
University of North Dakota University of North Dakota 

UND Scholarly Commons UND Scholarly Commons 

Theses and Dissertations Theses, Dissertations, and Senior Projects 

January 2021 

Sensitization To A Milk Allergen Induces Differential Behavioral Sensitization To A Milk Allergen Induces Differential Behavioral 

And Neurological Responses In Allergic C57BL/6J And BALB/cJ And Neurological Responses In Allergic C57BL/6J And BALB/cJ 

Mice Mice 

Nicholas Smith 

How does access to this work benefit you? Let us know! 

Follow this and additional works at: https://commons.und.edu/theses 

Recommended Citation Recommended Citation 
Smith, Nicholas, "Sensitization To A Milk Allergen Induces Differential Behavioral And Neurological 
Responses In Allergic C57BL/6J And BALB/cJ Mice" (2021). Theses and Dissertations. 3943. 
https://commons.und.edu/theses/3943 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at 
UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized 
administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu. 

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/3943
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F3943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/3943?utm_source=commons.und.edu%2Ftheses%2F3943&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu


 
 

SENSITIZATION TO A MILK ALLERGEN INDUCES DIFFERENTIAL 
BEHAVIORAL AND NEUROLOGICAL RESPONSES IN ALLERGIC  

C57BL/6J AND BALB/CJ MICE 

 

by 

 

Nicholas A. Smith 

Bachelor of Science, University of North Dakota, (2016) 

 

A Dissertation  
Submitted to the Graduate Faculty 

of the  

University of North Dakota 

In partial fulfillment of the requirements 

 

for the degree of 

Doctor of Philosophy 

 

Grand Forks, North Dakota 

May 
2021 

 



ii 
 

Copyright 2021 Nicholas A. Smith



iii 

 

 

 

 
 

This document, submitted in partial fulfillment of the requirements for the degree from 

the University of North Dakota, has been read by the Faculty Advisory Committee under whom 

the work has been done and is hereby approved.  

 

____________________________________ 

  

 

____________________________________ 

 

 

____________________________________ 

 
 

____________________________________ 

 

 

____________________________________ 

 

 

____________________________________ 

 

 

This document is being submitted by the appointed advisory committee as having met all 

the requirements of the School of Graduate Studies at the University of North Dakota and is 

hereby approved.  

 

____________________________________  

Chris Nelson  

Dean of the School of Graduate Studies  

 

____________________________________  

Date 

Name:   
 

Degree: 
  

DocuSign Envelope ID: 08DD1E90-CB3A-45B7-B719-067D9787A80C

Donald Sens

David Bradley

Kumi Nagamoto-Combs

Doctor of Philosophy

Colin Combs

Suba Nookala

Nicholas Smith

4/26/2021



iv 
 

PERMISSION  

 
Title:  Sensitization to a Milk Allergen Induces Differential Behavioral and 

Neurological Responses in Allergic C57BL/6J and BALB/cJ Mice 
 
Department: Pathology 
 
Degree: Doctor of Philosophy 
 
 
 In presenting this dissertation in partial fulfillment of the requirements for a 

graduate degree from the University of North Dakota, I agree that the library of this 

University shall make it freely available for inspection. I further agree that permission for 

extensive copying for scholarly purposes may be granted by the professor who supervised 

my dissertation work, or in her absence, by the Chairperson of the department or the dean 

of the School of Graduate Studies. It is understood that any copying or publication or 

other use of this dissertation or part thereof for financial gain shall not be allowed without 

my written permission. It is also understood that due recognition shall be given to me and 

to the University of North Dakota in any scholarly use which may be made of any 

material in my dissertation.  

 
 

 Nicholas A. Smith 
 
 

May, 2021 

 

 

 



v 
 

TABLE OF CONTENTS 

LIST OF FIGURES ........................................................................................................... xi 

LIST OF TABLES ........................................................................................................... xiv 

ACKNOWLEDGEMENTS .............................................................................................. xv 

ABSTRACT ................................................................................................................... xviii 

CHAPTER 

 I. INTRODUCTION ...................................................................................... 1 

 Preface ............................................................................................ 1 

 Food Allergy ................................................................................... 2 

 Definition ............................................................................ 2 

 Prevalence ........................................................................... 3 

 Impact on Health and Quality of Life ................................. 3 

 Symptoms of Food Allergy............................................................. 5 

 Types and Severity .............................................................. 5 

 Clinical Diagnosis ............................................................... 6 

 Atypical or Non-anaphylactic Food Allergies .................... 8 

 Development of Type I Hypersensitivity........................................ 9 

 Antigen Presentation ........................................................... 9  



vi 
 

 Lymphocyte Differentiation.............................................. 11 

 Cytokine Production ......................................................... 14 

 Food-Allergy-Association Neuropsychiatric Disorders ............... 18 

 History of Clinical Observations ...................................... 18 

Comorbidity of Cow's Milk Allergy and  
Behavioral Disorders ........................................................ 19 

The Role of Diet and the Immune System in  
Brain Function and Behavior ............................................ 20 

Food Allergy as an Etiology and Therapeutic Target ....... 22 

 Mechanisms of Gut-Brain Communication .................................. 23 

 An Overview of the Gut-Brain Axis ................................. 23 

The Role of Gut Microbiota in the  
Immune and Nervous System ........................................... 24 

 Cytokines and Their Role in CNS Communication .......... 25 

 Dissertation Research Objective ................................................... 25 

 II. METHODS ............................................................................................... 27 

 Animals ......................................................................................... 27 

 Animal Use ................................................................................... 27 

 Sensitization ...................................................................... 27 

 Allergen Challenge ........................................................... 29 

 Acute Physical Responses................................................. 29 

 Behavioral Testing ............................................................ 30 



vii 
 

 Sacrifice and Tissue Collection ........................................ 34 

 Enzyme-Linked Immunosorbent Assays (ELISA) ....................... 36 

 Tissue Preparation for Histology .................................................. 37 

 Immunohistochemistry ................................................................. 38 

 RNA Extraction and Reverse Transcriptase Quantitative PCR .... 38 

 Western Blot Analysis .................................................................. 40 

 Gut Permeability Assay ................................................................ 41 

 Cytokine ELISA Array ................................................................. 41 

 RNA-Sequencing and Ingenuity Pathway Analysis ..................... 41 

 Microbial DNA Extraction ........................................................... 42 

16s Sequencing and Microbial Pathway Analysis using Kyoto 
Encyclopedia of Genes and Genomes........................................... 43 

 qPCR Quantification of Akkermansia muciniphila ...................... 44 

 Statistical Analysis ........................................................................ 44 

 III. RESULTS ................................................................................................. 46  

Study 1 – Astrogliosis Associated with Behavioral Abnormality  
in a Non-anaphylactic Mouse Model of Cow’s Milk Allergy ...... 46 

 Introduction ....................................................................... 46 

BLG Sensitization of C57BL/6J Mice Results in  
Increased Serum Levels of Allergen-specific  
IgE and IgG1 in Male Mice Without Eliciting Obvious 
Signs of Anaphylaxis After BLG Challenge .................... 48 



viii 
 

BLG Sensitization Resulted in Anxiety- and  
Depression-Like Behavioral Changes in  
Male C57BL/6J Mice ........................................................ 51 

BLG Sensitization Altered the Levels of  
Tight Junction Protein and the Expression of 
Proinflammatory Cytokine in the Small Intestine ............ 55 

GFAP-Immunoreactive Astrocytes Were Hypertrophic in 
the Midbrain Region of the BLG-Sensitized Mice ........... 57 

The Proinflammatory Cytokine, TNFα, Was Elevated  
in the Midbrain Region ..................................................... 64 

 IV. RESULTS ................................................................................................. 66 

Study 2 – Differential Myelination and Blood-Brain Barrier 
Associated Pathway Activation in Non-anaphylactic Model of 
Cow’s Milk Allergy ...................................................................... 66 

 Introduction ....................................................................... 66 

Lack of Anaphylactic Symptoms in BLG-Sensitization  
of C57BL/6J Mice Despite Increased  
Serum Allergen-specific IgE ............................................. 68 

Plasma CCL24 and CXCL13 Significantly  
Increased Accompanied by Trended Increases in  
Other Th2 Cytokines ......................................................... 70 

Impact of BLG-Sensitization on Gut Health and  
Intestinal Permeability ...................................................... 74 

Regional Brain Transcriptional Changes Resulting  
from BLG-Sensitization .................................................... 77 

Increased Capillary IgG Permeability in Midbrain  
of BLG-Sensitized Mice ................................................... 89  



ix 
 

 V. RESULTS ................................................................................................. 93 

Study 3 – Anxiety-like Behavior and Intestinal Microbiota 
Changes as Strain- and Sex-dependent Sequelae of Mild Food 
Allergy in Mouse Models of Cow’s Milk Allergy........................ 93 

 Introduction ....................................................................... 93 

BLG Sensitization Produced Distinct Physical Responses in 
C57BL/6J and BALB/cJ Mouse Strains upon  
BLG Challenge ................................................................. 96 

Allergen-specific Immunoglobulins were Differentially 
Produced in BLG-sensitized Mice in a Sex- and  
Strain-dependent Manner ................................................ 100 

Anxiety-like Behavior Differentially Manifested in  
BLG-sensitized Male C57BL/6J and BALB/cJ Mice  
after Allergen Challenge without Affecting  
General Activity and Cognitive Function ....................... 102 

BLG Sensitization Yielded Distinct Sex- and Strain 
dependent Plasma Cytokine and Chemokine Profiles .... 110 

BLG-sensitization Differentially Altered the Composition 
of Intestinal Microbial Community in a Sex- and  
Strain-specific Manner .................................................... 116 

Proliferation of Akkermansia muciniphila in C57BL/6J 
Male Mice was Inhibited with BLG Sensitization .......... 123 

The Altered Microbiome Profile of BLG-sensitized Male 
C57BL/6J was Associated with Molecular Interactions 
Known to Affect  Neurological Functions ...................... 125 

 VI. DISCUSSION ......................................................................................... 127 

Study 1 – Astrogliosis Associated with Behavioral Abnormality  
in a Non-anaphylactic Mouse Model of Cow's Milk Allergy ..... 127 

Study 2 – Differential Myelination and Blood-Brain Barrier 
Associated Pathway Activation in Non-anaphylactic Model of 
Cow’s Milk Allergy .................................................................... 135 



x 
 

Study 3 – Anxiety-like Behavior and Intestinal Microbiota 
Changes as Strain- and Sex dependent Sequelae of Mild Food 
Allergy in Mouse Models of Cow’s Milk Allergy...................... 140 

Limitations of Work Presented in this Dissertation .................... 148 

 Summary of Conclusions and Future Directions ........................ 150 

SUPPLEMENTAL FIGURES ........................................................................................ 151 

REFERENCES ............................................................................................................... 165 



xi 
 

LIST OF FIGURES 

Figure  Page  

 1.  Schematics of the experimental timelines in the studies ...................................... 28 

 2.  Behavior tests used in studies ............................................................................... 32 

 3.  Regional dissection of mouse brain for biochemical analysis .............................. 35 

 4.  Physical growth and adaptive immunity development during  
BLG sensitization.................................................................................................. 49 

 5.  Assessments of anxiety- or depression-like behavior after BLG challenge ......... 53 

 6.  Immunohistochemical detection of occludin and the RT-qPCR assays  
for Ocln and Tnfα expression in the ileum of male sham and BLG mice ............. 56 

 7.  GFAP immunoreactivity in the midbrain of sham and BLG-sensitized mice. ..... 58 

 8.  Western blot analysis of GFAP in the isolated five brain regions ........................ 60 

 9.  Western blot analysis of COX-2 in the isolated five brain regions ...................... 62 

 10.  Quantification of TNFα levels in the midbrain region of sham and BLG  
male mice using ELISA. ....................................................................................... 65 

 11.  Clinical assessment of health and sensitivity of mice ........................................... 69 

 12.  Levels of immune mediators included in the Quantibody Mouse Cytokine  
Array 5 (QAM-CYT-5) were quantified from plasma samples ............................ 72 

 13.  Ileum RT-qPCR fold change in transcription ....................................................... 75  



xii 
 

 14.  Serum FITC-dextran concentration ...................................................................... 76 

 15.  Ingenuity pathway analysis of regional upstream transcriptional regulators........ 78 

 16.  Ingenuity pathway analysis regional canonical pathway activation ..................... 79 

 17.  Ingenuity pathway analysis regional disease state pathway activity .................... 81 

 18.  Midbrain causal network analysis ......................................................................... 84 

 19.  Validation of differentially expressed genes using RT-qPCR. ............................. 87 

 20.  Immunoreactivity of MBP in retrosplenial cortex of sham and  
BLG sensitized mice ............................................................................................. 90 

 21.  Immunoreactivity of IgG in midbrain region of sham and  
BLG-sensitized mice ............................................................................................. 92 

 22.  Physical responses of mice to BLG sensitization and challenge .......................... 99 

 23.  Serum levels of BLG-specific immunoglobulin isotypes ................................... 101 

 24.  Open-field activity monitoring test ..................................................................... 104 

 25.  Elevated zero maze test ....................................................................................... 107 

 26.  Cross maze test ................................................................................................... 109 

 27.  Plasma levels of immune mediators that were significantly different  
between sex- and strain matched sham and BLG-sensitized mice ..................... 113 

 28.  Effects of BLG sensitization on fecal microbiome ............................................. 117 

 29.  Sensitization-associated differences in the relative abundance of major  
bacterial phyla detected from fecal microbiome analysis ................................... 119 

 30. Differences in the amount of A. muciniphila in sham and BLG-sensitized  
male C57BL/6J mice before and after the sensitization procedure. ................... 124 



xiii 
 

 31.  Central nervous system-related pathways associated with the changes in 
microbiota in BLG-sensitized mice. ................................................................... 126 

 

 

 



xiv 
 

LIST OF TABLES 

Table Page 

 1.  Anaphylaxis scoring scales ................................................................................... 30 

 

 



xv 
 

ACKNOWLEDGEMENTS 

I thank my mentor, Dr. Kumi Nagamoto-Combs, for her guidance and support. 

Her hands-on approach to training myself and other students in the laboratory shows a 

level of dedication to teaching that goes above and beyond. I am grateful for the 

opportunities she has provided me for both personal and professional development.  

Dr. Nagamoto-Combs IS the creator of the central idea behind this dissertation, and her 

interest in a variety of research subjects gave me many opportunities to do things I never 

have thought I would. Though I was seldomly appreciative in the moment, I would not be 

the person I am today without her pushing me, and I am immensely grateful for that now. 

I wish to thank my committee members Dr. Colin Combs, Dr. Donald Sens, 

Dr. David Bradley, and Dr. Suba Nookala. Each of my committee members was an 

immense resource to me in critiquing my research and offering an alternative perspective 

on my work. My committee was always great with suggestions for new experimental 

approaches and troubleshooting issues I was having. Many of the laboratories of my 

committee members assisted me and made the experiments detailed in this dissertation 

possible. 

I wish to thank various members of the Departments of Pathology and Biomedical 

Sciences for their assistance and teaching me during my time as a graduate student. I am 

grateful to Dr. Junguk Hur for analyzing our microbiome data, writing the associated 

manuscript, and giving access to the Ingenuity Pathway Analysis software. I thank



xvi 
 

Dr. Bony de Kumar and the staff of the Epigenetics Core for aiding with our sequencing 

experiments and teaching me the basics of R. I wish to thank the many people who 

served as my teachers throughout my time as a graduate student, especially Dr. David 

Bradley, Dr. Jyotika Sharma, and Dr. Bibhuti Mishra who taught me the foundations of 

immunology which served me well in my research. I am grateful to the laboratory of 

Dr. Suba Nookala and Dr. Mukundan Santhosh for their feedback and technical 

assistance. I thank Dr. Van Doze, who gave me my initial research experience and 

encouraged me to attend graduate school. I thank the laboratories of Dr. Scott Garrett and 

Dr. Seema Somji for the use of their equipment. I am immensely grateful to the 

laboratory of Dr. Colin Combs, whose members include Angela Floden, Dr. Harpreet 

Kaur, and Dr. Bijayani Sahu, who provided me with technical assistance, equipment, and 

reagents for experiments. 

I want to thank the other graduate students, past and present, who have worked 

with me. I am grateful to Dr. Joseph Biggane, who encouraged me to apply to graduate 

school and taught me many of the initial techniques I use in my research. I thank Dr. 

Swojani Shrestha for use of the core microscope, for all the support she provided me, and 

for dragging me away from work when I needed it. Dr. Joshua Kulas and Dr. Mona 

Sohrabi-Thompson, who gave me opportunities to work on other projects earning 

authorship, technical support, and I credit them with teaching me what it meant to be a 

graduate student and scientist. Lastly, I am infinitely grateful to Danielle Germundson, 

without whom many of the experiments in this dissertation would not have been possible, 

and for being greatly supportive throughout my time in the Nagamoto-Combs laboratory. 



xvii 
 

Finally, I must thank my family. My father, Butch who was supportive and gave 

me the space to chase my own goals no matter how far it took me. My father’s partner, 

Wendy who always showed an immense interest in my work. My mother, Pam, for 

always checking in on how I was doing and constantly being encouraging. I thank my 

brothers Matt and Jake for always reaching out and giving me opportunities to forget 

about work for a short time. My grandfather Melvin, whom I do not think understood 

what I was doing and why but gave immense support regardless. Lastly, my grandmother 

Patricia, who sadly passed away in December of last year, I am grateful for her loving 

support of my work. She was always overjoyed listening to what I was doing and when I 

would listen to what she was going through. My grandmother's struggle with chronic pain 

and Alzheimer's disease assured that I never lost sight of the importance of biomedical 

research.



xviii 
 

ABSTRACT 

Studies have highlighted an association between food allergies and 

neuropsychiatric disorders such as anxiety, depression, and attention deficit hyperactivity 

disorder. Though the precise mechanism behind this relationship is unknown, it marks a 

potential novel therapeutic strategy outside of traditional neuropharmacological 

intervention. Food allergy is a heterogeneous disorder of the immune system 

characterized by an immune response that occurs reproducibly to a given food. Chronic 

allergen exposure in patients with mild or non-anaphylactic food allergies may cause or 

exacerbate psychiatric conditions. However, the variability in food allergies due to 

factors like genetic background introduces selection bias for individuals with overt 

anaphylactic reactions. To elucidate the framework of a mechanism by which peripheral 

non-anaphylactic food allergies cause behavioral changes, we sensitized mice to the 

cow’s milk allergen β-lactoglobulin (BLG). This dissertation consists of three studies to 

characterize the behavioral effects of mild cow’s milk allergy (CMA) and the underlying 

mechanism. The first study was to profile the behavioral symptoms of mice following 

sensitization to BLG and their underlying brain pathology. The second builds upon the 

findings of the first, to investigate changes in the brain using RNA sequencing and 

further histological analysis to understand what is happening in the brains of allergic 

mice. The third study compares two strains of mice with different genetic backgrounds 

and their responses to allergic sensitization. We evaluate the difference in their clinical 

symptoms, behavior, microbiomes, and released immune mediators in response to 
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allergic challenge to investigate how genetic predisposition influences the effects we 

observed in our model. 

In study 1, male C57BL/6J mice sensitized to BLG presented increased anxiety-

like behavior in the elevated-zero maze and grooming behavior tests and depression-like 

behavior during the tail-suspension test 24-48 hrs following allergic challenge. Since the 

mice sensitized to BLG were confirmed to be allergic based upon the abundance of BLG-

specific IgE and IgG1, we histologically analyzed their intestines as the primary site of 

insult for CMA. In the ileum region of the small intestine, we observed a decrease in the 

tight junction protein occludin in BLG sensitized mice. A decrease in the abundance of 

occludin is common in intestinal inflammation and often leads to dysfunction of normal 

gut barrier function. Knowing male mice sensitized to BLG had a behavioral change, gut 

pathology, and were confirmed allergic, we then looked for evidence of brain pathology. 

We evaluated the status of astrocytes within the brain by staining for their structural 

protein glial fibrillary acidic protein (GFAP). We found that astrocytes in the substantia 

nigra were hypertrophic, and there was evidence of perivascular glial scarring which is 

common in neuroinflammatory conditions. The perivascular scarring also coincided with 

increased abundance of the proinflammatory cytokine, tumor necrosis factor-alpha 

(TNFα), which astrocytes both respond to and produce when activated. Together these 

data suggest CMA leads to anxiety and depression-like behavior in male mice and that 

the astrocyte response and signaling of cytokines like TNFα are involved in these 

behavioral changes. 

In the second study, we investigate region transcriptional profiles of BLG 

sensitized C57BL/6J male mice. Across the multiple brain regions, using ingenuity 
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pathway analysis, we found pathways involved in inflammatory signaling, neuronal 

signaling, cell structural pathways, and disease states differentially activated in BLG 

sensitized mice. We validated some of our findings histologically using myelin basic 

protein (MBP) and IgG as targets based upon our previous glial findings and pathways 

involved in other glial cells and blood-brain barrier integrity. We observed no evidence of 

differential myelination through MBP in the brains of BLG sensitized mice but increased 

extravascular IgG in the brain parenchyma. High amounts of IgG staining within the 

brain implies impairment of normal blood-brain barrier function, which coincides with 

our previous astrocyte data. 

In study 3, we compared the C57BL/6J and BALB/cJ strains because of their 

genetic differences in the allergy response. The differences were apparent when 

observing the overt anaphylactic response to BLG challenge; only the BALB/cJ mice 

showed significant clinical symptoms. However, both strains produced BLG-specific IgE 

in response to treatment, but only the BALB/cJ strain produced IgG antibodies. Despite 

the described differences, males of both strains demonstrated similar anxiety-like 

behavior though the changes were more pronounced in C57BL/6J mice. Knowing the 

differences in immune responses observed in these strains, we quantified the cytokines 

released into the plasma, finding increases in a Th2 cytokines interleukin (IL)-10, -13, 

and -21, in addition to various chemokines in male C57BL/6J mice, but no increases in 

male BALB/cJ mice. Based on the observed differences, we wanted to investigate the 

impact BLG-sensitization had on the microbiome. Both strains were found to have 

distinct profiles, and BLG-sensitization led to strain-specific changes in the microbiome. 

Despite vastly different microbiome profiles, when we performed brain-specific pathway 
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analysis of the microbiomes, the two strains had similar activation states of serotonergic, 

dopaminergic, addiction pathways, and various neurodegenerative diseases.
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CHAPTER I 

INTRODUCTION 

Preface 

This dissertation focuses on the systemic effects of mild cow's milk allergy 

(CMA). CMA and other allergic hypersensitivities are broader in classification than many 

realize, with some patients expressing mildly or asymptomatically. Existing evidence 

recognizes that populations of mild or asymptomatic patients are less likely to be 

formally diagnosed and exclude the allergens from their diet. In addition to the classic 

symptoms of allergy, CMA and other allergic diseases are found to be comorbid with 

various behavioral and neuropsychiatric conditions. With increasing numbers of patients 

resistant to neuropharmacological approaches for behavioral and neuropsychiatric 

disorders, increases in the diagnosis of mental disorders may be driven by these acute 

non-anaphylactic allergic disorders.  

For this dissertation, three studies were conducted involving a non-anaphylactic 

CMA model and characterizing the impact of the disease on the peripheral immune 

system and the central nervous system (CNS). The first study examined the behavioral, 

gut, and brain pathology in C57BL/6J mice resulting from sensitization and challenge 

with a major milk allergy: β-lactoglobulin (BLG; Bos d 5), to assess the hypothesis that 

sensitization of mice to a milk allergen would cause changes in the CNS leading to 

changes in behavior. In the second study with our C57BL/6J model of CMA, we assayed 
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the intestinal permeability, performed brain RNAseq, and further evaluated the brain 

pathology to elucidate mechanisms of behavioral changes, specifically highlighting 

neuroinflammatory, demyelination, and blood-brain barrier integrity-based effects. The 

third study compared CMA-induced changes in behavior, peripheral immune factors, and 

gut microbiota profiles in two genetically distinct mouse strains. Each result chapter 

corresponding to each study provides additional introductory material to that study. 

Food Allergy 

Definition 

The concept of allergy is ancient in the context of human history. Our knowledge 

of allergy goes back millennia; our oldest records date to 1000-2000 BCE China 

describing a "plant fever" occurring in autumn (Ring, 2014). The term "allergy" was first 

coined in the early 20th century by Austrian pediatrician Clemons von Pirquet circa 1906. 

Pirquet is quoted as stating, "The conception that antibodies, which should protect 

against disease, are also responsible for disease, sounds at first absurd." highlighting 

what was at the time a massive gap in our understanding of disease and immunity. 

Pirquet described allergy as an altered reactivity induced by what he called an "allergen," 

defined as a foreign substance (Silverstein, 2000). Our modern definition of food allergy, 

similar to Pirquet's, an adverse health effect arising from a specific immune response that 

occurs reproducibly on exposure to a given food (Boyce et al., 2010). Allergy is 

characterized as a hypersensitivity disorder; the term "hypersensitivity" describes a broad 

spectrum of similar conditions, in which case the typical immune tolerance to benign 

environmental factors is disrupted, reproducibly provoking an undesired immune 
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response (Boyce et al., 2010). Allergies by classical definition are type I hypersensitivity, 

meaning it is mediated by antibodies of the immunoglobulins (Ig) E isotype. Food allergy 

by this understanding is an inappropriate IgE-mediated response to specific dietary 

proteins. 

Prevalence 

 The prevalence of food allergy varies wildly depending on detection methods and 

the studied population. Prevalence is subjected to change based on factors such as sex, 

age, ethnicity, and socioeconomic status; therefore, specific populations are at higher 

risks for developing allergy and increased severity (Rudders et al., 2014; Acker et al., 

2017; Gupta et al., 2018; Willits et al., 2018). Several genetic factors involved in 

establishing T helper type 2 (Th2) immunity have been identified as increasing the odds 

of developing allergic disease, including interleukin (IL)-4, -10, -13, and specific human 

leukocyte antigen (HLA) haplogroups (Howell et al., 1998; Liu et al., 2004; Campos 

Alberto et al., 2008; Hong et al., 2009). Overall, in the United States, food allergy afflicts 

3-10% of the population (Gupta et al., 2019).  

Impact on Health and Quality of Life 

Childhood food allergy is an incredible burden on the individual, family, and 

economy. Out-of-pocket medical costs for continued treatment, lifestyle changes, and 

emergency medical services are surface-level costs that all families typically experience 

but do not capture the disease's full impact. Dr. Ruchi Gupta estimated in 2013 that $5.5 

billion was lost due to out-of-pocket treatment costs for services like preventative 

measures in the form of special diets, emergency or regular anti-allergy drugs like 
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antihistamines and EpiPens, and emergency room visits. The cost equates to 

$931/child/year in 2013 or $1051 if adjusted for inflation to the year this dissertation is 

published (U.S. Bureau of Labor Statistics). The addition of the costs required to 

maintain allergic children's safety and health is substantial and increases the economic 

hardship on families and can be particularly devastating in communities already 

struggling with poverty. The personal burdens in conjunction with economic costs lead to 

a total $24.7 billion cost to the U.S. economy or $27.9 billion estimated for 2021 (Gupta 

et al., 2013).  

In addition to the direct economic burden of maintaining a lifestyle safe for a 

child with food allergies, other factors such as those on social and mental burdens are 

important. Families of children with allergies often cite the most common issues: the 

need for special food, increased time preparing and shopping for food, increased time 

preparing for school, and inhibitions on social life (Bilaver et al., 2016). A Swedish study 

compared case-control pairings to evaluate the different economic and intangible costs to 

a household with a food allergic child. Parents/guardians of children with food allergies 

were more likely to report feeling restricted in their career and feelings of anger, fear, 

anxiety, and trauma than control families. Also, parents/guardians reported children with 

food allergies to be restricted in their social life and more prone to feelings of anger, fear, 

feeling left out, and trauma, and are considered in poor health (Wai et al., 2019). These 

factors serve as a simplified estimation of the challenges families of children with food 

allergies face.



5 

Symptoms of Food Allergy 

Types and Severity 

Food allergy is known to cause a spectrum of symptoms ranging in severity. The 

symptoms can range from the localized inflammation and disruption of the gut to 

systemic anaphylactic shock symptoms. Symptoms can be broadly fit into four 

categories: gastrointestinal, skin irritation, respiratory distress, and cardiovascular 

dysfunction (du Toit et al., 2010; Burks et al., 2012; Mousan and Kamat, 2016). The less 

severe symptoms are often considered those involving the gut and skin, whereas 

respiratory and cardiovascular symptoms often are signs of a life-threatening response. 

In the gut, commonly identified symptoms include diarrhea, nausea, discomfort, 

and vomiting. Symptoms in the gut can occur in conjunction with other symptoms or, in 

some cases, isolation. Gastrointestinal symptoms typically can be the mildest symptoms 

or misdiagnosed as other gastrointestinal diseases. Skin irritation is a likely second 

identifying symptom, and for health care providers is the most visible condition. Allergic 

inflammation can manifest on the skin in the form of hives and swelling. The swelling is 

sometimes observed in the throat, lips, and tongue leading to difficulty swallowing or 

speech impairment due to the disruption of the vocal folds, larynx, and other resonant 

structures. The swelling is occasionally paired with paresthetic sensations around the 

mouth and throat.  

Respiratory and cardiovascular symptoms are often the most severe symptoms. 

Typically, in the respiratory tract, apparent inflammation will cause wheezing, difficulty 

breathing, and chest tightness. These are often paired with cardiovascular symptoms, 
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often showing a rapid heart rate, drop in blood pressure, and dizziness. If left unchecked 

with emergency epinephrine injection, severe respiratory and cardiovascular symptoms 

will often lead to shock, loss of consciousness, and death.  

 In addition to the apparent clinical pathology caused by food allergies, there are 

often many other accompanying symptoms. For example, patients often site before 

symptom onset, sometimes immediately after accidental allergen exposure, feeling 

anxious or a lingering sense of doom or dread. Though somewhat ubiquitous, these 

feelings can sometimes serve as an early indicator of imminent allergic attack in patients 

with clear clinical history. Together these symptoms make up what is known about the 

spectrum of allergic anaphylaxis indicators, though often found to vary between patients 

in appearance and severity. 

Clinical Diagnosis 

The threshold for diagnosis varies depending on the test and definition used for 

food allergy. The Gupta paper estimates 3-10% of the percentage of the U.S. population 

that has food allergies. However, multiple diagnostic approaches are commonly used in 

cases of food allergy, potentially obfuscating results. Typical diagnostic approaches 

include the skin prick test (SPT) method, allergen-specific IgE positive test, self-

reporting, and food challenge.  

A Meta-analysis by Roberto Rona in 2007 reviewed 934 MEDLINE articles for 

food allergy incidence. From this dataset, it was segregated by aspects like age and 

method of testing for allergy. Self and maternal reports of food allergy tend to be the 

most liberal estimates. The patients and caregivers have the most firsthand experience. 
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Therefore, they are prone to over-identifying any perceived food-induced discomfort as 

an allergy. Thus, diagnosis based on self-reports estimates that between 3% and 35% of 

people are allergic. Some studies in the meta-analysis followed up self-reports with other 

tests like SPT or allergen-specific IgE . The use of secondary validation confirmed that 2-

5% of the population is allergic.  

SPT is a standard method for assessment of allergy using in clinics. The skin is 

punctured with a needle coated with a small amount of the potentially offensive allergen; 

a positive response is when the area swells. The size of the swelling of the region, also 

called a wheal, is typically associated with the allergic reaction severity. Rona's meta-

analysis found that pure assessment via SPT found 7-17% of the population is believed to 

be allergic. 

One of the most important biomarkers for the establishment of allergy is the 

production of allergen-specific IgE. Thus blood-based detection of allergen-specific IgE 

is another commonly used clinical diagnostic method for food allergies. Studies in the 

meta-analysis that used blood-based enzyme-linked immunosorbent assay (ELISA) for 

allergen-specific IgE found an estimated 4-6% of the population is allergic.  

Finally, food challenge-based assessments, including double-blind, placebo-

controlled food challenge (DBPCFC), are common ways of identifying allergic 

individuals. These methods are considered the "gold standard" of diagnosis but are 

considered the most conservative assessment. Studies estimate that 1-10.8% of people are 

allergic in the meta-analysis, which is the lowest bottom range limit (Rona et al., 2007). 

A likely reason for this phenomenon is that DBPCFC tests only identify patients with 

severe allergic reactions and are less likely to identify mild or non-anaphylactic patients. 
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As a result, these tests are prone to underestimate the portion of the population that is 

allergic. Therefore, under the umbrella of allergic individuals, there are subpopulations 

that are highly anaphylactic and more mild or subclinical responders. 

Atypical or Non-anaphylactic Food Allergies 

As previously introduced, allergy is a broad-spectrum disease. Allergy has both 

immediate symptoms in addition to late phase symptoms that arise hours after exposure. 

Due to variation in symptom severity, typical local effects arise from food allergies in the 

gut, but systemic insults are not always present. In the case of CMA specifically, ~31% 

of diagnosed patients have severe responses to the allergen, meaning it is more likely for 

patients to exhibit mild symptoms (Gupta et al., 2011). In contrast, nut allergies are more 

likely to induce severe responses. The variance in symptom presentation shows that some 

food allergies are more likely to be non-anaphylactic and, as a consequence, display 

differing symptoms. 

Even within the framework of the classical definition of reproducible IgE-

mediated immunity, there exist non-IgE mediated aspects of allergy or IgE working in 

concert with other factors causing specific effects.  Historically more emphasis has been 

given to the primarily IgE-mediated immediate reactions of food allergy and less on the 

delayed IgG-mediated response (Hill and Hosking, 1995; Koletzko et al., 2012). The 

over-emphasis of the immediate or IgE response is a problem for certain patient groups; 

for example, it is well documented that CMA patients are more likely to demonstrate a 

delayed response in infancy (Dupont, 2014).  
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Certain symptoms are also more associated with either the IgE or IgG-mediated 

response. For example, we know many of the most severe classical symptoms are 

associated with the IgE-mediated mast cell response. However, many of the gut-

associated pathologies, such as diarrhea, malabsorption, and dysmotility in addition to 

delayed hypotension, can be caused by a non-IgE mediated response (Dupont, 2014; 

Mousan and Kamat, 2016). Similarly, there are food allergy-like symptoms and, 

specifically, non-IgE mediated, associated it neuropsychiatric disorders such as autism. 

(Jyonouchi, 2008, 2009).  

Patients with atypical or non-anaphylactic food allergies often display differing 

symptoms from those with robust IgE-mediated responses. The variance in food allergies 

leads to a variable response in patients depending on the allergen. CMA is one of the 

most likely to generate mild or delayed symptoms. The non-IgE mediated symptoms 

have been focused on less in a clinical setting and often are misdiagnosed. Therefore, if a 

patient lacks a robust anaphylactic response or present more IgG-mediated symptoms 

they are less likely to be diagnosed. 

Development of Type I Hypersensitivity 

Antigen Presentation 

 Professional antigen-presenting cells like dendritic cells and monocytes function 

as bridges between the innate and adaptive immune systems. The antigen presentation 

process is typically initiated in the gut either by disrupting the epithelial barrier, 

transferring allergens by surveillance cells like microfold cells, undigested proteins 

crossing the barrier, or sampling of luminal contents by dendritic cells (Menard et al., 
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2010; McDole et al., 2012; Mabbott et al., 2013). In the lamina propria, a dendritic cell 

will uptake an antigen by phagocytosis and process it into peptides to present on an MHC 

II receptor. The dendritic cell then translocates to gut-associated lymphoid tissue 

structures like Peyer's patches or mesenteric lymph nodes to present the antigen to 

follicular helper (Tfh) or Th2 cells via OX40/OX40L signaling (Liu et al., 2020).  

Once presented to the Tfh cell, the adaptive immune response initiates, and 

antibody production begins. The T cells then stimulate naïve B cells to activate antibody 

production. Antibody production is driven by a single gene subjected to double-stranded 

DNA breakage and recombination based upon secondary cytokine signals. Typically 

naïve B cell produces either IgM or IgD, but in the context of type I hypersensitivity, 

stimulation with IL-4 promotes class switching to IgE (Market and Papavasiliou, 2003). 

To achieve class switching, helper T cells interact with B cells via CD40/CD40L and 

release IL-4. IL-4, when bound to its receptor to induces Janus kinase (JAK)-signal 

transducer and activator of transcription (STAT) signaling, while CD40/CD40L leads to 

the activation of NF-κB (Ivashkiv, 1995; Warren and Berton, 1995). In the case of IL-4 

signaling, JAK1/3 is stimulated and activates STAT6 via phosphorylation. With NF-κB, 

STAT6 binds the DNA site upstream of the ε constant locus (Cε) and acts as a 

transcription factor. At this point activation-induced cytidine deaminase (AID) randomly 

converts cytosine bases to uracil, triggering repair enzymes to cleave the uracil 

nucleotides and fragment the DNA upstream of the Cε region. The process of uracil 

conversion and DNA fragmentation also occurs at the site of the actively transcribed 

constant regions of Cμ, and once both regions have breaks, the two ends are ligated 

together by DNA repair enzymes. The ligation process excises all other constant domains 
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between the Cε and the VDJ sequencing, which constitutes the rest of the antibody heavy 

chain. Once this process is completed, the activated B cells will now produce IgE 

antibodies.  

IgE has two aspects that make it crucial to establishing allergy as opposed to other 

antibody-mediated immunities. First is the cell types that possess IgE receptors. There are 

two types of IgE receptors, low-affinity FcεRII/CD23 and high-affinity FcεRI. CD23 

receptors are found on many hematopoietic cells, such as T cells, B cells, monocytes, and 

eosinophils. The FcεRI, on the other hand, is expressed by basophils and mast cells 

which, when activated, causes degranulation of these two cell types central to the allergic 

response (Stone et al., 2010). The second aspect of IgE is it is notoriously unstable when 

unbound, having a half-life of  ~2.5 days (Poulsen and Hummelshoj, 2007). However, it 

can be stabilized when attached to FcεRI on effector cells like mast cells, remaining for 

the cell lifetime (Stone et al., 2010). This process is called priming and allows for the 

immediate phase of the allergic response. 

Lymphocyte Differentiation 

 A crucial defining factor of Th2 immunity is the types of lymphocytes involved 

and their activation. The lymphocyte classification encompasses two distinct cell families 

that originate from a common lymphoid stem cell. The thymus-derived T cell and the 

bone marrow-derived B cells arise when lymphoid cells translocate to the thymus or 

continue to differentiation the bone marrow, respectively (Luckheeram et al., 2012).  

 B cells, as previously alluded to, are the body’s antibody-producing cells. During 

development in the bone marrow, pro-B cells restructure the genes of the heavy chain V, 
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D, and J regions and light chain V and J (Tonegawa, 1987). After restructuring, the pre-B 

cell receptor is formed and expressed by pre-B cells. The pre-B cells migrate to the 

spleen, where they further differentiate and become either marginal zone B cells or 

follicular B cells (Loder et al., 1999; Pillai et al., 2005). Once fully developed in this 

fashion, marginal zone B cells can become activated by an antigen, undergo antibody 

class switching, and form short-lived plasma cells releasing antibodies. On the other 

hand, follicular B cells may become either long-lived plasma cells or memory B cells 

(MacLennan, 1994; Liu and Arpin, 1997; Pieper et al., 2013). 

When immature T cells enter the thymus, they begin as double-positive (DP) cell 

that express CD4 and CD8 surface markers. CD4+CD8+ DP T cells go through a process 

of selection to become positive for either CD4 or CD8, and then migrate from the thymus 

cortex to the medulla. While in the medulla, T cells fully mature and can proliferate, 

naïve CD4+ or CD8+ T cell then move to a secondary lymphoid organ and wait to be 

activated (Luckheeram et al., 2012; Hogquist et al., 2015; Kurd and Robey, 2016; Kumar 

et al., 2018). CD8+ T cells engage in cytotoxic action against viral infected cells, while 

CD4+ or helper T cells release cytokines to promote differentiation, survival, and cell 

death of other immune cells depending on circumstances. 

CD4+ helper T cells function as the body's professional cytokine-producing cells 

that can further specialize into different subtypes: Th1, Th2, Tfh, and regulator T cells 

(Tregs). Th1 cells are intracellular pathogen combating T cells that are induced by the 

cytokine IL-12, IL-2, and interferon γ (IFNγ). Th1 cells, in turn, release the cytokines 

IFNγ, IL-2, and tumor necrosis factor α (TNFα) and promote lymphocyte proliferation. 

IFNγ released from Th1 cells, however, can inhibit Th2 activation (Berger, 2000; 
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Raphael et al., 2015). Th2 cells are important for defense against multi-cellular parasites 

and response stimulated by allergy. This subtype is induced by IL-4 signaling and 

subsequently releases IL-4, -5, -9, -10, and -13; their cytokine profile promotes the 

actions of monocytes, eosinophils, and mast cells while suppressing Th1 cells and 

promoting their subtype (Berger, 2000; Raphael et al., 2015). Tfh cells, on the other hand, 

are central in the activation of B cells through affinity maturation in lymphoid follicles. 

Differentiation is primarily controlled by a transcription factor Bcl6; in addition, Bcl6 

aids in forming germinal centers. Bcl6 is believed to be induced by IL-6 and -21 (Nurieva 

et al., 2009; Crotty, 2014). Tfh cells reside in the T-B cell border and promote B cell 

survival and proliferation, as well as their somatic hypermutation. In antibody 

development, Tfh cells provide both the surface interaction with the B cell using CD40L 

and release cytokines IL-21 and IL-4, an essential signal to induce IgE production in B 

cells (Yusuf et al., 2010; Crotty, 2014). Lastly, Tregs are regulator T cells that suppress 

inflammation. Differentiation of CD4+ cells to Tregs is driven by TGF-β through the 

transcription factor Foxp3. The main cytokines produced by Tregs are TGF-β and IL-10; 

these cytokines both have suppressive effects on other T cell subtypes, mast cells, and 

antigen-presenting cells (APCs), further the anti-inflammatory response, and promote 

immune tolerance (de Waal Malefyt et al., 1991; Speiran et al., 2009; Workman et al., 

2009; Raphael et al., 2015). Th cells, particularly the described subtypes, are central to 

the establishment and systemic effect of allergy, the balance between Th1 and Th2 

activity, immunosuppression, and antibody production.
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Cytokine Production 

As previously alluded, Th cells are defined by their cytokine profiles. Th cells 

may function as the immune system’s professional cytokine producer, but many other 

immune cells also release cytokines when activated. Notable examples include 

macrophages and activated mast cells (Bopst et al., 1998; Aderem and Ulevitch, 2000; 

Theoharides et al., 2007; Stow et al., 2009). Cytokines have a diverse range of functions 

depending on the cells that are receiving the signals. For the purpose of this dissertation, 

the function of cytokines on the Th1 vs. Th2 axis, immune suppression, and development 

of food allergies are discussed below.  

 TNF is one of the best-characterized cytokines. Soluble TNF was first identified 

for its ability to induce cell death and inflammation via its receptor, TNFR1. Activation 

of TNFR1 can lead to caspase-8 inducing apoptosis via the recruitment of TNFR1-

associated death domain (TRADD) to its intracellular domain (Locksley et al., 2001) or 

necroptosis and inflammation via MLKL (Micheau and Tschopp, 2003; Sun et al., 2012; 

Kalliolias and Ivashkiv, 2016). TNFR2, in contrast, is commonly referred to as the anti-

inflammatory TNF pathway. TNFR2 acts through TRAF2, leading to activation of 

MAPKs, NFκB, and AKT, which lead to prosurvival and repair activity (Rao et al., 1995; 

Probert, 2015; Kalliolias and Ivashkiv, 2016). Although TNF is one of the principal 

cytokines released by Th1 cells (Raphael et al., 2015), it also produced by many other 

cell types such as macrophages, astrocytes, microglia, eosinophils, and mast cells 

(Bischoff et al., 1999; Parameswaran and Patial, 2010). Mast cell-derived TNF may play 

a role in the late stages of allergic inflammation and/or degranulation (van Overveld et 

al., 1991; Bischoff et al., 1999). 
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 IFNγ is a core product of Th1 cells. It not only promotes the differentiation of Th1 

cells but also serves as a central proinflammatory signal. IFNγ acts via a JAK1/2 

mechanism, phosphorylating STAT1 to induce its transcription factor activity. 

Macrophages are pushed to the M1 phenotype by IFNγ, which in turn are 

proinflammatory cells with increased phagocytic activity, antibacterial functions, and 

release large amounts of TNFα, IL-12, and IL-1β (Jouanguy et al., 1999; Sica and 

Mantovani, 2012). For T cells, IFNγ enforces the Th1 phenotype while inhibiting Th2 

and Th17 differentiation by blocking IL-4/STAT6 signaling and GATA3 expression 

(Naka et al., 2001; Yu et al., 2004; Shachar and Karin, 2013). Another critical function of 

the IFNγ for Th1 cells is class switching to the IgG2a isotype in B cells (Ivashkiv, 1995). 

IgG2a is believed to be important for defense against bacterial infection (Kuijpers et al., 

1992). 

 Granulocyte-macrophage colony-stimulated factor (GM-CSF), also called colony-

stimulating factor 2 (CSF2), is a growth factor known to stimulate both granulocyte and 

monocyte production. GM-CSF is produced in endothelial cells, macrophages, 

fibroblasts, and activated T cells of CD4 and CD8 lineages and Th1 and Th2 cells 

(Griffin et al., 1990). Interestingly, resting T cells do not express GM-CSF but begin to 

produce the factor following stimulation with IL-3 or GM-CSF by APCs. The functional 

signaling between T cells and APCs suggests a role in cell function and cellular active 

state maintenance. GM-CSF is also induced by pro-inflammatory cytokines IL-1, IL-6, 

and TNFα and, when overexpressed, leads to severe inflammation due to fibrosis, 

macrophage expansion, and eosinophilia (Xing et al., 1996; Shi et al., 2006). GM-CSF 
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signals through a JAK2/STAT5 and ERK coupled multimeric receptor (Dougan et al., 

2019; Hamilton, 2019). 

 Another Th1 factor, IL-2, is best characterized as a T cell proliferation promoting 

factor. IL-2 is known to promote certain classes of activated T cells, notably Th1 and Th2 

cytokine release, differentiation of memory T cells, and activity of CD8+ T cells while 

blocking Th17 and Tfh (Ross and Cantrell, 2018). IL-2 acts through a JAK1/3 coupled 

receptor that activates either STAT3 or STAT5 (Ivashkiv, 1995). Evidence supports that 

STAT5 may be the primary transcription factor of action as knockout studies have shown 

a loss of both Tregs and peripheral T cell’s ability to proliferate (Moriggl et al., 1999; 

Snow et al., 2003). 

 The main Th2 cytokine, IL-4, was briefly discussed earlier in the context of IgE 

production. IL-4 production is best characterized in Tfh and Th2 cells, but mast cells, 

basophils, and eosinophils are also known to release IL-4 (Xin et al., 2007). The principal 

function of IL-4, in addition to IgE class switching, is regulation of inflammatory cells. 

For example, it is known to lead macrophages to M2 activation (Stein et al., 1992), 

suppress Th1 differentiation (Szabo et al., 1997), and suppress TNFα expression (Hart et 

al., 1991). The regulation of the pro-inflammatory pathway is a result of IL-4’s main 

antiparasitic activity. Parasites are notoriously unaffected by typical pro-inflammatory 

factors or involved cells, a Th2-type response being more effective at expelling parasites 

during certain stages of their life cycle (Moreau and Chauvin, 2010). 

IL-5 is another Th2 cytokine primarily produced by Th2 cells and mast cells 

(Kouro and Takatsu, 2009). Similar to IL-4, IL-5 induces antibody production in B cells 

(Takatsu et al., 1980). IL-5 also is vital for terminal differentiation of eosinophils, 
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survival, and chemotaxis (Yamaguchi et al., 1988; Rothenberg and Hogan, 2006). The 

signaling pathway of IL-5 is propagated via JAK1/2-STAT1/5, Btk, and Ras/ERK 

mechanisms. The Btk signaling pathway is implicated in the B cell function and 

proliferation role of  IL-5 signaling, while the Ras pathway seems to carry much of the 

eosinophil functions (Pazdrak et al., 1995; Takatsu, 1998). 

IL-6 is best described as an acute and chronic phase response cytokine, often one 

of the first products released during tissue damage and infections (Tanaka et al., 2014). 

IL-6 has been linked with pro- and anti-inflammatory signaling; which includes 

regulating macrophage differentiation through macrophage colony-stimulating factor (M-

CSF, also called colony-stimulating factor 2 (CSF2)) (Chomarat et al., 2000), dendritic 

maturation inhibition (Park et al., 2004), and Th1 differentiation by IL-4 signaling and 

IFNγ inhibition (Diehl and Rincón, 2002; Dienz and Rincon, 2009), and IL-21 induction 

of IgG production in B cells (Yang et al., 2016). This diverse range of functions is 

achieved through broad expression by various cell types, including dendritic cells, 

macrophages, B cells, fibroblasts, epithelial cells, and astrocytes (Kamimura et al., 2003; 

Dienz and Rincon, 2009). IL-6 signals through a JAK1/2/Tyk2 coupled receptor 

activating transcription factors STAT1/3 (Ivashkiv, 1995; Dienz and Rincon, 2009). 

IL-10 is a Th2 cytokine produced by Tfh, macrophages, dendritic, and B cells in 

addition to the evident Th2 cells (Couper et al., 2008). IL-10’s anti-inflammatory 

function is mostly indirect, downregulating macrophage TNFα, IL-1, and IL-12 as a 

means of suppressing T cell and NK cell production of IFNγ (Moore et al., 1993; Li et 

al., 1999a). IL-10 also functions through a JAK1-STAT1/3/5 pathway and PKB signaling 

(Riley et al., 1999). 
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IL-12 is central to the Th1/Th2 axis, promoting Th1 differentiation while 

suppressing Th2. IL-12 drives Th1 differentiation through IFNγ while suppressing Il-4, 

inhibiting Th2 (Wills-Karp, 2001; O'Shea and Paul, 2002). IL-12 is produced by 

macrophages, neutrophils, B cells, and dendritic cells (Heufler et al., 1996) and functions 

via heterodimer receptors IL-12p35 or p40. The IL-12Rs are mainly found on NK cells 

and T cells and act through a JAK2/TYK2 mechanism stimulating STAT3/4 

phosphorylation (Desai et al., 1992; Watford et al., 2004; Ma et al., 2015; Zundler and 

Neurath, 2015).  

IL-13 is the final of the canonical Th2 factors and is produced by Th2 cells in 

addition to NK T cells, mast cells, basophils, and eosinophils (Rael and Lockey, 2011). 

The signaling of IL-13, as previously stated, is vital in generating IgE antibodies in B 

cells, but also mucus secretion in goblet cells, and airway hyperresponsiveness, and 

fibrosis (Munitz et al., 2008). Though having their unique functions Il-4 and IL-13 have a 

great deal of functional overlap, IL-13, as a result, can bind to IL-4R, initiating its 

STAT6 pathway (Bao and Reinhardt, 2015). 

Food-Allergy-Association Neuropsychiatric Disorders 

History of Clinical Observations 

Food allergies are often found comorbid with various neuropsychiatric and 

behavioral disorders. This connection has been established with clinical observations and 

case studies described as far back as 1916, meaning this link has been around nearly as 

long as our current understanding of allergies in general. A report by Hoobler in 1916 is 

the oldest record, which described children with allergy vaguely as "restless, fretful, and 
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sleepless" (Hoobler, 1916). In 1949, Davison described in detail a series of cases 

observed in his practice, "For a long time, it has been noted that symptoms of bizarre and 

unusual cerebral disturbances occur in allergic patients." Davison collected information 

on 428 patients with psychiatric conditions and allergies as potential "cerebral allergy" 

cases (Davison, 1949). A large number of the cerebral allergy patients had described 

themselves as "mean, sulky, irritable, unable to be pleased, crying without cause, 

worried, suicidal, jumpy, and indecisive," which now can easily be understood as 

affective disorders. More modern studies have also reported comorbidity of allergy with 

depression, anxiety, attention deficit hyperactivity, oppositional defiant, and autism 

spectrum disorders (Tryphonas and Trites, 1979; Patten and Williams, 2007; Garg and 

Silverberg, 2014; Shanahan et al., 2014; Ferro et al., 2016; Theoharides et al., 2016; 

Topal et al., 2016). The spectrum of conditions has clear overlap with the symptoms 

identified by Davison. In these studies, it was established that a connection exists but not 

whether food allergies cause or exacerbate underlying psychiatric conditions. 

Comorbidity of Cow's Milk Allergy and Behavioral Disorders 

Of the foods common for hypersensitivities, CMA is the second most common 

allergy, surpassed only by peanut allergy, afflicting approximately 20% of allergic 

individuals (Warren et al., 2013). Cow's milk proteins are classified into two groups: 

caseins and whey proteins. The major whey proteins are α-lactalbumin and β-

lactoglobulin (BLG), the latter being the most common allergen in milk. BLG is absent in 

human milk and is highly allergenic, perhaps due to its resistance to proteolysis (Schmidt 

et al., 1995; Sélo et al., 1999; Iametti et al., 2002; Malacarne et al., 2002; Bossios et al., 
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2011). BLG often remains in whole or partially digested peptides in the intestines, likely 

to stimulate an immune response when encountering immune cells (Schmidt et al., 1995). 

 Among the general allergic population, CMA individuals are more likely to be 

diagnosed with neuropsychiatric disorders. Children with milk allergy are at an increased 

risk of being diagnosed with attachment, oppositional defiant, attention deficit 

hyperactivity disorders (Shanahan et al., 2014; Ferro et al., 2016; Topal et al., 2016). 

Experimental mouse models have further validated these findings by sensitizing mice to 

milk proteins and examining their behavioral abnormalities (de Theije et al., 2014; 

Germundson et al., 2018). These clinical and pre-clinical observations support the role of 

CMA in behavior and mood disorders. However, it is necessary to investigate further the 

effect of CMA with a more robust behavioral study paradigm to identify a specific 

mechanism between the immune system and behavior. 

The Role of Diet and the Immune System in Brain Function  
and Behavior 

 There is an ample amount of evidence for the immune system's regulation of the 

brain and behavior. As often referred to as "sickness behavior," an individual’s social, 

physical, and eating behavior are known to be affected by infections (Miller, 1964; Hart, 

1988; Yirmiya et al., 1999; Dantzer et al., 2008). Sickness behavior is likely an 

evolutionarily conserved behavior mechanism that forces the sick individual to focus on 

specific needs or change actions to better recover from the illness. The commonly 

identified behaviors in this condition are appetite loss, depression, and fatigue, primarily 

modulated by the hypothalamus-pituitary-adrenal axis (Dantzer et al., 2008). Behavioral 

changes are a consequence of the body's normal response to infection. 
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 Potential mechanisms that allow the immune system to influence behavior include 

increased brain cytokine levels (Li et al., 2009), glial cell activation (Pardo et al., 2005; 

Vargas et al., 2005), and changes in amino acid and neurotransmitter concentrations.  

Experimental models and meta-analysis of depression have found comorbidity with 

inflammatory factors of both cytokines and cell-mediated activation (Maes, 2011; Liu et 

al., 2012). In general, immune conditions seem to be closely tied to the diagnosis of 

behavioral disorders such as anxiety and depression. Inflammation has been additionally 

implicated in various other behavioral conditions. Immune mediators and the likelihood 

for developing inflammatory disorders have been found in autism spectrum disorder 

patients (Vargas et al., 2005; Zimmerman et al., 2005; Li et al., 2009). 

 In addition to the direct disruption by the immune system, the other aspect of food 

allergy is the specific dietary element acting as the source of the sensitivity impacting the 

gut and behavior. It has often been reported that individuals with neuropsychiatric 

disorders have behavioral symptoms exacerbated by certain foods (Crayton, 1986). 

Compounds in food and dietary habits have routinely been linked with behavioral and 

emotional disorders (Khalid et al., 2016). There is also a case to be made about the 

impact diet and nutrition have on behavior, studies have shown that typical “western” 

diets showed a greater risk of psychiatric incidence (Akbaraly et al., 2009; Jacka et al., 

2010; Sánchez-Villegas et al., 2011; Ruusunen et al., 2014). These assessments 

compound with existing knowledge on inflammation’s role in behavior and mood, as 

diets high in fat and carbohydrates are pro-inflammatory (Smith, 1991; Liu et al., 2002; 

Chrysohoou et al., 2004). Western diets typically lack in critical nutrients found in 

abundance in eastern, modern, or traditional diets. Deficiencies in compounds such as 
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omega-3 fatty acids, vitamin B12, and minerals such as zinc have been linked with 

increased risk of depression in some cohort studies (Maes et al., 1994; Penninx et al., 

2000; Murakami et al., 2010; Oddy et al., 2011). The interconnectedness of diet, gut 

health, inflammation, and behavior paired with the increasing diagnosis rate of behavioral 

disorders, including those resistant to conventional therapies, suggests that a subset of 

psychiatric patients may have an underlying food allergy resulting in resistance to 

behavior modulatory drug therapies. 

Food Allergy as an Etiology and Therapeutic Target 

Growing evidence supports the causative role of food allergies in neuropsychiatric 

disorders. With an extensive history of clinicians finding comorbidity between food 

allergies and neuropsychiatric diagnosis and the known role of inflammation and diet 

causing behavioral abnormality, discovering an immune-to-CNS signaling mechanism 

warrants investigation. Knowing that food allergies are highly variable and subjected to 

multiple factors, there is likely a subpopulation of undiagnosed allergic individuals at risk 

of developing behavioral disorders. With this understanding, treatment with conventional 

neuropharmacological therapies would be ineffective. Exploring a mechanism by which 

peripheral food allergies, even in mild cases, can influence behavior is invaluable and 

provides a novel mechanism for treating and preventing neuropsychiatric disorders. To 

achieve this aim, aspects of the gut-brain axis (GBA) such as absorption of 

neurotransmitter precursors, the microbiome, and modes of peripheral to central signaling 

are likely therapeutic targets. 
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Mechanisms of Gut-Brain Communication 

An Overview of the Gut-Brain Axis 

The GBA is an increasingly investigated mode of communication within the 

body. The GBA encompasses a broad range of factors like diet, the microbiome, and gut 

inflammation which influence other organ systems. This GBA's core is the bidirectional 

communication between the central nervous system and enteric nervous system 

controlling processes like digestion and satiety. The GBA consists of the collection of 

neural, immune, and endocrine signaling pathways between the central, autonomic, and 

enteric nervous systems (Carabotti et al., 2015).  

Within the gut, precursors needed for nervous system function and other essential 

compounds not natively produced in our bodies, including those produced by bacteria, 

are absorbed and processed—the clearest example of this is serotonin/5-

hydroxytryptamine. Our gut contains 90% of the serotonin in the body, which is derived 

from tryptophan. Tryptophan is an essential amino acid, which our bodies cannot 

produce. Tryptophan is instead absorbed from our diet with the aid of our commensal 

microbiota. Once absorbed, tryptophan can be transported to the CNS and converted into 

serotonin by the enzyme tryptophan hydroxylase (Lillesaar, 2011; Hoglund et al., 2019). 

Under normal circumstances, this route is sufficient to supply the necessary precursors 

for the nervous system; however, alteration of the microbiota via sustained changes in 

diet, infection, or inflammatory diseases of the gut can disrupt normal function 

(Holtmann et al., 2017). Subsequently, dysfunction of gut tryptophan absorption and 
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serotonin synthesis reduction can lead to depression and various neuro-signaling 

disorders. 

Conversely, efferent signals from the brain to the gut are necessary for 

homeostatic function. Inverse to the system we have previously described, stress disrupts 

gut microbiota function. Experimental models have demonstrated that social stressors 

impact the microbiota (Galley et al., 2014; Carabotti et al., 2015). One possible 

mechanism of microbiota changes is the autonomic nervous system's control of secretory 

function within the gut, which can directly influence microbe populations in the intestine.  

The Role of Gut Microbiota in the Immune  
and Nervous System 

The microbiota has vast implications across many systems. Allergic inflammation 

is both a cause and effect of dysbiosis (Stefka et al., 2014; Hussain et al., 2019; Matsui et 

al., 2019). Food allergy as an inflammatory condition is capable of breaking down normal 

gut barrier function leading to changes in normal gut bacteria. Alternatively, gut bacteria 

act as regulators of the local immune system and, if dysregulated, make the host 

susceptible to food allergy. Both functions are potential mechanisms, and in addition, gut 

bacteria changes are commonly found in individuals with neuropsychiatric disorders, 

especially those paired with gut dysfunction. (Wang et al., 2011; Bunyavanich et al., 

2016; Cenit et al., 2017; Pulikkan et al., 2018; Savage et al., 2018). Both the loss of 

neuroactive compounds produced by gut bacteria and dysregulations of the local immune 

system can influence behavior and brain function. 
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Cytokines and Their Role in CNS Communication 

Cytokines are crucial to the mechanism of the gut-to-CNS signaling. As 

previously stated, cytokines are the primary way immune cells communicate with each 

other and non-immune cells. Many factors such as TNFα, IL-6, IFNγ, IL-4, and IL-10 

have well-characterized interactions with the CNS, including their roles in behavior 

modulation (Kronfol and Remick, 2000; Zorrilla et al., 2001; Anisman and Merali, 2003; 

Arosio et al., 2004; Shapshak et al., 2004; Theoharides et al., 2004; Li et al., 2009; 

Abbott et al., 2015). Though the exact mechanisms are not entirely characterized, glial 

cells such as astrocytes, oligodendrocytes, and microglia, are promising as they typically 

act as mediators between the CNS and immune cells (Eddleston and Mucke, 1993; John 

et al., 2003). There is currently evidence suggesting that allergy-induced inflammation 

releases cytokines that relay signals directly to the CNS via afferent sensory neurons or 

by stimulating resident immune cells in the brain like T cells and mast cells. 

Dissertation Research Objective 

This dissertation aims to further our laboratory’s objective to elucidate the 

mechanism(s) by which CMA can impact brain function and behavior. Our laboratory’s 

focus is the communication between the peripheral immune system and the CNS leading 

to behavioral abnormality. Our attention has focused on exploring the relationship 

between BLG allergy symptoms and T cell immune predisposition, glial cell function, 

blood-brain barrier integrity, and host-microbiome factors. The objective of this 

dissertation is to explore a mechanism of BLG-allergy, which leads to behavioral changes 
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through a cytokine-mediated peripheral to central signaling to glial cells. This dissertation 

is organized into three studies aimed at addressing the following questions: 

1. What is the behavioral and histopathological impact of BLG sensitization in a 

non-anaphylactic mouse model of CMA? 

2. Which brain signaling pathways and CNS mediators are differentially activated 

following BLG sensitization? 

3 Does genetic predisposition for a helper T cell bias influence the physiological 

and behavioral effects of CMA? 
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CHAPTER II  

METHODS  

Animals 

Three-week-old male and female C57BL/6J and BALB/cJ mice were purchased 

from Jackson Laboratories (Bar Harbor, ME, U.S.A.). On arrival, mice were caged by 

both sex and strain, and randomly divided into groups before housed under a 12-hr 

light/12-hr dark cycle in a specific-pathogen-free environment at the University of North 

Dakota animal facility. Mice were given ad libitum access to whey-free rodent diet 

(Teklad 2018, Envigo, Indianapolis, IN, U.S.A.) and ultra-filtered water. Body weights of 

mice were recorded weekly to assess health and growth throughout the experiment. All 

procedures involving mice were approved by the University of North Dakota Institutional 

Animal Care and Use Committee prior to experiments. 

Animal Use  

Sensitization  

Mice were randomly assigned to either sham or BLG-sensitization groups and 

given weekly intragastric oral gavage for 5 weeks (Figure 1). Sham and BLG treatment 

groups received vehicle solution with or without BLG. Vehicle solution contained 10 μg 

cholera toxin (CT; #100B, List Labs, Campbell, CA, U.S.A.) as an adjuvant in 200 μL 

sodium carbonate/bicarbonate buffer (0.2 M, pH 9.0), while the BLG solution contained 
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Figure 1.  Schematics of the experimental timelines in the studies. Starting at  
4-weeks of age, mice were given a weekly oral administration of 200 μL 
vehicle (carbonate/bicarbonate buffer containing 10 μg CT, pH 9.0) with 
or without 1 mg BLG for 5 weeks. (A) In study 1, during the 6th and 7th 
weeks, all mice were challenged with 50 mg BLG in 
carbonate/bicarbonate buffer (without CT), and their behavior was 
subsequently tested at 1- and 2-day post-challenge. One day after the last 
behavior test in Week 7, mice were sacrificed, and blood and tissue 
samples were harvested. (B) In study 2, During week 6, all mice were 
challenged with 50 mg BLG in sodium carbonate/bicarbonate buffer 
(without CT) and were sacrificed 1-day post-challenge. (C) in study 3, 
During week 6, all mice were challenged with 50 mg BLG in sodium 
carbonate/bicarbonate buffer (without CT), and their behavior was tested 
1-day post-challenge. 
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an addition of 1 mg BLG (#L0130, MilliporeSigma, St. Louis, MO, U.S.A.) in the 

vehicle. Two hours prior to and following treatment, normal whey-free diet was removed, 

and mice were fasted. 

Allergen Challenge  

Beginning on week 6 (1-2 days prior to behavioral testing), mice were challenged 

with BLG solution to assess for anaphylactic reaction. BLG solution contained 50 mg 

BLG in 200 μL sodium carbonate/bicarbonate buffer (0.2 M, pH 9.0) without the 

presence of adjuvant. Mice were fasted for 2 hrs before gavage and observed for 30 min 

following gavage to assess physical responses. 

Acute Physical Responses  

Following challenge, physical responses were assessed. Anaphylaxis symptoms 

were graded on a 0-5 point scale established in Li, et al. (1999)(Li et al., 1999b). Briefly, 

“0” on this scale indicates no reaction, “1” notes the presence of body scratching due to 

skin irritation, “2” indicates swelling, redness, and reduced activity, “3” denotes 

respiratory distress observed by labored breathing and cyanosis, “4” indicates shock 

symptoms by convulsion and lack of responsiveness, and a score of “5” is when death 

occurs following challenge (Table 1). Secondly, we assess allergy-induced hypothermia 

using a MicroTherma 2T Handheld Thermometer with a RET-3 probe (Braintree 

Scientific, Inc., Braintree, MA, U.S.A.). Mice were returned to their home cages and 

allowed to rest for one day until behavior tests.
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Table 1. Anaphylaxis scoring scales. Scores and symptom descriptions adapted from  
Li et al., 1999. (Li et al., 1999b) 

0 No reaction/clinical symptoms 

1 Scratching and rubbing around the nose and head 

2 Puffiness around the eyes and mouth, pilar erecti, reduced activity 

3 Wheezing, labored respiration and cyanosis around the mouth and tail 

4 No activity after prodding or tremor and convulsion 

5 Death 

 

Behavioral Testing  

Innate digging behavior was assessed by placing each mouse in an enclosure 

(24.8-cm width × 38.7-cm depth × 29.2-cm height) containing 5-cm thickness of clean 

corncob bedding. Mice were allowed to explore the enclosure freely for 20 min. The first 

5 min were used to acclimate mice to the enclosure, and the following 15 min were 

recorded for analysis of digging behavior. The frequency of digging activity was counted 

from the videos by two observers blinded to the mice's experimental conditions (Figure 

2A).  

Mice were individually placed in empty cages, and their grooming behavior was 

video-recorded for 10 min after 5 min of acclimation. As with the scoring of digging 

behavior, two blinded observers from the video recordings counted the grooming 

behavior frequency. The presence or absence of grooming activity was monitored by 
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giving 1 or 0 points, respectively, during each of 60 × 10-sec intervals. The sum of the 

points for the testing period (10 min) was considered the mouse's grooming frequency 

(Figure 2B).  

Tail suspension test (TST) was performed based on a previously described 

protocol. Briefly, mice were suspended by their tail from a horizontal bar with a piece of 

laboratory tape so that their nose was ~ 30 cm above the base of the bar support. The 

C57BL/6 strain is known to climb their tail; a plastic tubing piece was used to maintain 

the mice in the suspended position. Their attempts to escape from the position were 

during the 6 min video-recorded. The frequency and length of immobility and the latency 

to the first immobile episode were compared between groups as indications of 

depression-like behavior (Figure 2C).



32 

 
 

Figure 2.  Behavior tests used in studies. During behavioral testing, which occurred 
1- or 2-days post-challenge, (A) digging and (B) grooming activity was 
recorded, and frequency during the testing period was quantified. (C) Tail 
suspension test for depression-like behavior was employed. (D) open field 
recordings were used to assess anxiety-like and mobility behavior. (E) The 
Elevated-zero maze was used to measure anxiety-like behavior. (F) 
Finally, cross maze was used to assess spatial memory behavior. 

 

Open field (OF) recordings were performed in a plexiglass enclosure  

(40.6-cm width × 40.6-cm depth × 38.1-cm height; San Diego Instruments, San Diego, 

CA, U.S.A.) with a defined 20-cm × 20-cm center zone was used (Figure 2D). Mice were 

individually placed in the same area of the enclosure outside of the center zone and 

allowed to freely explore for 10 min, and their spontaneous activities were recorded using 

an overhead digital video camera. The number of entries, total time spent, and average 

duration of visit to the center zone, and the number of fecal pellets produced during the 
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test duration, average speed, distance traveled, and time immobile were recorded to 

objectively assess anxiety-like behavior as well as overall activity levels using ANY-

maze software (Stoelting Co.). The number of fecal pellets was manually counted from 

the video recordings by two blinded observers as a mobility-independent measure of 

anxiety-like behavior (Figure 2D). 

Anxiety-like behavior was observed using an elevated zero maze (EZM; Stoelting 

Co., Wood Dale, IL, U.S.A.). Each mouse's activity on the EZM was recorded for 5 min 

(study 1) or 10 min (study 3). Mice were individually placed in one of the walled sections 

of the circular maze and allowed to explore freely. The time spent in the open zones, the 

number of entries into the open zones and the average duration of visit to the open zones 

were analyzed using ANY-maze software (Stoelting Co.) and manually validated by a 

blinded observer. A few mice failed to stay on the maze for the entire test duration, and 

they were excluded from the final analysis (Figure 2E). 

A cross maze was used to evaluate spatial working memory. The maze was 

custom-made with white plexiglass with four identical cross-shaped arms  

(5-cm width × 30-cm length) with a 5-cm × 5-cm center area and 15-cm high walls based 

on the specifications by Kulas, et al. (2018) (Kulas et al., 2018). Mice were individually 

placed in one of the arms designated as the starting arm and allowed to explore the maze 

freely for 12 min. The sequence of arm entries was recorded by an overhead digital video 

camera and analyzed by a blinded observer (Figure 2F). “Alternations” was defined as 

the instances where the mouse successfully entered all 4 arms of the maze without 

reentering a previously entered arm. The percentage of alternations was calculated using 

the following equation (Kulas et al., 2018): 
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% 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = (# 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 3⁄ ) × 100. 

All behavior testing was performed at the University of North Dakota Behavioral 

Research Core Facility. Apparatuses were thoroughly cleaned with Process NPD 

(STERIS, Mentor, OH, U.S.A.) between tests. On days with multiple tests mice were 

allowed to rest for at least 1 hr between tests. The ANY-maze software (Stoelting, Co.) 

was used to establish all test parameters, to control video recordings, and to compute the 

results. 

Sacrifice and Tissue Collection 

 Mice were euthanized via CO2 asphyxiation followed by intracardiac perfusion 

with phosphate-buffered saline (PBS; pH 7.4). Cardiac blood was collected prior to 

perfusion to prepare serum and plasma samples for immunoglobulin and cytokine 

ELISAs, respectively. For plasma samples, approximately 100 µL of blood was collected 

in EDTA-coated Microvette tubes (Sarstedt, Inc., Newton, NC, U.S.A.) and centrifuged 

for 10 min at 2,000 × g at 4°C. For serum preparation, blood was collected in microfuge 

tubes and allowed to coagulate for 30 min at room temperature before centrifuged at 

2,000 × g for 15 min at 4°C. Aliquoted serum and plasma samples were stored at −80°C 

until used. Brain was extracted and preserved for subsequent applications. Brains were 

separated into both hemispheres, the left hemisphere was preserved for histology, and the 

right was divided regionally, as depicted in Figure 3 for western blot analysis. In study 2, 

both hemispheres were dissected, as seen in Figure 3 for RNA extraction and sequencing. 



35 

 
 

Figure 3.  Regional dissection of mouse brain for biochemical analysis. Diagrams 
depicting the dorsal (left), ventral (right), and sagittal (bottom) views of a 
mouse brain. Upon collection of brain samples, the left hemisphere  
(L, dotted outline) was immersion-fixed in 4% PFA while the right 
hemisphere (R, solid outline) was subdivided into the following five 
regions: Region 1, rostral brain including prefrontal and frontal cortices 
and underlying subcortical structures (e.g., striatum); Region 2, 
parietotemporal cortices and the hippocampus; Region 3, the thalamus and 
hypothalamus, Region 4, the midbrain; and Region 5, the cerebellum. 
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Enzyme-Linked Immunosorbent Assays (ELISA)  

In studies 1 and 2, the amount of antigen-specific IgE and IgG1 antibodies present 

in sera was quantified using ELISA. The wells of the ELISA plate were coated with 

20 μg/mL BLG in a 100 mM sodium carbonate/bicarbonate buffer overnight at 4°C, 

washed thoroughly, and blocked with PBS containing 0.05% Tween-20 and fetal bovine 

serum (Assay Buffer, eBioscience ELISA Support Pack Plus # BMS414, Thermo Fisher 

Scientific, Waltham, MA, U.S.A.). Sera isolated from the terminal blood of mice were 

diluted 1:1 for IgE or 1:50 for IgG1 detection with Assay Buffer before adding to the 

antigen-coated wells. The plate was incubated for 12 hrs at 4°C, and BLG-specific IgE 

was detected with biotinylated anti-mouse IgE (used at 1:1,000, #13-5992-81, 

ThermoFisher Scientific) or anti-mouse IgG1 (used at 1:1,000, #13-4015-82, 

ThermoFisher Scientific) followed by avidin-HRP and TMB (3,3′,5,5′-

tetramethylbenzidine) according to the manufacturer's instructions. The plate was read at 

450 nm on a Biotek ELx 800 microplate reader using Gen5 v3.02 software (Biotek 

Instruments, Winooski, VT, U.S.A.).  

In study 3, serum samples from mice were first diluted to 1:40 to adsorb IgG 

using magnetic protein G beads, and resulting supernatants were used for BLG-specific 

IgE detection. Bead-bound IgG was eluted in 50 mM glycine (pH 2.8) for 2 min at room 

temperature, neutralized with 1 M Tris buffer (pH 7.5), and used to detect BLG-specific 

IgG1 and IgG2a. Samples were placed in the allergen-coated wells and incubated 

overnight at 4°C. BLG-specific immunoglobulins were detected by respective anti-mouse 

secondary antibodies followed by avidin-HRP and using TMB as the substrate. Reactions 
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were terminated by adding 2 N H2SO4 prior to reading at 450 nm on a Biotek ELx 800 

microplate reader with Gen5 software (Biotek Instruments). 

The amount of TNFα in the midbrain samples was quantified using TNFα 

DuoSet® ELISA (#DY410, R&D Systems, Minneapolis, MN, U.S.A.) according to the 

manufacturer's protocol. Briefly, an ELISA plate (#2580, Corning EIA/RIA 8-Well 

Strips) was coated with TNFα capture antibody overnight at room temperature. After 

washing and blocking the wells, protein extract (200 ng/100 μL/well) was placed in 

duplicates and incubated for 2 hrs at room temperature. TNFα in the samples was 

visualized by sequentially incubating the wells with the detection antibody and 

streptavidin-HRP. The substrate reaction was allowed to occur for 20 min before 

termination, and the plate was read as described above. The mean of the duplicate values 

from each sample was taken, and TNFα concentration was calculated from the standard 

curve. 

Tissue Preparation for Histology  

The left hemisphere of the brain and the ileum were immersion fixed in 4% 

paraformaldehyde for 24 hrs. Following fixation, tissues were dehydrated in increasingly 

high sucrose-containing PBS solutions. First, immediately following fixation, tissues 

were places 15% sucrose for 24 hrs then placed in 30% for 24 hrs or until embedded. 

Fixed ileal tissues were placed in either optimal cutting temperature (OCT; study 2; 

#4583, Sakura Finetek, Torrance, CA, U.S.A.) solution or gelatin (study 1), and brain 

tissues were embedded in gelatin. Gelatin embedded ilea and brains were then processed 
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as explained in Nagamoto-Combs, et al. (2016) (Nagamoto-Combs et al., 2016) and 

frozen sectioned at 14 and 40 μm, respectively. 

Immunohistochemistry  

Tissue sections were treated with 0.3% peroxidase and blocked in PBS containing 

0.5% bovine serum albumin and 5% normal goat serum (#16210072, ThermoFisher 

Scientific) and incubated with a primary antibody against rabbit anti-mouse occludin 

(used at 1:100, #711500, ThermoFisher Scientific), glial fibrillary acidic protein (GFAP; 

used at 1:1,000, #12389S, Cell Signaling Technology, Boston, MA, U.S.A.), Iba1 (used 

at 1:1000, #019-19741, Wako Chemicals, Richmond, VA, U.S.A.), myelin basic protein 

(MBP; used at 1:500, #HPA049222, MilliporeSigma), or IgG (used at 1:500, #13-4013-

85, ThermoFisher Scientific) for 12–48 hrs at 4°C. Tissues were subsequently incubated 

in anti-rabbit IgG (used at 1:2,000, #PK-6101, Vector Laboratories, Burlingame, CA, 

U.S.A.) or mouse-adsorbed rabbit anti-rat IgG (used at 1:100, #BA-4001, Vector Labs) 

antibody. Immunoreactivity was visualized with Vector Elite ABC kit (#PK-6101, Vector 

Labs) with VIP as the chromogen (#SK-4600, Vector Labs). 

RNA Extraction and Reverse Transcriptase Quantitative PCR  

Ileal and brain tissue samples were homogenized in TRIzol solution (#15596018, 

Thermo Fisher Scientific) using 5-mm stainless steel beads in a Bullet Blender Storm 24 

(Next Advance, Troy, NY, U.S.A.) set to speed 6 for 3 min with 30-sec intervals. Total 

RNA was extracted and purified by ethanol precipitation according to the manufacturer's 

instructions. The amount of RNA was quantified using Nanodrop One (Thermo Fisher 

Scientific), and 1 μg of total RNA was used to synthesize cDNA with an iScript™ cDNA 
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Synthesis Kit (#1708891, Bio-Rad Laboratories, Hercules, CA, U.S.A.) by priming at 

25°C for 5 min, reverse transcription at 46°C for 20 min, and inactivation at 95°C for 1 

min. Quantitative PCR reactions were performed with 100 ng cDNA and specific primer 

sets for murine Tnfα (qMmuCED0004141, Bio-Rad), occludin (Ocln; fwd: 5′-

AAAGCAAGTTAAGGGATCTG-3′; Rev: 5′-TGGCATCTCTCTAAGGTTTC-3′, 

MilliporeSigma), phosphatidylserine decarboxylase pseudogene 1 (Pisd-ps1; fwd: 5′-

ACGAGTTTGCTGTCATGTGC-3′; Rev: 5′-TCAGTCATGTTCACCCCAAA-3′, 

MilliporeSigma), myocardial infarction associated transcript (Miat; fwd: 5′- 

CCCACATCTCTTTGCTTGAGTCC-3′; Rev: 5′- GCTCTTTGTGCCCAGCTCTTAAC-

3′, MilliporeSigma), maternally expressed 3 (Meg3; fwd: 5′- 

ACATGCTGGACCCAAGACTC-3′; Rev: 5′- CCTGAGCCCATTTCACAGAT-3′, 

MilliporeSigma), Heat shock protein h1 (Hsph1; fwd: 5′- 

CAGGTACAAACTGATGGTCAACA-3′; Rev: 5′- 

TGAGGTAAGTTCAGGTGAAGGG-3′, MilliporeSigma), Transferrin (Trf; fwd: 5′- 

TGGGGGTTGGGTGTACGAT-3′; Rev: 5′- AGCGTAGTAGTAGGTCTGTGG-3′, 

MilliporeSigma), RNA binding motif protein 3 (Rbm3; fwd: 5′- 

CTTCGTAGGAGGGCTCAACTT-3′; Rev: 5′- CTCCCGGTCCTTGACAACAAC-3′, 

MilliporeSigma), ribosomal protein S18 (Rps18; qMmuCED0045430, Bio-Rad) or 

glyceraldehyde 3-phosphate dehydrogenase (Gapdh; qMmuCED0027497, Bio-Rad) 

using iTaq™ Universal SYBR® Green Supermix (#1725120, Bio-Rad) on a C1000 

Touch Thermo Cycler (Bio-Rad) for 40 cycles (denaturing at 95°C for 15 sec, annealing 

at 60°C for 30 sec, and extension at 72°C for 30 sec). The resulting Cq values were 

calculated using Bio-Rad CFX Manager Software version 3.1. Target gene ΔΔCq values 
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were calculated by normalizing target Cq values to the Cq values of reference genes 

Rps18 or Gapdh in the brain and ileum, respectively. 

Western Blot Analysis  

Total proteins from each isolated region of the right brain hemisphere were 

extracted in RIPA buffer (20 mM Tris, pH 7.4, 150 mM NaCl, 1 mM Na3VO4 10 mM 

sodium fluoride, 1 mM EDTA, 1 mM EGTA, 0.2 mM phenylmethylsulfonyl fluoride, 

1% Triton X-100, 0.1% SDS, and 0.5% deoxycholate) and quantified using the Bradford 

method (Bradford, 1976). Western blotting was carried out with 25 μg of protein samples 

resolved on 15% SDS-polyacrylamide gels. Resolved proteins were transferred onto 

PVDF membranes and detected with a primary antibody against GFAP (used at 1:1,000, 

#12389S, Cell Signaling Technology), cyclooxygenase 2 (COX-2; used at 1:1,000, #sc-

1745, Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A.) or GAPDH (used at 1:1,000, 

sc-32233, Santa Cruz Biotechnology) overnight at 4°C or 2 hrs at room temperature with 

gentle rocking. The membranes were subsequently incubated in an appropriate HRP-

conjugated secondary antibody (Santa Cruz Biotechnology). Target proteins were 

visualized using Amersham ECL Prime Western Blotting Detection Reagent (#RPN2232, 

GE Healthcare, Pittsburgh, PA, U.S.A.) on an Aplegen Omega Lum G Gel 

Documentation System (Gel Company, Inc., San Francisco, CA, U.S.A.). After the 

detection of chemiluminescence signal, PVDF membranes were treated with 0.2 N 

sodium hydroxide for 10 min at room temperature with gentle agitation to remove the 

antibodies and re-probed for another target protein. The levels of proteins were 

quantitated from the captured image using LI-COR Image Studio Lite Software 5.0 (LI-
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COR Biosciences, Lincoln, NE, U.S.A.) and normalized to the amount of GAPDH 

detected from the same PVDF membrane. 

Gut Permeability Assay  

In study 2, mice were orally given 4 kDa fluorescein isothiocyanate (FITC) 

labeled dextran prior to sacrifice. The volume of FITC-dextran given was equal to 484 

μg/g mouse weight. Five hours following FITC-dextran gavage, the mice were sacrificed, 

blood was collected, and serum separated. Serum was placed on a 96-well plate, and 

FITC emission wavelength of 528 nm was read after excitation at 485 nm. The resulting 

emission was converted into a concentration of FITC based upon signal detected from 

standards. 

Cytokine ELISA Array  

Plasma samples prepared from terminal blood were used to profile cytokines and 

chemokines using Quantibody® Mouse Cytokine Array Q5 Kit. Samples were first 

diluted to 1:5 before assayed using the multiplex kit according to the manufacturer’s 

instructions. Upon completing the assay procedure, the slides were sent to RayBiotech 

Array Scanning and Analysis Services to quantify the fluorescence signals. The resulting 

fluorescence signal values were analyzed using RayBiotech Q-Analyzer®, an array-

specific Microsoft Excel-based software tool (https://www.raybiotech.com/files/analysis-

tools/QAM-CYT-5.xls).  

RNA-Sequencing and Ingenuity Pathway Analysis  

The quality and quantity of extracted brain RNA were assessed using Qubit 2.0 

Fluorometer and Agilent 2100 Bioanalyzer at UND Epigenetics Bioinformatics Core 

https://www.raybiotech.com/files/analysis-tools/QAM-CYT-5.xls
https://www.raybiotech.com/files/analysis-tools/QAM-CYT-5.xls
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Facility. Three highest-quality brain samples were chosen per treatment group and 

sequenced by Novogene Corporation (Chula Vista, CA, U.S.A) on an Illumina HiSeq X 

Ten sequencer (San Diego, CA, U.S.A.) with 150 bp paired-end reads. Bioinformatic 

analysis was performed by UND Epigenetics Bioinformatics Core Facility, identifying 

brain region-specific differentially expressed genes. 

 Pathway analysis was performed on regional differentially expressed genes using 

Ingenuity Pathway Analysis software (Qiagen Inc., Germantown, MD, U.S.A.). 

BLG/Sham Log2(fold expression) of differentially expressed genes (p-value < 0.05) were 

placed into analysis software and evaluated for brain-specific pathways to identify 

upstream regulators, canonical pathways, and disease states. 

Microbial DNA Extraction  

After 1 week of acclimation with the whey-free diet, each mouse was individually 

placed in a cage until stool samples were collected and returned to its home cage with 

original cage mates. Fecal pellets from each mouse were collected in an autoclaved 

microfuge tube using sterile forceps and placed on ice until pellets were harvested from 

all mice. Stool samples were frozen stored at −80°C until used for microbial DNA 

extraction. Additional fecal samples were collected in the same manner immediately prior 

to euthanasia to assess post-sensitization changes in fecal microbiomes. To compare fecal 

microbiome profiles, microbial DNA was extracted from stool samples using 

ZymoBIOMICS DNA kit (Zymo Research, Irvine, CA, U.S.A.)
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16s Sequencing and Microbial Pathway Analysis using Kyoto 
Encyclopedia of Genes and Genomes  

Extracted microbial DNA was sent to the Genome Technology Access Center at 

Washington University (St. Louis, MO, U.S.A.) for 16S ribosomal RNA gene 

sequencing. Sample library preparation for 8 hypervariable regions of the 16S gene was 

performed with Fluidigm Juno LP 192.24 IFC system. Sequencing was carried out on a 

HiSeq 3000 with approximately 11M 150 bp paired-end reads, yielding an average of 

44,277 reads per sample. The raw FASTQ files were assessed for quality by DADA2. 

The forward and reverse reads were truncated using filterAndTrim function of DADA2 

package at 140 and 130 base position, respectively. After dereplication by DADA2, 

filtered paired-end reads were merged, and a quality-aware correction model was used to 

remove noise and chimeras to call final amplicon sequence variants (ASVs) (Callahan et 

al., 2017). ASVs were classified taxonomically based on the SILVA database (version 

132, https://zenodo.org/record/1172783#.X3zfvy2ZOL8), and the ASVs that were not 

assigned to phyla or assigned to non-bacterial kingdoms by the phyloseq R package 

(version 1.32.0) (McMurdie and Holmes, 2013) were removed. Furthermore, the ASVs 

with prevalence < 9 and total abundance < 222 (lower quartile) were excluded from 

downstream analysis. Taxonomy classification for trimmed reads was performed by 

Kraken 2 (version 2.0.8-beta) (Wood et al., 2019) based on MiniKraken2_v1 database 

(version 201904). Differential species were screened out by the DESeq2 package  

(version 1.28.1).  

The alpha diversity metrics were analyzed using the estimate_richness function. 

Proportionally normalized data was used for Bray-Curtis Principal Coordinates Analysis 

https://zenodo.org/record/1172783#.X3zfvy2ZOL8
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(PCoA) to reveal differences between experimental groups. The ‘Adonis’ feature from 

the vegan (version 2.5-6) R package was used to assess whether sample grouping by 

metadata factor accounted for inter-sample differences (Oksaren et al., 2020). The 

DESeq2 package (version 1.28.1) was used to identify significant differences in ASVs 

between groups (Love et al., 2014). Differential ASVs were then subjected to KEGG 

pathway profile analysis using Tax4Fun2 R package (version 1.1.5) (Wemheuer et al., 

2020) with ‘Ref99NR’ database mode and Tax4Fun2_ReferenceData_v1.1. KEGG 

pathways with adjusted p-value < 0.05 were considered significant after multiple testing 

correction. 

qPCR Quantification of Akkermansia muciniphila 

The abundance of A. muciniphila at pre- and post-sensitization was detected from 

100 ng of microbial DNA using quantitative PCR (qPCR). The species-specific primers, 

S-St-Muc-1129-a-a-20: 5’-CAG CAC GTG AAG GTG GGG AC-3’ and S-St-Muc-1437-

a-A-20: 5’- CCT TGC GGT TGG CTT CAG AT-3’ (Collado et al., 2007) and iTaqTM 

Universal SYBR® Green Supermix (Bio-Rad) were used to perform qPCR on a C1000 

Touch Thermocycler (Bio-Rad) for 40 cycles (denaturing at 95°C for 15 sec, annealing at 

55°C for 30 sec, and extension at 72°C for 30 sec). Cq values were computed using Bio-

Rad CFX Manager 3.1, and the amount of A. muciniphila was expressed as 2−Cq. 

Statistical Analysis  

All statistical analyses, except the microbiome analysis, were performed using 

GraphPad Prism 9 software (GraphPad Software, Inc., San Diego, CA, U.S.A.). 

Statistical significance of the differences between sham and BLG groups was 
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independently analyzed for male and female groups using unpaired t-tests. Welch's 

correction was used when sample sizes varied, and Mann-Whitney test was employed 

where normal distribution of data values was not observed. Differences between strain-

matched sham and BLG groups and between treatment-matched two strains were 

compared independently among male and female groups using two-way ANOVA with 

Fisher’s least significant difference (LSD) test, when multiple comparisons were 

necessary, unless specified in the figure legends. The ROUT method (Q=1%) was used to 

identify outliers in a group when appropriate, and the values were removed from the final 

results. A p value less than 0.05 (p < 0.05) was considered statistically significant.
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CHAPTER III  

RESULTS  

Study 1 – Astrogliosis Associated with Behavioral Abnormality in a 
Non-anaphylactic Mouse Model of Cow’s Milk Allergy  

Contents of this chapter were originally published in Frontiers in Cellular Neuroscience 

(Smith et al., 2019)  

Introduction 

Behavioral and emotional disorders, such as anxiety, depression, attention-deficit 

hyperactivity disorder (ADHD), obsessive-compulsive disorder, and autism, are major 

mental health problems that could severely affect quality of life. In the United States 

alone, ~20% of adolescents and adults are reported to have experienced mental disorders 

in 2016 (Center for Behavioral Health Statistics and Quality). The actual number of 

people who suffer from these conditions is expected to be greater than reported, 

considering that these disorders often go undiagnosed due to unwillingness of patients to 

disclose their conditions or failure of their caregivers to recognize the symptoms (Glazier 

et al., 2015; Hirschtritt et al., 2017; Klik et al., 2018). Even among diagnosed patients 

who seek treatments, some are resistant to conventional pharmacological and 

psychotherapeutic interventions, requiring increased dosage of medications and/or more 

aggressive treatments such as electroconvulsive therapy and neurostimulation (Al-Harbi, 

2012; Hirschtritt et al., 2017). Nonetheless, not all patients benefit from these treatments, 
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signifying the need for alternative intervention approaches for these debilitating 

conditions. 

Interestingly, certain dietary items have been long suspected to trigger or 

exacerbate emotional and behavioral symptoms (Crayton, 1986), suggesting a potential 

role of food allergy/hypersensitivity (FAH) in the etiology of neuropsychiatric 

conditions. While many clinical cohort studies have reported that significant behavioral 

comorbidities exist among individuals with FAH (Addolorato et al., 1998; Parker and 

Watkins, 2002; Costa-Pinto and Basso, 2012; Shanahan et al., 2014; Ferro et al., 2016), 

the contributory role of diet in neuropsychiatric disorders has been controversial due to 

insufficient pathophysiological evidence and inconsistent results across studies. In order 

to determine the causative role of FAH in behavioral changes without genetic, dietary, 

and environmental variables commonly associated with human cohorts, we utilized a 

mouse model of cow's milk allergy (CMA) and examined behavioral changes and 

pathophysiology in the gut and brain mediated by FAH. 

To observe CMA-mediated changes in typical innate activities of mice, a non-

anaphylactic mouse model of CMA was previously established by orally sensitizing the 

C57BL/6J strain of mice with a whey protein (WP) mixture and cholera toxin (CT) as an 

adjuvant (Germundson et al., 2018). These sensitized mice generally exhibited mild to no 

anaphylaxis upon WP challenge, allowing a series of behavioral assessments to be 

performed the next day. In this study, we limited the allergen to β-lactoglobulin (BLG; 

Bos d 5), in order to isolate the effect of this major whey allergen, which is absent in 

human breast milk (Malacarne et al., 2002). We report that BLG-sensitized male mice 

displayed anxiety- and depression-like behavior similar to the mice sensitized with the 
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WP mixture. Moreover, we found astrocytic hypertrophy in the ventral midbrain of the 

BLG-sensitized brain, particularly near the blood vessels, resembling the perivascular 

“barriers” or “cuffs” described in mouse models of experimental autoimmune 

encephalitis (EAE) (Voskuhl et al., 2009; Sofroniew and Vinters, 2010). These results 

indicated that oral BLG sensitization of otherwise healthy mice results in region-specific 

perivascular astrogliosis, likely modifying the functional property of the blood brain 

barrier. 

BLG Sensitization of C57BL/6J Mice Results in Increased Serum  
Levels of Allergen-specific IgE and IgG1 in Male Mice Without  
Eliciting Obvious Signs of Anaphylaxis After BLG Challenge 

To monitor the overall health and steady growth of the experimental mice, their 

body weights were recorded during the sensitization protocol. The average body weights 

of mice in each group before the initiation of sensitization (Week 1) and at the time of 

allergen challenges (Week 6 and 7) were compared between the sex-matched treatment 

groups (Figure 4A). No significant differences were found in the body weights between 

the groups at any of the time points examined, suggesting that BLG-sensitized mice had 

comparable growth to the sham mice. 

A week after the 5 weekly sensitization procedures, all mice underwent a BLG 

challenge in Week 6 for the assessment of their physical responses to allergen re-

exposure. No obvious signs of anaphylaxis were exhibited by male or female mice from 

both of the treatment groups at 30 min post-challenge. This lack of physical reactions to 

the allergen was observed again after the second challenge in Week 7.

https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full#F2
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Figure 4.  Physical growth and adaptive immunity development during BLG 
sensitization. (A) Weights of mice were recorded during Weeks 1, 6, and 7 
of sensitization to assess potential impact of the sensitization regime on 
overall health and growth. (B, C) Serum isolated from the terminal blood 
was used to quantify the levels of BLG-specific IgE (B) or IgG1 (C) using 
ELISA. Values shown in the graphs indicate the group average ± SEM,  
*p < 0.05; ***p < 0.001. (Mann-Whitney test), male sham: n = 8;  
male BLG: n = 8; female sham: n = 8; female BLG: n = 8. 
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In order to ensure that the BLG-sensitization protocol successfully induced 

acquired immunity in our mouse model, we next determined the levels of serum BLG-

specific IgE and IgG1 using ELISA (Figure 4B, C, respectively). While the serum levels 

of BLG-specific IgE were comparable among the male and female sham groups, both of 

the BLG sensitized groups showed wider ranges of BLG-specific IgE levels. The serum 

samples from a few mice in each group contained much greater BLG-specific IgE than 

the others within the group (Figure 4B). There were modest but significant increases in 

the average levels of BLG-specific IgE in both sensitized male and female mice 

compared to their respective sham groups (male sham: 0.14 ± 0.04; male BLG: 0.5 ± 0.3; 

female sham: 0.10 ± 0.01; female BLG: 0.9 ± 0.5; n = 8 in all groups, p < 0.05, Mann-

Whitney test). When the extreme values were identified as outliers by GraphPad Prism 

software and removed from the analysis, the statistical significance of the BLG-induced 

IgE levels increased to p < 0.01 for male mice (male sham: 0.10 ± 0.02, n = 7; male BLG: 

0.23 ± 0.05, n = 7; one outlier from each group was removed from the analysis [sham, 

0.40; BLG, 2.37]). In contrast, removal of outliers from the female groups resulted in the 

loss of statistical significance for female groups [female sham: 0.10 ± 0.01, n = 8; female 

BLG: 0.17 ± 0.06, n = 6; two outliers removed from the analysis of the BLG group [3.58, 

2.32]. The analysis excluding the outliers is shown in Supplemental Figure 1. Similarly, 

BLG-specific IgG1 levels were also elevated in the sensitized mice for both sexes with 

less variability than IgE (Figure 4C). These results indicated that the BLG-sensitization 

procedure elicited acquired immunity toward BLG with elevated antigen-specific IgE and 

IgG1 in both male and female mice. Although a subset of sensitized mice showed greater 
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degrees of antibody productions, their apparent physical health was not visibly affected, 

and the allergen challenge did not result in anaphylaxis. 

BLG Sensitization Resulted in Anxiety- and Depression-Like  
Behavioral Changes in Male C57BL/6J Mice 

BLG-mediated changes in mouse behaviors were examined using 4 different 

behavioral tests. The digging behavior observation and EZM were performed after the 

first challenge while grooming behavior observation and TST were carried out after the 

second challenge (see the Methods section). The frequency of digging activity within the 

10-min observation period was 15 ± 3 in male sham, 21 ± 2 in male BLG-sensitized,  

13 ± 3 in female sham, and 16 ± 5 in female BLG-sensitized mice (n = 8 per group,  

Figure 5A). Although there was a trend toward increased digging activity in male BLG-

mice compared to their sex-matched sham, the difference did not reach a statistical 

significance (p = 0.1). However, the EZM showed a significant decrease in the average 

duration of visit to open zone in male mice (sham: 5.7 ± 0.6, n = 6; BLG: 4.1 ± 0.3;  

n = 7; p < 0.05) and not in female (sham 4.2 ± 0.3, n = 8; BLG: 4.6 ± 0.3; n = 7; 

Figure 5B). Further surveillance of the test recordings revealed that the mice with a 

shorter duration of visit to open zones often did not walk through the open zone to the 

other closed zone, but they briefly surveyed the entry to the open zone and returned to the 

original closed zone (See Supplemental Video 1 + 2). In addition, the analysis of 

grooming behavior after the second BLG challenge indicated that BLG-sensitized male 

mice groomed themselves more often than their sham counterpart (sham: 20 ± 3, n = 8;  

BLG: 41 ± 3; n = 8; p < 0.001) while no sensitization-dependent differences were 

observed between the female groups (sham: 36 ± 2, n = 8; BLG: 31 ± 4; n = 8), indicating 

https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full#F3
https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full#F3
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that only male BLG-sensitized mice displayed more anxiety-like behavior than sham 

mice (Figure 5C). Similarly with the TST (Figure 5D), only male BLG-mice exhibited 

more depression-like behavior than the sham with greater numbers of immobile episodes 

during the 6-min testing period (sham: 14 ± 3, n = 8; BLG: 24 ± 5; n = 8; p < 0.05) while 

female sensitized mice did not (sham: 20 ± 3, n = 8; BLG: 23 ± 3; n = 8). To assure that 

the observed behavioral differences in the sensitized mice were not due to lethargy-

related immobility, the total time in seconds mice were mobile during their digging tests 

were compared between the groups (Figure 5E). There were no obvious differences in the 

total time mobile among male and female sham and BLG mice, indicating that the 

changes in the behavioral parameters observed with the male BLG-sensitized mice did 

not result from physical or ambulatory difficulties. These results demonstrated that the 

male mice were susceptible to behavioral alterations upon BLG sensitization, even 

though they did not exhibit apparent anaphylactic reactions when challenged with the 

allergen.

https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full#F3
https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full#F3
https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full#F3
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Figure 5.  Assessments of anxiety- or depression-like behavior after BLG challenge. 
Behavioral tests were performed at 1- and 2-day post-challenge.  
(A) Digging frequency was quantified by two observers who were 
unaware of the experimental conditions. Either the presence (1 point) or 
absence (0 points) of digging behavior was recorded in every 10-sec 
interval during the 10-min test period. The total points scored by the two 
observers were averaged and used as the final score for each mouse.  
(B) For EZM test, the average duration each mouse spent within the open 
zone per visit was computed by ANYmaze software and later validated by 
an observer. (C) Grooming frequency was quantified by two observers for 
scoring either the presence (1 point) or absence (0 points) of grooming 
behavior as described for the digging frequency scoring. (D) For TST, the 
number of immobility episodes was used as the measure of the mice's 
helpless behavior that reflected their depression-like state. (E) Total time 
mobile was also computed from the recordings during the digging 
behavior to verify their motility to distinguish their immobility from 
lethargy. Values shown in the bar graphs indicate the group average ± 
SEM, *p < 0.05, ***p < 0.001 (unpaired t-tests) n = 7–8. 
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BLG Sensitization Altered the Levels of Tight Junction Protein  
and the Expression of Proinflammatory Cytokine in the  
Small Intestine 

Next, we sought to identify changes in different brain regions that might 

contribute to the observed sex-dependent behavioral abnormality. Since BLG-mediated 

behavioral changes were only observed in male mice, we focused our further analyses on 

male animals. Allergens that paracellularly enter intestinal mucosa through compromised 

epithelial tight junction barriers may be recognized as pathogens by antigen presenting 

cells (APCs) and initiate immune responses. To examine whether BLG sensitization 

resulted in decreased barrier integrity, the levels of a tight junction protein, occludin, 

were examined in the intestinal tissue. Immunohistochemical assessment of the ileum 

from the male sham (Figures 6A,a) and BLG-sensitized mice (Figures 6B,b) showed that 

there was decreased staining in the villi of the latter group. This decreased 

immunoreactivity for occludin was likely a result of post-translational regulation since 

the amount of occludin transcripts in the ileal tissue from BLG-sensitized mice did not 

differ from the sham mice when determined using RT-qPCR (Figure 6C). 

Aberrant paracellular infiltration of allergens could trigger inflammatory 

responses by intestinal immune cells. Thus, we also investigated the inflammatory status 

of the gut mucosa by determining the amount of a proinflammatory cytokine, TNFα. An 

RT-qPCR assay indicated that there was a modest but significant increase in TNFα 

mRNA in the ileum (Figure 6D), signifying the presence of proinflammatory events at 

the site of allergen insult.

https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full#F4
https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full#F4
https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full#F4
https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full#F4
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Figure 6.  Immunohistochemical detection of occludin and the RT-qPCR assays for 

Ocln and Tnfα expression in the ileum of male sham and BLG mice . Ileal 
sections (14 μm) from male sham (A, a) and BLG (B, b) mice were 
immunostained for occludin. The red rectangles in panels (A, B) indicate 
where the respective higher magnification images, (a) and (b), were taken. 
The low-magnification (A, B) and high-magnification (a, b) images were 
taken with a 4X and 40X objectives, respectively. Scale bars: 500 μm for 
(A) and (B); 50 μm for (a) and (b). The expression levels of Ocln (C) and 
Tnfα (D) in the ileal tissue samples were also quantitated using RT-qPCR 
assay. The Cq values for Ocln and Tnfα were normalized to the Cq values 
of Gapdh (ΔCq) to calculate the expression values (ΔCq = 2−ΔCq). Values 
shown in the bar graphs are expressed as the fold change (ΔΔCq) ± SEM. 
*p < 0.05 (unpaired t-test with Welch's correction), n = 6–8.
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GFAP-Immunoreactive Astrocytes Were Hypertrophic in the Midbrain 
Region of the BLG-Sensitized Mice 

Under the hypothesis that glia cells could respond to inflammatory mediators 

from the intestine and elicit neuroinflammation that would ultimately result in altered 

behavior, brain tissues from sham and BLG-sensitized male mice were immunostained 

for astrocyte and microglia markers, GFAP and Iba1, respectively. Iba1-immunopositive 

cells were observed throughout the brain sections although we did not observe noticeable 

differences between sham and BLG-sensitized mice (not shown). GFAP-stained 

astrocytes were also found ubiquitously in the brain, but they were more localized to 

specific regions such as within the white matter. In midbrain sections, the majority of 

astrocytes were found within the substantia nigra pars reticulata (Figure 7).  GFAP-

positive cells were abundantly present in both sham (Figure 7A) and BLG-sensitized 

(Figure 7B) mice. Interestingly, astrocytes in this area of BLG-sensitized mouse brain 

appeared darker and their processes seemed greater in number and thickness  

(Figure 7b’, b”). Perivascular astrocytes were notably different, with apparently increased 

density of GFAP-positive end-feet contacting the vascular wall (arrowheads in  

Figure 7b’). These observations provided evidence for glial response, at least by 

astrocytes in the midbrain regions, in the central nervous system of BLG-sensitized mice. 
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Figure 7.  GFAP immunoreactivity in the midbrain of sham and BLG-sensitized 
mice. GFAP-positive astrocytes were identified by 
immunohistochemically staining brain sections (40 μm). Representative 
midbrain sections from sham (A, a', a”) and BLG-sensitized (B, b', b”) 
male mice are shown. The white rectangles in (A, B) indicate where the 
respective higher magnification images a'–b” were taken. The open 
arrowheads indicate dense GFAP-immunoreactive astrocyte end-feet 
along the blood vessel. The low-magnification (A, B) and high-
magnification (a'-b”) images taken with a 10X and 40X objectives, 
respectively. Scale bars: 100 μm for (A) and (B); 25 μm for a'–b”. 
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In order to verify our immunohistological observations, western blot analysis was 

performed using protein extracts from different brain regions (Figure 8, see Figure 3 for 

the division of the regions). The level of GFAP was slightly elevated in the Region 2 

(parietotemporal cortices and hippocampus) and Region 3 (thalamus and hypothalamus) 

of the BLG-sensitized mice, although the difference was not statistically significant 

(Region 2: 1.4 ± 0.2 fold, p = 0.1; Region 3: 1.5 ± 0.3 fold, p = 0.1). However, in Region 

4 containing the midbrain and rostral brainstem, the difference in GFAP levels between 

the two groups of mice was significant with a 1.6 ± 0.2 fold increase in the sensitized 

mice (p < 0.001). This result indicated that BLG sensitization resulted in upregulation of 

GFAP in this region, corroborating our immunohistological observation of hypertrophic 

astrocytes in the same region. As an additional marker of proinflammatory change, we 

next examined protein levels of COX-2 in the various brain regions (Figure 9). Exactly as 

observed when examining GFAP levels, a significant increase in COX-2 protein levels in 

sensitized mouse brains was noted only in the midbrain and rostral brainstem samples 

(Region 4). 

 

https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full#F6
https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full#F7
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Figure 8.  Western blot analysis of GFAP in the isolated five brain regions. Soluble 
proteins isolated from the 5 regions were resolved on discontinuous 15% 
SDS-polyacrylamide gels for western blot detection of GFAP (upper 
panels). (A) Region 1, (B) Region 2, (C) Region 3, (D) Region 4, and (E) 
Region 5 as described in Figure 3. Chemiluminescence signals for GFAP 
were digitally captured and shown in the upper panels. GAPDH was also 
detected from the same blots and used as a reference for loading 
variability (lower panels). The captured GFAP signals were quantified 
using LI-COR Image Studio Lite software and normalized to GAPDH 
signals. Values shown in the bar graphs indicate the group average ± 
SEM. **p < 0.01 (unpaired t-test), n = 8. 
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Figure 9.  Western blot analysis of COX-2 in the isolated five brain regions. Soluble 
proteins isolated from the five regions were resolved on discontinuous 
15% SDS-polyacrylamide gels for western blot detection of COX-2 (upper 
panels). (A) Region 1, (B) Region 2, (C) Region 3, (D) Region 4, and  
(E) Region 5 as described in Figure 3. Chemiluminescence signals for 
COX-2 were digitally captured and shown in the upper panels. GAPDH 
was also detected from the same blots and used as a reference for loading 
variability (lower panels). The captured COX-2 signals were quantified 
using LI-COR Image Studio Lite software and normalized to GAPDH 
signals. Values shown in the bar graphs indicate the group average ± 
SEM. **p < 0.001 (unpaired t-test), n = 8. 
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The Proinflammatory Cytokine, TNFα, Was Elevated in the  
Midbrain Region 

Based on our observation of astrogliosis and elevated COX-2 protein levels in the 

midbrain regions, we hypothesized that the GFAP-positive reactive astrocytes might be 

responding to and/or producing inflammatory mediator(s). Since astrocytes are capable of 

producing and responding to TNFα (Eddleston and Mucke, 1993), we measured the 

levels of this proinflammatory cytokine in the midbrain region (Region 4) using ELISA 

(Figure 10). As predicted, the amount of TNFα was significantly elevated in this region 

of BLG-sensitized mice by ~2.7-fold (sham: 1,273 ± 384 pg/mL; BLG: 3,469 ± 194 

pg/mL, n = 8). This result demonstrated that proinflammatory events are present at least 

in this region of the brain of BLG-sensitized mice and provided the evidence that 

sensitization to a milk allergen results in neuroinflammation associated with behavioral 

abnormality.
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Figure 10.  Quantification of TNFα levels in the midbrain region of sham and BLG 

male mice using ELISA. The levels of TNFα in the midbrain region were 
quantified by ELISA. Values indicate the group average ± SEM. ***p < 
0.001 (unpaired t-test), n = 8. 
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CHAPTER IV  

RESULTS  

Study 2 – Differential Myelination and Blood-Brain Barrier Associated 
Pathway Activation in Non-anaphylactic Model of Cow’s Milk Allergy  

Introduction 

 Food allergy is defined as a reproducible immune response to a specific food 

protein or allergen (Boyce et al., 2010). Classically food allergy is defined by an 

immediate IgE-dependent mechanism causing systemic anaphylaxis, respiratory distress, 

swelling, and hives (du Toit et al., 2010; Burks et al., 2012; Mousan and Kamat, 2016). 

However, for many years it has been shown that food allergies are comorbid with various 

behavioral disorders. Children with food allergies are more likely to be diagnosed with 

ADHD, anxiety, depression, and autism (Tryphonas and Trites, 1979; Patten and 

Williams, 2007; Yaghmaie et al., 2013; Garg and Silverberg, 2014; Shanahan et al., 

2014; Zerbo et al., 2015; Ferro et al., 2016; Topal et al., 2016). Despite the behavioral 

effects of food allergy being well characterized, an exact mechanism has yet to be 

elucidated.  

 One reason for the gap in understanding is likely due to the inherent variability in 

food allergies and symptom presentation (Hill and Hosking, 1995; Baehler et al., 1996; 

Rona et al., 2007; Dupont, 2014). For example, the allergic response can be broken up 

into the immediate IgE-dependent mast cell response and the late phase response.
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The late phase can last hours or days after the immediate phase is cleared and is 

underresearched (du Toit et al., 2010; Mousan and Kamat, 2016). For mast cells 

specifically, histamine release is commonly the primary focus of intervention; however, 

mast cells broadly and selectively release factors other than histamine, such as proteases, 

leukotrienes, and cytokines (Marshall, 2004; da Silva et al., 2014). The cytokine response 

is well known to amplify the proinflammatory reaction by stimulating many cell types 

and drive specific actions within the tissue.  There is abundant evidence of CNS-directed 

responses in both cytokines and mast cells potentially acting as the initiators of 

neuroinflammation and causing behavioral changes (Bradding, 1999; Zorrilla et al., 2001; 

Hofmann and Abraham, 2009; Li et al., 2009; Nautiyal et al., 2012; Abbott et al., 2015). 

 The risks of behavioral changes are not unique to overt allergic reactions, 

however. An additional point of variability in food allergies is that some patients are non-

anaphylactic and experience subclinical symptoms. These patients are less likely to be 

diagnosed or avoid their allergens, putting them at increased risk of repeated exposure. 

Combined, these factors highlight a subpopulation of patients who are sub-anaphylactic 

and are of increased risk for neuropsychiatric diagnosis. Therefore, due to their 

behavioral symptoms' atypical etiology, such patients are likely resistant to typical 

neuropharmacological intervention (Al-Harbi, 2012; Hirschtritt et al., 2017). To identify 

and treat these patients, it is necessary to improve diagnostic criteria and establish a 

mechanism by which peripheral allergy-induced inflammation can influence behavior. 

 To elucidate a potential mechanism, we sensitized C57BL/6J mice to the cow’s 

milk allergen β-lactoglobulin. We then compared sensitized mice to sham mice to 

characterize a clinical phenotype and neuropathology using RNA-sequencing and 
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immunohistochemistry. We report that transcriptional changes were found within the 

brain in a region-specific manner. These transcriptional changes were observed in the 

midbrain region previously identified as being impacted by food allergy (Germundson et 

al., 2018; Smith et al., 2019). The transcriptome changes implied increased blood vessel 

permeability and altered glial cell function within the midbrain. Increased blood vessel 

permeability caused by the blood-brain barrier's breakdown was further validated in 

BLG-sensitized mice using immunohistochemistry for serum proteins. These findings 

support disruption of normal barrier function being a critical step in the peripheral to 

central signaling mechanism for food allergy-induced psychiatric symptoms. 

Lack of Anaphylactic Symptoms in BLG-Sensitization of C57BL/6J 
Mice Despite Increased Serum Allergen-specific IgE 

A weekly recording of body weight was used to monitor the health of two groups 

of mice. Starting one week prior to the first week of sensitization until the week of 

sacrifice, the weights were recorded the day before administering vehicle or BLG 

containing solutions (Figure 1B, C). Mice set aside for transcriptomic analysis were 

sacrificed following challenge (Figure 1B), while mice set aside for anaphylactic scoring 

and histological analysis were sacrificed following testing (Figure 1C) (Week 6). 

Analysis of weight showed no difference in health between sham and BLG-treated mice 

based on comparable growth (Figure 11A). 

During the week 6 challenge, 30 min after gavage, observable anaphylactic symptoms 

were scored, and internal body temperature was recorded (Figure 11A and 11B, 

respectively). No difference in apparent anaphylaxis symptoms were observed in either 

group of mice, though 1 BLG mouse was observed to have reduced activity following 
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challenge (Figure 11B). Likewise, there were no significant temperature deviations 

present in either group of mice following challenge (Figure 11C). These data demonstrate 

a lack of physical allergic response following sensitization and allergen re-exposure.  

 

 
 

Figure 11.  Clinical assessment of health and sensitivity of mice. (A) Body weight 
growth curve shows comparable weight gain throughout the process of 
sensitization between sham (open symbols) and BLG-sensitized (filled 
symbols) mice. (B) Symptoms were scored based on the symptom score 
table (Table 1). (C) Body temperature (°C) was measured 30 min after the 
allergen challenge. (D) BLG-specific IgE detected from terminal serum 
using ELISA. Fold change was calculated by normalizing optical density 
(OD) values obtained for BLG-sensitized (striped bars with filled 
diamonds) groups to sham groups (open bars with open triangles). Values 
shown in the graphs indicate the group average ± SEM, *p < 0.05 (Mann-
Whitney test), n = 4-5. 
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To ensure BLG-sensitivity was achieved, BLG-specific IgE was detected using 

ELISA (Figure 11D). Serum BLG-specific IgE was found to be elevated in sensitized 

mice despite a lack of anaphylactic symptoms. BLG-sensitized mice had increased fold-

OD compared to untreated sham mice (sham: 0.93 ± 0.11; BLG 3.95 ± 1.32; n = 5 in all 

groups, p < 0.05, Mann-Whitney test). Results indicate that BLG hypersensitivity was 

established in BLG-sensitized mice following the treatment regime. 

Plasma CCL24 and CXCL13 Significantly Increased Accompanied by 
Trended Increases in Other Th2 Cytokines 

Knowing that sensitization was achieved despite no apparent allergic symptoms, 

collected plasma was used to quantify circulating cytokines. Using multiplex ELISA, a 

panel of cytokines, chemokines, and associated immunological factors were quantified. 

BLG-sensitized mice had 2 chemokines significantly increased over sham mice  

(Figure 12). CCL24 (C-C motif chemokine ligand 24/eotaxin-2) a chemokine for 

eosinophils was increased approximately 5-fold in BLG mice (Figure 12F; Sham: 15.8 ± 

2.3 pg/mL; BLG: 79.2 ± 25.5 pg/mL; n = 5 in all groups, p < 0.01, Mann-Whitney test). 

CXCL13 (C-X-C motif chemokine ligand/B-lymphocyte chemoattractant) a chemokine 

for T and B-lymphocyte was increased 2.1-fold in BLG mice (Figure 12G; Sham: 86.0 ± 

13.2 pg/mL; BLG: 187.4 ± 31.5 pg/mL; n = 5 in all groups, p < 0.01, Mann-Whitney 

test). Though not significant, a trend for increase in IL-10 (Figure 12C) and IL-13  

(Figure 12D) was observed in BLG mice as previously reported in C57BL/6J mice 

(Smith et al., 2021). In addition to these previously identified factors, CXCL4  

(Figure 12H) and GM-CSF (Figure 12B) were also slightly increased in BLG mice, 

though not statistically significant. These analytes are suggestive of a Th2-type response 
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elevated in BLG-sensitized C57BL/6J mice. Many increased factors are routinely found 

elevated in allergic individuals or are central to the establishment of IgE-mediated 

hypersensitivity. These data provide further evidence that sensitization was achieved and 

suggest a role these analytes play in the systemic effects observed in our model system. 
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Figure 12.  Levels of immune mediators included in the Quantibody Mouse Cytokine 
Array 5 (QAM-CYT-5) were quantified from plasma samples. The 
abundances of (A) IL-6, (B) GM-CSF, (C) IL-10, (D) IL-13, (E) CCL5, 
(F) CCL24, (G) CXCL13, and (H) CXCL4 were quantified. Sham mice 
(open bars with open triangles); BLG mice (striped bars with filled 
diamonds). Bars indicate group average values ± SEM **p < 0.01 (Mann-
Whitney test), n = 5. 
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Impact of BLG-Sensitization on Gut Health and  
Intestinal Permeability 

 Previous results have eluded to changes in gut health resulting from non-

anaphylactic BLG allergy (Smith et al., 2019). RNA was extracted from the ileum, and 

the transcripts of proinflammatory cytokines Tnfα and IL-1β, Th2 promoting factor Il-4, 

and tight junction protein Ocln were quantified via RT-qPCR. The tested factors varied 

greatly within groups, likely causing none of the factors being significantly different.  

Il-1β was increased approximately 1.5-fold in BLG-sensitized mice, while Ocln was 

reduced to around 0.5-fold in BLG mice (Figure 13). Though not conclusive, these data 

coupled with previously identified occludin protein reduction (Smith et al., 2019) 

justified quantifying gut permeability.  

Mice were given FITC-dextran, and the amount that crossed the gut barrier was 

quantified from the serum. The exact amount of FITC fluorescence varied within groups 

(Figure 14). There were no differences between groups, both sham and BLG mice having 

0.24-0.26 μg/mL FITC-dextran in their serum. Based on these data, there appears to be 

no evidence of gut pathology or permeability resulting from sensitization.
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Figure 13.  Ileum RT-qPCR fold change in transcription. Transcripts for Ocln, Tnfα, 

Il-1β, and Il-4 were quantified from ileum extracted RNA. Sham mice 
(open bars with open triangles); BLG mice (striped bars with filled 
diamonds). Bars indicate Cq values for Ocln and Tnfα were normalized to 
the Cq values of Gapdh (ΔCq) to calculate the expression values  
(ΔCq = 2−ΔCq). Values shown in the bar graphs are expressed as the fold 
change (ΔΔCq) ± SEM (Mann-Whitney test), n = 5. 
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Figure 14.  Serum FITC-dextran concentration. Mice were given 4 kDa FITC-dextran 
to assess the amount crossing the gut barrier. FITC fluorescence at an 
emission of 528 nm was recorded to detect abundance in serum. Sham 
mice (open bars with open triangles); BLG mice (striped bars with filled 
diamonds). Bars indicate group average values ± SEM (Mann-Whitney 
test), n = 12-14. 
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Regional Brain Transcriptional Changes Resulting from  
BLG-Sensitization 

 Brains extracted from mice set aside for transcriptomic analysis were divided 

regionally (Figure 3). RNA was extracted from region 1 (STR) containing the striatum 

and frontal cortex; region 2 (HPC) containing the hippocampus, temporal and parietal 

cortices; region 3 (THAL) containing the thalamus and hypothalamus; and region 4 

(MB), which contained the midbrain, and were sequenced. Fold change values of 

differentially expressed genes generated from RNA sequencing were used as input values 

for IPA. Upstream regulator activation states of regional transcriptome profiles were 

identified. A small set of regulators common across brain regions was identified from this 

analysis (Figure 15). Dio2 was found to have a negative z-score of activation in STR (z = 

-1.067), HPC (z = -2.360), and MB (z = -1.342) regions. Slc16a2, similarly, had negative 

z-scores across the STR (z = -1.000), HPC (z = -1.633), and MB (z = -0.577) regions. 

Psen1 had a negative z-score of activation in the STR (z = -0.269) and HPC (z = -0.269), 

while Eomes was positive in the STR (z = 1.000) and HPC (z = 1.000). Fmr1 was 

suppressed in the STR (z = -1.342) but active in the MB (z = 1.383). Notable Sox2 

signaling was also found highly suppressed in the MB region (z = -2.538).  

 With upstream regulators identified based upon the transcriptome profiles, we 

then organized regionally differentially expressed genes into canonical pathways and 

calculated an activation z-score (Figure 16). Within the STR a broad spectrum of 

pathways were differentially activated or suppressed. Notably, endocannabinoid 

developing neuron pathways (z = -1.414), endometrial cancer signaling (z = -1.000), IL-7 

signaling (z = -1.000), and B cell receptor signaling pathways (z = -0.707) were found to 
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have negative activation z-scores, while eNOS (z = 1.890), NFAT (z = 1.732), white 

adipose tissue browning (z = 1.732), Gαs (z = 1.414), nitric oxide (z = 1.414), 

synaptogenesis (z = 1.414), cAMP (z = 1.213), opioid (z = 0.943), Fcγ receptor mediated 

phagocytosis signaling pathways (z = 0.816) were activated. In the THAL the white 

adipose tissue browning pathway (z = -0.707) had a negative activation z-score while 

netrin (z = 1.890) and Th17 signaling (z = 2.000) was activated. However, in the MB 

FcεRI (z = 0.816) and amyotrophic lateral sclerosis signaling (z = 1.000) were selectively 

activated. 

 

 
 

Figure 15.  Ingenuity pathway analysis of regional upstream transcriptional regulators. 
A subset of statistically significant differentially activated upstream 
regulators were identified across multiple brain regions, including STR, 
HPC, THAL, MB (Figure 3). Heatmap color corresponds to activation  
z-score (BLG/Sham), n = 3.
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Figure 16.  Ingenuity pathway analysis regional canonical pathway activation. 
Regional transcriptomes were analyzed in the IPA platform, and 
statistically significant differentially expressed genes (Based on p-value) 
were placed into canonical pathways based on database information. Log2 
fold change values (BLG/sham) were used as input values. From the 
number of differentially expressed genes within a pathway, the activation 
z-score was calculated. All displayed pathways were statistically 
significant *p < 0.05, n = 3. 
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We further performed disease state and cell function pathway analysis to assess 

the changes in cellular behavior and health of the brain resulting from peripheral allergy 

(Figure 17). In the STR, pathways involved in cell migration of brain cells/neurons (z = 

2.400), the quantity of dendritic spines (z = 1.732), synaptic transmission (z = 1.166), and 

the quantity of neurons (z = 0.928) were activated, while central nervous system 

development pathway (z = -0.970) was inactivated. Meanwhile, in the MB, inactivation 

of pathways associated with damage of the nervous system (z = -1.938), neuritogenesis (z 

= -0.865), and ischemic injury of the brain (z = -0.818) were observed. 
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Figure 17.  Ingenuity pathway analysis regional disease state pathway activity. 
Regional transcriptomes were analyzed in the IPA platform, and 
statistically significant differentially expressed genes (Based on p-value) 
were placed aligned with disease state and cell function pathways based 
on database information. Log2 fold change values (BLG/sham) were used 
as input values. From the number of differentially expressed genes within 
a pathway, the activation z-score was calculated. All displayed pathways 
were statistically significant *p < 0.05, n = 3 
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Based upon previously observed differences in the MB, we focused on MB 

upstream regulators, canonical pathways, and anxiety behavior. A predictive pathway 

was constructed in IPA to investigate potential relationships between identified 

differentially expressed genes, predicted upstream regulators, disease states and canonical 

pathways of interest. Differentially expressed genes and the pathways for the 

proliferation and differentiation of glial cells, albumin permeability, the proliferation of 

oligodendrocyte precursors, anxiety, and emotional behavior were placed into a causal 

network. Based on the quantified differentially expressed genes and predicted activity 

states of the upstream regulators, these pathways' effects were predicted (Figure 18). The 

network predicted that increased permeability of albumin and anxiety behavior would 

occur, while glial/oligodendrocytes proliferation and differentiation and emotional 

behavior are decreased. These data are suggestive that glial cell function such as 

oligodendrocytes and astrocytes were inhibited, and capillaries are permeable to serum 

proteins compromising the blood-brain barrier. 
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Figure 18.  Midbrain causal network analysis. Upstream regulators within the 
midbrain and differentially expressed genes downstream of those 
regulators were placed into a network with using Qiagen IPA software 
based upon established connections within the database. The factors were 
placed in the network, and IPA generated an activation state for the 
pathways to evaluate the connection between differentially activated 
regulators, differentially expressed genes, and pathways of interest. 
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 To validate our sequencing results and factors central to the proposed mechanism 

between BLG-sensitization and behavioral changes. RT-qPCR was performed from the 

4 brain regions for Pisd-ps1, Miat, Meg3, Hsph1, Trf, Ccl11, Tnfα, and Ocln (Figure 19). 

The STR had reduced transcription on Hsph1 in BLG-sensitized mice  

(Sham: 1.000 ± 0.008, n = 3; BLG: 0.765 ± 0.034, n = 5; p < 0.01, t-test). Within the 

HPC region increased Meg3 (Sham: 1.000 ± 0.052, n = 4; BLG: 1.399 ± 0.093, n = 5;  

p < 0.01, t-test) and Tnfα (Sham: 1.000 ± 0.098, n = 4; BLG: 1.235 ± 0.057, n = 4;  

p < 0.05, t-test). No differences were observed in the THAL region for the validated 

genes, however in the MB, Miat (Sham: 1.000 ± 0.076, n = 4; BLG: 1.274 ± 0.281, n = 4; 

p < 0.01, t-test), Meg3 (Sham: 1.000 ± 0.070, n = 4; BLG: 1.236 ± 0.021, n = 4; p < 0.05, 

t-test), Trf (Sham: 1.000 ± 0.111, n = 4; BLG: 0.656 ± 0.034, n = 5; p < 0.05, t-test), and 

Ocln (Sham: 1.000 ± 0.074, n = 3; BLG: 0.692 ± 0.003, n = 3; p < 0.05, t-test) were 

differentially expressed. From these data it is clear that there is evidence for  

BLG-mediated blood vessel permeability and disrupted iron transport resulting from 

decreased Ocln and Trf, respectively. 
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Figure 19.  Validation of differentially expressed genes using RT-qPCR. The fold 
change of Pisd-ps1, Miat, Meg3, Hsph1, Trf, Ccl11, Tnfα, and Ocln were 
evaluated to validate RNAseq findings. Sham mice (open bars with open 
triangles); BLG mice (striped bars with filled diamonds). Bars indicate 
group The Cq values for Ocln and Tnfα were normalized to the Cq values 
of Gapdh (ΔCq) to calculate the expression values (ΔCq = 2−ΔCq). Values 
shown in the bar graphs are expressed as the fold change (ΔΔCq) ± SEM 
(t-test) *p < 0.05, **p < 0.01, n = 3-5. 
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Increased Capillary IgG Permeability in Midbrain of  
BLG-Sensitized Mice 

 Based upon our findings at the RNA level, along with pathway analysis and 

previously observed astrogliosis (Smith et al., 2019), we focused on the immunoreactivity 

of myelin and blood-brain barrier integrity. The disruption of Trf and its role in 

oligodendrocyte development and function had great potential for impacting myelination 

in the brain. Myelination was investigated by staining for MBP. Despite the convincing 

loss of Trf transcription and pathway evidence for disruption of oligodendrocyte function, 

no evidence of differential MBP staining was observed (Figure 20). From these data, we 

found no evidence of differential MBP optical density between sham and BLG-treated 

mice.
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Figure 20.  Immunoreactivity of MBP in retrosplenial cortex of sham and BLG 
sensitized mice. MBP-positive myelin and oligodendrocytes were 
identified by immunohistochemically staining brain sections (40 μm). 
Representative cortex sections from sham (A, a') and BLG-sensitized 
(B, b') male mice are shown. The red rectangles in (A, B) indicate where 
the respective higher magnification images a' and b’ were taken. The low-
magnification (A, B) and high-magnification (a'-b”) images taken with a 
2.5X and 20X objectives, respectively. Scale bars: 1 mm for (A) and (B); 
100 μm for a' and b’. Quantification of optical density was performed 
using QuPath. Sham mice (open bars with open triangles); BLG mice 
(striped bars with filled diamonds); bars indicate group average values ± 
SEM (Mann-Whitney test), n = 18-20.
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The reduction of Ocln gene expression in the midbrain region suggests a 

breakdown in the tight junctions necessary for capillary structure and the selectively 

permeable barrier between the circulation and the brain parenchyma. To assess the 

integrity of the blood-brain barrier, we performed immunohistochemistry for the IgG. 

IgG is abundant in the circulation but is occluded from nervous tissue. In sham mice, 

well-defined intact capillaries were observed with light surrounding background  

(Figure 21a’), while in BLG mice, hazy light capillaries are observed with a much darker 

background (Figure 21b’). The differential staining between the groups can be observed 

throughout the midbrain; here, we represented sections of the substantia nigra pars 

reticulata (a’+b’). We then quantified the optical density of the IgG stain within the 

totality of representative sections. Optical density was higher in BLG-sensitized mice 

(Sham: 0.111 ± 0.012, n = 7; BLG: 0.192 ± 0.013, n = 6; p < 0.001, t-test). We futher 

investigated other brain regions (Supplemental Figure 2), including the cerebellum, an 

area where no differential staining was observed. In addition, we observed blood vessels 

in cross-section where high amounts of IgG was deposited in BLG-sensitized mice. 

These observations demonstrated increased blood vessel permeability, which has allowed 

for extravascular IgG to accumulate.
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Figure 21.  Immunoreactivity of IgG in midbrain region of sham and BLG-sensitized 
mice. The OD of IgG quantified extravascular IgG within the brain 
parenchyma (40 μm). Representative midbrain sections from sham (A, a') 
and BLG-sensitized (B, b') male mice are shown. The red rectangles in 
(A, B) indicate where the respective higher magnification images a'-b” 
were taken. The low-magnification (A, B) and high-magnification (a', b’) 
images taken with a 2.5X and 40X objectives, respectively. Scale bars: 
1 mm for (A) and (B); 50 μm for a' and b’. Quantification of optical 
density was performed using QuPath. Sham mice (open bars with open 
triangles); BLG mice (striped bars with filled diamonds); bars indicate 
group average values ± SEM (Mann-Whitney test), ***p < 0.001, n = 6-7. 
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CHAPTER V  

RESULTS  

Study 3 – Anxiety-like Behavior and Intestinal Microbiota Changes as 
Strain- and Sex-dependent Sequelae of Mild Food Allergy in Mouse 

Models of Cow’s Milk Allergy  

Contents of this chapter were originally published in Brain Behavior and Immunity 

(Smith et al., 2021) 

Introduction 

Food allergy, defined as “an adverse health effect arising from a specific immune 

response that occurs reproducibly on exposure to a given food” (Boyce et al., 2010), is an 

increasingly prevalent health concern worldwide (Mullins, 2007; Liu et al., 2010; Gupta 

et al., 2018; Loh and Tang, 2018; Sicherer and Sampson, 2018). In the United States, 

where approximately 8-10% of children and adults are afflicted with food allergy, cow’s 

milk allergy (CMA) has been reported as the second most common food allergy in both 

age groups (Gupta et al., 2018; Gupta et al., 2019). Clinical presentations of CMA can 

vary across individuals, and their manifestations may be immediate or delayed (Hill and 

Hosking, 1995; Baehler et al., 1996; Koletzko et al., 2012; Dupont, 2014). Symptoms that 

are typically recognized as “allergic reactions” include edema, hives, diarrhea, vomiting, 

respiratory distress, and systemic anaphylaxis, which occur immediately after ingestion 

of milk via immunoglobulin E (IgE)-mediated responses (du Toit et al., 2010; Burks et 

al., 2012; Mousan and Kamat, 2016). Delayed symptoms of CMA are more generalized 
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cutaneous and gastrointestinal discomfort, such as eczema and constipation, and can 

emerge several hours to days following milk consumption via IgE-independent 

mechanisms (du Toit et al., 2010; Mousan and Kamat, 2016). 

In addition to the clinical presentations mentioned above, mood, cognitive, and 

behavioral symptoms have been associated with CMA, and thus, neuropsychiatric 

disorders such as anxiety, depression, attention deficit hyperactivity disorder (ADHD), 

and autism may partly be neurological manifestations of hypersensitivity to cow’s milk 

proteins and other dietary allergens in some individuals (Davison, 1949; Speer, 1954; 

Boris and Mandel, 1994; Hak et al., 2013; Lyall et al., 2015; Topal et al., 2016; Xu et al., 

2018). In support of this notion, removal of suspected food from patients’ diet has been 

reported to alleviate their symptoms while reintroduction exacerbates them (Davison, 

1949; Speer, 1954; Boris and Mandel, 1994; Stevens et al., 2010). Furthermore, oral 

immunotherapy of children with CMA was found to significantly improve anxiety 

(Carraro et al., 2012). Despite a large number of case reports and cohort studies that 

demonstrated positive correlations between neuropsychiatric conditions and atopic 

diseases (Afari et al., 2001; Heaney et al., 2005; Mostafa et al., 2008; Yaghmaie et al., 

2013; Garg and Silverberg, 2014; Lyall et al., 2015; Ferro et al., 2016; Goodwin et al., 

2017; Busquets et al., 2019; Blöndal et al., 2020), CMA or other food allergies as a 

pathophysiological trigger of mood and behavioral symptoms has not been fully 

acknowledged in the field, but rather perceived as a psychological trigger of fear arising 

from the anticipation for accidental exposures to offending allergens (Cummings et al., 

2010; Walkner et al., 2015; Herbert et al., 2016; Polloni and Muraro, 2020). Inconsistent 

results across clinical studies, perhaps due to multiple variables associated with the 
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cohorts, have also likely contributed as inconclusive evidence for the role of food allergy 

as a causal factor for neuropsychiatric symptoms. Indeed, variables, such as genetic 

background and ethnicity, diet, and medical history, are challenging to normalize with 

human subjects in addition to the differences in the presentations, number, and severity of 

food allergies. Furthermore, intestinal microbiota, which has been increasingly implicated 

in both allergy (Inoue et al., 2017; Kourosh et al., 2018; Hussain et al., 2019) and 

neuropsychiatric disorders (Finegold et al., 2002; Wang et al., 2013; Naseribafrouei et al., 

2014; Kelly et al., 2016; Gupta et al., 2019), is another possible variable that may affect 

study outcomes and should be taken into consideration. 

Mouse models, therefore, provide valuable tools by allowing researchers to 

control many of these variables. Previously, we and others demonstrated that allergic 

sensitization to cow’s milk proteins elicited behavioral abnormalities in otherwise healthy 

wild-type mice (de Theije et al., 2014; Germundson et al., 2018; Smith et al., 2019; 

Germundson et al., 2020). Moreover, these studies showed that the increases in c-Fos 

immunoreactivity (de Theije et al., 2014), degranulated mast cell numbers (Germundson 

et al., 2018), astrogliosis (Germundson et al., 2018; Smith et al., 2019), and 

proinflammatory cytokines (Smith et al., 2019) were found in the brains of allergen-

sensitized mice. These results suggested that behavioral symptoms in food allergy were 

more than comorbidity, prompting further investigation of CMA as a causative factor that 

could influence brain function and behavior. 

In our mouse model, CMA-associated behavioral changes were observed only in 

male mice and not in female mice (Germundson et al., 2018; Smith et al., 2019). 

Interestingly, sex differences have also been reported in humans for behavioral disorders 
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and food allergies (Altemus, 2006; Kelly and Gangur, 2009; Acker et al., 2017; Xu et al., 

2018; Murray et al., 2019). Together with individual differences in offending allergen 

types, symptom presentations, and reaction severity, the susceptibility toward CMA-

associated behavioral manifestations may depend on the genetic background of allergic 

individuals.  

In this study, we therefore examined the influence of strain and sex differences in 

CMA-induced behavioral manifestations using male and female mice of two genetically 

distinct strains, C57BL/6J and BALB/cJ. Mice were sensitized to β-lactoglobulin (BLG: 

Bos d 5), a major allergen in bovine whey, for 5 weeks and challenged with BLG during 

the 6th week to assess their immediate physical reactions. Anxiety-like behavior and 

spatial memory were also tested one day after the allergen challenge. In addition, fecal 

microbiomes were compared among the mouse groups to determine the potential 

contribution of sex and strain in influencing intestinal microbiota after BLG sensitization. 

Our results indicated that these genetic variables significantly affected CMA sequelae 

and their extent, including immediate reactions to the allergen, behavior changes, 

systemic cytokine levels, and intestinal microbiota. 

BLG Sensitization Produced Distinct Physical Responses in C57BL/6J 
and BALB/cJ Mouse Strains upon BLG Challenge 

During the 6 weeks of sensitization, body weights of mice were recorded weekly 

to monitor overall health. As observed in our previous study (Smith et al., 2019), BLG 

sensitization had no impact on the overall growth of sex-matched mice (Figure 22A). 

When challenged with 50 mg of BLG in Week 6, most of the C57BL/6J mice, regardless 

of sex, were asymptomatic (Figure 22B) and scored 0 on the anaphylaxis scale (Table 1). 
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A few mice in the BLG-sensitized group showed minor symptoms although the 

maximum score did not exceed 2, and the differences between the average scores of sex-

matched sham and BLG-sensitized groups were not statistically significant (male 

C57BL/6J sham: 0.10 ± 0.09, male C57BL/6J BLG: 0.6 ± 0.3, p = 0.10; female 

C57BL/6J sham: 0.10 ± 0.09, female C57BL/6J BLG 0.5 ± 0.2, p = 0.10; n = 10 in all 

groups). While the sensitized BALB/cJ mice of both sexes also did not score more than 2, 

many more animals presented with observable symptoms than sex-matched C57BL/6J 

mice, and the differences between the average scores of the sex-matched sham and BLG 

groups for BALB/cJ were significantly different (male sham: 0.10 ± 0.09, male BLG:  

1.2 ± 0.3, p = 0.0007; female sham: 0.10 ± 0.09, female BLG: 1.8 ± 0.2, p < 0.0001;  

n = 10 in all groups). Sex- and treatment-matched strain differences in clinical scores 

were only significant between BLG sensitized female sham and BLG mice (p < 0.0001). 

Similarly, when body temperatures were measured to assess allergen-induced 

hypothermia (Figure 22C), the majority of BLG-sensitized male and female C57BL/6J 

mice maintained their normal body temperature at 30 min post-challenge, showing no 

significant differences between sex-matched sham and BLG groups (male C57BL/6J 

sham: 37.9 ± 0.2; male C57BL/6J BLG: 37.5 ± 0.4; female C57BL/6J sham: 37.75 ± 

0.09; female C57BL/6J BLG: 37.3 ± 0.4; n = 10 in all groups). However, BLG-sensitized 

BALB/cJ groups of both sexes clearly presented allergen-induced hypothermia reflective 

of histaminergic action from mast cells (Makabe-Kobayashi et al., 2002) (male BALB/cJ 

sham: 38.6 ± 0.3, male BALB/cJ BLG: 36.8 ± 0.7, p = 0.006; female BALB/cJ sham: 

37.52 ± 0.06; female BALB/cJ BLG: 35.7 ± 0.5, p = 0.0007; n = 10 in all groups). In 

addition, as with the clinical scores, BLG sensitized female BALB/cJ group displayed 
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greater hypothermic responses than sex-matched C57BL/6J mice (p = 0.003). In contrast, 

the strain differences in allergen-induced hypothermia in BLG sensitized mice were not 

significant in males (p = 0.27). These results indicated that the severity of allergic 

responses was sex- and strain-dependent, with female BALB/cJ mice exhibiting most 

robust reactions among the BLG-sensitized groups tested, followed by male BALB/cJ 

mice. In contrast, BLG-sensitized C57BL/6J mice displayed minimally observable 

physical responses upon allergen challenge as we had previously reported (Smith et al., 

2019).
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Figure 22.  Physical responses of mice to BLG sensitization and challenge. (A) Body 
weight charts depicting comparable growth of male and female sham 
(open symbols) and BLG-sensitized (filled symbols) C57BL/6J (triangles) 
and BALB/cJ (diamonds) mice measured weekly during the sensitization 
procedure. (B) Clinical symptoms observed by individual mice were 
determined at 30 min after BLG allergen challenge in Week 6. Symptoms 
were scored based on the symptom score table (Table 1). (C) Body 
temperature (°C) measured at 30 min after the allergen challenge. Male 
C57BL/6J (blue), male BALB/cJ (red); female C57BL/6J (green), female 
BALB/cJ (orange). Bars in B and C indicate group average values ± SEM 
(two-way ANOVA), **p < 0.01, ***p < 0.001, ****p < 0.0001, n = 10. 
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Allergen-specific Immunoglobulins were Differentially Produced in 
BLG-sensitized Mice in a Sex- and Strain-dependent Manner 

To validate the development of adaptive immunity after the sensitization 

procedure, subclasses of BLG-specific immunoglobulins, IgE, IgG1, and IgG2a, were 

individually detected using ELISA (Figure 23, also see Supplemental Figure 3). When 

compared to respective sham mice, BLG-specific IgE (Figure 23A) was significantly 

elevated approximately by 2-fold in the sera of sensitized male C57BL/6J mice (1.8 ± 0.4 

fold, n = 10, p = 0.05) and male and female BALB/cJ mice (male: 2.1 ± 0.4 fold, n = 10, 

p = 0.006; female: 2.20 ± 0.41 fold, n = 10, p = 0.0007), but not in BLG-sensitized 

female C57BL/6J mice (1.0 ± 0.2 fold, n = 10, p = 0.28). In contrast, neither male nor 

female C57BL/6J mice showed allergen-specific IgG1 production (Figure 23B) even 

though robust increases in serum levels of BLG-specific IgG1 was detected in the 

sensitized BALB/cJ mice of both sexes (male: 46 ± 3 fold, n = 10, p < 0.0001; female 

BALB/cJ BLG: 43 ± 3 fold, n = 10, p < 0.0001). Similarly, elevated levels of BLG-

specific IgG2a were found in both male and female BALB/cJ mice (male: 8 ± 5 fold,  

n = 10, p = 0.04; female: 10 ± 3 fold, n = 10, p < 0.0001) but not in C57BL/6J mice  

(Figure 23C). These results indicated that BALB/cJ mice responded to BLG sensitization 

by productions of all immunoglobulin subclasses tested. In contrast, such response was 

limited to allergen-specific IgE in male C57BL/6J mice whereas females of this strain did 

not show significant immune responses after the 5-week sensitization regimen and an 

allergen challenge. Thus, the sex and strain of mice influenced the extent and the class of 

allergen-specific immunoglobulins produced after BLG sensitization.
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Figure 23.  Serum levels of BLG-specific immunoglobulin isotypes. Terminal blood 
samples were used to detect BLG-specific serum IgE (A), IgG1 (B) and 
IgG2a (C) using ELISA. Fold change was calculated by normalizing 
optical density (OD) values obtained for BLG-sensitized groups to those 
for sex- and strain-matched sham groups. Sham mice (open bars with open 
triangles); BLG mice (striped bars with filled diamonds); male C57BL/6J 
(blue); male BALB/cJ (red); female C57BL/6J (green); female BALB/cJ 
(orange). Bars indicate group average values in fold changes ± SEM  
(two-way ANOVA), *p < 0.05, ****p < 0.0001, n = 10. 
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Anxiety-like Behavior Differentially Manifested in BLG-sensitized Male 
C57BL/6J and BALB/cJ Mice after Allergen Challenge without 
Affecting General Activity and Cognitive Function 

For the OF test, we first tracked the frequency of visits to the center zone, the total 

time spent in the center zone, and the average duration of each visit to the center zone at 

1-min intervals to detect possible time-dependent changes in anxiety-like behavior during 

the course of the 10-min testing period (Supplemental Figure 4). From this preliminary 

analysis, we observed that significant differences between the sham and BLG groups in 

the measured parameters were often apparent during the first 4 min as previously 

reported by others (Bailey et al., 2007; Tanda et al., 2009; Maeta et al., 2018) but became 

less evident during the latter half of the test duration. Thus, the activity parameters during 

the first 4 min of the test period were compared among the groups (Figure 24). BLG-

sensitized male C57BL/6J mice made significantly fewer entries to the center zone of the 

OF arena (sham: 6.8 ± 0.8, n = 8; BLG: 4 ± 1, n = 8, p = 0.001), spent less total time in 

the center zone (sham: 16 ± 5 sec, n = 8; BLG: 5 ± 2 sec, n = 8, p = 0.004), and spent less 

time in the center zone per entry (sham: 3 ± 1 sec, n = 8; male C57BL/6J BLG: 1.0 ± 0.3 

sec, n = 8, p = 0.03) than their sham counterparts (Figure 24A-C). The CMA-associated 

effects on these parameters were not statistically significant for male BALB/cJ mice and 

female mice of both strains. However, in comparison to C57BL/6J mice, all groups of 

BALB/cJ mice noticeably avoided the center zone during the test period, posing a 

challenge in detecting any changes with BLG sensitization. In an attempt to detect 

differences in anxiety-like behavior between the treatment groups for BALB/cJ mice 

using another approach, the numbers of fecal pellets produced during the test were 

counted (Crumeyrolle-Arias et al., 2014; Seibenhener and Wooten, 2015). Greater 
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numbers of fecal pellets, considered to reflect an increased anxiety-like state in rodents, 

were produced by BLG-sensitized male BALB/cJ mice than their sham control mice 

(Figure 24D, sham: 3.8 ± 0.5, n = 10; BLG: 6.1 ± 0.8, n = 10, p = 0.01) although no 

differences were found in any other groups.  

To differentiate anxiety-like behavior from motor deficits, we also examined 

general locomotor activities of mice, the total distance traveled, and total time immobile. 

There were significant inter-strain differences between sex- and treatment-matched 

groups, with BALB/cJ mice, regardless of sex or treatment, being overall less active than 

C57BL/6J and avoiding the center zone (Supplemental Figure 5). Furthermore, BLG-

sensitized male BALB/cJ mice traveled less distance than strain-matched sham mice, 

although the difference in time immobile was not statistically significant. In contrast, 

there were no significant differences between sex-matched C57BL/6J sham and BLG 

groups, suggesting that decreases in the number of entries to the center and time spent in 

the center observed in male mice of this strain were not likely due to reduced mobility.
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Figure 24.  Open-field activity monitoring test. Overall activity of mice in an open 
field arena was monitored one day after BLG challenge. The first 4 min of 
the test were analyzed to assess differences in the number of entries to the 
center area (A), total time spent in the center (B), and the duration of each 
entry to the center (C). In addition, the number of fecal pellets excreted 
during the test were counted as an alternative measure of anxiety-like 
behavior (D). Sham mice (open bars with open triangles); BLG mice 
(striped bars with filled diamonds); male C57BL/6J (blue); male BALB/cJ 
(red); female C57BL/6J (green); female BALB/cJ (orange). Bars indicate 
group average values ± SEM (two-way ANOVA), *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001, n = 8-10. 
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Anxiety-like behavior of mice was also assessed using the EZM test by 

monitoring their avoidance of the open zones (Figure 25). As observed with the OF test, 

the BALB/cJ strain exhibited overall greater tendency to avoid open zones of the EZM 

compared to sex- and treatment matched C57BL/6J mice. When comparing sex- and 

strain-matched groups, BLG-sensitized male mice of both strains made fewer entries to 

the open zones than their respective sham counterparts (Fig 25A; male C57BL/6J sham: 

16 ± 2, n = 8; male C57BL/6J BLG: 9 ± 2, n = 8, p = 0.01; male BALB/cJ sham: 6 ± 2,  

n = 10; male BALB/cJ BLG: 0.6 ± 0.3, n = 10, p = 0.03). Similarly, BLG-sensitized male 

C57BL/6J and BALB/cJ mice spent less time in the open zone than sex- and strain-

matched sham mice (Fig 25B; male C57BL/6J sham: 82 ± 9, n = 8; male C57BL/6J BLG: 

42 ± 12, n = 8, p = 0.006; male BALB/cJ sham: 26 ± 11, n = 10; male BALB/cJ BLG: 0.9 

± 0.4, n = 10, p = 0.05). In addition, sensitized BALB/cJ male mice also spent less time 

in the open zone per entry than sham mice (Fig 25C; male BALB/cJ sham: 2.5 ± 0.8,  

n = 10; male BALB/cJ BLG: 0.7 ± 0.4, n = 10, p = 0.03). No differences were found in 

female mice of either strain in these parameters. These results further supported that sex 

and strain influenced the manifestation of CMA-associated anxiety-like behavior. 
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Figure 25.  Elevated zero maze test. Anxiety-like behavior of mice was observed on 
an EZM apparatus one day after BLG challenge. The number of entries to 
the open zones (A), total time spent in the open zones (B), and the 
duration of each entry to the open zones (C) were quantified. Sham mice 
(open bars with open triangles); BLG mice (striped bars with filled 
diamonds); male C57BL/6J (blue); male BALB/cJ (red); female C57BL/6J 
(green); female BALB/cJ (orange). Bars indicate group average values ± 
SEM (two-way ANOVA), *p < 0.05, **p < 0.01, ***p < 0.001,  
****p < 0.0001, n = 7-10. 
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To evaluate whether CMA altered cognitive function, spatial memory was tested 

by quantifying the number of spontaneous alternations performed in the cross-maze test. 

In contrast to anxiety-like behavior, the ability of mice to strategically explore each arm 

of the maze was not affected by BLG sensitization in either strain or sex (Figure 26A). 

However, it is important to note that many of the female BALB/cJ mice (5 sham and 6 

BLG mice) either stayed in the entry arm or did not complete a cycle into all arms during 

their test period (Fig 26B) and were therefore excluded from the final analysis of % 

alternations (Figure 26A). These results suggested that BLG sensitization did not affect 

cognitive ability with respect to spatial memory. No obvious strain differences were 

detected in their ability to alternately explore all arms of the maze.  
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Figure 26.  Cross maze test. Spatial memory of mice was tested using a cross maze 
one day after BLG challenge. Mice were allowed to explore the maze 
freely for 12 min, and the numbers of successful sequence alternations 
(A) and total number of entries into the arms (B) were recorded manually 
from video files. The number of successful alternations of arm entries 
made by each mouse was converted to percent alternations using the 
equation described in the Materials and Methods section. Mice that did not 
leave the starting position were removed from the final analysis. Sham 
mice (open bars with open triangles); BLG mice (striped bars with filled 
diamonds); male C57BL/6J (blue); male BALB/cJ (red); female C57BL/6J 
(green); female BALB/cJ (orange). Bars indicate group average values ± 
SEM (two-way ANOVA), **p < 0.01, ****p < 0.0001, n = 5-10. 
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BLG Sensitization Yielded Distinct Sex- and Strain-dependent  
Plasma Cytokine and Chemokine Profiles 

  Because CMA-induced immunoglobulin production and anxiety-like behavior 

manifestation were sex- and strain-dependent, it was likely that distinct immune 

responses with unique inflammatory mediators were triggered in each mouse group upon 

allergen challenge. Thus, we next characterized cytokines, chemokines, and associated 

immunologic factors in each experimental group. In particular, we expected to observe 

elevation of Th1- and Th2-associated cytokines in C57BL/6J and BALB/cJ strains as 

they reportedly have respective immune biases (Autenrieth et al., 1994; Nishimura et al., 

1997; Mills et al., 2000; Watanabe et al., 2004). To quantify the factors at the systemic 

level, we assessed the plasma samples using Quantibody® Mouse Cytokine Array Q5 

system (Figure 27, see Supplemental Figure 6 for the complete quantitative data). In 

BLG-sensitized male C57BL/6J mice, 9 analytes were significantly increased in 

comparison to their respective sham mice (Figure 27A). CCL1 (C-C motif chemokine 

ligand 1) and CSF1 (colony stimulating factor 1, also known as macrophage colony 

stimulating factor or M-CSF) showed the most striking changes with allergen 

sensitization by increasing 12 ± 4 fold and 9 ± 2 fold, respectively. However, the absolute 

amounts of these factors were relatively low (CCL1 in sham: 1.1 ± 0.5 pg/mL, BLG:  

13 ± 4 pg/mL; n = 10, p = 0.0003; CSF1 in sham: 19 ± 10 pg/mL, BLG: 176 ± 38 pg/mL; 

n = 10, p = 0.0001). Other analytes that were significantly induced in sensitized male 

C57BL/6J mice were, in the order of greatest to lowest, 7 ± 2 fold for IL-13  

(sham: 780 ± 261 pg/mL, BLG: 5353 ± 1667 pg/mL; n = 10, p = 0.0007), 6 422 ± 2 fold 

for CCL17 (sham: 83 ± 22 pg/mL, BLG: 528 ± 187 pg/mL; n = 10, p = 0.004), 4.5 ± 0.8 

423 fold for IL-21 (sham: 41 ± 23 pg/mL, BLG: 188 ± 33 pg/mL; n = 10, p = 0.0009),  
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4.0 ± 0.6 fold for FGF2 (Fibroblast growth factor 2;sham: 49 ± 11 pg/mL, BLG:  

195 ± 29 pg/mL; n = 10, p = 0.0001), 3.0 ± 0.7 fold for CCL12 (sham: 86 ± 35 pg/mL, 

BLG: 258 ± 57 pg/mL; n = 10, p = 0.02), 1.8 ± 0.3 fold for IL-10  

(sham: 177 ± 31 pg/mL, BLG: 318 ± 52 pg/mL; n = 10, p = 0.04), and 1.31 ± 0.05 fold 

for CCL9 (sham: 3762.313 ± 355 pg/mL, BLG: 4910 ± 191 pg/mL; n = 10, p = 0.002). 

None of the analytes quantified with this assay were induced in BLG-sensitized female 

C57BL/6J mice (see Supplemental Figure 6).  

The cytokine profile of BLG-sensitized male BALB/cJ mice was distinct from 

that of sex matched C57BL/6J mice, and 4 analytes were significantly reduced in BLG-

sensitized mice compared to the sham mice (Figure 27B). The analyte levels were lower 

by 0.5 ± 0.1 fold for IL-1β (sham: 103 ± 15 pg/mL, BLG: 56 ± 11 pg/mL, n = 10,  

p = 0.02), 0.5 ± 0.2 fold for IL-13 (sham: 414 ± 59 pg/mL, BLG: 216 ± 72 pg/mL;  

n = 10, p = 0.03) 0.3 ± 0.1 fold for CSF2 (sham: 157 ± 25 pg/mL, BLG: 49 ± 20 pg/mL,  

n = 10, p = 0.002), and 0.52 ± 0.05 fold for TNFRSF1A (sham: 1087 ± 121 pg/mL, BLG: 

566 ± 56 pg/mL; n = 10, p = 0.0002) in BLG sensitized mice. In contrast, 3 analytes were 

increased in BLG-sensitized female BALB/cJ mice (Figure 27C), including 2.6 ± 0.5 fold 

for IL-15 (sham: 683 ± 340 pg/mL, BLG: 1788 ± 353 pg/mL, n = 10, p = 0.007), 5 ± 2 

fold for TNFRSF1B (sham: 39 ± 8 pg/mL, BLG: 176 ± 61 pg/mL, n = 10, p = 0.02), and 

6 ± 2 fold for ICAM-1 (sham: 93 ± 40 pg/mL, BLG: 518 ± 184 pg/mL, n = 10, p = 0.02).  

This array data demonstrated that BLG sensitization resulted in altered levels of 

distinct sets of immunologic mediators in the circulation, with C57BL/6J male mice 

having the greatest number of mediators that were significantly affected. Therefore, our 

results indicated that the same allergen triggered varying immune responses depending 
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on the sex and strain of sensitized mice. Importantly, the cytokine profiles from BLG-

sensitized C57BL/6J and BALB/cJ mice failed to categorize their strain-specific 

responses simply into Th1 and Th2 responses, respectively. 
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Figure 27.  Plasma levels of immune mediators that were significantly different 
between sex- and strain matched sham and BLG-sensitized mice. Levels 
of the 40 immune mediators included in the Quantibody Mouse Cytokine 
Array 5 (QAM-CYT-5) were quantified from plasma samples. Only the 
analytes that showed significant differences between sex- and strain-
matched sham and BLG groups are shown for C57BL/6J male mice (A), 
BALB/cJ male mice (B), and BALB/cJ female mice (C). No significant 
differences in any of the detected analytes were observed in female 
C57BL/6J mice (not shown). The quantification of all analytes for all 
mouse groups are presented as Supplemental Figure 6. Sham mice (open 
bars with open triangles); BLG mice (striped bars with filled diamonds); 
male C57BL/6J (A); male BALB/cJ (B); female BALB/cJ (C). Bars 
indicate group average values ± SEM (Mann-Whitney), *p < 0.05, **p < 
0.01, ***p < 0.001, n = 10. 
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BLG-sensitization Differentially Altered the Composition of  
Intestinal Microbial Community in a Sex- and Strain-specific Manner 

Because BLG was orally introduced during the sensitization procedure, we 

postulated that allergen sensitization and the subsequent challenge had produced 

inflammatory conditions in the intestinal tract and influenced the commensal microbial 

community. Altered intestinal microbiota has been implicated in a variety of pathological 

conditions, including food allergy and neuropsychiatric disorders (Wang et al., 2011; 

Scheperjans et al., 2015; Blazquez and Berin, 2017; Vuong et al., 2017; Pulikkan et al., 

2018). To assess whether BLG sensitization resulted in alterations in intestinal 

microbiota, we next performed microbiome analysis by 16S ribosomal RNA gene 

sequencing from stool samples. Following sequencing, microbial taxonomy was 

classified using amplicon sequence variants (ASVs) at the species level. Approximately 

400-500 species were classified in each treatment group (Figure 28A). There was a 

significant strain dependent difference in the number of observed species between 

C57BL/6J and BALB/cJ male sham mice (Figure 28A). Species richness was greater for 

BALB/cJ sham mice compared to respective C57BL/6J mice in males (C57BL/6J sham: 

392.2 ± 21.3, BALB/cJ sham: 500.3 ± 17.0; n = 10, p < 0.0001). Furthermore, assessment 

of alpha diversity indicated significant differences between sex- and strain-matched 

treatment groups for male C57BL/6J mice (Simpson index) and female BALB/cJ mice 

(Shannon and Simpson indices), showing BLG associated decrease and increase in 

biodiversity, respectively (Supplemental Figure 7). 
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Figure 28.  Effects of BLG sensitization on fecal microbiome. Microbial DNA was 
isolated from fecal pellets and 16S ribosomal RNA gene sequencing was 
performed. Fecal microbial compositions were determined as described in 
the Materials and Methods section, and alpha and beta diversities were 
assessed. (A) Assessment of alpha diversity with the number of observed 
species. Sham mice (open bars with open triangles); BLG mice (striped 
bars with filled diamonds). Bars indicate group average values ± SEM 
(two-way ANOVA), ****p < 0.0001, n = 10. (B, C) Assessment of beta 
diversity with Bray-Curtis principal coordinate analysis. Sham mice (open 
triangles); BLG mice (filled diamonds). Male C57BL/6J (blue); male 
BALB/cJ (red); female C57BL/6J (green); female BALB/cJ (orange).
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We next performed PCoA using the Bray-Curtis dissimilarity method to cluster 

the beta diversity of sex- and strain-matched treatment groups. There was clear separation 

between sham and BLG groups in both male and female C57BL/6J mice (Figure 28B). 

Similarly, the clustering of the two groups was distinct for female BALB/cJ mice, 

whereas some overlap was observed for male BALB/cJ mice (Figure 28C). These results 

suggested that intestinal microbial composition becomes altered with BLG sensitization, 

although the extent of the change may be strain-dependent. 

When taxonomic compositions from the experimental groups were compared at 

the phylum level, each group showed a distinct profile, although Firmicutes and 

Bacteroidetes were the two dominant bacterial phyla as reported elsewhere (Figure 29A). 

The relative abundance of these phyla was uniquely influenced by BLG sensitization in a 

sex- and strain-dependent manner (Figure 29B-I). For C57BL/6J, Verrucomicrobia and 

Proteobacteria were significantly lower in BLG-sensitized male mice, whereas 

sensitization resulted in a greater abundance of Bacteroidetes and Patescibacteria and 

reduced abundance of Actinobacteria in female mice. In contrast, for BALB/cJ mice, 

Cyanobacteria was the only phylum that was lower in BLG-sensitized male mice, while 

female mice did not show any significant differences between sham and BLG groups in 

the identified phyla. Among the differences described above, the most notable 

sensitization associated differences were reduced abundance of Verrucomicrobia in male 

C57BL/6J by 84.1% (0.16 ± 0.03 fold) and increased abundance of Bacteroidetes in 

female C57BL/6J by 30.5% (1.31 ± 0.07 fold).  The complete microbiome profiles for all 

the experimental groups are provided in Supplemental Figure 9. 
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Figure 29.  Sensitization-associated differences in the relative abundance of major 
bacterial phyla detected from fecal microbiome analysis. Microbial DNA 
was isolated from fecal pellets and 16S ribosomal RNA gene sequencing 
was performed. (A) Relative abundances of detected bacterial phyla were 
compared among sex-matched groups. (B-I) Relative abundance of each 
of the major phyla was compared to their sex-matched groups. Sham mice 
(open bars with open triangles); BLG mice (striped bars with filled 
diamonds); male C57BL/6J (blue); male BALB/cJ (red); female C57BL/6J 
(green) female BALB/cJ (orange). Bars indicate group average values ± 
SEM (two-way ANOVA), *p < 0.05, **p < 0.01, ***p < 0.001,  
****p < 0.0001, n = 10.
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Proliferation of Akkermansia muciniphila in C57BL/6J Male Mice  
was Inhibited with BLG Sensitization 

Because C57BL/6J male mice exhibited significant changes in intestinal 

microbiota associated with anxiety-like behavior, we focused on this group to investigate 

the potential role of their commensal bacteria in their behavioral and immunologic 

responses. Here, we examined the pre- and post-sensitization fecal amounts of 

Akkermansia muciniphila, a species belonging to the phylum, Verrucomicrobia, which 

was significantly decreased in BLG-sensitized mice (Figure 29E). A. muciniphila has also 

been implicated in various disease conditions, including neurological disorders (Wang et 

al., 2011; Hill-Burns et al., 2017; Li et al., 2019; Xu et al., 2019). As shown in Figure 30, 

the relative amounts of A. muciniphila detected in pre-sensitization samples from the 

sham and BLG groups were comparable, ranging from 4.5×10-7 to 1.1×10-5 (sham 

average: 4×10-6 ± 1×10-6 , BLG average: 3.2×10-6 ± 0.7×10-6 ; expressed as 2-Cq values). 

However, A. muciniphila increased in sham mice during the course of the 5-week 

sensitization period, averaging 22 ± 8 fold increases at post-sensitization with a range of 

2.2 to 5-fold increases. On the other hand, all BLG-sensitized mice, except one mouse 

identified as an outlier (2-Cq value: 9.4×10-6, see the Materials and Methods section), 

showed profound decreases in the relative amount of the bacteria after sensitization, 

averaging 0.2 ± 0.1 fold, indicating that the growth of this bacteria was stifled in this 

group. Because A. muciniphila was the predominant species of Verrucomicrobia 

identified and detected in the microbiome (Supplemental Figure 9), the significant 

reduction of the phylum observed in BLG-sensitized C57BL/6J male mice is therefore 

likely due to attenuated colonization of A. muciniphila (Figure 29A).  
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Figure 30. Differences in the amount of A. muciniphila in sham and BLG-sensitized 
male C57BL/6J mice before and after the sensitization procedure. 
Microbial DNA samples were isolated from fecal pellets that had been 
collected before (pre-sensitization) and after (post-sensitization) the  
5-week sensitization procedure. The amount of A. muciniphila in each of 
the DNA samples were quantified by qPCR using a specific primer pair. 
Sham mice (open bars with open triangles); BLG mice (striped bars with 
filled diamonds). Bars indicate group averages of individual  
2-Cq values ± SEM, **p < 0.01, ****p < 0.0001, n = 10., sham vs. BLG: 
two-way ANOVA; treatment-matched pre- vs post-sensitization values 
were compared using paired t-test. *p=0.01 indicates comparison between 
pre- and post-sensitization BLG. 
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The Altered Microbiome Profile of BLG-sensitized Male C57BL/6J  
was Associated with Molecular Interactions Known to Affect  
Neurological Functions 

In order to explore possible molecular targets that might have been influenced in 

our BLG sensitized mice, we identified the pathways that were associated with the 

microbial changes observed in this study using the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) Pathway Database (https://www.genome.jp/kegg/pathway.html). 

Known molecular interaction pathways with significant differences between sex- and 

strain-matched sham and BLG-sensitized groups are presented as Supplemental Figure 8. 

We found a greater number of pathways that were significantly associated with the 

microbiome of BLG-sensitized C57BL/6J male mice than any other groups. Interestingly, 

among them were some pathways involved in neurological disorders and 

neurotransmission, such as serotonergic/dopaminergic synapses and Parkinson’s disease 

(Figure 31). Although the analysis does not articulate specific molecules within each 

pathway that were likely affected by the sensitization-associated microbiome changes in 

C57BL/6J male mice, the result suggests that the neurological functions were possibly 

influenced in these mice. 
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Figure 31.  Central nervous system-related pathways associated with the changes in 
microbiota in BLG-sensitized mice. KEGG pathway analysis was used to 
identify known functional pathways that were significantly associated with 
the microbiome profiles in our mouse groups. Only the pathways that are 
related to the central nervous system functions are shown. All results from 
the KEGG pathway analysis are provided in Supplemental Figure 8. 
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CHAPTER VI  

DISCUSSION  

Study 1 – Astrogliosis Associated with Behavioral Abnormality in a 
Non-anaphylactic Mouse Model of Cow's Milk Allergy  

For several decades, the association of FAH with behavioral, emotional and 

cognitive impairments has been suggested, often referred to as “cerebral allergy” 

(Davison, 1949) or “allergic tension-fatigue syndrome” (Speer, 1954, 1958). More 

recently, a growing number of reports have more specifically described FAH 

comorbidities with depression (Patten and Williams, 2007; Garg and Silverberg, 2014; 

Ferro et al., 2016), anxiety (Lyons and Forde, 2004; Patten and Williams, 2007; Garg and 

Silverberg, 2014; Shanahan et al., 2014; Ferro et al., 2016), ADHD (Garg and Silverberg, 

2014; Shanahan et al., 2014; Ferro et al., 2016; Topal et al., 2016), and autism (Lyall et 

al., 2015; Xu et al., 2018). However, the evidence that FAH in fact modifies 

physiological functions of the brain is still insufficient, and the mechanism remains to be 

elucidated. 

One of the major obstacles in the assessment of brain pathophysiology in FAH-

associated neuropsychiatric conditions is controlling the variables associated with the 

study subjects, such as genetic background, diet, socioeconomic status, local 

environment, and culture, all of which may contribute to differences in behavior as well 

as FAH development. In addition, experimental parameters for quantitative assessments 

are often limited to evaluation scores on questionnaires for neuropsychiatric conditions
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and blood IgE levels and/or skin tests for FAH. While it is undeniably challenging to 

evaluate mood- and emotion-elicited behavior in animal models, performing a series of 

behavioral tests helps to validate the results. Furthermore, animal models provide many 

advantages in an experimental study by allowing to control genetic, environmental, and 

dietary variables and to directly evaluate pathophysiology of the brain and other organs. 

Indeed, a mouse model of CMA with the C3H/HeOuJ strain has been utilized to 

demonstrate autistic-like deficit in social behavior and neurochemical changes in the 

brain (de Theije et al., 2014). 

In the present study, we produced non-anaphylactic CMA in C57BL/6J mice 

using BLG as the allergen and assessed the cellular and molecular changes in the 

intestine and brain to identify CMA-induced pathology that might have contributed to 

their abnormal behavioral outcomes. During the 7 weeks of the sensitization/challenge 

period, both male and female mice showed no differences in their growth rate (Figure 

4A). Importantly, we did not observe overt anaphylaxis symptoms in any of the groups 

after each of the two challenges at Week 6 and 7, although significant increases in BLG-

specific IgE and IgG1 levels were observed in both male and female sensitized mice 

(Figures 4B, C). This result indicated that acquired immunity to BLG can be established 

without observable physical reactions. 

Our behavioral assessments of sham and BLG-sensitized mice included digging 

and grooming frequencies, EZM, and TST (Figure 5). Digging behavior in rodents is an 

innate burrowing behavior, and the test is often performed by placing the animal in a cage 

with a thick layer of bedding without or with marbles (Deacon, 2006). Unlike the WP-

sensitized mice we previously described (Germundson et al., 2018), BLG-sensitized mice 
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did not exhibit decreased digging behavior. Instead, there was an increased trend in male 

sensitized mice, suggesting that the behavioral effect of BLG sensitization appears to be 

distinct from that of the WP mixture. Although the reason for the discrepancy between 

the two mouse models of CMA in this behavioral outcome is not clear, it may be 

postulated that other constituents in the WP mixture, such as α-lactalbumin, 

immunoglobulins, and lactoferrin (Farrell et al., 2004), had a more diverse effect than 

BLG alone. 

Grooming is another intrinsic rodent behavior consisting of a complex series of 

movements, and the frequency, total time spent, and sequence of grooming can be 

affected by extrinsic factors such as stress (Kalueff et al., 2016). We observed that female 

sham mice groomed more frequently than their male counterpart (Figure 5C), and the 

frequency of female grooming behavior was not affected by BLG sensitization. On the 

contrary, BLG-sensitized male mice showed significantly elevated grooming behavior, 

indicative of their stressed or anxious state (Kalueff et al., 2016). This observation was 

corroborated by their performance in the EZM test, in which male BLG-sensitized mice 

spent significantly less time than the sham mice in the open zones when entered  

(Figure 5B). These results together support the notion that BLG-sensitized male mice 

exhibited anxiety-like behavior. 

Because anxiety and depression are often comorbid (Johansson et al., 2013; Tiller, 

2013), we also examined whether the BLG-sensitized mice would exhibit depression-like 

behavior. In the TST, depression-like behavior is quantified by the animal's immobility, 

which reflects decreased attempts to escape from the helpless position (Cryan et al., 

2005). Our results demonstrated that male BLG-sensitized mice indeed displayed 
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depression-like behavior, although no difference was observed between sham and BLG-

sensitized female mice (Figure 5D). From our observation that the overall activity of 

male and female mice did not differ between sham and BLG-sensitized groups, it is 

unlikely that the immobility resulted from inability to move or lethargy (Figure 5E). 

Taken together, our behavioral tests indicated that BLG sensitization elicited anxiety- and 

depression-like behavior in male-specific manner. This sex-dependent behavior 

manifestation was also observed with WP-sensitized mice and have been discussed 

previously (Germundson et al., 2018). 

Interestingly, similar sex differences in behavioral observations have been 

reported with human patients with neuropsychiatric disorders, including ADHD, 

obsessive-compulsive disorder (OCD), and autism spectrum disorder (ASD). Several 

meta-analysis studies have indeed found greater prevalence in male population (Hanna, 

1995; Gaub and Carlson, 1997; Gershon, 2002; Mathis et al., 2011; Russell et al., 2011). 

This male dominance in these conditions seem to arise from the fact that male patients 

exhibit more noticeable behavioral phenotypes than female patients. For example, boys 

with ADHD display more externalized and/or disruptive behavior than girls, who in 

contrast tend to show more internalized, inattentive behavior (Gaub and Carlson, 1997; 

Gershon, 2002). Similarly, some studies on sexual dimorphism in ASD symptomatology 

reported that boys have more severe autistic traits and therefore are more likely to be 

diagnosed with ASD than girls (Russell et al., 2011; Mandy et al., 2012). Biological 

factors, such as sex hormone-dependent structural development of the prefrontal and 

orbitofrontal cortices, thalamus, and basal ganglia (Maia et al., 2008), the volume of the 

pituitary gland (MacMaster et al., 2006), and polymorphisms in the serotonergic system 
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(Mathis et al., 2011; Verma et al., 2014; Shuffrey et al., 2017), have been suggested to 

underlie the sex differences in behavioral manifestations. 

In addition to behavioral differences, sexual dimorphism of the immune systems 

has been well-recognized. Gene regulation by gonadal hormones and the expression of 

X-chromosome genes are known to differentially affect the immune system in males and 

females, including immunoglobulin productions, T-lymphocyte functions and 

allergic/atopic disease susceptibility and symptom severity [see reviews by (DunnGalvin 

et al., 2006; Pennell et al., 2012; Klein and Flanagan, 2016)]. However, male dominance 

of food allergy appears to be inconsistent across studies, depending on allergen types and 

patient age groups, as well as on the study method used and year examined (Jarvis and 

Burney, 1998; Becklake and Kauffmann, 1999; Kelly and Gangur, 2009; Acker et al., 

2017). Therefore, the roles of these biological and immune dimorphisms in the sex-

specific behavioral response to BLG sensitization and challenge are complex and require 

further scrutiny in humans as well as in our animal models of CMA. 

Moving forward, we focused our pathophysiological investigation on male mice 

to assess histological and biochemical changes that might reflect the behavioral changes 

that deviated from the sham control. In orally-sensitized mice, the site of allergen insult is 

the gastrointestinal (GI) tract. Decreased mucosal occludin immunoreactivity and 

increased proinflammatory cytokine expression in the BLG-sensitized ileum suggested 

that the immune responses to the allergen during sensitization had impaired intestinal 

barrier (Figure 6). In addition, it is possible that dysbiosis had occurred during the 

sensitization and elicited these changes in intestinal physiology, since gut microbe 

compositions can be influenced by diet and shifts in compositions can result in 
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inflammation (Round and Mazmanian, 2009; Clements and Carding, 2018). These 

changes in the gut physiology and microbiota are likely to be produced gradually during 

the sensitization period, rather than immediately after the BLG challenge, since immune 

activation status in food-allergen sensitized mice has been reported to be heightened as 

evidenced by greater proliferative capacity of splenocytes compared to naïve mice 

without restimulation with the allergen (Li et al., 2000). However, time course of 

pathophysiology development and potential involvement of gut microbiota are yet to be 

determined in our mouse model. Loss of intestinal barrier and intestinal dysbiosis have 

been reported in autistic patients (de Magistris et al., 2010; Fiorentino et al., 2016) and 

their implication in pathogenesis of neuropsychiatric conditions has been reviewed in 

recent literature (Karakula-Juchnowicz et al., 2016; Grochowska et al., 2018). 

Inflammatory responses were also found in the brain of BLG-sensitized mice. 

Although we did not detect apparent microgliosis by Iba1 immunostaining (not shown), 

we observed notable differences in GFAP-positive astrocyte morphology in certain areas 

of the brain, especially perivascular regions of the midbrain (Figure 7). Interestingly, 

similar observations of hypertrophic perivascular astrocytes have been observed in our 

WP-sensitized aged mice (Germundson et al., 2018) and also reported in the spinal cord 

of EAE mice (Voskuhl et al., 2009). These astrocytes resemble scar forming astrocytes 

often described in central nervous system injuries and are thought to establish barriers to 

control infiltration of leukocytes from the blood circulation (Voskuhl et al., 2009; 

Sofroniew and Vinters, 2010). Importantly, increased expression of GFAP plays a crucial 

role in this barrier formation since ablation of GFAP-expressing astrocytes results in 

profound increases in the number of leukocyte infiltrates in the spinal cord of EAE mice 
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(Voskuhl et al., 2009). Thus, it is feasible to postulate that BLG sensitization stimulated 

peripheral immune cells and increased their circulating levels, and the perivascular 

astrocytes had become activated to regulate the amount of inflammatory influence from 

the periphery. To provide evidence for this notion, juxtaposition of leukocytes with 

GFAP-immunoreactive astrocyte end-feet across the blood vessel walls need to be 

demonstrated in our mouse model of CMA as shown in the EAE mice (Voskuhl et al., 

2009). Nonetheless, semi-quantitative analysis with western blotting showed that the 

GFAP levels in the midbrain regions were significantly elevated in BLG-sensitized mice 

when compared to sham mice (Figure 8), supporting our immunohistochemical 

observations. 

Astrocytes are multifaceted glia cells in the central nervous system, and they play 

essential roles in metabolic support, intercellular signaling, blood flow regulation, 

myelination, and synaptic pruning [reviewed by (Sofroniew and Vinters, 2010)]. It is of 

interest to examine whether these functions of astrocytes become dysregulated in BLG-

sensitized mice and influence their behavior. Astrocytes are also important mediators of 

neuroinflammation with the ability to produce and secrete pro- as well as anti-

inflammatory molecules (Eddleston and Mucke, 1993; John et al., 2003). The fact that 

the levels of TNFα were significantly elevated in the midbrain regions of the BLG-

sensitized mice suggested that the astrocytes were acting as proinflammatory mediators 

(Figure 10). However, it seems counterintuitive that microglia did not show reactive 

morphology in response to the elevated proinflammatory cytokine levels. One possible 

explanation is that TNFα detected in our samples had derived from the intestines or 

circulating leukocytes and was not produced by astrocytes, which had successfully 



134 

prevented the cytokine and cytokine-producing cells from activating microglia. An 

alternative explanation may be that our experimental paradigm was too transient, and 

BLG-sensitized mice needed to be repetitively challenged to elicit more chronic 

inflammation in order for microglia to become activated. These hypotheses, along with 

the possible involvement of other proinflammatory cytokines, such as IL-1β and IL-6, 

need to be tested in future studies. 

In conclusion, we have demonstrated that sensitization of C57BL/6J mice with 

BLG induces anxiety- and depression-like behaviors in male mice that are associated 

with decreases in tight junction proteins in the intestines and astrogliosis in the brain. 

Elevated TNFα levels in both of these locations suggest that this proinflammatory 

cytokine plays a role, at least in part, in mediating immune responses to the cow's milk 

allergen in sensitized mice. Whether these pathophysiological findings directly influence 

the behavior of sensitized mice is yet to be determined. However, clinical reports of 

symptom improvements in patients with treatment-resistant depression and other 

psychiatric conditions after elimination diet (Parker and Watkins, 2002) and 

plasmapheresis (Barzman et al., 2018) support the involvement of FAH-triggered 

immune responses in pathogenesis of behavioral disorders. Treatments with 

antihistamines and/or steroidal/non-steroidal anti-inflammatory reagents to, respectively, 

inhibit the effects of hypersensitivity-mediated immediate immune reactions (e.g., mast 

cell degranulation) and subsequent inflammation in our mouse model will be useful in 

clarifying the involvement of proinflammatory cytokines in the development of observed 

brain pathophysiology and behavioral changes. Elucidating the mechanisms by which 

immune responses to a dietary component manifest as brain and behavioral dysfunction 
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may therefore provide potential therapeutic approaches beyond the use of 

neuromodulatory drugs. 

Study 2 – Differential Myelination and Blood-Brain Barrier Associated 
Pathway Activation in Non-anaphylactic Model of Cow’s Milk Allergy  

Previous findings by us and others have characterized the behavioral phenotype 

arising from CMA (de Theije et al., 2014; Germundson et al., 2018; Smith et al., 2019; 

Smith et al., 2021). C57BL/6J mice are known to present mild symptoms compared to 

other mouse strains such as BALB/cJ and C3H mice which we observed here (Figure 11) 

(Smit et al., 2011; Marco-Martin et al., 2017; Smith et al., 2021). We have previously 

found no evidence of anaphylactic symptoms or allergen-induced hypothermia in 

C57BL/6J mice (Smith et al., 2021). Despite the lack of anaphylactic symptoms, they are 

routinely found to have elevated levels of allergen-specific IgE (Smit et al., 2011; 

Germundson et al., 2018; Smith et al., 2019; Smith et al., 2021). The mice generated for 

this study were treated similarly to those in our previous studies and have yielded 

consistent results (Figure 1); thus, behavioral testing was not performed with this group 

of animals.  

 Cytokines serve as likely mediators for peripheral to central signaling. BALB/cJ 

mice also presented with a robust behavioral phenotype and released large amounts of 

cytokines following allergen exposure (Marco-Martin et al., 2017; Smith et al., 2021). In 

addition, our previous observations with C57BL/6J mice implicated a TNFα mediated 

response causing astrogliosis and perivascular cuffing (Smith et al., 2019). Building off 

our CNS findings and cytokines profile seen in C57BL/6J mice following allergen 

challenge, we further validated those data by performing the same ELISA multiplex. 
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Despite not reaching the statistical significance threshold as previously observed with IL-

10, IL-13, and other cytokines (Figure 12), similar trends were observed. To validate this 

observation, greater sample numbers will be required. Though our significant cytokine 

findings show little overlap with previously published work, the heterogeneity in our 

system may be the result of differences in cytokine release similar to what was observed 

when comparing C57BL/6J and BALB/cJ mice. Therefore, there may be evidence of 

functional overlap between our previous findings of increased chemokines and IL-10, Il-

13, and IL-21 and roles of CCL24 and CXCL13 observed in this study. 

 Interestingly, despite evidence of gut barrier breakdown due to loss of occludin 

immunoreactivity (Smith et al., 2019), we observed no changes in the transcription of the 

tested factors or evidence of gut leakiness to FITC-dextran (Figure 13 and 14). The gut is 

the principal site of insult by CMA though we did not see evidence of permeability using 

this FITC-dextran approach, our model potentially does not yield a robust gut pathology 

or differing results may be achieved by adjusting our assay. 

The midbrain has routinely been one of the areas we observed histological 

changes, including astrogliosis and mast cell degranulation (Germundson et al., 2018; 

Smith et al., 2019). Therefore, it was interesting that IPA predicted changes in FMR1 

activity (Figure 15 and 18), decrease in myelin and lymphocyte protein (MAL) and 

proteolipid protein 1 (PLP1) transcription (Figure 18). The transcription of the iron 

transporter; transferrin was reduced. Transferrin is a central factor in the activity and 

differentiation of oligodendrocytes (Espinosa de los Monteros et al., 1999; Pérez et al., 

2013; Marziali et al., 2016). When performing our pathway analysis in the midbrain 

region, a clear association to the ALS signaling pathway supported the potential for 
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myelin degradation. Interestingly, the perivascular cuffing of astrocytes seen in our 

previous work is well documented in EAE (Voskuhl et al., 2009; Sofroniew and Vinters, 

2010). Regardless of the supportive association to myelin degradation pathways in IPA 

findings, we did not observe changes in myelination histologically when observed by 

MBP immunostaining, but there could be selective changes for other myelin proteins like 

the aforementioned MAL and PLP1. The iron transport dysfunction may have non-

oligodendroglial effects, could take more time to cause visible effects due to transferrin’s 

half-life of 8-10 days, or disruption of transferrin transcription does not impact already 

formed myelin.  

 Based upon pre-existing results in our model system that demonstrated 

perivascular astrocyte hypertrophy and TNFα accumulation in the midbrain, we 

suspected that blood-brain barrier integrity might be compromised (Smith et al., 2019). 

Evidence suggests that the brain is susceptible to the influx of immune cells and their 

products in inflammatory conditions (Rezai-Zadeh et al., 2009; Su and Federoff, 2014). 

Based on the observed reduction in Ocln transcription in our samples (Figure 19) and the 

predicted reduction in VEGFA in the pathway analysis (Figure 18), we assayed the 

permeability of the blood-brain barrier to serum IgG (Figure 21) (Hawkins and Davis, 

2005; Hawkins et al., 2007; Argaw et al., 2012). High amounts of IgG in the brain 

parenchyma and other blood-brain barrier permeability markers have been following 

peripheral immune responses resulting from TNFα signaling or other mast cell products 

(Cheng et al., 2018; Tran et al., 2019; Shelestak et al., 2020; Huang et al., 2021). We did 

not expect permeability to IgG to the scale we observed; the blood-brain barrier 

pathology is likely a central component of the mechanism causing the behavioral change 
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and immune cell infiltration. These data will be further validated with our research going 

forward as we continue to unveil the peripheral to central signaling cascade linking CMA 

to anxiety behavior. 

We were not able to investigate all the identified pathways in-depth, though they 

may serve as a foundation for future studies. The FcεRI had a positive z-score in the 

midbrain, which corresponds with our previously published studies showing mast cell 

degranulation. Though this project's focus was cytokine signaling, other mast cell factors 

are likely released by degranulation upon FcεRI activation. Across the midbrain and 

striatum/frontal cortex, signaling pathways involved in synaptogenesis, neurite 

development, axonic development, and netrin signaling were differentially activated. 

Changes in the activity of axonal, neurite, and synaptic development pathways all imply 

potential changes in neuronal morphology and connectivity. Neuronal morphology was 

outside the focus of this study but may be confirmed using general or selective neuronal 

immunohistochemical stain combined with a 3D structural scoring like a Sholl analysis 

(Sholl, 1953; Binley et al., 2014). Though histamine functions as a neurotransmitter, did 

not detect prediction of histamine signaling changes in our pathway analysis. Due to the 

crude dissection method used in our study, small transcriptional changes in confined 

regions might not have been detected with a great resolution. Because all histaminergic 

neurons are located in the tuberomammillary nucleus of the hypothalamus, transcriptional 

changes within this small nucleus might have been diluted by the inclusion of 

surrounding tissue (Scammell et al., 2019). In addition, the postsynaptic cells of the 

tuberomammillary nucleus are broadly scattered throughout the forebrain in the striatum, 

preoptic area, and prefrontal cortex; therefore, a high-resolution analysis may be required. 
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Despite the lack of detection for differences in histaminergic signaling, some CMA-

associated neuronal signaling pathways were identified by IPA. Most notably, the 

endocannabinoid and opioid signaling pathways have negative and positive activation z-

scores, respectively. Interestingly general G-protein coupled receptor subunit αs was 

increased in the striatum and frontal cortex sample. These signaling pathways warrant 

further investigation as they have document impacts on behavior. 

 In conclusion, we provided further support for a mechanism by which a non-

anaphylactic mouse model of CMA might elicit anxiety- and depression-like behavioral 

changes. BLG-sensitized mice were confirmed allergic by induction of BLG-specific IgE 

and lacked any apparent anaphylactic symptoms or health impact. The profile of plasma 

cytokines had considerable overlap with the profile previously observed in male 

C57BL/6J mice. The significantly increased BLG mouse cytokines and chemokines IL-

10, IL-13, CCL24, and CXCL13. Significant changes in brain transcriptome and 

histopathology were also observed. Our analysis suggested that Fmr1, Dio2, Slc16a2, and 

Sox2 likely drive the relevant pathways for the neuro and behavioral pathologies 

observed. In the midbrain, changes in myelination, anxiety, FcεRI, and vascular 

permeability were also predicted. These changes are likely important for the observed 

behavioral alterations in our BLG-sensitized mice.
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Study 3 – Anxiety-like Behavior and Intestinal Microbiota Changes as 
Strain- and Sex dependent Sequelae of Mild Food Allergy in Mouse 

Models of Cow’s Milk Allergy  

The severity and presentations of food allergy symptoms widely vary among 

individuals and likely contribute to inconsistencies across human cohort studies that 

investigate the association of food allergy with affective, behavioral, and cognitive 

disorders. Indeed, the heterogeneity in responses to allergens is often observed in human 

patients (Burks et al., 2012; Bird et al., 2015; Sicherer and Sampson, 2018; Fritscher-

Ravens et al., 2019). We postulated that the presence of allergy-associated behavioral 

manifestations would be influenced by sex and genetic background. In this study, we 

therefore used a mouse model of CMA to evaluate the effect of strain and sex on CMA-

associated anxiety-like behavior and cognitive function as well as physical reactions, 

immunological responses, and microbial changes.  

We first assessed whether the BLG sensitization regimen effectively induced 

CMA. Following an oral allergen challenge, both C57BL/6J and BALB/cJ strain mice 

showed no or mild observable reactions, scoring a severity level of 0-2 upon allergen 

challenge (Figure 22B). This outcome was not unexpected given that we and others have 

previously reported mild responses to allergen challenges with these strains (Marco-

Martin et al., 2017; Germundson et al., 2018; Smith et al., 2019), and C57BL/6 and 

BALB/c backgrounds are known to be more resilient to experimental allergic 

sensitization than other strains (Xu et al., 2018). However, greater numbers of BLG-

sensitized BALB/cJ mice scored 2 than sex- and treatment-matched C57BL/6J mice, 

rendering the modest differences in the clinical scores and body temperature from their 

respective sham groups statistically significant (Figure 22B, C). Mast cell-derived 
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histamine is a known contributor of allergy-induced hypothermia and respiratory distress, 

acting via H1/H2 histaminergic receptors. The absence of mast cells or histamine 

production in knockout mice, as well as histaminergic receptor antagonists in wild-type 

mice, have been shown to ameliorate these symptoms after inducing passive systemic 

anaphylaxis (Makabe-Kobayashi et al., 2002). Thus, our observation suggested that  

BLG-sensitized BALB/cJ mice were more susceptible to mast cell degranulation upon 

allergen challenge. As for the allergen-specific immunoglobulins, the sensitization-

induced changes in their levels did not closely mirror the physiological responses, and all 

BLG groups, except C57BL/6J females, showed small but significant increases in 

allergen-specific IgE (Figure 23A). Furthermore, IgG isotypes were also elevated in both 

male and female BALB/cJ mice after sensitization (Figure 23B and 23C). In contrast, we 

did not observe elevated IgG1 in the BLG groups of C57BL/6J mice. These results 

indicated that the production of allergen-specific immunoglobulin was differentially 

affected by the strain, particularly highlighting the difference in the amounts of IgG1 

production. However, we have previously observed elevated BLG-specific IgG1 in male 

and female C57BL/6J mice in our earlier study, in which mice were challenged twice, 1 

week apart (Smith et al., 2019). Thus, the number of allergen exposure and/or duration 

after sensitization may also affect the amounts of allergen-specific immunoglobulins.  

Despite the lack of anaphylaxis and other overt physical indications of severe 

allergic responses, BLG-sensitized C57BL/6J mice exhibited anxiety-like behavior one 

day after the allergen challenge. This CMA-associated behavior change was not observed 

in female C57BL/6J mice, an outcome in line with our previous study (Smith et al., 

2019). Although the results from the OF test were difficult to compare in BALB/cJ mice 



142 

due to their overall inactivity, the differences between sham and BLG mice were detected 

for male mice by the number of fecal pellets and EZM (Figure 24D and 25A-C). Again, 

these differences were not observed in BALB/cJ female mice, suggesting that females 

were less inclined to exhibit CMA-associated anxiety-like behavior regardless of strain. 

The cross-maze test did not show significant differences between sham and BLG mice in 

any of the groups or strain- or sex-dependent effects, suggesting that BLG sensitization 

followed by acute exposure to the allergen did not affect cognitive function, at least for 

spatial memory (Figure 26).  

Similar male-biased symptom manifestations have also been reported in human 

patients. Food allergy and certain types of behavioral conditions, such as ADHD and 

autism, are more commonly diagnosed in young males (Polanczyk et al., 2007; Kim et 

al., 2011; Pinares-Garcia et al., 2018). The sex-dependent dichotomy may be explained 

by the differences in the number of T lymphocytes and the presence of promoter elements 

within immune-related genes that can be regulated by sex hormones (DunnGalvin et al., 

2006; Markle and Fish, 2014; Klein and Flanagan, 2016; Laffont and Guery, 2019). In 

rodent studies, the contribution of estrogen to the regulation of anxiety-like behavior has 

also been investigated, although anxiolytic effects seem to depend on the dose of the 

hormone, behavior tests used, and age of mice (HayGlass et al., 2005; Boivin et al., 2017; 

Borrow and Handa, 2017). While it was outside the scope of our current study, 

identification of mechanistic or molecular factor(s) that protected our female mice from 

manifesting CMA induced anxiety-like behavior may provide potential therapeutic 

targets for anxiety.  
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Sex- and strain-specific variations were also found in the number, type, and levels 

of immune mediators detected in plasma, with male C57BL/6J mice showing the most 

number of analytes that were significantly altered with BLG sensitization, followed by 

male and female BALB/cJ mice (Figure 27A-C). No significant changes in plasma 

mediator levels were detected in female C57BL/6J mice, again underscoring the 

resilience of this group to the sensitization. In C57BL/6J males, increases in Th cells 

associated cytokines and chemokines were particularly notable. While the C57BL/6 and 

BALB/c strains are typically described to have Th1- and Th2- biased immune responses, 

respectively (Autenrieth et al., 1994; Nishimura et al., 1997; Mills et al., 2000; Watanabe 

et al., 2004), it has been argued that this generalization is based on infection models and 

does not apply to allergy paradigms (HayGlass et al., 2005). Our results also seemed to 

support this argument and did not categorize the responses of the two strains strictly into 

either Th1 or Th2. Instead, significant increases in IL-13 and IL-21 suggested that the 

responses of BLG-sensitized C57BL/6J mice were likely mediated by follicular helper T 

cells (Tfh), which are crucial for the production of IgE and other isotypes via 

differentiation of B cells (Gowthaman et al., 2019; Yao et al., 2020). 

The mediator responses by male C57BL/6J and BALB/cJ mice were clearly 

contrasting, with the former males showing increases in some mediators and the latter 

exhibiting decreases in a distinct set of mediators. In particular, sensitization-associated 

changes in IL-13 were observed in both strains but in opposite directions  

(Figure 27A, B). Although the functional significance of these CMA-induced differential 

changes in the analytes is yet to be determined, the elevation of IL-13 in C57BL/6J males 

likely facilitated the production of BLG-specific IgE. Concurrent increases in IL-10, 
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FGF2, CSF1, and CCL chemokines in C57BL/6J males also suggested that mobilization 

and/or proliferation of immune cells were prompted, triggering complex systemic pro- 

and anti-inflammatory responses in BLG-sensitized mice of this strain. It should be noted 

that some of these cytokines had been reported to be elevated in mouse models with more 

severe allergic reactions. For example, CCL1 and CCL17 were induced in the intestines 

of ovalbumin (OVA)-sensitized mice that developed diarrhea with mast cell infiltration 

(Knight et al., 2007), and high levels of CCL9 (MIP-1γ) was found in OVA-sensitized 

mouse lungs with increased airway resistance and eosinophil infiltrates (Rose et al., 

2010). These results suggested that, despite their lack of overt allergic reactions, BLG-

sensitized C57BL/6J mice elicited similar immune responses to those of other animal 

models of severe allergies, and thus, the absence of typical allergic reactions might not 

necessarily indicate the absence of hypersensitivity to the allergen. Following the same 

line of argument, the changes in the plasma mediators may not be accurate indicators of 

CMA-associated behavioral manifestations. As mentioned above, the cytokine profile of 

BALB/cJ male mice was conflicting with their C57BL/6J counterpart while both groups 

displayed anxiety-like behavior when assessed with the EZM test. In addition, a few of 

the inflammatory mediators were elevated in BALB/cJ female mice after sensitization 

(Figure 27C), but this group did not exhibit behavioral abnormalities, at least with the 

tests we performed.  

It may also be argued that the observed cytokine changes were reflective of 

different stress levels mice might have experienced from the behavior test one day before 

their blood was collected. Indeed, it has been shown that foot-shock stress increases the 

amounts of inflammatory cytokines in mice, including IL-10 and IL-13 (Cheng et al., 
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2015). However, the plasma levels of these cytokines reportedly return to the control 

levels after 24 hrs (Cheng et al., 2015), rendering the possibility that stress was a major 

contributor of the cytokine/chemokine changes less likely. Taken together, testing for the 

altered plasma levels of immune mediators may be more sensitive in detecting the 

development of allergen hypersensitivity than the presence of physical reactions, 

although it may not predict the presence of allergen-induced behavioral abnormality.  

We then postulated that intestinal microbiota would be altered following BLG 

sensitization procedure. Altered microbiota, or dysbiosis, has been reported in individuals 

with food allergy as well as with neuropsychiatric disorders (Tomova et al., 2015; 

Aizawa et al., 2016; Bunyavanich et al., 2016; Mangiola et al., 2016; Cenit et al., 2017; 

Savage et al., 2018). In addition, a growing amount of evidence supports that microbiota 

influences behavior and mood (Tomova et al., 2015; Aizawa et al., 2016; Mangiola et al., 

2016). Indeed, we found clear differences in beta diversity at the phylum level between 

sham and BLG-sensitized mice in all groups, although the most notable change with BLG 

sensitization was a marked decrease in Verrucomicrobia (Figure 28 and 29). While the 

number of observed species remained relatively unchanged (Figure 28A), Simpson index 

for C57BL/6J male mice indicated decreased biodiversity, supporting previous findings 

in humans that changes in alpha diversity was associated with milk allergy (Berni Canani 

et al., 2018; Shen et al., 2019). We further demonstrated that A. muciniphila was 

significantly lowered in the BLG-sensitized male C57BL/6J mice while its amount was 

increased in sham mice during the course of sensitization (Figure 30). This observation 

suggested that the colonization of the bacteria in the intestines was restricted during 

allergy development. A. muciniphila has been reported to be an important commensal 
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inhabitant that protects epithelial barrier integrity by regulating mucus production in the 

host (Reunanen et al., 2015). Furthermore, altered relative abundance of A. muciniphila 

has been found in obesity, diabetes, inflammatory bowel disease as well as neurological 

diseases such as Parkinson’s disease, and autism (Wang et al., 2011; Everard et al., 2013; 

Hill-Burns et al., 2017; Li et al., 2019; Xu et al., 2019). Thus, it is possible that the lack 

of A. muciniphila is associated with anxiety-like behavior and/or other behavioral 

manifestations. Further studies in which the amounts of intestinal A. muciniphila are 

experimentally manipulated prior to behavior testing will confirm this association. Our 

KEGG Pathway analysis further supported that the microbiome changes observed in 

BLG-sensitized male C57BL/6J mice likely influenced neurological functions, including 

those involved in Parkinson’s disease and dopaminergic and serotonergic synapses 

(Figure 31). These pathways consist of many molecular interactions between enzymes, 

receptors, channels, transporters, etc., and therefore it is necessary to validate the 

involvement of specific pathway components that were indeed affected by the 

sensitization-induced dysbiosis. This extrapolated bioinformatics approach, however, 

provides valuable information in narrowing down potential targets for further 

investigation in our future studies.  

Taken together, our results demonstrated some significant sex- and strain-

dependent differences in the symptom presentations of experimentally induced CMA in 

mice, with males of both strains having the propensity to display anxiety-like behavior. 

Other sensitization-associated differential presentations included serum levels of 

allergen-specific IgE/IgG, plasma levels of immune mediators, and changes in microbiota 

compositions. We hereby provide evidence that the manifestations of hypersensitivity to 
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the same allergen are influenced by genetic variables in individuals, and therefore 

diagnosing food allergy by immediate reactions after allergen challenge and 

immunoglobulin levels may exclude a population of individuals with milder or atypical 

responses. In addition, stratification of allergic cohorts with additional diagnostic criteria 

may reduce apparent inconsistencies in human studies.
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Limitations of Work Presented in this Dissertation  

The research presented in this dissertation highlights the causal role of CMA and 

various behavioral observations in a non-anaphylactic mouse model. Limitations of the 

work discussed in these studies are presented as follows. 

These data were generated in selective wild-type backgrounds of the C57BL/6J 

and BALB/cJ strains. These strains, as previously discussed, were chosen due to their 

archetypal nature of Th1 and Th2 immune biases (Autenrieth et al., 1994; Nishimura et 

al., 1997; Mills et al., 2000; Watanabe et al., 2004). Though the use of these inbred 

strains of mice removed the inherent genetic variability that has likely contributed to the 

conflicting results seen in human studies, applying these findings to heterogeneous 

populations is still necessary. However, the consistencies across the two distinct mouse 

backgrounds is a promising preliminary finding that may be further built upon using 

outbred mouse colonies. 

The measurement of allergen-specific IgE in the circulation is that it may not 

precisely reflect the total amount of the IgE produced by an allergic individual, since 

produced IgE becomes rapidly associated with high-affinity FcεRI on immune cells such 

as mast cells and basophils, and free IgE molecules are subjected to rapid degradation 

(Lawrence et al., 2017). Moreover, the serum samples we used in this study were 

prepared from the terminal blood, which was collected after 1 week from the last 

sensitization dose and 1-2 days from the allergen challenge (see Figure 1A). The half-life 

of IgE is estimated to be 2-3 days in humans (Lawrence et al., 2017) and 12 hours in mice 

(Vieira and Rajewsky, 1988), and thus, the amounts of IgE detected in our assay may 

have been an underestimation of actual amounts produced. Another limitation of our 
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current study was that IgG2a was measured as one of the allergen-specific 

immunoglobulins. However, C57BL/6J mice do not produce IgG2a but instead produce 

IgG2c isotype (Jouvin-Marche et al., 1989). For further assessments for allergen-induced 

immunoglobulin levels in this strain, an IgG2c-specific assay should be used.  

Despite evidence of gut barrier breakdown previously alluded to by loss of 

occludin immunoreactivity, we observed no changes in the transcription of the tested 

factors or evidence of gut leakiness to FITC-dextran. The gut is the principal site of insult 

for CMA, so the lack of a robust pathology is concerning; however, altering our approach 

may yield differing results. For example, we collected serum 5 hours after feeding FITC-

dextran, when some protocols have reported results with shorter collections (Woting and 

Blaut, 2018; Bordoni et al., 2019). Therefore, our mice might have cleared the FITC-

dextran before it was quantitated, which could also explain the high levels of variability 

of the FITC signal. 

 In our analysis of the brain, we broadly sectioned it into 4 regions. Despite the 

source of our RNA being from large heterogeneous regions of the brain containing many 

cell types and function regions, we still found differentially expressed genes. More genes 

may have been identified if we took a more directed approach or isolated specific cell 

types. For example, innovations in single-cell sequencing technologies, including Visium 

spatial gene expression, have seen great success and would allow for profiling RNA 

expression and mapping back onto histological sections (Maniatis et al., 2019; Mantri et 

al., 2021). Regardless a large number of regional differentially expressed genes were 

identified. To streamline our analysis, we performed pathway analysis and focused on 

changes of interest.  
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Summary of Conclusions and Future Directions  

The work presented in these studies characterize the systemic response resulting 

from non-anaphylactic CMA sensitized to the milk allergen BLG. BLG allergy within 

our model elicits varied responses depending on genetic background and sex. Universally 

in mice that exhibited anxiety- and depression-like behaviors, BLG-specific IgE was 

elevated. The intestinal impact of BLG allergy impacted gut health, causing dysbiosis. 

Breakdown on normal gut microenvironment likely exacerbated both the peripheral 

immune response and promoting behavioral changes. From the immune system's 

provocation, elevated circulation of various cytokines further promoted immune activity 

and likely acted as peripheral to central signaling molecules. Within the central nervous 

system, transcriptional changes for various signaling and overall health pathways were 

altered. Most interestingly, evidence of the breakdown of tight junctions and cellular 

function of the blood-brain barrier were noted. These findings were validated by 

prominent perivascular astrocyte hypertrophy and build-up of extravascular IgG in the 

midbrain, likely resulting or involved with the increase in TNFα release. 

Future work in this research area will continue fleshing out the molecular 

mechanism taking place within the brain. This will include further investigation of the 

exact role of mast cells, further characterizing the cellular morphology and signaling 

evidence established in this dissertation. We will also explore intervention strategies in 

the form of gut microbiota support with probiotics, mast cell suppressive mechanism, and 

interruption of peripheral to central signaling mechanisms through TNFα, for example.
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SUPPLEMENTAL FIGURES 

 

 
 

Supplemental Figure 1.  An alternative analysis for the post-sensitization serum 
levels of BLG-specific IgE shown in Figure 4B. Serum 
isolated from the terminal blood was used to quantify the 
levels of BLG-specific IgE using ELISA. A group analysis 
including all sample values are shown in Figure 2B. As an 
alternative analysis of the results, outliers within each 
group were identified using GraphPad Prism software 
(ROUT, Q = 1%), and Mann-Whitney test was performed 
excluding the outlier values from the statistical analysis. 
For male groups, statistical significance of **p < 0.01 was 
found between sham and BLG mice (male sham: 0.10 ± 
0.02, n = 7; male BLG: 0.23 ± 0.05, n = 7; one outlier from 
each group was removed from the analysis [sham, 0.40; 
BLG, 2.37]). Statistically significant difference between 
female sham and BLG groups was not found using this 
method of analysis [female sham: 0.10 ± 0.01, n = 8; 
female BLG: 0.17 ± 0.06, n = 6; two outliers removed from 
the analysis of the BLG group [3.58, 2.32].
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Supplemental Figure 2.  Additional representative images of IgG immunoreactivity. 
The OD of IgG quantified extravascular IgG within the 
brain parenchyma (40 μm). Representative midbrain 
sections from sham (A, a', a”) and BLG-sensitized  
(B, b', b”) male mice are shown. Sections of the 
cerebellum (a’, b’) show areas where no difference in 
staining was observed across layers. Capillaries in cross-
section adjacent to the hippocampus (a”, b”) were 
observed to have differential staining along the wall of the 
blood vessel wall. The cerebellum sections (a’, b’) and 
capillary cross-section (a”, b”) images taken with 4X and 
40X objectives, respectively. Scale bars: 1 mm for (A) and 
(B); 50 μm for a'-b”.
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Supplemental Figure 3. Serum levels of BLG-specific immunoglobulin isotypes. 
Terminal blood samples were used to detect BLG-specific 
serum IgE (A), IgG1 (B) and IgG2a (C) using ELISA. 
Optical density values at 450 nm were used to plot the 
graphs after subtracting the background values at 550 nm 
(OD450-550). Sham mice (open bars with open triangles); 
BLG mice (striped bars with filled diamonds); male 
C57BL/6J (blue); male BALB/cJ (red); female C57BL/6J 
(green); female BALB/cJ (orange). Bars indicate group 
average values in OD450-550 ± SEM (two-way ANOVA), 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001,  
n = 10. 
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Supplemental Figure  4.  Time-dependent changes in the parameter measurements in 
the open-field activity monitoring. Overall activities of 
male (S4A) and female (S4B) sham and BLG-sensitized 
mice in an open-field arena were recorded for 10 min, and 
the activity parameters indicated in the y-axes were 
quantified by ANY-maze software. The values were 
graphed in relation to time in minutes (x-axis) during the 
test duration. Sham: open triangles; BLG-sensitized: filled 
diamonds. Values indicate group average ± SEM (t-test), 
*p < 0.05, n = 8-10. 
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Supplemental Figure 5. General locomotor activities recorded during the open-field 
activity monitoring. Total distance traveled and total time 
immobile were computed using ANY-maze software to 
assess potential effects of BLG sensitization on overall 
activities. Sham mice (open bars with open triangles); BLG 
mice (striped bars with filled diamonds); male C57BL/6J 
(blue); male BALB/cJ (red); female C57BL/6J (green) 
female BALB/cJ (orange). Bars indicate group average 
values ± SEM (two-way ANOVA), *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001, n = 8-10. 
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Supplemental Figure 6. Complete cytokine/chemokine array data using Quantibody 
Mouse Cytokine Array 5.
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Supplemental Figure 7. Extended diversity indices. In addition to the observed 
species, Chao1, Shannon, and Simpson indices were used 
to compare the diversity between sex-matched groups.
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Supplemental Figure 8.  Complete KEGG Pathway analysis performed based on the 
sensitization-induced microbiome changes. Tax4Fun2 
reference database was used to identify differential 
activation of pathways based upon changes in microbiome. 
Level 1 pathway classifications with an adjusted  
p-value < 0.05 (t-test with Bonferroni correction) and 
average log2 greater or less than 1 (fold changes greater or 
less than 2) are displayed in a heatmap grouped by level 2 
classification.
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Supplemental Figure 9.  Complete microbiome profiles of all experimental groups. 
Found in Supplementary Data 6. of the following 
publication: https://pubmed.ncbi.nlm.nih.gov/33705867/  

 
 

https://pubmed.ncbi.nlm.nih.gov/33705867/
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Supplemental Video 1. Male Sham mouse carefully walking across the open zone 
of the EZM. Found in Video S1. of the following 
publication: 
https://www.frontiersin.org/articles/10.3389/fncel.2019.003
20/full  

 
Supplemental Video 2. Male BLG mouse briefly surveying the open zone of the 

EZM and returning to the closed zone. Found in Video S2. 
of the following publication: 
https://www.frontiersin.org/articles/10.3389/fncel.2019.003
20/full  

 
 
 
 

 

https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full
https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full
https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full
https://www.frontiersin.org/articles/10.3389/fncel.2019.00320/full
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