

University of North Dakota
UND Scholarly Commons

Theses and Dissertations

Theses, Dissertations, and Senior Projects

8-1-1965

A Comparison of Two Groups of College Men, Isometrically and Isotonically Trained, With Respect to Strength Retention

Richard N. Haugen

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation

Haugen, Richard N., "A Comparison of Two Groups of College Men, Isometrically and Isotonically Trained, With Respect to Strength Retention" (1965). *Theses and Dissertations*. 3958. https://commons.und.edu/theses/3958

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

The thesis here abstracted, submitted by Richard N. Haugen in partial fulfillment of the requirements for the degree of Master of Science in the University of North Dakota, is hereby approved by the consittee under whom the work has been done.

U.C. Koeng John J. Quaday A.W. SturgES

Cliniscoplin & Has

A COMPARISON OF TWO GROUPS OF COLLECE MEN, ISOMETRICALLY AND ISOTONICALLY TRAINED, WITH RESPECT TO STRENGTH RETENTION

Richard N. Haugen, Master of Science

The thesis here abstracted was written under the direction of Walter C. Koenig and approved by John L. Quaday and Allyn W. Sturgis as members of the examining committee, of which Mr. Koenig was Chairman.

The purpose of this study was to determine the difference, if any, in the retention of strength obtained by taking part in a weight-training program of exercises as opposed to a program of isometric exercises.

The subjects selected for this study were freshman and sophomore male students at the University of North Dakots enrolled in the required physical education program. This selection was a random choice of one weight-training class and one isometric class. Both groups participated in their respective exercise programs for a period of eight weeks. At the end of the eight week training period, they participated in unrelated activities consisting of three weeks of slow-pitch softball and three weeks of golf.

Each group was tested relative to strength on four test items consisting of shoulder dips, back strength, leg strength, and forearm strength. These test items were administered at the beginning of the experimental period, after the eight weeks of training, and at the end of the six weeks of unrelated activity.

Comparisons were made between the mean differences within each group on each test item as indicated by the pre-test and

re-test, and the re-test and final test. The null hypothesis was assumed with respect to the differences within groups. This hypothesis was tested with the "t" technique for the difference between means derived from correlated scores from small samples. Comparisons were also made between the weight-training group and isometric group by testing the significance of the difference between the mean differences found within the groups. The between group comparison used the "t" technique for uncorrelated data from small samples.

Based on the results of this study, it seemed apparent that there were some differences in the retention of strength on test items within the groups. However, the treatment of the data with respect to the differences between the two groups indicated no significant difference at the .01 level of confidence.

71965

A COMPARISON OF TWO GROUPS OF COLLEGE MEN, ISOMETRICALLY AND ISOTONICALLY TRAINED, WITH RESPECT TO STRENGTH RETENTION

> by Richard N. Haugen B.S. in Physical Education Mayville State College

> > 1959

A Thesis

Submitted to the Faculty

of the

Graduate School

of the

University of North Dakota

in partial fulfillment of the requirements

for the Degree of

Master of Science

Grand Forks, North Dekota

August

This thesis, submitted by Richard N. Haugen in partial fulfillment of the requirements for the Degree of Master of Science in the University of North Dakota, is hereby approved by the committee under whom the work has been done.

W.C. Loenig Chateman John J. Quaday A.W. Stringes

ACKNOWLEDGEMENTS

The author wishes to express his grateful appreciation for the valuable assistance rendered by the many persons cooperating in this study. He particularly is indebted to Mr. Walter G. Koenig, whose constant guidance and assistance helped carry the entire work to its completion.

Appreciation is also extended to Dr. John Quaday for the helpful instruction, suggestions and criticism.

For their cooperation, understanding, and willingness during this investigation, a special thanks is extended to the University of North Dakota students who made up the groups in this study.

TABLE OF CONTENTS

				raye
ACKNOWL	EDGEMENTS		•	111
LIST OF	TABLES	*	•	vi
Chapter				
I.	THE PROBLEM AND ITS SCOPE		•	1
	The Problem	*		1
	Need for the Study			1
	Delimitations			3
	Baffinitione			14
	DETTITETORS	*		
11.	REVIEW OF RELATED LITERATURE AND RESEARCH		•	6
III.	PROCEDURE			14
	Calcabian of Concern			3.6
	Selection of Groups	*	*	14
	Test Administration			74
	Change Jam Dilan			
	Shoulder Dips			15
	Back Strength	*		16
	Leg Strength	*		16
	Forearm Strength	*	•	17
	Statistical Procedure		•	18
IV.	ANALYSIS OF THE DATA	•		20
	Results of Comparison		•	20
	Shoulder Dips Back Strength Leg Strength Forearm Strength			
۷.	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	•	•	82
	Summary			82
	Conclusions	1		33
	Recommendations			Qh
	**************************************			04
APPENDI	KA	*	•	36
APPENDI	K B • • • • • • • • • • • • • • • • • •			48
BIBLIOG	RAPHY	*		84

LIST OF TABLES

fable		Page
1.	Mean Scores in Tests of Subjects in Isometric Group and Weight-Training Group	28
2.	Mean Difference Increase Between the Pre-Test and Re-Test	29
3.	Nean Difference Decrease Between the Re-Test and Final Test	29
4.	"t" and the Significance of Difference Between the Pre-Test and Re-Test	30
5.	"t" and the Significance of Difference Between the Re-Test and Final Test	30
6.	"t" and the Significance of the Difference Between Groups Between the Re-Test and	
	FIRST TEST	31

CHAPTER I

THE PROBLEM AND ITS SCOPE

The Problem

The purpose of this study was to determine the difference, if any, in the retention of strength obtained by taking part in a weight-training program of emercises and a program of isometric exercises. Through this comparison of the effectiveness of different methods of attaining and maintaining physical strength and health, sounder application of these emercise programs may become possible.

The specific problems of this study were as follows:

1. To determine the strength levels of both groups in each test at the beginning of the experimental period.

2. To determine the strength increases of both groupe in each test during the experimental period.

3. To determine the strength retention of both groups in each test six weeks after the close of the experimental period.

Need for the Study

It is no longer necessary for man to devote all of his time to the basic task of survival. Man's use of the forces of nature have liberated him, to a great degree, from the slavery of heavy physical labor. Advances in technology and transportation now enable man to live a life of relative confort and case, free from the great expenditure of physical effort. However, man is the same organically, and the human body does not seem to have arrived at a state in which it remains functionally efficient in spite of inactivity and sedentary living. There is still a great need for strength.

It is generally known that a period of intense training will produce, among other things, an increase in strength in the muscles trained. Recently, weight-training has become a popular means of enercise used to develop strength. Such programs are a part of the required physical education courses offered at most universities and colleges. Although static contraction methods of gaining strength have been known for a great number of years, it is largely through the recent experimentation of the Germans, Hettinger and Muller,¹ that static contraction methods have become recognized as an extremely efficient method of strength development. Because strength is gained through specific training or vigorous activity, organic strength is frequently listed as an outcome or an objective of the physical education programs of various institutions. However, there seems to be little concern for, or precise knowledge about what happens

"Th. Hattinger and E. A. Huller, Nex-Planck Institut fur Arbeitsphysiologie, Dortmund, Germany, cited by James Lyne, "The Frequency of Static Contrection Exercise Necessary for Strength Level Haintonance," (Unpublished Master's thesis, Department of Physical Education, Pennsylvania State University, 1958) p.4.

to the strength that is developed once the training ceases. Host of the efforts in the investigations of strength have been devoted to strength development rather than strength maintenance or retention.

It has been semewhat widely accepted that upon termination of training, an individual's strength decreases or subsides to levels existing before the training began. It seems possible that experimentation in which the post-training strength levels of individuals are measured may yield knowledge and reveal new techniques in the area of strength development and retention. It is hoped that, through this study, some insight can be obtained in the area of strength retention following completion of isotonic and isometric programs of attaining strength increases.

Delimitations

This study was limited to University of North Dakots freehman and sophonore male students enrolled in the required physical education program. There were thirteen subjects in the isometric group and fourteen subjects in the weight-training group. The strength tests used were the shoulder dips on the parallel bars, back strength measured by a dynamometer, leg strength measured by a dynamometer, and forearm strength measured by a cable-tensiometer. These tests were administered at the beginning of the experimental period and at the end of the eighth week. These same tests were again administered after a six week period of participation in an unrelated activity. The experimental period was the second semester of the 1864-'65 school year.

Definitions

The Isometric Group consisted of thirteen male freshman and sophomore students, enrolled in the required physical education program at the University of North Dakota, that participated in isometric exercises for a period of eight weeks before taking part in an unrelated activity in which there were no isometric exercises.

The Weight-Training Group consisted of fourteen male freehman and sophomore students, enrolled in the required physical education program at the University of North Dakota, that participated in weight-training exercises for a period of eight weeks before taking part in an unrelated activity in which there were no weight training emercises.

The Isotonic Group is used interchangeably with the weight-training group throughout this study.

The Unrelated Activity consisted of golf and slow-pitch softball with the amount of time spent on each being equally divided.

Isotonic is a condition with muscles, in which the tension remains relatively constant during changes in muscle length.²

<u>Isometric</u> is a state of tension, in connection with muscles, in which the length of the muscle does not appreciably change.³

<u>Weight-training</u> consists of varied and numerous exercises performed by an individual with barbells and dumbells. The individual performs each exercise with numerous repetitions and sets.

²Robert X. Jenson, "The Measurement of Maximum Average Muscle Power and Its Relationship to Maximum Isometric Length," (Uspublished Education thesis, Department of Physical Education, University of Western Australia, 1983) p. 6.

3Ibid., p. 6.

<u>Dynamometer</u> is a spring based instrument used for the measuring of force or power developed by an object.

<u>Cable-tensionster</u> is a cable-tension type scale used for the measurement of muscular strength.

CHAPTER II

REVIEW OF RELATED LITERATURE AND RESEARCH

Introduction

The literature reviewed for this study has been divided into two soctions. The first section is concerned with comparative studies of weight-training and isometrics in regard to their effects on strength gains, endurance and muscle girth. Studies have shown varying effects on these three items and in many instances, the studies contradict one another. The second section is devoted to studies that have been done on strength retention and maintenance. The studies in this section generally relate to the subject of this study. Some of the important findings on these two subjects have been summarized in this chapter.

Comparative Studies on Weight-Training and Isometrics

Marley, in a study of the comparative effectiveness of isometric exercise and isotonic exercise in the development of muscular strength, endurance and girth, drew the following conclusions:

1. There is little difference in the effectiveness of isometric and isotonic emercises in the development of strength.

2. Isometric exercise is more effective in the development of isometric endurance.

"William Paul Marley, "The Comparative Effectiveness of Isometric Exercise and Isotonic Exercise in the Development of Muscular Strength, Endurance, and Cirth," (Unpublished Master's thesis, Department of Physical Education, University of Maryland, 1962) p. 62. Inotonic exercise is more affective in the development of lectonic enderence.

lessetric esercise is nore affective in the development of -8238-の時でののないない **

Isometric endurance and instants endurance appaar to be separate physiclogical phenemena. -

The strength of a muscle is not necessarily proportional to its girth as measured in this study. 6.

lectenic exercise progress were used, these conclusions ware drawn: In a similar study by Richardson,² where bring hemetric and The isotonic exercise group increased algoificantly over l.

the Laometric group at the 135 degree angle and both increased significently over the control group.

There The isotoale and isometric groups increased significantly was no statistically significant difference between the isometric In strength over the control group at the 115 degree angle. and isotonic groups. -

the same amount of weight on both the initial and final tests, showed The erose-trunsfer of strength was statistically significant The muscular andurance holding time, when measured by using group scores of the trained lag when compared to the control group a significant improvement for the combined inctenic and incontric for both isotonic and isometric emercies programs at both angles 3. 4.

ZJohn R. Riahardson, "The Effect of Brief Isometric and Isotonic Exercise Fregrements on the Development of Strength and Muscular Enderence," (Unpublished Mester's thesis, Department of Physical Education, University of Alberts, 1983) p. 96.

measured. There was no cross transfer of muscle endurence.

As the conclusions of the two previous studies are analyzed, both studies give indications that isotonic exercises are somewhat better in developing strength and endurance. However, these indications are contradicted in the next studies that are discussed.

Asa," in a study on the effects of isometric and isotonic exercises on the strength of skeletal muscle, drew the following conclusions:

1. All subjects in all groups showed significant increase in muscle strength.

2. The group utilizing a single isometric exercise routine, showed a greater increase in strength than the increase which was achieved by the group utilizing isotonic progressive resistance emercise routine.

3. The group stilling repetitive isometric exercise routine exceeded the former two groups in the gain of strength.

4. The group utilizing repetitive isometric exercise routine exhibited a higher level of endurance than the first two groups at the conclusion of the investigation.

5. There was no significant difference in the level of endurance exhibited between group A (isotonic) and group B (single isometric).

6. An effective manner to increase the strength and efficiency of skeletal muscle, in a relatively short period of time, is to submit it to a repetitive isometric exercise regimen while fixing the muscle in a position as close as possible to its natural resting length.

³N. Maxim Asa, "The Effects of Isometric and Isotonic Exercises on the Strength of Skeletal Muscle," (Unpublished Doctors dissertation, Department of Physical Education, Springfield College, 1959) p. 114.

Sullivan[®] made a study at Washington State University to determine the effects of static and isotomic exercise of the quadriceps on strength and endurance. From this investigation the conclusions were:

1. Ten maximal isotonic contractions of the quadriceps twice weekly for a six-week period produced significant gains in strength and endurance, and a slight less in knee joint flexibility.

2. Two consecutive six-second static contractions of the quadriceps twice weekly, for a six-week period, produced significant gains in strength and endurance, and significant loss in knee joint flexibility.

3. The subjects performing static exercise showed significantly better gains in strength than subjects performing isotopic exercises.

4. The subjects performing isotomic exercise showed significantly better gains in endurance than the subjects performing static exercise.

5. There was no significant hypertrophy of the quadriceps following either exercise regimen in this study.

As the conclusions of these two studies are analyzed, both give indications that isometric exercises are superior in developing strength. These contradictions bring out the point that a great deal more study is needed with the possibilities appearing to be endless.

⁶George Morris Sullivan, "The Effects of Isotonic and Static Contraction of the Quadriseps on Strength and Endurance," (Unpublished Master's thesis, Department of Physical Education, Washington State University, 1961) p. 44.

Studies on Retention and Maintenance of Strength

The beneficial effects of physical exercise on the physiclogical systems of the body have been supported repeatedly by experimental ovidence. In contrast, such less has been reported in the literature regarding what happons when training stops. It has been established, for example, that during the period following the cessation of training, strength decreases. There is also evidence that strength decreases at a slower rate if it has been acquired during a relatively longer period of training them if it has been gained during a shorter period.⁵

In 1958, Rawick and Larsen⁶ reported a study which compared the effectiveness of a single daily six-second exercise bout in which two-thirds maximum tension was used with an exercise program involving more frequent bouts at eighty per cent maximum tension. They divided thirty high school boys into two experimental groups and one centrol group and conducted strength tests periodically during a four week period. The gains achieved by the two experimental groups at the end of the training period were significant beyond the .01 level of confidence. Loss in strength during the four week post-training period was significant for both groups at the .05 level of confidence.

⁵E. A. Nuller, "The Regulation of Huscular Strength," <u>Journal</u> of the Association of Physical and Nental Rehabilitation, Volume 9, (March, April 1957) pp. 41-47.

⁵Lawrence G. Rarick and Gene L. Larsen, "Observations on Frequency and Intensity of Isometric Muscular Effort in Developing Static Muscular Strength in Post-Public Males," <u>Research Quarterly</u>, Volume 29, (October 1958) pp. 333-341.

The difference between the two experimental groups, while not significant, showed that the group which employed the higher tension level for longer periods of time, retained the most strength.

In a survey of the literature regarding isotonic and isometric exercises, Lyne⁷ found that abort periods of training will produce an increase in strength, and that static contraction exercises may be employed very advantageously as a means of gaining strength. Strength was usually found to decrease after the cessation of training. However, is most instances the level of strength, when measured following a period of inactivity, semetimes as long as a year, revealed a level higher than the original value recorded before the training. There are some indications that a longer time spent in the training may retard the rate of decline of strength, even if the total amount of exercise is the same in both cases.

Lyne⁸ concluded from his study on strength maintenance that:

1. The strength level schieved rapidly during an eight-week session of weight-training declines after the constition of that training.

2. Training once weekly with static contraction exercises-maximum exertion for six seconds per muscle group--significantly increases a newly acquired level achieved through eight weeks of weight-training.

⁷Lyne, loc. cit., p. 25 ⁸Lyne, loc. cit., pp. 62-63.

3. A newly acquired strength level, achieved during eight weeks of weight-training can be maintained by training with static contraction exercises once every week for an additional period of eight weeks.

5. Training with static contraction exercises once every three weaks for nine weeks following the achievement of a new strength level is not sufficient to maintain that strength level.

Nettinger and Nuller used short periods of static muscular effort with tension levels maintained at two-thirds maximum isometric strength.⁹ They reported that one daily exercise bout in which the subject maintained two-thirds maximal tension for six seconds was as effective in building strength as longer and more frequent periods of static exercise. The resulting gain is strength was approximately five per cent per week. With the termination of the training program, the investigators found that the loss of strength occurred at about the same rate as that achieved during training.¹⁰

⁹Th. Hettinger and E. A. Muller, "Huskelleistung and Muskeltraining," <u>Internationale Zeitschrift fur Angewandte Physiologie (Arbeitsphusiologie)</u> Volume 15, (1953) pp. 111-126, cited by James Lyne, "The Frequency of Static Contraction Exercise Necessary for Strength Level Maintenance," (Unpublished Master's thesis, Department of Physical Education, Fennsylvania State University, 1958) p. 5.

10Ibid

11 Ibid, p. 69, quotation from a letter (Dr. E. A. Muller to James Lyne)

In a study on the changes in the physical status of varsity and freehman wrestlers at the University of Oregon following a six week consection of organized team practices and competition, Hassman¹² found that the subjects showed a significant increase in ellow flexor strongth following the six week consation period. There was also a significant change in arm girth. Although the correlations between body weight and ellow flexor strength were significant in both the initial and final testings, the correlations between increases in body weight and ellow flexor strength were not significant. It therefore cannot be concluded, on the basis of these findings, that an increase in body weight was a factor in the increase of ellow flexor strength.¹³

Although many of the findings regarding physiological changes following discontinuance of training are not in agreement, there is a general belief among coaches and athletes that training should not be discontinued abruptly.

Pohndowf14 stated, in a review of cholesterol studies, that keeping double calorie intake but discontinuing the exercise for three weeks during which they took part in the control level of activities, the subjects gained weight with a marked increase in serum cholesterol

¹²Ralph P. Hassman, "Changes in the Physical Status of Varsity and Freshman Wrestlers at the University of Oregon Following a Six Week Cessation of Organized Team Practices and Competition," (Unpublished Fh.D. Dissertation, Department of Physical Education, University of Oregon, 1961) p. 63.

13 Ibid

14R. H. Pohndorf, "Cholesterol Studies: A Review", Research Quarterly, Volume 29, (Nay 1958) p. 190.

levels. During this period the subjects becaus fat, their collars and belts became tight, complexion became sallow, and they complained of fitful hours of sleep.

From the review of literature, there is evidence that there are many variables, many varying findings, and many varying opinions in regard to strength maintenance and retention. There is little evidence, however, as to which type of exercise, isotonic or isometric, tends to enhance strength retention more.

CHAPTER III

PROCEDURE

The tests were administered in accordance with the recommendations and instructions of Professor Koenig, Department of Physical Education, University of North Dakota and a procedure described in Mathew's¹ <u>Measurement in Physical Education</u>. The method and procedure used in group selection, organization and supervision of the testing have been presented in this chapter.

Selection of Groups

The selection of the groups was a random choice of two physical education classes at the University of North Dakota. One group was known as the isometric group and the other was known as the weighttraining group. The groups were not equated in any way.

Test Administration

The facilities of the University of North Dakota Physical Education Department were used for the administration of the tests. The shoulder dips were completed on the parallel bars in the apparatus room. The back strength and leg strength test was given in the research laboratory of the department. The order in which the tests were given was the same during each testing session as follows: (1) shoulder dips, (2) back strength, (3) leg strength, and (4) forearm strength. The choice of this order was a matter of convenience. The subjects were given

¹Donald K. Mathews, Measurement in Physical Education, (F.iladelphia: W. B. Saunders Company, 1983) pp. 88-71. instruction on the execution of each test each of the three times they were administered as follows:

1. Fre-test given at the beginning of the semester to determine the strength levels of the groups.

2. Retest given at the end of the eighth week to determine the attained strength levels of the groups.

3. Final test given at the end of the fourteenth week to determine the retention of strength after a six week period of participation in an unrelated activity.

Shoulder Dips

Equipment: A regular set of parallel bars set at approximately the shoulder height of the individual.

<u>Procedure</u>: The bare were gripped in a normal "handshake" grip with the individual standing on the floor. The subject mounted the bars, using his arms to raise himself to an erect position. The subject raised and lowered himself as many times as possible.

Rules: 1. The subject was given a credit of one for mounting the bars.

2. The subject dips to the point where the elbow forms a right angle. The summiner notes this point and the subject lowers himself to it each time he dips down.

3. A credit of one-half was given if the subject was unable to get all the way up. Only one of these half credits was counted and the test ended at this point.

4. Swinging was not allowed.

Scoring: The number of dips, to the nearest half, was recorded.

Back Strength

Equipment: The equipment for this test consisted of the dynamometer, two short chains with hooks attached, and a dynamometer base with a hook attached.

<u>Procedure</u>: The subject stood on the dynamometer base with feet parallel and about six inches apart. The ankle joint was as nearly opposite the attachment of the dynamometer to its base as possible. The subject stood with head erect, back straight, and chalked fingers entending down the thighs. The examiner held the bar at the tips of the subject's fingers to obtain proper adjustment. The bar was then connected to the chain. The subject bent alightly forward, with knees straight, and grasped the bar near either end with a pronated grip. The subject lifted straight up as hard as possible.

Rules: 1. One trial was allowed unless it was obvious that the subject did not execute the procedure properly.

2. The knees must remain straight.

3. The arms must remain straight; only the back exerts pressure.

Scoring: The pounds of pressure indicated on the dynamoster dial were recorded.

Leg Strength

Equipment: The equipment for this test consisted of the dynamomater, web belt, two short chains with hooks attached, and a dynamometer base with a hock attached.

Procedure: The subject assumed the same position as in the back lift. The web belt was used around the subject's hips to stabilize

the bar. The bar was grasped near its center with the palms of the hunds in a pronated position. The subject, with head up and back straight, bent his knees so that an angle of 115 to 125 degrees was formed. The bar was on the subject's thighs during the lift. The pressure was exerted straight up and at the completion of the lift the subject's knee joints were almost completely extended to insure maximum offort.

Rules: 1. One trial was allowed unless it was obvious that the subject did not execute the procedure properly.

2. The starting position angle of the flexed knees must be within the prescribed limits.

3. The back must remain straight.

4. The arms must remain straight; only the legs exert pressure.

Scoring: The pounds of pressure indicated on the dynamometer dial were recorded.

Forearm Strength

Equipment: The equipment for this test consisted of a cabletensioneter, a short chain, a short cable one-eighth inch in diameter, and a handle all of which were connected, and a table. In the center of the table was a hook that was used to attach the chain.

<u>Procedure:</u> The subject took a position on his knees with his dominant arm on top of the table resting on its elbow. The other arm was loosely extended at his side. The dominant arm was extended at an angle of approximately 120 to 135 degrees with the arm pit above the lovel of the table top. The subject gripped the handle of the cable in his hand and the chain was attached to the book on the table. The cable-tensioneter was attached to the cable and the dial set at zero. The pressure was exerted by flexing the forearm in a steady pull toward the body.

Rules: 1. One trial was allowed unless it was obvious that the subject did not execute the procedure properly.

2. The starting position angle of the flaxed elbow must be within the prescribed limits.

3. Both knows must remain on the floor.

4. The non-dominant arm must remain loosely extended at the subject's side.

Scoring: The test was scored by taking the scale reading on the cable-tensioneter and converting it to pounds by using the Calibration Table that corresponds with the cable-tensioneter used in the test.

Statistical Procedure

This investigator assumed the null hypothesis in analyzing the differences between the means obtained on the initial test and the retest, and between the means obtained on the retest and the final s strength test. That hypothesis² asserts that there is no true difference between the two mean scores, and the difference found between the sample means is a chance difference and is accidental and unimportant. Investigation of several possible tests of the null hypothesis indicated

²Quinn McNemar, <u>Psychological Statistics</u>, (New York: John Wiley and Sons, Inc., 1949) p. 225.

that the "t" technique for testing the significance of the difference between means derived from correlated scores from small samples was suitable for use in this study. This test determines the ratio between the mean difference and the estimate of sempling error of the mean difference. This ratio is empressed as "t" and is checked for significance in a "t" table. The value of "t" is proportional to the degrees of freedom (N-1) allowed in determining the relationship between the mean difference and the estimate of sampling error of the mean difference.

For this study it was decided to reject the null hypothesis at the .01 level of significance.

Complete data including mean differences and raw scores are presented in Appendix A. Details of the mathematical process employed in the analysis for each testing area is presented in Appendix B.

CHAPTER IV

ANALYSIS OF THE DATA

The purpose of the testing in this study was to determine whether or not there were any significant differences in the retention of strength within groups and between the isotonic group as compared to the isometric group. The bases for comparison were the results obtained from the three tests used for measuring the levels of strength.

Results of Comparison

Shoulder Dips

The isometric group had a mean score of 10.6538 shoulder dips in the pre-test and a mean score of 16.2692 shoulder dips in the re-test which measured shoulder girdle strength and endurance. This represented a mean difference increase of 5.615% between the pre-test and the re-test. The estimate of the sampling error of this mean difference was .3%6. The "t" value of 16.66 with 12 degrees of freedom indicated significance at the .01 level of confidence, and the null hypothesis was therefore rejected.

The isometric group had a mean score of 14.6538 on the final test which represented a mean difference decrease of 1.6454 from the re-test mean score. The estimate of the sampling error of this mean difference was .566. The "t" value of 2.658 with 12 degrees of freedom was not significant at the .01 level of confidence, and the null hypothesis was therefore retained. The weight-training group had a mean score of 12.7142 shoulder dips in the pre-test and a mean score of 21.1428 shoulder dips in the re-test. This represented a mean difference increase of 8.4286 between the pre-test and the re-test. The estimate of the sampling error of this mean difference was .989. The "t" value of 8.866 with 13 degrees of freedom indicated significance at the .01 level of confidence, and the null hypothesis was therefore rejected.

The weight-training group had a mean score of 19.1071 on the final test which represented a mean difference of 2.0357 from the re-test mean score. The estimate of the sampling error of this mean difference was .39. The "t" value of 1.19 with 18 degrees of freedom was not significant at the .01 level of confidence, and the null hypothesis was therefore retained.

Both groups gained significantly in shoulder girdle strength during the eight weeks of training, and neither group lost significantly during the six weeks following cessation of training.

Back Strongth

In the pre-test of back strength, the isometric group had a mean score of \$19.2307 pounds; in the re-test this group had a mean score of \$10.0 pounds. A mean difference increase of 90.7693 pounds between the pre-test and the re-test was shown. The estimate of the sampling error of this mean difference was 15.909. The "t" value of 6.271 with 12 degrees of freedom was significant at the .01 level of confidence, and the null hypothesis was therefore rejected. The isometric group had a mean score of 373.4615 pounds on the final test which produced a mean difference decrease of 36.5885 pounds from the re-test mean score. The estimate of the sampling error of this mean difference was 10.732. The "t" value of 3.405 with 12 degrees of freedom indicated significance at the .01 level of confidence and the null hypothesis was therefore rejected.

The weight-training group had a mean score of 303.5714 pounds in the pre-test and a mean score of 350.0 pounds in the re-test. This was a mean score increase of 46.4286 pounds. The estimate of the sampling error of this mean difference was 14.764. The "t" value of 3.145 with 13 degrees of freedom indicated significance at the .01 level of confidence, and therefore the null hypothesis was rejected.

The weight-training group had a mean score of 323.9265 pounds on the final test which produced a mean difference decrease of 26.0715 pounds from the re-test mean score. The estimate of the sampling error of this mean difference was 9.334. The "t" value of 2.937 with 13 degrees of freedom was not significant at the .01 level of confidence, and the null hypothesis was therefore retained.

Both groups gained significantly in back strength during the eight works of training and the loss of strength by the weighttraining group was not significant during the six weeks following cessation of training. The isometric group had a significant loss of strength during the six weeks following the cessation of training.

Leg Strength

The isometric group had a mean coure of 354.6153 pounds in the pre-test and a mean score of 757.6925 pounds in the ro-test. A mean difference increase of 203.077 pounds was shown. The estimate of the sampling error of this mean difference was 32.308. The "t" value of 6.2066 with 12 degrees of freedom indicated significamee at the .01 level of confidence, and therefore the null hypothesis was rejected.

The isometric group had a near score of 786.923 pounds on the final test which resulted in a mean difference decrease of 20.7693 pounds from the re-test mean score. The estimate of the sampling error of this mean difference was 25.218. The "t" value of .488 with 12 degrees of freedom was not significant at the .01 level of confidence, and the mult hypothesis was therefore retained.

In the pro-test of leg strength, the weight-training group had a mean score of 377.5 pounds; in the re-test this group had a mean score of 570.0 pounds. A mean score difference increase of 192.5 pounds between the pro-test and re-test was shown. The estimate of the sampling error of this mean difference was 18.485. The "t" value of 11.713 with 13 degrees of freedom indicated significance at the .01 level of confidence, and the pull hypothesis was therefore rejected.

The weight-training group had a mean score of 509.6428 pounds on the final test which was a mean difference decrease of 60.3572 pounds from the re-test mean score. The estimate of the sampling

error of this mean difference was 16.353. The "t" value of 3.778 with 13 degrees of freedom indicated significance at the .01 level of confidence, and the null hypothesis was therefore rejected.

Both groups gained significantly in leg strength during the eight weeks of training and the loss of strength by the isometric group during the six weeks following cessetion of training was not significant. The weight-training group had a significant loss of strength during the six weeks following the cessation of training.

Foreare Strongth

In the pre-test of forearm strength, the isometric group had a mean score of 88.6923 pounds; in the re-test this group had a mean score of 93.9231 pounds. A mean score difference increase of 5.2308 pounds was shown. The estimate of the sampling error of this mean difference was 2.06. The "t" value of 2.538 with 12 degrees of freedom was not significant at the .01 level of confidence, and the null hypothesis was therefore retained.

The isometric group had a mean score of 98.9231 pounds on the final test which was a mean difference decrease of 5.0 pounds from the re-test mean score. The estimate of the sampling error of this mean difference was 1.121. The "t" value of 4.46 with 12 degrees of freedom indicated significance at the .01 level of confidence, and the null hypothesis was therefore rejected.

The weight-training group had a mean score of 84.5714 pounds on the pre-test and a mean score of 98.7142 pounds on the re-test. This was a mean difference increase of 12.1428 pounds. The estimate

3時

of the sampling error of this mean difference was 3.288. The "t" value of 3.605 with 13 degrees of freedom indicated significance at the .01 level of confidence, and the null hypothesis was therefore rejected.

In the final test, this group had a mean score of 95.7142 pounds which was a mean difference decrease of 1.0 from the retest mean score. The estimate of the sampling error of this mean difference was 1.30. The "t" value of .734 with 13 degrees of freedom was not significant at the .01 level of confidence, and the null hypothesis was therefore retained.

The isometric group did not gain forearm strength significantly during the eight weeks of training but lost forearm strength significantly during the six weeks following constition of training. The weight-training group gained forearm strength significantly during the eight weeks of training but did not lose forearm strength during the six weeks following the constition of training.

To determine if there was any significant difference between the two groups in the retention of strength, it was decided to treat the data for possible differences between the two groups. The sull hypothesis was assumed with respect to the differences between the two groups on values of mean differences found with the groups between the re-test and final test. The sull hypothesis was tested in this case by the use of the "t" technique for uncorrelated data from small samples.¹

1 Ibid., p. 223.

Shoulder Dips

The mean difference decrease between the re-test and the final test was 1.6454 shoulder dips for the isometric group and 2.0357 shoulder dips for the weight-training group. The difference between the mean differences of the two groups was 1.1151 shoulder dips. The estimate of the sampling error for the distribution of the differences between the mean differences was .687. The "t" value resulting from the relationship of the actual difference between the mean differences of the two groups and the estimate of the sampling error for the distribution of the differences between the mean differences was 1.675. With 25 degrees of freedom, this "t" value indicated no significant difference between the two groups and therefore the null hypothesis was retained.

Back Strength

The mean difference decrease between the re-test and the final test was 36.5385 pounds for the isometric group and 26.0715 pounds for the weight-training group. The difference between the mean differences of the two groups was 10.467 pounds. The estimate of the sampling error for the distribution of the differences between the mean differences was 14.248. The "t" value resulting from the relationship of the actual difference between mean differences of the two groups and the estimate of the sampling error for the distribution of the differences between the mean differences was .735. With 25 degrees of freedom this "t" value indicated no significant difference between the two groups and therefore the null hypothesis was retained.
Log Strength

The mean difference decrease between the re-test and the final test was 20.7693 pounds for the isometric group and 60.3572 pounds for the weight-training group. The difference between the mean differences of the two groups was -49.478 pounds. The estimate of the sampling for the distribution of the differences between mean differences was 30.056. The "t" value resulting from the relationship of the actual difference between the mean differences of the two groups and the estimate of the sampling error for the distribution of the differences between the mean differences was 1.646. With 25 degrees of freedom, this "t" value indicated no significant difference between the two groups and therefore the null hypothesis was retained.

Forearn Strength

The mean difference decrease between the re-test and the final test was 5.0 pounds for the isometric group and 1.0 pounds for the weight-training group. The difference between the mean differences of the two groups was 4.0 pounds. The estimate of the sampling error for the distribution of the differences between the mean differences was 1.763. The "t" value resulting from the relationship of the actual difference between the mean differences of the two groups and the estimate of the sampling error for the distribution of the differences between the mean differences was 2.269. With 25 degrees of freedom this "t" value indicated no significant difference between the two groups and therefore the null hypothesis was retained.

HEAN SCORES IN TESTS OF SUBJECTS

ISOMETRIC GROUP

	Pre-Test	Re-Test	Final Test
Shoulder Dips	10,6638	16,2692	14.6538
Back Strength	319.2307	410.0000	373.4615
Leg Strength	554.6153	757.6923	736.9230
Forearn Strength	88.6923	93.9231	88.9231

WEIGHT-TRAINING GROUP

	Pro-Test	Ro-Test	Final Test
Shoulder Dips	12.7142	21.1428	19.1071
Back Strength	303.5714	350.0000	323.9285
Leg Strength	377.5000	570.0000	509.6428
Forearm Strength	84.5714	96.7142	95.7142

MEAN DIFFERENCE INCREASE BETWEEN THE PRE-TEST AND RE-TEST

	Isometric Group	Weight-Training Group
Shoulder Dips	5.6154	8.4286
Back Strength	90.7693	46,4285
Leg Strength	203.0770	192.5000
Forearm Strength	5,2308	12,1428

TABLE 3

MEAN DIFFERENCE DECREASE BETWEEN THE RE-TEST AND FINAL TEST

	Isometric Group	Weight-Training Group
Shoulder Dips	1.6454	2.0357
Back Strength	36.5365	26.0715
Leg Strength	20.7693	60.3572
Forearn Strength	5.0000	1.0000

"t" AND THE SIGNIFICANCE OF DIFFERENCE BETWEEN THE PRE-TEST AND RE-TEST

Area of	"t" Value of	"t" Value of
Comparison	Isometric Group	Weight-Training Group
Shoulder	16.68 Significant	6.866 Significant
Dips	at .01 level	at .01 level
Back	6.271 Significant	3.145 Significant
Strength	at .01 Level	at .01 level
Leg	6.286 Significant	11.713 Significant
Strength	at .91 level	at .01 level
Forearn	2.539 Not Significant	3.606 Significant
Strength	at .01 level	at .01 level

"t" AND THE SIGNIFICANCE OF DIFFERENCE BETWEEN THE RE-TEST AND FINAL TEST

Area of	"t" Value of	"t" Value of
Comparison	Isometric Group	Weight-Training Group
Shoulder	2.853 Not Significant	1.190 Not Significent
Dips	at .01 level	at .01 level
Back S	3.405 Significant	2.973 Not Significant
Strength	at .01 level	at .01 level
Leg	.488 Not Significant	3.778 Significant
Strength	at .01 lavel	at .01 level
Forearn	4,460 Significant	.734 Not Significant
Strength	at .01 level	at .01 level

"t" AND THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN GROUPS BETWEEN THE RE-TEST AND FINAL TEST

Area of	"t" Value and
Comparison	Significance
Shoulder	1.675 Not Significant
Dips	at .01 level
Back	.735 Not Significant
Strength	at .01 level
Leg	1.646 Not Significant
Strength	at .01 lavel
Foreara	2.269 Not Significant
Strength	at .01 level

CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The purpose of this study was to determine the difference, if any, in the retention of strength obtained by taking part in a weight-training program of exercises as opposed to a program of isometric exercises.

The subjects selected for this study were freshman and sophomore male students at the University of North Dakota enrolled in the required physical education program. This selection was a random choice of one weight-training class and one isometric class. Fourteen subjects made up the weight-training group and thirteen subjects made up the isometric group. Both groups participated in their respective exercise programs for a period of eight weeks. At the end of the eight week training period, the subjects participated in unrelated activities consisting of three weeks of slow-pitch softball and three weeks of golf.

Each group was tested relative to strength on four test items consisting of shoulder dips on parallel bars, back strength measured by a dynamometer, leg strength measured by a dynamometer, and forearm strength measured by a cable-tensiometer. These test items were administered at the beginning of the experimental period, after eight weeks of training, and at the end of the six weeks of unrelated activity.

Comparisons were made between the mean differences within each group on each test item as indicated by the pre-test and re-test, and the re-test and final test. The null hypothesis was assumed with respect to the differences within the groups. This hypothesis was tested with the "t" technique for the difference between means derived from correlated scores from small samples. Comparisons were also made between the weighttraining group and isometric group by testing the significance of the difference between the mean differences found within the groups. The between group comparison used the "t" technique for uncorrelated data from small samples.

Conclusions

The following conclusions seem warranted on the basis of the data collected in this study.

 The weight-training group gained significantly at the .01 level of confidence in all test items during the eight week training period.

2. The isometric group gained significantly in all test items at the .01 level of confidence except forearm strength during the eight week training period.

3. The weight-training group had a significant leg strength loss during the six weeks following the cessation of training but had no significant losses in the other three test items.

4. The isometric group had significant losses in back and forearm strength during the six weeks following the cessation of training but had no significant losses in leg or shoulder strength.

5. Based on the results of this study, it seems apparent that there were some differences in the retention of strength on test items within the groups. However, the treatment of the data with respect to the differences between the two groups indicated no significant difference at the .01 level of confidence with respect to strength retention.

6. From this treatment of the data it was concluded that there is no difference in the retention of strength obtained by taking part in an isometric program of exercises as compared to a weight-training program of exercises.

Recommendations

1. It is recommended that further investigations be made in this area using more subjects, longer training periods, and longer cessation periods.

2. It is recommended that a similar study be conducted to determine if the retention of strength from the accentric method of gaining strength (a forceful elongation of a contracting muscle) is significantly different than the isometric or isotonic methods.

3. It is recommended that a similar investigation be conducted to determine if there are any significant differences in the retention of strength between a control group and groups using isometric, isotonic, and eccentric methods of obtaining strength.

4. It is recommended that a similar study be conducted to determine the effects on strength retention of using more frequent exercise bouts to obtain strength.

5. It is recommended that investigations be made relative to strength retention when the exercise bouts concentrate on endurance training.

6. Because the strength gained by the isometric group in the forearm was not significant and the loss of strength was significant, and because the forearm strength gain for the isotonic group was significant and the strength loss was not significant, it is recommended that studies be conducted to determine whether similar results will be consistently obtained or whether these findings were phenomena particular to this study alone.

INDIVIDUAL SCORING CARD

	NANE			
		PRE-TEST	RE-TEST	PINAL TEST
SHOULDER DIPS				
BACK STRENGTH				
LEG STRENGTH			-	
FOREARN STRENGT	(H			

SPECIFIC TEST ITEM SCORES

37

GROUP-Isometric

TEST-Shoulder Dips

Subject	Pre-Test	Re-Test	Final Test
1.	12.0	19.0	15.0
2.	5.0	8.0	10.0
8.	14.0	16.5	16.0
4.	12.0	18.5	15.0
5.	16.0	24.5	20.0
6.	9.0	17.5	18.5
7.	24.0	18.0	16.5
8.	5.0	9.5	8.5
9.	11.0	17.5	14.5
10.	10.0	16.0	15.0
11.	11.0	18.0	17.0
12.	10.5	20.0	15.0
13.	9.0	10.5	9.5
	-		
SUN	1 = 130.5	211.5	190.5
NEA	N = 10.6538	18,2692	14.6538

SPECIFIC TEST ITEN SCORES

GROUP-Isometric

TEST-Back Strength

ubject	Pro-Test	Re-Test	Final Test
1.	360	470	450
2.	290	940	390
3.	280	840	600
-	380	540	530
5.	290	450	430
6.	820	450	460
7.	260	360	300
8.	260	280	260
9.	290	810	800
10.	850	480	415
11.	280	410	300
32.	290	900	290
18.	890	900	390
an and	-	-	-
	UN = 4140.0	5380.0	4855.0
10	EAN = 319.2307	410.0	873.4615

SPECIFIC TEST ITEM SCORES

GROUP-Isometric

TEST-Leg Strength

Subject	Pro-Test	Re-Test	Final Test
1.	640	990	950
2.	400	570	520
3.	600	880	770
4.	800	850	880
5.	620	650	800
6.	650	870	850
7.	400	610	570
8.	340	650	570
9.	800	530	540
10.	650	820	700
11.	560	580	650
12.	590	860	850
13.	560	880	990
		-	astroposta
	UN = 7210.0	9850.0	9580.0
	EAN = \$54.6153	757.6923	738.923

SPECIFIC TEST ITEM SCORES

GROUP-Isometric

TEST-Forears Strength

ubject	Pre-Test	Re-Test	Final Test
1.	95	107	102
2.	80	72	67
3.	77	98	92
b ,	125	120	110
5.	105	112	105
6.	102	100	87
7.	80	80	75
8.	92	83	80
9.	72	75	78
10.	05	95	87
11.	83	92	67
12.	77	87	83
13.	100	105	103
	-		
	SUN = 1153.0	1221.0	1155.0
and the back	MEAN = 88.6923	93.9231	88.9291

SPECIFIC TEST ITEN SCORES

GROUP-Weight-Training

TEST-Shoulder Dips

ubject .	Pro-Tost	Re-Test	Pinal Test
2.	17.5	30.5	28.5
2.	12.0	23.5	20.0
3.	8.0	27.5	19.0
łó.,	12.0	18.5	19.0
5.	10.0	18.5	17.0
6.	9.0	19.5	19.0
7.	12.0	11.5	10.5
8.	16.5	28.5	22.0
9.	16.5	28.0	29.0
10.	15.0	24.0	23.0
12.	8.0	11.0	10.0
12.	16.0	20.5	20.0
18.	16.0	23.0	28.0
14.	9.5	19.5	13.5
	SUN = 178.0	296.0	267.5
1255	NEAN = 12.7142	22.1428	19.2071

SPECIFIC TEST ITEM SCORES

GROUP-Weight-Training

TEST-Back Strength

Subject	Pro-Test	Re-Test	Final Test
1.	800	440	425
2.	290	290	260
3.	310	830	320
h.	880	400	410
5.	250	270	285
6.	820	400	385
7.	240	240	250
8.	820	830	820
9.	385	350	290
10.	250	840	\$10
11.	250	340	300
12.	295	450	880
13.	380	420	400
16.	330	300	250
		emisters.	
	SUN = 4250.0	4900.0	4535.0
	NEAN = 308.5714	350.0	323.9285

SPECIFIC TEST ITEM SCORES

GROUP-Weight-Training

TEST-Log Strength

Subject	Pro-Test	Re-Test	Final Test
1.	350	460	445
2.	275	890	350
3.	385	560	560
4.	520	830	650
5.	370	590	510
6.	390	610	450
7.	810	520	500
8.	300	480	460
9.	450	740	700
10.	350	560	540
11.	810	840	430
12.	385	600	540
23.	490	670	550
24.	400	560	450
		-	
SUI	s = 5285.0	7980.0	7135.0
NE	AN = 377.5	570.0	509.6428

88-7142	2427.36	*T45**8 = HV3	
7300*0	0*45ET	IN = 378#*0	
508	OTT	700	*4T
708	T03	500	73*
EOT	SOT	T00	75*
08	48	15	•11
96	700	85	*0T
750	477	08	*6
46	46	18	
700	06	85	•4
48	09	44	*9
84	04	09	*9
700	708	100	**
85	86	25	•6
TOB	SOT	96	3*
85	88	18	7 .
Final Teat	7897-6X	1001-044	200[08

TEST-Forears Strength

Baialest-Jdglew-SUORD

-

SPECIFIC TEST ITEN SCORES

CUNULATIVE TEST ITEN SCORES

GROUP-Isometric

TEST-Pro-Test

Subject	Shoulder Dips	Reak Strength	Log Strongth	Forearn Strength
2.	12.0	360	640	98
2.	5.0	200	400	60
3.	14.0	280	600	77
4.	12.0	860	800	125
5.	10.0	290	620	105
6.	9.0	420	650	102
7.	14.0	280	000	80
8.	5.0	260	340	92
9.	11.0	290	400	72
10.	10.0	350	850	85
11.	11.0	280	580	88
12.	20.5	290	690	77
13.	9.5	290	560	100
	No colorador a color	Statutes .	-	AND COLORED
8	UN © 138.5	4150.0	7210.0	1183.0
and the second se	CAN = 10.6538	\$19.2307	554.6153	88.6923

GROUP-Weight-Training

TEST-Pro-Test

lubject	Shoulder Dips	Back Strength	Leg Strength	Forearm Strength
1.	17.5	300	850	75
2.	12.0	290	275	95
3.	8.0	310	385	72
4.	12.0	300	520	104
5.	10.0	250	370	60
6.	9.0	320	390	77
7.	12.0	200	810	92
8.	16.5	320	300	75
8.	16.5	885	450	00
10.	19.0	250	850	82
11.	0.0	250	810	72
12.	16.0	295	385	100
13.	16.0	380	490	200
10.	9.5	980	400	100
		-		
	un = 178.0	4250.0	5265.0	1184.0
	EAN = 12.7142	303.5714	377.5	84.5714

	Forearn Strength	107	72	83	120	112	100	60	83	75	68	92	67	105	-	1001 0	747740	1628.38		Forearm Strength	86	105	03	108	70	08	81	18	111	84	107	TOS	110	1	1354.0	96.7142
EST-Re-Test	Leg Strength	066	570	880	850	660	970	810	650	530	820	580	860	080	1		D*DCGA	757.6923	TEST-Re-Test	Leg Strength	460	390	560	830	290	ero	520	0.14	042	840	500	670	550	1	7960.0	570.0
-	back Strength	470	340	Otata	540	#50	1150	360	280	310	180	410	400	00#	1		2330.0	\$10°0		Back Strength	0440	290	330	004	270	004	240	330	000	Care Care	450	\$20	300	1	0*006#	350.0
rtrie	ioulder Dips	19.0	0.0	16.5	36.5	24.5	17.5	10.0	9.5	17.5	16.0	18.0	20.0	30.5			= 211.5	= 16,2692	ight-Training	Shoulder Dips	30.5	23.5	27.5	18.5	19.5	19.5	11.5	23.5	23.0	23.0	20.5	23.0	13.5	-	M = 296.0	AH = 21.1428
GROUP-Isome	Subject Sh	1.	2.	8.		5.	6.	7.	8.	9.	10.	11.	12.	13.			• EDS	• ICA31	GROUP-Wei	Subject	2.	2.	3.	4.	5°	6.	7.	8			12.	13.	34.		SU	1

CUMULATIVE TEST ITEM SCORES

ROUP-184	metric		TEST-Final	
ubject	Shoulder Dips	Back Strength	Leg Strength	Forears Strength
1.	15.0	M50	950	102
2.	10.0	330	520	63
з.	16.0	001	770	92
***	15.0	530	880	110
5.	20.0	430	800	105
° 0	18.5	460	850	18
7.	16.5	300	570	75
	0°0	260	520	80
	24.5	800	540	78
10.	15.0	576	700	6
	17.0	002	650	10
12.	10.0	Zac	850	80
i		~~~	Noc	0.00
	1	1	1	1
03	f = 190.5	#855.0	9580.0	1156.0
ALC: NO	AN = 14.6538	373.4615	736.923	88,9231
ROUP-Wei	leht-Training		TEST-Final	
ublect	Shoulder Dins	Back Strength	Lag Strength	Foreste Strength
	28.5	425	244	82
°N 1	20.0	260	350	103
	18.0	320	560	92
	14.0	are oTe	020	100
å 4	0.11	202	078	8/
	20.0	000	2004 CON	100
	0.00	406	AKD -	AUX OH
	23.0	200	760	120
10.	23.0	310	540	95
11.	10.0	300	430	60
12.	20.0	330	540	106
13.	23.0	400	550	103
	33.5	250	450	105
	1	1	1	1
50	f = 267.5	#535.0	7135.0	1340.0
NEA	18.1071 m M	323.9235	509.6428	95.7142

CUMULATIVE TEST ITEM SCORES

5.00

Subject	Pre-Test	Re-Test	Sum of Difference	Difference Squared
1.	12.0	19.0	7.0	49.0
2.	5.0	8.0	3.0	9.0
3.	14.0	16.5	2.5	6.25
4.	12.0	16.5	4.5	24.75
5.	16.0	24.5	8.5	72.25
6.	9.0	17.5	8.5	72.25
7.	14.0	18.0	4.0	16.0
8.	5.0	9.5	4.5	24.75
9.	11.0	17.5	6.5	42.25
10.	10.0	16.0	6.0	36.0
11.	11.0	18.0	7.0	49.0
12.	10.5	20.0	9.5	89.25
13.	9.0	10.5	1.5	2.25
		-	Service of the servic	and the second second
	138.5	211.5	75.0	414.0

PRE-TEST AND RE-TEST OF ISOMETRIC GROUP IN SHOULDER DIPS

Mean	Score	of Pre-Test	10.6538
Hean	Score	of Re-Test	16.2692
Sun o	of the	Differences	75.0
Sum (of the	Differences Square	d 414.0

THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS

DERIVED FROM CORRELATED SCORES FROM SMALL SAMPLES

BETWEEN Pre-Test and Re-Test TEST Shoulder Dips GROUP Isometric N 13 D 75 D² 414 S (estimate of sampling error of \overline{D}) = S N N-1 12 13 S = .346 \overline{D} (Mean Difference) = $\frac{D}{N}$ = $\frac{75}{13}$ = $\frac{5.77}{13}$ $n_{\pi}n = \underline{\overline{D}} = 5.77 = 16.68$ $\underline{\overline{S}} = .346$ df = N-1 = 12 "t" at the .01 level = 3.06 Significant at .01 level

Subject	Pro-Test	Re-Test	Sun of Difference	Difference Squared
1.	360	470	110	12100
2.	280	340	60	3600
з.	280	840	150	25500
4.	380	540	3.60	25600
5.	290	450	160	25600
6.	420	450	30	900
7.	280	360	80	6400
8.	260	280	20	400
9.	290	310	20	400
1.0 .	350	480	130	16900
11.	280	410	130	16900
12.	290	400	110	12100
13.	390	400	10	100
	-	-	STOCHAGE LOS	entre and the state of the
	4150.0	5330.0	1180	146600

Nean Score of Pre-Test	319.2307
Mean Score of Re-Test	410.0
Sum of Difference	1180.0
Sum of the Difference Squared	146500.0

PRE-TEST AND RE-TEST OF ISOMETRIC GROUP IN BACK STRENGTH

THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS DERIVED FROM CORRELATED SCORES FROM SMALL SAMPLES

BETWEEN Pre-Test and Re-Test TEST Back Strength GROUP Isometric N 13 D 1180 D² 146,600 S (estimate of sampling error of D) = S D =

S_ = <u>15.909</u>

 $\frac{\text{(Mean Difference)} = D}{D} = \frac{1180}{13} = \frac{90.77}{13}$

$$n_{t''} = \underline{D} = \underline{90.77} = \underline{6.271}$$

 $\underline{S} = \underline{15.909}$

df = N-1 = 12

"t" at the .01 level = 3.06

Significant at .01 level

Subject	Pre-Test	Re-Test	Sum of Difference	Difference Squared
1.	640	990	350	122500
2.	400	570	170	29900
3.	600	880	280	78400
ц.	800	850	50	2500
5.	620	660	40	1600
6.	650	970	320	102400
7.	400	610	210	44100
8.	340	650	310	96100
9.	400	530	130	16900
10.	650	820	170	28900
11	560	580	20	400
12.	590	860	270	72900
13.	560	880	320	102400
		religiorestatut	and the second second	Annandormality course
Section 21	7210	9850	2640	699000

PRE-TEST AND RE-TEST OF ISOMETRIC GROUP IN LEG STRENGTH

Mean Score	of Pre-Test	554.6153
Nean Score	of Re-Test	757.6923
Sum of the	Difference	2640
Sum of the	Difference Squared	699000

THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS

DERIVED FROM CORRELATED SCORES FROM SMALL SAMPLES

Subject	Pre-Test	Re-Test	Sum of Difference	Difference Squared
1.	95	107	12	144
2.	60	72	12	144
3.	77	93	16	256
4.	125	120	-5	25
5.	105	112	7	49
6.	102	100	-2	4
7.	80	80	0	0
8.	92	83	-9	81
9.	72	75	3	9
10.	85	95	10	100
11.	83	92	9	81
12.	77	87	10	100
13.	1.00	105	5	25
	VIETNINALINARIA	earth Constants	-	
	1153	1221	68	1018

PRE-TEST AND RE-TEST OF ISOMETRIC GROUP IN FOREARM STRENGTH

Mean Score	of Pre-Test	88.692
Mean Score	of Re-Test	93.923
Sum of the	Difference	68
Sum of the	Difference a	squared 1018

THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS

DERIVED FROM CORRELATED SCORES FROM SMALL SAMPLES

Subject	Pre-Test	Re-Test	Sum of Difference	Difference Squared
1.	17.5	30.5	13.0	169.00
2.	12.0	23.5	11.5	132.25
3.	8.0	17.5	9.5	90.25
4.	12.0	18.5	6.5	42.25
5.	10.0	13.5	3.5	12.25
6.	9.0	19.5	10.5	110.25
7.	12.0	11.5	5	.25
8.	18.5	23.5	7.0	49.00
9.	16.5	23.0	6.5	42.25
10.	15.0	24.0	9.0	81.00
11.	8.0	11.0	3.0	9.00
12.	16.0	20.5	4.5	20.25
13.	16.0	23.0	7.0	49.00
14.	9.5	13.5	4.0	26.00
			inclusion.	ANDURADULUMELA
	718.0	S20*0	95.0	823.00

'RE-TEST ANI	D RE-TEST	OF WEIGHT	TRAINING	GROUP IN	SHOULDER	01
where the state of	and the second second second second second second	and a standard state to the state of the sta	n de la composition de	the second statement of the second statement of the	กระสมครามสุขทางสาราชสาราสสาราสสาราสสาราส	personal second

Mean Score	of Pre-Test	12.7142
Mean Score	of Re-Test	21.1428
Sum of the	Difference	95
Sum of the	Difference Squared	823

THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS

DERIVED FROM CORRELATED SCORES FROM SMALL SAMPLES

BETWEEN Pre-Test and Re-Test	TEST Shoulder Dips	GROUP Weight-Training
N <u>14</u>		
D <u>95</u> D ² <u>823</u>		
S (estimate of sampling error \overline{D}	of D) = S D =	
	TN	
$\int \frac{D^2 - (D)^2}{N}$	823 - <u>(95)²</u> 14	
N-1	13	
T	V 14	
$S = .989$ D (Mean Difference) = D = $\frac{D}{N}$	95 = <u>6.79</u> 14	
"t" = $\frac{\overline{D}}{S}$ = $\frac{6.79}{.989}$ = $\frac{6.89}{D}$	56	
df = N-1 = 13		

"t" at the .01 level = 3.01

Significant at .01 level

PRE-1	test and re-	-TEST OF W	EIGHT TRAINING GROUP	IN BACK STRENGTH
Subject	Pre-Test	Re-Test	Sum of Difference	Difference Squared
1.	800	440	140	19600
2.	290	290	0	0
3.	310	330	20	400
n.	380	400	20	400
5.	250	270	20	400
6.	320	400	80	6400
7.	240	240	0	0
8.	320	330	10	100
9.	335	350	15	225
10.	250	340	90	8100
11.	250	340	90	8100
12.	295	450	155	24025
13.	380	420	40	1600
14.	330	300	-30	900
	purchase and the		-	en altalus - etimolog, pte
	4250	4900	650	70250

Mean Score	of Pre-Test	303.5714
Nean Score	of Re-Test	323.9285
Sum of the	Difference	650
Sum of the	Difference Squared	70250

THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS DERIVED FROM CORRELATED SCORES FROM SMALL SAMPLES

BETWEEN <u>Pre-Test and Re-Test</u> TEST <u>Back Strength</u> GROUP <u>Weight-Training</u> N <u>14</u> D <u>650</u> $D^2 \overline{70_3250}$ S (estimate of sampling error of \overline{D}) = S D \underline{D} =

 $S = \frac{14.764}{D}$ (Nean Difference) = $\frac{D}{N} = \frac{650}{19} = \frac{46.429}{19}$ "t" = $\frac{\overline{D}}{S} = \frac{46.429}{14.764} = \frac{3.145}{14.764}$ df = N-1 = 13 "t" at the .01 level = 3.01

Significant at .01 level

Subject	Pre-Test	Re-Test	Sum of Difference	Difference Squared
1.	350	460	11.0	12100
2.	275	390	115	13225
3.	385	560	175	30625
ų.,	520	830	310	96100
5.	370	590	220	48400
6.	390	610	220	48400
7.	810	520	210	44100
8.	300	430	130	16900
9.	450	740	290	84100
10.	350	580	230	52900
11.	310	440	130	16900
12.	385	600	215	46225
13.	490	670	180	32400
14.	400	560	160	25600
	P.D.C.F		Buildy associates	
	9269	1880	2032	567975

water a start of the start of the start with the start with the start of the start	E-TEST	AND	RE-TEST	OF	WEIGHT	TRAINING	GROUP	IN	LEC	STRENG
---	--------	-----	---------	----	--------	----------	-------	----	-----	--------

Mean	Score	of Pre-Test		377.5
Mean	Score	of Re-Test		570.0
Sum c	of the	Difference		2695
Sum c	of the	Difference	Squared	567975

THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS DERIVED FROM CORRELATED SCORES FROM SMALL SAMPLES

BETWEEN Pre-Test and Re-Test TEST Leg Strength GROUP Weight Training N 14 D 2695 D² 567,975

S (estimate of sampling error of D) = S D =

 $S_{\underline{D}} = \underline{16.435}$ $\overline{D} \text{ (Nean Difference)} = \underline{D}_{\underline{N}} = \underline{2695}_{\underline{15}} = \underline{192.5}$ $^{n}t^{n} = \underline{\overline{D}}_{\underline{S}} = \underline{192.5}_{\underline{15.435}} = \underline{11.713}$ df = N-1 = 13 $^{n}t^{n} \text{ at the .01 level = 3.01}$ Significant at .01 level

PRE-TI	EST AND RE-	TEST OF WEI	GHT TRAINING GROUP	IN FOREARM STRENGTH
Subject	Pro-Test	Re-Test	Sum of Difference	Difference Squared
1.	75	88	13	169
2.	95	105	10	100
3.	72	93	21	441
щ.	104	108	4	16
5.	60	70	10	100
6.	77	80	3	9
7.	92	90	-2	4
8.	75	97	18	324
9.	80	117	37	1369
10.	82	100	18	324
11.	72	84	12	144
12.	100	107	7	49
13.	1.00	105	5	25
14.	100	110	10	100
	evelosatelates	Resident and the	ska nigovačnoje	-
	1184	1354	166	3174

Nean Score	of Pre-Test	84.5714
Nean Score	of Re-Test	96,7142
Sum of the	Difference	166
Sum of the	Difference Squar	od 3174
DERIVED FROM CORRELATED SCORES FROM SHALL SAMPLES

	RE-TEST AND FINAL TEST OF ISOMETRIC GROUP IN SHOULDER DIPS							
Subject	Re-Test	Retention Test	Sum of Difference	Difference Squared				
1.	19.0	15.0	-4.0	15.00				
2.	8.0	10.0	2.0	4.00				
3.	16,5	16.0	5	.25				
4.	16.5	15.0	-1.5	2.25				
5.	24,5	20.0	-4.5	20.25				
6.	17.5	18.5	1.0	1.00				
7.	18.0	16.5	-1.5	2.25				
8.	9.5	8.5	-1.0	1.00				
9.	17.5	14.5	-3.0	9.00				
10.	16.0	15.0	-1.0	1.00				
11.	18.0	17.0	-1.0	1.00				
12.	20.0	15.0	-5.0	25.00				
13.	10.5	9.5	-1.0	1.00				
	211.5	190.5	-21.0	84.00				
		and the second s						

Nean Score	of Re-Test	18.2692
Nean Score	of Retention Test	14.6538
Sum of the	Difference	-21.0
Sum of the	Difference Squared	84.00

BETWEEN	Re-Test	and	Final	TEST	Shoulder	Dips	GROUP	Isometric
N <u>13</u>			A ALLER A.					
D21					Sec. 19			
D ² 84								

S (estimate of sampling error of \overline{D}) = S \underline{D}

S_ = .566

 \overline{D} (Mean Difference) = \underline{D} = $\frac{-21}{N}$ = $\frac{1.615}{13}$

 $n_{t^{H}} = \frac{\overline{D}}{S} = \frac{1.615}{.566} = \frac{2.853}{.566}$

df = N - 1 = 12

"t" at the .01 level = 3.06 Not Significant at .01 level

Subject	Re-Test	Retention Test	Sum of Difference	Difference	Squared
1.	470	450	-20	400	
2.	340	330	-10	100	
3.	440	400	-40	1600	
4.	540	530	-10	100	
5.	450	430	-20	400	
6.	450	460	10	100	
7.	360	300	~60	3600	
8.	280	260	-20	400	
9.	310	300	-10	100	
10.	480	415	-65	4225	
11.	410	300	-110	12100	
12.	400	290	110	12100	
18.	400	390	~10	100	the state
				interestinguation	
	5330	4855	-475	35325	

al"ibdi and i inne ibdi uf loundiale unuuf in dala dir	LNGIT
--	-------

Nean Score	of Re-Test	410.0
Nean Score	of Retention Test	373.461
Sum of the	Difference	-475
Sum of the	Difference Squared	35325

BETWEEN <u>Re-Test and Final</u> TEST <u>Back Strength</u> GROUP <u>Isometric</u> N <u>13</u> D -475

D² 35,325

S_ (estimate of sampling error of D) * S_____

 $\frac{S}{D} = \frac{10.732}{10.732}$

 \overline{D} (Mean Difference) = $\frac{D}{N} = \frac{-475}{13} = \frac{36.538}{13}$

$$\frac{12}{5} = \frac{10.732}{5}$$

df = N - 1 = 12

"t" at the .01 level = 3.06

Significant at .01 level

Subject	Re-Test	Retention Test	Sum of Difference	Difference Squared
1.	990	950	-40	1600
2.	570	520	~50	2500
3.	880	770	-110	12100
ų.	850	880	30	900
5.	660	800	140	19600
6.	970	850	-120	14400
7.	610	570	-40	1600
8.	650	520	~130	16900
9.	530	540	10	100
10.	820	700	-120	14400
11	580	650	70	4900
12.	860	850	-10	100
13.	880	980	110	12100
		a ball of bary and	and the second second	and the rest of the rest of the rest
	9850	9580	-160	101200

RE-TEST AND	FINAL	TEST	OF	ISOMETRIC	GROUP	IN	LEG	STRENGTH
-------------	-------	------	----	-----------	-------	----	-----	----------

Nean Score	of Re-Test	757.692
Nean Score	of Retention Test	736.923
Sum of the	Difference	-160
Sum of the	Difference Squared	101200

DERIVED FROM CORRELATED SCORES FROM SMALL SAMPLES

Subject	Re-Test	Retention Test	Sum of Difference	Difference	Squared
1.	107	102	-5	25	
2.	72	67	-5	25	
3,	93	92	-1	1	
4.	120	110	-10	100	
5.	112	105	-7	49	
6.	100	87	-13	169	
7.	80	75	~5	25	
8.	83	80	-3	9	ALC: NO
9.	75	78	3	9	
1.0.	95	87	-8	64	
11.	92	87	-5	25	
12.	87	63	14	16	
13.	105	103	-2	-	
	3003		-		
	de de de	7730	#05	521	

Nean Score	of Re-Test	93.9231
Nean Score	of Retention Test	88.9231
Sum of the	Difference	-65
Sum of the	Difference Squared	521

RE-TEST AND FINAL TEST OF ISOMETRIC GROUP IN FOREARM STRENGTH

BET	WEEN	<u>Re-Test</u>	and Fi	nal	TEST	Forears	Strength	GROUP	Isometric
N	13								
D	-65								
D ²	521								
S D	(estin	nate of	samplin	g erro	r of	D) = S 			

 $S_{D} = 1.121$ \overline{D} (Nean Difference) = $\frac{D}{N} = \frac{-65}{13} = 5.00$ $"t" = \frac{\overline{D}}{S} = \frac{5.00}{1.121} = \frac{4.460}{1.121}$ df = N-1 = 12
"t" at the .01 level = 3.06
Significant at .01 level

Subject	Re-Test	Retention Test	Sum of Difference	Difference Squared
1.	30.5	28.5	-2	4.00
2.	28.5	20.0	-3.5	12.25
3.	17.5	19.0	1.5	2.25
ц.	18.5	19.0	.5	.25
5.	13.5	17.0	2.5	6.25
6.	19.5	19.0	5	.25
7.	11.5	10.5	-1.0	1.00
8.	28.5	22.0	-1.5	2.25
9.	23.0	23.0	0.0	0.00
10.	24.0	23.0	-1.0	1.00
11.	11.0	10.0	-1.0	1.00
12.	20.5	20.0	5	.25
19.	23.0	23.0	0.0	0.00
14.	13.5	13.5	0.0	0.00
		and a state of the	Terreturging	and the second second

Nean Score	of Re-Test	21,1428
Nean Score	of Retention Test	19.1071
Sum of the	Difference	-6.5
Sum of the	Difference Squared	30.75

RE-TEST AND FINAL TEST OF WEIGHT TRAINING GROUP IN SHOULDER DIPS

BETI	EEN <u>Re-Test and Fi</u>	nal TEST	Shoulder Dips	GROUP	Neight Tr	aining
Nį	<u>14</u>					
D :	-6.5					
D ² 3	30.75					
SD	estimate of sampling	g error of I	D = S $\frac{D}{N}$			
N	$D^2 - (D)^2$	Λ	30.75 - <u>(-6</u> 1	<u>.5)²</u>	24	
	N-1		13			

S .390

D (Mean Difference) = .464 D -6.5 # 7.8

$$n_{t^{m}} = \underline{D} = .464 = 1.19$$

S .390

df = N - 1 = 13

"t" at the .01 level = 3.01

Not significant at the .01 level

Subject	Re-Test	Retention Test	Sum of Difference	Difference Squared
1.	440	425	-15	225
2.	290	260	-30	900
3.	330	320	-10	100
4.	400	410	10	100
5.	270	285	15	225
6.	400	385	-1.5	225
7.	240	250	10	100
8.	330	320	-10	100
9.	350	290	-60	3600
10.	340	310	-30	900
11.	340	300	40	1600
12.	450	330	-120	14400
13.	420	400	-20	400
24.	300	250	-50	2500

-365

RE-TEST AND FINAL TEST OF WEIGHT TRAINING GROUP IN BACK STRENGTH

Mean Score of Re-Test	950.0
Nean Score of Retention Test	323,9285
Sum of the Difference	-365
Sum of the Difference Squared	25375

Not significant at the .01 level

Subject	Re-Test	Retention Test	Sum of Difference	Difference Squared
1.	460	445	-15	225
2.	390	350	-40	1600
3.	560	560	0	0
ц.	830	650	~180	32400
5.	590	510	-80	6400
6.	610	450	-160	25600
7.	520	500	-40	1600
8.	430	460	30	900
9.	740	700	-40	1600
10.	580	540	-40	2.600
11.	440	430	-10	100
12.	600	540	~60	3600
13.	670	\$50	-120	14400
14.	560	450	-110	12100
	7980	7135	-855	102125

RE-TEST AND FINAL TEST OF WEIGHT TRAINING IN LEG STRENGTH

nean score	or Re-Test	570.0
Mean Score	of Retention Test	509.6428
Sum of the	Difference	-855
Sum of the	Difference Squared	102125

BETWEEN <u>Re-Test and Final</u> TEST <u>Leg Strength</u> GROUP <u>Weight Training</u> N <u>14</u> D -865

D² 102,125

S (estimate of sampling error of \overline{D}) = S \underline{D}

8 = <u>16.353</u>

 \overline{D} (Mean Difference) = \underline{D} = $\frac{-865}{14}$ = $\frac{61.786}{14}$

$$r_{t} = \underline{D} = \underline{61.786} = \underline{3.778}$$

 $\underline{S} = \underline{16.353}$

df = N-1 = 13

"t" at the .01 level = 3.01

Significant at the .01 level

RE-TE	ST AND FI	NAL TEST OF WEIG	HT TRAINING GROUP I	N FOREARM STRENGTH
ubject	Re-Test	Retention Test	Sum of Difference	Difference Squared
1.	88	82	-6	36
2.	105	103	-2	4
3.	93 1	92	-1	1
ц.	108	100	8	16
5.	70	73	3	9
6.	80	87	7	49
7.	90	100	10	100
8.	97	94	-3	9
9.	117	129	3	9
10.	1.00	95	-5	25
11.	84	80		16
12.	107	106	-2	1
13.	1.05	103	ANT -2 TTO	4
14.	110	105	-5	25
	All Constant appendix	excellentermenter	Valleyaux	Section 10
	1354	1340	-14	352

Mean Score	of Re-Test	96,7142
Hean Score	of Retention Test	95.7142
Sum of the	Differences	-14
Sum of the	Difference Squared	352

78

d

ECA.

DERIVED FROM CORRELATED SCORES FROM SMALL SAMPLES

DERIVED FROM UNCORRELATED SCORES FROM SMALL SAMPLES

TEST Shoulder Dips

Isometric Group $\overline{D} = 1.615$ Weight-Training Group $\overline{D} = .464$ Isometric Group S = .566 Weight-Training Group S = .390 \overline{D}

S D (the estimate of the sampling error for the dis-) M (tribution of differences between the mean differences) = D

$$\left(\left(\frac{s}{\overline{D}_{2}}\right)^{2} + \left(s \\ \overline{D}_{2}\right)^{2}\right)$$

df = $(N_1 - 1) + (N_2 - 1) = 25$ "t" at .01 level = 2.79 Not significant at .01 level.

DERIVED FROM UNCORRELATED SCORES FROM SMALL SAMPLES

TEST Back Strength

Isometric Group $\overline{D} = \underline{36.538}$ Weight-Training Group $\overline{D} = \underline{26.071}$ Isometric Group S = $\underline{10.732}$ Weight-Training Group S = $\underline{9.334}$ B (the estimate of the sampling error for the dis-

M tribution of differences between the mean differences)."

$$\left(\left(\frac{s}{\overline{D}_{1}}\right)^{2} + \left(\frac{s}{\overline{D}_{2}}\right)^{2} \right)^{2} \left(10.732\right)^{2} + (9.334)^{2}$$

$$\begin{array}{rcl}
S & & & & \underline{14.243} \\
M & & & \\
D & & & \\
D & & & \\
D & & & \\
\hline D &$$

D
df =
$$(N_1 - 1) + (N_2 - 1) = 25$$

"t" at .01 level = 2.79

D

Not significant at .01 level.

DERIVED FROM UNCORRELATED SCORES FROM SMALL SAMPLES

TEST Leg Strength

Isometric Group $\overline{D} = \underline{12,308}$ Weight-Training Group $\overline{D} = \underline{61.786}$ Isometric Group S = $\underline{25.218}$ Weight-Training Group S = $\underline{16.353}$ S D (the estimate of the sampling error for the dis-M tribution of differences between the mean differences) =

 $\left(\left(\frac{s}{\overline{D}_{1}}\right)^{2} + \left(s\right)^{2}\right)^{2}$

(25.218) + (16.353)

TEST Forwarm

Isometric Group $\overline{D} = 5.00$ Weight-Training Group $\overline{D} = 1.00$ Teometric Group S = 1.121 Weight-Training Group S = 1.35 \overline{D}

S D (the estimate of the sampling error for the dis-M tribution of differences between the mean differences) = D

$$\left(\begin{pmatrix} s \\ \overline{D}_{1} \end{pmatrix}^{2} * \begin{pmatrix} s \\ \overline{D}_{2} \end{pmatrix}^{2} \right)^{2}$$

 $(1.121)^2 + (1.36)^2$

.257 + 1.85 D 1.763 M D $\frac{D}{D} = \overline{D}_1 - \overline{D}_2 = 5.00 - 1.00 = 4.00$ $nt^{n} = \frac{D}{D}$ 4.00 2,269 1.763 S D 國 D $df = (N_1 - 1) + (N_2 - 1) = 25$ "t" at .01 level = 2.79 Not significant at .01 level.

3.107

BIBLIOGRAPHY

Books

Carrett, Henry E., Statistics in Psychology and Education. New York: Longmans, Green and Company, 1958.

Mathews, Donald K., Measurement in Physical Education. Philadelphia: W. B. Saunders Company, 1953.

McNemar, Quinn, Psychological Statistics. New York: John Wiley and Sons, Inc., 1949.

Articles and Periodicals

Muller, E. A., "The Regulation of Muscular Strength," Journal of the Association of Physical and Mental Rehabilitation, Volume 9, (March, April 1957), pp 41-47.

Pohndorf, R. H., "Cholesteral Studies: A Review," Research Quarterly, Volume 29, (Nay 1958) p. 190.

Rarick, Lawrence G. and Larsen, Gene L., "Observations of Frequency and Intensity of Isometric Muscular Effort in Developing Static Muscular Strength in Pest-Pubescent Males," <u>Research Quarterly</u>, Volume 29, (October 1958) pp. 333-341.

Unpublished Material

- Asa, M. Maxim, "The Effects of Isometric and Isotonic Exercises on the Strength of Skeletal Muscle," Unpublished Doctors dissertation, Department of Physical Education, Springfield College, 1959.
- Hassman, Ralph P., "Changes in the Physical Status of Varsity and Freshman Wrestlers at the University of Oregon Following a Six Week Constition of Organized Team Practices and Competition," Unpublished Ph.D. dissertation, Department of Physical Education, University of Oregon, 1961.
- Jensen, Robert K., "The Neasurement of Maximum Average Muscle Power and Its Relationship to Maximum Isometric Length," Unpublished Education thesis, Department of Physical Education, University of Western Australia, 1963.

- Lyne, James, "The Frequency of Static Contraction Exercise Necessary for Strength Level Maintenance," Unpublished Master's thesis, Department of Physical Education, Pennsylvania State University, 1958.
- Marley, William Paul, "The Comparative Effectiveness of Isometric Exercise and Isotonic Exercise in the Development of Muscular Strength, Endurance, and Girth," Unpublished Master's thesis, Department of Physical Education, University of Maryland, 1962.
- Richardson, John R., "The Effect of Brief Isometric and Isotonic Exercise Programmes on the Development of Strength and Muscular Endurance," Unpublished Master's thesis, Department of Physical Education, University of Alberta, 1963.
- Sullivan, George Morris, "The Effects of Isotonic and Static Contraction of the Quadriceps on Strength and Endurance," Unpublished Master's thesis, Department of Physical Education, Washington State University, 1961.