separate different sizes of 

molecules through fractionation, wherein functional groups may be separated as well. A 

number of fractionation strategies exist, typically as ultrafiltration (physical limitation of 

size by permeation through pores), acid or solvent precipitation (typically by size, although 
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functional groups may also differ) and by SEC (physical interaction of hydrodynamic size 

with porous media). 

 

I.6.1. Fractionation of Alkali Lignin 

  The fractionation approaches typically aim for fractions with narrower molecular size 

and weight distributions that would be more homogeneous, and thus more useful, for 

renewable applications,108 and which could also result in streamlining of characterization 

processes.  

Currently, there are three main methods that have been used for lignin fractionation, 

i.e., selective solvent fractionation, differential precipitation, and membrane ultra- or 

nanofiltration; several of these methods have occasionally been combined.  

 

I.6.1.1. Fractionation by membrane 

Fractionation by membrane is a well-established method of purifying or separating 

many types of industrial materials, including petrochemicals, brines, metals, mining 

tailings, and emergency water supplies.109 The use of a fractionation apparatus has the 

added advantages of controlled heat as well as controlled transmembrane pressure. Several 

materials, including polyethersulfone, cellulose acetate, polyacrylonitrile, aluminum oxide, 

polyaryl ether ketone, and ceramics (ZrO2, TiO2, etc.) are used to construct membranes 

intended for lignin fractionation, and may be flat or tubular in shape.110  

Fractionation of black liquor, the liquid component of the kraft pulping process 

which contains the lignin fraction, has been shown to be effective especially in purifying 

lignin from saccharide and inorganic contaminants.111 A study by Humpert et al. found that 
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the lignin concentration maximum by membrane filtration (with improved processing due 

to combinations of filter pore size, pressure, temperature, rotating disc application and 

cross-flow set up), was as much as 285 g/L, purities up to 78%, and an ash content 

reduction from 4.7% to 2.7% with diafiltration.111  

The main advantage of filtration by a membrane is that inclusive MW limits can be 

determined, depending on how closely the pore sizes are set for the membranes.  In 

reference to the studies listed in Table 8, Polydispersity index (PI) values for a number of 

lignin sources were relatively low (<4) for 15 kDa fractions, and PI values steadily 

decreased for smaller-pore membranes, often to values < 2.0.112-115  

The downside of lignin filtration is the amount of fouling and subsequent reduction of 

membrane flux111,116, although cleaning with alkaline solutions is easily accomplished.117 

Sophisticated fractionation methods have been developed for other industrial interests and 

have also been scaled up effectively, but the economic value of lignin may or may not warrant 

the costs associated with industrial scaling. Guo cited problems of the filtration process as 

being membrane tendencies to foul as well as the fact that the process is not readily scalable 

to satisfy industrial needs.118  

Not unexpectedly, based on Table 8 (membrane fractionation studies), PI values 

decreased with decreasing membrane pore size, and reached small values around 2.0. Mn 

and Mw values decreased in this direction as well. With membrane fractionation, there is 

also a question of whether depolymerization through physical means occurs during the 

process. Toledano et al. found that fractionation by membrane increased lignin 

depolymerization when comparing structures of lignins obtained through membrane 

fractionation vs acid precipitation.119  
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Several studies also analyzed functional groups, particularly phenolic hydroxyls, 

aliphatic hydroxyls and carboxyl groups, in order to compare homogeneity between 

fractions.  Phenolic hydroxyls and carboxyl groups increased with decreasing membrane 

pore size, while aliphatic hydroxyls decreased with decreasing pore size in studies by 

Zinoyev et al. (room temperature) and Sevastynova et al ( 40 - 65 °C).113,115 As reported by 

Zinoyev et al., lower MW material was considered to be more degraded and modified, thus 

increased phenolic hydroxyls were due to hydrolysis of -O-4’ bonds, and the decrease in 

aliphatic hydroxyls occurred with increased formation of condensed carbon framework.115  

Norgren et al. (room temperature) also found phenolic hydroxyls to increase with 

decreasing membrane pore size.114 Helander et al. showed that sulfur accumulated at lower 

MW fractions.120 Studies reviewed for ultrafiltration methodologies are presented in Table 

8. 
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Table 8. Method parameters and molecular weight findings for several filtration membrane fractionation studies. 

Membrane Filtration        

Lignin type Filtration method Analysis Results:  Mn Mw PI Reference  
Black liquor of alkaline 
pulping of Miscanthus 
sinensis (Chinese silver 
grass 

Ceramics material (TiO2) 
membranes (tubular and 
multichannel) with serial 
cut-offs of 5, 10 and 15 
kDa.  

GPC with 3 Styragel columns, 
RI detector, acetylated 
samples, PS standards 

Liquor          
>15 kDa      
15 kDa       
10 kDa          
5 kDa   

1879          
2032      
1891        
946          
940 

5654      
6300             
3544          
2022           
1806 

3.01       
3.10         
1.87        
2.14        
1.92 

Toledano 
(2010)112  

Weak black liquor of kraft 
pulping of softwoods 

Ceramics material (TiO2 
and ZrO2) membranes with 
cut-off of 1 kDa (4.6 bar)- 
samples evaporated and 
acid precip'd to various pH 

Three Ultrastyragel columns, 
mobile phase THF, UV 
detector. PS standards.  
Samples acetylated. 

Acetylated: 
Liquor pH 9      
1 kDa pH 9   
1 kDa pH 6.5    
1 kDa pH 4 

               
847          
508          
503          
467 

                     
3525     
1096      
1074        
973 

                    
4.2           
2.2            
2.1            
2.1 

Helander 
(2013)120  

Two industrial black 
liquors and 3 isolated 
lignins, including indulin 
AT 

Ultrafiltration cell (press 
2.5- 3 bar, room temp) 
with regenerated cellulose 
membranes. Isolated 
lignins in alkaline soln. 
Cascade from 100 kDa, to 
30, 10, 5, 3 and 1 kDa. 

SEC:  Three PolarGel M 
columns with DMSO (0.5% 
w/v LiBr) as mobile phase, 
flow rate 0.5 mL/min, temp 
40 C, UV and RI detectors; PS 
sulfonate standards. 

Indulin AT: 
100 kDa     
100-30             
30-10                
10-5                         
5-3                              
3-1                              
< 1  

         
1028          
1432             
695               
438               
220              
66              
70 

           
10008    
3892             
1454              
919               
525               
148          
140 

           
9.74               
2.72               
2.09               
2.10               
2.39                
2.24               
2.00 

Zinovyev 
(2016)113  

Industrial black liquors 
from kraft pulpng of 
softwood (and hardwood 
and Eucalyptus). 

Serial fractionation with 15 
kDa and 5 kDa ceramic 
membranes at 120 °C.  
Permeate and retentate 
acidified at 60-65 °C to pH 
9 

3 Styragel columns in series 
with THF mobile phase, flow 
rate 0.8 mL/min and RI 
detector.  All samples were 
acetylated.  PS standards. 

Softwood     
lignin    
Permeate 15     
Permeate 5    

 
1000            
580          
490 

 
4470     
2280     
1700 

 
4.5                
3.9                
3.5 

Brodin 
(2009)121  
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Kraft softwood biomass 
leached with 0.1 M 
NaOH. Filtrate adjusted 
to pH 2; precip’d lignin 
centrifuged, washed. 

Stirred cell ultrafiltration 
with polyethersulfone 
membranes with serial cut-
off 30, 10, 8, 5 kDa. 
Pressure 275 kPa.  Sample 
dissolved in 0.1 M NaOH 
prior to fract.  The fractions 
precip'd with 1 M HCl. 

Samples acetylated, THF 
mobile phase, system with 
undesignated type of 
columns, but with cut-offs of 
10000, 500 and 100 A.  
Differential refractometer 
detector. PS standards. Five 
permeate fractions. 

 >30 kDa               
10-30 kDa            
8-10 kDa               
5-8 kDa                
<5 kDa 

2190                
3750              
1480                
1480                
950                  

41400    
14900    
4060    
2850    
1910    

19                   
3.9                   
2.7                   
1.9                  
2.0                   

Norgren 
(2000)114 

Lignin:  Industrial weak 
black liquor prior to 
evaporation step. 

Ultrafiltration by ceramic 
TiO2 and ZrO2 membranes 
and cellulose (10 kDa) 
Temp 40-65 °C, press 3.5 
bar, first 5 then 1 kDa for 
permeate. Retentate from 
5 kDa to 10 kDa at room 
temp and 0.35 MPa). All 
precipitated by 
acidification to pH 9.   

Acetobrominated samples, 25 
uL injected into THF mobile 
phase, with PLgel 5 um, 500 Ǻ 
and 5 um 1000 Ǻ, with DAD.  
0.5 mL/min flow, PS 
standards. 

>10                    
5-10 kDa             
1-5 kDa                
0-1 kDa            

9500         
2300      
2000     
1200 

33500           
4900     
4700      
2700 

3.5                 
2.2                 
2.3                
2.1 

Sevastyanova 
(2014)115  
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I.6.1.2. Fractionation by acid precipitation 

 Similar to membrane fractionation studies, most acid precipitation studies were 

implemented directly with black liquor, thus investigation sometimes included 

measurement of lignin purity and solubility/recovery.122-124 Zeta potential was explored in 

several studies since this was an indication of the charge on the lignin colloid and was thus 

an indicator of the tendency for the colloid to precipitate. Zeta potential was found to be 

affected by pH, decreasing with a decrease in pH.122,125   

While the majority of reviewed studies (shown in Table 9) used black liquor from 

soda-pulping only;122,123,126,127 an exception was a study by Laurencon et al. in which acid 

precipitation was carried out with black liquor from kraft alkaline treated softwood and 

hardwood.124  

Precipitation by acid was performed in sequential steps with one sample124,125,127 or 

as a one-step process whereby individual samples were treated with a specific amount of 

acid.122,123 Acid precipitation of one sample by sequential pH decrease was considered 

more feasible as a purification and fractionation method, as stated in a study by Laurencon 

et al. Notably, molecular weight results for both hardwood and softwood liquors treated 

sequentially showed a fairly wide variety of Mn and Mw, as well as a wide variation in 

polydispersity index.124 One-step processes which produced samples with varying pH, but 

which later brought all samples to one final pH value, 122,123,127 showed little variation in 

Mn, Mw and polydispersity values, and the values in a study by Surina et al. were far lower 

than values in the study by Laurencon et al.122,124  
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Molecular weight distribution was analyzed via SEC in the majority of acid 

precipitation studies as GPC122,123,127 and GFC.125 Mn and Mw values decreased as pH 

decreased in general (see Table 9). As observed by Laurencon et al., high molecular mass 

particles with lower solubility and weaker acidity precipitated first, with molecular mass 

being of primary importance since high mass particles were able to precipitate with partial 

protonated status.124 The tendency for higher Mn and Mw in higher pH samples would thus 

seem reasonable, which was typical for acid precipitation studies which were reviewed in 

Table 9. However, there seems to be a tendency possibly for massive precipitation, which 

would make acid fractionation a poor choice for fractionation unless handled very carefully 

(attention to pre-treatments or choice of lignin source). The study by Laurencon et al. 

showed that 85.4% of hardwood lignin and 87.1% of softwood lignin precipitated in the pH 

range of 9 – 7.124  

A study by Surina et al. showed fewer phenolic hydroxyl groups with increased acid 

(lower pH), which were detected by UV analysis.122 A study by Li et al. which involved 

successive acid precipitation of one sample also found that phenolic hydroxyls (by 31P 

NMR) declined with decreasing pH.127 This would seem to indicate the polar or H-bond 

aspects of acids attracted phenolic groups over non-phenolics, which could be an advantage 

of acid precipitation if separation of functional groups is a goal.122  

A number of studies combined fractionation types for comparison purposes; results 

were varied. A comparison study of acid precipitation vs membrane fractionation of black 

liquor (Silver Grass) by Toledano et al. revealed small variation in PI values and lower Mw 

values for acidified samples in comparison to membrane fractionation.119 However, a study 

by Wang et al. (soda-pulped cornstalk black liquor) also compared membrane filtration to 



56 

 

acid fractionation with the result that acid precipitated fractions had higher PI and Mw 

values than membrane filtered fractions. Although comparison of method effectiveness was 

inconclusive, Wang et al. described acid precipitation as superior to solvent extraction and 

ultrafiltration on a cost basis (high cost of solvents and equipment/operation respectively.125  

High costs of solvent and membrane fractionation were also cited by Li et al.127 Results for 

acid precipitation methodologies by several investigators are presented in Table 9. 
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Table 9. Method parameters and molecular weight findings for several acid precipitation fractionation studies. 

Acid Precipitation         

Lignin Source Acid Fractionation 
Method 

Analyses SEC Conditions SEC Samples Mn Mw PI Reference 

        
 

Steam-exploded corn 
stalk black liquor by soda 
pulping 

Ultrafiltration of 6, 10, 20, 
>20 kDa, and multi 
fractionation of one sample 
to pH 5.3, 4.0, 2.0 

Zeta potential, 
particle size 
distribution, FTIR, 
SEC 

Hydrophilic column, 
alkaline/tri-acetate buffer 
mobile phase, UV detector, 
flow rate 0.5 mL/min, 
nonacetylated samples, PS 
standards 

Retenate >20 kDa 
Permeate 20 kDa    
Permeate 10 kDa      
Permeate 5 kDa           
pH 5.3                            
pH 4.0                             
pH 2.0                            

5065      
4526      
2592     
1582     
4265      
3377     
3628 

15867        
7332           
4575     
2882   
15099   
13745   
7963 

3.13           
1.62        
1.76        
1.82        
3.54        
4.07       
2.19 

Wang et al. 
(2013)125  

Hemp and flax black 
liquor by soda pulping 
containing anthraquinone 

Single step method acid 
addition to achieve 
specified concentration 
levels of 5, 25, 50 and 72 
wt%; final pH adjusted to 5  

Zeta potential, 
elemental analysis, 
nitrobenzene 
oxidation, UV/Vis, 
GPC 

GPC: Separon Hema s-300 
column, RI and diode array 
detector (280 nm), LiBr 
(0.005 M) in DMF mobile 
phase at 1 mL/min flow rate, 

lignin filtered by 0.45 m 
and concentration 5 mg/mL, 
PS standards 

5 wt% acid solution     
25 wt%                            
50 wt%                                
72wt% 

478                 
455          
458              
480 

9823     
9440     
9367      
9593 

20.56   
20.76  
20.46   
20.01 

Surina et al. 
(2015)122  

Pine softwood and 
Eucalyptus hardwood 
black liquor by kraft 
pulping 

Sequential acidification of a 
sample to pH 9, 7, 5, 3 

Elemental analysis, 
FTIR, H-1 NMR, GPC 

GPC: Two Supelco TSK-HXL 
columns, RI and UV (254 nm) 
detectors, mobile phase THF 
at 0.8 mL/min, lignin 
concentration 5 mg/mL, PS 
standards 

Hardwood pH 9      
Hardwood pH 7      
Hardwood pH 5       
Hardwood pH 3      
Hardwood pH 1        
Softwood pH 9           
Softwood pH 7            
Softwood pH 5            
Softwood pH 3           
Softwood pH 1 

621                
413             
442             
276                   
433                
2543           
2444        
2106       
1874          
210 

5316        
4794              
4352          
3890      
3630    
13895  
12443   
12643   
10301   
3464 

8.56           
11.6          
9.84        
14.08       
8.39              
5.46              
5.09                
6.00                    
5.50       
16.48 

Laurencon et 
al. (2015)124  
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Chinese fir black liquor by 
soda pulping 

Sequential acidification of a 
sample to pH 8, 5, 2; final 
pH of all adjusted to 2 

Elemental analysis, 
TGA, FTIR, P-31 
NMR, Py-GC-MS, 
GPC 

THF mobile phase, RI 
detector, lignin 1 mg/mL 
concentration, acetylated 
samples, PS standards 

ph 8                                  
pH 5                                       
ph 2 

8780      
7679     
5934 

16115   
14218   
11001 

1.84         
1.85               
1.85 

Li et al. 
(2014)127  

Oil palm trunk fiber black 
liquor by soda pulping 

Initial pH 10.9, acidified 
samples to pH 7, 5.5, 5, 3.5, 
2; precipitation with 
ethanol to remove 
polysaccharides, then all 
samples acidified to final pH 
2 

HPLC for phenolic 
acids and aldehydes 
for nitrobenzene 
oxidation, UV, FTIR, 
NMR, TGA, DSC, GPC 

GPC:  PL-gel mixed D 
column, THF mobile phase at 
1 mL/min, samples at 0.2% 
concentration, injected 

volume 200 L, PS standards 

ph 7                                
pH 5.5                               
pH 5.0                                 
pH 3.5                                    
pH 2.0 

1420            
1450     
1430            
1470      
1480  

2020             
2120             
2020             
2060              
2100 

1.42             
1.46              
1.41               
1.40                 
1.42 

Sun et al. 
(2001)123  
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I.6.1.3. Fractionation by solvents 

A third commonly investigated method of fractionation was that of solvent or anti-solvent 

precipitation, the latter being a method used when the lignin has been extracted with 

another solvent first. The combinations of solvents possible as well as the sequence of 

administration, make the number of studies quite large.  A strategy of a number of 

investigators was to sequence solvents on the basis of solubility parameters- by increasing 

Hildebrand solubility parameters,128 increasing hydrogen-bonding capacity,129 increasing 

Hildebrand and Hansen parameters,130 or by decreasing solubility parameters most 

amenable to lignin.131 The Hildebrand solubility parameter for lignin was indicated as about 

11, while Hansen parameters representing high polarity were considered best.128 

A number of lignin sources with various solvent combinations seem to have 

successfully produced lignin fractions with low PI which are generally associated with low 

Mn and Mw values, with the exception of Li et al., which showed a variety of both high and 

low Mn and Mw fractions (Table 10).130 No one particular suite of solvents seems to stand 

out as most effective in terms of low PI values, although a few seem to be relatively 

ineffective: applying acetone/water in varying compositions on a wide variety of lignin 

types,129 or increasing amounts of hexane added to acetone soluble lignin from wheat straw 

pulped by the Organosolv process.132 

Other solvent fractionation strategies included the addition of nonpolar solvent in 

increasing amounts to a polar solution,132,133 or by addition of “green” solvents,134 or by 

pretreatment with ionic liquid. Preferable effective strategies would rely on 

environmentally-friendly solvents, as in the case of Duval et al., where softwood kraft 
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lignin (with Lignoboost processing) was fractionated with ethyl acetate, ethanol, methanol 

and acetone.134  

Several studies showed an increase in Mn and Mw with successive solvent 

application- 128,130,134-136 an example was the study by Li et al. in which solvents with 

increasing solubility for lignin were used. PI also increased during this process, so that the 

entire sequence may not be needed- the first step of fractionation might be the only one 

necessary. Li also reported a decrease in methoxy and phenolic/aliphatic hydroxyl groups, 

signifying that not only the lowest Mn and Mw particles were in the first precipitation, but 

the most degraded as well.130 Of note, Jiang et al. precipitated kraft lignin successively with 

solvents which increased in solubility factors close to that of lignin and found that Mn, Mw 

and PI decreased sequentially.131  

   In perusing Table 10, it can be seen that several solvent systems/sequences were 

successful, if low PI and Mn, Mw values are the metric. However, the expense of solvents and 

environmental soundness must also be considered. A major advantage of this method is the 

application of relatively inexpensive instrumentation and a moderately easy process scale up. 

On the other hand, MW is one of the solubility-determining parameters but not the only 

one.137 Diverse lignin functional groups may significantly affect the composition of the 

fraction extracted into a certain solvent,138 since polymer solubility is known to be affected 

by their chemical structure and stereochemistry,137 thus MW of each fraction would be 

difficult to control.119  Furthermore, a non-desired additional chemical alteration of lignin 

may take place.139 Several studies reviewed for results of solvent precipitation fractionation 

of lignin are presented in Table 10. 
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Table 10. Method parameters and molecular weight findings for several solvent precipitation fractionation studies. 

Solvent 
Precipitation 

        

Lignin Source Solvent 
Fractionation 
Method 

Analyses SEC Conditions SEC Samples Mn Mw PI Reference 

        
 

Steam-exploded corn 
stalk residue from 
bioethanol production 

Sample mixed with 
benzyl alcohol, 
dioxane, or ethanol in 
stirred vessel, then 
heated to extract lignin; 
solvent:water added as 
3:1, 5:1, and 7:1 
(mass:mass) 

FTIR, H-1 
NMR, XRD, 
GPC 

GPC: Two 79911GP 
columns, UV detector 254 
nm, THF mobile phase at 1 
mL/min and samples 
acetylated, PS standards 

Raw sample           
Benzyl alcohol lignin       
Dioxane lignin                                                                       
Acid precipitated (for 
comparison)                        

2598      
2739      
2439      
2158 

6160       
5433       
4847       
4244 

2.37          
1.98         
1.99         
1.97 

Guo et al. 
(2013)118  

Bamboo subjected to 
formic acid-based 
Organosolv process; 
flltered then lignin 
extracted with pentane 

Crude lignin 
sequentially 
fractionated with ether, 
ethyl acetate, 
methanol, acetone, 
dioxane:water (9:1 v/v) 

H1-NMR, 
HSQC, DPPH 
assay, TGA, 
DSC, GPC 

GPC: Acetylated lignin 
samples, filtered, 
concentration of 1 mg/m, 
mobile phase THF, PS 
standards 

Unfractionated lignin                     
Ethyl acetate lignin      
Methanol lignin    
Acetone lignin     
Dioxane:water lignin  

4360      
2930      
4120      
7950      
6800 

8280       
3870       
5760     
13160   
11820 

1.90         
1.32          
1.40            
1.66         
1.74 

Li et al. 
(2012)130  

Caragana sinica 
(Chinese pea shrub) 
dewaxed with 
toluene/ethanol, lignin 
extracted with water at 
80 °C for 2 h 

Lignin solution 
extracted successively 
with 70% ethanol, 70% 
ethanol/1% NaOH, 1 M 
KOH, 1 M NaOH, 3 M 
KOH, 3 M NaOH at 75 
°C for 3 h; liquid/solid 
ratio 25:1 g/mL; lignins 
precipitated at pH 1.5 – 
2.0 

Nitrobenzene 
oxidation, GPC 
and 2-D NMR 

GPC: RI detector, PL-gel 10 

m mixed-B 7.5 mm ID 
column, THF mobile phase 
at 1.0 mL/min, sample at 
concentration 2 mg/mL, 

20 L injected, PS 
standards 

70% Ethanol                
70% Ethanol/1% NaOH  
1M KOH                          
1M NaOH                         
3M KOH                           
3M NaOH  

760          
480          
730          
580          
330          
320 

1630       
1560       
1340       
1140          
930           
910 

2.15             
3.28         
1.84         
1.98         
2.83         
2.89 

Xiao et al.  
(2011)140  
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industrial softwood 
(southern pine and 
Norwegian spruce) 
kraft lignins 

Dry lignin (500 g) added 
to 2.5 L of first solvent; 
filtrates collected, then 
undissolved material 
extracted by next 
solvent; solvents were 
dichloromethane, n-
propanol, methanol, 
DCM/MeOH 

Elemental 
analysis, TGA, 
DSC, total 
sulfur analysis, 
C-13, P-31 
NMR, GPC 

GPC: Samples acetylated 
and filtered (0.45 um pore 
size), four Styragel 
columns in series, UV 
detector, THF mobile 
phase at 1 mL/min, 
injection volume 20 uL, PS 
standards 

Southern pine lignin               
SP DCM                                             
SP Propanol                                    
SP MeOH                                         
SP DCM/MeOH                  
Norweigan pine lignin         
NP DCM                                                
NP Propanol                                      
NP MeOH                                                
NP DCM/MeOH 

1500               
380                 
650                
740                  
1150                    
960                       
420                          
720                        
460                   
1490    

6900                 
611                  
1620              
2070                
5960                
3830                   
882                   
2390                 
1890                
6240 

4.6                         
1.6                           
2.5                           
2.8                           
5.2                              
4.0                              
2.1                                  
3.3                    
4.1                          
4.2 

Dodd et al. 
(2014)128  

Steam-exploded corn 
stalk subjected to soda 
pulping, lignin 
precipitated by acid 
addition to pH 2.0 

Dried lignin (1 g) 
dissolved in 50 mL 95% 
ethanol-water (v/v); 
insoluble material 
dissolved in 80% 
ethanol-water solution; 
final Insolubles from 
this extraction also 
collected 

UV (190-400 
nm), FTIR, H-1 
NMR, TGA, 
functional 
group analysis, 
GPC 

TSK G3000PWx1 column; 
sample concentration of 
20 mmol/L in mobile 
phase of alkaline tris-
acetate buffer at 0.5 

mL/min flow rate, 20 L 
injection volume, 
polyethylene-glycol 
standards 

Unextracted lignin       
95% ETOH/water lignin                       
80% ETOH/water lignin   
ETOH/water insoluble 
lignin 

3878       
2611      
4067      
8523 

12234     
6743       
8894     
24736 

3.15         
2.58         
2.18         
2.90 

Wang et al. 
(2013)141  

Softwood kraft lignin 
post Lignoboost 
process (purification) 

Lignin in concentration 
of 100 g/L in ethyl 
acetate, stirred and 
filtered, then insoluble 
fraction extracted 
sequentially by ethanol, 
methanol, acetone 

SEC, GPC, 
Klason lignin 
analysis 

Columns PL-gel mixed-D 5 

m (1-40K and 500-20K), 
UV detector (280 nm), 
samples derivatized with 
acetyl bromide, filtered 

(0.45 m), mobile phase 
THF at 0.5 mL/min, PS 
standards 

Unextracted lignin     
Ethyl acetate lignin       
Ethanol lignin       
Methanol lignin      
Acetone lignin 

1010          
350        
1010      
2110      
2990 

6500         
750         
2060        
3740       
5150 

6.44         
2.14         
2.04          
1.77         
1.72 

Duval et al.  
(2016)134  

Eucalyptus dewaxed 
wood powder, 
pretreated with ionic 
liquid AmimCl and 
ethanol in molar ratio 
1:5 with 4 wt% water 
added, heated to 160 
°C for 12 h, then 
filtered 

Ionic liquid treated 
lignin was fractionated 
by heating separately 
with several 
antisolvents (water, 
MeOH, DCM, 
isopropanol), then each 
centrifuged 

FTIR, GPC PL-gel 5 um 500 Ǻ column, 
multi-angle light scattering 
detector, samples 
acetylated, filtered, THF 
mobile phase at 1.0 
mL/min, PS standards 

Untreated lignin    
Unfractionated IL-lignin 
Isopropanol IL-lignin   
Water IL-lignin          
DCM IL-lignin               
MeOH IL-lignin   

NR                        
873               
860                       
831                       
814                         
780 

6700         
960           
960               
941               
910                 
873 

NR           
1.10                
1.12                   
1.13                    
1.12                    
1.12  

Liang et al. 
(2016)135  
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BioChoice lignin/pine 
kraft lignin subjected 
to Lignoboost process 
(purification) 

Lignin dissolved in 
methanol, and soluble 
sample sequentially 
precipitated with 
solvents with 
decreasing solubility 
parameters (ethyl 
acetate, ethyl 
acetate/petroleum 
ether, petroleum ether) 

Elemental and 
functional 
group analysis, 
P-31 NMR, 
TGA, DSC 

Two Styragel columns with 
UV detector (280 nm), THF 
mobile phase at 0.7 
mL/min at 35 °C, samples 
acetylated and at 
concentration of 1 mg/mL, 

50 L injection volume, PS 
standards 

Unfractionated lignin  
MeOH/acetone lignin              
Ethyl acetate lignin    
EA/pet. ether llgnin                   
Petrol. ether lignin 

1562      
3395      
1647        
626              
364 

5202     
10244     
2468         
770           
407 

3.33         
3.02                
1.50            
1.23               
1.12 

Jiang et al. 
(2017)131  

Wheat straw 
Organosolv lignin 

Lignin dissolved in 
acetone, filtered, then 
soluble fraction 
precipitated in three 
fractions based on 
increasing amounts of 
n-hexane; Soxhlet 
extraction of lignin in 
acetone and n-hexane 
also done. 

Optical 
microscopy, 
elemental 
analysis, DPPH  
assay, FTIR, P-
31 NMR, 
HSQC, TGA, 
DSC, XPS, GPC 

Two/three PL-gel 5 m 
columns, diode array 
detector, THF as mobile 
phase at 0.75 mL/min with 
acetobrominated samples, 
PS standards 

Unfractionated lignin  
Acetone lignin               
4:1 ACE:HEX lignin         
1:1 ACE:HEX llgnin                   
1:4 ACE:HEX lignin    
Soxhlet acetone lignin   
Soxhlet hexane lignin 

920        
1100      
1800      
1100        
610           
610          
610 

4600     
23600     
7700       
3900       
3500     
10800     
5000 

5.0              
21               
4.3                        
3.5                 
5.7              
18                        
7.7 

Lange et al. 
(2016)132  

Industrial softwood 
kraft lignin 

Lignin dissolved in 
acetone, filtered, then 
soluble fraction 
precipitated in three 
fractions based on 
increasing amounts of 
n-hexane 

P-31 NMR, 
GPC 

Three Styragel columns 
(HR 1, 5E, 6) with UV 
detector (254 nm), THF 
mobile phase at 1.0 
mL/min, samples 

acetobrominated, 50 L 
injection volume, PS 
standards  

Unfractionated lignin  
Acetone insoluble       
4:1 ACE:HEX kraft lignin  
1:1 ACE:HEX kraft lignin  
1:4 ACE:HEX kraft lignin  
(data for one of three 
kraft lignin samples) 

2400             
3000                
2300             
1600            
1100 

14500   
34000             
3400               
2000               
1200 

6.1                         
11                             
1.8                 
1.3                         
1.1 

Cui et al.  
(2014)133  

Soda wheat straw 
(25%) and Sarkanda 
grass (75%) lignin; 
maple,  birch, poplar 
Organosolv lignin; kraft 
pine Indulin AT; wheat 
straw lignin from a 
mild alkaline process; 
soda wheat straw 

Each lignin suspended 
in acetone/water of 
differing 
concentrations, stirred; 
insoluble and soluble 
lignin collected  

FTIR, P-31 
NMR, SEC 

SEC: TSK gel Toyopearl 
HW-55F column, UV 
detector (280 nm), 0.5 M 
NaOH as mobile phase, 
Na-polystyrene sulfonate 
standards 

For 70% Acetone:H2O:  
Organosolv lignin               
Wheat str/grass lignin    
Wheat straw llgnin                               
Alk. wheat straw lignin 
Kraft pine lignin 

70% 
ACE: H2O 
ND          
1750      
1439      
2481      
1074 

70%  
ACE: H2O 
ND       
16979     
10795    
15632     
6338 

70%  
ACE: H2O   
ND                
9.7                     
7.5                     
6.3                     
5.9 

Boeriu et al. 
(2014)129  
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Softwood and 
hardwood kraft lignin; 
birch and spruce 
Organosolv lignin 
(acetic acid) 

Each lignin sample 
suspended in diethyl 
ether, stirred, filtered, 
then soluble residue 
was precipitated 
sequentially by diethyl 
ether/acetone (4:1 v/v) 
and then acetone  

P-31 NMR, Py-
GC-MS, SEC, 
DSC 

SEC: PSS CX 100 and 
100000 columns, UV 
detector (280 nm), 0.1 M 
NaOH mobile phase, 
polystyrene sulfonate 
standards 

Kraft softwood lignin                  
Kraft hardwood lignin     
Organosolv birch lignin     
Organosolv spruce 
lignin 

1050           
1140      
1880       
1510 

1730       
1760       
2600         
2290 

1.65            
1.55                
1.39              
1.51 

Roppnen et 
al. (2011)142  

Kraft lignin from 
Eucalyptus pellita 

Lignin pH 2.0; 
sequential precipitation 
by Soxhlet successively 
of soluble portion by 
ethyl ether, methane 
chloride, n-propanol, 
ethanol, methanol, 
dioxane 

UV (260- 400 
nm),  
nitrobenzene 
oxidation, 
GPC, FTIR, H-1 
and C-13 
NMR, TGA 

GPC: P-gel 10 mm Mixed-B 
7.5 mm ID column, THF 
mobile phase at 1.0 
m/min, samples at 2 
mg/mL concentration and 

20 L injection volume, PS 
standards 

Ethyl ether lignin  
Methene chloride lignin  
Propanol lignin     
Ethanol lignin     
Methanol lignin       
Dioxane lignin    

640             
1000              
1730             
1900            
2640               
4950 

650              
1140               
2550           
2900               
4200               
7800 

1.0                       
1.1                        
1.5                       
1.5               
1.6                        
1.6 

Yuan et al. 
(2009)136  

Dry softwood kraft 
lignin 

Lignin combined with 
aqueous ethanol (80%), 
or acetone (60%) 
and/or PGME (60%) 
solution; water added 
in stages to precipitate 
lignin  

P-31 NMR, 
SEC, elemental 
analysis, UV 
(280 nm)     

SEC: PSS MCX 1000 and 
100000 A columns and 
DAD detector (280 nm), 
0.1 M NaOH eluent (pH 
13) at 0.5 mL/min), 
polystryrene sulfonate 
standards. 

Unfractionated lignin 
80% ETOH lignin                   
50% ETOH lignin                   
60% Acetone lignin    
30% acetone lignin          
60% PGME lignin                  
30% PGME lignin 

2100       
3000               
2400            
3400              
1800            
1900              
2000 

4100       
7600              
3300              
18900               
2700                 
4300             
2800 

1.98                   
2.54                   
1.38                    
5.62                    
1.46                   
2.24                   
1.45 

Jaaskaleinen 
et al. 
(2017)108  
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I.6.1.4. Fractionation by preparatory SEC 

Kirk et al. as early as 1969 considered preparative fractionation of lignin by GPC as an 

effective approach for collecting lignin fractions solely based on the molecular size.139 An 

apparent advantage of this method is that the molecular size cut-offs are easy to control by 

varying the retention time windows for collection post GPC processing. Furthermore, as a 

type of SEC, GPC is known to be a scalable technique.143,144  

A study by Botaro et al. looked at fractionation as a function of size exclusion 

chromatography; the SEC process can be configured to separation of large amounts of 

material depending upon the scale of the process.  Moreover, because analytes are separated 

by retention time, an almost infinite number of timed “cuts” can be engineered for very 

precise intervals. Acetosolv sugarcane lignin which had been precipitated by water addition 

was used as the feedstock and the preparatory SEC method fractionated the original lignin 

into nineteen fractions using a mobile phase of dioxane:water (9:1); Botaro et al. reported the 

number-average MW as ranging from 340 to 1250 Da. Ostensibly, high MW material should 

elute first, followed by mid-range size and ending in the lowest MW sizes. This pattern, 

however, was not adhered to with the successive samples in the study.145 

The use of a preparatory column with a Sephadex stationary phase in the study by 

Botaro et al. may have been problematic, as illustrated in a study by Andrianova et al., in 

which two columns (with THF mobile phase) were tested for linearity and cohesiveness of 

calibration curves using PS, PMMA and lignin standards; fractionation performed with 

hydroxypropylated cross-linked dextran stationary phase produced a separation that was not 

based exclusively on MW due to amplification of undesired non-SEC interactions. However, 

a highly cross-linked porous polystyrene/divinylbenzene matrix-based (PSDVB) stationary 
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phase allowed for lignin separation based solely on its MW. The suggested SEC analysis 

conditions were deemed to be relevant for the translation of an analytical method to a 

preparative scale SEC.81 Non-SEC interactions between lignin and the stationary phase in 

SEC, purportedly arising from the heteropolymeric nature of lignin and the variety of its 

functional groups, have been considered as possible sources of error by other researchers as 

well.146-148  

Utilization of a method as reported by Andrianova et al., was the inspiration for 

conducting our own fractionation study utilizing preparative size exclusion chromatography.  

There is also a distinct lack of studies in this particular field and this, also, was a reason to 

address fractionation via the preparative SEC methodology. Results for preparative SEC 

fractionation of lignin are shown in Table 11. 
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Table 11. Method parameters and molecular weight findings for a preparatory SEC fractionation study.   

Preparatory SEC         

Lignin Source Solvent Fractionation 
Method 

Analyses SEC Conditions SEC Samples Mn Mw PI Reference 

        
 

Acetosolv sugarcane 
lignin, precipitated by 
water addition 

Lignin dissolved in 
dioxane/water (9:1 v/v), also 
used as mobile phase at 1 
mL/min on Pharmacia 
preparatory column XK 50/100 
(20 C), Sephadex stationary 
phase; 19 fractions of 60 mL 
collected; repeated with 
methanol-soluble Acetosolv 
lignin (eight fractions) 

Vapor 
pressure 
osmometry, 
FTIR, GPC 

GPC: individual 
fractions with PL-gel 
500, 103, 104 Ǻ in 
series, UV detector 
(254 nm), THF mobile 
phase at 1.0 mL/min, 
sample concentration 

1.25 mg/mL, 10 – 20 L 
volume injection, PS 
standards 

Unfractionated Lignin    
Fraction 2                                     
Fraction 5                                             
Fraction 8                                       
Fraction 11                                    
Fraction 14                                             
Fraction 17                
(Selected fractions 
from preparatory SEC) 

1250               
1360               
1160                  
490                    
470                     
330                   
270 

14320    
28970                               
8000                    
920                      
950                        
570                 
14260 

11.4                
21.3                   
6.9                      
1.9                       
2.0                        
1.7                     
51.9 

Botaro et al. 
(2009)145 
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I.6.2. Oxidation of Lignin by Hydrogen Peroxide with and without Alcohol Solvents 

Oxidation of lignin, with various forms of oxidants, has been utilized in a number of 

studies involving lignin depolymerization.  Lignin is susceptible to a variety of chemical 

reagents that are able to break oligomeric strands into monomers or dimers, particularly at 

linkages with low bond dissociation energies.  Chlorine dioxide, ozone, dimethyldioxirane 

and hydrogen peroxide have been employed as oxidants in the depolymerization of 

lignin.149 Although H2O2 was not as effective as the other agents in depolymerization 

ability, it is nevertheless far more environmentally sound and, in some cases, cheaper than 

other reagents. Furthermore, H2O2 may  often be combined with metallic catalysts to 

improve degradation or selectivity.150,151  

Hydrogen peroxide has been applied as both a delignifying agent in biomass, but 

also as a direct depolymerization agent of technical lignins in a large number of studies. 

Aqueous solutions are often basic or acidic (neutral pH is less common) in peroxide-

mediated depolymerization studies; a variety of catalysts are also utilized, commonly 

combined with metal oxides and alcohols. 

Interestingly, a mix of heated methanol and water acting on lignin may be called 

liquefaction, although the presence of water is considered to have a negative effect on the 

ability to liquefy lignin (render it into smaller molecules).152 Moreover, water as a matrix 

for H2O2 alone is considered to be less than desirable because of the exothermic nature of 

the mixture and the fact that the solution does not follow Raoult’s law. The same study 

found that H2O2 was not effective at lignin breakdown without the presence of a mineral or 

organic acid.153  
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Suggested mechanisms for H2O2 oxidation differed for alkaline (pH >10) and acidic 

conditions (pH < 4)- for alkaline H2O2 oxidation the perhydroxyl anion (HOO-) was 

considered to be the active oxidation species by a number of researchers,150,153-157 while the 

OH+ ion was most commonly named as the active agent in acidic H2O2 oxidation.153,157,158 

Radical mediation was proposed by Asha for H2O2 solutions exposed to light energy,159 and 

also suggested by Agnemo et al.149 Alkaline oxidation was generally seen to be more 

productive in terms of lignin conversion,157 although improvements in oxidative strategy 

such as the use of a H2O2 stabilizer, diethylenetriaminepentamethylene-pentaphosphoric 

acid (DTMPA)156 and the implementation of higher temperatures (> 90 °C)156,157 made 

acidic conditions productive as well.   

 

I.6.2.1. Alkaline hydrogen peroxide treatment 

The alkaline hydrogen peroxide depolymerization of lignin is performed when 

NaOH or another base has been added to raise pH usually in an aqueous solution. In 

alkaline conditions H2O2 produces O2 and a number of radical and anionic species, which 

are capable of degrading lignin through various routes; reactive species include hydroxyl 

anion (HO-), hydroxyl radical (●OH), perhydroxyl radical (HOO●), perhydroxyl anion 

(HOO-), and superoxide radical (O2
●-). The perhydroxyl anion is considered to be the major 

mediator of lignin breakdown in alkaline solution,155,157 capable of cleaving linkages,150  

although the presence of radicals results in nonselective attacks on the lignin structure and 

on H2O2.
156 Overoxidation of lignin may produce gases (CO2 and CO) rather than 

monomers.153 The number of carboxyl, carbonyl, and hydroxyl groups were found to 

increase, and MW of treated lignin was noted as decreasing.155 Aromatic cleavage, or ring-
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opening, was observed by He et al.,154 although Junghans et al. did not observe this.155 

Additionally, an increase in carboxyl groups after treatment with alkaline hydrogen 

peroxide was also noted by He et al.154  

A general mechanism, as proposed by Asha et al. for alkaline H2O2 attack may start 

with hydroxyl radical withdrawal of a hydrogen from an aliphatic carbon on the 

phenylpropanoid structure, then creation of a C=C bond followed by transformation of an 

oxygen in an ether bond to a carbonyl oxygen, effectively breaking the -O-4’ bond. 

Subsequent action by the superoxide radical might lead to ring-opening and degradation of 

lignin to CO2 and low MW products.159  

A mechanism proposed by Xiang et al. includes the perhydroxyl anion, HOO-, as 

the main oxidative species, also leading to aryl ether breakage and ring-opening of 

chromophores. The same study found that carboxylic acids which were formed constituted 

up to 56 wt% of the original lignin weight at 120 °C, the product of 98% conversion of 

initial lignin.157 A study by Gierer et al. showed that cleavage of the -O-4 bond occurred at 

temperatures as low as 30 °C when carbonyls were present at aliphatic alpha positions of 

the phenylpropanoid unit.160  

A proposed mechanism of the radical reaction, mediated through perhydroxyl anion 

and hydroxyl radical reaction, as envisioned by Asha et al. is presented in Figure 10.159  
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Figure 10. Proposed breakdown of lignin in alkaline solution by hydrogen peroxide via 

photocatalysis.159  

 

The mechanism proposed by Asha et al. for the reaction in alkaline solution 

delineated not only depolymerization of lignin, but concurrent production of quinones 

which ultimately led to ring-opening through additional oxidation by the superoxide 

radical, O2
●-.159 

 

I.6.2.2. Acidic hydrogen peroxide treatment 

Although depolymerization of lignin under alkaline conditions is a more common 

form of peroxide depolymerization, since radical activity occurs, there are several studies 

which addressed H2O2 effectiveness under acidic conditions.153,158,161,162 A mechanism 

proposed by Ahmad et al. suggested that HO+ (hydroxyl cation) species produced oxidative 

cleavage of -aryl ether bonds and ring opening, through the reaction:153 
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H2O2  +  H+   ----→   HO+  +  H2O                                           [4] 

A study by Kishimoto gave some insight into H2O2 oxidation under acidic 

conditions for lignin model compounds. In the experiments lignin models were exposed to 

3X the molar amount of H2O2, with diethylenetriaminepentaacetic acid (DTPA) present in 

an acidified solution; the final solutions were heated to 70 °C and samples were withdrawn 

at various times. Results showed that nonphenolic aromatic models had no reactivity, while 

phenolic models with a methyl benzylic group showed limited reactivity (15%).  However, 

nonphenolic and phenolic models with -hydroxyl groups were almost completely reacted 

within 1 hour as long as a hydroxyl or methoxy substituent was present in the para position 

to the benzylic alcohol, as shown in Figure 11.161  
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   Figure 11.  Proposed mechanism for oxidation of -hydroxyl groups in lignin under acidic 

conditions. In this instance, acetaldehyde (ethanal) is produced as a side product during cleavage of 

the bond at the -O-4’ location.161  

 

The mechanism proposed by the group outlined carbocation production at the 

benzylic carbon (initiated by acid attack), which allowed H2O2 addition at the site, followed 

by rearrangement to an epoxide group (as in the Dakin reaction). The intermediate product 

was then hydrolyzed, producing a phenol and an aldehyde. Aldehydes constituted 25% of 

the products in this set of reactions.  It was found that the reactions provided the greatest 

yield of products at a pH of 1.3, whereas production decreased substantially at higher pH, 

essentially stopping at a pH of 3.0.161  
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A study by Kadla et al. showed that stabilization of H2O2 through the addition of 

DTMPA inhibited radical production and increased H2O2 oxidative ability, resulting in 

80.2% conversion of lignin at 110 °C.156 The study also found that carboxylic acid groups 

increased significantly, methoxy groups decreased and phenolic OH declined in favor of an 

increase in aliphatic OH, in comparison to untreated lignin. Of note, the same study found 

that average MW (by GPC) of the oxidized lignins increased with respect to untreated 

lignin. This was attributed to possible condensation reactions or rapid depolymerization 

which resulted in repolymerization of the released oligomers.156 A study by Mancera 

showed that MW was also increased during lignin oxidation by H2O2 under acidic 

conditions.162  

The results of Ahmad et al. were in agreement with proposed mechanisms for ring-

opening and depolymerization by way of the -O-4’ linkage, mediated by HO+ ion, as 

presented by Gierer et al.160 The schemes are shown in Figure 12a and 12b, respectively.153  
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Figure 12. (a) Proposed ring-opening mechanism by Ahmad et al.,153 (based on Gierer et al.160) by 

the OH+ ion under acidic conditions, (b) proposed depolymerization of lignin via the -O-4’ linkage 

through the action of the OH+ ion after a dehydration process in acidic media.  

 

Depolymerization of lignin under acidic conditions was also addressed by 

Evstigneev, who concluded that H2O2 decomposition of lignin occurred optimally at about 

80 °C with acid (1.2 M H2SO4) and H2O2 (3.2 M) present, with lignin at a concentration of 

about 3.2 M. The reaction took place over 150 min and resulted in 94.5% solubility of the 

lignin. The same study found that Fe catalysts actually caused decomposition of H2O2 to 

the extent that degradation of lignin was compromised. It was also determined that high 

temperatures decomposed H2O2 as well, unless acid was present.158 Several conditions were 

necessary to ensure the effectiveness of H2O2 breakdown in an acidic solution. Lignin had 

to be initially in an alkaline form, then underwent treatment with H2O2 in an acidic solution 

and was then solubilized in an alkaline solution. Solubilization extent was the metric for 

lignin conversion, although this was not necessarily contingent on breakdown of larger 

oligomers to smaller ones. This study suggested that H2O2 under these conditions resulted 

in ring-opening of aromatics, which further produced a substantial increase in carboxyl 

groups (0.8 to 8.9 wt% of original lignin mass) at the phenolic hydroxyl and methoxy sites, 

and also may have produced aliphatic carbonyl groups.158  
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Mancera et al. undertook a study of soda lignin depolymerization via oxidation by 

H2O2 in an acidic environment and proposed a mechanism in which a carbocation was 

created in a bond rearrangement after hydrogen peroxide attached to an -carbon with a 

hydroxyl group.162 The study also proposed several other possible scenarios for 

depolymerization. The study believed that a carbocation occurrence at the benzylic position 

could also result in addition of H2O2 and a subsequent Dakin-like replacement of a ring 

substituent which became attached to nearby lignin groups in a type of repolymerization. 

Mancera et al. also noted that Mn and Mw values of the oxidized lignin were somewhat 

higher than the values for the original soda lignin. The depolymerization schemes and the 

Dakin-like reaction which was thought to be responsible for condensation of lignin 

compounds are presented in Figure 13.162  
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Figure 13. Depolymerization schemes under acidic conditions, accomplished by direct H2O2 action, 

via (a) creation of a carbocation after rearrangement of the -carbon bond to the aromatic ring, (b) 

cleavage of the C – C bond and creation of a carboxylic group at the -carbon, (c) ring opening 

reaction through the removal of ring substituents, (d) oxidation of an a-carbon hydroxyl group, 

producing an aliphatic ketone.  Panel (e) shows a proposed condensation reaction through acidic 

action.162  

 

Of interest, Xiang et al. proposed that H2O2 oxidation of lignin was a heterogeneous 

reaction because of the insolubility of lignin in an acid environment, maintaining that 

disruption of aryl ether bonds would be difficult. A temperature of 160 °C was found to be 

necessary to produce a 97 wt% conversion (compared to initial lignin weight) and 

carboxylic acid content was 34 wt% at this temperature. The main acid present was formic 
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acid as opposed to oxalic acid in alkaline oxidation, prompting the group to believe that 

breakdown of the lignin resulted in simple low MW species and production of CO2 gas at 

temperatures > 140 °C due to severity rather than H2O2 oxidation. Products were believed 

to come from electrophilic attack of the OH+ ion on the aromatic ring, which degraded 

rapidly to simple carboxylic acids.157  

Studies on H2O2 oxidation of lignin in neutral pH solution were rare; the Evstigneev 

study compared their outcomes to a study by Izumrudova et al., in which H2O2 oxidation of 

lignin in a neutral solution (pH 7) took place at higher temperatures (90 °C) and longer 

times (6 h) to reach a solubility of only about 50 wt% of the original lignin mass.163  

In summary, the target of many of the researchers was varied; studies were 

undertaken to make lignin soluble (ostensibly to produce lower MW products),157,158  

improve lignin as a dispersant,154 depolymerize it by modified or varied 

methodology,150,152,156 evaluate method parameters,149 produce carboxyls,155 and obtain bio-

oil.164 A number of studies proposed mechanisms.149,150,154,155,159  

All studies reviewed found that carboxylic acids were a high percentage of 

conversion products. However, many of the studies declined to look at MW; a number 

found that MW increased upon lignin oxidation with H2O2,
156,162 although this outcome 

could not be considered to be an improvement in lignin depolymerization. Several studies 

did find that MWs decreased after the oxidative reactions.152,155  

The majority of the studies reviewed showed that both acid and alkaline solvent 

approaches to hydrogen peroxide oxidation were successful at lignin depolymerization, 

although by very different (proposed) mechanisms; conversions of over 90% of the original 
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lignin were listed for both types of solvent systems (Table 12).  Solubility problems, 

particularly for acid-treated samples157 and even neutral-pH samples,163 were addressed by 

increased temperatures and treatment times. 

It was our contention to investigate lignin depolymerization (with H2O2 catalyst) in 

solvent systems which were acidic, alkaline and neutral, but identical in conditions other 

than pH, in order to directly compare the results. This had not been done in previously 

published studies. We also proposed to monitor pH before and after oxidation reactions to 

assess lignin buffering capacity, which had not been addressed by other investigators. Of 

concern was the large number of studies reporting ring-opening and production of acids; 

this would also be directly addressed in our study by monitoring of pH. Several studies had 

also reported increased condensation. Thermal carbon analysis of products vs untreated 

lignin would allow us to test this hypothesis as well.  
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Table 12. Method parameters and findings for several lignin oxidation studies with hydrogen peroxide as the primary catalyst. 

Lignin type H2O2 Method Analyses Results  Reference  

          
Hydrolytic sugar cane 
lignin, red spruce kraft 
lignin 

H2O2 (concentration NR), with/without 
heterogeneous methylrhenium trioxide 
catalysts in acetic acid at 25 °C, for 24 h; 
products filtered, washed with H2O. 

31P, 13 C, 1H NMR- solids fraction 
 
 

Decrease in aliphatic OH groups, increased COOH 
content with use of H2O2/catalyst. 
 

Crestini et 
al. (2006) 151 

Softwood and hardwood 
kraft lignins separated 
from black liquor through 
LignoForce™ process; MW 
6041, 2718 g/mol 
respectively 

H2O2 at 25, 35 °C, for 80, 120 h 
respectively; 1:1, 1:0.75, 1:0.5 with 
lignin (mass), approximately 0.6 g/mL 
(18 M) concentration of liquid; reaction 
on dry basis (lignin) 

Gravimetry 
GPC-UV of non-gas residue 
FTIR of non-gas residue 
 
31P NMR of non-gas residue 
 
Py-GC-MS of non-gas residue 

Conversion: about 38% non gas residue 
GPC: MW at 1:1 1420, 1415 for softwood/hardwood 
FTIR: increase in C=O, ring-opening, decrease in 
methoxy groups 
NMR: increased COOH, decreased aliphatic OH, 
decrease phenolic OH for hardwood 
Py: 10-13 compounds by % area softwood/ hardwood 

Ahmad et 
al. (2020)153  

Alkaline lignin (TCI Co., 
Japan) 

Photocatalytic reactor (batch flow) at 
27 °C for 1 hour, Hg vapor lamps at 200-
400 nm and 410-650 nm; lignin at 100 
or 200 mg/L;) H2O2 at 0.4, 0.8, 1,2, 1.6, 
2.0 M. 

UV absorbance at 276 nm for 
degradation of lignin  

Conversion: 98% (100 mg/L) and 90% (200 mg/L) Asha et al. 
(2020)159  

Alkaline lignin isolated 
from poplar wood soda 
pulp 

Lignin pretreated with 0.5, 1, 2% (30%) 
H2O2 (0.05, 0.1, 0.2 M) adjusted to pH 
11.5 with NaOH, at 60 or 80 °C in 
pressure tube reactor, then liquefied 
with MeOH or MeOH/H2O in autoclave 
(200 and 260 °C respectively) for 30 
min; contents washed with MeOH, 
solid/liquid filtered 

Gravimetry 
 
GPC of liquid fraction 
GC-MS of liquid fraction 
FTIR:  lignin, liquid, solid fractions 
 
1H NMR of lignin, liquid fractions 
 

Conversion: MeOH-water: 84 wt% , with 0.5% H2O2: 
93.5% at 80 °C 
GPC: Mw from 1692 to 1354 with H2O2  
GC-MS: nine compounds by area 
FTIR: Phenols converted to quinone or aliphatic chains 
in some cases. 
NMR: Findings similar to FTIR; side chains removed 

Cheng et al. 
(2016)152  

Hyrodrolysis lignin 
(softwood), fraction 0.2  
0.4 mm collected, 
extracted with ethanol 

Temperature-controlled cell with 2, 4, 
6, 8M H2O2 and 0.4, 0.8, 1.2M H2SO4, at 
20, 40, 60, 80, 100 °C, for 40, 60, 100, 
120, 180 min, p NR; products washed 
with H2O and solubility determined in 
0.4 M NaOH solution 

Solubility of treated lignin 
 
COOH of solubilized fraction by 
titration of lignin solution with 
HCl 
Phenolic OH in solubilized 
fraction by aminolysis of 
acetylated lignin then differential 
spectroscopy at 250 nm 

Optimal solubility: About 78 wt% of original lignin at 
O.1 M H2SO4, 2.6 M H2O2, 150 min at 80 °C 
COOH: Increased from 34 per 100 phenylpropanoid 
units to 68 when oxidized and 82 with addition of NaOH 
Phenolic OH: remained about the same (ring-opening 
may be in nonphenolic rings) 

Evstigneev 
et al. 
(2012)158 



80 

 

Lignin model -methyl 
syringyl alcohol  

Alkaline solution bath with bubbled N2; 
H2O2 (0.4 mol/L vs 0.005 mol/L of lignin 
model) added with MnSO4, FeSO4, 
CuSO4 catalysts at 25, 30, 40 °C; pH at 
10, 10.5, 11, 11.5, 12, 12.5; lignin model 
reacted and inspected at 50, 100, 150 
min, then extracted with ethyl acetate 

GC-MS of solution 
 

Conversion: GC-MS monitoring of a-methylsyringyl 
alcohol with time-kinetic degradation rates reported 
only; higher pH increased rate; Mn catalyst increased 
rate more than Cu, Fe 

Agnemo et 
al. (1979)149  

Organosolv beechwood 
lignin (hardwood); Mn 

1170 and 1732 Mw  

Microwave vessel 200 W for 5 -30 min 
at 5 min increments, p NR, alkaline 
solution with La-modified SBA-15 
catalyst and 0.47 mol/L H2O2 oxidant; 
with 0.52 mol/L lignin; SPE of products 

Gravimetry 
 
 
GC-MS of SPE products 
HPLC-UV of SPE products 
  

Conversion: Max vanillin 9.9 mol%, syringaldehyde 
15.66 mol% (0.38 and 0.52 mol% without catalyst or 
oxidant) 
GC-MS: Six compounds identified 
HPLC: Six compounds quantified 

Gu et al.  
(2012)150  

Softwood kraft lignin by 
LignoForce ™ process; 
13859 Mn  and 16770 Mw  
 

Flask with alkaline solution and H2O2 at 
60 – 100 °C for 1 -3 h; H2O2: lignin molar 
ratios 0.57, 1.14, 1.71, 2.28, 2.85; 
products adjusted to pH 7 and dialyzed 
to 1000 g/mol cut-off 

Gravimetry 
 
 
Potentiometric titration for 
carboxylate and phenolate  
GPC-UV, RI, light scattering of 
dialysate 
FTIR of dialysate 

Conversion: Max carboxylate 1.53 meq/g at 80 °C, 0.77 
molar ratio of NaOH/H2O2 and 2.85 molar ratio of 
H2O2/lignin 
Titration: carboxylate groups increased, phenolate 
decreased in dialysate 
GPC: 11273 Mn  and 14825 Mw  
 
FTIR: increased carboxyl 

He et al. 
(2017)154  

Pine wood kraft lignin 
from LignoBoost process; 
1177 Mn and  6920 Mw 
g/mol 

Reflux glass reactor, alkaline aqueous 
solution (0.5, 1, 2 mol/L) with H2O2 (40, 
80, 120 g/L) or (1.2, 2.4, 3.0 mol/L) for 
1, 2, 4 hours at 29, 45, 60, 80 °C; lignin 
at 10, 20, 40, 60 g/L, all products 
acidified, solids washed and removed; 
solid wash and aqueous filtrate 
combined and oil extracted with methyl 
isobutyl ketone 

Gravimetry 
GC-FID of oil 
GC-MS of oil 
ATR-IR of solids 
 
GPC of oil and solids 

Conversion:  Max 95 wt% at max conditions (see GPC) 
GC-FID: Max 18 wt% of oil 
GC-MS: Vanillin and apocynin identified 
IR: Formation of COOH, aliphatic OH, decrease in 
phenolic OH, no ring-opening 
GPC: Mw 1245 oil lowest for 80 g/L stabilized H2O2, 2 
mol/L NaOH, 40 g/L lignin and 1 h at 45 °C 
 

Junghans et 
al. (2020)155 

Lignin model compounds: 
apocynol, a-methyl-
veratryl alcohol, vanillyl 
alcohol, 3,4-dimethoxy 
alcohol, vanillin and 
veratraldehyde 

Sealed vials in oil bath, with H2O2 at 
0.045 mole/g lignin, DTMPA, pH 11.2 
K2CO3, reacted at 90 or 50 °C for 3 h, p 
NR; during and after reaction products 
removed at timed intervals; products 
were acidified to pH 2 and extracted 
with methylene chloride or diethyl 
ether.  

GC-MS of liquid extract 
1H-NMR of lignin and liquid 
extracts 
 

GC-MS, NMR: conversion: phenolic models converted 
and H2O2 consumed nearly completely by 90 min, pH 
10-12; 
acetaldehyde amounts increased,  
non phenolic models 50- 100wt% left after 180 min 

Kadla et al. 
(1997)156 
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Lignin model compounds: 
methyl guaiacol, 4-methyl 
veratrol, acetovanillone, 4-
(1-hydroxyethyl)-2-
methoxyphenol, 1-(3,4-
dimethoxyphenyl)-
ethanol, 1-(4-
mthoxyphenyl)-ethanol, 1-
(3-methoxyphenyl)-
ethanol  

Sealed vials in oil bath, with 0.0225 M 
H2O2, 0.02 M lignin, DTMPA, in acidic 
aqueous solution w or w/o dioxane, 
reacted at 70 °C, p NR; during and after 
reaction products removed at 0-360 
min (20 min intervals); products were 
washed with Na2S2O3 solution, acidified 
to pH 2 and extracted with ethyl 
acetate 

GC-MS of liquid extract 
1H-NMR of liquid extract 
 

GC-MS, NMR: conversion: Two a-hydroxy models 
converted nearly completely by 60 min, (one after 360 
min) at pH 1.3, 70 °C; 

Nonphenolic -hydroxy with para H did not react 
simple phenolic models 75- 100wt% left after 360 min 

at pH 1.3, phenolic -ketone unreactive; 
Reactivity slowed with increasing pH; 
Dimers identified as products;  
Decreasing pH increased condensation 

Kishimoto 
et al. 
(2003)161  

Protobind ™ lignin, pH 3- 
3.5 

Autoclave reactor, water-ethanol 
solvent (10 g 1:1), 1 g lignin with 0.2, 
0.4, 0.7, 1, 2, 3 mol/L H2O2, added, at 
100, 120, 140, 160, 180 °C for 30 min, p 
NR; post reaction solvent was 
evaporated, products filtered with 
ethanol, liquid fraction designated as 
bio-oil and solid fraction as char-residue 

Gravimetry 
 
TOC of lignin and char 
FTIR of lignin and bio-oil 
1H-NMR of bio-oil 
GC-MS of bio-oil 

Conversion: Max bio-oil 80 wt% at 120 C, 30 min, 1 mL  
H2O2,  with char 6.6 wt%, gas 13.4 wt% 
TOC: 5.9% char for 1 mL H2O2 
FTIR: aromatic esters, aliphatic compounds 
NMR: aliphatics attached to alkenes and carbonyls 
GC-MS: 44 compounds as % areas 

Kumar et al. 
(2020)164  

Soda lignin from sugar 
cane bagasse 

Reflux flask with acidic aqueous 
solution, with lignin and 0.89 M H2O2 
for 10- 120 min, liquid products 
removed at 10 min intervals; solid 
fraction filtered and washed (oxidized 
lignin) 

FTIR of lignin, oxidized lignin 
 
GPC of oxidized lignin 
CP-MAS 13C-NMR of oxidized 
lignin 
 
Elemental analysis of oxidized 
lignin 

FTIR: increase in carbonyls, carboxyls, quinones; 
demethylation and repolymerization indicated 
GPC: Soda lignin Mw 18926, oxidized lignin 20493 
NMR: indication of carbonyl increase, decrease in ether 
linkages, increase in self-condensation  
 
Elemental analysis: C, H reduced, O increased 

Mancera et 
al. (2010)162  

Precipitated poplar 
hardwood lignin from acid 
hydrolysis of biomass 

Bomb reactor with alkaline, acid or 
neutral solution, with H2O2 (1.5 mol/L) 
with 0.3 g lignin; 5, 10 min basic; 5, 10, 
20, 30 min acidic; reaction products 
acidified to pH 2, filtered, solids washed 
and dried. Liquid products divided into 
diethyl ether soluble and insoluble. 
Gases collected 

Gravimetry 
 
HPLC of liquid products 
 
GC-MS of ether soluble and 
insoluble fractions, gases 

Conversion:  98 wt% solubilization for alkaline at 120 
°C; 97 wt% for acid at 160 °C 
HPLC: Acids quantified as 51 wt% for alkaline and 34 
wt% for acid method 
GC-MS: Main gas CO2 

Xiang et al. 
(2000)157 
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I.6.3. Subcritical water treatment of alkali lignin 

It was also noted that many studies combined hot pressurized water as a solvent 

with a number of depolymerization approaches, including catalysis, microwave, 

electrochemical, ionic liquids, and others, often attributing conversion rates to the effect of 

catalysts, oxidants or equipment.  

One of the frequent decomposition methods employs water as the main process 

medium. Water in sub/near supercritical conditions dramatically changes its properties, 

decreasing in polarity while still being in the liquid phase (under sufficient pressure) thus 

enhancing solubilization and breakdown of the matrix.165 Furthermore, the use of water is 

favored as an attractive option due to its low cost and public perception as a green and 

plentiful solvent. Nonetheless, achieving supercritical conditions is less economical 

because of high temperatures and pressures and thus the majority of studies focuses on 

subcritical water (SW) conditions, i.e., 100 to 370 °C at 1 to 22 MPa. 

Combined with SW treatment, lignin degradation is frequently facilitated by 

catalysts, oxidative/reductive species or occasionally ionic liquids.  Understanding the 

impact of SW alone in such treatments seems to be essential as a reference (i.e., baseline) 

when comparing the effectiveness of various catalysts. A number of studies investigated 

SW treatment of lignin without additives yet differing in feedstocks, temperatures, 

pressures and reaction times.  Furthermore, the focus of these studies varied: Some authors 

used the SW system as a baseline for comparison to systems with additives or supercritical 

temperatures,166-174 as a kinetic study,174-176 or as a basis for evaluation of degradative 

mechanisms.173,174,177 Several studies focused on optimization of bio-oil production, i.e., 

low molecular weight (MW) solvent extractable species, with some chemical 



83 

 

characterization to this fraction,178-180 whereas others focused on the characterization of 

solid residue that is a means of producing hydrochar.177,181 Table 13 summarizes the results 

of such studies that employed comprehensive analytical protocols determining (often 

combined with gravimetry and occasionally total organic carbon (TOC) 

analysis)170,171,174,178 the product distribution between the liquid and solid fractions, plus 

solvent extractable bio-oil. In these studies, repolymerization of phenolic intermediates was 

viewed, either explicitly or implicitly, as the main competing path to depolymerization, 

thus limiting the yield of valuable phenolic monomers or contributing to hydrochar 

formation.  
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Table 13. Comprehensive list of lignin subcritical water treatment studies without additives conducted with a suite of analytical protocols, 

including experimental conditions, analytical methods and main findings (for abbreviations seen footnote). 

Feedstock(s) SW Treatment Conditions  Selected Analytical Methods Findings References 

Bamboo kraft lignin; 
MW 2,720 g/mol 

Batch reactor, 130, 180, 230 °C, 15 
or 60 min, pressure NR  

Gravimetry 
GC-MS of diethyl ether and ethyl acetate extracts 
of water-soluble fraction (bio-oils) 
GPC of water-insoluble products  
FTIR of water-insoluble products 

Conversion to bio-oil & gas up to 21% (230 °C); bio-oil 5.4–10.6% 
GC-MS: 17 products quantified  
 
GPC: Mw 620-1670 g/mol (230 and 130 °C, respectively)  
FTIR: Increase of phenolic groups, loss of β-O-4 bonds 

Zhou et al. 
(2014)182  

Cellulolytic enzyme 
lignin from Poplar; 
Mn 2,750, Mw 6,000 
g/mol 

Flow reactor, 20 mL/min, 140 °C at 
0.28 MPag, 180 °C at 1.10 MPag; 12 
or 192 min  
 
Batch reactor, 140 and 180 °C, 
outside pressure NR, 12 or 192 min  

Gravimetry  
 
GC-MS of filtered water-soluble products  
GPC of water-insoluble products 
HSQC NMR of water-insoluble products 

Conversion to water-soluble products up to 42 wt% by flowthrough 
and 25 wt% by batch 
GC-MS: 18 products quantified 
GPC: Mn 3,000-5,000; Mw 3,000-14,000 g/mol  
HSQC NMR: Loss of β-O-4 bonds and methoxy groups  
with temperature increase 

Trajano et al. 
(2013)183  

  

Switchgrass 
organosolv lignin;  
MW~800 g/mol 

Autoclave reactor, 160, 200, 220, 
250 °C, for 2 h, p NR; 180 °C for 2, 
4, 8 h, pressure NR 

Gravimetry 
GC-FID of DCM extract of water soluble fraction  
GC-MS of DCM extract of water soluble fraction  
GPC, 1H-NMR of THF extract of water-insoluble 
fraction 
Elem. analysis, TG, FTIR, SEM of THF extract and 
char (residue left after THF extraction) 

Conversion to water-solubles up to 40 wt% 
GC-FID: 23 volatiles quantified at 9.3 wt% at 250 °C 
GC-MS: 23 products reported as normalized 
GPC: At temperatures > 180 °C, decrease in product yield and Mw 
 
Elem analysis: Residue deoxygenated 
TG: THF-solubles same as raw lignin, char produced more coke 
(non-volatiles) than lignin even at 900 °C 

Long et al. 
(2014)184  

)lkali lignin (Sigma-
Aldrich); MW NR 

Batch reactor, 200, 250, 300, 350 
°C, 0, 20, 40, 60 min, pressure NR 

Gravimetry 
 
GC-MS of ethyl acetate (EA) extract from filtered 
water-soluble fraction (light oil) 
GC-MS of acetone extract of filtered water-
insoluble fraction (heavy oil)  

Conversion to heavy oil 34 to 31 wt% and to light oil 6 to 14 wt% for 
300 and 350 °C, respectively  
GC-MS: 20 monomer products quantified 
 

Islam et al. 
(2018)179  

Alkali lignin (Sigma-
Aldrich); MW NR 
 

Batch reactor, 280, 370 °C, 0-240 
min; pressure NR 

Gravimetry 
 
GC-MS of methanol-extract of water-soluble and 
–insoluble fractions 
HPLC of methanol-extract of water-soluble and –
insoluble fractions 
FTIR and NMR of water-insoluble/methanol-
insoluble residue 

Conversion to methanol-soluble products up to 11 to 21 wt% (280 
and 370 °C, respectively)  
GC-MS: 33 products reported as normalized 
 
HPLC: 5 major products quantified  
 
FTIR: Increased phenolic content with temperature increase 
 

Pinkowska et al. 
(2012)169  
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Low sulfonate alkali 
lignin from Norway 
spruce, (Sigma Japan); 
MW 10,000 g/mol  
 

Batch reactor, 300, 350, 370 °C, 0.5-
10 s, 25 MPa  

Gravimetry, TOC of aqueous liquid fraction 
GC-TCD/FID of gas products 
LC-MS, HPLC of water-soluble products 
FTIR, elem. analysis of lignin and char (water-
insoluble products) 

Conversion to water-soluble products up to 50 wt% (300 °C) 
Gases up to 15 wt% (370 °C)  
LC-MS, HPLC: 18 products, qualitative and quantified, respectively  
FTIR: OH group decrease in char compared to lignin. 

Yong and 
Matsumura, 
(2013)174  

 

Lignin isolated from 
Poplar sulfate black 
liquor; MW NR 

Batch reactor, 220, 250, 280, 310, 
340 °C at 30 min; 0.9, 1.9, 3.9, 7.0, 
13.8 MPa, respectively. Also 0, 15, 
30, 45, 60 min at 310 °C 

Gravimetry 
GC-FID, GC-MS, of water-soluble fraction and 
ethyl acetate (EA) extract of water-soluble and 
water-insoluble fractions 
FTIR of water-insoluble/EA-insoluble residue 

Conversion to water-soluble products up to 96% (340 °C 
GC-FID:  12 products quantified 
GC-MS: 34 products, reported as normalized   
 
FTIR: Decrease in OH groups with temperature increase (OH groups 
negligible by 340 °C) 

Jiang et al. 
(2014)172  

Enzymatic/Mild 
Acidolysis lignin from 
China fi; Mn 12,372 
and Mw 20,123 g/mol 

Autoclave reactor, 250, 275, 300, 
325, 350 °C, with pressures 3.9, 6.0, 
8.6, 12.2, 16.5 MPa, respectively 

Gravimetry 
 
GC-MS of ethyl acetate (EA) extract of water-
soluble and -insoluble fractions  
GC-TCD of gas products 
GC-FID of EA extract 
LC-ESI-MS (MW distribution) of EA extract 
 
FTIR, TG of water-insoluble/EA-insoluble residue 

Conversion up to 40 wt% EA-soluble products (325 °C); gases 5-10 
wt% (all temperatures) 
GC-MS: 26 products, reported as normalized 
 
GC-TCD: Four products quantified 
GC-FID: Six products quantified 
LC-ESI-MS: Reduction of high-MW compounds at higher 
temperatures 
TG: Thermal stability of solids > lignin stability 

Zhao et al. 
(2016)185 

Alkaline lignin from 
Japan (Tokyo Kasei 
Kogyo Co.); MW NR 

 

Batch reactor, 350 °C for subcritical 
section, pressure 25, 30, 40 MPa, 
for 5, 15, 30, 60, 90, 120, 180 and 
250 min 

Gravimetry 
GC-MS, HPLC, MALDI-TOF of methanol extract of 
water-soluble and -insoluble fractions 
FTIR of water-insoluble/methanol-insoluble 
residue 

Conversion up to about 40 wt% methanol-soluble products  
GC-MS: 28 products, reported as normalized, four compounds 
quantified by HPLC 
FTIR: Loss of OH groups with temperature increase 

Wahyudiono et 
al. (2008)168  

Beech wood 
organosolv lignin; Mn 
606, Mw 3,428 g/mol 

Batch reactor, 270, 290, 310, 350 °C 
and 10, 20, 30, 60, 120 min 
residence time, pressure NR 

Gravimetry, TOC of water-soluble fraction 
 
GC-MS of ethyl acetate (EA) extract from water-
soluble fraction (bio-oil) 
GPC of lignin and EA extract  

Conversion to water-solubles up to 25 wt%, bio-oil up to 13 wt% 
(350 °C) 
GC-MS: Bio-oil 14 monomers reported as normalized – eight 
monomers quantified 
GPC: Bio-oil Mn 201-218, Mw 242-291 g/mol (for 350 and 270 °C, 
respectively) 

Hashmi et al. 
(2017)178  

Dealkaline lignin (TCI); 
MW NR 

Autoclave reactor, 225, 245, 265 °C; 
pressure NR 

Gravimetry 
TG of water-insoluble fraction (hydrochar) 
FTIR of water-insoluble fraction (hydrochar) 
Elem. analysis of water-insoluble fraction 
(hydrochar) 

Conversion to hydrochar up to 60% (225 °C)  
TG: Thermal stability of solids > stability of lignin 
FTIR: O-H, C-H, C-O groups fewer than in lignin  
Elem. analysis: C/O and C/H ratios increased from 225 to 265 °C 

Kang et al. 
(2012)186  
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Hardwood-derived 
Organosolv lignin 
(Sigma); MW NR 
 

 

Batch reactor, 365 °C at 500 psi for 
30 min 

Gravimetry 
GC-FID-TCD of gases 
GC-MS: DCM extract of water-soluble and  
-insoluble fractions 
Solid-state C-NMR of water-insoluble/DCM-
insoluble residue 
 

 

Conversion to DCM-soluble products 40 wt%  
GC-MS: 10 products reported as normalized 
 
 
C-NMR: Aromatics 76%, aliphatics 24% for reacted lignin (no gases 
added) compared to 64% and 36%, respectively, for unreacted 
lignin 

 

Bembenic and 
Clifford 
(2012)163 

Crop waste alkali 
Protobind® 1,000; 
MW NR 

Batch reactor, 370 and 390 °C, 25 
MPa for 5, 10, 20, 40 min 

Gravimetry, TOC of aqueous liquid fraction, GC 
analysis 
GC-TCD of gases. 
GC-FID of water-soluble fraction 
13C NMR of water-insoluble fraction after 0.7 m 
paper filtration 
Elem. analysis of water-insoluble fraction 

Conversion to water-soluble products up to 33 wt% (370 °C), 40 min 
GC-TCD: Gases 1-5 wt%  
GC-FID: 13 water-soluble products, quantified  
13C NMR: Decrease in C-O/C-C ratio with reaction time 

Barbier et al. 
(2012)167 

Lignin-rich stream 
from lignocellulosic 
ethanol distillation, 
using Poplar 
hardwood; MW NR 
(lignin 53 wt% of 
sample) 

Batch reactor, 300, 350, 370 °C for 
5, 10 min; 3-8 MPa 

Gravimetry, TOC of aqueous liquid fraction, GC-
MS, HPLC 
GC-MS of diethyl ether extract (DEE) of water-
soluble and -insoluble fractions (light biocrude) 
HPLC of filtered water-soluble products  
FTIR of acetone extract of water-insoluble/DEE-
insoluble residue (heavy biocrude) 

GPC of light and heavy biocrude after 0.45 m 
syringe filtration 
NMR of light and heavy biocrude 

Conversion to light biocrude up to 17 wt% and to water-solubles up 
to 12 wt% (300 °C) 
GC-MS: 15 light biocrude compounds, quantified  
 
HPLC: Seven water solubles, quantified 
FTIR: Heavy biocrude similar to lignin feedstock 
 
GPC: Heavy biocrude vs light, 1300 vs 400 g/mol (at 300 
°C) and 1125 vs 450 (at 350 °C) 
NMR: Loss of OH groups in light biocrude, preserved aromatic ring 

and -double bonds in heavy biocrude 

Dell’Orco et al. 
(2020)170 

Kraft lignin with low 
sulfide content, 4% 
sulfur (Sigma); MW 
NR 

Batch reactor, 300, 370, 400 °C; 
reaction times 100- 5,000 ms by 
100/1000 ms increments; pressure 
NR 

Gravimetry 
GC-MS of ethyl acetate-extract (EA) of water-
soluble fraction (light oil) 
Elem. analysis of lignin samples taken during 
reaction at various times 
FTIR, TGA of EA-extract of water-insoluble 
fraction (heavy oil) 

Conversion to light oil up to 32 wt% at 370 °C 
GC-MS: Seven compounds, quantified 
 
Elemental Analysis: H/C ratios decrease rapidly in reaction, implying 
dehydration steps 

Abad-Fernandez 
et al. (2019)166  

Alkaline lignin (TCI 
America); MW NR 

Microwave, 270 °C for 20 min vs 
autoclave reactor with same 
conditions; pressure NR 

Gravimetry 

GC-MS, calorimetry of DCM extract of water-
insoluble fraction (biocrude). 

Conversion to biocrude 2.7 wt%, 5 wt% gas 

GC-MS: Seven compound groups, reported as normalized 

Yang et al. 
(2020)187  
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Lignin isolated from 
black liquor; MW NR 

Autoclave reactor, 280, 310, 330, 
350, 365 °C for 2 h, initial N2 at 3 
MPa 

Gravimetry, GC-FID-TCD (gases) 
 
GC-FID-TCD of gases. 
SEM, pore size, XRD, FTIR, TG of water-insoluble 
fraction (char) 
 

 

Conversion to water-soluble products NR; gas products reported as 
negligible; solid products  up to 28 wt% at 280 °C 
FTIR: Carbonyl, methyl, methylene, methoxyl groups decreased 
with temperature, except increased OH groups. 
XRD: Side chains in lignin decreased and repolymerization of 
aromatics with increased temperature 

Hu et al. 
(2014)177  

Lignin-rich residue 
from ethanol 
production (SEKAB); 
MW NR 

Batch reactor, 320, 340, 360, 380 
°C; 15, 30, 45, 60, 90, 120, 240, 480 
min, pressure NR  

Gravimetry 
 
GC-FID-TCD of gases 
GC-MS, GC-FID of ethyl acetate (EA) extract of 
water-soluble fraction 

Conversion to EA-soluble products up to 3.7 wt% (360 °C), gases up 
to 24 wt% (380 °C) 
GC-FID-TCD: CO2, CH4, CO, quantified 
GC-MS: Phenol, methoxyphenol, catechol groups, reported as 
normalized; GC-FID: groups quantified. 

Forchheim et al. 
(2014)176  

Kraft indulin AT 
(MeadWestvaco) and 
kraft pine lignin 
(Sigma-Aldrich); MW 
NR 

Batch reactor at 300 °C (p NR) and 
374 °C (22 MPa), 10 min 

Gravimetry 
 
 
GC-TCD for gases 
GC-MS of water-soluble fraction combined with  
acetone extract of water-insoluble fraction 

Conversion to water- and acetone-soluble products 34 wt% indulin) 
and 59 wt% (kraft pine) and gases 4.6 and 6.2 wt% (indulin, kraft 
pine) at 374 °C 
GC-FID-TCD: Five gases, quantified 
GC-MS: 24 products reported as normalized 

 

Zhang et al. 
(2008)175  

Alkaline lignin (TCI); 
MW NR 

Batch reactor, 260, 280, 300, 340, 
360 °C for 0, 10, 20, 30, 40, 50, 60 
min; pressure NR 

FC, DPPH assays 
 
 
GC-MS of DCM extract of water-soluble and  
-insoluble fractions. 
Thermal oxidation stability of DCM extract 

Conversion to phenols up to 28 wt% at 320 °C, reported as mg gallic 
acid by FC assay FC and DPPH: Phenol content highest at 320 °C 
GC-MS: identified 14 compounds 
 
,  

Kang et al. 
(2015)181  

Corncob lignin 
(Shandong Long Li 
Biological Technology 
Co.); Mw 1970, Mn 863 
g/mol 

Autoclave reactor, 210, 230, 250, 
270 and 290 °C at 0 min retention 
time. 270 °C at 0, 10, 20, 30 and 40 
min; pressure NR 

Gravimetry 
 
GC-MS of volatiles evaporated from water-
soluble fraction, water-soluble products post 
volatiles evaporation (light oil), acetone extract 
of water-insoluble fraction (heavy oil)  
2D-HSQC, P-31 NMR of light and heavy oil 
 
 
GPC of light and heavy oils 
 
Elemental analysis of raw lignin and water-
insoluble/ acetone-insoluble residue  

Conversion to heavy oil up to 48 wt% (230 °C), water-soluble oil 9.5 
wt% (210 °C), volatiles 8 wt% (290 °C) 
GC-MS: 50 products reported as normalized 
 
 
 
HSQC: Not all ether bonds broken at low temperature 
P-31 NMR: Aliphatic OH decrease, but phenyl OH increase with 
temperature increase 
GPC: Light oil Mw 386, 372 g/mol, heavy oil Mw 814, 833 g/mol, 210 
and 230 °C, respectively 
Elemental analysis: Increased carbon in solid residue compared to 
lignin 

Yang et al. 
(2015)180  
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Kraft lignin from 
eucalyptus; Mw 3031 
g/mol 

Microreactor, 130, 180, 230 °C for 
15 or 60 min; pressure NR  

Gravimetry 
GC-MS of diethyl ether (DEE) extract (oil 1) and 
ethyl acetate (EA) extract (oil 2) from water-
soluble fraction 
GPC of DEE and EA extracts 
 
FTIR of water-insoluble residue 

Conversion to total oil up to 10 wt.% at 130 °C and 15 min 
GC-MS: 10 oil compounds, reported as normalized 
 
 
GPC: Oil 1 Mw 407, 534 g/mol and oil 2 Mw 416, 310 g/mol (230, 130 
°C, respectively) 

FTIR: Phenolic OH increased with temperature while CO, -O-4 links 
and aromatic rings decreased 

Tang and Zhou 
(2015)188 

Biomass with 54% 
lignin (w/w), obtained 
from ethanol plant 
with Poplar source; 
MW NR 

Microreactor, 300, 350, 370 °C at 5, 
10, 5, 20 min, with biomass to 
water ratio (B:W) of 10-20%(w/w), 
initial pressure at 3 MPa argon gas, 
change in pressure NR 

Gravimetry (mass conversion); TOC (of water-
soluble fraction) and elemental analysis (carbon 
conversion) 
GC-MS of diethyl ether (DEE) extract of water-
soluble fraction (light biocrude) 
HPLC of filtered water soluble products  
GPC of DEE extract of filtered water-soluble 
fraction and dimethyl ketone extract of water-
insoluble fraction (heavy oil) FTIR of light 
biocrude and heavy oil (bio-oil)  

Conversion to bio-oil and water-solubles up to 71 wt% at 300 °C, 10 
min, 20% water to biomass ratio  
GC-MS: 9 bio-oil compounds, quantified 
 
HPLC: 11 water-soluble compounds, quantified 
 
GPC: Bio-oil Mw of 550 to 1150 g/mol (370 and 300 °C, respectively) 
 
 

FTIR: Bio-oil showed fewer -O-4 linkages than lignin 

Miliotti et al. 
(2019)171  

Abbreviations: ; NR – not reported; MW – molecular weight; Mn – number-average molecular weight; Mw – weight-average molecular weight; FC- Folin-
Ciocalteu assay; DPPH- 2,2-diphenyl-1-picryl-hydrazyl-hydrate assay. 
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The central theme to improvement of conversion percentages within subcritical 

methodology is the depolymerization/repolymerization trends with increased temperature of 

treatment.  Zhao et al. conducted a study on repolymerization as a result of SW treatment at 

temperatures ranging from 200 to 350 °C and provided arguments (based on  gravimetry and 

production of low MW species) that 350 °C is a threshold for extensive char formation.185 A 

similar trend was observed by Hashmi et al.178  

Based on these studies, facile repolymerization of lignin fragments appears to be a 

significant barrier hindering lignin processing. It is considered to be one of the main reasons for 

low efficiency of lignin depolymerization by SW in the absence of catalysts.189 Echoing this 

conclusion, Trajano et al. interpreted HSQC data and increases in MW as evidence that 

repolymerization can only be reduced, but not stopped, by several parameter changes such as 

lower residence time and increased solid-liquid interface.183  

The GPC results on MW distribution also varied (see Table 13),170,171,178,180,182-184,188 

depending on feedstock and, potentially, by the applied GPC protocol with and without 

acetylation and whether the analysis was based only on polystyrene standard calibration. Yet, 

these studies consistently agreed on repolymerization being significant at temperatures above 

200 °C. An excellent GPC application was demonstrated by Hashmi et al. showing the 

occurrence of dimers and trimers in bio-oils from beech wood organosolv lignin.178 Yong and 

Matsumura attributed the observed increase in products’ MW as char formation.174,177 The 

occurrence of repolymerization, especially at higher temperatures, was assumed in these studies 

based on either quantification of low MW compounds (via GC-MS or LC-MS) or methods 

precluding speciation, such as thermal gravimetric analysis TGA, TOC and gel permeation 



90 

 

chromatography, with only a few studies attempting to align the quantitation results obtained by 

different methods. 

As a result, the conclusions on repolymerization are yet to be verified by thorough 

quantitative analysis. SW studies of lignin decomposition may benefit from conducting an 

accurate mass balance closure among fractions, comparison of treatment product and feedstock 

analyses, and providing decisive evidence of repolymerization, which would corroborate the 

perception that this is the main factor limiting the process efficiency. To address this knowledge 

gap, our study presents a novel approach of semi-quantification of SW treatment products 

(subjected to thermal analysis at several temperatures, i.e., providing their fractionation). The 

technical novelty of our study is the application of a new tool kit, which is designed to account 

for high MW products in addition to GC-elutable low-MW products of lignin degradation. 

Previous studies provided only indirect insights into these products, based on gravimetric 

measurements and qualitative mass-spectrometric analysis. Quantification and assessment of 

depolymerization/repolymerization of higher MW compounds as well as repolymerization of 

lower-MW components in the liquid and solid fractions of the products of SW treatment are 

essential for understanding the decomposition pathways of lignin.   

 

I.7. Statement of Purpose 

Lignin shows promise as a potential source of renewable chemicals and as a possible 

replacement for petroleum-based fuel and petrochemicals.190-192 Characterizing lignin is a first 

step in utilizing what is essentially a massive waste item, an effort which should culminate in 

effective depolymerization and usage of lignin as a part of the overarching theme of reducing 

dependence on petroleum and developing sustainable products. A suite of novel lignomics 



91 

 

protocols was developed previously and these have been modified to meet new challenges in the 

characterization of lignin.81,193,194  

MW characterization by SEC was an important goal of this study, with investigation into 

mixed mobile phases, differences in MW of a variety of technical (whole) lignins, and enabling 

GPC analysis of solubilized lignin in several solvents. A number of technical lignins were used 

for evaluation in this study; these included dealkaline, alkali, lignosulfonate, soda and indulin 

lignins; several were the same type of lignin but from different manufacturers.  

The first part of size exclusion chromatography method development was to derive an 

analysis protocol for technical lignins. Technical lignins have been processed by chemical 

means, typically during separation of cellulosic materials from lignin in raw biomass. Standards 

and samples were evaluated for optimal injection volume, optimal wavelength in a variable 

wavelength detector (VWD) and filtering treatment prior to analysis.  

A second part of the GPC method development centered around the analysis of kraft 

lignin dissolved in a series of different solvents and solvent mixes. Solubility differed greatly for 

each solvent system, so that the main challenge was to preserve the solubilized material when 

shifting to a different solvent and then to select column and mobile phase parameters which 

would optimize the method chosen. 

To evaluate the oxidation level of lignins, a Folin-Ciocalteu (F-C) method was optimized 

for estimation of phenolic hydroxyl groups in lignins. The optimization was performed using 24 

factorial statistical design of experiment. Once F-C reagent amount, analyte concentration range, 

acetone:water solvent ratio and volume as well as development time were established, a large 

number of lignin model compounds were evaluated for phenolic hydroxyl concentration ranges 

by UV-Vis spectrophotometry and the resulting slopes served as calibration standards for 
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evaluation of whole lignin samples. Although model compound response varied with ring 

substituents, an estimation of lignin hydroxyl content was determined. 

Lignin processing projects included fractionation via preparatory SEC, depolymerization 

by peroxide oxidation and depolymerization by subcritical water treatment.  

In our first processing project, preparative SEC was used to separate kraft alkali lignin 

into more restricted categories ostensibly based on MW.  However, one of the purposes of the 

separation was to gauge the effectiveness of the process as well as to determine if functional 

groups of various types also changed in abundance with molecular weight. To investigate the 

chemical nature of these fractions, including mass balance and evaluation of structural features, a 

number of analyses were employed, including high performance SEC, direct infusion high 

resolution mass spectrometry, gas chromatography-mass spectrometry (GC-MS), thermal 

desorption/pyrolysis-GC-MS, 31PNMR spectroscopy, thermal carbon analysis and transmission 

electron microscopy. Preparative SEC was compared to more commonly used fractionation 

methods of precipitation, solvent extraction, and ultrafiltration for ease of use, successful 

differentiation based on MW, ease of downstream analysis for functional groups, and the 

possibility of being scalable to industrial standards.  

The second processing project of this study was to determine conversion rates of high-

MW lignin to smaller molecules for peroxide/methanol oxidation of alkali lignin heated in an 

autoclave.  Analysis was accomplished via thermal carbon analysis, a novel method of analysis 

for carbon content which allows monitoring of carbon (as CO2) evolved at different 

temperatures. As monomers and small oligomers were the only species to be solubilized, carbon 

content allowed a quantitative measure of breakdown afforded by the oxidation process, and also 

an estimate of oligomer sizes since higher temperatures would be required for higher MW 
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molecules. Also, pH was monitored before and after treatment in order to pinpoint acid or base 

release during the process. 

The third of our processing projects involved investigation of subcritical water treatment 

of alkali lignin in order to determine actual conversion rates attributable to that process, as well 

as to attempt a mass balance strategy and to determine the degree of depolymerization (and 

repolymerization) of final liquid and solid products. 

To enable this approach, we utilized thermal carbon analysis (TCA), enabling 

comprehensive quantification of carbonaceous species, which allowed for carbon mass balance. 

This method is based on determination of the amount of carbon in all temperature fractions of 

TCA, which yields the carbon content of low- and high-MW lignin oligomers, including the 

carbon in char, which is quantitatively combusted with oxygen following the pyrolytic 

sequence.191-193 The TCA results were aligned with detailed speciation profiles obtained with 

thermal desorption-pyrolysis gas chromatography-mass spectrometry (TD-Py-GC-MS). The 

thermal fractionation of alkali lignin and its degradation products was accomplished through a 

sequential TD program (ambient temperature, 200, 300 °C), which was compared to the amounts 

obtained by liquid-liquid extraction and GC-MS analysis.194 The pyrolytic fractionation was 

achieved through a similar approach, a sequential Py program matching the TCA temperature 

ramp (400, 500, and 890 °C), thus enabling their direct comparison.   

This study was intended to investigate carbon mass balance closure and speciation of 

lignin following the SW treatment by employing this newly developed suite of methods. Thus 

not only low MW products were delineated with liquid-liquid extraction (LLE) GC-MS, but both 

low and high MW species were systematically characterized through TCA, TD-Py-GC-MS, LLE 

GC-MS and previously validated GPC analysis.81 From the results of analyses of SW treated 
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lignin and untreated lignin, the extent of depolymerization was estimated and organic classes of 

products in the monomer-small oligomer range were determined as well several high-MW 

species. C/H and C/O ratios, as well as elemental analyses of treated and untreated lignin also 

offered quantitative evidence for repolymerization vs condensation.   
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CHAPTER II. Characterization of Lignin 

II.1. GPC Method Development 

II.1.1 Description of Whole Lignins 

 The first part of GPC method development was to derive an analysis protocol for whole 

lignins, which are also “technical lignins.”  Technical lignins have been processed by chemical 

means, typically during separation of cellulosic materials from lignin in raw biomass. The 

cellose, in pulp form, is used for paper or fuel production while lignin usually remains in solution 

and constitutes a waste product in the industrial sector, with limited commercial use.  Lignin can 

be used as low-grade fuel for combustion, a dispersant for oil and as a partial substitution for 

phenols in various resins, among other uses.195 Whole lignins are not to be confused with lignin 

model compounds which are simple monomers, dimers or oligomers which are considered to be 

products of lignin depolymerization.  They are also not native lignins, which carry the original 

structure and properties of lignin in the plant source they are derived from.  

 A second part of the GPC method development centered around the analysis of kraft 

lignin dissolved in a series of different solvents and solvent mixtures.  Solubility differed greatly 

for each solvent system, so that the main challenge was to insure solubility and then to select 

column and mobile phase parameters which would optimize the method chosen. 

 Several types of technical lignins were used for evaluation in this study and these include 

sulfur-containing lignins known as kraft and lignosulfonate lignins.  The kraft process is the most 

common processing method used today by the paper industry.  Typically, wood chips are mixed 

with hot water, NaOH and Na2S and is heated to 160 – 180 °C.  This method dissolves lignin in a 



96 

 

highly alkaline solution; if kraft lignin is not further treated and is dried it has a pH of 8-10 if 

redissolved.25,26  

Alkaline lignin is solubilized and broken down by NaOH or another strong base, without 

sulfur-containing reagents.  “Soda lignin” is alkaline lignin treated and solubilized by NaOH 

alone.  Protobind 1000 ™ (GreenValue, Granit, Switzerland) is a mixed wheat straw/Sarkanda 

grass lignin processed by NaOH, which guarantees a product with a minimum of 90% lignin, so 

that cellulose and hemicellulose are still present (< 4%), although there is no sulfur present.28  

Occasionally a product marketed as “alkali or alkaline lignin” contains sulfur or is listed 

as “kraft lignin.”   “Alkaline lignin” sold by TCI America (Portland, OR) has a stated pH of 8- 

10, but also contains 20-29% sulfonate in the anhydrous form.29 Sigma Aldrich, (St. Louis, MO) 

sells a “low sulfonate alkali (kraft) lignin” (product # 471003) with sulfur level specified as < 

3.6% (at 3% water content) and a pH of 10 – 11. Sigma Aldrich also markets an “alkali (kraft) 

lignin” (product # 370959) with a pH of 5.5 – 7.5 and an unspecified sulfur content (at 10% 

water content.30 The pH value of 5.5 – 7.5 reflects that fact that alkali lignin is typically retrieved 

from black liquor, the original alkaline solution, through acidification and precipitation.   

Indulin AT lignin, sold until recently by Meadvestvaco, Inc., and now sold by Ingevity, 

Inc. (Charleston, NC), is an acidified kraft pine lignin produced as a byproduct of the paper 

industry.31 The acid hydrolysis process removes sodium and hemicellulose, although sulfur 

remains intact.  The pH (5.0 – 7.0) is slightly lower than that of alkali kraft lignin.  Indulin C, 

also marked by Ingevity, Inc., is an unsulfonated kraft lignin, advertised by the company as 

highly purified and highly functionalized in carboxylic acids as well as aliphatic and aromatic 

hydroxyl groups, with alkaline pH 9 – 10.  
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Lignosulfonate lignin is produced during delignification processes in which primarily  

-O-4’ ether bonds are cleaved by sulfurous acid (formed from CO2 addition to an aqueous 

solution), where proton combines with a hydroxyl group removed from lignin to form water, and 

the remaining bisulfite group bonds to the lignin at the residual carbocation site to produce a 

sulfonate. The process may also use a sulfite salt of Ca, Mg, Na, Al or NH4 along with, or in 

place of, the sulfurous acid.  The sulfite pulping reaction results in a higher percentage of sulfur, 

3.5 – 8%, compared to alkali lignin, which is typically listed as 1– 3%. The presence of sulfonate 

groups makes this type of lignin water-soluble.33 A lignosulfonate lignin used in this study is 

produced by Borregaard Lignotech (Sarpsborg, Norway). Aro et al. stated that the typical pH of a 

sulfite process (and the lignin produced therein) as 1 – 5, although a neutral process entails a pH 

of 4 – 7.  A commercial site listed its dark brown lignosulfonate product which contains sulfur as 

a “grade three” lignosulfonate, with a pH of 4 – 7;34 however, additional lignosulfonate products 

had a variety of pH levels dependent upon the processing parameters enlisted.  

Dealkaline lignin is produced through dealkalization of black liquor, a solution of 

solubilized lignin produced during the papermaking process. TCI America (Portland, OR) 

describes dealkaline lignin marketed by their company as starting out as sodium lignosulfonate 

(TCI product # L0098) which is subjected to desulfonation (partial), oxidation, hydrolysis and 

demethylation to result in a lignin which still retains sulfate (10 – 20% based on anhydrous mass) 

and has a pH of 3 – 4. The TCI dealkaline lignin (TCI product # L0045) is then used as a base to 

produce TCI alkaline lignin (TCI product # L0082) by adjusting pH up to 8 – 10. 
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II.1.2. Experimental 

Development of GPC methodology was carried out for lignin and lignin derviatives 

through variation of sample preparation, calibration standards preparation, flow rate, injection 

volume, wavelength and solvent systems.  Whole lignins consisted of 12 lignin types from 

different manufacturers, while solubilized lignins were samples derived from ten solvent 

systems.  All calibration standards and samples were analyzed by the 1220 Infinity II HPLC 

(Agilent, Santa Clara, CA), with Agilent OpenLab CDS software/GPC module, Variable 

wavelength detector (VWD) and Agilent Plgel Minimix-D reversed phase column (5 m pore 

size, 250 mm length, 4.6 mm ID).  Molecular weight lower and upper limits are 200 and 400,000 

Da respectively.   

  

II.1.2.1. Materials 

GPC analysis of lignin and lignin derivatives was carried out on the 1220 Infinity II 

HPLC (Agilent, Santa Clara, CA), using solvents which included unstabilized tetrahydrofuran 

(THF), ethyl benzene, and acetone (VWR, Radnor, PA) which were HPLC grade.  Deionized 

water was obtained from a Direct-Q 3 UV system purifier (Millipore, Billerica, MA, USA) with 

the total organic carbon content below 5 ppb (manufacturer specification).   

 Syringe filters consisted of 0.45 m (pore size), 13-mm hydrophobic PTFE syringe filters 

(Tisch Scientific, North Bend, OH) and 0.2 m (pore size), 13-mm hydrophobic PTFE syringe 

filters (VWR, Radnor, PA).  
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Table 14. Lignin study sample sources, composition, pH, method of MW evaluation, production process, and references.  

Lignin 
sample 

Source Elemental analysis pH MW Method Production Process References 

  
C H N S 

    

Dealkaline TCI 

Chemicals, 

Ltd. 

51.25 4.78 0.16 4.43 3 - 4 GPC; Plgel 

Minimix-D column, 

THF eluent, UV 

detec. 250 nm. 

TCI ligninsulfonate is 

partially desulfonated, 

subjected to oxidation 

hydrolysis and 

demethylation; retains 10- 

20% sulfate (anhyd.) 

TCI29 

dealkaline 

Alkaline TCI 

Chemicals, 

Ltd. 

    
8 - 10 " TCI dealkaline lignin 

adjusted to high pH; 20 - 

29% sulfonate (anhyd.) 

TCI29 

alkaline 

Na ligno-

sulfonate 

TCI 

Chemicals, 

Ltd. 

40.73 4.54 0 5.49 3.5 " Sulfite salt (Ca, Mg, Na, 

NH₄)and/or sulfuric acid 

treated. (3 - 8% sulfur) 

TCI29 ligno-

sulfonates 

Lignotech

™ 

Lignotech 

USA, Inc. 

(Borregaard) 

61.4 5.81 0 2.31 Typical 

sulfite 

process       

pH 1 – 5  

" Sulfite salt (Ca, Mg, Na, 

NH₄)and/or sulfuric acid 

treated. (3 - 8% sulfur) 

 Aro33; 

Borregaard34 

Indulin 

AT 

Meadwestva

co, Inc. 

63 5.1 0.7 1.6 5 - 7 " Acidified, purified kraft 

pine, retains sulfur, but is 

unsulfonated. High OH 

(aliphatic and aromatic) and 

carboxyl content. 

Constant50; 

Ingevity 

indulin AT 

Indulin C Meadwestva

co, Inc. 

    
9 - 10 " Purified kraft pine, retains 

sulfur, but is unsulfonated. 

High OH (aliphatic and 

aromatic) and carboxyl 

content. 

Ingevity 

indulin C 

Kraft, 

alkali  

Sigma 

Aldrich 

Corp. 

     61 6 
 

1 5.5 - 7.5          

(25 °C, 5% 

aqueous 

solution) 

" NaOH, Na₂S added, heated 

to 160 - 180 °C; acidifed to 

precip. (1 -3% sulfur) 

Deepa196: 

Sigma30 

Kraft - 

Denmark 

 
59.22 6.29 0 1.57 

 
" NaOH, Na₂S added, heated 

to 160 - 180 °C; acidifed to 

precip. (1 -3% sulfur) 
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Soda 

alkali-

Protobind-

1000™ 

GreenValue 

Co. 

62.46 5.93 0.6 0.64          3.5 " Wheat straw, Sarkanda grass 

treated by NaOH; no/low 

sulfur 

Ariton197; 

Agrobiobase
28 

Lignotech 

D™ 

Lignotech 

USA, Inc. 

(Borregaard) 

    
Typical 

sulfite 

process       

pH 1 - 5 

" Sulfite salt (Ca, Mg, Na, 

NH₄)and/or sulfuric acid 

treated. (3 - 8% sulfur) 

Borregaard34

Aro33 

acetoacetyl

ated- 50% 

(kraft) 

NDSU 

experimental 

     
" Kraft lignin 50% aceto-

acetylated 

 

methacryl

ated- 30% 

(kraft) 

NDSU 

experimental 

     
" Kraft lignin 30% 

methacrylated 
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II.1.2.2. Calibration standards and preparation 

  GPC calibration standards included poly(methyl methacrylate) (PMMA) narrow 

standards with peak molecular weights (Mp) of 550-56600 Da, purchased from Agilent 

Technologies (Santa Clara, CA, USA), and polystyrene (PS) narrow standards with Mp of 580-

271800 Da purchased from Varian (Amherst, MA, USA). 

The standards were prepared as mixtures, PS mix 1 (580, 5030, 38100, 271800 Mp 1 

mg/mL each), PS mix 2 (1480, 8450, 70950 Mp), and PMMA mix (960, 17810 Mp), where PS 

mixes were evaluated at 250 nm and the PMMA mix at 220 nm for a 30-L injection volume 

and flow rate of 0.3 mL/min.  

Solvent blanks were prepared in several ways in order to evaluate column tolerance for 

varied solvent mixes, as samples from the lignin/solvent study were solubilized in a variety of 

solvent mixes.  The whole lignin samples were in HPLC grade, unstabilized THF with a small 

percentage (< 5%) of water, so that solvent blanks were prepared with pure unstabilized THF and 

with unstabilized THF which contained 5% water for comparison. Several other types of solvent 

blanks were also evaluated to test column tolerance for water and acetone for lignin/solvent 

study samples: THF: water (1:1) and acetone:water (1:1).  Unstabilized THF with 300 µg/mL 4-

Methyl-2,6-bis(2-methyl-2-propanyl)phenol, also known as butylhydroxytoluene (BHT), was 

evaluated to determine if stabilization of blanks and samples (with the ultimate aim of stabilizing 

waste solutions) would interfere with data analysis. All ratios (percentages) of solvents were on a 

(v/v) basis.  All blanks were injected as 30 L at a flow rate of 0.3 mL/min. 

 

II.1.2.3. Lignin samples and preparation 
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 This study investigated alkaline lignin purchased from Sigma Aldrich (St. Louis, MO, 

USA), indulin lignin (Meadvestvaco, Richmond, VA), alkaline and dealkaline lignin (TCI Corp., 

Portland, OR), lignosulfonate lignin (Borregaard Lignotech; Sarpsborg, Norway), and 

commercial wheat straw/Sarkanda grass soda lignin (Protobind™ 1000, GreenValue S.A., Granit, 

Switzerland).  Additional samples of acetoacetylated and methacrylated lignin were obtained 

from Dr. Dean Webster, Polymers and Coatings Dept., North Dakota State University. 

Samples of kraft lignin (Sigma, St. Louis, MO) dissolved in various solvent systems were 

also evaluated in this study.  Solvent systems with solubilized kraft lignin included:  

acetone:water (1:1), acetone:water (3:1), 100% acetonitrile, acetonitrile:water (1:1), 100% THF, 

THF:water (1:1), THF:MeOH (1:1), mTHF:MeOH (1:1), acetone:2-propanol (1:1), 100% methyl 

acetate.  

 The alkali (kraft) lignin (Sigma product # 370959) was the same alkali lignin used as a 

whole lignin sample, listed as having a pH of 5.5 – 7.5 and an unspecified sulfur content (at 10% 

water content).    

 Whole lignin samples were solubilized in THF:water (1:1) as 50 mg/mL stock solutions 

initially; this was followed by removal of 50 L of stock diluted by HPLC grade, unstabilized 

THF to 1 mL for a concentration of 2.5 mg/mL.  The 2.5 mg/mL samples were filtered with 0.45 

m (pore size), PTFE syringe filters.  The latter samples were evaluated by the Agilent 1220 

Infinity II HPLC at ambient room temperature, with a 30-L injection volume and 0.3 mL/min 

flow rate, with unstabilized THF as the mobile phase.  Two replicates of each lignin were 

evaluated. The final water content in the 2.5 mg/mL samples was calculated as 2.5%. 
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 The same instrumental parameters were set for a later run of whole lignin samples with a 

different concentration and solvent composition.  Each whole lignin was prepared from 5 mg of 

the solid, which was diluted to 5.0 mL by a solution of (1:1) THF:water (unstabilized, HPLC-

grade THF), for a final concentration of 1 mg/mL. These samples were filtered with 0.2 m 

(pore size) PTFE syringe filters. BHT was added to each sample for a final concentration of (300 

g/mL). The final water content in the 1.0 mg/mL samples was 50%; after injection (30 L) into 

the THF mobile phase with a flow rate of 03 mL/min, water content in the HPLC column was 

calculated as 0.3%.   

 A second set of samples, other than the whole lignin samples, were also prepared from  

lignins in solvent systems. The latter study entailed dissolution of 3.0 g of alkali (kraft) lignin 

(Sigma, St. Louis, MO) in 30.0 mL each of various solvents and solvent mixes in order to 

evaluate solubility parameters and MW.  The solutions were stirred by 2-cm magnets at 125 rpm 

on a stirring plate for 24 hours with occasional shaking, and then centrifuged at 3000 rpm for 20 

min in 40-ml glass vessels.  The liquid fraction was carefully decanted and filtered by low 

negative pressure through Whatman No. 1 filters to divide solid residue from liquid fractions.  

Filtered solids were added to centrifuged solids and dried under N2.  Solubility of the lignin in 

the liquid samples was determined gravimetrically and also by thermal carbon analysis (TCA).  

Solvents and solvent mixes included: 50% acetone:50% water, 75% acetone:25% water, 100% 

acetonitrile, 50% acetonitrile:50% water, 100% THF, 50% THF:50% water, 50% THF:50% 

MeOH, 50% methyltetrahydrofuran (mTHF):50% MeOH, 50% acetone:50% propanol, 100% 

methyl acetate.  Samples were done in triplicate. 

Solubility levels of each sample varied from 1% to 100%, or concentrations of 

approximately 0.1 to 115 mg/mL.  For the first analysis of the lignin samples, they were diluted 
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to 10 mg/mL by the solvent or solvent mix originally used.  Then 0.5 mL of each solution was 

diluted by 5 mL of unstabilized THF to a final concentration of 1 mg/mL, with each original 

solvent constituting about 10% by volume of the final samples. Filtration with 0.2 m (pore size) 

hydrophobic PTFE syringe filters had to be repeated several times to remove lignin material 

which aggregated upon dilution with THF, due to decreased solubility. BHT (300 g/mL) was 

added to each sample prepared for HPLC analysis. 

Each sample was analyzed by the Agilent 1220 Infinity II HPLC at ambient temperature, 

30 L injection volume and 0.3 mL/min flow rate with unstabilized THF as the mobile phase.  

Samples were analyzed in duplicate. 

 

II.1.2.4. Instrumentation 

All calibration standards and samples were analyzed by the 1220 Infinity II HPLC 

(Agilent, Santa Clara, CA), with Agilent OpenLab CDS software/GPC module, Variable 

wavelength detector (VWD) and Agilent Plgel Minimix-D reversed phase column (5 m particle 

size, 250 mm length, 4.6 mm ID).  Molecular weight lower and upper limits are 200 and 400,000 

Da respectively.   All sample and calibration injection volumes were 30 L and flow rate was 0.3 

mL/min, with unstabilized, HPLC grade THF as the mobile phase.  The duration of the program 

was set for 15 min. An instrumental flow diagram is in Appendix A. 
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II.1.2.5. Data analysis 

Agilent OpenLab CDS software 2.2 with a GPC/SEC add-on module was used for 

acquisition and analysis (calibrations and calculations) of all data acquired via the Agilent 1220 

Infinity II HPLC.  Additional analysis and calculations were done with Microsoft Office Excel 

software.  

Various combinations of PS and PMMA standards were analyzed as least-squares linear 

curves via LINEST function for standard deviation of the slope (Sb) and standard error of y 

values (Sy), as well as y-intercept and R2 values. 

The pooled t-test equation was used for comparison of a seven-point PS standards curve 

to combined PS-PMMA standards curves:  

                                                   𝑡𝑜 =  
ū1−ū2 

𝑠𝑝 √
1

𝑛1
+

1

𝑛2

                                                   [5]                                                              

and                                      

                                    𝑠𝑝 =  
(𝑛1−1)𝑠1

2+ (𝑛2−1)𝑠2
2

𝑛1+ 𝑛2−2
                                      [6] 

where to is the statistical t value, ū is average mean (slope) of a set of data points, sp is pooled 

standard deviations of both data sets, and n is number of data points.198 

 

II.1.3. Results 

II.1.3.1. Evaluation of GPC parameters 



106 

 

II.1.3.1.1. Calibration 

 

A previous study conducted by Andrianova et al. validated the use of combined PS and 

PMMA standards which spanned the range from 550 Da to 271,800 Da.81 PS standards are 

organic/hydrophobic in nature due to the repeated benzene ring in the polymer, while the PMMA 

standards tend to be more hydrophilic and polar (Fig. 14).  The aim in this study was to construct 

a standards curve composed mainly of PS standards (as a widely used organic standard), but to 

incorporate several hydrophilic PMMA standards for a relatively universal calibration mix for 

any application.  

(a)         

n

               (b) 

O O

n
     

Figure 14.  (a) Polystyrene, and (b) poly (methyl methacrylate). (Images from Sigma-Aldrich).  

 

II.1.3.1.2. Selection of wavelength 

 

Wavelength settings became important due to the variable wavelength detector of the 1220 

Infinity II HPLC instrument, which measures in one wavelength exclusively.  For PS standards, 

250 nm was established as optimal due to the strong absorbance of the benzene ring in that area, 

while for PMMA 250 nm was not selective, but 220 nm was near-optimal due to absorbance of 

the carbonyl group below 250 nm (Figure 15). 
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(a)     (b)    
Figure 15.  (a) UV-Vis absorbance curve for polystyrene (peak 2) in chloroform, from Li,T., Zhou, C., 

Jiang, M. UV absorption spectrum of polystyrene. Poly. Bul. 1991, 25, 211-216; (b) UV-Vis absorbance 

curve for PMMA film (in toluene), from Chung,H., Shin, H., Boyd, R.  Implementation of sub-Rayleigh-

resolution lithography using an N-photon absorber. J Mod. Opt. 2006, 53, 16-17. 

 

PMMA standards of 550, 2880, 10280 and 56600 Mp (1 mg/mL) were evaluated at 250 

and 220 nm, and results were overlaid in Figure 16.  The response to PMMA standards was far 

better at 220 nm than at 250 nm, as evidenced by the peaks at 250 nm which are practically 

indistinguishable from the baseline in comparison to the same standards at 220 nm. This was 

expected, as Figure 15b shows good absorption for PMMA at 220 nm. Although absorbance for 

PMMA would be somewhat higher at 190 nm, a wavelength setting could not be chosen below 

220 nm. The cutoff wavelength for THF is 220 nm199 below which THF absorption increases. 

The increase in absorbance would add to the total signal, which would not be exclusively due to 

standards’ absorbance.  Several other sources list THF cutoff wavelength as 212 nm. 
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Figure 16.  GPC overlaid chromatograms of four PMMA standards (1 mg/mL) evaluated at 250 nm (gray) 

and at 220 nm (black). (Peaks at 10 and 10.7 minutes are additives).  The peak retention times are 

approximately 6.7, 7.7, 8.4 and 9.2 min.  

 

II.1.3.1.3. Selection of suitable calibration standards 

The PS standards were available in the range 580 to 271800 Mp, while PMMA standards 

were available from 550 to 56,600 Mp.  The PS standards that covered this range well, without 

overlap, were 580, 1480, 5030, 8450, 38100, 70950, and 271800 Mp.  PMMA standards which 

covered the PMMA range as well were 550, 960, 2880, 4640, 10280, 17810 and 56600 Mp.  The 

PS and PMMA values above are presented with their peak molecular weights and general 

retention times and volumes in Table 15.  Retention times are routinely measured in thousandths 

of a minute, but vary somewhat with individual sequences, thus the retention times listed in 

Table 15 are only listed to the tenths of a minute. Retention volumes are listed to the tenths of a 

mL.  Retention volumes are sometimes the same for different retention times, but times and 

volumes are intended to be general.   
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Retention time [min]
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2,880 Mp
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Table 15.  Available commercial polystyrene and poly(methyl methacrylate) standards listed by peak 

molecular weight (Mp), retention times and retention volumes obtained on PLgel Minimix-D column with 

THF as a mobile phase (3 L injection volume and 0.3 mL/min flow rate). 

PS 
standards 
(Mp) 

 
580 

 
1480 

 
2340 

 
5030 

 
8450 

 
19760 

 
38100 

 
70950 

 
132900 

 
271800 

Retention 
time (min) 

 
9.2 

 
8.8 

 
8.4 

 
8.0 

 
7.7 

 
7.2 

 
6.9 

 
6.5 

 
6.2 

 
6.0 

Retention 
volume 
(mL) 

2.8 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.80 

           

PMMA 
standards 
(Mp) 

 
550 

 
960 

 
1780 

 
2880 

 
4640 

 
6850 

 
10280 

 
17810 

 
26080 

 
56600 

Retention 
time (min) 

 
9.4 

 
9.3 

 
8.7 

 
8.4 

 
8.1 

 
7.9 

 
7.7 

 
7.4 

 
7.2 

 
6.7 

Retention 
volume 
(mL) 

2.8 2.8 2.6 2.5 2.4 2.4 2.3 2.2 2.2 2.0 

 

PS and PMMA standards from one sequence were plotted separately (as log Mw vs 

retention time) in Figure 17.  The PS curve maintained a better R2 value than the PMMA curve, 

but more precise methods were needed to determine comparative linear fit for a large number of 

calculated slopes for a variety of standards combinations.  

   

y = -0.7904x + 10.016

R² = 0.9994
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Figure 17. Calibration curves including least-square linear equations  for (a) seven PS standards (from 

580 to 271800 Mp) and (b) Seven PMMA standards (from 50 to 56600 Mp). 

 

          Standard deviation of the slope (Sb) and standard error of predicted y values (Sy) were 

determined for a number of PS and PS-PMMA combined standards curves and are shown in 

Table 16.  Ostensibly, the lower the Sb and Sy values, the more linear the calibration curve, and 

the more accurate the sample evaluation.   

 

 

Table 16.  Standard deviation of the slope (Sb) and standard error of predicted y values (Sy) for various 

combinations of PS and PMMA standards. All PS standards were evaluated at 250 nm, while PMMA 

standards were evaluated at 250 and 220 nm.  PS 1 (mix one) consisted of 580, 5030, 38100 and 271800 

Mp.  PS 2 (mix 2) was 1480, 8450, and 70950 Mp.  PMMA 1 was 550, 2880, 10280 and 56600 Mp, while 

PMMA 2 was 960, 4640 and 17810 Mp. 

Standards Selected   
Slope 

Sb Sy  
Intercept 

 
R2 

Data 
Pts.  

n 

PS mix 1,2 (5 mg/mL)    -
0.83080 

 
0.0458 

 0.1272 10.4270 0.98501 7 

PS mix 1,2 (1 mg/mL)   -
0.78841 

0.0097
9 

0.02885 10.0000 0.99929 7 

PS mix 1,2 (1 mg/mL) w/o 271800   -
0.79275 

0.0138
7 

0.03133 10.0385 0.99877 6 

PS mix 1,2 (1 mg/mL) w/o 580 Mp   -
0.77392 

0.0053
2 

0.01273 9.90472 0.99981 6 

PS mix 1,2 (1 mg/mL) w/o 271800 and 70950 Mp   -
0.79631 

0.0203
0 

0.03571 10.0687 0.99805 4 

PS mix 1,2 (1 mg/mL) w/o 580 and 1480 Mp   -
0.77387 

0.0081
3 

0.01470 9.90439 0.99966 4 
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PS 1,2(1, 5 mg/mL), PMMA 1,2 (1,5 mg/mL) 220    -
0.80816 

0.0143
8 

0.07470 10.2105 0.99182 28 

PS 1,2 (1 mg/mL); PMMA 1,2 (5 mg/mL) 220   -
0.79121 

0.0129
3 

0.04864 10.0546 0.99680 14 

PS 1,2 (1 mg/mL); PMMA 1  (5 mg/mL) 220   -
0.79141 

0.0138
5 

0.04890 10.0464 0.99725 11 

PS 1,2 (1 mg/mL); PMMA 2 (5 mg/mL) 220   -
0.78501 

0.0132
8 

0.04344 9.99573 0.99771 10 

 
 

  
   

PS 1,2 (1 mg/mL); PMMA 1,2 (5 mg/mL) 250 -0.78327 0.0169
1 

0.05514 10.0006 0.99489 13 

PS 1,2 (1 mg/mL); PMMA 1  (5 mg/mL) 250 -0.78429 0.0168
2 

0.05348 9.99920 0.99633 10 

PS 1,2 (1 mg/mL); PMMA 2 (5 mg/mL) 250 -0.78485 0.0167
8 

0.05098 9.99621 0.99635 10 

 
 

  
   

PS 1,2 (1 mg/mL); PMMA 1,2 (1 mg/mL) 220   -
0.78978 

0.0118
4 

0.04461 10.0398 0.99730 14 

PS 1,2 (1 mg/mL); PMMA 1  (1 mg/mL) 220   -
0.79009 

0.0124
9 

0.04422  10.0329 0.99775 11 

PS 1,2 (1 mg/mL); PMMA 2 (1 mg/mL) 220   -
0.78517 

0.0126
2 

0.04122 9.99571 0.99793 10 

 
 

  
   

PS 1,2 (1 mg/mL); PMMA 1,2 (1 mg/mL) 250   -
0.81060 

0.0203
5 

0.04484 10.2489 0.99685 13 

PS 1,2 (1 mg/mL); PMMA 1  (1 mg/mL) 250 -0.78345 0.0149
0 

0.04744 9.98838 0.99711 10 

PS 1,2 (1 mg/mL); PMMA 2 (1 mg/mL) 250 -0.78325 0.0139
5 

0.04568 9.98435 0.99746 10 

 
 

  
   

PMMA 1,2 (1 mg/mL) 250 -0.79097 0.0170
9 

0.03004 10.0973 0.99813 6 

PMMA 1,2 (1 mg/mL) 220 -0.81459 0.0174
3 

0.03701 10.2668 0.99771 7 

PMMA 1 (1 mg/mL) 250, 220 -0.80056 0.0201 0.04484 10.1582 0.99685 7 

PMMA 2 (1 mg/mL) 250, 220 -0.82346 0.0114
7 

0.01771 10.3546 0.99922 6 

 
 

  
   

PMMA 1,2 (5 mg/mL) 250 -0.78982 0.0344
9 

0.04621 10.0943 0.99243 6 

PMMA 1,2 (5 mg/mL) 220 -0.82341 0.0169
0 

0.03553 10.3456 0.99789 7 

PMMA 1 (5 mg/mL) 250, 220 -0.81060 0.0203
5 

0.04484 10.2489 0.99685 7 

PMMA 2 (5 mg/mL) 250, 220 -0.83023 0.0307
6 

0.03907 10.3969 0.99453 6 

       

PS 1,2; PMMA 550, 2880, 10280 (220) both 1 mg/mL -0.78787 0.0136
1 

0.04602 10.0132 0.99762 10 
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PS 1,2; PMMA 2880, 10280, 56600 (220) both 1 mg/mL -0.78431 0.0139
9 

0.04450 0.99746 9.99286 10 

PS 1,2; PMMA 960, 4640, 17810 (220) both 1 mg/mL -0.78517 0.0126
2 

0.04122 9.99572 0.99794 10 

PS 1,2; PMMA  960, 2880,56600 (220) both 1 mg/mL -0.78485 0.0101
9 

0.03508 9.98937 0.99865 10 

PS 1; PMMA 960, 2880, 17810 (220) both 1 mg/mL -0.78401 0.0122
7 

0.04061 9.98636 0.99804 10 

       

PS 1,2; PMMA 960, 4640 (220) both 1 mg/mL -0.78302 0.0111
2 

0.03613 9.97201 0.99859 9 

PS 1,2; PMMA 2880, 4640 (220) both 1 mg/mL -0.77957 0.0135
0 

0.04169 9.95134 0.99790 9 

PS 1,2; PMMA 550, 10280 (220) both 1 mg/mL -0.79132 0.0129
6 

0.04310 10.0334 0.99812 9 

PS 1,2; PMMA  4640, 17810 (220) both 1 mg/mL -0.78549 0.0146
6 

0.04406 9.99791 0.99757 9 

PS 1,2; PMMA 960, 17810 (220) both 1 mg/mL -0.78762 0.0116
3 

0.03766 10.0082 0.99848 9 

PS 1,2; PMMA 960, 56600 (220) both 1 mg/mL -0.78885 0.0087
4 

0.02937 10.0134 0.99914 9 

 

The curve consisting of PS standards alone (1 mg/mL) had Sb and Sy values of 0.00979 

and 0.02885 respectively, showing better fit than PMMA standards for 1 mg/mL at 220 nm (the 

best PMMA results at 0.01743 Sb and 0.03701 Sy), although these were not the lowest Sb and Sy 

values in table 16.  The lowest values occurred for the PS mixes 1,2 (1 mg/mL) without standard 

580 Mp (0.00532 Sb and 0.01232 Sy), but it was not desirable to leave out low MW standards for 

samples which were expected to have low MW values.   

The next lowest Sb and Sy values (0.00874 Sb and 0.02937 Sy) occurred for the 

combination of the PS mix 1,2 (1 mg/mL) with PMMA values of 960 and 56600 Mp (1 mg/mL) 

evaluated at 220 nm wavelength.  Interestingly, the Sb and Sy values were actually lower than 

those for PS mixes 1,2 alone.  The curves with the four lowest Sb and Sy values, other than the 

PS mixes 1,2 (1 mg/mL) curve, were compared graphically in Figure 18.  
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Figure 18. Standards curves for several combinations of PS and PMMA standards, where PS mixes 1,2 encompass 580, 

1480, 5030, 8450, 38100, 70950and 271800 Mp; (a) PS mixes 1,2 and PMMA 960, 56600 Mp, with 0.00874 Sb and 

0.0294 Sy; (b) PS mixes 1,2 and PMMA 960, 2880, 17810 Mp, with 0.01019 Sb and 0.03508 Sy; (c) PS mixes 1,2 and 

PMMA 960, 4640 Mp, with 0.01112 Sb and 0.03613 Sy; (d) PS mixes 1,2 and PMMA 960, 17810 Mp, with 0.01163 Sb 

and 0.03766 Sy;  

 

In reviewing standards curves with the lowest Sb and Sy values in Figure 18, the optimal standards 

curve was based not only on Sb and Sy values, but also on evenly spaced data points.  Thus curve (d) PS 

mixes 1,2 and PMMA 960, 17810 Mp, with 0.01163 Sb and 0.03766 Sy, was considered to be the best 

selection for sample evaluation due to well-spaced data points and low Sb/Sy values, although some 

combinations of PS/PMMA had curves with lower Sb/Sy.  
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 To compare the PS mixes 1,2 (1 mg/mL) to various PS-PMMA curves, two-sided pooled 

t-tests were conducted to determine if each PS-PMMA curve was statistically the same as the PS 

curve. 

T-test values for several comparisons are shown in Table 17, where critical t values (t*) 

are taken from standard two-sided t-test tables and calculated for 95% and 99% confidence 

levels.  The null hypothesis was that the slopes were statistically the same, and any rejection of 

the null hypothesis meant that the difference between slopes was significant and therefore the 

slopes were not statistically the same. 

 

Table 17.  T-test results for comparisons of PS mixes 1,2 (1 mg/mL) standards curve (with 580, 1480, 

5030, 8450, 38100, 70950 and 271800 Mp) to calibration curves composed of PMMA and combined 

PS/PMMA standards.  Results include t-test statistical values to, critical t values t*, and degrees of 

freedom for a two-sided pooled t-test at 95% and 99% confidence levels. F 

Standard sets (in comparison) Statistical 
t value 
(to) 

Degrees of 
freedom 

Critical value  
(t*) for 95% 

Significance 
at 95%  
confidence 

Critical 
value (t*) 
for 99% 

Significance 
at 99%  
confidence 

PS mixes 1,2 (1 mg/mL) vs PMMA 

mixes 1,2 (1 mg/mL) at 220 nm. 

3.309 12 2.18  significant 3.06 significant 

PS mixes 1,2 (5 mg/mL) vs PMMA 

mixes 1,2 (5 mg/mL) at 220 nm 
2.649 12 2.18, significant 3.06 not signif. 

PS mixes 1,2 (1 mg/mL) vs PMMA 

mixes 1,2 (5 mg/mL) at 220 nm 

4.744 12 2.18 significant 3.06 significant 

       

PS mixes 1,2 (1 mg/mL) vs PS mixes 
1,2 (1 mg/mL) and PMMA 960, 
17810 Mp (5 mg/mL) at 220 nm 

0.3149 14 2.15 not signif. 2.98 not signif. 

PS mixes 1,2 (1 mg/mL) vs PS mixes 
1,2 (1 mg/mL) and PMMA 
960,17810 Mp (1 mg/mL) at 220 nm 

0.1324 14 2.15 not signif. 2.98 not. signif. 

PS mixes 1,2 (1 mg/mL) vs PS mixes 
1,2 (1 mg/mL) and PMMA 1,2 (1 
mg/mL) 4640, 17810 at nm. 

0.4481 
 

14 2.15 not signif. 2.98 not signif. 

PS mixes 1,2 (1 mg/mL) vs PS mixes 
1,2 (1 mg/mL) and PMMA 1,2 mixes 
(1 mg/mL) 220 

0.2691 
 

19 2.09 not signif. 2.86 not signif. 
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It was clear that PMMA mixes 1,2, in concentrations of 1 or 5 mg/mL, had a statistically 

different slope value in comparison to the PS mixes 1,2 (1 mg/mL) standards slope at a 95% 

confidence level, although PMMA mixes 1,2 (1 mg/mL at 220 nm), when added to the PS mixes 

1,2 (1 mg/mL) and then compared to the PS mixes 1,2 (1 mg/mL) did not produce a statistically 

different curve.     

The final nine-point calibration curve chosen for sample evaluation consisted of PS 

standards of 580, 1480, 5030, 8450, 38100, 70950, and 271800 Mp, augmented by two PMMA 

standards of 960 and 17810 Mp also showed no significant difference to the PS mixes 1,2 (1 

mg/mL) curve.   

 

II.1.3.1.4. Evaluation of blank contribution 

Controls (blanks) of THF:water (1:1), acetone:water (1:1) and THF:water (95:5) were 

evaluated, as were unstabilized THF samples with 300 µg/mL of BHT, in order to assess the 

feasibility of using mixed solvents which were similar to the solvents used for the lignin/solvents 

study.   

Unstabilized THF blanks had a height of 45 – 65 mAU, while BHT height was also in the 

range of 45 – 65 mAU. A blank with the THF solvent peak which was typical of all project 

blanks of unstabilized THF and a blank with THF/BHT are shown as Figure 19a and 19b 

respectively.  It was found that the solvent peak, which was ostensibly due to contaminants in the 

THF itself, occurred at about 11.4- 11.7 minutes retention time and was located shortly after a 

negative peak.  Negative peaks are observed when solute has lower absorbance than the mobile 

phase but may also represent a pressure “pulse” when low-molecular weight solvent in the 
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injected sample creates a pressure disturbance in the baseline.  When blanks were evaluated for 

molecular weight (as samples) of this peak, Mw values varied from 7 to 14 Da, thus the peak 

represented very small particles. 

 

 

 

Figure 19.  (a) Unstabilized THF blank with solvent peak and injection pressure pulse (negative peak) for 

a 30-uL injection volume and a flow rate of 0.3 mL/min (Agilent Plgel Mini-Mix D column); (b) BHT 
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elution in relation to THF for a 30-uL injection volume and a flow rate of 0.3 mL/min (Agilent Plgel 

Mini-Mix D column). 

 

Butylhydroxytoluene is a stabilizing agent for THF; it was evaluated with THF to 

observe its relative retention time, which was 9.4 – 9.7 min.  Injections were also made for 

solvent mixtures of THF:water (1:1), Acetone:water (1:1), THF:water (95:5) to gauge the effect 

on the  column (Agilent Plgel Mini-Mix D).  At least two consecutive injections were made for 

each water-organic solvent blank, and were compared to alkaline lignin (Sigma, Santa Clara, 

CA) which had been dissolved in 100% THF for a final concentration of 1 mg/mL.  The 

chromatogram overlays for these are shown in Figure 20.  Although the former two solutions 

were 50% water, this amount was diluted by injection into the mobile phase, so that the 15 L of 

water in the 30 L injection was spread throughout the 15 minute run, which at 0.3 mL/min was 

4.5 mL, resulting in 0.3% of the mobile phase.  The manufacturer’s recommended level for water 

in the Plgel Mini-Mix D column was < 10%, while acetone was listed as an acceptable solvent 

for the column.  
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Figure 20. Chromatograms of blanks with mixed solvents, each injected as 30 uL for a 15-minute 

program with mobile phase (unstabilized THF) flow rate of 0.3 mL/min, for (a) THF:water (1:1), two 

consecutive injections initially in the overall sequence, (b) acetone:water (1:1), two consecutive injections 

after THF:water injections, (c) THF:water (95:5), three consecutive injections after two initial blanks in 

another sequence, (d) alkaline lignin dissolved in 100% THF (1 mg/mL) and first injections of THF:water 

(1:1), Acetone water (1:1) and THF:water (95:5), (e) alkaline lignin dissolved in 100% THF (1 mg/mL), 

and 2nd injections of THF:water (1:1), acetone:water (1:1) and the third injection of THF:water (95:1). 
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The chromatograms of the mixed solvents showed that the THF:water (1:1) mix had an 

increasing amount of material detected from 6.0 to 10.0 minutes.  The presence of material at a 

retention time of six minutes corresponded to a MW of approximately 200,000 Da.  This type of 

elution may have been indicative of removal of column lining, i.e., divinylbenzene/polystyrene.  

The 95% THF: 5% water sample also showed a similar pattern of elution, but the intensity 

(amount) of material eluting was not nearly as high.  The acetone:water profile was entirely 

different, showing elution starting at about 10 minutes.  Of interest was the tendency of high-

MW material to decrease in intensity with serial injections of the same solution, either signifying 

that the water content had a decreasing impact on the column, or that extraneous material 

deposited in the column in previous runs had been cleaned out.  The percentage of water in 

samples ready for injection were determined to be safe only for <10% of the volume of the 

solvent mix, as recommended by the manufacturer (Agilent). 

 

II.1.3.2. Whole lignin sample preparation and evaluation 

Whole lignins, lignins processed for separation from cellulosic materials, which are also 

referred to as “technical lignins,” were collected from several sources (see Materials section) and 

evaluated for MW at a concentration of 2.5 mg/mL in THF with a water content of 2.5%.  

Chromatograms and MW values are shown in Table 18.  
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Table 18.  Lignin samples, descriptions, chromatograms and molecular weights as peak-, number-, mass- 

and z-averages (Mp, Mn, Mw, Mz).  All samples were run in duplicate; only one chromatogram is shown 

and molecular weights are averages of two values for samples which were 2.5 mg/mL in concentration, 

with 2.5% water before injection. 

 

Lig 

nin Sample 

Description 

and (Sample 

Code) 

Chromatogram 

(Response as mAU) 

Mp  Mn  Mw  Mz      Poly-

dispersity 

(Mw/Mn) 

Dealkaline 

lignin-TCI 

(2JH3-1) 

 

180 335 2568 328469 7.666 

Alkaline lignin-

TCI (2JH3-2) 

 

195 313 597 1276 1.909 

Lignosulfonate 

lignin-TCI 

(2JH3-3) 

 

146 241 1952 201580 8.114 
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Lignotex 

lignin-Ginn 

Mineral Tech. 

(2JH3-4) 

 

1311 780 3660 195636 4.695 

30% 

methacrylated 

kraft lignin- 

NDSU (MA) 

 

465 490 32169 3174017 65.718 

Kraft alkali 

lignin- Sigma 

(I1) 

 

1402 897 6624 421438 7.388 

Indulin AT 

lignin- 

Meadwestvaco 

(I2) 

 

1427 920 6568 350437 7.143 

Indulin C 

lignin-

Meadwestvaco 

(IC) 

 

1029 587 3137 192445 5.349 
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Lignotech D-

2495 lignin-

Borregaard 

(LT) 

 

546 336 3002 258864 8.948 

50% aceto-

acetylated 

kraft lignin- 

NDSU (AA) 

 

415 555 159883 14917035 288.337 

Kraft lignin- 

Denmark (KD) 

 

3285 1062 4542 64885 4.278 

Kraft lignin, 

Protobind-

GreenValue 

(KDP) 

 

1257 825 2563 39510 3.108 

 

 graphical representation of GPC results for the whole lignins tested, with comparisons of 

respective Mp, Mn and Mw values is shown in Figure 21.   
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Figure 21. Comparison of Mp, Mn, and Mw (peak-, number-, and mass-molecular weight, respectively) 

values for (a) lignins with Mw values below 10,000 Da; (b) lignins with Mw values over 10,000 Da. 

 

Comparisons of respective values for Mp, Mn and Mw for whole lignins in the study 

demonstrated that for commercial lignins with Mw values below 10,000 Da, high Mw values (> 

6000 Da) occurred for principally Kraft lignin (Sigma Aldrich)  and indulin AT lignin 

(Meadwestvaco); however low Mw values (< 3000 Da) occurred for alkaline lignin (TCI), 

dealkaline lignin (TCI), lignosulfonate lignin (TCI), Protobind-1000 lignin (GreenValue), indulin 

C (Meadwestvaco) and Lignotech (Borregaard).  Kraft lignin (Denmark) showed a medium Mw 

value between 3000 – 6000 Da. Lignins with Mw above 10,000 Da were chemically processed 

lignins which had been 30% methacrylated and 50% acetoacetylated (Figure 21b) and showed 

very high Mw values at about 30,000 and 160,000 Da respectively, which were many times 

higher than Mp and Mn values for the same lignin (kraft) without modification. 
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generally showed higher Mw values, possibly due to a lack of processing after precipitation from 

black liquor sources.   GPC values from this study were compared to literature values for the 

same lignin categories to ascertain similarity, as shown in Table 19. Comparisons were viewed 

with some caution as many of the outside studies determined molecular weights through  

different instrumental parameters or with varying lignin sources. 
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Table 19. Molecular weight and polydispersity comparison by lignin type and researcher/methodology for indulin AT, indulin C, lignosulfonate, 

soda pulping and kraft alkaline lignins.  

Lignin 
type 

Mn Mw PI Ref. Lignin Source Conc. 
Lignin 

Column (GPC) Mobile 
phase 

Flow 
rate 

Inj. 
Vol.  

Temp Detector Standards 

1ndulin AT 2200 19800 9.00 Glasser Commerical lignin, 
Meadwestvaco, 
Inc.; acetylated. 

3- 6 mg/mL Three Ultrastyragel 
columns in series 
(styrene-
divinylbenzene 
copolymer) 

THF 1 mL/min 
  

 Differential 
Viscometer in 
series with RI 

PS 

  1191 6096 5.12 Sameni Commerical, 
Meadwestvaco, Inc. 

 
PSS MCX column-
(sulfonated styrene-
divinylbenzene 
copolymer) 

0.1 M 
NaOH 
solution 

 
25 µL rm. 

Temp. 
UV, 280 nm. sodium 

polystyrene 
sulfonates  

  1700 8000 4.70 Asikkala softwood kraft- 
acetyl bromide in 
acetic acid 

1 mg/mL Styragel HR-5E and 
Styragel HR-1, 
columns in series  

THF 0.5 
mL/min 

  
UV, 280 nm., 
RI 

PS 

  1600 6500 4.10 Asikkala softwood kraft- 
acetic anhydride in 
pyridine  

1 mg/mL Styragel HR-5E and 
Styragel HR-1, 
columns in series 

THF 0.5 
mL/min 

  
UV, 280 nm., 
RI 

PS 

  897 6568 7.39 This 
study 

Commerical lignin, 
Meadwestvaco, Inc.  

2.5 mg/mL Plgel Minimix-D 
(styrene-DVB 
copolymer and 
derivatives) 

THF 0.3 
mL/min 

30 µL rm. 
Temp. 

UV, 250 nm PS, PMMA 

Indulin  1300 3700 2.90 Glasser Commerical lignin, 
Meadwestvaco, 
Inc.; acetylated. 

3- 6 mg/mL Three  Ultrastyragel 
columns in series 

THF 1 mL/min 
  

Viscotek 
Differential 
Viscometer in 
series with RI 

PS 

  587 3137 5.35 This 
study-                

indulin C 

Commerical lignin, 
Meadwestvaco, Inc.  

2.5 mg/mL Plgel Minimix-D THF 0.3 
mL/min 

30 µL rm. 
Temp. 

UV, 250 nm PS, PMMA 

Soda 
pulping 

 
8000 4.80 Wormey

er 
Lignin ext'd from 
straw by NaOH; 
precip'd at pH 1.6. 

1 mg/mL Two PolarGel-M 
columns (styrene-
DVB and derivatives) 

DMSO 
with 0.1% 
(w/w) LiBr 

1 mL/min 100 
µL 

60 °C UV; RI;  
viscosimetric 
detector; two-
angle LSD 

polyethylene–
glycol, 
polyethylene 
oxide, glucose 

  1084 5008 4.62 Sameni-                        
Protobin

d 

Commercial non-
wood soda lignin, 
GreenValue 

 
PSS MCX column-
(sulfonated styrene-
divinylbenzene 
copolymer) 

0.1 M 
NaOH 
solution 

 
25 µL rm. 

Temp. 
UV, 280 nm. sodium 

polystyrene 
sulfonates  
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  825 2563 3.11 This 
study-                      
Comm. 

non-
wood 
soda 
lignin 

Protobind 1000; 
GreenValue 

2.5 mg/mL Plgel Minimix-D THF 0.3 
mL/min 

30 µL rm. 
Temp. 

UV, 250 nm PS, PMMA 

Ligno-
sulfonates 

7200 64000 8.80 Fredhei
m 

Borregaard 
Lignotech- Na 
sulfonate spruce 

2 - 5 
mg/mL; filt 
0.45 µm. 

Jordi (glucose-DVB), 
10000 Ǻ, 500 x 10 
mm 

9% 
DMSO/ 
aqueous 
(+ SDS) PH 
adj. to 
10.5.  

1 mL/min 200 
µL 

60 °C Dawn-F 
MALLS 
(fluor.filter); 
RI. 

PSS and poly-
saccharide 

  3441 7082 2.05 Chen 
and Li 

Commercial (China) 
Na lignosulfonate 

3 mg/mL; 
filt 0.45 
µm. 

Ultrahydrogel 250 
and 1000 columns 
(hydroxylated 
polymethacrylate) 

0.1 M 
NaNO3/a
queous, 
pH 7 

0.6 
mL/min 

100 
µL 

 
Differential 
refractometer.  

Pullulan, PEG 

  241 1952 8.11 This 
study-                    

Lignotec
h 

Borregaard 
Lignotech 

2.5 mg/mL Plgel Minimix-D THF 0.3 
mL/min 

30 µL rm. 
Temp. 

UV, 250 nm PS, PMMA 

  336 3002 8.95 This 
study-              

Lignotec
h D 

Borregaard 
Lignotech 

2.5 mg/mL Plgel Minimix-D THF 0.3 
mL/min 

30 µL rm. 
Temp. 

UV, 250 nm PS, PMMA 

  780 3660 4.70 This 
study-              
Ligno-

sulfonat
es 

TCI Ligno-sulfonates 2.5 mg/mL Plgel Minimix-D THF 0.3 
mL/min 

30 µL rm. 
Temp. 

UV, 250 nm PS, PMMA 

Kraft 
alkaline 

866 2565 12.34 Sameni Kraft black liquor, 
acidified to pH 2 

 
PSS MCX column-
(sulfonated styrene-
divinylbenzene 
copolymer) 

0.1 M 
NaOH 
solution 

 
25 µL rm. 

Temp. 
UV, 280 nm. sodium 

polystyrene 
sulfonates  

  1598 15375 9.62 Delgado Pine alkali Kraft, 
precip. at pH 3, 
acetylated 

0.2% (wt/v) 
(2 mg/mL) 

Ultrastyragel(100, 
500, 1000 Å) in 
series 

THF 1 mL/min 100 
µL 

 
Photodiode 
array (PDA) 

PS 
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  1000 4500 4.50 Brodin Filtered and precip. 
black liquor from 
Kraft process; 
acetylated 

 
Styragel HR2 ,HR1, 
Ultrastyragel 104 Å 
in series 

THF 0.8 
mL/min 

  
410 RI  PS 

  1000 3300 3.30 Asikkala hardwood kraft- 
acetic anhydride in 
pyridine  

1 mg/mL Styragel HR-5E and 
Styragel HR-1, in 
series 

THF 0.5 
mL/min 

  
UV, 280 nm., 
RI 

PS 

  1000 3900 3.90 Asikkala hardwood kraft- 
acetyl bromide in 
acetic acid 

1 mg/mL Styragel HR-5E and 
Styragel HR-1,  in 
series 

THF 0.5 
mL/min 

  
UV, 280 nm., 
RI 

PS 

  7523 19650 2.70 Chen 
and Li 

Kraft Birch-from 
Tianjin Institute 

3 mg/mL; 
filt 0.45 
µm. 

Ultrahydrogel 250 
and 1000 columns 

0.01 M 
NaOH/aq
ueous, pH 
10-12 

0.6 
mL/min 

100 
µL 

 
Differential 
refractometer 

Pullulan, PEG 

  1510 2330 1.54 Yuan Alkaline-extracted 
lignin from ball-
milled Poplar. 

2 mg/mL Plgel mixed-B, 7.5 
mm ID (styrene-DVB 
copolymer and 
derivatives) 

THF 1 mL/min 
 

rm. 
Temp. 

Unspecified Mono-disperse PS 

  313 597 1.91 This 
study-                          

TCI 
alkaline 

TCI kraft alkaline 2.5 mg/mL Plgel Minimix-D THF 0.3 
mL/min 

30 µL rm. 
Temp. 

UV, 250 nm PS, PMMA 

  897 6624 7.39 This 
study-                 
Sigma 
alkali 

Sigma kraft alkali 2.5 mg/mL Plgel Minimix-D THF 0.3 
mL/min 

30 µL rm. 
Temp. 

UV, 250 nm PS, PMMA 

  1062 4542 4.28 This 
study-                 

Denmark 
kraft 

  2.5 mg/mL Plgel Minimix-D THF 0.3 
mL/min 

30 µL rm. 
Temp. 

UV, 250 nm PS, PMMA 
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Additionally, molecular weight ranges for lignosulfonates and kraft lignin from several 

sources are listed in table 20. For the few sources listed in table 20, it is clear that molecular 

ranges for the same type of lignin vary greatly.  With the exception of the Borregaard reference, 

which is an estimate for the Lignotech product, the other estimates are based on the results of 

several studies surveyed by the authors. This serves to illustrate that Mn and Mw values for 

individual samples would also vary substantially, as was indeed also seen in Table 19.  

  

Table 20. Molecular weight ranges for lignosulfonate and kraft lignin as compiled by several reference 

studies. 

Lignin Type Molecular Weight Range 
(g/mol) 

Reference 

Lignosulfonate lignin 1000 – 100,000  Zhor and 
Bremner200 

  20,000 – 80,000  Borregaard34 

  1000 – 150,000     

Kraft lignin 1500 – 25,000  Vishtal201 

  200 – 200,000  Moerck202 

 

The wide range of Mn and Mw values for each type of lignin in Table 19 varied 

significantly with column type, mobile phase and detector, and these were inconsistent for the 

same type of method.  Although viscometric and light-scattering techniques tend to give higher 

values of Mn and Mw, and a number of researchers found them very effective, GPC with UV or 

RI detection was also found to be the method of choice 76-79,83  A number of investigators either 

recommended or used viscometric and light scattering detecors in conjunction with SEC.62,63,65, 

83,84,86  

The use of viscometry and/or light scattering did not always lead to consistently high 

results compared to SEC techniques alone.  Glasser et al. showed a very high Mw level for 
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indulin AT lignin via visometric detector in series with RI, which were much higher than those 

of other studies using different methods, yet showed modest Mw levels for indulin C which were 

very similar to other studies’ values.65 Fredheim showed high Mw values with MALLS in line 

with an RI detector for lignosulfonates,84 but Delgado also showed a very high Mw value for 

kraft lignin with a photodiode detector77 Even if more studies that have produced Mn and Mw 

data were included in an overall comparison, many more replicate studies would have to be 

before there could be firmly established behaviors for columns, detectors and eluents that are 

represented here, and these would also have to be done in relation to lignin samples from 

standard, known sources.   

The need for derivatization also presents as a complex issue with no clear answers.  

Number-average (Mn) molecular weight values in this study for kraft lignin (313 g/mol for TCI 

samples and 897 g/mol for Sigma samples), seemed low compared to other kraft lignin Mn values 

in studies which used derivitized lignin samples, with values of 1000 and 1000 g/mol,76,78 

although 897 g/mol is not too far from 1000 g/mol.   Delgado et al. had an Mn value of 1598 

g/mol with nonderivatized kraft lignin.77 Yuan et al. had an Mn value of 1510 g/mol, and also did 

not specify a derivatization method.85 The GFC methods of Sameni et al., and Chen and Li 

yielded Mn values of 866 g/mol and 7523 g/mol  respectively.79,83 It would seem that method 

parameters can be chosen to avoid derivatization, and there is always the concern about 

structural changes if it is done. 

As a matter of interest in the effect of solvent systems on solubility of samples in 

preparation for GPC analysis, an additional method of preparation of lignin samples was 

undertaken, wherein a lignin sample supplied by Dr. Chad Ulven, North Dakota State University, 

was dissolved in THF:water at a 9:1 ratio and also a 1:1 ratio (50% water).  The lignin sample 
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was an alkali kraft lignin sample and GPC conditions were the same as those for whole lignins as 

evaluated above, with the exception that concentrations of lignin were somewhat different, and, 

as noted, the solvent system used to prepare the samples was changed to THF:water (9:1) and 

(1:1).  The results for these GPC analyses are shown in Table 21. 

 

Table 21.  Lignin samples, descriptions, chromatograms and molecular weights as peak-, number-, mass- 

and z-averages (Mp, Mn, Mw, Mz).  All samples were run in triplicate; only one chromatogram is shown 

and molecular weights are averages of three values for samples which were approximately 0.5 mg/mL in 

concentration. Red lines show integration area. 

Lignin Sample 

and Solvent 

Description  

Chromatogram 

(Response as mAU) 

Mp  Mn  Mw  Mz      Poly-

dispersity 

(Mw/Mn) 

Ulven Lignin 

0.55 mg/mL 

 

Solvent: 

THF:water 

(9:1) 

 
 

186 605 1950 11907 3.22 

Ulven Lignin 

0.51 mg/mL 

 

Solvent: 

THF:water 

(1:1) 

 
 

355 513 2133 80613 4.16 

 

Samples in THF:water (1:1) were problematic in that the resolution of low-MW material 

was not well-defined and gave a sort of wave-like appearance at retention times past 10 min.  

However, both THF:water (1:1) and (9:1) samples were integrated only to 10 min as this 
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corresponded to an extrapolated calibration standard mass of 130 g/mol- a very low MW for 

lignin samples. 

Of interest, the samples dissolved in THF:water (1:1) showed higher-MW compounds 

eluting at earlier retention times in comparison to THF:water (9:1) samples; this effect is 

apparent on the chromatograms and also is reflected in the substantially higher Mz values.  

However, this effect did not greatly impact Mn or Mw values. The method was considered to be 

feasible but might be better implemented with a slower flow rate or with a column and set of 

parameters which would offer more resolution. Using the THF:water (1:1) sample preparation 

allowed better dissolution of higher-MW particles, but it may be questionable as to whether 

enough of them existed to significantly affect Mn and Mw values.  The results do, however, shed 

light on the relative amount of high-MW compounds in a kraft lignin which has been filtered via 

0.2 m pore size syringe filters. 

 

II.1.3.3. Preparation and evaluation of samples from a lignin-solvent study  

Kraft lignin (Sigma Aldrich, St. Louis, MO) was dissolved over 24 hours in several 

solvents and solvent combinations (see II.2.3. Lignin Samples and Preparation Section). Lignin 

had a wide range of solubility in the various solvents and solvent systems after preparation, 

ranging from 5.0 mg/mL to over 100 mg/mL.  

Lignin samples were diluted to 1 mg/mL, with each original solvent constituting less than 

10% by volume of the final samples. The initial GPC analysis of the solubilized solutions was 

accomplished without derivatization in order to evaluate the effectiveness of a GPC protocol 

wherein the extraction solvent differed from the mobile phase (THF), and constituted less than 
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10% of the injected volume.   Precipitation occurred after addition of THF to many samples, so 

that consequent filtering did remove higher MW molecules in some samples.  

The samples were evaluated for MW as Mn, Mw and Mz; chromatograms and MW values 

are shown in Table 22.  

Table 22. Lignin-solvent study samples’ descriptions, chromatograms and molecular weights as peak-, 

number-, mass- and z-averages (Mp, Mn, Mw, Mz).  All samples were run in triplicate; only one 

representative chromatogram is shown and molecular weights are averages of three values for samples 

which were 1.0 mg/mL in concentration. 

 

Lignin Sample 

Description and 

(Sample Code) 

Chromatogram 

(Response as mAU) 

Mp  Mn  Mw  Mz      Poly-

dispersity 

(Mw/Mn) 

Kraft lignin in 

50% acetone-

50% water 

(LL60) 

 

1721 731 2637 5541 3.62 

Kraft lignin in 

75% acetone- 

25% water 

(JE10) 

 

1748 694 2742 5803 3.95 
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Kraft lignin in 

50% acetonitrile-

50% water  

(LL61) 

 

1665 1081 2802 5871 2.59 

Kraft lignin in  

100% acetonitrile 

(ET27) 

 

421 388 1036 2101 2.67 

Kraft lignin in 

50% THF- 50% 

water 

(JE40) 

 

1768 1193 3074 6646 2.58 

Kraft lignin in 

100% THF   

(BY44) 

 

1492 1041 2351 4962 2.26 

Kraft lignin in 

50% THF-  

50% MeOH 

(LB55) 

 

1630 1141 2583 4992 2.27 
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Kraft lignin in  

50% mTHF- 

50% MeOH 

(LB50) 

 

1700 1042 2914 8553 2.80 

Kraft lignin in 

50% propanol- 

50% acetone 

(BM93) 

 

1334 599 1629 2885 2.72 

Kraft lignin in  

100% methyl 

acetate (LB62) 

 

946 493 1013 10335 2.06 

 

A graphical representation of GPC results for the lignin-solvent samples tested, with 

comparisons of respective Mp, Mn and Mw values is shown in Figure 22.   
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Figure 22. Comparison of Mp, Mn, and Mw (peak-, number-, and mass-molecular weight, respectively) 

values for kraft lignin dissolved in various solvents and combinations of solvents. 

 

Comparisons of respective values for Mp, Mn and Mw for kraft lignin dissolved in various 

solvents showed very similar levels across the board, with the exception of lignin in 100% 

acetonitrile, 100% methyl acetate and 1:1 propanol:acetate; the latter samples showed low values 

for all three molecular weights.  The similarity of Mp, Mn and Mz values for all the rest of the 

samples brought up an intriguing pair of hypotheses:   

1.  All solvents dissolved high MW molecules as well as low, with the only difference 

being that fewer molecules across the range were being dissolved in low-solubility solvents.  

This would mean that Mn and Mz would be similar for all solvents, but only intensity (number of 
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molecules dissolved) would differ.  The exception of the three solvents with low Mn and Mw may 

be due to very low solubilities for lignin overall in those solvents. 

2.  Low solubility solvents were able to dissolve only low MW materials, while high 

solubility solvents were able to dissolve high MW molecules as well as low MW molecules.  The 

use of THF as a diluent may have decreased solubility of the original samples to a level similar 

to 100% THF samples, and thus the close proximity of Mn and Mw values.  Notably, Mw values 

lower than 3000 g/mol are present for every sample, reflecting a general lack of high MW 

molecules.  The 100% acetonitrile, 100% methyl acetate and 1:1 propanol:acetone samples may 

have had very low Mn and Mw due to extremely poor lignin solubility.   

 An overlay of all the lignin-solvent samples showed that peaks aligned very closely, with 

the exception of the 100% acetonitrile sample, which indicated a lower average MW, but which 

also had a very high response.  The concentration of lignin in the acetonitrile sample was 

actually quite low, so that it was very possible that samples with higher concentrations (i.e. 50% 

acetone with over 100 mg/mL) had lost a range of higher MW molecules due to precipitation and 

subsequent filtration.  None of the samples show responses below 7 min which corresponded to a 

MW of approximately 36,000 Da (Figure 23).  
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Figure 23.  Overlay of chromatograms of all lignin-solvent samples shown as (a) peaks with full response, 

and as (b) a close-up of the peak bases. 

 

The average amount of original lignin recovered in the solvent was calculated from thermal 

carbon analysis (TCA) carbon yields for 5 uL samples of each liquid fraction in triplicate; these 

50% acetonitrile

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

Retention time [min]

3x10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

R
e
s
p
o

n
s
e

[m
A

U
]

100% 
acetonitrile

100% THF

50% THF

THF/MeOH
75% acetone

mTHF/MeOH

50% acetone

Propanol/acetone

a

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5

Retention time [min]

3x10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
s

p
o

n
s
e

[m
A

U
]

b



139 

 

values, with average original mass of lignin, original volume of solvent and percentage recovery 

in the liquid fraction, are presented in table 23. 

Table 23.  Average original lignin mass, solvent volume, concentration of lignin in the liquid fraction and 

average % recovery of original lignin for each solvent (system). 

Solvent System original lignin  solvent  % lignin recovery  st. deviation concentration of 

  in solution (g) extractd 
(mL) 

of original lignin of % lignin 
recov. 

liq fract.(mg/mL) 

      

75% Acetone 2.9883 25.94 80.23 9.72 93.27 
50% acetone 2.9897 28.22 74.19 13.00 78.61 
50% CAN 2.9879 27.81 72.17 7.95 77.55 
100% CAN 3.0006 20.41 not detectable  0.00 5.00† 
50% THF 2.9915 28.67 108.39 4.14 113.11 
100% THF 3.0009 18.84 12.74 7.80 20.30 
50% mTHF 50% MeOH 2.9895 23.08 12.74 7.80 60.40 
50% THF 50% MeOH 2.9950 18.92 66.74 4.20 105.63 
50% 2-propanol 50% 
Acetone 

3.0382 23.08 31.84 4.20 41.91 

Methyl Acetate 2.9966 23.74 7.40 0.33 9.34      
† estimated by comparison 

     
with diluted solutions of 

     
other solvents 

 

A chart showing average percent recovery of original lignin in the liquid fraction is shown in 

Figure 24. 
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Figure 24.  Average % recovery of original lignin in the liquid fraction of each solvent or solvent system. 

 

Although pure solvents such as acetonitrile and THF show very little ability to solubilize 

lignin, which may be due to a net balance of repulsion over attraction, particularly of lignin polar 

groups to an organic solvent, 1:1 solutions of the same solvents with water show a remarkable 

increase in solubility of lignin.  Perhaps this is due to a shift in balance of forces, favoring 

attractive forces of lignin polar groups to water and attractive forces of nonpolar lignin groups to 

an organic solvent over repulsive forces, possibly due to an advantageous spatial arrangement.  

The solubility of lignin in a 1:1 solution of acetone was also high, as was solubility in a 3:1 

acetone:water mix.  Although solubilities in this study differ somewhat from acetone-water 

solubilities in a study by Sadeghafir et al., the latter study also shows progressively better 

solubility as acetone increases from 50% to 100% (Figure 6).  Acetone has a polarity (relative to 
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water at 1.00) of 0.355, compared to acetonitrile (0.460) and THF (0.207), so that apparently 

polarity does not determine lignin solubility alone (Table 24). 

The effect of solvent systems on solubility of samples in preparation for GPC analysis 

was investigated in addition to THF dilution with less than 10% water content, as above. An 

additional method of preparation of lignin samples was undertaken, wherein kraft alkali lignin, 

(Sigma, St. Louis, MO) was dissolved in THF:water at a 1:1 ratio.  The lignin sample was an 

alkali kraft lignin sample and GPC conditions were the same as those for lignins referenced 

above, with the exception that several were lower in concentration than 1 mg/mL and, as noted, 

the dilution solvent system included a greater percentage of water. 

The samples in this case had been previously solubilized in acetone:water solvent 

systems that included 20, 30, 40 and 50% acetone, which generally showed increasing solubility 

of lignin as acetone approached the 50% level. Equal volumes were removed and diluted with 

THF:water (1:1) such that the highest lignin concentration (50% acetone) had a final 

concentration of about 0.5 mg/mL, while other samples had correspondingly lower 

concentrations due to the comparison on an equal volume basis. Samples were evaluated in 

duplicate.  

In a similar investigation with whole lignins, one sample type was dissolved in 

THF:water (9:1) and (1:1) ratios, resulting in a comparison showing more extensive dissolution 

of high-MW compounds for the (1:1) ratio, but which also had a low impact on Mn and Mw 

compared to the (9:1) ratio.  In this case, for samples solubilized in varying solvent systems, only 

the (1:1) ratio was investigated, and it was considered that the effect was the same, i.e., high-

MW compounds more readily dissolved, but did not have much impact on Mn and Mw values in 

comparison to preparation in THF:water (9:1); in this case, more in-depth evaluation of the effect 
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of a high percentage of water in the solvent used for solubilization/preparation of samples for 

GPC, which were already dissolved in a water/solvent system, was the goal.  The most direct 

comparison was for the sample LL60 in Table 22 (acetone:water 1:1) to the acetone:water (1:1) 

sample in this sequence. 

Table 24.  Lignin samples, descriptions, chromatograms and molecular weights as peak-, number-, mass- 

and z-averages (Mp, Mn, Mw, Mz).  All samples were run in duplicate; only one chromatogram is shown 

and molecular weights are averages values for both samples. Red lines show integration areas. 

Lignin Sample 

and Solvent 

Description  

Chromatogram 

(Response as mAU) 

Mp  Mn  Mw  Mz      Poly-

dispersity 

(Mw/Mn) 

acetone:water 

(2:8) 

 

0.11 mg/mL 

 

Solvent:  

THF:water 

(1:1) 
 

303 427 1109 48376 2.60 

acetone:water 

(3:7) 

 

0.18 mg/mL 

 

Solvent:  

THF:water 

(1:1) 
 

370 468 1763 75543 3.77 

acetone:water 

(4:6) 

 

0.30 mg/mL 

 

Solvent:  

THF:water 

(1:1) 
 

364 506 1969 75882 3.77 
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acetone:water 

(1:1) 

 

0.45 mg/mL 

 

Solvent:  

THF:water 

(1:1) 
 

363 513 2455 83521 4.79 

 

Since samples solubilized/prepared for GPC with THF (less than 10% water) were 

evaluated for MW only for acetone:water combinations of 75 and 50% acetone, the only sample 

which could be compared was the LL60 sample from Table 22 to the 50% acetone sample in 

Table 24. However, this showed some notable results, as shown in Table 25:  

Table 25. Comparison of MW values for lignin samples solubilized in acetone:water (50% acetone) 

solvent systems.  Preparation for GPC differed- one sample was solubilized in THF:water (less than 10% 

water) and the other in THF:water (1:1). Concentrations were 1 mg/mL and 0.45 mg/mL respectively. 

Chromatogram axes are not the same). 

Sample Mp  Mn  Mw  Mz      Poly-
dispersity 
(Mw/Mn) 

 

50% 

acetone:water 

sample in 

THF:water 

(<10% water) 

1721 731 2637 5541 3.62 

 

50% 

acetone:water 

sample in 

THF:water 

(1:1) 

363 513 2455 83521 4.79 
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Of interest, the sample dissolved in THF:water (1:1) has a lower Mp and is centered in a 

lower-MW range than the other sample, and yet seems to have solubilized more high-MW 

compounds, as was found with the whole lignin samples.  However, the number of high-MW 

samples does not appear to have affected MW values other than the Mz and PI values; Mn and 

Mw are actually somewhat lower for the (1:1) sample, although the values are still very close.  

The use of a preparation solvent of THF:water(1:1) was considered superior in terms of 

solubilizing higher-MW compounds and possibly showed a more accurate range of MWs for the 

acetone:water series (20 – 50% acetone) than a simple preparation in THF with a small 

percentage of water would. When looking at the trends for Mn, Mw and Mz for the acetone:water 

series, Mp changed little, while Mn and Mw increased somewhat with increase in acetone 

percentage. Mz and PI showed significant increases; however, Mz values seemed to plateau after 

30% acetone, implying that higher MW compounds were limited in size at around this point, or 

that solubilization ability was limited.  

 

II.2. Folin-Ciocalteu Method of Quantification of Phenolic Hydroxyl Groups in 

Lignin 

II.2.1. Experimental 

II.2.1.1. Materials 

Greiner 96-well polystyrene nonsterile microplates were used for the assay arrays 

(Greiner Bio-One, Kremsmunster, Austria), while alkali (kraft) lignin and Folin-Ciocalteu 

Phenolic Reagent (2N) were obtained from Sigma Aldrich (St. Louis, MO, USA).   
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Solvents used included acetone, acetonitrile, tetrahydrofuran, methyltetrahydrofuran, 

methanol, isopropanol, methyl acetate (VWR, Arlington Heights, IL, USA), which were GC and 

HPLC grade. Sodium carbonate (Na2CO3) ACS grade was also purchased from VWR.   

Deionized water was obtained from a Direct-Q 3 UV system purifier (Millipore, Billerica, MA, 

USA) with the total organic carbon content below 5 ppb (manufacturer specification). 

 

II.2.1.2. Folin oxidation method development 

Optimization of microplate parameters were determined after a long period of 

experimentation and were also determined via Minitab statistical software, using factorial 

(resolution V) design, for comparison.  The section immediately after “FC Analysis” is “FC 

Phenol Reaction Method Development,” wherein parameter determination is covered in a more 

in-depth manner. 

 Generally, lignin samples had to be solubilized in a solvent system amenable to 

dissolution, and the solution had to have a workable concentration for signaling in a UV-Vis 

detector within its range of detection.  In addition, Na2CO3, is added to produce alkalinity, which 

is necessary for colorimetric change, and the concentration had to be adjusted.  Also, Folin-

Ciocalteu reagent (2N) could be adjusted to produce colorimetric change at a minimal amount, in 

order to save on reagent use.  

 Due to instrument change on a daily basis, a control sample of guaiacol of known 

concentration also had to be added with each measurement. One of the most important 

parameters was the time period allowed for reaction development, as a too-early interval would 
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not differentiate results substantially between analytes, while a too-long development period 

could coincide with salt deposition at the bottom of the microplate wells. 

 In a micro-scale Folin reagent study performed on bio-oil, Rover et al. recommended 20 

L of bio-oil be dissolved in ethanol, filtered and diluted in 1.58 mL water, with 100 L FC 

reagent added. Sodium carbonate (2.4 M) was added as 300 L and the sample was developed 

for 2 hours at 765 nm, the most common wavelength for Folin reagent experiments analyzed via 

UV-Vis.  A guaiacol standard calibration was implemented for concentrations of 50, 100, 250, 

and 500 g/mL. The samples were evaluated in cuvettes as opposed to microplate wells.100 

 In modifying the method for microplate analysis, reagent amounts had to be reduced 

substantially; the equivalent of 2 mL of a sample had to be fit into 240 L of volume. Testing 

proceeded mainly according to a one-change-at-a-time methodology, which is not considered to 

be the most productive; hence, the testing via Minitab factorial experimental design was 

accomplished shortly afterward.  Concentration of the salt solution was the most pressing 

problem because of precipitation tendencies (Figure 25), so this parameter was investigated first; 

a concentration of 0.15 M (as 0.4 M in 150 L) was an improved parameter over the 

recommended 0.36 M.   
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Figure 25.  Left: A solution of gallic acid (100 g/mL) reacted with 50 L FC reagent and 0.4 M Na2CO3 

after two hours, with the liquid solution poured off after the reaction.  Right: The same reaction after three 

hours (note opaque wells near the center). 

 

Whereas absorbance in a cuvette is determined by a horizontal light beam which transects 

through the middle area of solution in the cuvette, bypassing precipitation on the cuvette bottom, 

a microplate is not able to avoid this problem because of the orientation of the vertical light 

beam, which passes from top to bottom of the sample. 

Two hours for development, even at this reduced salt amount, was also deemed to be 

optimal for incubation time. Interestingly, readings taken over 24 hours did not actually reach 

full development even during this time period, as signaled by continued colorimetric 

development (Figure 26).  
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Figure 26.  Absorbance of a solution of gallic acid (100 g/mL) with 50 L FC reagent and 0.4 M 

Na2CO3 over 24 hours. 

 

  Lignin concentration, particularly for highly reactive models such as catechol, could not 

exceed 200 g/mL or saturation of the detector occurred. In addition, trials with half-volumes of 

120 L did not produce reliable results. Interestingly, Folin reagent required 50 L for good 

development of the blue colorimetric response, although this constituted 21% of the total volume 

of the sample.  Even so, per sample, this saved on the expenditure of Folin reagent in comparison 

to the recommended 100 L per sample.100 Table 26 shows the parameters recommended by 

Rover et al. in comparison to the actual parameters tested in this study.100  
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Table 26. Recommended parameters of Folin reagent oxidation of bio-oils (Rover), shaded in gray, in 

comparison to parameters investigated in this study. (Parameters used in the method are bolded). 

Optimizaton of 
Parameters  

Recommended  
(Rover et al.)100 

This study, 
Parameter 1 

Parameter 2 Parameter 3 Parameter 4 Parameter 5 

Volume of sample 
in microplate wells 

(250 L max.) 

2 mL 240 L 120 L 
   

Lignin 
concentration 

(g/mL) 

500 250 200 100 
  

Salt (Na2CO3) final 
concentration 
(Molar) 

0.36 1.5 0.75 0.375 0.15 0.125 

Folin reagent 

amount (L) and % 
of liquid sample 

100 (5%) 100 (42%) 50 (21%) 25 (10.5%) 
  

Development time 
interval (hours) 

2 1 2 3 
  

 

A statistical design of experiment approach was also accomplished, whereby a 24 

factorial, resolution V, 4-replicate system was used; two parameter choices per level were 

allowed and the choices were made based on preliminary experiments. By this time, it was clear 

that because of salt deposition problems, a low level of Na2CO3 addition (0.15 M) was necessary 

or a possibly lower level (0.125 M) might suffice.  Incubation time would have to be either 1 or 2 

hours because of the same limitation, and Folin reagent could be the full 100 L or possibly less, 

per sample. In addition to this, an investigation into the delivery mode of acetonitrile was also 

considered; it was present as ACN:water (1:1) in the original solution added to lignin due to its 

ability to enhance solubility, but there was speculation as to whether it could also be effective 

when delivered as a reagent to lignin in an aqueous solution with Folin reagent and Na2CO3.  

Table 27 delineates the statistical parameters of the factorial design.  
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Table 27.  Factorial ANOVA (analysis of variance) statistical parameters of a 24 design, with four factors 

and two levels designated. 

Factorial design of 
experiment: two 
levels, 4 factors 
(parameters) 

Incubation time 
(hr) 

FC reagent 

(L) 

Na2CO3 
concentration 
(Molar) 

Acetonitrile 
(ACN) delivery 

Level 1 1 100 0.125 ACN added later 

Level 2 2 50 0.15 ACN added 
immediately 

 

The main purpose of a factorial evaluation of a variety of parameters is to compare 

residual differences between actual absorbance response levels vs. predicted response levels 

based on regression analysis. The findings of the analysis inform as to whether there are “main 

effects” for the factors, i.e., the Folin amount in this experiment would make a significant 

difference in the absorbance of the sample. A “p” value between 0 and 1, below the threshold of 

significance (usually 0.05) shows how likely it is that there is a main effect (we can reject the 

null hypothesis that there is no real effect of the factor on the outcome).  The threshold of 0.05 

represents the confidence interval , which shows in this case that there is a 5% chance that we 

are saying the factor has an effect when it actually does not. The study can also illustrate 

significant associations between factors, i.e., parameters are not independent and are in fact 

linked. It is always best to have parameters that are not inter-related, as statistical analysis of 

“best choice” becomes nonapplicable if factors are not independent.   

 

II.2.1.3. Folin oxidation method 

The final protocol entailed the dilution of a 200 g/mL sample down to 20 g/mL within 

10 wells of the microplate, having been made in a 1:1 acetone:water mixture and then diluted by 

one-half each step with the same solution in one row of the Greiner microplate.  At least two 
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repeats (rows) of the same solution were plated.  A control sample of guaiacol (70 g/mL) in a 

1:1 acetone was run with each plate (Figure 27). The slopes for all samples were adjusted to 

guaiacol standards (70 g/mL) which were included in each microplate row.  An average value 

for all guaiacol standards was determined and each plate average was compared to this to 

determine an adjustment factor to the original slope value, so that comparisons between samples 

were possible.   

Folin-Ciocalteu reagent (2N) was added as 50 L to each well, followed by incubation for 

eight minutes. This was followed by addition of 0.4 N Na2CO3 as 150 L.  Blanks containing the 

same mixture of 1:1 acetone:water mix, FC reagent and Na2CO3, without lignin, were placed in 

the last microplate column.  At this point the samples were allowed to incubate for two hours, 

while rotating on a Labnet (Big Flats, NY, USA) Orbit P4 shaker, set to 40 rpm.   

 Evaluation of absorbance at 765 nm wavelength was accomplished by a Varian Cary 

50Bio UV/Vis Spectrophotometer connected to a Varian Cary 50MPR Microplate reader.  

 

Figure 27:  Microplate setup for oxidation of lignin by Folin reagent. Purple represents lignin as 200 

g/mL sample in column 12 halved down to column 3 with acetonitrile:water (1:1) solution; blue is 

control as guaiacol (about 70 g/mL) and blanks are acetone:water (1:1). Final solutions will contain 

Folin reagent (50 L in each well) and Na2CO3 (150 L of 0.4 M solution) in each well, as well. 

Column 12:
200 g/mL sample

Column 3:
20 g/mL sample

Controls 

blanks
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Lignin model compounds and lignin-solvent samples were all diluted by their respective 

initial solvents to a concentration of 200 g/mL prior to analysis by FC assay.  However, lignin-

solvent samples which were evaluated on a same-volume basis were diluted with a different 

approach.  Initial concentrations of the samples differed considerably in their own solvent 

systems, so that the highest concentration was diluted to 200 g/mL, which required that 0.01 

mL be diluted to 5.65 mL. Thereafter, all other lignin-solvent samples were diluted in the same 

manner. Initial concentrations are shown in Table 28. 

Table 28 Solubilization levels and initial concentrations of lignin solutions in various solvent systems and 

the final concentration for analysis after dilution for comparison by the same volume. 

Solvent mix wt.% C of   avg. orig. 
avg 
lignin 

avg. 
solvent 

Orig. 
conc. 

withdra
w 

5.65 

  
Initial 
Lignin C 

s.d. lignin (g) 
in soln 
(g) 

(mL) (mg/mL) 0.01 
mL.  (Dilute to 
this) 

 
  

     
(mg) 

 final. Conc. 
(ug/mL) 

75% acetone: water 80.21 9.72 2.9883 2.397 25.71 93.23 0.932 165 

50% acetone: water 74.19 13 2.9897 2.218 28.22 78.6 0.786 139 

50% acetonitrile: 
water 

72.16 7.95 2.9879 2.156 27.81 77.53 0.775 137 

100% acetonitrile: 
water 

3.4 0 3 0.102 20.41 5 0.05 9 

50% 
tetrahydrofuran 

108.41 4.14 2.9915 3.243 28.67 113.11 1.131 200 

100% 
tetrahydrofuran 

12.73 7.8 3.0009 0.382 18.84 20.28 0.203 36 

50% mTHF: 50% 
MeOH 

12.74 7.8 2.9895 0.381 23.08 16.51 0.165 29 

50% THF: 50% 
MeOH 

66.74 4.2 2.995 1.999 18.92 105.66 1.057 187 

50% isoprop: 50% 
ace 

31.83 4.2 3.0382 0.967 24.3 39.79 0.398 70 

100% methyl 
acetate 

7.41 0.33 2.9966 0.222 23.74 9.35 0.094 17 

 

 II.2.2. Results of Folin Analysis of Lignin Model Compounds and Lignin-Solvent Samples  

The general method of lignin model compound comparison was by determination of a 

slope for each compound from a diluted sequence of the compound in a microplate, starting with 
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200 g/mL and reducing by half until a value of approximately 20 g/mL was reached.  An 

average slope for absorbance was determined for all repeated rows of the same sample, after 

subtraction of blanks.  The 2nd to 7th well absorbances constituted the five points of each slope.  

The slope for gallic acid clearly showed a higher value than guaiacol (with three hydroxyl groups 

compared to one group), but not three times the slope for guaiacol (Figure 28).   

 

  

Figure 28. (a) Microplate results for gallic acid reacted with 50 L FC and 0.4 M Na2CO3 after two hours 

of incubation, (b) results for the same protocol with guaiacol. 

 

Slopes of lignin model compounds as milli-absorbance units (mAU) vs nmol carbon per well are 

shown in Fig. 29a, while those of lignin/solvent solutions (same mass) are in Figure 29b, with 

lignin/solvent solutions (same volume) are in Figure 29c. 
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Figure 29: (a) Slopes for lignin model compounds (as absorbance vs nmol carbon per well in a range of 

14 – 770 nmol carbon based on FC assay with an initial 200 g/mL diluted through 10; (b) slopes for 

lignin/solvent samples (in a range of 6 – 427 nmol carbon) also at an initial concentration of 200 g/mL 

in microplate wells; (c) slopes for the same lignin/solvent samples (in a range of 2 – 427 nmol carbon) but 

on an equal volume basis.  

 

 It is apparent by comparing lignin model compounds that each species has an individual 

response to the assay, although there is a definite distinction between polyhydroxyl compounds 

such as gallic acid, benzenetriol and catechol (with slopes at about 0.0080) and the 

monohydroxyl compounds such as alkyl-guaiacols, eugenol and cresol (with slopes centered 

around 0.0040). Guaiacol and homovanillic acid had the highest slopes at about 0.006. This 

study also found that gallic acid, despite having three hydroxyl groups, did not have a slope 

much different than that of catechol (with two hydroxyl groups).  The dimers, TD-1,4 and 
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between polyhydroxylated benzene rings and monohydroxylated rings, and standard deviations 

were modest.  However, discrimination between tri-hydroxyl and di-hydroxyl groups was not 

possible, and it was apparent that substituents in the model compounds had an effect on the slope 

values when other parameters were held constant.  Stratil et al. found that gallic acid had an FC 

reaction similar to that of a dihydroxyl compound and also found that monohydroxyls varied in 

reaction to FC reagent, ostensibly due to differing structures and substituents.101  

 The lignin model compounds served as a calibration set for determining hydroxyl content 

in the lignin/solvent samples.  It was immediately apparent that solvent systems which had a high 

solubility level for alkali lignin (50% THF, 50%, acetone, 50% acetonitrile, 75% acetone) had 

low slopes, indicating low hydroxyl content on benzene rings, ostensibly due to H-bonding with 

solvents or possibly some other type of bond which prevented an oxidation reaction from 

occurring.  Conversely, the lower solubilities in some solvent systems, which included 100% 

acetonitrile, 100% THF, mTHF:MeOH (1:1), THF:MeOH (1:1), acetone:2-propanol (1:1), and 

100% methyl acetate, allowed more unreacted hydroxyl groups to be oxidized by the FC 

reaction. 

 As such, the same-mass evaluation of the lignin-solvent samples did not accurately 

portray the solubility differences between the samples.  However, the lignin/solvent samples 

arranged on an equal volume basis showed accurate estimations- high slope values for solvents 

with low solubility and lower values for those with high solubility. Because absorbance per nmol 

carbon was the basis of evaluation, it appeared that slopes mirrored solubility more accurately 

when solubility was represented as wt% carbon than as g/mL concentration.   
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Exceptions were THF:MeOH and acetone:2-propanol samples, which did not reflect the 

respective solubilities of 66.74 and 31.84 wt.% of original carbon. Thus dilution based on wt% C 

differences may have been more appropriate. 

Of interest, the solvent samples with easily solubilized lignin, as in 50% and 75% 

acetone:water, 50% acetonitrile:water and 50% THF:water showed a reaction to FC similar to 4-

methyl guaiacol or acetovanillone, which were both monohydroxyl (phenolic) compounds and 

which also showed low reactivity in general compared to other monohydroxyls.  Somewhat 

soluble lignin (50% THF:MeOH and 50% isopropyl:acetone samples) showed more reactivity to 

FC reagent, while practically nonsoluble lignin (in 100% acetonitrile, 100% THF, 50% 

mTHF:MeOH and methyl acetate) showed a high level of reactivity either somewhat above the 

level of di- and tri-hydroxyls (gallic acid, etc.) or up to one and a half times as much. 

The idea that the slopes for lignin-solvent samples with low lignin solubility would show 

values above those of di- and tri-hydroxy lignin model compounds was not unexpected, as the 

latter samples had been dissolved in acetone:water (1:1). This allowed solubility of the model 

compounds but also rendered some phenolic hydroxyls on the compounds unavailable for 

oxidation because of expected hydrogen bonding to the aqueous portion of the solvent mixture.   

 

II.2.3. Optimization of Method using Design of Experiment 

II.2.3.1. Statistical method 

Data was taken from FC phenol reaction plates by compiling absorbance readings for the 

100 g/mL microplate wells in each guaiacol diluent series which featured either one or two 

hours of incubation time, 8% or 16% total ACN content per well, 50 L or 100 L FC reagent 
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and 0.2M or 0.4M Na2CO3 concentration per well, and all possible combinations of these factors.  

Four replicates were done for each series. 

Although runs were randomized, the entry of data into Minitab software (Minitab LLC, 

PA State College, PA, USA) was entered in standard order and processed as a 24 full factorial 

(full resolution) with four replicates, via factorial ANOVA (ANalysis Of VAriance) statistical 

test. Assumptions of the test are that the variable should be normally distributed, continuous and 

have a similar spread across groups, as well as at least five data points per group.   

Tools of analysis included the analysis of variance, residuals plots, contour plots and 

main effects/interactions plots.  The corresponding fractional 24-1 factorial for four replicates was 

also evaluated; this entailed manual entry of data into 32 design-designated slots.   

A similar procedure was accomplished with one replicate selected randomly from all the 

data sets considered previously.  This set of models entailed manual entry of only 16 runs for full 

24 factorial consideration, and eight runs for the ½ fractional model.   

 

II.2.3.2. Results of statistical method 

The FC phenol reagent study was evaluated as a 2-level, 4-factor (24), 4-replicate factorial by 

Minitab software initially as a full resolution model. Results of design and analysis are shown in 

Figure 30. Factors, with levels: 

1) Incubation time (1 or 2 hours). 

2) Na2CO3 concentration (0.2 or 0.4 M M). 

3) FC reagent amount (50 or 100 L). 

4) Acetonitrile delivery (as acetonitrile:water (1:1) initially or added with other reagents). 
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Full Factorial Design 

Design Summary 

Factors: 4 Base Design: 4, 16  

Runs: 64 Replicates: 4  

Blocks: 1 Center pts (total): 0  

All terms are free from aliasing.                                

 

Figure 30. Minitab design summary and analysis of variance for 24 full factorial evaluation of FC phenol 

reactions, with four replicates (alpha = 0.05). 

 

The gold standard for evaluation of main effects and interactions was the full factorial, 24, 

64-run model, and results were intended to be compared to a 24-1 fractional model as well as one-

replicate full factorial and 24-1 fractional models.  Alpha values for all models was 0.05. The 

main effects showed that all four factors were significant with p values < 0.001, while no 

interactions were significant, but there was a problem in that the relationships “time*ACN%,” 

“Na2CO3* ACN%,” FC*ACN%,” showed increased absorbance for lower levels of ACN. Also, 

to a lesser extent, “Na2CO3*FC” had some interaction.  A normal plot showed these results in 

Figure 31, while main effects and interaction plots are illustrated in Figure 32.  
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Figure 31.  The normal plot of the standardized effects for 24 full factorial evaluation of FC phenol 

reactions, with four replicates (alpha = 0.05). 

 

 

Figure 32.  Main effects and interaction plots for 24 full factorial evaluation of FC phenol reactions, with 

four replicates (alpha = 0.05). 
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Interestingly, the lower percentage of acetonitrile was more effective in producing a 

higher absorbance, probably due to dissolution problems with the analyte.  This phenomenon 

was reflected in interaction plots with the other three factors, although the factors (time, Na2CO3 

concentration and FC amount) are not thought to be responsible for the effect through 

interaction.  The only other minor interaction was Na2CO3 with the FC reactant. When FC 

concentration was increased for increased concentrations of Na2CO3, absorbance of the solution 

changed very little, possibly suggesting a slight inhibition of FC effect by the salt. 

A refined model of the full factorial (with non-significant interactions removed) yielded a 

normal residual plot which was linear, and a residual vs. fits plot which showed fairly good 

variance of samples, except for lower-end fitted values (Figure 33).  Transformation of data did 

not seem to be indicated. 

 

  

Figure 33 Normal probability plot and residuals vs. fits plot for 24 full factorial evaluation of FC phenol 

reactions, with four replicates (alpha = 0.05). 

 

A ½-fractional factorial (32 runs), with four replicates, was carried out with the same data and 

showed some difference in results from the full factorial model.  The resolution for this model 
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was IV, which resulted in aliasing of 2-factor interactions with each other; AB + CD, AC + BD, 

AD + BC.  Design and analysis of variance are shown in Figure 34. 

   

Figure 34.  Design and analysis of variance for 24-1 fractional factorial evaluation of FC phenol reactions, 

with four replicates (alpha = 0.05). 

 

The 24 fractional factorial evaluation of FC phenol reactions with four replicates showed 

interactions of time with all other factors to be significant, but this was not surprising considering 

that all of these two-factor interactions had aliases (Figure 35).  Information about interaction 

significance was not reliable; a foldover would be required, and might require as many runs as 

needed to make a full factorial. 

 

  

Figure 35.  The normal plot of the standardized effects for 24 full factorial evaluation of FC phenol 

reactions, with one replicate and the factorial interaction plot (alpha = 0.05). 
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Resolution IV showed only the significance of the main effects, which agreed somewhat 

with full factorial results, although the factor of time was exaggerated in significance (Figure 

36). 

 

Figure 36.  Comparison of p-values for full (24) and fractional (24-1) factorial model evaluation of FC 

phenol reactions, with four replicates and alpha = 0.05. 

 

The normal probability plot for the fractional model showed less linearity than that of the 

full factorial model, and the residuals vs. fits plot was similar to the full factorial plot (Figure 

37). 
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Figure 37.  Normal probability plot and residuals vs. fits plot for 24-1 fractional factorial evaluation of FC 

phenol reactions, with four replicates (alpha = 0.05). 

 

Evaluation of a four-replicate model was cumbersome as it required 64 or 32 runs 

respectively for full or fractional factorial models.  One-replicate models were also evaluated for 

comparison, at full and ½-fraction (full and IV resolution); these required only 16 and 8 runs 

respectively.  The factorial design and analysis of variance are shown in Figure 38 for the one-

replicate model. 

 

Full Factorial Design 

Design Summary 

Factors: 4 Base Design: 4, 16  

Runs: 16 Replicates: 1  

Blocks: 1 Center pts (total): 0  

All terms are free from aliasing.                            

 

 
Figure 38.  Minitab design summary and analysis of variance for 24 full factorial evaluation of FC phenol 

reactions, with one replicate (alpha = 0.05). 

 

 

The normal plot of the standardized effects and interaction plots showed the same 

significant factors and interactions as the four-replicate model (Figure 39). 
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Figure 39.  The normal plot of the standardized effects for 24 full factorial evaluation of FC phenol 

reactions, with one replicate and the factorial interaction plot (alpha = 0.05). 

 

For the refined model, normal probability plot and residuals plot vs. fits were similar to 

the four-replicate model (Figure 40). 

 

  

Figure 40.  Normal probability plot and residuals vs. fits plot for 24 full factorial evaluation of FC phenol 

reactions, with one replicate (alpha = 0.05).  The residuals vs. fits plot showed better variance than the 

four-replicate model. 

 

A ½-fractional factorial (8 runs), with one replicate, was also carried out; the resolution 

for this model was also IV, resulting in 2-factor interactions aliased with each other; AB + CD, 

AC + BD, AD + BC.  F and p values were not initially forthcoming- the AC+BD interaction was 

removed from the available terms to allow for error calculation.  The results were somewhat less 
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reliable than the fractional version (24-1) for the four-replicate model.  Design and analysis of 

variance are shown in Figure 41, while normal plot of the standardized effects and interactions 

plots are shown in Figure 42. 

  

Figure 41.  Design and analysis of variance for 24-1 fractional factorial evaluation of FC phenol reactions, 

with one replicate (alpha = 0.05). 

 

  

Figure 42.  Normal plot of the standardized effects and interaction plots for 24-1 fractional factorial 

evaluation of FC phenol reactions, with one replicate (alpha = 0.05). 

 

The main effects plots and analysis of variance showed only factor “D” or ACN% to be 

significant, while interaction significance could not be estimated due to aliasing.  A normal 

probability plot and residuals vs. fits plot for the 24-1 fractional factorial model with one replicate 

showed linearity and good variance, but points were sparse (Figure 43). 
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Figure 43.  Normal probability plot and residuals vs. fits plot for 24-1 fractional factorial evaluation of FC 

phenol reactions, with one replicate (alpha = 0.05). 

 

II.2.3.3. Conclusions of a statistical approach 

Figure 44 shows a comparison of p-values across the board for full and fractional models 

of both the four-replicate and one-replicate versions of the study. 
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Figure 44.  Comparisons of p-values for all factorial models of the FC phenol study. 

 

  Results for significant main effects and interactions agreed fairly well for the full and 

refined versions of both the four-replicate and one-replicate models, leading to the conclusion 

that one replicate would be sufficient for this study- bringing total runs from 64 to 16, which 

would save on time and resources.  The one-replicate full factorial actually gave better 

information than the fractional factorial for four-replicates, and in fewer runs (16 vs 32). 

Of interest is the fact that the four-replicate fractional model (24-1) did adhere to the 

findings of the full factorial model when it came to main effects of the factors.  However, 

fractional studies in either case (four-replicate or one-replicate) did not give enough information 

about two-factor interactions, which would be important in this case as it became apparent that 

the supposed interaction of ACN% with all other factors was actually due to a dissolution issue.  

The fractional factorial for the one-replicate study was actually not even accurate for predicting 

significance of the factors, having found only one of them significant (ACN%).   
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In terms of the study factors themselves, it was clear from the results that time of 

incubation, Na2CO3 concentration, FC amount and ACN% had significant effects on results.  It 

was readily apparent that two hours of time was superior in terms of increasing absorbance in 

samples, as was the higher concentration of Na2CO3.   

One of the important points of the study was to determine if Na2CO3 concentration would 

interact negatively with time (producing less absorbance for a longer time), but this interaction 

was not seen.  The implication was that 0.4M Na2CO3 was not depositing material at the bottom 

of the microplate wells within the two-hour incubation time. 

The amount of FC added to each plate was less significant than the other factors (p= 0.025), 

although the one-replicate study overemphasized its significance (p= 0.004).  This was a case 

where it was apparent that 100 L of FC would produce greater absorbance, but the addition of 

50 L was far more economical.   

ACN% was seen as significant, not only as a main effect, but also in terms of interaction 

with other factors.  The lower level of ACN% (8% total in solution) was more effective in 

producing greater absorbance, and this was thought to be due to better dissolution of the analyte 

initially, while an elevated final amount (16%) was initially ineffective at dissolution. The fact 

that several interactions with ACN% were found to be significant also pointed toward an across-

the-board explanation rather than multiple negative interactions, although it could be said that 

addition of Na2CO3 and FC did have a negative effect on the higher level of ACN% by not 

producing the dissolution level expected. 

A series of contour maps reflects these findings for the four-replicate full factorial model 

(Figure 45) and for the one-replicate full factorial model (Figure 46).  The plots are quite similar, 
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and both show complexity in the ACN% interactions and the better performance of the lower 

value.   

Optimal values for the four factors in the study were: 

1) Two hours of incubation time is optimal for the experiment since three hours produced a 

wider variance of results and saturation effects for some compounds, while one hour was 

not enough to develop sufficient absorbance for compounds which did not react well. 

2) Na2CO3 concentration at 0.4M, since this concentration produced better absorbance, and, 

crucially, did not show signs of deposition. 

3) FC amount at 50 L, although 100 L was somewhat better for absorbance levels.  The 

difference was not enough to overcome the cost factor. 

4) ACN% was kept at 8% total in solution, since this meant an initial 1:1 acetonitrile:water 

solution for total dissolution of the compound. The introduction of total acetonitrile to the 

analyte compound apparently did not work towards dissolution of the compound initially 

or later, since absorbance did not increase with addition of water in FC and Na2CO3 

solutions during the process,  

 

 

Figure 45.  Individual contour plots for the four-replicate full factorial model with four factors, each 

paired with each other without hold values for factors outside the pair. 
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Figure 46. Individual contour plots for the one-replicate full factorial model with four factors, each paired 

with each other without hold values for factors outside the pair. 
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CHAPTER III. Processing of Technical Lignins 

III.1. Fractionation of Alkali Lignin 

III.1.1. Experimental 

III.1.1.1. Materials and methods 

Alkali lignin was purchased from Sigma-Aldrich (St. Louis, MO, USA). The alkali lignin 

was determined to have an elemental make up of C (64.14%), H (5.79%), S (1.39%) and N (0.46%) 

by Atlantic Microlab, Inc. (Norcross, GA, USA). HPLC grade unstabilized tetrahydrofuran (THF) 

containing no preservatives was obtained from Fisher Scientific (Fair Lawn, NJ, USA). Deionized 

water was obtained using a Direct-Q® 3 system, Millipore, Billerica, MA, USA.  

For preparative SEC, alkali lignin was completely dissolved in a 1:1 (v/v) THF:water mixture 

at a concentration of 50 mg/mL and further diluted with THF to form a lignin solution with a final 

concentration of 10 mg/mL containing 10% of water. When the water content was decreased to 

1%, no precipitation was observed. 

For column calibration, two sets of narrow-range polymeric standards were used, i.e., a 

polystyrene (PS) standard set with MW peak maxima (Mp) of 580–19,760 Da purchased from 

Varian (Amherst, MA), and PMMA standards (Mp 550 – 56600 Da) from Agilent Technologies 

(Santa Clara, CA, USA). Pinoresinol (≥95% purity, Sigma Aldrich) was used as a lignin structure 

model compound to verify the calibration.81  

For 31P-NMR analysis, a set of lignin model compounds, including phenol, guaiacol, methyl 

guaiacol, ethyl guaiacol, propyl guaiacol, vanillin, acetovanillin, syringaldehyde, vanillic acid, 

homovanillic acid, bicreosol (all ≥ 95% purity, Sigma Aldrich) were analyzed with respect to 

chemical shift, for identification and quantitation, while pyridine (> 99.8%), cyclohexanol (> 

99%), 2-chloro-4,4,5,5-tetramethyldioxaphospholane (TMDP) (> 95%),  deuterochloroform (> 
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99.8%), chromium acetylacetonate (> 97%) (all from Sigma Aldrich) were used for sample 

preparation. 

 

III.1.1.2. Lignin fractionation via preparative SEC 

To confirm SEC separation is primarily controlled by size exclusion, calibration was 

performed with a set of standards differing in functional groups (PS, PMMA standards and 

pinoresinol), as was performed in a previous work.81 

Preparative SEC fractionation was performed on an Agilent 1100 Series HPLC system 

utilizing a preparative PLgel column (300 × 25 mm, with 10 µm particle size and a 1,000 Å pore 

size). The system was equipped with a diode array detector (DAD). For this work, the analytical 

flow cell was replaced by a preparative flow cell (Agilent Technologies). Unstabilized THF was 

used as a mobile phase at a flow rate of 5.0 mL/min; it was essential to use unstabilized THF to 

obtain pure lignin fractions without butylated hydroxytoluene or other additives used for THF 

stabilization. An extended loop capillary was installed into the injection loop to perform a 500 µL 

injection of a 10 mg/mL lignin solution. 

Several fractionations were performed slightly varying collection time windows yet 

providing comparable results (the SEC data from fractionations 1 and 2 are shown in 

supplementary information) while optimizing the protocol.  

In the final fractionation protocol, the pre-eluate was collected first, during retention times 

where no increase in the DAD signal was observed.  Then MW fractions 1 – 5 were obtained in 

the following elution time windows: 14–16, 16–18, 18–20, 20–22, and 22–24 min. The fraction 

collection was performed manually. The procedure was repeated 10 times resulting in a final 

volume of 100 mL for each of the six collected fractions. Each fraction was concentrated by 
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evaporation under a stream of nitrogen to a final volume of 2 mL. As a control, a 100 mL aliquot 

of THF was also dried to a final volume of 2 mL. 

 

III.1.1.3. Analysis of lignin MW fractions 

III.1.1.3.1. Analytical SEC of lignin MW fractions 

The obtained SEC fractions, a blank sample (concentrated THF), an aliquot of pure THF and 

an intact lignin solution (50,000 ppm w/v) were analyzed by HP SEC on an Agilent 1100 Series 

HPLC system equipped with a DAD with an analytical high pressure flow cell, utilizing a PLgel 

analytical column (300 × 7.5 mm, with a 5 µm particle and a 1,000 Å pore sizes, 500–60,000 Da 

separation range) equipped with a PLgel guard column (50 × 7.5 mm). The SEC column was lined 

with a polystyrene divinylbenzene stationary phase, and was calibrated with PS standards. 

Unstabilized THF was used as a mobile phase at a flow rate of 1.0 mL/min. The injection volume 

for all samples was set to 20 µL. The evaporative light-scattering detector (ELSD) nebulization 

and evaporation temperatures were set to 40 °C, with nitrogen as a nebulizing gas set at a flow rate 

of 1.6 L/min. 

SEC determination of MW as Mn (number-average MW) and Mw (mass-average MW) values 

were based on standard SEC equations.75 

 

III.1.1.3.2. Thermal carbon analysis of the fractions 

A thermal optical analyzer from Sunset Laboratory Inc. (Portland, OR, USA) was employed 

to obtain quantitative thermal carbon evolution profiles enabling a comprehensive carbon 

fractionation and characterization.194,203 For TCA analysis, a sample (20 µL) was introduced on a 

Pall Flex 2500QAT-UP tissue quartz filter (Pall Corp, East Hills, NY, USA), dried on a hot plate 
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at 40 °C for 4 min and placed into an oven. The sample was desorbed/pyrolyzed at selected 

temperature steps for specific time durations. A detailed description of the applied TCA protocol 

can be found elsewhere.194,203 Briefly, thermal desorption temperatures were 30, 200 and 300 °C,  

while pyrolysis took place at 400, 500 and 890 °C in helium atmosphere. This sequence was 

followed by oven cooling to 550 °C and introduction of an oxidizing carrier gas mixture of He 

with 10% of O2 and heating to 890 °C in order to evolve the coked carbon fraction. All the evolved 

species were converted to CO2 and then to methane, thus allowing for quantification with a flame 

ionization detector.  

 

III.1.1.3.3. ESI HRMS (Electrospray High Resolution Mass Spectrometry) analysis 

For high resolution mass spectrometry of the mass distribution of different lignin fractions, 

an Agilent HR TOF-MS system G1969A with a mass resolution of >13,000 (at m/z 2,722) and 

mass accuracy <2 ppm (m/z 609.2807) with ESI was used.204 Samples were introduced via direct 

infusion with a syringe pump at a flow of 5.0 μL·min-1. The analysis was performed in the positive 

ion mode with electrospray ionization (i.e., the capillary potential) and collision-induced 

dissociation (the fragmentor potential) set to 3500 and 150 V, respectively. Nitrogen at a flow rate 

of 4 L·min-1 was used as a nebulizing gas. The nebulization temperature and pressure were set to 

250 °C and 20 psi, respectively. The TOF-MS system was calibrated with [(CsI)n+Cs]+ clusters 

formed by an introduction of cesium iodide [30 mmol·L-1 solution in ACN/water 1:1 (v/v)] via 

direct infusion at a flow rate of 5 μL·min-1.  

Mass Hunter software package B.07.00 was used for data processing. The mass spectra of  

lignin were deconvoluted using a built-in tool utilizing an unbiased isotope model with a peak 

spacing tolerance of 0.0025 m/z. The maximal assigned charge state was not limited. Hydrogen 
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was considered as the charge carrier. The peaks selected for deconvolution were filtered based on 

their absolute height (≥100 counts) and the relative height of the largest peak, which was set to 

≥0.1% of the largest peak unless otherwise stated. The maximum number of peaks was not 

specified. 

 

III.1.1.3.4. TD-Py-GC-MS analysis 

TD-Py-GC-MS was performed on a CDS Analytical Inc. 5200 pyroprobe (Oxford, PA) 

connected to an Agilent GC 7890 with 5975C MS. The GC-MS was equipped with a 51 m HP 

5MS column (0.25 µm film thickness and 0.25 mm inner diameter). There was no solvent delay 

and the GC inlet was kept at 300 ˚C, with the 10:1 split ratio. The quartz tube with quartz wool 

was cleaned outside of the probe at 1200 ˚C for 5 seconds. The sample was introduced at 5.0-10.0 

µL volume onto the quartz wool filter before the probe was inserted and, once inserted, the probe 

was heated sequentially through 200, 300, 400, 500, and 890 ˚C. The probe was held at each 

temperature for 30 s except for the 890 ˚C step, which was held for 10 s. The transfer line and 

valve oven were kept at 300 and 320 ˚C, respectively, and the pyroprobe assembly was held at 300 

˚C.  

Temperature steps 200, 300, 400, and 890 ˚C were repeated twice during the runs to ensure 

that all potential polymers had evaporated for analysis. The resulting GC-MS data showed that the 

second run for each temperature yielded no residual polymers before the next increased 

temperature step. Total ion current (TIC) chromatograms of the fractions and blank sample were 

analyzed for lignin compounds and peaks were labeled when compounds were identified with > 

80% NIST library accuracy search results. 
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 III.1.1.3.5.   31P NMR analysis 

A Bruker AVANCE 500 NMR spectrometer was used to record 1H, 13C{1H}Hy, and 

31P{1H} spectra. Samples for 1H and 13C{1H} NMR spectra were prepared in CDCl3, unless 

specified otherwise, while samples for 31P{1H} were obtained using in a mixture of pyridine (py) 

and CDCl3 (ratio of 1.6:1). For quantitative 31P{1H} NMR studies, the pulse width was 

optimized to give the 90˚ flip angle at approximately 10 µs. The optimized pulse delay was 20 s. 

The 31P{1H} NMR spectra of TMDP and its hydrolysis product were obtained at 256 scans, 

while spectra of phosphitylated lignin, lignin degradation products and other analytes were 

obtained using 1024 scans. 

A general procedure for the phosphitylation reaction was as follows: 400 µL of 1.6:1 (v/v) 

mixture of pyridine and CDCl3 were added to a 4.0 mL vial with a magnetic stir bar. Then a 

compound to be phosphitylated was introduced to the vial. During quantification studies, 

chromium acetylacetonate (1.0 mg) and cyclohexanol (10 µL, the internal standard for integration) 

were added to the vial before introducing the phosphitylation reagent. Two molar equivalents of 

TMDP were added dropwise to the solution. After stirring at room temperature for 5 min, the 

phosphitylated sample was transferred to an NMR tube. 31P{1H} NMR spectra were recorded 

within 1 hour after preparation of the sample. Prior to phosphitylation, samples that were dissolved 

in water/DCM solvent were dried using a rotary evaporator at 20 torr for 60 seconds to remove 

solvents from the system since the presence of hydroxyl groups in the solvents was not conducive 

to the phosphitylation reaction.  

The 31P{1H} NMR signal of phosphitylated cyclohexanol was observed at  145.2 ppm. A 

sample of hydroxylated TMDP, 2-hydroxy-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, was 

produced by adding two drops of water to a solution of 250 µL py, 150 µL CDCl3, and 15 µL 
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TMDP, which was stirred for 5 min. The 31P{1H} NMR signal of hydroxylated TMDP was 

observed at  132.2 ppm.   

 

III.1.2. Results and Discussion 

As demonstrated in our previous work,81 the application of a highly cross-linked porous 

PSDVB stationary phase allowed for lignin separation based primarily on MW. So, in this study, 

lignin was effectively separated into five main fractions via preparative SEC (Figure 47).  As a 

result, a narrower MW distribution of species within the fractions was achieved.  

 

III.1.2.1. Mass distribution after SEC fractionation  

. The distribution of lignin among the fractions was assessed using two methods, by UV-

Vis absorbance intensity and also by TCA results, which were based on quantification of total 

carbon. Similar distribution profiles were obtained, as shown in Table 29. 

 

Table 29.  Distribution of lignin sample across fractions as measured via  

 TCA and diode array detector (DAD) in preparative SEC.1 

Fraction # 1 2 3 4 5 

TCA % distribution of 
lignin across fractions 3.9 32 43 20 0.47 
DAD % distribution of 
lignin across fractions 5.6 37 43 14 0.30 

1 TCA mass distribution is based on carbon wt.% of the sample, while SEC analysis via DAD of mass 

distribution is based on absorbance of particles in the UV-Vis range of 212 – 750 nm. 

 

 

 As expected, the determined mean values of molecular weights, represented as Mp, Mn 

and Mw, were found to differ significantly for each fraction, showing sequentially decreasing 

molecular weight ranges. For the most part, preparative SEC was represented 

chromatographically by a smooth bell-shaped curve, with the exception of small spikes of 
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absorbance near MW 580 and 225 (Figure 47a). Both anomalies may be due to small amounts of 

contaminants in the solvent.   

After the separation, each fraction was subjected to GPC individually in order to ascertain 

molecular weight distribution within the fraction and also to note overlap between fractions in 

terms of molecular weight distribution.. The results are shown in Figure 47b. Most of the 

fractions yielded nearly bell shaped curves, although with some tailing and fronting. These 

features, respectively, were most pronounced for Fractions 1 and 5.  
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(b) 

Figure 47. (a) Chromatogram of alkali lignin separation by preparative SEC, at concentration 10,000 ppm 

in a mobile phase of THF:water (9:1) and total injection volume 500 mL (through an extended loop 

capillary). Five fraction sections are superimposed for retention times 14-16, 16-18, 18-20, 20-22 and 22-

24 min. b) Subsequent analytical-scale SEC of the collected fractions. Detection was conducted using a 

diode array detector within the 212-750 nm working range. 

 

 

III.1.2.2. Mass distribution within separate fractions  

 

 Table 30 shows actual and expected molecular weights for each fraction.  
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Table 30. Actual and expected MW range (by calibration curve) MW ranges, and % molecules in each 

fraction of higher or lower MW than expected for each fraction. 

 

Lignin Fraction  1 2 3 4 5 
 

 
      

Mp (most 
abundant MW in 
g/mol)  

5294 2396 1964 433 191  

Expected MW 
range (g/mol) 

4300-13300 1400- 4300 440- 1400 140-440 <140  

Actual MW range 
(g/mol) 180- 14500 160- 14500 160- 14500 60- 10200 90- 5600  

% molecules in 
expected range 

58 69 61 50 5  

% molecules larger 
than expected 

0 16 29 44 95  

% molecules 
smaller than 
expected 

42 15 10 6 NA  

 

 

The expected MW ranges were calculated using the preparatory SEC calibration curve, 

which was aligned to the retention times of the respective fractions. Then, the actual MW ranges 

were determined by molecular counts above a baseline, by evaluating the percentages of molecules 

with specific molecular weights within the chromatographic data. The results are shown in Table 

30, where it can be seen that they largely correlate with the SEC curve rise/fall actual ranges, 

nonetheless being broader than the expected values, thus corroborating the observed peak fronting 

and tailing.  

Overall, the relative amounts of larger than expected particles increased with retention 

time whereas smaller than expected particles were in abundance at first and then decreased with 

retention time. These trends may be explained by interactions between the lignin components of 

different sizes: Apparently, some lower-MW molecules adsorbed on polymers of Fraction 1 

while some higher-MW molecules adsorbed on lower-MW particles. This trend was particularly 

pronounced in Fraction 5, i.e., monomers and dimers. Thus, the interactions of the highest- and 

lowest-MW species are most significant.  
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This result was unexpected and different from the data obtained when the MW 

fractionation was conducted on a smaller, analytical scale. This difference in scales shows one 

limitation of SEC in application to lignin: If one has to obtain an accurate MW fractionation, 

multiple runs through the column may be essential. However, Fractions 1 and 5 accounted for 

only a small portion of lignin, whereas Fractions 2-4 showed neither significant fronting nor 

tailing.  

Thus, Fractions 1-5 were subjected to detailed chemical characterization without their 

further purification, as described in the subsequent sections. However, prior to this step, the 

average MW values obtained by SEC calibration were verified by an alternative, independent 

method. 

 

III.1.2.3. Mean molecular weights of the fractions obtained 

As expected, number-average and weight-average molecular weights (Mn and Mw) 

determined by SEC calibration for each fraction showed sequentially smaller values as the 

fractions proceeded from 1 to 5, while unfractionated lignin showed Mn and Mw in the mid-range 

of the fractions’ values. The lignin PDI followed a similar pattern.  

ESI-TOFMS analysis of Fractions 1 - 5   shown in Figure 48 also reflected this expected 

trend through the sequence of chromatograms; Fraction 1 clearly showed an abundance of mid- 

and high-MW values for compounds, while Fractions 2 – 4 showed steadily fewer high-MW 

compounds, then fewer mid-MW species, and finally, by Fraction 5, only low-MW compounds 

were in evidence.  

Using the MS data, the mean MW values were determined, which are listed in Table 31 for 

all fractions. Figure 48 compares Mn and Mw values determined by ESI-TOFMS vs SEC.  Even 
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though these two methods yielded somewhat different MW values, the difference was significant 

only for Fractions 1 and, to some extent, 5 – as expected, given the observed carryover and the 

limitation of MW determination by MS, as large MW species may not volatilize as much as those 

of lower MW.  
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Figure 48.  (a) ESI-TOFMS spectra of molecular counts vs  

m/z based on deconvoluted data for lignin fractions 1 – 5. 

Spectra are scaled to a maximum of 10,000 m/z, with the  

exception of fraction 5 which has a maximum of 9000 m/z. 

(b) Comparison of SEC vs ESI-TOFMS number-average and  

weight-average molecular weights for all lignin fractions.  

 

 

Table 31. ESI-TOFMS and SEC calibration number-average (Mn) and weight-average (Mw) 

values for five fractions of lignin and unfractionated lignin. 

Fraction   1 2 3 4 5 Alkali 
Lignin 

ESI-TOFMS 
      

Mn 1330 1634 1028 1188 522 869 

Mw 3160 3547 2266 2853 1335 1881 

PDI 2.38 2.17 2.20 2.40 2.56 2.16        

SEC 
      

Mn 4698 2824 1342 802 248 1631 

Mw 5862 3823 2626 2595 313 2740 

PDI 1.25 1.35 1.96 3.24 1.26 1.68 
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III.1.2.4. Thermal carbon analysis of fractions 

The fractions produced from preparative SEC were subjected to thermal carbon analysis. 

This method, in addition to determining the total carbon amount in each fraction (Table 29), 

provided distribution of the evolved carbon among temperature fractions. 

TCA is a relatively novel method of accounting for all the carbon mass in an organic sample, 

with the added benefit that the temperature programs provide the fractionation by volatility, i.e., 

higher molecular weight compounds evolve at higher temperatures. Further, the evolved fractions 

are separated into two kinds: 1) those due to thermal physical desorption, ambient temperature to 

300 °C, and 2) pyrolytic products evolving at higher temperature, reflecting those lignin 

components that cannot volatilize without chemical decomposition – presumably, higher-MW 

compounds. Char or coked fraction was the material that was not volatized pyrolytically at 890 

°C, being subsequently combusted post pyrolysis for quantification.   

The obtained profiles (Figure 49) showed significant differences between Fractions 1-5 and 

the original lignin.  
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Figure 49. (a) Carbon mass distribution by TCA temperature fraction for each lignin  

fraction as stacked columns, (b) Normalized carbon mass distribution for each  

individual lignin fraction (and unfractionated lignin) by TCA temperature fraction,  

(c) Carbon mass sums for all SEC fractions at each temperature step of TCA  

compared to alkali lignin carbon masses (normalized) generated at the same  

temperature fractions. 
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To enable an accurate comparison regardless of the fraction size, the normalized TCA data 

of the combined fractions 1-5 and unfractionated lignin are shown in Figure 49b. Fractions 1-3 

showed low amounts of char and sequentially decreasing volatilization at 890 °C, with increased 

representation of lower molecular weight compounds volatilized at lower temperatures (Figure 

49b). Less expected was the occurrence of sizable TD portions in the TCA profiles of Fractions 1-

3. This deviation from the expected pattern can be explained from the standpoint of Figure 47a 

and Table 29, which show a significant adsorption of high- and low-MW compounds in Fractions 

1- 3. TCA thus confirms that Fractions 1-3 contain some low-MW compounds volatilizing at TD 

temperatures.  

The TCA profiles of Fractions 4 and 5 (Figure 49b) were inconsistent with their low MW. 

Contrary to the expectations of volatilization at TD temperatures, their TCA profiles actually 

showed rather large portions volatizing at 890 °C or even as char (Fraction 5). However, this 

deviation may also be explained by the carryover of high-MW lignin components in these 

fractions. The presence of high-MW compounds appears to enhance polymerization upon heating 

during the TCA analysis, just like in the original lignin, presumably resulting in the formation of 

cross-linked polymers, potential char precursors. This phenomenon of re-polymerization during 

lignin thermal treatment is well known.174,175,177,180,185 Nonetheless, polymerization of any fraction 

(1-5) within the TCA apparatus does not appear to produce cross-linking or char precursors nearly 

as much as in the unfractionated lignin. Namely, unfractionated lignin upon TCA yielded about 

47% char while 24% carbon volatilized at 890 °C.  

The information presented, once again, the latter showed a much smaller char fraction; by 

contrast, the fraction evolving at 890 °C without oxygen increased proportionally. Apparently, 

charring is enhanced when polymers strongly interact with small-MW fragments, as in the 
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unfractionated lignin, resulting in cross-linking polymerization upon heating. Even though such 

interactions still skewed the expected TCA pattern in Fractions 4 and 5, the extent of their charring 

was nowhere near that in the original lignin.  

Normalized organics for each fraction are shown in Figure 50. 
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Figure 50. Organic species by temperature fraction normalized 

for each sample as SEC Fractions 1 – 5. 

 

 

There was also a question of what type and size of compounds would evolve at each 

temperature step and how this was related to the expected MWs in each fraction.  This particular 

relationship was investigated by comparing TD-Py-GC-MS data to TCA and SEC data. 

 

III.1.2.5. Identification of species in fractionated lignin 

The five fractions of lignin were analyzed via TD-Py-GC-MS to identify various 

compounds volatizing during the same temperature fractionation program as for TCA, i.e., 

analysis at 200, 300, 400, 500, and 890 °C.  The most common evolving constituents were 

evaluated in the normalized form, as shown in Figure 50. Then, the data were normalized to 

100% within each fraction for their comparison in terms of temperature patterns, regardless of 

the fraction size, as shown in Figure 51. 
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 (b) 

 

Figure 51. (a) TD-Py-GC-MS analysis of evolution of species by  

temperature fraction by area (mass) for lignin fractions 1 – 5.  

(b) % mass (by area) evolved for fractions 1-5 normalized to lignin area. 
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were small for higher-MW fractions (Figure 51). This information is corroborated by a similar 

TCA pattern (Figure 48). 
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Guaiacol carbonyls continued to be among the main products of the evolving Py products 

until 890 °C, this temperature presumably being too high for their occurrence. With temperature, 

they gradually become replaced with guaiacols and other pyrolytic products: phenols, aromatic 

hydrocarbons and, ultimately, PAHs, char precursors that become most abundant in the final, 890 

°C temperature fraction. Toward this temperature, aromatic and polycyclic aromatic compounds 

become dominant in highest-MW Fraction 1 and also Fraction 5, presumably as a result of their 

components’ interactions discussed earlier. 

Notably, dimers evolving as pyrolytic products up to 500 °C were more prominent in lower-

MW fractions. The lowest-MW Fraction 5 evolved them at 300 °C, presumably as TD components. 

These trends are consistent with the MW fractionation, as Fraction 5 should contain those dimers 

before any pyrolysis. Less expected is the observation that dimers form more abundantly upon 

pyrolysis of lower-MW lignin components. This appears to be a consequence of greater 

recalcitrance of higher-MW fractions, along with their propensity to form aromatic hydrocarbons 

upon “hard” pyrolysis, at 890 °C. Apparently, they release only monomers and other small 

molecules at low pyrolytic temperatures while gradually becoming more charred (less 

oxygenated), releasing hydrocarbons at higher Py temperatures.  

 

When the fractions’ temperature evolution patterns are compared with that of lignin (Figure 

50), one significant difference becomes apparent. Namely, lignin does not produce a significant 

890 °C (char precursors) fraction – instead, as was shown by TCA, it produces abundant char. 

 

III.1.2.6. Hydroxyl group quantitation by 31P NMR spectroscopy 

The 31P NMR spectra of SEC weight fractionated lignin samples are shown in Figure 52. 

The number of hydroxyl groups present in each sample was calculated through integration relative 
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to the cyclohexanol peak found at 145.2 ppm with a known concentration. The following regions 

were used for the classification of hydroxyl groups found in the weight fractionated samples: 143–

150 ppm for alcohols, 138–143 ppm for phenols, and 135–138 ppm for carboxylic acids.98 The 

number of mmoles found in each sample are summarized in Table 32 for the non-fractionated 

lignin and Table 33 for MW-based fractions. It is noteworthy that the spectra of all fractions 

contained a cluster of unidentified signals centered around 150.6 ppm. These signals have not been 

reported in other studies of phosphitylated lignin-based samples, nor were they observed in the 

spectra of other lignin and lignin-derived samples investigated by our group. It is possible that 

TMDP is reacting with some other highly electronegative species such as sulfur, which is present 

in alkali lignin. 

 

Table 32. Comparison of the number of mmoles of hydroxyl groups present per g of unfractionated alkali 

lignin found by Meadwestvaco Corp. vs the results obtained in the present study using 31P NMR 

spectroscopy. 

  
31P NMR data 

  Meadwest Vaco data Alkali Indulin 

Phenolic OH 3.6 2.85 ± 0.04 2.4 ± 0.3 

Benzylic OH 0.06 
2.7 ± 0.2 

2.4 ± 0.3 

Aliphatic OH 
2.9 

 
 

Carboxylic Acid OH Not Reported 0.78 ± 0.01 0.7 ± 0.1 

Total 6.5 6.3 ± 0.2 5.5 ± 0.6 

 

Then, the number of moles of hydroxyl groups post SEC was determined in all five 

fractions – and their sum turned out to be significantly larger (>3.5 times) than the number 

determined in alkali lignin before the fractionation, as presented in Table 33.  
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Table 33. Number of mmoles determined in NMR samples in the SEC weight fractions per g of 

alkali lignin. 

 Mmoles 
Sample Unidentified Alcohols Phenols Acids Total 

      
Fraction 1 0.49 1.61 0.40 0.00 2.50 
Fraction 2 0.71 3.10 1.78 0.15 5.74 
Fraction 3 0.57 3.79 2.08 1.82 6.68 
Fraction 4 0.78 2.48 1.82 0.37 5.45 
Fraction 5 0.46 1.30 0.13 0.08 1.96 

Total 3.01 12.19 6.21 2.42 22.35 
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Figure 52.  31P NMR spectra of SEC weight fractionated lignin samples.  The top spectrum belongs to the 

lowest molecular weight fraction, 3NA-81-6, while the second spectrum from the bottom is for the 

highest molecular weight fraction, 3-NA-2. The bottom spectrum is a pre-eluate fraction comprised 

mostly of impurities of carbohydrate origins. 

 

Prior to conducting the NMR studies of fractions, we verified the method used by matching 

the amounts of hydroxyl groups determined with that reported by the manufacturer (Table 32). It 

is of note that the phosphitylated benzylic and aliphatic hydroxyl groups are indistinguishable 

using 31P NMR spectroscopy, and the number of aliphatic moieties given in Table 32 includes 

hydroxyl groups at the benzylic position.  While the number of aliphatic and especially phenolic 

hydroxyl groups determined by 31P NMR spectroscopy is somewhat lower, the difference between 

Figure 5.  31P spectra of weight fractionated lignin samples.  The top spectrum (3NA-81-6) 
is the lowest molecular weight fraction, while 3NA-81-2 is the highest molecular weight 
fraction.  The bottom spectrum is a pre-eluate fraction comprised mostly of impurities of 

carbohydrate origins.36  
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the Meadwestvaco Corp. and our data for the total amount of OH-containing groups was negligible 

when the acids were added.   

Two possible explanations were considered to explain the observed difference. THF used 

in the SEC method could be a source of some additional OH groups determined in our experiments.  

For example, THF could react with lignin under the conditions used during the SEC resulting in 

the cleavage of the THF ring to allow for the formation of a new hydroxyl group.  THF peroxide 

formation is also a possibility, and the compound has a new OH group and, therefore, will readily 

react with TMDP.  Finally, the ether bond cleavage in THF could be occurring either before or 

during the SEC method. However, these qualitative considerations did not pass the quantitative 

test. Namely, the 31P NMR spectrum of the phosphitylated concentrated THF contained two 

phospholane signals. The first is a signal in the aliphatic hydroxyl group region at 147.4 ppm, 

while the other is in the phenolic region at 142.0 ppm.  While this does add to the µmolar total, 

both have relatively small integrations and an insignificant impact on the final total.   

The most plausible explanation is thus that the hydroxyl groups in lignin before SEC are 

inaccessible for phosphitylation due to steric hindrance to undergo phosphitylation.  The 

fractionation process is possibly causing modifications of the complex three-dimensional structure 

of lignin is such a way as to allow more hydroxyl groups to undergo phosphitylation. This 

explanation is consistent with the observed strong interactions between low- and high-MW lignin 

fractions that may be responsible for lignin association to make the internal hydroxyl groups 

inaccessible. 

Detailed fraction analysis confirms this explanation. Based on Table 33 (the rightmost 

column), Fractions 1 and 5 contain some sizable percentages of hydroxyl groups, 11.2% and 8.8%, 

respectively. However, according to Table 29, these two fractions account for only 3.9 and 0.7% 
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of the total carbon (determined by TCA), respectively. Thus, these two fractions, particularly, the 

lowest-MW Fraction 5, contain disproportionally large hydroxyl group contents (mostly, at the 

expense of the most abundant Fraction 3). This finding may explain the observed strong 

interactions between low-and high-MW lignin components resulting in significant fronting and 

tailing of the SEC peaks (Figure 47b). These interactions may be enabled by strong hydrogen 

bonding, which would reduce the effective charges. In turn, in non-fractionated lignin dissolved 

in a polar solvent, this may cause the movement of such interacting hydroxyl groups into the 

internal domains of lignin particles, making them less accessible and less amenable to analysis.   

Fractions 1 and, particularly, 5 show some enrichment in aliphatic hydroxyl groups at the 

expense of phenolic. This difference may also be significant for the strongest interactions between 

the highest- and lowest-MW lignin components. 

 

III.1.3. Conclusions 

 Lignin fractionation by MW using SEC caused several significant and unexpected changes 

not only in lignin component structure, e.g., uneven distribution of phenolic and aliphatic hydroxyl 

groups, but also for the whole sample. Namely, the number of accessible hydroxyl groups, e.g., 

those amenable to 31P-NMR analysis, increased more than 3-fold and the stepwise thermal 

treatment of fractionated lignin yielded significantly less char compared to the untreated lignin. 

Both of these phenomena can be explained by association between high- and low-MW lignin 

components, presumably via hydrogen bonding. Such interactions were indeed observed upon the 

re-run of separated MW fractions through the same S column, resulting in significant peak fronting 

and tailing.   
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III.2. Oxidation of Lignin by Hydrogen Peroxide with and without alcohol solvents 

Characterization studies of lignin subjected to oxidative depolymerization entail the 

addition of hydrogen peroxide and methanol in this project- determining the percentage of 

original lignin which has degraded and goes into solution as oligomers was an important goal, as 

well as characterization of the products of hydrogen peroxide attack on lignin in terms of MW 

distribution. 

 

III.2.1. Experimental  

III.2.1.1. Materials 

Methanol (≥ 99.8%), ethanol (≥ 99.5%), isopropanol (≥ 99.5%) and hydrogen peroxide 

(30%) reagents were ACS grade or higher, as were NaOH (97%) and HCl (37%, < 5 ppm ign 

residue) used to adjust pH. Calibration standards for SEC as polystyrene and poly methyl 

methacrylate standards were obtained from Agilent. Deionized water was supplied through a 

Millipore Direct Q-3 water purification system (Millipore-Sigma, Burlington, MA), with 

resistivity < 18.2 MΩ•cm. High pressure glass reaction vessels (25 or 50 mL) by Ace Glass 

(Vineland, NJ), with PTFE screw-on caps with o-rings, were used for autoclave processing of 

lignin samples, rated for 150 psig of pressure. 

 

III.2.1.2. Lignin degradation procedure 

The lignin degradation experiments were carried out by preparing solutions of varying 

pH, followed by the addition of lignin, then subsequently by addition of MeOH/H2O2, whereby 

the oxidation process of the hydrogen peroxide. The prepared solutions were heated in an 

autoclave (additional thermal breakdown) to further enhance lignin degradation, measurable as 
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molecules small enough to become solubilized in solution, which would be separated from lignin 

solid residue too large to solubilize.  

 To this end, aqueous solutions of pH 0.5, 3, 7, 11 and 13 were prepared for lignin 

addition in 50-mL high-pressure glass reaction tubes using appropriate concentration of HCl and 

NaOH. For preparation of aqueous alkaline solutions, NaOH (1 M) was used to adjust separate 

solutions to pH 11 and 13, which were then divided into 25 mL tubes for a total of nine samples 

(differing H2O2 and MeOH combinations) for each pH. The pH for preparation of aqueous acidic 

solutions was adjusted to pH 0.5 and 3 with HCl (1 M), for nine samples each. A third set of nine 

samples of aqueous solution was left unadjusted (“neutral” pH). Kraft alkali lignin (1.00 g) was 

added to each of these solutions, which were brought to a total volume of 25 mL after the 

addition of first methanol (0 – 6.25 mL), and then 30% w/w hydrogen peroxide of (0 – 2.5 mL) 

to achieve the desired concentration listed in Table 34, and then quickly capped to avoid losing 

gases which were generated. 

A schematic setup of the nine lignin samples (for each of five different initial pH values) 

with H2O2 and methanol percentages is shown in Table 34.  
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Table 34. Experimental set-up for lignin oxidation by H2O2; percentages of hydrogen peroxide, methanol 

and water were on a (v/v) basis; pH was ensured by using appropriate HCl and NaOH concentration prior 

to lignin, peroxide and methanol addition.  

 

Sample designation based on H2O2-

MeOH volume % (below) for each 

pH level 

% H2O2 (v/v) % 

MeOH 

(v/v) 

% 

Water 

(v/v) 

 (0-0) 0 0 100 

 (0-10) 0 10 90 

 (0-25) 0 25 75 

 (3-0) 3 0 97 

 (3-10) 3 10 87 

 (3-25) 3 25 72 

 (10-0) 10 0 90 

 (10-10) 10 10 80 

 (10-25) 10 25 65 

  

 

A second experimental setup performed at neutral pH investigated the impact of varying 

concentration of hydrogen peroxide (0, 5, 10%) and MeOH (0, 10, 25%), respectively. Table 

35shows percentages of H2O2 and methanol additions (v/v) that were made to the aqueous 

solutions containing only lignin initially. The initial pH values of neutral samples in Table 35 

were measured after addition of lignin, and ranged from 6.3 to 7.1.  
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Table 35.  Experimental set-up for lignin oxidation by H2O2; percentages of hydrogen peroxide, methanol 

and water were on a (v/v) basis, out of a total solution volume of 25 mL. 

 

Neutral pH samples 

Sample designation 

% H2O2 

(v/v) 

% MeOH 

(v/v) 

% Water 

(v/v) 

 (0-0) 0 0 100 

 (0-10) 0 10 90 

 (0-25) 0 25 75 

 (5-0) 5 0 95 

 (5-10) 5 10 85 

 (5-25) 5 25 70 

 (10-0) 10 0 90 

 (10-10) 10 10 80 

 (10-25) 10 25 65 

 

 

Samples for both experimental setup (Tables 1 and 2) were autoclaved in the same 

manner, at 120 °C at 17 psig for 30 minutes in a Tuttnauer EZ10 autoclave steam sterilizer 

(Hauppauge, NY). Samples were then cooled to room temperature by air, and the liquid fraction, 

with the solubilized portion of lignin products, was separated from solid residue by filtration 

through pre-weighed coarse filtration paper (20-m pore size average) and vacuum pressure. 

Then 10 L aliquots of the filtrate were further filtered through syringe filters (0.20 m pore 

size) to obtain 5 µL of the liquid fraction for TCA analysis as syringe-filtered samples (as 

compared to 5 uL samples which were not syringe filtered and labeled as vacuum-filtered). 

Typically three replicates for each H2O2/MeOH combination were evaluated. Solid  

residues on filter papers were dried in a 75 °C oven for 24 hours until a constant weight was  

attained.   
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 III. 2.1.3. Chemical characterization of peroxide-treated lignin samples                                                         

 Both gravimetry and TCA were utilized to determine the wt% carbon of the initial 

 lignin (1 g or 0.64 g C) in the liquid and solid fractions obtained for each sample using  

equations below. For characterization of liquid fraction the total solution of the liquid filtrate  

was considered as initial 25 mL, and for the TCA sample solution volume was 5 L filtered as 

 described above. In order to convert mass of lignin to carbon mass, final masses of lignin  

occurring in the liquid fraction or remaining in the solid fraction were multiplied by 64% as  

carbon content of untreated lignin, as determined by elemental analysis (Atlantic Microlabs,  

Inc., Norcross, GA).  Wt% carbon in samples was calculated in several different ways: 

 

Wt% C in solid fraction by gravimetry (indirect mass):     

(Mass dried solids/ initial mass of lignin sample) x 0.64                                              [1]                                                                                                                                                           

 

Wt% C in liquids by gravimetry:    100- wt% solids                                                     [2] 

Wt% C in liquids for entire sample by TCA:      

((Mass of TCA sample x (total solution volume/TCA sample volume))/initial mass of lignin 

 x100)/ 0.64  

determined for both vacuum filtered and syringe-filtered TCA                                    [3]                                                                                                                                                                                                  

 

 

Additionally, the pH of all samples was measured prior to and 48 hours after the 

autoclaving step. 

Thermal carbon analysis (TCA) of samples was performed using the thermal optical 

analyzer from Sunset, Inc. (Tigard, OR) as reported previously.194 TCA is a process similar to 

thermal gravimetry analysis; in this case a sample was heated through a programmed series of 

temperatures (ambient, 200, 300, 400, 500 and 890 °C), with each step lasting six minutes. 

Samples were first heated in a pure He atmosphere up to 890 °C, and then in an He atmosphere 
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with 2% O2 for five minutes (temperature was dropped to 550 °C and then increased again to 890 

°C), to allow combustion of char (coked) material. 

The organic compounds in the sample underwent thermal desorption in the 200 – 300 °C 

range, in which low-molecular weight compounds evolved as gases from the mixture; 

condensable gases became bio-oil. At temperatures above 400 °C, the process is considered as 

pyrolytic, where breakdown products were volatized from bulk heteropolymeric lignin at an 

increased thermal energy level. Additional bio-oil and gases such as H2, methane, carbon 

monoxide and carbon dioxide were released in this part of the process. The designation of “char” 

represented condensed, deoxygenated materials left unvolatilized after the peak temperature of 

890 °C.   

Products of the autoclaved lignin samples were analyzed as 5 µL liquid aliquots and 20 –  

50 g solid samples from residues. All samples were dried at 45 °C for five minutes on a hot 

plate to eliminate any traces of methanol which would appear as carbon signal in TCA. 

Calibration was performed with sucrose standards as srecommended by the manufacturer of the 

thermal optical analyzer. 

Gel permeation chromatography (GPC) was performed using a high performance liquid 

chromatograph (Agilent model 1100 System) via a PLgel column with polystyrene 

divinylbenzene (PSDVB) stationary phase, 1000 Å pore size, 5 m particle size, 7.5 x 300 mm 

(Agilent). Samples were solubilized in THF:water (9:1) and injected into the unstabilized 

tetrahydrofuran (THF) mobile phase, with a flow rate of 1 mL/min and underwent detection by 

diode array detector (DAD) at 212-750 nm. Column calibration was performed with PMMA 

(poly-methyl methacrylate) and PS (polystyrene) particles (500 to 30,000 Da available 

commercially). 
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III.2.2. Results 

III.2.2.1. Lignin buffering capacity 

Initial pH values of the aqueous solutions were compared to the pH values of the treated 

lignin solutions 48 hours after autoclave processing; this time span allowed the solutions to 

equilibrate at a final pH. Furthermore, pH had also been monitored after lignin was added to the 

basic and acidic solutions before treatment with H2O2/MeOH. Figure 53a shows the pH for 

nontreated lignin samples before and after lignin addition to acidic and basic solutions, with the 

most pronounced change in pH after addition of lignin; this showed little difference in pH after 

autoclaving in acid addition, and a small pH difference for base addition.  The charts in Figure 

53b, c, and d show the apparent buffering capacity of lignin except in the case of extreme acidity 

or basicity (Figure 53b).  
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 (d) 

Figure 53.  (a) The initial pH values for basic and acidic solutions at pH 11 and 3 respectively, and 

change of pH of the solutions after addition of lignin, and the subsequent change in pH after 

autoclaving of the lignin solution (0% H2O2, 0% MeOH); Comparison of initial pH with pH after 

treatment with H2O2/MeOH and autoclaving, for (b) a second set of neutral pH samples, (c) samples 

with initial pH values of 3, 7 and 11; (d) samples with initial pH values of  0.5, 3, 7, 11, 13, in order 

to assess extreme pH impact.  

 

 

For the solutions with pH of initial base and acid water solutions (11 and 3 respectively) the 

impact of autoclaving at 120 °C was thought to be less important than lignin addition when were 

compared to pH taken upon addition of lignin and then further compared to pH of the solution after 

autoclaving at 120 °C for 30 min, as in Figure 53a. 

The addition of lignin to each solution clearly counteracted acidity and alkalinity in the 

samples with no H2O2 or methanol (0-0), with initial pH values of 3 and 11 in Figure 53b and 53c; 

lignin buffering capacity was able to neutralize acid and base additions to a pH close to 6.5, at which 

point these samples then changed almost identically to neutral samples upon H2O2 and MeOH 

treatment. 
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Acidic groups able to release proton to neutralize hydroxyl ion include any carboxylic acid 

groups (pKa 3 - 5), a number of which might be associated with polysaccharide complexes left as 

impurities, or which occur naturally. Phenolic OH groups are also available on a much larger scale, 

with pKa values of 9.5 – 10.5., or lower if the ring is attached to an alkoxyl group (pKa 7 -8). 

Alcohol and thiol groups are possibilities, but have low acidity (pKa 13.5 – 17).205 

In the case of acid addition, lignin contains a substantial number of functional groups such as 

hydroxyl and ethers, which may serve as weak bases, becoming protonated in acidic solutions. 

Thiols may serve the same purpose, but are less numerous. There are also phenolate sites which can 

be protonated to produce neutral phenol hydroxyls. 

There is also the possibility that cleavage of ether bonds has consumed acid or base, but 

cleavage of ethers in general is usually accomplished only by acid, as HBr and HI, and typically at 

130 – 140 °C,206 although a study by Melro et al. has shown some alkaline breakdown of lignin at 

room temperature (4.3 wt% for 0.1 M NaOH).90 Structural change under either treatment is 

apparently minimal at ambient temperature and changes in lignin placed into an acid or base solution 

would be more related to surface charge and thus solubility than to depolymHe erization at a stage 

prior to autoclaving.      

The second set of neutral samples in Figure 53d were evaluated in nearly the same manner as 

the first set of neutral samples, except that initial pH was measured (pH 6.3 – 7.1) and the additions 

of H2O2 were changed from 0, 3, 10% to 0, 5, 10%. The pH of each sample before autoclaving was 

measured since actual neutrality was not expected; kraft lignin is generally near 6.5 in aqueous 

solution at 10% concentration in aqueous solution.30  
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 Aside from early buffering of acid and base in pH 3 and pH 11 samples, it was clear that 

hydrogen peroxide had an acidic effect on the final pH of all samples other than extreme cases 

(pH 0.5 and 13).  Of note, 3 and 5% H2O2 made little difference in results, and even pH change 

between 5 and 10% H2O2 was not substantial (one pH unit).  However, the drop in pH was 

indicative of a large amount of acidic material being produced upon mixing/heating with 

hydrogen peroxide.  The presence of MeOH reduced pH by a very small amount.    

Ring-opening by hydrogen peroxide was considered to be a reaction of some importance in 

both base- and acid-catalyzed depolymerization strategies of lignin.153,154,157,158,160 Attack by the OH+ 

ion in acidic solution mediated the ring opening153,160 while Asha et al. suggested that superoxide 

radical in alkaline solutions might lead to ring opening and Xiang et al. considered the perhydroxyl 

anion as the main oxidative species, leading to not only aryl-ether cleavage but ring-opening of 

aromatic rings.157,159   

A substantial increase in carboxylic acid groups was recorded by studies of both base- and 

acid-catalyzed depolymerization studies utilizing hydrogen peroxid,153,156-158,162,207 and Xiang et al. 

found that 51 wt% acids (of original lignin) and 34% acids resulted for basic and acidic solutions of 

acid hydrolysis lignin treated with 1.5 M H2O2 at 120 and 160 °C respectively. The acid was 

primarily formic acid, with a lesser amount of acetic acid.157 Hasegawa et al. maximized carboxylic 

acid production in a flow reactor with a pH-neutral solution with 0.1% H2O2 at 200 °C for 2 min, 

which produced 0.45 g acid/g alkali lignin, as mainly formic acid, followed by acetic acid.207 

Evstigneev reported acid solution H2O2 oxidation of hydrolysis lignin to double carboxyl groups 

from 34 per 100 phenylpropanoid units to 68.158  

The results of our study substantiated the reports of high amounts of acid present after H2O2 

treatment,157,158,207 which seemed to occur for a variety of oxidative parameters and lignin types. The 
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high carboxylic acid content, linked to ring-opening in several proposed mechanisms was believed to 

be responsible for the proliferation of simple acids.153,154,158-160 However, pH monitoring results in 

our study implied that acid or base catalyzation for this type of reaction did not appear to be 

necessary, i.e., the acid and base solutions in our study were reduced to neutral solutions before 

hydrogen peroxide was added. The same amount of acid was produced for the neutral solution in 

comparison to the pH 3 and pH 11 solutions. Of note, extreme acid or alkaline conditions (pH 0.5, 

13) reduced the buffering effect, but did not show any particular ability to produce acid from ring-

opening or any other reaction.  

 

III.2.2.2. Depolymerization and mass balance 

The presence of monomers and oligomers in the liquid fraction of samples after hydrogen 

peroxide treatment and autoclaving, in comparison to untreated lignin (also autoclaved), generally 

indicated the depolymerization effectiveness of the  H2O2/MeOH method; the quantification of low-

MW lignin compounds was accomplished by gravimetry for all pH’s and by TCA for neutral pH 

samples. Lignin mass present in the liquid fraction for the various H2O2/MeOH treatments for lignin 

at three initial pH levels (3, 7 and 11) are shown in Figure 54. Noticeably, the neutral and base-

added samples, with no H2O2 reagent, had higher levels of the original lignin mass in the liquid 

fraction (up to 37 wt% of the original lignin) compared to neutral and alkaline samples that were 

treated with H2O2, contrary to expectations. It was also noted that acid-added samples evolved far 

less mass in the liquid fraction (a maximum of 15 wt%) than basic or neutral solutions, although this 

percentage  increased in the liquid fraction with increasing H2O2.   
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Figure 54. Percent of original lignin mass present in the liquid fractions of autoclaved samples which had been 

treated (H2O2 and MeOH) or left untreated; mass was determined by gravimetry. Initial pH values were 3, 7 and 11. 

 
 

Kraft lignin in general is more soluble in alkaline solution than in acid solution (acidification is 

used to precipitate it from “black liquor” waste in paper mills); however, the pH of solutions after 

lignin addition showed a similar pH of about 6.5, even for previously acid solutions. From the results in 

Figure 54, it appears that alkaline and neutral solutions, both at pH 6.5 after buffering, were amenable 

to solubilization and depolymerization due to thermal reaction at 120 °C, since lignin is generally 

considered to be insoluble in aqueous solution at a pH of 6.5.,90 while acid-treated samples were not. 

Of interest, breakdown products for alkaline and neutral solutions were high for (0-0) samples 

(close to 35 wt%) so that thermal treatment rather than chemical treatment (NaOH or H2O2) was 

probably responsible for the degradation which occurred. The notable trend in the chart is the reduction 

of solubility in samples with added H2O2/ no MeOH in relation to untreated lignin. This tendency 

occurred for both base- and acid-treated samples, although the trend is not nearly as emphasized for 

acid-treated lignin. 
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The lack of solubility of lignin reaction products for alkaline and neutral samples with added 

H2O2 may seem unusual, but a study by Kadla et al. of H2O2 oxidation of lignin in an alkaline solution 

noted that MW of lignin increased after oxidation; they attributed this to condensation or rapid 

depolymerization followed by repolymerization.156 The same effect was noted in an acid solution with 

H2O2.
162 Of note, the presence of MeOH appeared to allow increased solubility, possibly by acting as a 

capping agent and preventing further condensation or repolymerization.  

The presence of lignin in acid solutions is limited, which is reflected in (0-0) samples, even after 

thermal treatment; solubility of acid-treated samples is the primary cause for concern. Lignin in alkaline 

solution and neutral lignin may have retained enough negatively charged phenolate sites to be soluble 

in water at 120 °C and 17 psig (0.22 MPa), wherein water becomes a better solvent for nonpolar or 

partially polar analytes at lower temperature through reduction of dielectric constant and changes in 

other parameters.208 Subcritical water treatment studies show that lignin at neutral pH becomes at least 

partially soluble with thermal treatment; 23% solubilization of cellulolytic enzyme lignin at 180 C for 

12 min was reported by Trajano for a batch reactor.183 Zhou et al. showed a conversion of kraft lignin 

of 13.5 wt% at 130 °C for 15 min in a batch reactor.182  

However, lignin in acid solutions apparently had a different fate. Many of the available 

negatively charged sites, which can exist even to pH 2,209 were probably protonated and then limited 

the solubility of these samples, even at temperatures of 120 °C.  

Of interest, MeOH in the absence of H2O2 improved solubility of acid-treated samples to the 

point where product levels were as high as those for treated samples. MeOH also improved the 

solubility of base-treated and neutral samples, but to a lesser extent. The ability of MeOH to enhance 

solubility is most likely related to electrostatic, or charge, effects.  To add to the complexity, the 

addition of H2O2 appeared to produce some depolymerization for acid-treated samples, even in the 
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absence of MeOH. However, the ubiquitous nature of H2O2 attack on aromatic rings, with the 

production of simple acids, is apparent for both base and acid-treated samples.153, 158 

 

III.2.2.3. Carbon mass balance closure 

Total solubilities for pH 7 samples for each combination of H2O2 and MeOH by TCA analysis 

were calculated as wt% carbon of initial lignin carbon; two filtration methods were utilized (syringe- 

and vacuum-filtered) and values are given for both, along with comparison to wt% carbon by indirect 

mass (also by vacuum filtration) measurement in Figure 55. In determining method development of 

carbon mass balance, there was some question as to whether vacuum-filtered solids (as the entire 25 

mL sample), or the same samples subjected to syringe-filtration, would be better for TCA analysis.  

The concern was that filtration through paper with an average pore size of 20 m, which was necessary 

in light of the cohesive nature of the solids, would reflect an overabundance of high-MW particles, 

producing TCA profiles which would be difficult to compare to studies normally working with lower 

pore size filters. 
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Figure 55.   Comprehensive total carbon analysis of neutral (pH 7) liquid fractions for varying H2O2/MeOH 

treatments and autoclaving, and then subjected to vacuum- and syringe-filtered (20  and 0.2 um, respectively) 

filtration, compared to wt% carbon by gravimetry (and vacuum filtration).  

 

It was noteworthy that there was similar wt% carbon in the liquid fraction for both 

syringe-filtered and vacuum-filtered samples analyzed by TCA. Solid residue filtered from all 

liquid fractions appears to consist of oligomer dimensions which exceeded a 20-µm pore in size 

in order for solubilized material to be similar in amount as filtrate passing through both 20-µm 

(average) vacuum filters and 0.20-µm syringe filters.  

Thermal carbon analysis of neutral pH samples which underwent H2O2/MeOH treatment and 

autoclaving showed similar results for depolymerized lignin mass in comparison to mass determined by 

gravimetry. For the pH neutral samples from this study it was apparent that overall solubility for 

reaction products was decreased for samples with H2O2 addition. Results from thermal carbon analyses 

which show this trend are shown in Figure 56 for vacuum-filtered TCA samples. 
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Figure 56. Distribution of carbon by the TCA temperature fraction for the liquid fraction of neutral pH samples 

subjected to varying H2O2/MeOH treatment and autoclaving, followed by vacuum filtration. 

 

   

In viewing the results of the thermal carbon analysis of pH neutral lignin samples, which had 

been reacted with H2O2 and methanol in various combinations and then autoclaved, it was apparent that 

carbon mass was concentrated at higher temperatures, indicating larger oligomers as the predominant 

species in all liquid fraction samples. As noted earlier, more solubilized material occurred in the 0% 

H2O2 samples than in samples with H2O2, but the majority of it occurred in 890 °C and char fractions. 

The absence of this size of oligomer in the H2O2 treated samples may have resulted from condensation 

due to pyrolysis or due to an increase in low-mass oligomers in neutral/alkaline solutions which 

resulted in mass repolymerization; overall mass loss was thus due to aggregation prior to filtering. The 

addition of MeOH appeared to increase solubility somewhat, as noted previously. 

Total solubilities for pH 7 samples for each combination of H2O2 and MeOH by TCA analysis 

were calculated as wt% carbon of initial lignin carbon; two filtration methods were utilized (syringe- 

and vacuum-filtered) and values are given for both, along with comparison to wt% carbon by indirect 

mass (also by vacuum filtration) measurement..  

 

III.2.2.4. Solvent effect 

 Ethanol and isopropanol were also added as solvents in the place of methanol for a series 

of runs with either 0% H2O2 or 10% H2O2. The charted results are shown in Figure 57.   
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   (a) 

 

   (b) 

Figure 57. Comparison of wt% carbon in liquid fractions of lignin, post autoclaving, in aqueous solutions 

with methanol, ethanol and isopropanol (a) at 0 and 25% v/v (no hydrogen peroxide), and (b) at 0 and 

25% v/v in 10% H2O2 solutions 

 

Methanol, as a solvent in previous experiments, appeared to promote depolymerization 

best in conditions with no H2O2 present, and this trend held true for ethanol and isopropanol as 

well; the latter solvents even improved yield. The thermal treatment alone may have promoted 

degradation of the lignin, and the presence of alcohols may have worked in a capping or barrier 
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capacity, keeping lignin molecules solubilized without condensing or repolymerizing. The 

increased size of the alcohols may have increased isolation efficiency. As in previous 

experiments, however, the presence of hydrogen peroxide may have resulted in very small 

molecules, ostensibly due to ring-opening, which apparently reassembled as condensed 

molecules more rapidly than alcohol scrounging could occur, although the increased alcohol 

concentration appeared to slow repolymerization tendencies. 

 

III.2.2.5. Size exclusion chromatography 

Gel permeation chromatographic data substantiated TCA evidence, showing lower 

abundance of oligomeric species in solution with increased hydrogen peroxide addition and also 

illustrated the tendency for methanol addition to increase the concentration of solubilized species 

in samples evaluated via TCA (Figure 57). In GPC charts the larger molecular weight species 

elute first, with the shortest retention time, and the smallest size fraction appears at the latest 

retention time.  Height of the vertical axis shows relative intensity of the size fraction; values of 

the molecular weights are calculated through a calibration curve of commercially available 

polystyrene/poly-methyl methacrylate spheres of known Mp (peak MW) with narrow dispersity. 

A chromatograph of untreated lignin and the calibration standards curve is shown in 

Figure 58a. GPC chromatograms were overlaid for 0, 5 and 10% H2O2 treated lignins with 0% 

MeOH (Figure 58b) and also for 0% and 10% H2O2 treated lignins with 0 and 25% MeOH 

(Figure 58c) in order to assess the extent of depolymerization for H2O2 and MeOH trends.   
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      (c) 

Figure 58. Gel permeation chromatograms showing (a) the calibration standards curve (PS and PMMA) 

for an untreated lignin profile  (b) decrease in average molecular weight with increased H2O2 addition. 

without methanol and (c) increased signal (higher concentration) of solution species with increased 

methanol (for the same percentage of H2O2). 

 

In Figure 53a, GPC results clearly delineated the tendency for H2O2 addition to result in  

less high-MW oligomers in solution, and a decreased overall abundance of material as indicated  

by the lower intensities for 5 and 10% H2O2 profiles.  In Figure 53b, the tendency for MeOH to  

increase abundance of solubilized material for each percentage of H2O2 was evident. MW as  

number-average Mn, weight-average Mw and z-average Mz are presented in Table 36 for each 

combination of H2O2 and MeOH. 
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Table 36.  Molecular weight as number-average Mn, weight-average Mw and z-average Mz of liquid fractions of 

treated lignin by various combinations of hydrogen peroxide and methanol (% v/v).  

Sample Mn Mw Mz 

0% H2O2, 0% MeOH 1296 2465 3822 

0% H2O2, 25% MeOH 1315 2355 3454 

5% H2O2, 0% MeOH 960 4443 10186 

5% H2O2, 25% MeOH 597 927 1277 

10% H2O2, 0% MeOH 471 785 1131 

10% H2O2, 25% MeOH 577 921 1271 

 

 

III.2.3. Conclusions 

• The buffering capacity of lignin (alkali kraft) was extensive. Alkaline and acidic 

solutions (pH 11 and 3 respectively) were returned to mid pH levels rapidly upon 

addition of lignin, with and without autoclaving.  Upon treatment of these solutions with 

H2O2 and MeOH, they behaved almost identically to neutral pH samples. Solutions which 

were extremely alkaline and acidic (pH 13 and 0.5 respectively) neutralized buffering 

capacity, but also prevented extensive change upon addition of H2O2 and MeOH.  

• Low pH levels for lignin solutions after treatment with H2O2 and MeOH indicated a 

significant release of acids- these were probably due to ring-opening processes mediated 

by hydrogen peroxide.   

• The major trend uncovered by total carbon analysis was the effect of H2O2 on autoclaved 

lignin solution, which was the decreased abundance of solubilized species due to 

decreased hi-MW oligomer fraction compared to lignin untreated by H2O2. This was 

probably due to repolymerization or condensation of simple molecules released during 

rapid depolymerization, including ring-opening processes. 
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• GPC, in particular, showed that methanol increased solubilization of lignin through 

preservation of lower-MW oligomers in solution, perhaps as a capping agent, thus 

preventing repolymerization or condensation.  

 

 

III.3. Subcritical Water Treatment of Alkali Lignin  

III.3.1. Experimental 

III.3.1.1. Materials and methods 

This study used alkali (i.e., kraft) lignin purchased from Sigma Aldrich (St. Louis, MO, 

USA).  The elemental composition of alkali lignin was 64.14% C, 5.79% H, 1.39% S and 0.46% 

N, conducted by Atlantic Microlab, Inc. (Norcross, GA).  The solvents used included 

dichloromethane (DCM), methanol (MeOH), tetrahydrofuran (THF) (VWR, Arlington Heights, 

IL, USA), which were GC and HPLC grade; as well as deionized water obtained from a Direct-

Q3 UV system purifier (Millipore, Billerica, MA, USA) with the total organic carbon content 

below 5 ppb (manufacturer specification).  ACS grade sucrose for calibration of the thermal 

carbon analyzer instrument was obtained from Alfa Aesar (Ward Hill, MA, USA).  The internal 

standard and recovery standard for GC-MS, o-terphenyl (99%) and 4’-chloroacetophenone 

(97%), respectively, were purchased from Sigma-Aldrich (St. Louis, MO, USA).  N,O-

Bis(trimethylsilyl)trifluoroacetamide, a derivatization agent for GC-MS analysis of acids and 

alcohols, was also obtained from Sigma-Aldrich.  

 GPC calibration standards included poly(methyl methacrylate) (PMMA) narrow 

standards (Mp 550-26080 Da) purchased from Agilent Technologies (Santa Clara, CA, USA) and 
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polystyrene (PS) narrow standards (Mp 580-19760 Da) purchased from Varian (Amherst, MA, 

USA).  

III.3.1.2. Subcritical water treatment 

The experimental steps are outlined in Table 2. An in-house fabricated laboratory-scale 

batch reactor allowed for conducting up to five simultaneously controlled SW reactions.196 

Reactions were carried out in stainless steel vessels with a volume of 4.7 mL when capped. The 

experiments were performed at four different reaction temperatures:  200, 250, 275, and 300 °C. 

For experiments conducted at 200 °C, 0.10 ± 0.01 g of lignin and water (3.2 mL) were mixed and 

the calculated internal pressure was 16 bar. For the reactions conducted at 250, 275 and 300 °C, 

0.25 ± 0.01 g of lignin and water (2.9 mL) were used, and the internal pressures were 40, 59 and 

86 bar, respectively. 197 Headspace for gas/liquid equilibrium was carefully monitored to ensure 

safe operation. 

Vessels in the reactor were rotated at approximately 3 rpm while being heated for 6 - 10 

min to 200 to 300 °C, respectively, then the reaction time was set to 30 min.  After completion of 

the treatment, vessels were cooled under a stream of cold tap water, and solid and liquid fractions 

were collected.  The liquid content was decanted from the solid residue, combined with several 

rinses of the reaction vessel, and adjusted to a final volume of 7 mL to be used for further 

quantitative analysis. The accurate gravimetric determination of solid residue was ensured by 

weighing the reaction vessel prior to and after the reaction, and again after removal of the liquid 

and after drying of the vessel.   
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III.3.1.3. Analysis of subcritical water reaction products 

Chemical characterization of SW treated lignin involved the sequence of analytical steps 

shown in Table 37.  The low-MW products (TD fraction) were analyzed directly by TD-Py-GC-

MS and compared to a frequently used method, LLE, followed by GC-MS.  The high-MW 

products are non-GC-elutable, so they could not be analyzed directly by GC-MS.  Thus, analysis 

was conducted based on their pyrolytic markers evolving at temperatures 400 °C and higher in 

subsequent Py-GC-MS.  The sum of TD and Py GC-MS was normalized with TCA to close carbon 

mass balance. Analytical methods are described below in detail.   

Table 37. Experimental steps and methods of this study 

Work step 
analysis 

1. Subcritical water 
treatment 

2. Phase separation 3. Product 

Method(s) 30 min at 200, 250, 275, 300 
C (16, 40, 50 and 86 bar 
resp.) 

Decantation (Figure 1 only) or 
filtration to yield:                              
A. Liquid fraction,1                       
B. Solid fraction/residue            
C. Untreated lignin                     

GPC, TCA2,3 (all MW)      
TD-GC-MS (low-MW)        
Py-GC-MS (high-MW)3                       
(with gas quantification)    
Elemental analysis 

1 For low-MW products in the liquid fraction LLE-GC-MS (with DCM) was used to verify TD-GC-MS results 

2 Novel methods 

3 Conducted stepwise at temperatures matching those for TCA and TD-Py-GC-MS: 200, 300 (TD), 400, 

500 and 850 (Py) °C.  

 

III.3.1.4. Thermal Carbon Analysis 

TCA of lignin SW treatment products was carried out on a Sunset (Tigard, OR, USA) 

thermal optical analyzer, based on a previously developed protocol.194 Briefly, a sample, either 

solid (30–60 µg) or liquid suspension (5–10 µL either directly or after filtration via 0.45 µm filter), 

corresponding to typically up to 40 g carbon, was submitted to TCA analysis conducted as 

described previously.194 Compounds were thermally desorbed in a helium atmosphere at ambient 
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temperature, 200, and 300 °C, then pyrolyzed products were evolved at 400, 500 and 890 °C. Each 

temperature step from ambient through 500 °C was 6.00 min in duration, while the 890 °C step 

lasted 12.75 min.  Then the oven was cooled to 550 °C and the flow stream switched to an oxidizing 

He/O2 (10% O2) carrier gas mixture followed by a second temperature ramp (550 to 890 °C).  

During the second heating step, char products were oxidized and detected.  All species were 

quantitatively converted to CH4 and measured by a flame ionization detector (FID). 

 

III.3.1.5. Gel Permeation Chromatography 

GPC was carried out on an Agilent 1100 Series HPLC with a diode array detector (DAD), 

monitoring wavelengths from 212 to 750 nm, using the method developed previously198.  

Separation was accomplished using an Agilent PLgel 1000 Å column with a stationary phase 

consisting of a cross-linked porous polystyrene/divinylbenzene matrix (PSDVB). Unstabilized 

THF with water (9:1 ratio) was utilized as the mobile phase, with a flow rate of 1.0 mL/min, and 

an injection volume of 100 µL.     

 

III.3.1.6. Gas Chromatography-Mass Spectrometry analysis 

For direct LLE GC-MS analysis, an aliquot (1 mL) of SW samples (liquid phase) was 

spiked with a recovery standard (4-chloroacetophenone), acidified to pH 4 with glacial acetic acid 

and then extracted with three 1-mL aliquots of DCM.  DCM extracts were analyzed directly or 

after derivatization with BSTFA, with further addition of an internal standard (o-terphenyl).  For 

derivatization, a DCM extract of lignin reaction products (100 µL) was mixed with the BSTFA 

derivatization reagent in 1:1 (v/v) ratio and heated at 70 °C overnight (12 h).    
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GC-MS analyses were conducted on an Agilent (Santa Clara, CA, USA) GC7890 system 

with an MS 5975C detector, equipped with an HP-5MS capillary column (45 m length, 0.25 mm 

internal diameter and 0.25 μm film thickness). Injection was done in a splitless mode (0.2 min and 

0.2 µL injection volume) and the injector temperature was set at 300 °C.  The column flow rate, 

with helium as a carrier gas, was 1.5 mL/min.  The temperature program started at 50 °C, was held 

for 1 min, and proceeded with a 40 °C/min gradient up to 80 °C, followed by a second gradient of 

25 °C/min up to 320 °C, which was held for 7 min.  The MS analysis included a solvent delay of 

4 min and a scan mass range of 10–550 m/z using an electron ionization (EI) source at 70 eV. 

 

III.3.1.7. Thermal Desorption-Pyrolysis-Gas Chromatography-Mass Spectrometry analysis 

The TD-Py-GC-MS analyses were performed using a 5200 Series Pyroprobe (CDS 

Analytical, Inc., Oxford, PA, USA) with the GC-MS system described above.  The TD-Py program 

consisted of sequential thermal treatment of liquid samples (5 µL) for 30 s at 110, 200, 300, 400, 

500, and 10 s at 890 °C, matching the temperature sequence used for TCA, with the exception of 

an early temperature fraction at 110 °C used to evolve water for SW treated samples. Solid samples 

were weighed to 30–60 µg on a microscale (Mettler Toledo, Columbus, OH, USA) and subjected 

to the same TD-Pyr temperature program, only without the 110 °C step. After each temperature 

step, the pyroprobe-GC-MS interface was opened for 2.5 min to allow full transfer of the analytes 

to the GC with a transfer line maintained at 300 °C. Analytes were delivered to the GC-MS 

injection port operated in a split mode with a split ratio of 10:1. The MS mass range was lowered 

to 10 m/z in order to analyze air gases (H2O, N2, O2, CO2) and monitored up to 550 m/z as described 

in the data processing section.  A solvent delay of 4.25 min was used only for the 110 °C step. 
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III.3.1.8. Elemental analyses 

The elemental analysis of both non-treated lignin and SW-treated solid phase product 

(obtained at 300 °C) were conducted at Atlantic Microlab, Norcross, GA, USA). 

 

III.3.2. Data Processing 

GPC determination of MW as Mn (number-average MW), and Mw (mass-average MW) 

and Mz (z-number MW) values were based on standard GPC equations.75 Data acquisition and 

chromatographic processing of LLE GC-MS and TD-Py-GC-MS data was accomplished via 

ChemStation software (Agilent, Santa Clara, CA, USA), with identification of analytes based on 

retention times and matching of mass spectra with EI library spectra (National Institute of 

Standards and Technology.210 Quantification of LLE GC-MS species was accomplished through 

external standards as reported previously 201. Semi-quantitative profiles for TD-Py-GC-MS results 

were based on mean values of duplicate analyses, after subtraction of blanks (distilled water only), 

using extracted ion chromatograms characteristic for specific compounds. 

To investigate the relationship between TCA and TD-Py-GC-MS results, the integrated 

chromatographic peak areas of TD-Py-GC-MS species (adjusted for carbon percentage) were 

normalized to the profiles of the corresponding TCA temperature fractions as wt.% carbon of the 

thermally desorbed fraction (obtained at 200 and 300 °C).   

The approach to identification of gas species within TD-Py-GC-MS entailed the 

identification of a quantification ion and confirmation ions.  The ions indicative of individual 

noncondensable gases were based on NIST EI mass spectra.210   

The CO2 quantification was based on the base peak and molecular ion of 44 m/z, while ions 

28, 16 and 12 m/z and their ratios were used for confirmation.  The CO quantification was based 

primarily on 28 m/z, although this ion can also occur as the molecular ion of N2 and a fragment for 
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CO2.  However, N2 was observed only within the first minute of column elution together with O2 

with m/z of 32 as result of valve switching during sample introduction.   

To prevent the overestimation of CO, the peak area of 28 m/z was adjusted (reduced) taking 

into account that this ion constitutes 10% of the 44 m/z peak for CO2.  CH4 quantification was not 

based on the molecular ion of 16 m/z due to the common occurrence of this ion within the CO2 

mass spectrum; instead, 15 m/z (90% of 16 m/z) was used for this purpose as it appeared to be 

unique with regard to the other gases present in this mixture. Namely, although ion 15 m/z accounts 

for 12% and 8%, respectively, of the methanol and ethanol MS responses, the amounts of these 

compounds appeared to be negligible (less than 1% of CO2).  As ion 15 m/z was 90% of the CH4 

molecular peak (16 m/z), it was multiplied by 1.10 for quantification of CH4.  Confirmation ions 

16, 14, and 12 m/z were also present.   

The occurrence of C2H4 in trace amounts was supported by the presence of characteristic 

ions 28, 27, 26, 25, 24 and 29 m/z.   Ethane and propane were also possibly present in trace 

amounts, i.e., less than 1% of CO2, but their characteristic ions shared with many gases made 

identification difficult; thus, the integrated areas were attributed to vastly more abundant gases 

such as CO2, CO or CH4. 

The unidentified and unresolved peak areas were determined as integration total ion current 

after the subtraction of the identified species and baseline (obtained by running a blank sample). 

The C/H and C/O molar ratios were calculated based on TD-Py-GC-MS data. The relative atomic 

abundances were determined for each compound by Xmultiplying the extracted ion ratio of the 

molar weight of the target atom (C, H or O) carbon atoms vs molar weight of the compound. The 

summed abundances for each element were used to determine the overall ratios in the sample for 

each temperature fraction.  
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III.3.3. Results and Discussion 

III.3.3.1. Mass balance closure of subcritical water-treated lignin products 

 TCA enabled the mass balance closure and in-depth study of the thermal carbon 

fractionation of SW lignin treatment products in the liquid fraction (Figure 59). A nearly complete 

mass balance closure (~100 wt.%) was obtained based on the TCA quantification of carbon in the 

liquid fraction (unfiltered) and solid residues by gravimetry. The results of TCA analysis clearly 

demonstrated that the semivolatile (i.e., monomeric) fraction evolving by thermal desorption at 

200 °C (including the products evolving at lower temperatures) and 300 °C represented only a 

small portion of the liquid product, which increased with higher temperatures of SW treatment. 

That is, while for the 200 °C SW treatment the TD fraction represented 2.9 wt.% (of the initial 

lignin), at 300 °C SW treatment the TD fraction increased to 5.4 wt.%, doubling the amount.  A 

similar increase in the yield of monomer-like species with increasing SW temperature was 

observed earlier for individual compounds.185  
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Figure 59. LLE-GC-MS characterization (a) compared of yields to TCA analyses of TD fractions (200 and 

300 °C) of SW treated lignin samples; (b) distribution of classes of organic compounds in LLE extracts in 

untreated lignin, 200 °C SW treated lignin and 300 °C SW treated lignin. Data are presented are mean 

values and one standard deviation for three replicates.  

 

Overall, the ratio of semivolatile products evolving during analysis at TD temperatures 

(200-300 °C, Figure 59a) to high MW products (recovered by the subsequent pyrolysis at 

temperatures above 400 °C to yield their pyrolytic markers, Figure 59a) increased with the 

temperature of SW treatment, thus indicating the occurrence of lignin depolymerization. By 

striking contrast to the study conducted under the conditions of enzyme catalyzed lignin cross-

linking polymerization,211 the char fraction (denoted in charts as ‘550 – 890 °C with O2’) obtained 

for liquid fraction samples decreased rather than increased after the SW treatment. This 

observation indicates a reduced impact of cross-linking/repolymerization for the SW treatment at 

temperatures below 350 °C. 

Reduction of the char fraction was also particularly notable after liquid-phase sample 

filtering (demonstrated for the 300 °C SW treatment, Figure 59a).  This unexpected effect becomes 

particularly pronounced when considering the normalized distribution over the temperature 

fractions (Figure 59b). 
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The use of unfiltered samples in this experiment was essential for accurate mass balance 

closure within each sample. The higher abundance of char observed in all unfiltered liquid samples 

after SW treatment (Figure 59a) was attributed to colloidal particles, i.e., resuspension of the solid 

phase products. Once filtered, the char fraction (i.e., that evolving only with oxygen, i.e., as a result 

of combustion) was virtually eliminated in the 300 °C SW treated sample (Figure 59b, the filtered 

sample), providing evidence that the liquid fraction contained little, if any, crosslinked 

repolymerization product up to 300 °C. However, in this sample the contribution of non-charred 

high-MW products (evolving at higher temperatures as pyrolytic markers) was found to be high, 

when normalized to the total product, as well as in the rest of the samples (Figure 59b), thus calling 

for a MW analysis to assess the balance of depolymerization/repolymerization trends. 

                                                                            

III.3.3.2 Molecular weight distribution of lignin treatment products 

A validated GPC analysis, with two sets of standards81 yielded information on average MW 

and molecular weight distribution of species in the liquid fractions of untreated alkaline lignin 

samples, SW treated filtered and unfiltered (300 °C) samples, as well as the solid fraction (residue) 

taken from the unfiltered and filtered SW treated samples (Figure 60). The Mn, Mw, and Mz values 

obtained from these samples are shown in Table 38.  
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Figure 60. GPC analysis of thermally untreated lignin and SW treated (300 °C) lignin (filtered and 

unfiltered liquid fractions and solids residue) including PMMA and PS calibration on logarithmic scale. 

 

Table 38.  MW values calculated for liquid and solid fractions of alkali lignin degradation products (300 

°C SW treated) and untreated alkali lignin, determined by GPC. 

Treatment Type 
Mn 

(Da) 

Mw 

(Da) 

Mz 

(Da) 

Dispersity 

Index 

300 °C SW 

treated, filtered 

liquid 

460 615 823 1.34 

300 °C SW 

treated, 

unfiltered liquid 

812 1328 2086 1.64 

300 °C SW 

treated, solid 

residue 

1130 2039 3287 1.80 

Untreated lignin 1631 2741 3723 1.68 

  

 

The GPC data for the liquid phase products are consistent with the TCA analysis, showing 

lower MW organics in the filtered SW treated samples, although an Mz value of 823 suggested the 
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occurrence of oligomers (Table 38). The higher mass range for unfiltered liquid sample supported 

the occurrence of solid particles in suspension, which were subsequently completely dissolved in 

THF/water for GPC analysis. It is of note that all samples including the solid residue after the SW 

treatments dissolved in THF completely. 

Both the average MW values (Table 38) and MW distribution (Figure 60) showed a 

significant lignin depolymerization compared to untreated lignin. It is of note that even the solid 

residue showed some reduction in molecular mass compared to lignin, corresponding to effective 

thermal breakdown. This finding is unexpected and counterintuitive, as the solid fraction may be 

viewed as a direct char precursor, i.e., a product of cross-linking/repolymerization. Yet, both TCA 

and GPC showed the reduction of cross-linked char and average MW, respectively, in the solid 

fraction compared to untreated lignin, thus indicating negligible repolymerization at the selected 

SW treatment temperatures. 

As seen in Figure 60 and Table 38, the Mw of unfiltered lignin products was between that 

of soluble products and the solid residue, lending support to the idea that solids formed a 

suspension in water.  

Once the evaluation of MW distribution was conducted, the next logical step in sample 

characterization was the assessment of chemical speciation, looking for insights into chemical 

composition, while using TCA as a “measuring stick,” i.e., carbon mass balance closure.  The 

obtained information is analyzed in the following sections, separating low-MW and high-MW 

products. 

 

III.3.3.3. Contribution of low molecular weight (TD) products 
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The comparison of thermally desorbed species in the combined TCA fractions at 200 and 

300 °C to the total of quantified compounds using LLE GC-MS analysis results showed a good 

match for all SW treatments (Figure 61a).  Thus, thermal and solvent extractions generally 

yielded similar efficiencies, as reported in previous studies as well.194  
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Figure 61. TCA characterization of liquid product SW treated lignin samples and comparison to untreated 

lignin: (a) wt.% C of initial lignin C. The insert shows gravimetric yield for solid and liquid fractions; (b) 

normalized to total carbon content.  

 

A closer look at these data shows that the TCA based wt% of carbon for each temperature 

fraction was slightly higher than the total carbon of the GC-quantified compounds, possibly due 

to an incomplete quantification of LLE GC-MS data, as not all compounds may be GC-elutable. 

Furthermore, the lack of standards for some GC-elutable products, notably phenolic dimers, may 

lead to their underestimation as shown in our previous work.196 Nevertheless, the similar data 

obtained by both methods support the suitability of a more rapid TCA as a tool for initial 

screening of lignin decomposition products as opposed to the LLE GC-MS extraction/analysis 

methodology since the TCA comparison provides a more comprehensive sum of carbon wt%. 

While TCA provides a quantitative report of all (both low and high MW) organics over a 

broad range of TD-Py temperature fractions, LLE GC-MS shows the detailed speciation of low 

MW species (Figure 61b). Similar to Zhao et al., we observed by LLE GC-MS a significant 

increase in yields of guaiacol derivatives following the SW treatment at 300 °C in comparison to 
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that at 200 °C, from approximately 20% (200 °C) to 60% (300 °C) of the LLE extractable 

species by mass (Figure 61b).197  Yet, also just as in that study, the total yields of LLE 

extractable species in our study accounted only for a small fraction of initial lignin (~5%). 

 

III.3.3.4. Comprehensive characterization of SW lignin degradation products obtained at 300 

               °C 

 

Further analysis focused on products formed at 300 °C via SW treatment, as these showed 

the prevalence of low-MW products (Figure 61), along with the lowest char fraction (Figure 59). 

We evaluated the SW products based on TD-Pyr-GC-MS investigation of pyrolytic markers 

evolving as non-condensable gases, semi-quantification of unresolved and unidentified species-

enabling improved quantification, distribution profiles of monomeric and dimeric species, and C/H 

and C/O ratios reported in the next two sections (3.3.5 and 3.3.6). 

 

III.3.3.5. Gas phase and unresolved pyrolytic analysis markers   

  A significantly higher total carbon abundance was observed in the TCA pyrolytic 

(>300 °C) fractions compared to Py-GC-MS when the sum of compounds identified by Py-GC-

MS was matched to the corresponding carbon data obtained from TCA (Figure 62a). This 

discrepancy appears to be too large to be fully explained by semi-quantitative GC-MS analysis 

using specific ions of varied ionization efficiency, especially as TD yields for LLE GC-MS and 

TCA SW treated samples were fairly closely aligned (Figure 62a, the leftmost set of bars). 
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(c) 

Figure 62. Comparison of TD-Py-GC-MS and TCA analyses of organic products from 300 °C SW treated 

lignin as (a) liquid filtered fraction without gas determination, (b) liquid filtered fraction including gases, 

nonintegrated area, and unresolved area (c) solid residue including including gases, nonintegrated area, 

and unresolved area.  

  

So, a question was raised whether anything was missing in the obtained chromatograms. 

The missing information could be due to either unidentified or unresolved compounds (the latter 

comprising the chromatographic “hump”) often reported in complex matrices. Thus, the areas in 

chromatograms that are due to the unidentified and unresolved compounds were tentatively 

quantified and this information has been added to Figure 62. 

As one can see, this addition did not make a significant contribution, particularly for the 

liquid product fraction, which showed only few unidentified and unresolved area, i.e., no 

chromatographic “hump.” This observation indicates that the products in the liquid fraction tend 

to pyrolyze into identifiable products, i.e., along well-defined patterns. The content of unresolved 

material in the chromatograms was higher in the SW treated solid residue but appeared most 
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a greater recalcitrance of the solid residue toward random bond-breaking pyrolysis compared to 

untreated lignin. 

A more plausible explanation for the discrepancy in results between the methods is a 

formation of low-molecular weight gases (< 30 m/z). Indeed, the MS analysis showed the 

production of significant amounts of gases during Py-GC. To adjust for the observed difference 

between the TCA and Py-GC-MS data, we have included gas species’ semi-quantification (e.g., 

that of methane, CO/ ethene, and CO2); the results of detailed gas analysis are provided in Figure 

63a-c. This treatment led to a good match between the TCA and Py-GC data (Figure 62, panel b), 

except for the “hard” pyrolysis occurring at 890 °C, which may result from the formation of such 

reactive species, e.g., free radicals, that do not reach the GC detector being instead adsorbed on 

the column material. 
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Figure 63.  TD-Py-GC-MS semiquantitative gases (a-c) & organics (d-f) profiles for (a, d) SW treated (300 

°C) liquid fraction, (b, e) SW treated (300 °C) solid fraction and (c, f) thermally untreated lignin samples. 

For SW treated liquid fraction the pyroprobe program was started at 110 °C to eliminate impact of water 

on consecutive fractions.  Thus, a total of 110 and 200 °C should be compared to 200 °C for untreated 

lignin.   

 

The predominant pyrolytic marker was CO2, evolving along with water for temperatures 

at 300–500 °C (Figure 63a-c). While the CO2 occurrence at lower temperature can be ascribed to 

decarboxylation, its high abundance at higher pyrolytic temperature suggests decomposition in a 

combustion-like process. Other pyrolytic markers including methane, ethene and CO were 

observed, significantly increasing in abundance toward 890 °C.   

Although conversion to noncondensable gases is known to occur during pyrolytic 

processes;212,213 the amounts of gases observed in our study were rather extensive for pyrolytic 

events of 30 s duration, particularly at high temperatures. A plausible explanation may be the full 

decomposition of some organics at pyrolytic temperatures to CO2 and other low MW gases, which 

was reported for matrices with a sufficient content of oxygen,212,213 e.g., lignin.   

It is of note that the untreated lignin forms less gases upon pyrolysis whereas the solid 

residue of SW treatment products forms the most of them (Figures 63c and d, respectively – 
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compare the y-axis scales). This difference, along with the observed reduction in MW and a lower 

propensity to form char upon pyrolysis (shown in the earlier sections) indicate that the oligomeric 

products of lignin breakdown appear to be significantly altered compared to the original lignin. 

This assumption is evaluated in the next section based on characteristic speciation markers in the 

pyrolytic fractions.  

 

III.3.3.6. Comparison of oligomer/polymer distribution  

The distribution of organic compound classes within the temperature fractions of TD-Py-

GC-MS analysis was compared for both SW treated (300 °C) filtered liquid and solid fractions as 

well as untreated lignin (Figure 63d-f, respectively). The products of SW treatment showed 

abundant GC-elutable compounds evolving at low TD temperatures (Figure 63d,e), thus 

confirming significant lignin depolymerization. The majority of volatile TD species following the 

SW treatment was represented by guaiacol derivatives (90%); this was in contrast to the untreated 

lignin, for which these species represented only about 50% while most of the peaks evolved at 

higher temperatures.   

The Py profiles of the solid residue and untreated lignin (Figure 63b and c, respectively) 

also exhibited two notable exceptions. First, the solid residue from SW treated lignin showed few 

dimers or guaiacol carbonyl compounds, unlike lignin for which these pyrolytic markers were 

abundant.  The absence of dimers and retene derivatives in either liquid or solid fractions evolving 

as pyrolytic markers following the SW treatment suggests a breakdown to simpler compounds or 

increased conversion to more recalcitrant solids occurring during the SW treatment. By contrast, 

guaiacols, phenol and methylphenols evolved at low TD temperatures from the solid residues of 

SW treated samples as well as from the liquid fraction- in contrast to untreated lignin, which 
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evolved these compounds only as pyrolytic markers at higher TD-Py temperatures. Their 

occurrence in the TD fraction suggests that they were unaltered products of SW treatment rather 

than the species formed during the GC-Py analysis. Furthermore, these observations indicate that 

the solid residue after the treatment is more recalcitrant toward pyrolysis than the original lignin.  

Second, aromatic hydrocarbons were more abundant evolving during the pyrolytic steps of 

analysis for SW treated solid residue compared to the untreated lignin, indicating that the evolving 

species contain less oxygen. Note that the peak areas of phenols and aromatic hydrocarbons were 

small in the solids’ TD fractions, below 300 °C (10% of all phenol and 3% of all aromatic 

hydrocarbons); they occurred mainly in high temperature (pyrolytic) fractions. Deoxygenation of 

the solid residue appears to explain that, despite a lower MW than that of the original lignin (as 

shown by GPC), the solid residue becomes more recalcitrant toward further depolymerization 

compared to the untreated lignin.  

 

III.3.3.7. Elemental analysis and C/H and C/O ratios 

This conclusion was directly supported by elemental analysis of both the solid residue 

obtained at 300 °C and untreated lignin (Table 39). Unlike the element ratios reported in Table 39, 

elemental analysis provides the comprehensive, overall sample characterization including the char.  

The results showed that the percentage of oxygen in solid residue became significantly reduced 

compared to lignin, while the carbon content increased.   
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Table 39.  Elemental analysis and C/H and C/O ratios calculated for SW treated samples (filtered liquid and residue solids) and for untreated lignin 

samples. The ratios are based on C, H, and O content of identified species present in samples from TD-Py-GC-MS analysis. Ratios were calculated 

without noncondensable gases generated during analysis, and also with the gases (CO2, CO and CH4). 

Elemental analysis 

 % Carbon % Hydrogen % Nitrogen % Sulfur % Oxygen 

 mean SD mean SD mean SD mean SD mean SD 

SW treated solids 69.76 0.23 5.48 0.05 0.60 0.08 0.67 0.06 23.48 0.33 

Untreated lignin 63.11 0.88 5.71 0.21 0.53 0.10 1.25 0.03 29.35 0.70 

C/H & C/O ratios at TD-Py temperature fractions 

 110  °C 200 °C 300 °C 400 °C 500 °C 890 °C TD fraction Pyr fraction Total sample 

C/H  w/o gases          

SW filtered liquid 0.84 0.84 0.86 0.90 0.90 0.94 0.84 0.92 0.84 

SW treated solids  0.80 0.79 0.85 0.84 0.92 0.80 0.86 0.83 

Untreated lignin  0.90 0.87 0.84 0.83 0.88 0.87 0.84 0.85 

C/H  gases included          

SW filtered liquid 0.84 0.86 1.02 3.61 3.83 3.70 0.86 3.71 0.94 

SW treated solids  0.81 0.83 0.90 0.87 1.12 0.81 0.93 0.87 

Untreated lignin  0.99 0.90 0.86 0.85 0.99 0.91 0.87 0.89 

C/O w/o gases          

SW filtered liquid 3.82 3.14 3.23 4.51 10.93 13.57 3.57 8.50 3.63 

SW treated solids  4.29 5.58 4.16 4.58 10.23 4.64 4.94 4.80 

Untreated lignin  3.06 4.12 4.05 4.34 6.95 4.02 4.31 4.19 

C/O  gases included          

SW filtered liquid 3.82 2.88 1.82 0.68 0.71 0.75 3.17 0.72 2.29 

SW treated solids  3.97 3.82 2.96 3.55 2.59 3.92 3.07 3.39 

Untreated lignin  2.12 3.34 3.51 3.53 2.68 3.20 3.37 3.30 



244 

 

To compare the level of deoxygenation among the fractions (liquid vs. solid), we 

determined the C/H and C/O molar ratios from the Td-Pyr-GC-MS analyses (Table 39) with and 

without taking into account the gases produced during the TD-Py-GC analysis. The further 

discussion will focus on the totals for TD and Py fractions, which are boldfaced in the table for 

reader’s convenience.  

Comparison of treated and untreated lignin showed that the TD fraction ratios were not 

significantly altered by the gas phase species addition into calculations – as expected, because very 

little CO2, if any, was released during TD-Py-GC-MS analysis at 200 °C while the amount of gases 

released at 300 °C was still low. By contrast, some C/H values significantly increased and C/O 

values significantly decreased for Py temperatures when gases (mainly CO2) were added into 

calculations. This observation is consistent with the high CO2 amounts evolving at these 

temperatures (Figure 63a-c). 

However, this effect was not uniform, being the least significant for untreated lignin (Table 

39). The effect was more significant for the solid residue and became particularly conspicuous for 

the liquid product fraction. Thus, the high-MW products (i.e., those evolving at pyrolytic 

temperatures) in the liquid fraction were significantly oxygenated, much more than their Py-GC 

chromatograms showed, because the main path of their pyrolysis was decarboxylation releasing 

large amounts of CO2.  

The solid residue did not release as much of CO2 upon pyrolysis as the liquid product 

fraction. Nonetheless, the C/O ratio significantly increased for the solid residue compared to the 

liquid product fraction, thus pointing at the solid phase products’ significant deoxygenation. This 

calculation confirms quantitatively a similar qualitative observation obtained from the analysis of 

Py chromatograms.    
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III.3.3.8. Repolymerization vs. deoxygenation: considerations and insights 

The observation of significant solid residue deoxygenation may explain the notoriously 

low efficiency of lignin depolymerization to phenolic monomers observed in literature, even under 

the conditions when the competing repolymerization is hindered, as in this study. If most of oxygen 

is removed, an SW treatment per se is unlikely to break the remaining C-C bonds.  This hypothesis 

is corroborated by recent studies which have demonstrated that technical lignins, i.e., those isolated 

from plants by harsh treatments, such as the kraft process, feature a rather low content of the 

original ether bonds characteristic of native plant lignin, being replaced with C-C bonds.50,214,215 

When lignin was isolated in the presence of formaldehyde, protecting the ether bonds from 

cleavage, the resulting near-native lignin yielded 47–78 mol% of phenolic monomers upon 

hydrogenolysis, 3–7 times greater than without the formaldehyde pretreatment.216 Thus, 

deoxygenation of lignin results in its greater recalcitrance. 

Corroborating our observations, several authors pointed out increased C/O and C/H ratios 

with higher temperature SW treatments.173,186  It was suggested that insoluble fractions may consist 

of undissolved modified lignin, whose amount increases with higher temperatures due to cross-

linking reactions.169 Given that the study of Pinkowska was conducted at higher temperatures, our 

study did not show any significant cross-linking for SW treatment at 300 °C: In addition to 

decreased MW (Figure 60), the recovered solid residue featured a similar hydrogen content to the 

original lignin (Table 39), which would be inconsistent with crosslinking occurring via 

condensation reactions. It is assumed that repolymerization rates increase with temperature as a 

result of increased degradation, but requires longer residence times to occur.174,178 Our 

observations are consistent with these conclusions, adding deoxygenation as a specific process 
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occurring at relatively low treatment temperatures instead of repolymerization, although it may be 

‘disguised’ as repolymerization based on the solid resudue’s recalcitrance.    

The study by Zhao et al. found that repolymerization rates became significant only at 

temperatures above 325 °C.185 Thus, deoxygenation appears to be the main process route within a 

narrow temperature range not significantly exceeding 300 °C. It may still be significant at higher 

temperatures being combined with repolymerization.  

By contrast, several studies conducted as lignin solvent-free fast pyrolysis (as opposed to 

SW treatment) claimed repolymerization as the main reaction path, even at relatively low 

temperatures. Namely, for pyrolysis of the THF-soluble (i.e., low-MW) lignin fraction 

repolymerization became significant even at 175 °C, as the product became mostly THF-

insoluble.217  A 100-fold increase in free radical concentration was observed upon lignin fast 

pyrolysis when temperature increased from 100 to 300 °C.218   In contrast to our study, a rather 

high C/H ratio (near 1.25) was observed by elemental analysis in the solid-phase product of lignin 

pyrolysis at 200 °C.219  Thus, the different process path observed in this study for SW treatment 

points at the significant solvent effect that appears to reduce the interactions between the reactive 

intermediates.  

 

III.3.4. Conclusions 

The current study complements the earlier investigations of polymeric products after SW 

treatment at intermediate temperatures, 250-300 °C, by reporting significant solid product 

deoxygenation rather than cross-linking repolymerization as the main reaction path. The 

bottleneck in increasing the lignin depolymerization efficiency thus becomes the treatment of 

deoxygenated, i.e., more resilient, solid residue. This feature may explain, either by itself or 
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combined with repolymerization, the well-known recalcitrance of solid products of lignin 

treatment, i.e., they cannot be efficiently re-treated or recycled. Perhaps a separate subsequent 

oxidative treatment of this residue may increase the yield of useful low-MW phenolic products.  
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Appendix 1:  UV-Vis absorbances for lignin samples for F-C project. Two replicate slopes were used to calculate an average slope with LOD. 

 

 

 LOD, LOQ of Absorbance vs nmol C for 50% acetone sample 
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FC slopes for 50% acetone 2 samples (2 reps each) 
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Appendix 2: TCA workflow 
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Appendix 3:  Thermograms of the 10% H2O2, 25% methanol sample with an increased ambient 

temperature section of the TCA program, but with varied drying times:  a) 4.5 minutes, b) 5 

minutes, and c) 7 minutes.    
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c)  
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Appendix 4: Minitab data 

Table S1.  Minitab data entry for 24 factorial evaluation (with four replicates), before 

factorial design selection 

 

Table S2.  Minitab data entry for 24-1 factorial evaluation (with four replicates), after design 

selection. 
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Table S3.  Minitab data entry for 24 factorial evaluation (with one replicate), before 

factorial design selection. 
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Table S4.  Minitab data entry for 24-1 factorial evaluation (with one replicate), after design 

selection. 
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Appendix 5:  LLE workflow 
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Appendix 6: Gel Permeation Chromatography workflow 
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Appendix 7: TD-Py-GC-MS workflow 
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