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ABSTRACT

a. Statement of problem.

Multiple unit recording is a relatively new electrophysiological 

recording technique which records spike potentials from many neurons.

In the Halas laboratory and others, systematic changes have been observ­

ed during classical conditioning but none under other conditioning pro­

cedures .

Recently, some have interpreted changes in evoked potentials and 

multiple unit potentials as due to emotional arousal (fear) and thus re­

lated more to a conditioned emotional response (CER) than to condition­

ing per se. If a CER occurs, and not a learning modification, then dur­

ing classical aversive conditioning a high sustained neuronal response 

ought to occur. This would reflect the high degree of emotionality dis­

played behaviorally by the animal throughout classical conditioning. On 

the other hand, during instrumental avoidance conditioning a decreasing 

level of neuronal response ought to occur which would reflect the reduc­

ed emotionality displayed during this kind of conditioning procedure.

b. Procedure.

Thirteen permanent macroelectrodes were implanted in each of seven 

cats. A total of twenty sites were implanted in the classical auditory 

pathways, the reticular system (myelencephalon, mesencephalon, and dien- 

cephlon), the limbic system, and the cortex. Standard electrophysiolog­

ical techniques were used- to display the multiple unit activity on an
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oscilloscope. The tracings were photographed and then were judged as to 

the level of their neuronal activity. A three day running average was 

computed which served as the neuronal dependent variable. Counterbal­

anced classical aversive, instrumental avoidance, and discrimination 

conditioning procedures were applied. A 1500 hz tone served as the con­

ditioned stimulus and a mild shock to the right hindpaw served as the 

unconditioned stimulus.

c. Results.

For all sites taken together a significant linear negative neuron­

al trend emerged for classical aversive conditioning, and a significant 

linear positive neuronal trend emerged for instrumental avoidance condi­

tioning. Moreover, the neuronal responses for classical extinction de­

creased further, and the neuronal responses for instrumental extinction 

increased significantly. These results do not bear out the prediction 

stated earlier. The emotional arousal hypothesis is untenable since one 

would expect the opposite kinds of trends.

Inflections in the neuronal trends in the auditory sites during 

the two types of conditioning suggested that a neural associative pro­

cess may have occurred in these sites. The neuronal activity of the 

reticular structures tended to follow the increasing neuronal trends 

found in the auditory centers during instrumental conditioning but not 

during classical conditioning.

Some high positive neuronal-behavioral correlations (as high as 

.96) occurred during instrumental avoidance conditioning and some high 

negative correlations (as high as -.88) occurred during classical con­

ditioning.
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Due to equipment problems little invariance across cats occurred 

for discrimination learning; and thus, the data was not presented.

d. Conclusion.

As the conditioned stimulus and the unconditioned stimulus for the 

two types of training procedures were kept as congruent as possible, the 

pervasive, remarkably different neuronal patterns which resulted imply 

that classical aversive and instrumental avoidance conditioning share 

very little in common in the CNS. Apparently, two quite different re­

actions occurred in rather widespread areas of the brain.

Clearly, a CER cannot account for the trends in the data found in 

this study. Nor is the explanation for these contrasting results, par­

ticularly during extinction after classical and instrumental condition­

ing, readily available through any other theory of learning known to the 

experimenter.

The inflection points in the neuronal trends in the subcortical 

auditory sites appeared to occur first in the lowest center (cochlear 

nucleus) and latest in the highest center (medial geniculate) for both 

types of conditioning (one exception occurs in the inferior colliculus 

during classical conditioning). These data suggest that the subcortical 

auditory nuclei function as a unit during learning. There is already 

considerable data showing that these same nuclei function as a unit dur- 

in the transmission of sensory information which therefore indicate 

that these nuclei are capable of mediating several quite different func­

tions .
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INTRODUCTION

Multiple unit recording is a relatively new neurophysiological 

recording technique that promises to add significantly to the very 

rapidly growing knowledge of the electrical events in the bra.:n, It is 

particularly useful because it may be related to single unit recording 

which in turn is related to the considerable knowledge of neuronal 

spike and graded potentials.

As a new technique, the basic parameters of the measures of the 

method need to be explored. Almost all the handful of articles using 

the technique have turned to this task. The purpose of this study is to 

review briefly the published literature on the technique and to extend 

the method's application to the relationships between multiple unit 

activity and conditioned behavior. Pioneer observations have been made 

on classical aversive conditioning and it is proposed to extend these 

observations to include instrumental and discrimination learning.

1



CHAPTER I

REVIEW OF THE LITERATURE ON MULTIPLE UNIT RECORDING

Early studies used multiple unit recording as a special technique 

to supplement the record of gross action potentials from nerve fibers. 

The technique was developed to investigate the case when the nerve fiber 

carried an irregular distribution of impulses in response to some stimu­

lation. Thus, the method was felt to be particularly adapted to record­

ings that arose from the asynchronous firing of neurons as the result of 

gustatory (Zotterman, 1935; Beidler, 1953, 1957; Pfaffman, 1955) or 

olfactory (Konishi and Zotterman, 1963) stimuli.

However, the method was of limited usefulness until the resulting 

increase in asynchronous firing could be measured or summarized in some 

way. It appears that Beidler (1953) developed the first satisfactory 

summarizing device while working with gross gustatory nerve action 

potentials. He developed an electronic "integrator" that reflected both 

the frequency and amplitude of the massed unit discharges. Since then, 

at least three other laboratories nave independently developed similar 

summarizing devices (Starr and Livingston, 1963; Weber and Buchwald, 

1965; Arduini and Pinneo, 1962). The Arduini group extended the useful­

ness of the method by applying it to records of massed unit discharge in 

the spinal nerves and cord.

Starr and Livingston, and the Buchwald laboratories, plus a third 

laboratory (Schlag and Balvin, 1963), extended the application of the

2



3

technique even further by recording from the grey matter in nuclei of 

permanently implanted cats. Curiously, all three laboratories tended 

to focus their attention on the auditory projection system and the
Udiffuse reticular system.

Once the technique for recording multiple units within the CNS 

was developed, the type of studies in the United States took on two 

basic foci: Interest in ongoing activity (background activity, massed 

unit activity) itself; and the multiple units as a response to some 

explicit training procedure. The former type usually employed rather 

long and complex stimuli such as the observation of responses to white 

noise or sleep over several minutes or hours. The latter type observed 

neuronal responses as the result of shorter (.5 to 1.5 sec) and simpler 

(1500 hz tone) stimuli usually carried out in relation to some explicit 

training procedure (e.g., Pavlovian classical conditioning). The Buch- 

wald and Halas laboratory have made the latter type of investigation.

One other group of workers in France (Guiot et al., 1962; Albe- 

Fessard et al., 1962, 1963) have utilized multiple unit records in a 

clinical setting to study Parkinsonism. This group did not use an aver­

aging device since bursts of unit activity were striking enough so that 

amplitude changes could be observed easily. These investigators appear 

to have developed the technique independently since they found it 

impossible to record from white matter. This is surprising because the 

prior development of the multiple unit technique by all others grew out 

of records from gross nerve action potentials.

A description of the method in detail and a schematic of the 

electronic averaging device (integrator) has been reported by Weber
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and Buchwald (1965). Recently, more refined devices have been installed 

in the Halas laboratory and the Buchwald laboratory.

The name "multiple unit activity", which has been adopted here as 

a general descriptive term, arises because it appears that the macro­

electrode employed yields a record of the action potentials of an 

undetermined number of neurons. These neurons are spontaneously 

firing (usually called ongoing or background activity) or are induced 

to fire by some stimulus (Buchwald, Halas, and Schramm, 1965; Schlag 

and Balvin, 1963; Winters et al., 1967). A recent report (Halas and 

Beardsley, 1968) indicates that the method records rapid voltage 

changes from spikes near the tip of the electrode ranging from a distance 

of .5 to 1 mm. What exactly contributes to an overall increase or 

decrease in activity, reflected by changes in the integrator line, 

cannot be ascertained at the present time. Perhaps the same units may 

fire more rapidly during the stimulation period, or possibly other 

previously silent units may begin to fire. From the results of micro- 

elec.trode studies both could occur in any combination. Alterations in 

the rate of firing of the same neurons (Morrell, 1960) possibly accounts 

for the greater part of the change.

By studying photographs of the oscilloscopic tracing and using 

a high speed movie camera, it is possible to count the distinct spikes 

that occur. Such a count for any amount of data is extremely tedious 

but reveals that the larger spikes seen on some records are usually not 

composed of a number of units simultaneously firing as some investigators 

have thought (cf. Winters et al., 1967). By utilizing electronic 

counting devices, one ought to be able to count the spikes over larger 

amounts of data. Amplitudes could be measured as well. The best that
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can be said at the present time is that an overall change in responsive­

ness has occurred in the population of neurons sampled by the electrode. 

It is hoped that further research will shed light on this process.

As a result, the present usefulness of the technique revolves 

around the degree of sensitivity and specificity of responses to dis­

crete stimuli that are obtainable by the method. For instance, does the 

overall activity in an auditory, but not a visual site, change as a 

function of an auditory stimulus, or vice versa? Are behavioral 

changes reflected in specific multiple unit changes that are not dis- 

criminable by other macroelectrode techniques? The answer to these 

questions is "yes", conclusively.

Halas and Beardsley (1968) showed that a response to a 1500 hz 

tone occurred in the inferior colliculus (IC) which is an auditory 

nucleus, but did not occur to light. Also, they demonstrated that the 

superior colliculus (visual nucleus) responded to light but not to tones 

Podvoll and Goodman (1967) showed that thalamic and medial reticular 

sites showed activity levels closely correlated with.the subject's 

observed behavior even under conditions when the EEG appeared dissoci­

ated from behavior (also see Buchwald, Halas, and Schramm, 1965a, 1966^) 

Albe-Fessard (et al., 1967) indicated that multiple unit activity has 

different characteristics from one nucleus to another and that as an 

electrode was lowered into the brain its progress could be "tracked" 

by characteristic changes occurring from one location to another. The 

latter has been routinely observed in the Halas laboratory and in 

others (Schlag and Balvin, 1963). Goodman and Mann (1967) and Podvoll 

and Goodman (1967) reported detectable differences in multiple unit 

activity under different depths of anaesthesia: "Recording sensitivity
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was sufficient to permit detection of slight variations in depth (under 

ether) produced by reflex testing or reduction of vapor concentration. 

The intensity of behavioral response was consistently matched by the 

average multiple unit activity rise." Furthermore, "neither systemic 

blood pressure nor arterial PCO2 seemed important determinants of 
multiple unit activity within the range observed."

Others have explored multiple unit responsiveness to other 

behavioral conditions. Galin (1965) found high variability to tones and 

white noise in the inferior colliculus (IC). Tones (presented 10-18 

times at 500 hz) in the IC usually inhibited unit activity whereas white 

noise increased them. Units in the cochlear nucleus (CN) increased 

under both conditions when an appropriate tone was used (some sites did 

not respond). The presence of electric shock during sustained noise 

altered ongoing activity significantly in the IC and medial geniculate 

(GM). Podvoll and Goodman (1967) found that multiple unit responses to 

white noise habituated at thalamic levels (medial geniculate, centrum 

medianum) but not below in the auditory system. Initial responses in 

the mesencephalic reticular formation also habituated. Starr and 

Livingston (1963) documented decreasing neuronal responsiveness to white 

noise as they recorded from lower to higher CNS centers.

Explorations of the relationship between EEG and multiple units 

has been done by utilizing the same recording electrode simultaneously 

(Schlag and Balvin, 1963; Buchwald, Halas, and Schramm, 1965a, 1966^; 

Winters et al., 1967). Buchwald et al. found that the usual relation­

ship was one of independence between the EEG and multiple unit response, 

especially in subcortical sites. The technique showed some dependence
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in cortical sites as very large spikes observable in the multiple unit 

record appeared to follow high amplitude slow wave activity (EEG). 

Similar dependence has been found in the cortex utilizing single unit 

recording (e.g., Frost and Alexander, 1966). However, Schlag and 

Balvin, using a different method of displaying the EEG data, found 

definite dependence depending upon location of the electrode and the 

degree of alertness of the animal. In the mesencephalic reticular 

formation Schlag and Balvin showed that when large waves (alpha waves) 

were preceded and accompanied by increased multiple unit activity, the 

units appeared to be active in inhibiting the EEG activity. Further, 

a negative linear relationship was found between the degree of multiple 

unit activity and the amplitude of the EEG under the conditions of 

paradoxical sleep (multiple unit activity greatest), alertness (multiple 

unit activity moderate), and deep sleep (multiple unit activity least). 

In the sigmoid cortex, on the other hand, spindling was accompanied 

often by multiple unit bursts. Thus, multiple unit firing seems to 

appear prior to the presence of EEG waves and may be seen as inhibitory 

or excitatory of other electrical events in the brain.

Winters et al. extended the work of Schlag and Balvin and found 

that multiple units in the mesencephalic RF regularly accompany 

changes in evoked potentials in the mesencephalic RF and cochlear 

nucleus. They conclude that the RF has a modulating effect "at or 

before the first synaptic relay of the auditory afferent system."

One of the most interesting applications of the multiple unit 

technique has been to record changes occurring during behavioral 

conditioning (Buchwald, Halas, and Schramm, 1965^, 1966a, 1966g;

Sandlie and Halas, 1966). During the development of a classically
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conditioned behavioral response to tone and shock, regular and 

systematic conditioned changes occurred in multiple unit activity in 

the primary projection system of the conditioned stimulus (tone) and 

non-specific reticular system. Conditioned changes in the uncondition­

ed stimulus (US) pathway were not seen. This was contrasted to a de­

crease observed in multiple unit activity during non-reinforced trials 

both prior to or after behavioral conditioning to only the tone. These 

observations have been duplicated in the Halas laboratory (Sandlie and 

Halas, 1966) in paralyzed as well as in freely moving cats.

Laboratories using single unit recording have also found what 

appeared to be conditioning in thalamic (Kamikura, 1964; Yoshi and 

Ogura, 1960; Buresova and Bures, 1965; Kamikura, Mcllwain, and Adey, 

1963) and cortical sites (Jasper, Ricci, and Doane, I960). Single 

units may do one of several things during the conditioning period 

(tone or light as the CS; peripheral or central shock as the US): 

they may increase; decrease; or show no change. Multiple unit 

recording appears to tap what is happening in an overall sense; it 

reflects what a majority of the neurons are doing at that time. 

Ordinarily, under peripheral stimulation the majority of neurons appear 

to increase in activity. However, there are several notable exceptions. 

Under pure tone stimulation (1.5 sec in duration) the usual overall 

neuronal response in the IC is to decrease (Galin, 1966). This is 

often true in the GM and even more so in certain cortical sites 

(unpublished observations). Some investigators (Bures and Buresova, 

1967) have raised serious questions as to whether the changes observed 

in single unit during classical training procedures in the thalamus 

can be considered true conditioned changes. The changes could just as
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well be attributed to pseudoconditioning, reflex sensitization, or 

dominant focus (Bure^ and Buresova, 1967). As a result, these authors 

preferred to think of the results as plastic changes (a more general 

term) rather than conditioned changes.

The same kind of interpretation is applicable to multiple unit 

records when classical conditioning under noxious stimulation is used.

One must eliminate the possibility of pseudoconditioning, reflex 

sensitization, etc. Experience with EEG and evoked potentials under 

classical aversive conditioning (Galambos, 1962) has demonstrated that 

it is wise to use pseudoconditioning controls routinely. Another 

criticism of the classical aversive conditioning procedure has been made 

by Mark and Hall (1967) and Hall and Mark (1967) , They pointed out that 

the observed changes under noxious stimulation may reflect emotional 

arousal instead of conditioned changes since the same behavioral operations 

are employed to create both effects. However, they have proposed that 

under the conditions of instrumental conditioning neuronal responses 

indicating emotional arousal should decline as an avoidance response is 

mastered.

A third criticism has been that the observed conditioned responses 

may reflect only the training of the middle ear muscles (Eliasson and 

Gisselsson, 1955; Galambos and Rupert, 1959; Galambos, 1960). Simons 

et al. (1966; cf. Starr, 1964) appear to have answered this question with 

respect to EEG recording, and at least tangentially for multiple units.

They found in cats without the middle ear muscles, habituation of 

responses in the auditory cortex, medial geniculate, inferior colliculus, 

and cochlear nucleus occurred indistinguishably from those whose muscles 

were intact. In addition, they found that habituation was the greatest
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in higher centers (GM, IC) and least in lower centers (CN) which is 

precisely what Podvoll and Goodman (1967) found using multiple units.

This review indicates that one important step in expanding the 

usefulness of multiple unit recording is to extend the work on 

classical conditioning to include other kinds of learning. Extension 

to instrumental avoidance learning would not only reply to the impor­

tant criticisms of Mark and Hall (1967) and Hall and Mark (1967) but 

may yield empirical information about systematic neuronal changes 

which occur under instrumental conditioning procedures. In addition, 

discrimination learning ought to yield interesting comparisons.



CHAPTER II

STATEMENT OF THE PROBLEM

Since all the work on learning using multiple unit recording has 

focused on classical conditioning (Galin, 1964; Buchwald, Halas, and 

Schramm, 1965^; 1966a; Halas and Sandlie, 1966) it is the purpose of 

this study to extend the method further to include its application to 

instrumental and discrimination conditioning. In order to facilitate 

comparison with the work done on classical conditioning, noxious 

stimuli will be employed as the reinforcer and a 1500 hz tone as the 

conditioned stimulus. In addition, the use of instrumental condition­

ing will serve as a means of resolving the issue raised by Hall and 

Mark (1967) and Mark and Hall (1967). These authors suggested that the 

neuronal changes observed during the pairing of auditory and shock 

stimuli may only reflect the emotional arousal of the animal and not 

associative factors (learning) as claimed by others.

Hall and Mark reviewed some twenty nine published articles on 

the conditioning of neuronal responses. They reviewed articles with 

evidence pertinent to classical (Pavlovian) aversive conditioning, 

instrumental avoidance conditioning, and appetitive conditioning 

(positive reinforcement). The review covered mostly EEG and evoked 

potentials, but one multiple unit study was included (Buchwald,

Halas, and Schramm, 1965^). They found that the only consistent 

results involved changes occurring under the classical paradigm.

This suggested to them that the factor responsible for changes might

11
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be emotional arousal rather than a factor(s) relating to the neural 

substrate of conditioning. Using the work of Mowrer (1940) and 

Miller (1948) as a theoretical base, they postulated that conditioned 

fear instead of some associative process could account for the 

changes seen under classical conditioning.

The present study attempts to resolve the issue raised by Hall 

and Mark by answering the following questions. Are the changes in 

multiple unit activity observed during instrumental avoidance con­

ditioning the same as those in classical aversive conditioning? Hall 

and Mark felt that classical aversive conditioning procedures would 

result in sustained emotional arousal whereas instrumental conditioning 

procedures would allow emotional arousal to dissipate gradually as the 

behavioral task is mastered. If changes in multiple unit activity were 

a product of emotional arousal, then during classical aversive con­

ditioning a sustained high level of multiple unit activity should be 

observed but during instrumental avoidance conditioning, after an 

initial increase, a decrease should be observed. The decrease should 

reflect the gradual dissipation of emotional arousal.

A second relevant question concerns the correlation between the 

conditioned behavioral response and the neural event. If the neural 

changes are due to emotional arousal, Hall and Mark would predict a 

high correlation between the two for classical conditioning but a low 

correlation for instrumental conditioning. It is hypothesized in this 

study that the neuronal changes are due to learning and not emotional 

arousal. Therefore a high correlation is predicted between behavioral 

and neural changes during instrumental as well as classical condition­

ing.
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Unfortunately, it was not the purpose of Hall and Mark to test 

these hypotheses directly, but to determine if the observed changes in 

the reticular formation (RF) and other sites were due to cessation of 

movement, and thus to the contraction of inner ear muscles. They found 

that movement changes were uncorrelated with neuronal changes, but they 

also found that increased amplitudes of some evoked potentials were more 

closely related to the strength of a conditioned emotional response 

(CER) than to conditioned behavior. They state quite correctly, 

"together these findings point to the emotional response itself, fear, 

as the factor responsible for the observed changes in evoked potentials 

during conditioning" (p. 906).



CHAPTER III

METHOD AND PROCEDURE

Each of seven adult cats was implanted with thirteen permanent 

electrodes. Sites were chosen in the primary auditory system (cochlear 

nucleus, CN; inferior colliculus, IC; medial geniculate, GM; and the 

auditory cortex), the diffuse reticular system (the medullary reticular 

formation, MRF; the mesencephalic reticular formation, RF; the central 

lateral thalamic nucleus, CL; the centrum medianum, CM; the nucleus 

centralis medialis of the thalamus, NCM; and the nucleus reticularis,

RN), the limbic system (amygdaloideus lateralis nucleus, Al; the hippo­

campus, Hipp), the postectosylvian and ectosylvian cortex, and one site 

in the hypothalamus (area hypothalamica dorsalis, aHd). The atlases of 

Jasper and Ajmone-Marson (1960) and Snider and Niemer (1961) were used 

to direct the placement of the electrodes using a Kopf sterotaxic instru­

ment. The electrode placements for each cat are given in Table 1, and 

Appendix A reports the Horsley-Clarke coordinates.

At the beginning of surgery each cat was placed under a general 

anesthetic (ether). While the cat was anesthetized, an acute trache­

otomy was performed so that later the cat could be artificially venti­

lated. An intravenous canula for drug administration was inserted into 

a vein of the right foreleg. After placement in the Kopf sterotaxic 

instrument, a longitudinal incision was made on the scalp and the 

cranium cleaned of muscle and connective tissue. Then burr holes for

14



TABLE 1

ELECTRODE PLACEMENT IN SEVEN CHRONIC CATS

SITES
A B c CATS

D E F G

Auditory System:
Dorsal Cochlear Nucleus X X X X X X X
Inferior Colliculus X X X X X X X
Medial Geniculate X X X X X X X
Brachium of the Inferior Colliculus X X X

Reticular System:
Mesencephalic Reticular Nucleus X X X X X X X
Medullary Reticular Nucleus X X
Centram Medianum X X X X X
Central Lateral Thalamic X X X X X X
Nucleus Centralis Medialis X X
Nucleus Reticularis (Anterior) X
Nucleus Reticularis (Posterior) X

Cortex:
Right Anterior Ectosylvian X X X X X
Right Posterior Ectosylvian X X X X X X
Left Anterior Ectosylvian X X X X
Left Posterior Ectosylvian X X X X X X

Miscellaneous Sites:
Nucleus Ventralis Postero-medialis X X X X X
Area Hypothalamica Dorsalis X
Nucleus Amygdaloideus Lateralis X X X X X
Hippocampus X X
Caudate Nucleus X X X X X
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the electrodes were drilled through the cranium using a dental drill.

After all surgery was completed, the ether anesthetic was ter­

minated, and the animal was paralyzed with a neuromuscular blocking 

agent (gallamine). The cat was artificially respired while paralyzed. 

The reason for removing the cat from general anesthesia was to allow the 

investigator the opportunity of monitoring the multiple unit activity 

while the electrode was being lowered into the brain. As the electrode 

passed through the various nuclei, changes in multiple unit activity 

were very obvious especially when different stimuli were presented to 

the animal. The multiple unit activity was monitored visually on the 

oscilloscope as well as audibly on a loudspeaker system. After the 

electrode reached its designated site, it was cemented to the skull with 

cadon.

When the last electrode was cemented to the skull, the cat was 

again placed under a general anesthetic (sodium pentobarbital) and 

stainless steel screws were screwed into the skull to provide stability 

for the head cap and also for use as an indifferent lead. The elec­

trodes were soldered to a Cannon plug and cadon was used to cement the 

plug to the skull. The electrodes were isolated from possible EMG 

potentials by a covering of dental cement. The cats were given at 

least two months to recover from surgery before being started on the 

behavioral experiments.

The electrodes were made of size 00, stainless steel insect 

pins which were insulated with Epoxylite. About 0.1 - 0.5 mm of the 

electrode tip was bared. The electrodes were referenced to the several 

stainless steel screws mentioned above.



17

The recording method has been detailed elsewhere (Weber and 

Buchwald, 1965) . The multiple unit activity was fed into a field 

effect amplifier, to a Tektronix 122 preamplifier, through high pass 

filters, into an "integrating" circuit (averaging device), and finally 

to a Tektronix 565 oscilloscope which displayed the signal. Simul­

taneous integration (averaging) of the signal was displayed immediately 

below the signal carrying multiple units. A rise in the integrator line 

indicated an increase in neuronal activity whereas a drop indicated a 

decrease in activity. The entire display was then photographed by a 

Grass C4 camera during the manipulations of the stimuli.

To provide noxious stimulation an isolated 60 cycle shock was 

applied to the right hind paw. The current was made just strong 

enough to motivate the cat to lift his paw sharply. The current nec­

essary varied from 2 - 10 ma depending upon the cat and the length of 

training time in the harness since the animals tended to grow accus­

tomed to the shock and failed to lift their paws vigorously.

Prior to training all animals were handled by the laboratory 

personnel. However, one person was designated responsible for 

carrying, harnessing, and training. Each was fitted into a harness 

which restricted its gross bodily and head movements but allowed its 

legs to be free to touch the floor.

The animals were individually trained in a sound deadened room 

large enough for the animal, his trainer, and a 3' x 8* table. The 

speaker for the tone was mounted 1 meter directly in front and above 

the animal.

Sessions were 39 trials long with 3 trials for each of 13 elec­

trodes. Usually one session per day was given. The training schedule
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consisted of habituation, classical aversive conditioning, extinction, 

retraining, extinction II, instrumental avoidance conditioning, 

extinction III, habituation for discrimination learning, discrimination 

learning I with a 1500 hz tone as the positive CS, and discrimination 

learning II with a 500 hz tone as the positive CS. Two cats began with 

instrumental conditioning and ended with classical conditioning, and 

five cats began with classical conditioning and ended with discrimi­

nation learning. One cat died of an infection half-way through the 

training process. A more detailed explanation of the training con­

ditions follows:

Training Conditions

Habituation

Usually 10 - 15 sessions (39 trials each) of only the CS resulted 

in the diminution of any neuronal response. Many sites needed no 

habituation trials but others, especially in the auditory system, 

needed several more sessions. Occasionally, a site did not habituate.

In this case, conditioning trials were begun anyway. The specific 

number of habituation trials given are denoted in the results chapter.

Classical Aversive Conditioning

A tone CS of 1500 hz was paired each time with a shock sufficiently 

strong to flex the right hind paw. The CS lasted 1.5 sec and a .5 sec 

shock overlapped the latter part of the tone. As the tone and shock 

stimulated the animal, pinlights automatically displayed the time 

periods on the oscilloscope for photographing. Ordinarily, 15 - 25 

training sessions were employed.



19

Extinction

The CS was presented alone. The behavioral response ceased 

within 1 - 2  sessions but the neural responses required up to 5 or 6 

sessions. Some neuronal responses did not extinguish.

Reconditioning

Three to six sessions were usually required to re-establish the 

behavioral and neuronal responses. The procedure followed exactly the 

classical aversive conditioning condition.

Extinction II

These procedures were the same as those presented under 

"Extinction."

Instrumental Avoidance Conditioning

No shock was given to the animal if he would lift his paw after 

the onset of the tone (1500 hz) but before one second had elapsed. 

Although the task was usually learned in 6 - 8 sessions, the training 

was continued for 20 - 30 sessions. This continuation allowed obser­

vation of the neuronal responses as the behavioral response tended to 

deteriorate.

Extinction

Extinction after instrumental avoidance conditioning ordinarily 

lasted longer than after classical conditioning since the behavioral 

response tended to persist. Up to 10 sessions were ordinarily given.
i

Discrimination Habituation

A CS of 1500 hz and a CS of 500 hz were given with no shock.

Four or five sessions were given.



20

Discrimination Conditioning I

The animal was required to lift his paw to the positive CS of 

1500 hz but not to the negative CS 500 hz tone. Shock was given for 

failure to lift to the positive CS. No shock was given should the 

animal lift to the negative CS.

Discrimination Conditioning II

With no intervening extinction period the positive CS became 

the 500 hz tone and the negative CS became the 1500 hz tone. All 

tones and shock in each condition were presented randomly on the 

average of one presentation every thirty-five seconds. A table of 

random permutations was used.

The Dependent Variable

Changes in multiple unit response produced a fluctuation in 

the integrator line. The fluctuations and the multiple unit activity 

were then photographed.

The resulting strips of film were mounted on 27" x 45" pieces of 

cardboard side by side and in sequence. Three judges made independent 

decisions as to whether the integrator line rose slightly (+1), rose 

greatly (+2), remained the same (0), declined slightly (-1), or 

declined greatly (-2) on each trial relative to the ongoing neuronal 

activity one second prior to CS stimulation and/or CS - US stimulation. 

Agreement of at least two of three judges constituted the rule for 

adopting one measure or the other. Amost always two judges would agree. 

If an increase occurred at any time during the CS period (but before the 

shock on^et) it was scored regular, slight, great, etc.
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Retest reliability in most sites was consistently above .90. To 

further reduce the bias, two of the three judges did not know the pur­

pose of the experiment.

Figure 1 illustrates the type of multiple unit integrator increase 

scored slight, great, no response, slight decrease, great decrease.

The judgement of the animal trainer determined whether a positive 

behavioral response had occurred. A positive response was not counted 

until the animal's paw had actually raised from the table. If the 

animal had executed a sharp rapid flexion, it was scored (+2); if a 

minimal flexion, it was scored (+1). During discrimination learning a 

positive score was given if the animal responded correctly, i.e., 

flexion to the negative tone was scored (0) but no flexion to the 

negative tone was scored (+2). Flexion to the positive CS was, of 

course, scored (+1) or (+2).

After the judges had scored the neurological and behavioral data, 

a three-session (9 responses) running average was computed. The running 

average is essentially a curve smoothing technique especially suited to 

display the trends in the data.
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MAGNITUDE OF NEURONAL RESPONSE

LARGE POSITIVE RESPONSE ( * 2 )

SLIGHT PO SITIVE RESPONSE (♦!)

-i.t.Ui M j j .Lii .-k. l II

INTEGRATOR LINE I I

NO RESPONSE ( 0 )

SLIGHT NEGATIVE RESPONSE (-1)

Figure 1. Examples of integrator line deflection scored 
as large positive response (+2), slight positive response 
(+1), no response (0), slight negative response (-1), and 
large negative response (-2). The time sequence of the 
figure should be read from left to right.



CHAPTER IV

RESULTS1

Introduction

The level and trend of the neuronal multiple unit activity- 

differed markedly between classical aversive conditioning and instru­

mental avoidance conditioning. Most frequently, the neuronal trend 

between the two conditions was a contrary one. If the trend in 

classical conditioning would be downward, the trend during instru­

mental conditioning would be upward.

The same contrariness between trends in the neuronal activity 

was also reflected in the neuronal-behavioral correlations. That is, 

if instrumental neuronal activity were positively correlated with 

behavior, then classical neuronal activity would be negatively cor­

related. Unfortunately, equipment and training problems rendered 

almost all the results of discrimination conditioning useless.

Another general feature of the results was the overwhelming 

predominance of positive neuronal responses whenever a stimulus was 

presented. In only a few isolated sites, and then only in particular 

cats, was the overall multiple unit activity negative. Similarly, 

positive responsiveness was typically obtained in evoked potential

The neuronal and behavioral scores for the three-day running 
average for each cat during the training sessions may be obtained by 
writing the Archives Division of the Chester Fritz Library, the 
University of North Dakota, Grand Forks, North Dakota 58201.

23
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records. However, unlike evoked potential records, multiple unit 

responses at the termination of habituation and extinction periods 

in this study often yielded no response at all (i.e., no relative 

deflection of the integrator line when the CS was presented) .

Using multiple unit responsiveness as the dependent variable, 

the prediction of Hall and Mark (1967) that neuronal activity levels 

should remain at high levels during classical aversive conditioning 

and decrease in the latter stages of instrumental avoidance con­

ditioning was conclusively contradicted in most of the sites sampled in 

this study— especially in the mesencephalic and thalamic reticular 

systems. In this study, the typical result was one in which classically 

conditioned neuronal responses began at a high level and then dissipated, 

whereas the instrumental neuronal responses continued to increase. This 

is the opposite result from that predicted by Hall and Mark.

Concerning the question of the neuronal-behavioral correlations 

for the two types of conditioning, the prediction made in Chapter II 

is only half-fulfilled.

In Chapter II the prediction was made that neuronal-behavioral 

correlations for classical and as well for instrumental conditioning 

ought to be highly positive. Inspection of Table 5 indicates that the 

general pattern was one of no or negative correlation for classical 

conditioning and a positive correlation for instrumental conditioning. 

This is especially true for the auditory and reticular systems. The 

latter system is, of course, highly implicated in the mediation of 

emotional arousal. Further comment is reserved for discussion in 

Chapter V.

The results for discrimination learning are not presented since
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almost no neuronal invariance across cats emerged. This was probably 

due to serious equipment problems. Moreover, the cats generally failed 

to learn the discrimination task.

Finally, a certain degree of tentativeness to this study must be 

advanced in view of the fact that histological vertification of elec­

trode locations has not been made. For anticipated published material, 

site verification will be made. The decision to delay histological 

verification was made for two reasons: (1) since the value of each 

cat is many thousands of dollars, the cats are being used for additional 

experiments; and, (2) past experience from earlier implantations in our 

laboratory has shown that site locations have been accurate. As 

electrodes are inserted it has proven relatively simple to follow its 

progression due to the marked changes in neuronal activity levels which 

accompany movement from nucleus to nucleus. The kind of activity changes 

detectable from nucleus to nucleus have been reported by others (Halas 

and Beardsley, 1968; Albe-Fessard, et, al., 1967; Schlag and Balvin, 1963).

General Presentation of the Data

The large amount of data gathered in this study mandated a con­

siderable amount of summarizing. Tables 2 through 5 present the overall 

results of the experiment. Following the tables, a site by site pre­

sentation will be made.

A summary of the mean levels of the multiple unit activity for 

habituation, three levels of conditioning, and extinction are given in 

Table 2. Tests for linearity were performed on the overall site means 

for classical and instrumental conditioning. In classical conditioning 

a significant (p<; .01) overall negative trend was determined and in
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instrumental conditioning an overall significant (p <; .01) positive 

trend was determined. Higher order polynomials proved insignificant. 

Specific trends found in particular sites and in some systems are 

presented later. Table 3 gives the analysis of variance utilized in 

the orthogonal polynomial tests for trends (Winer, 1962) .

Another feature of Table 2 which was quite remarkable was the 

systematic decrease in multiple unit activity which occurred in the 

extinction period following classical conditioning. This result was not 

unexpected. However, in extinction after instrumental conditioning a 

pervasive increase in activity occurred. The latter was unexpected and 

is very difficult to interpret. Table 2 indicates that of the twenty 

sites denoted none completely reversed the order (although some data is 

missing in the posterior RN and the Hipp). Only four of twenty sites 

in any way contradicted the overall pattern.

A summary of the standard deviation for each site is found in 

Table 4. Since each cat in a site tended to emit a pattern similar to 

that of the other cats but at a higher or lower overall activity level, 

a mean constant difference over all training sessions for that cat was 

subtracted from each training session observation. The standard devi­

ations in Table 4 were then computed from the adjusted observations. 

Thus, if the same pattern of activity among cats in a given site and 

training procedure tended to occur together, the variability would be 

reduced. If no common pattern existed, the variability would not be 

reduced.

Appendix B contains the standard deviations computed on the

original observations.



TABLE 2

MEAN LEVEL OF MULTIPLE UNIT ACTIVITY FOR THE THREE DAY RUNNING AVERAGE FOR EACH SITE DURING HABITUATION, 
CLASSICAL CONDITIONING, INSTRUMENTAL CONDITIONING AND EXTINCTION

Conditioning Total Number
Habituation 1/3

AUDITORY SYSTEM
Dorsal Cochlear Class. .67 1.12
Nucleus (CN) Instr. .62 1.47

Inferior Colliculus Class. .69 1.35(ic) Instr. -.26 1.22

Medial Geniculate Class. .07 . 64
(GM) Instr. .34 .69

Brachium of the Inferior Class. .43 1.37
Colliculus (BCI) Instr. .22 .50

RETICULAR SYSTEM
Mesencephalic Reticular Class. . 64 1.34
Nucleus (RF) Instr. .40 .91

Medullary Reticular Class• — 1.00
Nucleus (MRF) Instr. .53 1.18

Centram Medianum Class. .42 .52
(CM) Instr. .44 .33

Central Lateral Class. . 64 1.15
Thalamic Nucleus (CL) Instr. .45 .72

1/3 1/3 Average Extinction of Cats Figure

.89 .90 .96 .34 4 of 6 2
1.96 1.88 1.77 2.00 4 of 6 2

1.11 .99 1.17 .83 4 of 5 3
1.49 1.97 1.59 1.97 3 of 6 5

.67 .60 .64 .18 5 of 6 6

.71 .85 .77 1.01 6 of 6 6

1.54 1.53 1.48 .78 1 of 2 8
.20 .26 .31 .72 1 of 1 8

1.24 1.10 1.30 .52 4 of 7 10
1.31 1.23 1.15 1.22 4 of 6 10

1.00 .83 .96 — 1 of 1 11
1.50 1.69 1.46 1.84 2 of 2 11

.38 .29 .41 .41 3 of 3 12

.71 .98 .71 .67 3 of 4 12

1.08 1.26 1.18 . 66 4 of 5 13
.86 1.12 .91 1.31 5 of 5 13



TABLE 2— Continued

Conditioning Total Number
Habituation 1/3 1/3 1/3 Average Extinction of Cats Figure

Nucleus Centralis Class. .86 1.56 1.33 1.22 1.34 .58 2 of 2 14
Medialis (NCM) Instr. .29 .51 .40 .48 .47 1.11 2 of 2 14

Nucleus Reticularis Class. 1.10 1.24 .74 .94 .97 .16 1 of 1 15
Anterior (RN) Instr. .09 .48 .23 .81 .51 .89 1 of 1 15

Nucleus Reticularis Class. .33 1.94 1.78 1.46 1.74 - 1 of 1 16
Posterior (RN) Instr. 1.04 1.81 1.92 2.00 1.90 1.33 1 of 1 16

CORTEX
Right Anterior Class. .55 .87 .73 .89 .81 .75 4 of 4 20
Ectosylvian Instr. .63 .70 .76 .98 .83 1.33 4 of 4 20

Right Posterior Class. .70 1.33 1.31 .99 1.21 .72 5 of 5 18
Ectosylvian Instr. .38 .20 .07 .06 .11 .65 4 of 5 18

Left Anterior Class. .63 1.13 . 65 .44 .74 .41 3 of 4 19
Ectosylvian Instr. .25 .10 .07 .53 .24 1.02 4 of 4 19

Left Posterior Class. .85 1.30 .84 .76 .97 .41 3 of 5 17
Ectosylvian Instr. .27 .60 .63 .88 .71 1.08 5 of 5 17

MISCELLANEOUS SITES
Nucleus Ventralis Postero- Class. .65 .67 .82 .88 .77 .17 4 of 5 21
medialis (VPL) Instr, .32 .54 .73 .67 .65 .62 3 of 4 21

Area Hypothalamica Class. .75 1.12 1.88 1.85 1.61 .29 1 of 1 _

Dorsalis (aHd) Instr. .00 1.13 1.01 .78 .97 1.21 1 of 1 -



TABLE 2— Continued

Nucleus Amygdaloideus

Habituation 

Class. .68

Conditioning 
1/3 1/3 1/3

1.38 1.38 1.51
Lateralis (Al) Instr. .94 .62 .67 1.13

Hippocampus Class. - .28 .17 .06
(Hipp) Instr. 1.47 1.15 .93 1.33

Caudate Nucleus Class. .74 1.12 .83 .86
(CdN) Instr. .54 .41 .38 .36

Total Mean of Means Class. .63 1.12 1.02 .97
Instr. .45 .76 .83 1.00

Total Number
Average Extinction of Cats Figure

1.42 .82 2 of 4 22
.80 .75 3 of 4 22

.18 _ 1 of 1 23
1.15 1.15 2 of 2 23

.94 .44 3 of 4 24

.38 .70 3 of 3 24

1.04 .50
.84 1.08



30

To reduce extraneous variability even further, the results of all 

cats in a given site were not always used. Typically, if all six cats 

were implanted in a given site, one or two would yield markedly dif­

ferent patterns from the other five cats. These two cats were arbitrar­

ily omitted. The column next to the far right-hand column of Table 4 

gives the number of cats utilized out of the total number of cats 

implanted.

Slight differences in electrode placement may account for the 

atypical cats. Along with the presentation of the Horsley-Clarke 

coordinates in Appendix A, relevant histological comments are made.

Finally, some electrode placements yielded no data due to tech­

nical difficulties. One cat died during classical extinction and the 

film was inadvertently destroyed in two sites in the remaining cats.

The orthogonal test for trends was also made on the standard 

deviations found in Table 4, but no significant trends for classical 

or instrumental conditioning were found. This indicates that the 

overall variability of the neuronal activity level was about the same 

across both kinds of conditioning.

A summary of the neuronal-behavioral correlations during classical 

and instrumental conditioning for each site may be found in Table 5. 

Table 5 highlights two important overall observations: (1) higher 

correlation coefficients generally occur in instrumental conditioning; 

and, (2) most of the positive coefficients occur in instrumental 

conditioning and most of the negative coefficients occur in classical 

conditioning.

The three highest correlation coefficients occurred in the IC,
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TABLE 3

SUMMARIES OF ANALYSES OF VARIANCE FOR THE OVERALL TRENDS OCCURRING IN 
CLASSICAL AVERSIVE AND INSTRUMENTAL AVOIDANCE CONDITIONING.

Summary of Analysis of Variance for
Classical Aversive Conditioning

Source of variation SS df MS F

Classical Conditioning 2248 
Experimental Error 12636

2 1224.0 5.52* 
57 221.7

Total 15084 59

Tests for Trend for Classical

*p£ .01

Aversive Conditioning
(1/3) (1/3) (1/3) 

Tj 2246 2040 1939 c2 C D C2/D

Linear -1 0 +1 
Quadratic +1 -2 +1

2 -307 40 2356 
6 105 120 91.87

Test for linear trend: 2356/221.7 = 
Test for quadratic trend: 91.87/221

106.3, p <  .01 
.7, N.S.

Summary of Analysis of Variance for
_______________________ Instrumental Conditioning_____________
Source of variation SS df MS F

Instrumental Conditioning 5924 2 2962.0 14.5*
Experimental Error 11622_____ 5_7______203.9________

Total 17546 59

Tests for Trend for Ins

*p £:. 01

tramentai Avoidance Conditioning
(1/3) 

T. 1527
(1/3)
1656

(1/3)
1998 c2 C D C2/'D

Linear -1 0 +1 2 471 40 5546
Quadratic +1 -2 +1 6 213 120 378

Test for linear trend : 5546/203.9 = 27. 19, p^.01
Test for quadratic trend: 378/203.9 = 1.85, N.S.



TABLE 4

TRANSFORMED STANDARD DEVIATIONS OF MULTIPLE UNIT ACTIVITY FOR THE THREE DAY RUNNING AVERAGE FOR EACH SITE 
DURING HABITUATION, CLASSICAL CONDITIONING, INSTRUMENTAL CONDITIONING, AND EXTINCTION

% of re­
duction due

Conditioning Total Number to trans-
Habituation 1/3

AUDITORY SYSTEM
Dorsal Cochlear Class. .12 .18
Nucleus (CN) Instr. .19 .18

Inferior Colliculus Class. .22 .17(ic) Instr. .11. .08

Medial Geniculate Class. .26 .29
(GM) Instr. .14 .14

Brachium of the Inferior Class. _
Colliculus (BCI) Instr. - -

RETICULAR SYSTEM
Mesencephalic Reticular Class. .15 .17
Nucleus (RF) Instr. .11 .18

Medullary Reticular Class. - -
Nucleus (MRF) Instr. .15 .24

Centram Medianum Class. .09 .10
(CM) Instr. .15 .10

Central Lateral Thalamic Class. .24 .22
Nucleus (CL) Instr. .24 .15

1/3 1/3 . Cond. Extinction of Cats formation

.32 .17 .35 .18 4 of 6 12

.03 .19 .20 .00 4 of 6 20

.15 .12 .23 .08 4 of 5 38

.05 .03 .14 .05 3 of 6 18 .

.09 .09 .33 .06 5 of 6 13

.18 .22 .20 .17 6 of 6 43
ILJ _ 1 of 2

— — — — 1 of 1 —

.20 .10 .18 .19 4 of 7 25

.18 .15 .23 .24 4 of 6 41
_ — _ _ 1 of 1 __
.11 .08 .18 .06 2 of 2 54

.07 .04 .14 .08 3 of 3 39

.20 .25 .20 .15 3 of 4 31

.32 .38 . 36 .09 4 of 5 08

.15 .12 .24 .20 5 of 5 58



TABLE 4— Continued

% of Re- 
duction Due

Conditioning Total Number to Trans-
Habituation 1/3 1/3 1/3 Cond. Extinction of Cats formation

Nucleus Centralis Class. .21 .07 .08 .10 .17 .13 2 of 2 72
Medialis (NCM) Instr. .07 .23 .15 .27 .22 .05 2 of 2 41

Nucleus Reticularis Class. — _ — _ _ _ 1 of 1 _
Anterior (RN) Instr. - - - - - - 1 of 1 -

Nucleus Reticularis Class. — — — _ — _ 1 of 1 _
Posterior (RN) Instr. - - - - - - 1 of 1 -

CORTEX
Right Anterior Class. .18 .15 .21 .19 .31 .14 4 of 4 -
Ectosylvian Instr. .30 .18 .21 .15 .22 .14 4 of 4 60

Right Posterior Class. .21 .19 .23 .13 .24 .19 5 of 5 43
Ectosylvian Instr. .15 .19 .08 .06 .14 .17 4 of 5 12

Left Anterior Class. .39 .24 .23 .12 .22 .16 3 of 4 04
Ectosylvian Instr. .09 .29 .15 .38 .31 .21 4 of 4 09

Left Posterior Class. .20 .13 .22 .21 .22 .26 3 of 5 04
Ectosylvian Instr. .19 .14 .15 .17 .20 .18 5 of 5 59

MISCELLANEOUS SITES
Nucleus Ventralis Postero- Class. .18 .21 .25 .23 .31 .06 4 of 5 16
medialis (VPL) Instr. .07 .21 .14 .35 .24 .09 3 of 4 46

Area Hypothalamica Class. — — — — — — 1 of 1 —

Dorsalis (aHd) Instr. - - - - - - 1 of 1 -



TABLE 4— Continued

% of Re­
duction Due

Conditioning Total Number to Trans-
Habituation 1/3 1/3 1/3 Cond. Extinction of Cats formation

Nucleus Amygdaloideus Class. .24 .12 .10 .12 .14 .13 2 of 4 00
Lateralis (Al) Instr. .20 .18 .13 .26 .26 .24 3 of 4 32

Hippocampus Class. — — — — — — 1 of 1 _
(Hipp) Instr. .08 .12 .09 .16 .08 2 of 2 11

Caudate Nucleus Class. .24 .18 .29 .18 .24 .25 3 of 4 43
(CdN) Instr. .38 .13 .07 .10 .12 .14 3 of 3 70

Total Standard Deviation Class. .21 .17 .20 .16 .25 .14
Instr. .17 .17 .13 .18 .20 .13 -
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PEARSON PRODUCT-MOMENT CORRELATION COEFFICIENTS BETWEEN NEURONAL AND

TABLE 5

BEHAVIORAL RESPONSES FOR ALL SITES DURING CLASSICAL AND INSTRUMENTAL
CONDITIONING

Site Classical Instrumental

AUDITORY SYSTEM

Dorsal Cochlear Nucleus (CN) -.12 .77
Inferior Colliculus (IC) -.74 .96
Medial Geniculate (GM) .42 .76
Brachium of the Inferior Colliculus (BCI) .58 -.37

RETICULAR SYSTEM

Mesencephalic Reticular Nucleus (RF) .03 .84
Medullary Reticular Nucleus (MRF) .16 .67
Centram Medianum (CM) -.88 .90
Central Lateral Thalamic Nucleus (CL) -.06 .90
Nucleus Centralis Medialis (NCM) Right -.70 - .46
Nucleus Centralis Medialis (NCM) Left -.22 .44
Nucleus Reticularis Anterior (RN) -.29 .22
Nucleus Reticularis Posterior (RN) -.43 .80

CORTEX

Right Anterior Ectosylvian -.31 .80
Right Posterior Ectosylvian .16 -.71
Left Anterior Ectosylvian -.68 .31
Left Posterior Ectosylvian -.57 .81

MISCELLANEOUS SITES

Nucleus Ventralis Postero-medialis (VPL) .22 .16
Area Hypothalamica Dorsalis (aHd) .44 -.20
Nucleus Amygdaloideus Lateralis (Al) .58 .37
Hippocampus (Hipp) .15 .53
Caudate Nucleus (CdN) -.77 -.23
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CM, and the CL; all occurred in instrumental conditioning and all 

were positive. Interestingly, two of the highest negative correlations 

occurred in classical conditioning in two of the same three sites (CM 

and IC). Clearly, if the same sites acted so differentially, more 

than a generalized emotional arousal ("fear" as hypothesized by Mark 

and Hall) was involved. A much more complicated picture implying 

either a differential motivational pattern under the two conditions 

or some associative (learning) process may have occurred.

Individual Site Presentation 

Dorsal Cochlear Nucleus (CN)

Inspection of Figure 2 will reveal that the neurological responses 

between classical and instrumental conditioning differed markedly in 

the CN. After a slight initial rise during the behavioral acquisition 

phase of classical conditioning, the neurological activity began to 

decline. In addition, a rather marked inhibition of activity occurred 

after the behavioral acquisition phase was completed. This is in 

contrast to the activity displayed in instrumental conditioning where 

the neurological activity increased consistently with the acquisition 

responses and then continued at a rather high level.

Along with these overall differences, inhibition of activity 

relative to habituation at the outset of classical conditioning and 

facilitation of activity at the outset of instrumental conditioning 

indicate that quite different types of neurological responses occurred 

in the same electrode site when the training problem was changed from 

an aversive one to an avoidance one.

Another feature of the effect of the training procedures in this 

site was the marked difference, in neuronal activity which occurred
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during the extinction periods. During classical conditioning the 

neuronal responses declined even further but during instrumental 

conditioning the neuronal responses reached the maximum and were 

sustained at that high level.

As a result of the two unlike trends exhibited in the training 

periods, the neuronal-behavioral correlation coefficient during 

classical conditioning was slightly negative (-.12) and the neuronal- 

behavioral coefficient during instrumental conditioning was positive 

(.77).

During discrimination training I and II no consistent results 

among the cats could be discerned.

Inferior Colliculus (IC)

The activity of this site was marked by two contrasting types of 

neuronal responses during classical conditioning; one set of four 

cats (Figure 3) whose habituation and training periods were made up of 

positive responses; and two cats (Figure 4) whose activity remained 

consistently negative (i.e., all responses caused the integrator line 

to decrease). However, one should also note that after an initial rise 

in activity for both types of cats a decline in activity level took 

place as traii'ing progressed. This is similar to what happened in 

the CN.

The results for instrumental training were again in contrast to 

those of classical conditioning. In instrumental conditioning (Figure 5) 

the neuronal activity increased during the behavioral acquisition phase 

and remained high. This is the same pattern as that exhibited by the CN 

under the two differential training procedures. Moreover, during
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Figure 2. Three day running average of the neuronal activity and the behavioral responses for four of six
cats associated with the right dorsal cochlear nucleus during classical aversive and instrumental
avoidance conditioning.
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---------------B e h a v i o r a l  R e s p o n s e s
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Figure 3. Three day running average of the neuronal activity and behavioral responses for four of six 
cats associated with the right inferior colliculus during classical conditioning.
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Figure 4. Three day running average of the neuronal activity and behavioral responses for two of six 
cats associated with the right inferior colliculus during classical aversive conditioning. These two 
cats emitted nearly all inhibitory neuronal responses.
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Figure 5. Three day running average of the neuronal activity and behavioral responses for three of six 
cats associated with the right inferior colliculus during instrumental avoidance conditioning.
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extinction, the same high level of neuronal activity was found in 

instrumental conditioning and the same low level of activity in 

classical conditioning which was observed in the CN.

Another feature of instrumental conditioning which was common to 

the CN and IC was the rather high level of positive neuronal-behavioral 

relationship. In the CN the relationship was (.77) and in the IC the 

relationship was ( .96) .

Medial Geniculate (GM)

At the beginning of classical conditioning in the GM five of six 

cats showed an initial increase in neuronal activity, declined, and then 

continued to decline throughout the extinction period (Figure 6) . This 

is a similar pattern to that found in the CN and IC. One cat was 

greatly atypical (Figure 7) in that its activity reached an immediately 

high level and remained rather high. Perhaps the explanation is that 

the electrode in this cat was somewhat less deeply implanted than were 

those in the other cats.

Although the pattern followed during classical conditioning was 

very similar to that found in the CN and IC, the pattern during instru­

mental conditioning was slightly different from that of the others. No 

great increase in activity occurred as in the other, but nevertheless 

a slight increase did occur. Thus, a degree of similarily may be 

found in the overall trend of the data.

By comparing the three sites (CN, IC, GM) with respect to the 

training sessions in which the decline in classical conditioning and 

the increase in instrumental conditioning took place, one may see 

another pattern emerge that is related to the level of the nucleus in
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Figure 6. Three day running average of the neuronal activity and behavioral responses for five of six
cats assotiated with the left medial geniculate during classical aversive and instrumental avoidance
conditioning.
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Figure 7. Three day running average of the neuronal activity and behavioral responses for one of six 
cats associated with the left medial geniculate body during classical aversive conditioning.
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the brain stem. Except for one reversal, the changes in neuronal 

activity level (decline in classical; increase in instrumental) 

occurred first in the lowest centers. Table 6 summarizes the data.

TABLE 6

EARLIEST TRAINING SESSION AT WHICH DECELERATION AND ACCELERATION IN 
NEURONAL ACTIVITY TOOK PLACE DURING CLASSICAL AND INSTRUMENTAL 
CONDITIONING IN THE CN, IC, AND GM

Number of Cats Training Session Number of Cats Training Session
During Classical Number at Which During Instru- Number at Which

Conditioning Downward Change mental Cond. Upward Change
Occurred Occurred

4 of 6 cats CN 4 4 of 6 cats 3

4 of 5 cats IC 3 3 of 6 cats 6

6 of 6 cats GM 5 6 of 6 cats 9

Such a pattern suggests that as the learning task is integrated 

within the neuronal system, the first step occurred in the lower centers 

and then moved successively upward to higher centers. Also, one may 

infer that integration in these centers came earlier for classical 

conditioning than for instrumental conditioning. Another inference may 

be made from the direction of the integration of neuronal responses 

reported in this data. Since the direction of integration is from 

lower center to higher center, seme expression of an associative process 

may be involved. The behavioral data indicate that these cats learned 

the classical task more quickly than the instrumental task (using the 

highest peak of learned behavior as the criterion). This is consistent 

with the neuronal data.

Invariance across cats in discrimination I and II was not dis- 

cernable and therefore no data is presented.



46

Brachium Colliculi Inferioris (BCI)

Although only the data for one cat is available for the BCI 

(Figure 8) it is interesting to note its activity level was quite dif­

ferent from the other auditory centers. In this site instrumental 

activity declined throughout the training period whereas in the others 

it increased throughout. In other words, instrumental conditioning in 

the BCI acted like the activity of classical conditioning in the other 

auditory sites. However, similar to the other sites in instrumental 

conditioning, extinction began at a maximumly high level. But unlike 

the others, it declined to a "no response" level rapidly.

Mesencephalic Reticular Formation (RF)

Sites from the right and left mesencephalic reticular formation 

have been combined because of the high concordance found between the 

activity levels of the two sites. An example of the remarkable 

similarity in response is illustrated by cat F in Figure 9.

While all seven of the cats demonstrated behavioral learning, only 

four animals exhibited neuronal changes that correlated closely with 

the conditioned behavioral responses. The other three cats showed 

conditioned behavioral responses, but there were no corresponding 

neuronal changes in their brain sites.

Figure 10 illustrates the results of the neuronal and behavioral 

responses of the four cats for classical conditioning. There was an 

overall increase in neuronal response during classical conditioning as 

compared to the habituation period. There was also an overall increase 

in behavioral response during conditioning as compared to habituation.
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Figure 8. Three day running average of the neuronal activity and behavioral responses for one of two cats
associated with the right brachium of the inferior colliculus during classical aversive and instrumental
avoidance conditioning.

%
 o

f 
C

or
re

ct
 

%
 o

f 
C

or
re

ct
B

eh
av

io
ra

l 
R

es
po

ns
es

 
B

eh
av

io
ra

l 
R

es
po

ns
es



48

These results are not unexpected. However, although there is an 

increase in both neuronal and behavioral responses during conditioning, 

the two are not related (r = .03).

Figure 10 shows the results of the neurological and conditioned 

behavioral responses of the same four cats for instrumental conditioning. 

It is obvious that both the neuronal and behavioral responses increased 

during the instrumental conditioning period as compared to the habitua­

tion period. This was not predicted by Hall and Mark in their discussion 

cited in Chapter II. Furthermore, the correlation between neuronal and 

behavioral responses was greater during instrumental conditioning 

(r = .84) than it was for classical conditioning (r = .03). Whereas 

Hall and Mark predicted a decrease in neuronal activity after an initial 

increase, the neuronal responses actually increase in tandem with the 

behavioral responses. In general, the correlation between behavioral 

and neuronal responses was much higher in instrumental conditioning 

than it was for classical conditioning.

Since the activity during instrumental conditioning increased 

throughout the training period the pattern is similar to that which was 

found in the CN, IC, and GM. The gradual nature of the increase is 

reminiscent of that in the GM as the increases in the CN and IC were 

rather steep.

However, the responses during classical conditioning were not at 

all like those in the CN, IC, and GM since the auditory activity 

declined as training progressed and in this site the activity remained 

constant or even increased slightly.
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Figure 9. Three day running average of the neuronal activity only of the right and left mesencephalic
reticular formation for Cat C. The data illustrate the close concordance of the neuronal activity between
the left and right sides in this site.
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Figure 10. Three day running average of the neuronal activity and behavioral responses for four of seven
cats associated with the mesencephalic reticular formation during classical aversive and instrumental
avoidance conditioning.
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Medullary Reticular Nucleus (MRF)

Only one cat received classical conditioning in this site 

(Figure 11). The same cat plus another one received instrumental 

conditioning. However, even with so few animals represented, the same 

general pattern as that found in the mesencephalic reticular formation 

is discernable. That is, the activity during classical conditioning 

remained relatively flat at a rather low level whereas the instrumental 

activity tended to rise throughout.

The high level of activity achieved during the extinction period 

of instrumental conditioning is reminiscent of the high levels attained 

in the auditory sites (CN, IC, GM).

Nucleus Centrum Medianum (CM)

The responses in the CM (Figure 12) during classical conditioning 

most closely resembled those in the auditory nuclei where a decline in 

activity took place as training progressed. However, in the CM the 

decline was quite regular throughout with no marked change as behavioral 

acquisition occurred. The nucleus that the CM resembled most closely in 

classical conditioning was the IC.

Again, the rise in activity that has become characteristic of 

instrumental conditioning occurred as well. The shape of the rise 

resembles that found in the GM, CL, and RF. Those in the IC and CN rose 

rather sharply by comparison. In fact, it appeared characteristic in 

this site during instrumental conditioning, and in the other sites pre­

sented so far, that as one moves up the brainstem the rate of increase 

in activity level slox̂ s down. When extinction was taken into account, 

the nucleus that the CM resembled most closely in instrumental condition­

ing was the GM.
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Figure 11. Three day running average of the neuronal activity and behavioral responses for two of two
cats associated with the medullary reticular nucleus during classical aversive and instrumental avoidance
conditioning. Habituation and extinction responses are missing for classical conditioning.
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Figure 12. Three day running average of the neuronal activity and behavioral responses for three of four
cats associated with the left centrum medianum during classical aversive and instrumental avoidance
conditioning.

%
 o

f 
C

or
re

ct
 

%
 o

f 
C

or
re

ct
B

eh
av

io
ra

l 
R

es
po

ns
es

 
B

eh
av

io
ra

l 
R

es
po

ns
es



54

The neuronal-behavioral relationship was similar to that in all 

the other nuclei presented so far since the correlation coefficient 

for instrumental conditioning was (.90) and for classical conditioning, 

(-.88). The opposite relationship exhibited by the two training con­

ditions suggests again that a general arousal factor such as that 

hypothesized by Mark and Hall cannot account for the data. Some differ­

ential effect involving motivational or associative processes was implied. 

Since this site, which is so similar to the main auditory nuclei, did 

not exhibit the acceleration - deceleration pattern midway in the first 

third of conditioning, some sort of differential motivational process 

may have occurred.

Central Lateral Nucleus (CL)

The responses in the CL (Figure 13) closely resemble those in the 

mesencephalic reticular formation (Figure 9). In both nuclei the 

classical conditioning responses did not decline but remained at moderate 

and constant levels with a characteristic drop occurring during the 

extinction period.

In both nuclei during instrumental conditioning the responses 

began a slow rise that paralleled the behavioral increase. Such an 

increase was also reminiscent of the slow rise in the CM during instru­

mental conditioning (Figure 12). The neuronal-behavioral relationship 

was quite high for instrumental conditioning (.90) and was low for 

classical conditioning (-.06).

Perhaps the trend of the activity in this site during classical 

conditioning should be viewed x̂ ith caution since the standard deviation 

was quite high (Table 4) and x.?as minimumly reduced by the transformation
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Figure 13. Three day running average of the neuronal activity and behavioral responses for four of five
cats associated with the right central lateral thalamic nucleus during classical aversive and instrumental
avoidance conditioning.
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described in Appendix B. The standard deviations exhibited in instru­

mental conditioning were moderate to low.

Nucleus Centralis Medialis (NCM)

Although only two cats were implanted in this site (Figure 14) 

the results are interesting because of the differential responses which 

occurred between the sides of implantation. The neuronal activity on 

the side contralateral to the shock during classical conditioning was 

highly elevated, whereas the activity on the ipsilateral side declined. 

The latter declined in a fashion similar to that of the auditory 

nuclei and some of the diffuse thalamic nuclei (CM, RN).

On the other hand during instrumental conditioning the activity 

declined to zero on the ipsilateral side. This pattern in instrumental 

conditioning was not found in most other reticular sites. One location 

in the RN and the BCI responded similarly to the NCM.

Nucleus Reticularis of the Thalamus (RN)

Two sets of graphs are presented for each of the two available 

implanted cats (Figure 15 and Figure 16). Each is presented separately 

because of the contrary trends exhibited during conditioning. The 

remarkable difference in activity levels may be due to the quite 

different electrode placements. Cat B's electrode (Figure 15) was 

three mm anterior to Cat D's. The sustained high levels of neuronal 

activity in the posterior site (Figure 16, Cat D) may have reflected 

general emotional or motivational factors underlying both kinds of 

conditioning.
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Figure 16. Three day running average of the neuronal activity and behavioral responses for Cat D (one of
two cats implanted in the RN) in the posterior thalamic reticular nucleus during classical aversive and
instrumental avoidance conditioning.
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Ectosylvian Cortex (Right and Left Anterior; Right and Left Posterior)

In three of the four cortex sites (Figures 17 - 20) the multiple 

unit activity during instrumental conditioning tended to increase, 

whereas in three of three sites during classical conditioning the trend 

was downward. The one exception was in the right posterior ectosylvian 

(Figure 18) where the neuronal activity tended to be low and decreasing 

during instrumental conditioning.

In a pattern often seen before, especially in the subcortial 

auditory sites, activity in all four cortex sites after instrumental 

conditioning (extinction) increased; the activity after classical 

decreased. The interpretation of such a pervasive widespread event 

is difficult to make. One would be tempted to presume that systematic 

equipment artifacts were the cause if there had not been contrary trends 

displayed in other sites. In addition, not all cats were run at the 

same time. Some cats started months earlier than others.

Nucleus Ventralis Postero-lateralis (VPL)

No definite trend appeared in this site (Figure 21). Worthy of 

note, perhaps, is the drop in activity which appeared in the classical 

conditioning extinction period. This pattern has been observed in many 

other sites.

One of the problems encountered in this site was the high degree 

of variability which appeared during both classical and instrumental 

conditioning (Table 4).

Nucleus Amygdaloideus Lateralis (Al)

The most interesting feature of this site (Figure 22) is the 

action of the level of multiple unit activity during the initial phases
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cats associated with the right posterior ectosylvian cortex during classical aversive and instrumental
avoidance conditioning.
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Figure 19. Three day running average of the neuronal activity and behavioral responses for four of four
cats associated with the left anterior ectosylvian cortex during classical aversive and instrumental
avoidance conditioning.
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Figure 20. Three day running average of the neuronal activity and behavioral responses for four of four 
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Figure 21. Three day running average of the neuronal activity and behavioral responses for four of five
cats associated with the nucleus ventralis postero-medialis (left) during classical aversive and
instrumental avoidance conditioning.
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of classical conditioning— the rise in activity is very sharp. Such 

a rise in classical conditioning is very atypical as compared to the 

other sites sampled in this experiment. The drop in activity level at 

the point of completed behavioral acquisition suggested that the A1 

might be involved in an energizing process which faded as soon as 

acquisition was complete. However, the general low level of activity 

exhibited in instrumental conditioning makes such an interpretation 

difficult.

Hippocampus (Hipp)

The data for this site was partially lost. Little is revealed 

by the meager data in Figure 23. No consistent trend is observable.

One of the major problems encountered in this site was the judges' 

evaluation of the high degree of bursting multiple unit activity. The 

neuronal bursting often occurred between trials as well as during the 

training periods. Thus, it seemed to appear as random activity with no 

relation to observable stimulus conditions. This site was the most 

unreliably judged.

Caudate Nucleus (CdN)

The neuronal activity in classical conditioning (Figure 24) 

declined during the first one-half of the learning period; the trend 

remained stable thereafter. The overall neuronal activity level was 

higher than that in instrumental conditioning. Instrumental activity 

began low and remained at a constant low level throughout. As a result, 

negative neuronal-behavioral correlation coefficients occurred.

Again, the characteristic drop in classical extinction and the
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Figure 23. Three day running average of the neuronal activity and behavioral responses for two of two
cats associated with the hippocampus during classical aversive and instrumental avoidance conditioning.
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Figure 24. Three day running average of the neuronal activity and behavioral responses for three of four
cats associated with the left and right caudate nucleus during classical aversive and instrumental
avoidance conditioning.
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increase in instrumental extinction that has been noted in most other 

sites has occurred here.



CHAPTER V

DISCUSSION

An attempt was made to meet two major overall objectives in this 

study. The first objective was to study the method of multiple, unit 

recording by correlating it with three fairly well-known learning 

procedures: classical conditioning; instrumental conditioning; and

discrimination conditioning, using a noxious stimulus as the uncon­

ditioned stimulus. To meet the first objective, certain questions 

concerning the method were posed. Could multiple units be quantified 

so that the resulting neuronal responses would reflect stable rela­

tionships among neurological sites, as well as between neural responses 

and behavior? Would the resulting quantified dependent variable be 

sensitive enough to assist the neurophysiologist in deciding for or 

against a viable hypothesis found in current literature? Is the 

multiple unit method sensitive enough to register a difference neuro- 

logically among different 'behavioral procedures? To test the latter 

possibility the behavioral parameters were kept as similar as possible. 

The results indicate that the method was quite successful in answering 

the questions in the affirmative.

A second major overall objective was to use the method as a tool 

to uncover phenomena about learning. The larger portion of this study 

was concerned with the second objective.

One of the problems in the employment of the method was that of

71



72

evaluating a huge amount of data. At this point the decision was made 

to use a measure that simply reflected a gross overall change in the 

neuronal population during the application of conditioning procedures.

The hope was that the basic existence of some general and meaningful 

neuronal-behavioral phenomenon could be demonstrated. However, in the 

process of this general evaluation, potentially important detailed 

data had to be ignored. For instance, no distinction was made among 

short onset neuronal responses, sustained neuronal responses, and 

delayed neuronal responses during the CS period. We are certain that 

the equal treatment of these responses masked important relationships.

In the future, the assistance of a computer to digest such data, and 

in such volume, would be required. Concerted efforts are presently 

being made in our laboratory to secure this assistance. Therefore, the 

data gathered in this study accentuate the necessity of computer 

assisted data collection and analysis in future studies.

Another major problem of data evaluation was the reduction of 

excessive variability in responses among cats. Often in a common 

electrode site among several cats an obvious neuronal invariance over 

training sessions occurred. However, one or two cats sometimes emitted 

quite different patterns. At this point a purely arbitrary, unscientific, 

decision was made to omit the two deviant cats from consideration.

Reliable criteria for future studies definitely must be developed.

Another problem of variability emerged as a function of the small number 

of cats, i.e., the cats learned at different rates. Consequently, the 

pattern of one cat would lag somewhat behind another. Hoping that the 

differences would average out, the lag effect was simply ignored and 

the responses averaged across cats. However, we feel that the procedure
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adapted here is an improvement over most past studies (multiple unit 

and EEG studies) where only the records of individual subjects were 

presented.

Little is claimed for precisely what was measured beyond the 

assertion that some measure of overall neuronal spike activity was 

tapped. On the basis of other studies (Buchwald, Halas, and Schramm, 

1966^; Halas and Beardsley, 1968) the spike activity of a population 

of neurons firing within .5 mm of the electrode tip was probably 

recorded. At the present time little is known conclusively about the 

exact relationship among the spikes. Preliminary results from another 

study presently being conducted in the Halas laboratory indicate that 

the spike record consists of a combination of coincidentally firing 

neurons, individually spiking neurons, and the chain-like firing of 

a sequence of neurons.

Results from microelectrode studies indicate that in most sites 

many spontaneously firing neurons cease firing or reduce their rate 

of firing when a stimulus is introduced. In certain sites under various 

conditions (e.g., IC, cortex) the data in the present study illustrated 

a similar effect in the inhibition of multiple unit activity. However, 

inhibition of multiple unit activity did not occur as often as that 

reported in microelectrode studies. Two possibilities exist: either 

multiple unit recordings masks the overall reduction in rate of firing 

of some neurons by the increase in rate of others, or overall increases 

in neuronal firing are the more general occurrence. The latter is more 

consistent with evoked potential records. After many stimulus presen­

tations these potentials persist over widespread areas of the brain.
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One of the important results of the application of the multiple 

unit method was its ability to discriminate neurologically between 

two quite similar behavioral procedures. As the conditioned stimulus 

(1500 hz tone) and the unconditioned stimulus (shock to the right hind 

paw) for the two types of training procedures were kept as congruent as 

possible, the pervasive, remarkably different neuronal patterns which 

resulted not only attest to the sensitivity of the method but imply 

that classical and instrumental conditioning procedures share very little 

in common in the CNS. The trend for classical conditioning was downward 

throughout the period and the trend for instrumental was upward. Both 

trends for all the sites, averaged together, were statistically signif­

icant ( p ^  .01). However, some sites exhibited opposite trends which 

indicate that the overall pattern was pervasive but not complete.

Notable exceptions were the nucleus amygdaloideus lateralis of the 

limbic system, the brachium of the inferior colliculus, the central 

lateral thalamic nucleus, and the nucleus ventralis posteromedialis.

Some sites exhibited no upward or downward trend.

Since behavioral learning occurred and the neuronal trend was 

upward in instrumental multiple unit activity, positive neuronal- 

behavioral correlation coefficients tended to occur— and some of them 

quite high— for instrumental conditioning. Since the classical neuronal 

trend was downward, negative correlation coefficients for classical 

conditioning tended to occur.

Among psychologists there has been a long standing controversy on 

whether "one process" or "two processes" underlie the two conditioning 

procedures (Kimble, 1961). On the basis of this study, substantial 

evidence is presented for the two (or more) process approach. The
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pervasive difference in neuronal responses to the two procedures even 

extended to their respective extinction periods. Obviously, two quite 

different reactions are occurring in rather widespread areas in the 

brain.

Using classical aversive conditioning Hall and Mark (1967) found 

that evoked potential responses were positively correlated with behavior 

in reticular and auditory projection sites. However, they quickly 

pointed out that it was their opinion that the neuronal increases 

(evoked potentials) were related to unconditioned changes in behavior 

rather than conditioned changes. That is, a conditioned emotional 

response (CER) rather than a conditioned behavioral response to the CS 

had occurred and as such explained the data. They thought Mowrer's 

concept of "fear" fitted the data. Hall and Mark then hypothesized that 

during instrumental avoidance conditioning the neuronal CER ought to 

undergo extinction as appropriate avoidance behavior became established. 

Thus, they predicted a decline in neural activity once the acquisition 

of behavioral instrumental avoidance had begun.

Our data do not confirm this prediction since a general increase in 

neuronal activity occurred throughout behavioral acquisition. Moreover, 

if emotion had been reflected in the neuronal activity then there should 

have been a sharp drop in activity during extinction. Instead, there 

was a sustained, high level of neuronal activity long after the overt 

behavior had extinguished. Furthermore, if emotion had been responsible 

for the neuronal responses, the decline in classical conditioning should 

not have occurred. Clearly, a CER cannot account for the data in the 

study. Nor is the explanation for these contrasting results, particular­

ly during extinction after classical and instrumental conditioning,
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readily available through any other theory of learning or by the writer 

of this paper. What is perhaps happening is that brain processes which 

are related to learned behavior can now be monitored with reasonable 

accuracy. As more substantive information is gathered about these 

brain processes, then new theories will evolve.

Some sort of a neuronal alerting or vigilance reaction may have 

occurred in the rather widespread initial increase in activity in the 

first training session of both classical and instrumental conditioning. 

This reaction is more visible in classical than in instrumental con­

ditioning. During classical conditioning a decline in activity often 

began in the second session whereas during instrumental conditioning 

the neuronal activity continued to increase. In both cases, the very 

first conditioning training session revealed a heightened level of 

neuronal activity which then served as a starting point for their 

respective downward and upward trends. It is difficult to think that 

such an initial increase is related to emotional arousal because 

behavioral emotionality, such as that found during classical conditioning, 

lasts considerably longer.

A very suggestive pattern occurred in the three main subcortical 

auditory nuclei where inflections in the trend of activity for both 

kinds of conditioning may have reflected some sort of an associative 

(learning) process. That is, during classical conditioning a sharp 

decline in neuronal activity often occurred during the first one-third 

of the training sessions whereas during instrumental conditioning an 

accelerated increase often occurred during the first one-third of 

training sessions. Interestingly, the inflection points (Table 6) 

appear to occur first in the lowest center (CN) and latest in the



77

highest center (GM) for both types of conditioning (one exception 

occurs in the IC during classical conditioning). These data suggest 

that the subcortical auditory nuclei function as a unit during learning. 

There is already considerable data showing that these same nuclei func­

tion as a unit during the transmission of sensory information which 

therefore indicate that these nuclei are capable of mediating several 

quite different functions. This is not surprising in view of the size 

and neural complexities of these structures.

These data are not inconsistent with the single unit data of 

Mountcastle, et al. (1963) while studying proprioception. These 

researchers found that individual first order neurons in the medulla 

(cuneatus and gracilis nuclei) responded in all or none fashion to a 

specific change in limb movement whereas an individual neuron in higher 

centers (ventrobasal nuclear complex of the thalamus) appeared to inte­

grate the data from the many loxjer neurons by simply firing at different 

rates. Others have found similar integrative phenomenon in the auditory 

system relative to sound localization (Masterton, et al., 1967). Thus 

one may speculate with some justification that we may see here the re­

flection of a similar integrative, but associative, process.

Some reinforcement of this view may be obtained tangentially by 

noting that the overall neuronal pattern for instrumental conditioning 

occurred later than that for classical. This is consistent with the 

speed with which the animals learned behaviorally. Thus, the neuronal 

difference may be related to a difference in learning.

Electrodes in three levels of reticular nuclei were implanted: 

one site in the medulla, one in the mesencephalon, and four in the 

thalamic diffuse system. • In three of the sites (KN, MRF, NCM) only two
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cats were implanted, and in one of them (MRF) part of the data was lost.

Only the RF, CL and the CM involved enough cats so that reliable 

conclusions are possible. The neuronal activity during classical con­

ditioning acted quite ambiguously as a slight increase (CL), a slight 

decrease (CM), and no change (RF) occurred. The instrumental activity 

in all three sites increased in a fashion similar to the instrumental 

activity of the auditory nuclei. These data support the data from the 

auditory nuclei which suggest that certain neural structures will dis­

play different neuronal activity for different types of learning. The 

significance of this is that various neural structures are able to inte­

grate their functions in different combinations for different types of 

learning. Thus, one neural structure does not mediate just one type of 

learning. Rather it is capable of collaborating with other structures 

in the mediation of two or more different types of learning. The brain 

has generally been thought of as being very plastic and this data 

clearly demonstrate some of this plasticity.

Certain sites exhibited trends contrary to the overall neural 

downward (classical) and upward (instrumental) trends found generally. 

The most noteworthy were the neuronal responses found in two of fcur cats 

in the Al, Cat D in the posterior RN, and Cat C in the NCM. In all 

three sites, very high levels of neuronal activity occurred during 

classical conditioning. The high levels obtained suggest that they may 

have reflected sustained emotional arousal or motivation. Only the 

single cat implanted in the posterior RN emitted correspondingly high 

neuronal activity levels for both conditioning procedures. Interest­

ingly , two of the four cats during classical conditioning in the Al ex­

hibited a sharp increase in activity during the behavioral acquisition
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period, but declined thereafter. Such a pattern suggests that the A1 may 

have participated in motivational processes such that as acquisition was 

complete its operation was no longer in effect. It must be recognized 

that with so few cats implanted in these sites that conclusions drawn 

are highly speculative.

In conclusion, the writer feels that the two main overall objec­

tives of this study were met. It was found that minimal quantification 

could reveal stable relationships among the responses of different 

anatomical sites and between neuronal response and behavior. Further­

more, the method proved sensitive enough to register consistent neuronal 

differences between highly similar behavioral conditioning procedures. 

Thus, as it was used in this study, multiple unit recording method 

proved to be sensitive enough to detect neuronal differences as a func­

tion of behavioral procedures; and very importantly, demonstrated that 

these neuronal differences would remain stable across cats and across 

time.

Besides being adequately sensitive and stable, the multiple unit 

method revealed interesting phenomena about learning. Apparently, 

neurons in the same implanted sites are capable of mediating remarkably 

different neuronal response patterns to different, but superficially 

similar, behavioral training procedures. Moreover, the patterns ex­

hibited revealed that a reliable decreasing neuronal trend occurred for 

classical conditioning and an increasing neuronal trend occurred for 

instrumental conditioning. Such consistent trends made rather high 

correlation coefficients possible between neuronal and behavioral re­

sponses. Moreover, patterns of curve inflections for the auditory
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nuclei under the two types of behavioral training procedures suggested 

that progressive integration of associative processes may have 

occurred.

These and other substantive observations lead us to conclude that 

multiple unit recording is a fruitful method for correlating brain- 

behavior relationships.



CHAPTER VI

SUMMARY

Multiple unit recording began as a special way of observing gross 

nerve action potentials. At that time a technique was needed to record 

the asychronous potentials that resulted from a long train of stimuli 

such as the irregular neuronal firing from gustatory or olfactory 

stimuli. Beidler (1953) probably developed the first satisfactory 

technique for summarizing the train of unit activity by way of an 

electronic integrator. His integrator and the ones subsequently devel­

oped in other laboratories reflected the combined effect of the frequency 

and amplitude of the massed spike activity.

Other laboratories (Starr and Livingston, 1963; Schlag and Balvin, 

1963; Buchwald et al., 1965_) extended the method by recording from grey' 3.
matter. A diversity of stimuli were used ranging from white noise to 

levels of sleep state. One laboratory (Albe-Fessard et al., 1962) used 

the method in a clinical setting to study characteristic bursting activ­

ity which was seen to accompany Parkinsonian tremor. Other laboratories, 

whose work is of particular interest here, studied multiple unit re­

sponses in relation to conditioned and unconditioned stimuli in learn­

ing (Buchwald et al., 1965^, 1966a ; Galin, 1964; Halas and Sandlie,

1966) .

Encouraging results emerged from these studies. The method was 

found sensitive to changes in behavior while EEG recordings were

81
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dissociated from behavior (Buchwald et al., 1965a; Podvoll and Goodman, 

1967). The method was found to be specific to sense modalities (Halas 

and Beardsley, 1968). That is, visual stimuli evoked responses in 

visual anatomical locations and not in auditory locations, and vice 

versa. Moreover, the method was found sensitive enough to detect 

changes in overall firing activity as an electrode was moved from 

nucleus to nucleus.

In the use of multiple unit recording with behavioral conditioning 

procedures, regular and systematic conditioned neuronal changes 

occurred. Others have observed similar neuronal conditioned changes 

using evoked potentials and single units. However, in a review of the 

literature by Mark and Hall (1967) the only consistent changes, when all 

training and recording methods were taken into account, occurred under 

classical aversive conditioning procedures (Unfortunately, no one had 

used instrumental training procedures with multiple units.) These 

authors concluded that emotional arousal (specifically, Mowrer's "fear") 

could account for the data better than the concept of a neural associa­

tive process and that the neural correlations with behavior were highest 

when the neural component was considered as a conditioned emotional re­

action (CER).

Such a hypothesis is directly testable. Hall and Mark predicted 

that if fear would account for the neuronal data then during classical 

aversive conditioning high sustained neuronal responses should occur 

throughout behavioral training. Furthermore, as acquisition is com­

pleted under instrumental training the neuronal activity level should 

decrease. The latter reflects a decline in the emotionality of the 

animal which is ordinarily observable behaviorally.
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The present study was designed to test the Hall and Mark hypoth­

esis, to explore the sensitivity and stability of the multiple unit 

method, and to see, generally, if the multiple unit method could reveal 

unique phenomena related to classical, instrumental and discrimination 

learning. Unfortunately, equipment problems eventually precluded the 

usefulness of the discrimination data.

Seven cats were each permanently implanted with thirteen deep 

monopolar gross electrodes in twenty anatomical locations. The sites 

implanted were in the main auditory nuclei, the reticular formation, the 

limbic system, and the cortex. The cats were trained behaviorally in a 

counterbalanced fashion in classical aversive and instrumental avoidance 

conditioning. The conditions were kept as similar as possible and in 

both cases the conditioned stimulus (CS) was a 1.5 sec 1500 hz tone and 

the unconditioned stimulus (US) an external shock applied to the right 

hindpax-; during the last .5 sec of the tone. The only difference between 

the two conditions behaviorally was the fact that the cats could avoid 

the shock in the instrumental situation by lifting their paws during the 

1 sec interval prior to the shock period.

The animals were trained in daily sessions of thirty nine trials 

each where three trials for each site were recorded on film. Up to 

twenty habituation sessions, or enough sessions so that most sites 

yielded no response to the CS alone were given. Extinction sessions 

were not as long, lasting up to ten sessions x̂ ith the same criterion.

The conditioning sessions varied from twenty sessions (the cats learned 

behaviorally at least by the fifteenth session) to fifty sessions.

Three judges independently judged the magnitude of the neuronal 

responses. Five categories were used: no response (i.e., no deflection
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of the integrator line), slight positive, great positive, slight nega­

tive, and great negative. A three day running average (total of nine 

responses) was computed from the combined judges' scores and displayed 

as lines on a line graph. The resulting scores for most cats in each 

site were combined and means and standard deviations for each training 

condition calculated. The data for some cats in each site were ignored 

when their pattern of scores differed greatly from the others. Ordinar­

ily, most of the cats displayed very similar neuronal patterns (see 

Table 4).

The results of the experiment were very rewarding. The most , 

important results were these: Positive neuronal responses occurred 

almost always. Occasionally, at certain times in the inferior colliculus, 

medial geniculate, and the cortex inhibition of responses occurred. 

Similarly, studies of single units indicate a mixture of inhibition, no 

response, and acceleration of responses to external stimuli. However, 

this study indicates that the usual overall firing rate, reflected in 

multiple unit recording, is one of increased activity. This is con­

sistent with evoked potential responses except that evoked responses 

rarely, if ever, show any consistent reversal of potentials which would 

be similar to multiple unit inhibition of activity. Moreover, evoked 

potentials rarely disappear even after prolonged stimuli presentation 

without shock, whereas no response often occurred for multiple units 

under the same conditions.

A very general, pervasive difference in neuronal response between 

classical and instrumental conditioning occurred. Marked differences 

emerged between the two in the acquisition periods and in the extinction 

periods. During classical conditioning the neuronal activity generally
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decreased throughout whereas during instrumental conditioning the neu­

ronal activity increased. Furthermore, the neuronal activity generally 

declined even more during classical extinction, but increased during 

instrumental extinction. The different patterns were so general and 

pervasive that the combined neuronal trends of all the sites taken 

together (with some reversals of trend included) proved to be linearly 

negative for classical conditioning and linearly positive for instru­

mental conditioning. The extinction periods were obviously different. 

Thus we concluded that these behaviorally similar training procedures 

showed very little in common in the CNS. We feel that these data 

strongly support the hypothesis that classical and instrumental con­

ditioning represent two quite different processes.

The data did not support the Hall and Mark hypotheses that con­

ditioning procedures only reflect various levels of the neuronal CER. 

Nearly opposite results were obtained. Where the CER should have aug­

mented a high rate of neuronal activity a declining trend was observed 

(classical conditioning); on the other hand, where a CER should have 

been reflected in a lower rate, an increasing neuronal trend was 

observed. Moreover, where the activity should have decreased sharply 

during both kinds of extinction, the activity for instrumental condition­

ing increased further. We are at a loss to explain these results using 

existing theory. Perhaps, as more substantive information is gathered 

about these differential brain processes, then new theories will evolve.

A very suggestive pattern emerged from the three main subcortical 

auditory nuclei (IC, GM, and dorsal CN) in that inflections in the 

trends of neuronal activity indicated that some process of associative 

neural integration may have occurred during both types of behavioral
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conditioning. These data also suggest that the subcortical auditory 

nuclei function as a unit during learning.

Certain sites exhibited trends contrary to the overall downXvTard 

(classical) and upward (instrumental) trends found generally. The 

nucleus amygdaloideus lateralis (Al) was such a site. During classical 

conditioning a sharp rise in neuronal activity occurred in acquisition 

hut then declined once acquisition was completed. Such a pattern sug­

gests that the Al may have participated in a motivational process such 

that as acquisition was completed its operation was no longer in effect. 

For instrumental conditioning however, a very low level of neuronal 

activity was emitted throughout. Perhaps other limbic structures would 

show an opposite pattern. Such patterns are said to be typical in lim­

bic structures.

Only three reticular sites (nucleus centralis lateralis of the 

thalamus, mesencephalic reticular formation, and the centrum medianum) 

were implanted in enough cats to allow reliable conclusions. All three 

sites consistently increased their activity levels throughout instru­

mental conditioning. This is a similar pattern to the neural responses 

found in the auditory sites. However, the classical neuronal responses 

were quite inconsistent. Only the activity of the CM resembled the 

activity of the auditory nuclei throughout.

Finally, since an increasing neuronal trend was generally evident 

in all sites during instrumental conditioning and a decreasing one gen­

erally evident in all sites during classical conditioning, rather high 

correlation coefficients resulted from coefficients calculated between 

the neuronal and behavioral variables. Correlations as high as .96 (IC) 

ulted for instrumental conditioning and ones as high as -.88 (CM)res
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were obtained for classical conditioning. Very rarely in the literature 

are such high correlations found, especially when the responses of 

several animals are combined into an average.

In conclusion, the multiple unit method has proven in this study 

to be sufficiently sensitive and stable to provide fruitful clues for 

unraveling the enigma of brain-behavior relationships. Further develop­

ment of the method by further quantification and greater computer assis­

tance ought to prove even more fruitful.
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TABLE 7

HORSLEY-CLARKE COORDINATES FOR EACH SITE IMPLANTED

Site Antefior

AUDITORY SYSTEM
Dorsal Cochlear N. (Right)
Inferior Colliculus (Right)
Medial Geniculate (Left)
Brachium of the Inferior Colliculus (Right)

(-5.0)-(-8.0) 
(-2.7)-(-2.0) 
(4.0)-(4.5) 

(3.0)

RETICULAR SYSTEM
Mesencephalic Reticular (Right) 
Mesencephalic Reticular (Left) 
Medullary Reticular Nucleus (Left) 
Centrum Medianum (Left)
Central Lateral Thalamic N. (Right) 
Nucleus Centralis Medialis (Right) 
Nucleus Centralis Medialis (Left) 
Nucleus Reticularis (Right)

(2.0)
(2.0)
(-5.5)

(7.0)-(7.5) 
(9.5)
(9.0)
(9.0)

(9.5)-(12.0)

CORTEX
Right Anterior Ectosylvian 
Right Posterior Ectosylvian 
Left Anterior Ectosylvian 
Left Posterior Ectosylvian

(8.0) -(9.0)
(3.0)

(8.0) -(9.0)
(3.0)

MISCELLANEOUS SITES
Nucleus Ventralis Postero-medialis (Left) 
Area Hypothalamica Dorsalis (Left)
Nucleus Amygdaloideus Lateralis (Al) 
Hippocampus (Right)
Caudate Nucleus (Left)
Caudate Nucleus (Right)

(9.0) -(9.5) 
(10.5) 
(12.0)

(6.0) —(7.8) 
(15.0)-(15.3) 
(14.5)-(16.0)

Lateral Height

( 5 . 5 ) - ( 8 . 0 )
( 4 . 0 )

( 8 . 0 ) - ( 9 . 0 )
( 7 . 0 )

( 1 . 5 ) - ( 6 . 0 )  
(lO.O)-(ll.O) 
( - 1 . 0 ) - ( 0 . 5 )  

( - 1 . 0 )

( 2 . 0 )  - ( 4 . 5 )
( 2 . 0 )  - ( 4 . 0 )  

( 2 . 0 )
( 2 . 5 ) - ( 3 . 0 )

( 3 . 5 )
( 1 . 5 )  
( 1 . 0 )

( 6 . 0 )  - ( 8 . 5 )

( 1 5 . 0 )
( 1 5 . 0 )

( 1 5 . 0 ) - ( 1 6 . 0 )
( 1 5 . 0 )

( - 5 . 0 ) - (-1. 0 )  
( - 4 . 0 M - 1 . 0 )

( 3 . 0 )
( 0 . 0 ) - ( 1 . 0 )
( 2 . 0 ) - ( 2 . 7 )  oo 

( 0 . 0 )
( 0 . 0 )

( 2 . 5 ) —( 3 . 5 )

( 6 . 5 )  —( 7 . 0 )  
( 2 . 0 )

( 8 . 5 )  - ( 1 1 . 0 )
( 8 . 0 )  —( 1 2 . 5 )
( 4 . 0 )  - ( 4 . 5 )
( 3 . 5 )  - ( 5 . 0 )

( 0 . 5 ) - ( 1 . 0 )  
( - 3 . 0 )

( _ 6 . 0 ) - ( - 5 . 7 )  
( - 5 . 5 ) - (-2. 5 )  

( 4 . 0 ) —( 4 . 5 )  
( 2 . 4 ) - ( 5 . 0 )
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TABLE 8

STANDARD DEVIATIONS COMPUTED ON THE UNTRANSFORMED NEURONAL OBSERVATIONS FOR THE THREE DAY RUNNING AVERAGE 
FOR EACH SITE DURING HABITUATION, CLASSICAL CONDITIONING, INSTRUMENTAL CONDITIONING AND EXTINCTION

Site Habituation
Conditioning 

1/3 1/3 1/3
Total

Average Extinction
Number 
of Cats

AUDITORY SYSTEM
Dorsal Cochlear Class. .72 .21 .45 .52 .40 .31 4 of 5
Nucleus (Right) Instr. .52 .42 .06 .23 .24 .00 4 of 6

Inferior Colliculus Class. .46 .28 .48 .35 .37 .21 4 of 6
(Right) Instr. .39 .28 .24 .03 .17 .93 3 of 6

Medial Geniculate Class. .50 .45 .30 .37 .38 .20 5 of 7
(Left) Instr. .20 .30 .38 .37 .35 .41 6 of 6

Brachium of the Inferior Class. _ — — _ _ _ 1 of 2
Colliculus (Right) Instr. - - - - - - 1 of 1

RETICULAR SYSTEM
Mesencephalic Reticular N. Class. .45 .24 .24 .23 .24 .25 4 of 7
(Right and Left) Instr. .15 .36 .31 .49 .39 .48 4 of 7

Medullary Reticular Class. . — - - — - — 1 of 2
Nucleus (Left) Instr. .20 .56 .28 .35 .39 .16 2 of 2

Centram Medianum Class. .16 .20 .24 .26 .23 .14 3 of 4
(Left) Instr. .20 .20 .26 .38 .29 .39 3 of 4

Central Lateral Class. .30 .36 .36 .44 .39 .45 4 of 4
Thalamic Nucleus (Right) Instr. .47 .47 .53 .70 .57 .52 4 of 4



TABLE 8— Continued

Conditioning Total Number
Site

Nucleus Centralis 
Medialis (Right and Left)

Habituation

Class. .20 
Instr. .07

1/3

.37

.42

1/3

.58

.33

1/3

.79

.37

Average

.60

.37

Extinction

.36

.04

of Cats

2 of 2 
2 of 2

Nucleus Reticularis Class. - - - - - - 1 of 1
Anterior (Right) Instr. — — — — 1 of 1

Nucleus Reticularis Class. - - - - - - 1 of 1
Posterior (Right) Instr. “ — — “ “ 1 of 1

CORTEX
Right Anterior Class. 1.01 .68 .56 .49 .58 .60 4 of 4
Ectosylvian Instr. .37 .46 . 66 .54 .55 .51 4 of 4

Right Posterior Class. .51 .44 .43 .41 .42 .40 5 of 6
Ectosylvian Instr. .40 .31 .10 .07 .16 .56 4 of 6

Left Anterior Class. .38 .26 .23 .19 .23 .34 3 of 4
Ectosylvian Instr. .22 .32 .32 .39 .34 .69 4 of 4

Left Posterior Class. .53 .13 .25 .29 .23 .33 3 of 4
Ectosylvian Instr. .25 .35 .47 .63 .49 .49 4 of 5

MISCELLANEOUS SITES
Nucleus Ventralis Class. .29 .27 .39 .46 .37 .06 4 of 4
Postero-medialis (Left) Instr. .16 .28 .30 . 46 .35 .54 3 of 5

Area Hypothalamica Class. - - - - - - 1 of 1
Dorsalis (Left) Instr. - - - “ - - 1 of 1



TABLE 8— Continued

Conditioning Total Number
Site Habituation 1/3 1/3 1/3 Average Extinction of Cats

Nucleus Amygdaloideus Class. .49 .21 .10 .11 .14 .15 2 of 4
Lateralis (Left) Instr. .53 .34 .34 .47 .38 - 3 of 4

Hippocampus Class. — — - - - - 1 of 1
(Right) Instr. - .32 .17 .08 .18 .20 2 of 2

Caudate Nucleus Class. .59 .46 .33 .46 .42 .25 3 of 3
(Left and Right) Instr. .42 .44 .32 .41 .40 .14 3 of 3

Total Standard Deviation Class. .47 .33 .35 .38 .36 .29
Instr. .30 .36 .32 .37 .35 .40
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