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Abstract 

 

Oil reservoirs are divided into three categories: carbonate (fractured), sandstone and 

unconventional reservoirs. Identification and modeling of fractures in fractured reservoirs are so 

important due to geomechanical issues, fluid flood simulation and enhanced oil recovery. 

Image and petrophysical logs are individual tools, run inside oil wells, to achieve physical 

characteristics of reservoirs, e.g. geological rock types, porosity, and permeability. Fractures could 

be distinguished using image logs because of their higher resolution. Image logs are an expensive 

and newly developed tool, so they have run in limited wells, whereas petrophysical logs are usually 

run inside the wells. Lack of image logs makes huge difficulties in fracture detection, as well as 

fracture studies. In the last decade, a few studies were done to distinguish fractured zones in oil 

wells, by applying data mining methods over petrophysical logs. 

The goal of this study was also discrimination of fractured/non-fractured zones by using machine 

learning techniques and petrophysical logs. To do that, interpretation of image logs was utilized to 

label reservoir depth of studied wells as 0 (non-fractured zone) and 1 (fractured zone). We 

developed four classifiers (Deep Learning, Support Vector Machine, Decision Tree, and Random 

Forest) and applied them to petrophysics logs to discriminate fractured/non-fractured zones. 

Ordered Weighted Averaging was the data fusion method that we utilized to integrate outputs of 

classifiers in order to achieve unique and more reliable results. Overall, the frequency of non-

fractured zones is about two times of fractured zones. This leads to an imbalanced condition 

between two classes. Therefore, the aforementioned procedure relied on the balance/imbalance 

data to investigate the influence of creating a balanced situation between classes. 
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Results showed that Random Forest and Support Vector Machines are better classifiers with above 

95 percent accuracy in discrimination of fractured/non-fractured zones. Meanwhile, making a 

balanced situation in the wells by a higher imbalance index helps to distinguish either non-

fractured or fractured zones. Through imbalance data, non-fractured zones (dominant class) could 

be perfectly distinguished, while a significant percentage of fractured zones were also labeled as 

non-fractured ones. 

 

Keywords: Decision Tree, Deep Learning, Oil Reservoir, Ordered Weighted Averaging, Random 

Forest, Support Vector Machine 
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Introduction 

 

 

1.1 Background and Motivation 

Fractures have a significant effect on oil/gas production in fractured reservoirs. More than 60 (oil) 

and 40 (gas) percent of the world’s reserves are held in carbonate rocks [1].  Oil/gas extraction 

from carbonate reservoirs is challenging and significantly depends on the fractures. Hence, 

developing a reliable fracture model in fractured reservoirs is vital and their recovery factor is low 

[2]. Actually, a reliable fracture model could be useful to define a more effective oil production 

strategy, to increase the recovery factor. Economically, a one percent increase in recovery factor 

in giant reservoirs, means millions of barrels more oil production, consequently, trillions of dollars 

more benefits.  

To study the rock fractures, which have a long genesis history, data must be gathered. Fracture 

data could directly or indirectly be gathered. Direct fracture data gathering in exposed rocks in 

tunnels, galleries, and cores is possible. In direct-based, different fracture properties could be 

gathered, e.g. dip, dip direction, continuity, spacing, roughness, filling, filler, and aperture. 

Seismic sections, petrophysical logs (PLs), well tests, mud lost and image logs are well-known 

sources for indirect fracture data gathering 
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. Naturally, fewer fracture properties in indirect-based methods could be gathered. 

Image logs are solely tools for fracture detection in oil wells. Various valuable research studies 

were done for fracture detection using other tools e.g. seismic data, tectonically simulations, well 

tests, and PLs. PLs contain the highest resolution among the aforementioned list and they might 

be the best dataset for fracture detection. In the current study, an algorithm would be presented to 

identify fractured zones from PLs.  

 

1.2 Problem Statement  

Although several approaches were presented for fractured zone detection, not one is reliable except 

image logs.  

Seismic data, well tests, mud lust data, petrophysical well logs and core description were direct 

and indirect procedures that were used for fracture detection [3, 4, 5, 6, 7], each associated with 

serious shortcomings. Low resolution of seismic data, well tests and mud lusts, as well as low core 

recovery, especially in fractured zones and lack of orientation of cores are just examples of 

shortcomings. The technology of image logs has been the ultimate solution [8]. Resolution of 

image logs are in the range of 1 mm, absolutely suitable for fracture detection. The problem is that 

the image log is a technology that was developed during the last four decades; therefore, in all 

wells that were previously drilled, image logs are not available. Meanwhile, image logs are 

expensive, and were not run in the majority of wells. For instance, in 8 wells of studied giant oil 

reservoirs, with the size about 38 mi by 7 mi (about 13 times the size of Grand Forks county), 

image logs were run; while, in more than 450 wells full set petrophysical logs (PLs) were run.  

It should be considered that fracture simulation is an object based modeling procedure and it needs 

more data to achieve a reliable model. Also, fractures are channels for fluid flow, so their models 
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were usually used for fluid flow simulation, which is a dynamic modeling, again associated with 

high errors. Therefore, fracture simulation by using image log data is not recommended.  

In last 15 years, researchers have captured machine learning/data mining techniques to detect 

fractured zones from PLs. Those attempts were rewarding. Fourier and wavelet transform, 

classification and data fusion techniques were mostly used to do that. The approach of the current 

thesis is similar. Two novelties were considered for this research: 1. more powerful classifiers will 

be utilized, and 2. the effect of making a balance between fractured zones and non-fractured ones 

in discrimination between those zones will be investigated. 

 

1.3 Purpose of the Thesis 

Applying different signal processing as well as data mining techniques to discriminate 

fractured/non-fractured zones has been an approach that was widely used during the last decade. 

Overall, the results have been acceptable. Integration of signal processing, classification, and data 

fusion with generalized accuracy of about 72 percent [9, 10] have been the best results that were 

reported. The impact of signal processing over discrimination of fractured/non-fractured zones 

were insignificant [9, 10]. Therefore, it is ignored, and classification/data fusion were data mining 

techniques utilized in current research. Decision tree, random forest, support vector machine, and 

deep learning are the classifiers that were used for the first time for this purpose. Ordered weighted 

averaging, which has been previously utilized, is the selected data fusion method. 

Usually, the frequency of non-fractured zones is more than fractured ones [3]; therefore, the 

database for the two classes are imbalanced. In the current study, the impact of unbalancing, which 

was ignored in previous studies, is investigated. To do that, the whole of the procedure was 
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repeated over balanced data, and a comparison between results achieved from balance/imbalance 

data are reported.  

 

1.4 Organization of the Thesis 

In chapter 1 a brief introduction and general overview about the topic of the thesis are presented.  

Chapter 2 contains a brief introduction to fractures as well as Asmari formation and its importance 

as the main reservoir of oil production.  Host rock of building dams in Iran is also discussed in 

chapter 2. Asmari is a carbonate-fractured rock; hence, the factors control the fracture’s genesis 

and their behavior is described too. Various research studies were conducted concerning fractures 

in Asmari, some of which are briefly reviewed. A review over fractured reservoirs is the title of 

the main section of chapter 2: a literature review. This chapter helped to know the history as well 

as state of the art research studies that were conducted for fractured zone detection. The approach 

and novelties of the thesis are backed up by the literature review, and in fact are a modification 

over the most successful procedures. Materials and methodology are reported in chapter 3. A 

description of image logs and then a brief introduction about the studied reservoir, location of the 

wells over UGC map, and a list of available PLs, are initially presented in chapter 3. Five 

preprocesses have been done over PLs, which are described. Interpretations of image logs were 

used to develop a log, called a fracture log. The procedure and a sample of achieved log are 

presented in chapter 3. Knowledge about the effect of fractured zones over PLs helps to log 

selection for classification procedures, which is the title of the next section in chapter 3. Following 

the proposed procedure for fractured zone detection, four classifiers and a data fusion method are 

used. Utilized classifiers are: decision tree, random forest, support vector machine, and deep 

learning, which are described in chapter 3. Ordered weighted averaging, the utilized data fusion 
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method, is the last method, introduced in chapter 3. Results and discussions are presented in 

chapter 4. Statistical studies supported by 1D, 2D, and 3D studies are done to show the importance 

of using more logs for fracture detection, as well as PLs selection. An imbalance index and then a 

selection procedure is defined, to make a database, its fractured/nonfractured zones are balanced. 

All fractured zone detection procedures are done over balanced and imbalanced datasets. It helped 

to investigate the effect of balancing on discrimination between fractured/non-fractured zones. 

Classification of individual wells by using decision tree, random forest, support vector machine, 

and deep learning helped to figure out the accuracy and precision of fractured/non-fractured zone 

discrimination as well as classifier selection for the generalization step. In the generalization step, 

other wells databases are utilized for fractured zone detection in each well. Random forest and 

support vector machine are the selected classifiers used in the second step. Results of 

classifications are integrated by ordered weighted averaging data fusion method, in order to 

achieve a robust, reliable approach for fractured zone detection. Comparisons between results over 

balanced and imbalanced data are presented in each step in chapter 4. A summary of contributions, 

the limitations of current research and the possible future directions and extensions are presented 

in chapter 5. 
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2 
 

A Review of Fractured Reservoirs 

 

 

2.1 Introduction 

About half of world’s reservoirs are carbonate, consequently, they are fractured [11]. Fractures 

have a significant effect over oil well stability and fluid flow in fractured reservoirs, which shows 

the importance of fracture detection and characteristics of its properties. 

Rocks, unlike other materials, are not homogeneous and isotropic; on the contrary, a majority of 

them contain discontinuity. Therefore, rock bulks are in fact a series of stones discriminated by 

discontinuities. 

Mechanically, each weak surface in the rock with low shear strength is called a discontinuity. 

Fractures are a group of discontinuities concluded of fragile failure. Joints and Faults are samples 

of fractures.  

Fractures are planar structures sometimes along with shear displacement and sometimes just rock 

blocks get away from each other. Different factors affect fracturing, consequently, various fracture 

types could be achieved e.g. inductive, shrinkage, regional, or tectonical fractures. 

All kinds of natural rock fractures have a significant effect on the stability of engineering 

structures, water reservoirs, and mineral deposits. They also have a significant effect on fluid flow 

as well as the geomechanical behavior of oil and gas reservoirs. 
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In an overall view, oil and gas reservoirs could be categorized in conventional and unconventional 

reservoirs. Conventional reservoirs could also be classified into sandstone and carbonate 

reservoirs. In Figure 2.1 the locations of mentioned reservoirs in the world are displayed. Also, in 

Figure 2.2 different types of carbonate reservoirs are displayed.  

 

 
 

Figure 2.1 Location of carbonate, siliciclastic and unconventional reservoirs in the world [1]. 

 

 

2.2 Asmari Formation 

The Oligocene–Miocene Asmari Formation is a thick sequence of shallow-water carbonates of the 

Zagros Basin. Asmari was sediment in the Neo-Tethys Sea on the border of the Arabian Plate [12]. 

Its name is selected from Asmari Mountain in the southeast of Masjed Soleyman1. The thickness 

of Asmari differs between 200-1000 m.  

Lithostratigraphic boundaries of the Asmari Formation in studied oil field are marked by shaly 

sediment of Pabdeh Formation at the base and evaporite sediment of the Gachsaran Formation on 

the top [13]. 

 
1 A city in southwest Iran 
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Figure 2.2 Location of different type of carbonate reservoirs in the world [1]. 

 

Tectonically, Asmari carbonate strata deposited retrogradationally shortly after a period of 

intensified late Eocene thrust faulting in the deformational wedge, and an overlying succession of 

upward-coarsening, northeasterly-derived siliciclastic deposits of lower Miocene to Recent age 

which is composed of erosional byproducts of the southwest-vergent Zagros thrust sheets [14]. 

Surprisingly, sandstone makes more than half of the lithological stratigraphy of Asmari formation 

in some of the Iranian oil fields.  

Asmari is the main oil reservoir in more than 40 giant oil fields in Dezful embayment (Figure 2.3).   
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Figure 2.3 Dezful embayment and location of some giant oil fields inside [15]. 

 

High frequency of fracturing in Asmari’s outcrops, high mud lust during drilling inside Asmari, 

pressure relation between wells with even more than 7 miles distance in individual oil fields, and 

finally the existence of high production zones in Asmari reservoirs are indicators that show Asmari 

is fractured [16, 17].  

Asmari is classified into three sections: upper, middle, and lower. Techtronic, stratigraphy and 

petrology studies show that fractures, especially in upper and lower Asmari, are the main 

controlling factors of porosity and permeability. Diagenesis properties, dolomitization, and 

secondary dissolution are other controlling factors of porosity and permeability, especially in 

middle Asmari [14, 16]. 
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2.3 Importance of Asmari Formation 

Asmari in Iran is not only the most important oil reservoir (Figure 2.4.a) but also it is the most 

common host rock of dams (Figure 2.4.b).  

Iran holds more than 361 billion barrels of oil equivalent in proved reserves of oil and gas, which 

positions the country as the top reserve holder in the world. This includes 9.3 percent and 17.2 

percent of global oil and natural gas reserves respectively [18]. 

About 80 percent of Iran’s oil is produced from Asmari2. The point is that the average porosity of 

Asmari is less than 10%, and oil mainly flows from fractures, which originated from tectonic 

tensions.   

 

(a) 

 
2 Reports of Iran’s National Oil Company 
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(b) 

Figure 2.4 (a) Iran’s largest oil fields in which Asmari is the reservoir of the majority of them. (b) 

Seimareh dam was built over Asmari. 

 

2.4 Fracture Controllers 

Faulting and folding (tectonic events), rock type, and thickness (lithological events), and porosity 

(diagenesis event) are the main factors which control the fracture generation. Those are briefly 

explained as follows: 

 

2.4.1 Tectonically Structures 

As aforementioned, tectonically structure (folding and faulting), are important factors in the 

estimation of fracturing. Fracturing potential in the upper layers of a folded formation, because of 

more bending situations, is more than the middle and lower layers (Figure 2.5). Therefore, Murray 

[19], Nemcok and Lisle [20], and McQuilan [21] have used this fact to estimate fracturing potential 

in folded formations. Dip of the surface is equal to the first derivative of the surface to depth or 

altitude, while the second derivative gives surface curvature. 
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Figure 2.5 (a) The strain distribution within a buckle formed in a homogeneous, isotropic layer such as 

a massive, unbedded limestone or sandstone bed. (b) The undeformed layers prior to folding. (c, d) 

High strains are concentrated in the hinge region which is therefore the site of most intense fracture 

formation. From Ramsay [22]. 

 

Faults are the locations of high strains, in which high fracturing potential is anticipated. By 

approaching faults, the possibility of fracturing increases. By increasing the relocation of faults, 

fracture density as well as fracturing buffer zone increases. The fault’s depth and genesis and the 

lithology are other well-known factors over fracture density [19, 20, 21].  

 

2.4.2 Thickness 

The possibility of fracturing increases by decreasing the thickness of layers (Figure 2.6). Some 

exceptions have been observed, which shows the importance of engineering interpretation.  
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(a) 

  

(b) 

 

Figure 2.6 (a) Increasing fracture density in low thickness layers. (b) Fractures in Asmari formation in 

Seimareh dam site. 

 

 

2.4.3 Lithology 

Mechanical resistance varies for different rocks. A certain stress may create failure in some, while 

deformation in other rocks. In the case of failure, fracture density will differ in different rocks. For 

example, fracture density in dolomite is much higher than limestone. 
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2.4.4 Porosity 

Porosity is another dominant factor that controls fracturing. Porosity decreases rock strength and 

increases its tendency for deformation. Consequently, fracture density decreases by increasing the 

porosity. 

 

2.5 Literature Review on Fractures in Asmari 

Unfortunately, despite the importance of fractures in Asmari, limited related studies have been 

done, they will be briefly cited as follows. 

 

2.5.1 Origin of Fractures 

McQuillan’s hypothesis was that fractures originated after sedimentation of Asmari and 

seismology shocks, therefore, he did not believe in tectonically theories [23]. Based on his theory, 

sediment surface morphology and physical characteristics of Asmari are controlling factors of 

orientation of fractures. He has mentioned that future faulting of fractured rocks has been the 

reason of propagation, especially open fractures. Colman-Sadd [24] and Rezaie and Nogole-Sadat 

[25] were famous researchers who have considered that tectonic is the origin of Asmari’s fractures.  

Rezaee and Nogole_Sadat found a positive correlation between layer curvature and fracture 

density in Asmari formation in Rage-Sefid oil field; therefore, they addressed tectonism which has 

made curvature, as the genesis of fractures [25]. Based on their hypothesis, the collision of Arabian 

and Iran’s plates, has controlled the folding of Asmari and consequently its fractures. It should be 

mentioned that for about half of the century, curvature is considered a controlling factor of 

fracturing in Iranian oil fields. Because fractured zones are oil production areas, experts utilize 

curvature to distinguish high production zones [26]. 
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2.5.2 Different Kinds of Fractures in Asmari 

Massive clusters of millimeter spaced cemented thin fractures that have crossed thick bedded 

limestones were observed in Asmari’s outcrops [27]. It is considered a property of Asmari’s 

fractures, because of the high frequency of similar observations; however, some researchers have 

doubted its depth of generalization. Theoretically, occurrence of thin fractures in the fold’s crest 

could be anticipated [27]. 

Integration of the information of cores, well lost, drilling speed diagrams, well tests, FMS3 , and 

similar logs confirm that the fracture's effect on fluid flow in Asmari, are located in crests. Aperture 

and length of those fractures are in the range of millimeter-centimeter and ten-hundred meters 

respectively. 

Some studies that have been conducted in cores of Asmari in different oil fields, have shown an 

occurrence of frequent shear zones. Shear zone is an indicator of fault. Overall, drilling speed 

diagrams and pore pressure are indicators to show shear zones and faults.  Watson could not find 

a strong relationship between those indicators and shear zones/faults in Asmari in Aghajari, Ahvaz, 

and Gachsaran oil fields [28]. He, of course, has reported multiple faults and shear zones in Asmari, 

with a length of more than a hundred meters. Therefore, fracturing and discontinuity in Asmari is 

a complex phenomenon. 

Accumulative fractures are other well-known kinds of discontinuities in outcrops of Asmari. Their 

length differs from tens to hundreds of meters. Occurrence of these kinds of fractures in reservoirs 

is also possible. Their generation time affects their role on fluid flow. They are usually cemented 

if they were generated before oil migration; therefore, they act as a barrier in front of fluid flow. 

In the case of generation after oil migration, they could not be cemented, and could be a high 

 
3 Formation MicroScanner Images (FMS) 
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permeability zone in the reservoir. Some researchers have considered these kinds of fractures the 

main reason for hydraulic connection between Asmari and Bangestan4. 

Studies of cores and image logs show that the majority of discontinuities in Asmari are 

perpendicular to the layer’s surface. This data also shows that open fractures parallel to the layer’s 

surface in Asmari are rare. 

It could be concluded that Asmari’s fractures are in the following groups: thin fractures, 

accumulated fractures, feeder fractures, and shear zones. Also, the majority of fractures in Asmari 

are perpendicular to the surface of layers. 

 

2.5.3 Relative Time of Fracturing in Asmari 

Both open and cemented closed fractures were observed in Asmari. The time of generation of open 

fractures helps to distinguish that fractures were created before or after oil migration. Also, it helps 

to know when fractures were cemented. 

McQuillan [29] believed that a wide variety in the generation of Asmari’s fractures as well as the 

lack of relation between fracture density and folding, confirms that fractures were generated before 

the main phase of folding in Miocene. McCord & Associates [30] found that open fractures are 

located above the oil-water contact, and all fractures located lower than that contact were 

cemented. This is while oil migration from Bangestan to Asmari is evidence that shows that 

fractures were open before the migration. Halsey & Lapare (1978) [27] also believed that open 

fractures were generated after oil migration. Halsey & Corrigan [27] and Sepehr and Cosgrove 

[31] have interpreted fracture generation in two phases: first, the time compressional stresses were 

activated and consequently folding was commenced. Based on their theory, conjunction fractures 

 
4 Bangestan is another well-known reservoir in Iran, which is deeper than Asmari. Gurpi-Pabdeh, which is the source 

for Asmari and cap for Bangestan, is the Shale formation between those two reservoirs.  
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were generated in this phase. Phase two was commenced when curvature of folding caused tensile 

forces in upper Asmari, which created open fractures in the fold’s crest. The fact is that their theory 

is compatible with the behavior of fractures in the upper, middle, and lower Asmari, in the majority 

of oil fields. It could be mentioned that in some of the oil fields, e.g. Khami, the behavior of 

fractures differs from their theory.  

A group of researchers have focused on the geological history of the Arabian platform and its 

effect on North-South linear trend of fractures in Asmari [21, 24, 29, 32, 33, 34, 35, 36]. Some of 

which believe that a portion of fractures was generated because of the application of the host rock’s 

faults. They reported that those faults were generated at late Proterozoic and early Cambrian, and 

reactivated in Triassic and late Cretaceous.  

Gholipour [27] believed that anticline oil trap was generated before oil migration. Based on their 

theory, fractures were cemented because they initially were generated in a water-saturated 

environment in Miocene. In the second phase, Gholipour has reported that in some sections of 

anticlines fractures were opened; however, because of their extreme roughness, permeability was 

low. He believes that these kinds of fractures are geologically located in the middle of anticlines, 

where oil production of wells is not considerable. The second phase of plate movements happened 

in Pliocene, when anticlines were expanded. Generated fractures in this phase were outspread in 

planges, where fluid flow is high in oil fields. And finally, the third phase of plate tectonics which 

have continued so far, caused laminar fractures with aperture less than 0.1 mm which connect 

porous media by feeding fractures.   

 

2.5.4 Fractures in Different Locations of Anticlines 

The earlier theory was that high frequency zones are located in highly dipped plunges of the 

anticlines. Drilling rejected that theory. In order to develop a reliable model, aerial photography, 
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by scale 1:20000, of Asmari’s outcrops in anticlines were done. That study showed the maximum 

fracture density could be observed in plunges. It also showed that linear discontinuities are highly 

propagated in axes of anticlines. It should be mentioned that those observations are not compatible 

with some of the oil fields. For instance, production in plunges of Masjed Soleiman oil field is 

much less than its other locations. Crichton [27] has investigated the relationship between 

production and the location of the wells and concluded that wells located on a crest have the highest 

production. His main hypothesis was that maximum and minimum fracture density could be 

located in the area with maximum and minimum curvature respectively. Afterward, studies 

showed that his hypothesis cannot be generalized. Twerehnbold & McQuillan prepared UGC map5 

of Asmari formation in Gachsaran and Kuh Khoviz using the data of 26 production wells. They 

investigated the correlation between fracture densities and anticline’s properties, and found that 

the maximum fracture density is in high curvature zones [27]. McQuillan also found that fractures 

are a controlling factor for production in BiBi Hakime Oil field.  

Positive correlation between fracture densities was confirmed by Sangree and his colleagues [37]. 

Sangree [34] and McCord & Associates [30] in individual studies found that fracture spacing 

depends on the curvature of anticline, e.g. higher curvature, lower fracture spacing. 

Smellie was the first researcher who investigated the structure of anticline’s limb (convex and 

concave) and its effect over fracture density. Smellie, Tornhenbold, Eshghi, and McCord et al., in 

individual studies over Bangestan, Aghajari, and Maroun oil fields, confirmed that fracture density 

in convex is significantly higher than concave [27, 30].  

In conclusion, it seems that in Asmari formation in different oil fields, fracture density in plunges, 

hinge zones, axial planes, and convex limbs is higher than other locations. Meanwhile, there is a 

 
5 Underground Contour Map 
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positive relation between the layer’s curvature and fracture density. Finally, fracture density 

increases by approaching faults.   

 

2.5.5 Fractures and Thickness of Layers 

McQuilan [20, 38] has investigated the relationship between thickness of layers and fracture 

densities in Asmari’s outcrops in Asmari, Pabdeh-Gourpi and Pahn mountains. His studies showed 

an inverse logarithmic relationship between those parameters in Asmari’s outcrops; consequently, 

fracture density decreases by increasing the thickness. 

 

2.5.6 Cementing Minerals 

Halsey & Lapare’s studies over cores of BiBi Hakime Oil field have shown that calcite, anhydrite, 

gypsum and dolomite are main fillers of fractures [27]. NISOC6’s recent report also confirms their 

results. 

 

2.5.7 Recent Studies 

The development of dip measuring technology and then image logs, have helped the identification 

of fractures in oil wells [8]. Those logs were run in various wells; however, they could not solve 

the problem of fracture identification in oil wells, because: 1. for the majority of oil wells that were 

drilled before developing the technology of image logs, just petrophysical data are available, and 

2. image logs are expensive, therefore oil companies prefer to run them in limited wells. Therefore, 

researchers, often utilized other databases for fracture identification. Let’s emphasize two main 

reasons that fracture study is important in Asmari: 1. Asmari is a fractured reservoir, so fractures 

 
6 National Iranian South Oil Company 
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play a critical role in fluid flow, and fracture modelling to production optimization is necessary, 

and 2. fractures may cause instability in oil wells, so fracture identification in geomechanical 

studies is important. 

Various projects and research were done for identification and modelling of fractures, some of 

which are inaccessible. Gholipour [39] has published some of the reports and maps that were a 

result of research done by a consortium. Based on those studies, fractures and faults which are 

parallel and perpendicular to anticline’s axes, have the highest frequency and impact in oil 

production. Shaban has investigated the relationship between Asmari anticline curvature and 

fracture density in Gachsaran oil field [40]. He has found that curvature could be used for fracture 

modelling, which of course is not a novel result. It should be mentioned that in professional 

reservoir characterization software, e.g. Petrel or FracaFlow, curvature is used as a main input for 

fracture modelling. Nemati and Pezeshk [32] utilized core data to investigate the effect of 

petrology rock type, porosity and permeability on fracture density. They have found positive 

correlation between fracture density for dolomite and negative correlation with silica and 

anhydrite. They found that calcite, porosity and permeability don’t affect fracture density. 

Wenberg and his colleagues found that layer thickness and texture are two main factors which 

control fracture density in Khoviz anticline [43]. They studied Asmari outcrop in the Asmari 

Mountain and by synthesising the origin of fractures have developed some ideas to generalize 

surface data to depth [44]. 

The relation between Asmari’s anticlines and fracture density and their effect on production was 

the subject of the research of Stephenson et al. [45]. They found that main fracture zones were 

located in anticline’s axes which are also the main fluid flow zone. Ahmad Hadi and associates 

have suggested two different times for fracture generation [43], based on a huge database of 
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Khoviz, Asmari, Solak, Deil, Razi, Sephid and Bangestan anticlines. The first set, before the 

folding of Zagros, concurrent with stress resulted in the collosion of Arabian and Iran’s plates. 

They believed that a decrease in sedimentary surface caused fractures parallel to layering. The 

reactivation of faults in Mio-Pliocene addressed  another factor of fracturing before the main phase 

of folding. Ahmad Hadi and associates considered folding the second reason of fracturing in 

Zagros. 

 

2.5.8 Data Mining and Fracture Detection 

Fracture detection by applying wavelet transform on petrophysical and well logs, has been one of 

the approaches that Nemati [46] and Mohebi et al. [47] utilized. They have addressed high 

frequency bands of petrophysical/well logs as indicators of fractures. Sonic and Gamma Ray were 

the logs that were used in their studies. Sahimi and Hashemi also applied wavelet transform over 

porosity log and addressed fractures by high frequency bands [44]. They have verified their 

proposed algorithm by a high variability of permeability log.  Afterward, other researchers 

confirmed that their approach is not general and in an optimistic view it can just discriminate 10 

percent of fractured zones from non-fractured ones [45]. 

Hsu and associates utilized sonic waves for the identification of open fracture, as well as finding 

their dip and hydraulic conductivity [48]. They have found that the intensity of decreasing the 

energy of low frequency band of Stoneley waves is a useful indicator.. It should be mentioned that 

they have confessed to the uncertainties of interpretation. Flavio and Gregor [49] proposed a 

composite well log, called velocity deviation log, to estimate different reservoir properties, and 

fracture identification as well. They estimated a sonic log by using a density log, and then 

calculated their proposed log by subtraction of estimated sonic log from common sonic log. The 

proposed log could be negative, zero or positive. Based on their study, wash out, fracture or high 
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gas content, are the reasons for negative values. By filtering wash out and gas content, which could 

be detected using other logs, fractured zones could be detected.    

Daiguji et al., decomposed seismic data to fault cognition [50]. Later, it confirmed that their 

approach works; however, the problem is that its resolution is not suitable for fractured zone 

detection. Behrens et al., integrated seismic data for fracture detection, which was associated with 

high uncertainties [51]. Cores and PLs were utilized for discrimination of natural fractures from 

drilling induced ones during interpretation of image logs [52]. Martinez-Torres utilized fuzzy logic 

to integrate caliper, gamma ray, sonic, self-potential and resistivity logs to make a composite 

fracture log [4]. The lack of image log for verification of the proposed approach, is his research’s 

shortcoming. Tran’s dissertation was about characterization and modeling of naturally fractured 

reservoirs, but he has also tried to identify the fractures as a data source [53]. He also integrated 

different logs together, and then classified achieved log to discriminate fractured zones from non-

fractured ones. Again, lack of an image log, is the reason that he could not confirm the validity of 

the proposed approach.  

Dutta et al., proposed a new approach for the identification of open fractured zones [5]. They 

synthesized shear waves to identify fractured zones, and utilized image logs for verification of the 

results. Their approach has been especially acceptable for fault detection. Ozkaya and Siyabi tried 

to identify the open high-density fractured zones using dynamic properties of well [54]. They have 

ranked the parameters for fracture detection by factor analysis, and found that mud loss is the best. 

Yan and associates [55] proposed a fracture cased porosity modeling procedure. They created a 

synthetic image log by integrating PLs. They have found that the procedure is not only useful for 

fracture detection, but also for fracture properties estimation. It seems this procedure is straight-

forward, and might be developed in the future. 
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Tokhmechi et al, decomposed the water saturation data by wavelets and showed that the majority 

of information of the original log is hidden at low frequency bands. They utilized gamma ray to 

filter zones for more reliable fractured zone detection. Approximated section of water saturation 

of filtered zones helped them to achieve accuracy of about 70% in discrimination of fractured 

zones [56]. They, in another study, applied Parzen and Bayesian classifiers to raw, de-noised and 

various frequency bands of logs to fractured zone detection [9]. They have confirmed that low-

frequency bands of de-noised logs are the best data for their studies. They utilized OWA (ordered 

weighted averaging) to fuse the results obtained from different train wells and classifiers as well. 

The generalization of their approach was confirmed with an average accuracy of about 72%. Their 

third study was focused on fracture density estimation [57]. They utilized wavelet and Fourier 

transform to calculate energy of the PLs in the fractured zones. Linear and non-linear regressions 

were fitted between energy of logs and fracture densities. Results  showed that there is strong 

correlation between the energy of caliper, sonic (DT), density (RHOB) and lithology (PEF) logs 

with fracture density in each well. 

Jafari et al., proposed an adaptive neuro-fuzzy inference system for fracture density estimation 

from PLs. They found a good statistical correlation between fracture density and well log data 

including sonic, deep resistivity, neutron porosity and bulk density, and achieved correlation 

coefficient of 98% between the measured and neuro-fuzzy estimated fracture density [58]. 

Mazaheri et al. developed Fracture Measure (FM), as a novel fractured zone detection criterion 

[59]. They defined FM as a parameter calculated by aperture, fracture type, azimuth and apparent 

distance. Artificial Neural Network was used to estimate FM and find the relation between FM 

and conventional logs, which resulted in satisfactory results with a generalized correct 

classification rate (CCR) equal to 80% [60]. Afterwards, in another study, they optimized cell size 
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in order to more effectively utilize FM to recognize fractured zones [59]. They applied different 

data mining techniques to do that, and fused the results with the Sugeno integral method. 

Comparison between the results confirmed that 30 cm is the optimum cell size [59]. 

Aghli et al., tried to find a quick generalized method for identification of fractured zones using 

PLs, and then used the Velocity Deviation Log (VDL) to identify fracture aperture opening and 

their effects on porosity and permeability. They found that the differentiation method could be 

easily used to recognize fractured zones in high fracture density zones by PLs [61].  

Zarehparvar Ghoochaninejad et al., estimated hydraulic aperture of detected fractures using well 

log responses using a teaching–learning-based optimization algorithm (TLBO), which trained an 

initial Sugeno fuzzy inference system [62]. No matter how big the aperture size, they have proven 

that estimations are reliable in both conductive and resistive mud environments. 

Mazhari and associates proposed a generalized case-based reasoning (CBR) method for fractured 

zone detection via PLs [10]. To such aim, they used a set of train wells to beget a database 

composed of both petrophysical data and the image logs. They conducted a learning automata-

based algorithm to find the optimal similarity relation between PLs and manual interpretation of 

the borehole image logs. Their developed model was successfully tested on the Asmari reservoir 

through several oil wells and achieved a general CCR of about 70%. 

The discrimination of lithofacies in order to optimize fractured zone detection using PLs was 

another approach to maximize the accuracy [63]. Mentioned chained activities shows the 

importance of using data mining methods to discriminate fractured zones from non-fractured ones, 

which is also the approach of current research. 

Olivia et al., developed a fast region-based Convolutional Neural Network (fast-RCNN) for 

automatically interpreting acoustic image logs to identify fractures and break outs. They achieved 
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around 81% accuracy in fracture detection which is satisfactory [64]. However, it should be 

mentioned that they just automatically interpreted image logs instead of manual interpretation. 

Therefore, their aim was not developing a method for discrimination of fractured zones by using 

PLs. 

 

2.6 Conclusion and Thesis’ Approach  

Fractures have a main role in fluid flow and oil production; therefore, in fractured reservoirs, e.g. 

Asmari, they might be identified and modelled. Image logs (ILs), with a resolution of about 10 

mm, are well-known tools for fracture identification, but are usually not available. Seismic 

sections, well test, mud lost, petrophysical logs (PLs), and core description that have been used for 

fracture identification [65, 66], were associated with serious shortcomings. Seismic sections have 

low resolution (10 meter even less), and could be used just for detection of faults or thick fractured 

zones. The resolution of well tests and mud lost is also low, meanwhile well tests are rarely 

available. Cores are usually unavailable, or not-oriented, therefore their interpretation suffers from 

various shortcomings. PLs are usually available, and their resolution is about 15 cm.  

Recent research was focused on identification of fractures using PLs. Researchers have selected 

the wells, both PLs and ILs were run inside, in which fractured zones are known by interpretation 

of ILs. They have applied data mining/machine learning techniques to find the relationship 

between fractured/non-fractured zones and PLs. In abstract, a two class problem must solved. 

Based on my literature review, Parzen, Bayesian, and Cased-Based Reasoning were classifiers that 

were used for fracture zone detection.  

In the current thesis, two modifications on previous approaches will be done. First: two classes are 

not balanced. Overall, non-fracture zones are more than 70% of the reservoir. The effect of 
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balancing between two classes on discrimination will be investigated. Second: other powerful 

classifiers are available, and they might help to better discriminate fracture zones from non-

fracture ones. Random forest and deep learning are selected classifiers for this study. Outputs will 

be fused to achieve more accurate, reliable and general results, which in previous studies were 

used. 

Methods will be applied on eight oil wells of a huge fractured reservoir.  Their PLs and ILs are 

available. 
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3 
 

Materials and Methodologies 

 

 

3.1 Introduction 

In the current chapter, image logs, PLs, and the effect of fractures over PLs will be introduced. 

Afterward, studied reservoir and database will be addressed. Preprocessing of the database is the 

title of the next section. Finally, the results of the studies, which is in fact the core of the thesis, 

will be presented. 

 

3.2 Image Logs 

Image logs image the wall of the wells by using electrical resistance or travel time of ultrasonic 

waves. Density based image logs were also recently developed. Bore Hole Tele Viewer (BHTV), 

are supplementary image logs, which have 360 degree rotation capability and take images of the 

wall of bore hole.  

Electrical image logs record the micro resistance or micro conductivity of the walls [3, 67, 68, 69, 

70]. This kind of image logs, which were called OBMI7 or FMI8, contain two, four or six pads 

with at least 16 electrodes laid over each pad (Figure 3.1). Therefore, they probe around the well 

 
7 Oil Based MicroImager 
8 Formation MicroImager 
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by resolution in the range of 2.5 millimeter. Their coverage also depends on the number of pads. 

For instance four pads cover 40% of the walls around the well (Figure 3.1). OBMI could record 

resistivity of less than 1 to more than 10000 ohm meter. The mentioned features help them to 

record slight variabilities, e.g. fractures. 

 
 

Figure 3.1 Four pads Oil Based MicroImager  

 

Image logs that were used could be run in water based conductive muds, or oil based 

nonconductive ones. FMS9, FMI, ARI10, EMI11, and STAR12 are examples of image logs that could 

be run in water based muds, were designed by different companies. OBMI and EI13 are examples 

of those that could be run in nonconductive muds.  

Overall, the resolution of image logs that could be run in nonconductive muds, are less than other 

classes. Also, ultrasonic based image logs are better than resistivity based, not only for fracture 

detection, but also for aperture calculation. The reason is that ultrasonic based image logs are not 

sensitive to the mud kind, and their horizontal resolution is so much higher than resistivity based. 

 
9 Formation Micro Scanner 
10 Azimuthal Resistivity Imager 
11 Electro Micro Imager 
12 S Tool A Resistivity 
13 Earth Imager 
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UBI14, CBIL15, and CAST16 are examples of ultrasonic based tools that were frequently run for 

fracture detection [3, 71]. 

Some of the properties of image logs are abstracted in Table 3.1. 

 

Table 3.1 Some of the properties of image logs. 

Imaging 

Method 
Mud Kind 

Tools’ 

Name 

Resolution Coverage 

Percent of 

the Wall 

Number 

of Pads 

Number of 

Electrodes 

in Each Pad 

Logging 

Speed 

(m/hour) 

Depth of 

Penetration of 

Electricity 

(mm) 
Horizontal 

(mm) 

Vertica

l (mm) 

Electricity 

Conductive 

FMS-4 7.5 5 40 4 16 500 15-50 

FMI 5 5 80 8 24 565 15-50 

ARI 30 degree 200 100 --- 12 1125 9 

EMI 5 5 80 6 25 584 750 

STAR 5 7.5 65 6 24 --- --- 

Nonconductive 
OBMI 30 30 32 4 10 1125 9 
Earth 

Imager 
--- --- --- 6 10 --- --- 

Ultrasonic 
Conductive/No

nconductive 

UBI 10 10 100 --- --- 135 --- 

CBIL --- --- 100 --- --- --- --- 

CAST 1.8 degree 75 100 --- --- 360 --- 

Borehole 

Imaging 

Conductive/No

nconductive 
BHTV 90 degree 11 

10 

percent 
--- --- --- --- 

 

3.3 Database  

The thesis database is related to one of the world’s giant carbonate fractured reservoirs. 

Exploration of the studied field started in 1923, and the first oil well was drilled in 1931. Asmari, 

which is a fractured carbonate rock, is the formation of the reservoir. In the studied reservoir, the 

majority of oil is reserved in the rock’s matrix, while fractures are the effective network for oil 

flow. More than 450 oil wells were drilled so far. Full set PLs were run inside almost all of the 

wells, while image logs were run in just eight of them. Therefore, developing a procedure to find 

the relationship between fractured zones and PLs in the wells containing image logs, and running 

it to find fractured zones in the wells that lack image logs, will help to increase the information 

 
14 Ultrasonic Borehole Imager 
15 Acoustic Borehole Image Log 
16 Acoustic Sonic Tool 
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about fractures by about 50 times.  Obviously, it will help to achieve more reliable fracture models, 

geomechanical models and fluid flow simulation as well. 

Petrophysical and image logs of eight wells were used in the current thesis. They are located over 

semi UGC17 map of studied reservoir (Figure 3.2). 

 
 

Figure 3.2 Semi UGC map and location of studied wells. 

 

In Table 3.2 a list of PLs that were run inside eight studied wells are reported. Overall, 29 raw and 

interpreted logs were available in the studied wells. For instance, density (RHOB), sonic (DT) and 

photoelectric factor (PEF) are examples of raw and dolomite, porosity and summation of gamma 

ray (SGR) are examples of interpreted logs (Table 3.2). 16 out of 29 logs were selected for more 

studies. In Table 3.3, availability of selected logs in the eight studied wells are listed. Image logs 

were also run in studied wells. Interpreted image logs have been the source of discrimination 

between fractured zones and non-fractured ones.  

 

Table 3.2 Discrimination of available PLs to raw and interpreted ones. 

Kind of log Logs 

Raw 
Caliper, Gamma Ray (Potassium, Thorium, Uranium, GR), Resistivity (MSFL, LLS, SFL, ILM, ILD, LLD, 

DFL, RXO, RT), Sonic (DT), Density (RHOB, PEF), Neutron (NPHI) 

Interpreted 
Lithology (Limestone, Dolomite, Sandstone, Shale, Anhydrite), Gamma Ray (SGR, CGR), Porosity and 

Saturation (POR, PHI, TOTAL, SEC, 2ASW ×PHIO, SXO, SW) 

 

 
17 Underground Contour map 
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Table 3.3 Availability of PLs in studied wells 

Well 
1 2 3 4 5 6 7 8 

Well Log 

Caliper * * * * * * * * 

Geological 

Rock 

Type 

Limestone *    * * * * 
Dolomite *   * *  * * 
Sandstone    * * * * * 

Shale     *  * * 
Anhydrite *   * *  * * 

Gamma 

Ray 

Potassium * * *  *   * 
Thorium * * *  *   * 
Uranium * * *  *   * 

CGR * * * * * * * * 
GR *   *     

SGR * * *  * * * * 

Resistivity 

MSFL    *     

LLS(SFL)    *    * 
ILM  *    * * * 

ILD )LLD) * * * * * * * * 
DFL      *   

RXO    * *  * * 
RT *   * * * *  

Sonic DT * * * * * * * * 

Density 
RHOB * * * * * * * * 

PEF * * * * * * * * 
Neutron NPHI * * *  * * * * 

Porosity 

and 

Saturation 

Porosity 

(PHI) 

* 
  

* * * 
  

Total     * *   

SEC    * * *   

2ASW*PHIO    *  * * * 
SXO    *   * * 
SW *   *  * * * 

* means available 

As can be seen in Table 3.3, some of the logs are not available in different wells. For instance, 

geological rock type logs, e.g. dolomite, shale or limestone are not available in about half of the 

wells. Raw PLs containing caliper, cumulative gamma ray (CGR), SGR, RHOB, DT, PEF, and 

neutron porosity (NPHI), are available in about all of the wells. Water saturation (SW) and Porosity 

(effective “PORE” and total “PORT”) logs are also available in the majority of the wells. Based 

on the literature, they are also useful in fractured zone detection; therefore, it will be investigated 

how useful they are in this study. Resistivity logs containing microspherically focused log (MSFL), 
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shallow laterolog (LLS), spherically focused log (SFL), induction deep resistivity (ILM), induction 

log (ILD), deep laterolog (LLD), focused resistivity log (DFL), knowledge of resistivity of the 

invaded zone (RXO), resistivity (RT) are not available in a majority of the wells; therefore, they 

will not be used in the current study.  

 

3.4 Preprocessing  

Five following amendments have been done over the PLs: 

 

3.4.1 Depth Shifting 

Comparison between spikes in different logs shows limited depth mismatch. Depth shifting was 

done to make depth match between all logs. 

 

3.4.2 Tools Pickup 

Series connection of logging tools helps in decreasing the time and cost of running PLs. This makes 

up for the problem of the lack of data for some of the logs in the bottom of the wells, which is 

called tools pickup. The known code for these depths is -999.25. In this study, those depths were 

removed.  

 

3.4.3 Tools Malfunction 

Tools malfunction is the lack of data for some PLs in the top of the wells. Similar to tools pickup, 

depths corresponding with these data were removed. 

 

3.4.4 Cycle Skipping 
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Rarely, petrophysical tools recorded a skipping, which were modified by replacing the mean of 

neighbor amounts.  

 

3.4.5 Wash Out 

In the case of washing around the wall of wells, no matter what its reason, the majority of logs will 

record mistake amounts. In the current study, the average of caliper is considered as bit size, and 

the difference between it and caliper is considered a wash out. The zones that differ more than 1.5 

inch were considered wash out zones, and were verified by image logs. To prevent systematic 

errors, recognized zones were removed. 

 

3.5 Making Fracture Log  

As aforementioned, image logs and their interpretation of all eight studied wells are available. In 

Figure 3.3, image log of well 2 in the depth ranges from 2525 to 2550 meter is shown. Because of 

low resolution of PLs (Figure 3.4), it was not anticipated that they would be effective for 

discrimination of individual fractures. Therefore, image logs were used to discriminate fractured 

zones from non-fractured ones. A column, addressed by fracture added to the database, in which 

fractured zones were labeled by one, or else by zero. For example, in Figure 3.3, fractures were 

reported in the following depth, which is labeled by 1: 2528, 2531-2534, and 2537-2550 meters. 

In Table 3.4, an example of PLs of well 2 (depth: 2527-2533 meter) after adding fractured zones 

are displayed.  
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Figure 3.3 Image log of well 2 from the depth 2525 to 2550 meter. 

 

 
 

Figure 3.4 Resolution and leverage of different PLs. 

 



35 

 

Table 3.4 An example of PLs, fracture label was added to them in well 2.  

DEPTH Fracture CALI CGR RHOB SGR DT PEF NPHI POTA URAN THOR 

2527.554 0 9.305 7.609 2.802 44.69 53.47 3.099 5.675 0.0043 4.261 0.5631 

2527.706 0 9.432 6.79 2.809 45.9 53.65 3.103 5.65 0.0045 4.312 0.6458 

2527.859 0 9.471 5.789 2.818 37.4 53.12 3.109 5.398 0.0005 4.163 0.5768 

2528.011 0 9.507 5.071 2.827 34.39 51.99 3.121 4.782 0.0001 4.077 0.2779 

2528.163 0 9.511 5.008 2.836 45.09 50.33 3.141 3.925 0.002 4.929 0.2908 

2528.316 1 9.531 5.775 2.843 41.65 48.59 3.167 3.008 0.0011 4.831 0.047 

2528.468 1 9.59 7.131 2.846 51.25 47.25 3.198 2.249 0.0028 5.245 0.824 

2528.621 1 9.471 8.596 2.846 53.42 46.37 3.234 1.72 0.0032 5.308 1.014 

2528.773 1 9.329 9.678 2.843 55.63 45.97 3.273 1.437 0.0037 5.37 1.249 

2528.925 0 9.281 10.05 2.838 56.83 46.03 3.315 1.326 0.0037 5.392 1.471 

2529.078 0 9.249 9.756 2.834 52.77 46.44 3.356 1.326 0.003 5.177 1.195 

2529.23 0 9.234 8.908 2.831 46.03 47.09 3.387 1.386 0.0041 4.58 0.3413 

2529.383 0 9.293 7.695 2.831 45.33 47.77 3.397 1.486 0.0045 4.456 0.2603 

2529.535 0 9.234 6.426 2.831 38.33 48.3 3.38 1.612 0.0038 3.996 0.2448 

2529.688 0 9.186 5.329 2.83 36.43 48.57 3.336 1.776 0.0035 3.904 0.3947 

2529.84 0 9.198 4.55 2.826 38.59 48.6 3.272 1.954 0.0041 3.967 0.2406 

2529.992 0 9.194 4.065 2.821 29.17 48.64 3.202 2.147 0.0004 3.66 0.0487 

2530.145 0 9.202 3.909 2.816 35.28 48.84 3.145 2.328 0.0008 3.696 0.864 

2530.297 0 9.174 3.927 2.813 36.02 49.26 3.121 2.497 0.0007 3.709 1.035 

2530.45 0 9.15 4.044 2.816 33.72 49.78 3.14 2.619 0.0001 3.653 0.8623 

2530.602 0 9.139 4.154 2.823 33.23 50.21 3.197 2.68 0.0001 3.638 0.7688 

2530.754 0 9.123 4.528 2.832 34.41 50.46 3.275 2.661 0.0005 3.658 0.8446 

2530.907 0 9.139 5.142 2.842 32.84 50.56 3.355 2.598 0.0007 3.559 0.5838 

2531.059 0 9.139 6.265 2.85 35.4 50.63 3.418 2.51 0.0016 3.598 0.748 

2531.211 0 9.131 7.768 2.854 32.62 50.71 3.453 2.431 0.0013 3.455 0.465 

2531.364 1 9.15 9.374 2.856 43.37 50.75 3.458 2.354 0.0032 3.83 1.516 

2531.516 1 9.139 10.7 2.856 43.12 50.69 3.44 2.264 0.0034 3.772 1.482 

2531.669 1 9.15 11.59 2.855 45.5 50.47 3.411 2.135 0.0039 3.855 1.71 

2531.821 1 9.154 11.94 2.854 44.13 50.17 3.383 1.979 0.0035 3.773 1.699 

2531.973 1 9.162 11.8 2.85 40.31 49.83 3.36 1.836 0.0026 3.607 1.488 

2532.126 1 9.15 11.28 2.843 39.62 49.54 3.338 1.76 0.0025 3.56 1.438 

2532.278 1 9.139 10.72 2.833 41.91 49.45 3.312 1.772 0.0033 3.624 1.528 

2532.431 1 9.139 10.24 2.822 40.62 49.58 3.278 1.868 0.0034 3.552 1.33 

2532.583 1 9.139 10.03 2.81 33.51 49.96 3.231 2 0.0023 3.193 0.7956 

2532.735 1 9.139 10.21 2.793 33.94 50.72 3.167 2.144 0.0027 3.196 0.7417 

2532.888 1 9.139 10.73 2.768 42.09 51.97 3.086 2.427 0.0042 3.769 0.9276 

2533.04 1 9.15 11.48 2.734 49.37 53.73 2.993 3.026 0.0064 4.644 0.0603 

2533.193 1 9.162 12.13 2.694 52.97 55.91 2.907 4.194 0.0071 4.801 0.3093 

2533.345 1 9.147 12.31 2.66 53.78 57.83 2.846 5.945 0.0073 4.862 0.3046 

2533.497 1 9.257 11.9 2.643 62.21 56.84 2.825 8.049 0.0057 5.968 0.7976 
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3.6 The Effect of Fractured Zones on Petrophysical Logs  

In the following, the effect of fractured zones over PLs are briefly explained: 

Caliper: 

Caliper tool reads the diameters of borehole very precisely when in fractured rock edge chipped 

away while drilling. Also, sometimes because of mud accumulation in open fractures the resulting 

caliper log is even less than bit size. 

Gamma Ray (GR): 

In Table 3.5, natural radioactivity of different rock types is reported. GR is natural radioactivity 

that comes from Uranium, Thorium, and Potassium that have accumulated in fractures. In the study 

wells, GR shows a sudden increase with any pick of Uranium. This is common in all the study 

wells. 

Table 3.5 Natural radioactivity in different rock types [3] 

Rock Type API 

Limestone 5-10 

Dolomite 10-20 

Sandstone 10-30 

Siltstone 30-80 

Shale 80-140 

Uranium: 

Uranium can dissolve in water and deposit in fractures and causes high pick in its log.  

Thorium: 

Claystone (shale) contains Thorium. Shale has plasticity properties and it is contrary to the 

properties of fractured rock. As a result, it is anticipated that Thorium increases in non-fractured 

zones.   

Potassium: 

Potassium is found in Feldspar and clay minerals. Because of the lake of Feldspar in the study 

formation, Potassium is due to clay formation. As Clay has plasticity, it contains fewer fractures. 

It can be inferred that an increase in Potassium is related to non-fractured zones.  
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Sonic (DT): 

The sonic log is based on wave arrival time. This time depends on P wave velocity that passes 

through lithology, porosity, and fluids. If the wave path passes a fracture zone, the time will 

increase because P wave velocity is slower in porous and fluids rather than in solids. 

Resistivity (RT): 

By trapping brine in fractures, resistivity decreases. It means the non-fractured zones have a high 

RT. 

Photoelectric Factor (PEF): 

Fractured zones in some of the study wells indicate high PEF because of the tarp of water. It is 

because elements of connate water have a higher atomic number than rocks. 

Density (RHOB): 

Usually, because of the low density in the fractured zone toward rocks, RHOB is lower in the 

fractured area. 

Neutron Porosity (NPHI): 

NPHI would increase if a fracture zone filled with fluid or Hydrogen content. 

Geological Rock Types: 

Dolomite and limestone are brittle, with elastic behavior, capable of fracturing. Shale and 

anhydrite are ductile, capable of plastic behavior. 

Water Saturation (SW): 

There are some reasons water saturation could be affected by fractures: 

• In water wet reservoirs, water content increases by increasing the contact surface between 

rock and fluid. Rocks of the current reservoir are water wet; therefore, SW might be an 

indicator for open fractures. 
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• In the case of using water-based muds (similar to the studied reservoir), a portion of water 

infiltrates to the open fractures and is replaced by the oil. Studies have shown that 

maximum replacement requires two days’ time [72]. Well service companies, usually run 

the petrophysical tools with more than a two day delay. Consequently, higher water 

saturation is anticipated in open fractured zones. 

• Water is usually located in upper parts of the reservoir. Fracture density in the upper Asmari 

is more than the middle and lower Asmari. Therefore, water saturation in fractured zones 

might be high, and an indicator for fractures. It should be mentioned that sometimes water 

saturation is high because of high shale content. Shale or CGR are the logs that could help 

to filter these zones.  

 

3.7 Proposed Procedure for Fractured Zone Detection 

Geological rock types, oil or water saturation, and porosity are the common properties that were 

captured from petrophysical well logs. In other words, PLs are not usually affected by fractures. 

For example, by increasing the clay content, resistivity decreases, and gamma ray increases, while 

fracture does not mainly affect those properties. Due to lack of a significant effect of fractures on 

PLs, researchers proposed data mining procedures for fractured zone detection from PLs. In the 

current study a two-step machine is designed to do that:  

1. Designing a classifier in order to discriminate fractured zones from non-fractured ones by 

using PLs. Decision tree, random forest, support vector machine and deep learning, are 

classifiers that were used. It should be mentioned that those classifiers were not used in 

previous similar studies. 

Those classifiers were applied over PLs which are not balanced, and balanced PLs.  
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2. Ordered weighted averaging data fusion were applied on the outputs of classifiers in order 

to integrate results to achieve a more reliable-general discrimination between fractured 

zones and non-fractured ones. 

Mentioned methods are described as follows. 

 

3.8 Decision Tree 

Decision Trees are like an upside-down tree that can perform both classification and regression 

tasks. The differences between Decision Trees and other classical machine learning models are 

that in Decision Trees users don’t need to perform any sort of data preprocessing such as handling 

the missing values and outliers and addressing the multicollinearity. Also, Decision Trees can 

handle nonlinear data and make a decision while the classical linear model couldn't. 

Overall, construction of Decision Trees is like a tree that has a root node and several nodes named 

internal nodes or decision nodes. Internal nodes include a series of questions related to the data in 

order to reach a leaf node or terminal nodes that are decision nodes. 

There are several steps to reach a final decision in leafs nodes: 

Step1: Split data into multiple subsets according to the rule associated with the variable, in the root 

node. 

Step 2: Split data again in internal nodes or decision nodes recursively according to the best 

decision to identify the variables and the rule associated with the variable. 

Step 3: Repeat step 2 on the sub-nodes until reaching a stopping condition. 

Step 4: Leaf nodes are the final decisions based on the majority class label for classification goals 

or consider the average of the target variables which presents a regression task. 
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Uusually, the tree-building algorithm is the same as mentioned above; however, there are some 

different tree-building algorithms like CART, CHAID, ID3, C4.4, C5.0, etc. In each of them, the 

criteria that are used for decision making might be different. For example, in the CART algorithm 

by Gini Index impurity selecting the best feature is present. Also in the ID3 algorithm, the 

information gains method, and for C4.5 algorithm, the Gain Ratio method is assessing the best 

data selection for the next nodes [73]. 

For the response to the question about how the best features to effectively split each node could be 

found, first the meaning of the homogeneity should be clarified. Homogeneity in a node means 

that the class label associated with the node belongs to a single class. 

The best splitting node in Decision Tree classification refers to obtaining as homogenous as 

possible sub-nodes or child nodes upon splitting a parent node. This means the lower variance in 

sub-nodes is the better splitter in the case of regression. Classification Error, Gini Index, and 

Entropy are exemplar approaches that were proposed to achieve this goal. Since these approaches 

show the impurity of a node, a lower value of them means the higher the homogeneity of the node 

[73]. Let’s look at these approaches in detail: 

• Classification Error 

Classification Error is the majority of probabilities associated with each node while equation 1 is 

correct [73]: 

𝐸 = 1 − max(𝑃𝑖) (1-3) 

 

where Pi is the probability of data point belonging to the ith layer of classification or class label i. 
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• Gini Index 

Gini is an index of the amount of random data points being misclassified. This index varies 

between 0 and 0.5. The lower Gini Index shows the lesser chances of any random data point that 

is misclassified and it helps with better decision making with lower ambiguity [73].  

𝐺 =  ∑ 𝑝𝑖(1 − 𝑝𝑖) = 1 − ∑ 𝑝𝑖
2

𝑘

𝑖=1 

𝑘

𝑖=1

 (2-3) 

In which pi corresponds to the probability of the data point belonging to ith class label and k 

accounts for different class labels. 

• Entropy 

Entropy is an index of the degree of disorder present in data at a node. The range of this index 

changes between 0 or minimum disordering and 1 or maximum disordering rate in the class labels 

of the target variables [73].  

𝐷 =  − ∑ 𝑝𝑖 . log2(𝑝𝑖)

𝑘

𝑖=1

 (3-3) 

 

where pi corresponds to the probability of the data point belonging to ith class label and k accounts 

for different class labels. 

There are some advantages and disadvantages associated to Decision Trees [73, 74]: 

• Advantages of Decision Trees:  

o Decision Trees can be used in both classification and regression problems. 

o Decision Trees are a fast method for defining hyper parameters. 

o A decision tree doesn't need too much data preprocessing such as scaling or outlier 

treatment methods. 
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o A decision tree is not a complex mathematical method, it is easy to understand and 

interpret. 

o It can be used to classify non-linearly separable data 

• Disadvantages of Decision Trees: 

o Decision Trees couldn't present a linear relationship between the predictor variable and 

the target variable. 

o The subset of the numerical variable will be a single prediction value. 

o The inherited problem with Decision trees can lead to overfitting issues. 

 

3.9 Random Forest 

Random forest is a tree-based classifier that could classify with high accuracy, stability, and ease 

of interpretation. It classifies by using means of features or mode of categorical features. Random 

forest, which is a popular classification/regression algorithm in scikit-learn, is combining several 

decision trees that were created by different sets of observations. A final prediction is made by 

averaging the prediction of each tree. This is the benefit of random forest rather than decision tree, 

because it solves overfitting to the training data. This also leads to a higher accuracy in comparison 

with decision tree. Random forest could also be useful in ranking the features. Boruta is a random 

forest based algorithm used for feature selection [73, 74].  

 

3.9.1 How Random Forest Works? 

Four steps of the random forest are as follows [73, 74] (answer Figure 3.5): 

• Select the samples from the dataset, 

• Create a decision tree and predict the results for each selected sample,  

• Vote all predicted results individually, by using the dataset mode factor,  
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• Find the final result, by using majority voting over predicted results. 

 

3.10 Multilayer Perceptron (MLP) or Multi-Layer Neural Networks (MLNN) 

The perceptron is a simple binary classification that comes from how the future looked from the 

perspective of the 1950s. For example, it predicts whether input belongs to a certain category of 

interest or not: fraud or not_fraud, cat or not_cat, etc. [75]. 

A multilayer perception (MLP) is a deep, artificial neural network and is an entrance gate to the 

deep learning world. The structure of MLP consists of an input layer to receive a raw dataset and 

the last layer that is an output layer that makes a final decision. Between these two layers 

(input/output layers), there is an arbitrary number of hidden layers that are the core of the MLP 

and consist of functions and weighting coefficients.  

Multilayer perceptions train on pairs of input and output layers to learn the best model between 

those. Simultaneously, in training model functions, weighting coefficients, and biases are 

optimized in order to minimize the error between result data in the output layer and the test data. 

Backpropagation is used to minimize the error. Error can also be measured in a variety of ways, 

for instance, root mean squared error (RMSE) [75]. 

 

3.10.1 Definition of Perceptron  

A perceptron is a simple binary classification algorithm that divided the dataset into two parts “0” 

and “1”. It is modeled like a unit of the human brain, “the neuron”, to learn and solve complex 

problems. Figure 3.6 shows the function of the brain that depends on activities of neurons (brain 

cells) and synapses (connections) that receive and send electrochemical signals (messages). 



44 

 

 
 

Figure 3.5 Random Forest Classifier 

 

 
 

Figure 3.6 A conceptual procedure of perceptron [76]. 

 



45 

 

A perceptron is a very simple machine learning model. It has some inputs that are a construct of 

weights to signify how important they are, and generate output decisions. By combining several 

perceptron’s, an artificial neural network will be made. A neural network has the ability to solve a 

problem through enough training data and computing power [75].  

 

3.10.2 Multilayer Perceptron 

By stacking several layers in each there are several perceptron’s, a multilayer perceptron will be 

made. Each layer of perceptron analyses the information and sends out the result to the next layer. 

Therefore the input layer, middle layers, or hidden layers, and the final layer or the output layer 

are the base of a multi-layer perceptron, often abbreviated as MLP (Figure 3.7).  

 
 

Figure 3.7 Multi-layer perceptron neural network (MPNN) [78]. 

 

The first assumption is a matrix  ∊ ℝ𝒏×𝒅, as an input dataset by n sample where each has 𝑑 features. 

The second assumption is that MLP has ℎ hidden layers that are 𝛨 ∊ ℝ𝑛×𝑑. The third assumption 

is the hidden layer’s weights 𝑊(1) ∊ ℝ𝑑×ℎ and biases 𝑏(1) ∊  ℝ1×ℎ and the fourth assumption is 

the output layer 𝑊(2) ∊ ℝ𝑑×𝑞 and biases 𝑏(2) ∊  ℝ1×𝑞. Therefore, the outputs 𝑂 ∊ ℝ𝑛×𝑑 of the one 

hidden layer MLP as follows [76]: 
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𝐻 = 𝑋𝑊(1) +  𝑏(1), 
(4-3) 

𝑂 = 𝐻𝑊(2) +  𝑏(2). 

 

A nonlinear activation function 𝜎 to be applied to each hidden node that outputs of activation 

functions are called activations. So, multilayer architecture will be as follows [76]: 

𝐻 = 𝜎(𝑋𝑊(1) +  𝑏(1)), 
(5-3) 

𝑂 = 𝐻𝑊(2) +  𝑏(2). 

 

By stacking hidden layers, the next hidden layer will define one another as follows [76]: 

𝐻(1) = 𝜎1(𝑋𝑊(1) +  𝑏(1)), 
(6-3) 

𝐻(2) = 𝜎2(𝐻(1)𝑊(2) +  𝑏(2)). 

 

The most popular activated functions are the rectified linear unit (ReLU), sigmoid function or 

squashing function, and the tanh (hyperbolic tangent) function.  

 

3.11 Support Vector Machine 

Support vector machines (SVMs) are one of the most powerful and flexible methods in machine 

learning and can be used for both classification and regression; however, it is recommended to be 

utilized as a classifier. Since SVM can handle multiple continuous and categorical variables, it has 

become a popular method. SVM classifies datasets by developing hyperplanes in multidimensional 

space. SVM could iteratively generate best-general hyperplane that contains minimum error. At 

the end of classification by SVM, hyperplanes with maximum margin (MMH) will be achieved to 

discriminate different classes from each other [79, 80] (Figure 3.8). 
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Figure 3.8 Support Vector Machine 

 

The important concepts in Figure 3.8 are: 

• Support vectors: Data points that are nearest to the hyperplane are called support vectors. The 

best separator line will be determined by these data points. 

• Hyperplane: The separator or final decision plane which divides the dataset to the final class 

is the hyperplane. 

• Margin: The distance between two lines that are closest to the support vectors in all of the 

classes are defined as margin. The bigger margin shows a better, more general classifier. 

To find a better classifier by SVM, one should find the maximum marginal hyperplane (MMH). 

Therefore, SVM will generate several hyperplanes iteratively for the best discrimination and this 

method finds the best hyperplane that works correctly. 
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• SVM Kernels  

Kernels in the SVM classifier convert a non-dimensional dataset to the separable space by adding 

more dimensions to it. Briefly, the SVM classifier is implemented with a kernel that transforms 

input data into the higher dimensional space with the best class discrimination.  

The more popular kernels used by SVM are Linear, Polynomial, and Radial Basis Function (RBF) 

Kernels. 

The linear kernel is the sum of the multiplication of each pair of input data and can be defined as 

a dot product between two vectors X and Xi. Its formula is as follows [79]: 

𝐾(𝑥, 𝑥𝑖) = 𝑠𝑢𝑚(𝑥 ∗  𝑥𝑖) (7-3) 

 

The polynomial kernel is defined for nonlinear input space. This kernel is generalized of linear 

format and is suitable for distinguishing curve shape space separation. Following is the formula 

for the polynomial kernel [79]: 

𝑘(𝑥, 𝑥𝑖) = 1 + 𝑠𝑢𝑚(𝑥 ∗  𝑥𝑖)
𝑑 (8-3) 

 

where d is the degree of the polynomial, which could be calculated manually in the learning 

algorithm. 

The RBF kernel is a kind of exponential kernel that is common in SVM classification and maps 

input space in definite dimensional space. The following formula explains it mathematically [79]: 

𝐾(𝑥, 𝑥𝑖) = exp (−𝑔𝑎𝑚𝑚𝑎 ∗ 𝑠𝑢𝑚(𝑥 −  𝑥𝑖)2) (9-3) 

  

in which gamma is in the range of 0 to1.  

SVM classifier is an effective method when the number of features is quite large. This method 

works even if input data is non-linear. It is a powerful classifier model since it maximizes margin. 



49 

 

On the other hand, choosing the best fit kernel is a big issue as the wrong choice of kernel can lead 

to higher error. SVMs, although are a popular method, might need a big runtime, especially in big 

data problems. Also, they need an extensive memory due to the use of quadratic programming and 

complex algorithms [80]. 

 

3.12 Ordered Weighted Averaging Data Fusion 

The ordered weighted averaging (OWA) was introduced by Ronald R.Yager (1988). This operator 

is commonly used in decision-making processes, which is still a powerful and simple method to 

finding aggregate output from data series. The OWA operator with n dimension is a mapping F: 

Rn → R, and has an associated n vector, 𝑤𝑖 = (𝑤1, 𝑤2, 𝑤3, 𝑤4, … , 𝑤𝑘). 

Here n is the number of inputs that must be fused to achieve a final result. In the current study, n 

is equal to 14, because the database of seven wells times two classifiers (random forest and SVM) 

were utilized to discriminate fractured zones from non-fractured ones. 

Weights are in the range of zero and one (𝑤𝑖 ∈  [0 , 1]), and their summation have to be equal to 

1 [81]: 

∑ 𝑤𝑖  =  1

𝑛

𝑖=1

 (10-3) 

 

In each depth, results achieved from different training wells and classifiers are defined as ak. So, 

ak could be zero (label which represents non-fractured zones) or one (label which represents 

fractured zones). Operator works as follows [81]: 

𝐹(ɑ𝑘1, ɑ𝑘2, . . . , ɑ𝑘𝑛)  =  ∑ 𝑏𝑘𝑗𝑤𝑗  =  𝑏𝑘1𝑤1 + 𝑏𝑘2𝑤2+ . . . + 𝑏𝑘𝑛𝑤𝑗𝑛 , 𝑘𝑛
𝑗=1   (11-3) 
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bkj are in fact ak which have ordered descending. Therefore, b1 is the biggest label (usually 1) and 

b14 the least (usually 0). k represents the depths of the test well. Here, output of this cumulative 

operator is always in the range of zero and one, and could be said in the group of “OR” and “AND” 

[82, 83]: 

𝑀𝑖𝑛𝑖 [ɑ𝑖]  ≤  𝐹𝑤(ɑ1, ɑ2, . . . , ɑ𝑛)  ≤  𝑀𝑎𝑥𝑖  [ɑ𝑖] (12-3) 

 

Yager introduced an Orness evaluation that is related to vector addressed by w [82]: 

𝑜𝑟𝑛𝑒𝑠𝑠 (𝑤)  =
1

𝑛 − 1
 ∑(𝑛 − 𝑖)𝑤𝑖

𝑛

𝑖=1

 (13-3) 

 

Therefore, for every “w”, the Orness (w) is located at a unit distance. Suppose that dk represents 

the real fracture label in each depth of the test well. So, errors should be minimized by optimizing 

the weights (wi) [81]: 

𝑒 =  1/2 [∑(𝑏𝑘1𝑤1 +  𝑏𝑘1𝑤1  

𝑚

𝑘=1

+ . . . + 𝑏𝑘1𝑤1 − 𝑑𝑘)2] (14-3) 

 

The main problem is that the OWA operator must act everywhere in such a way that the error is 

minimized. 

In other words, weights (wi) must count in such a way that in the end, the error (𝑒) goes towards 

zero. It will be obtained, while the solution is optimized. Yager has proposed two scenarios for 

optimization of the weights: optimistic, and pessimistic: 

 

• Optimistic Operator 

In optimistic ordered weighted averaging (OOWA), weights (wi) are defined as a function of 

coefficient (α) [81]: 
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w1 = α; w2 = α(1-α);  w3 = α(1 − 𝛼)2; …; 

 wn-1 = α(1 − 𝛼)𝑛−2; wn =(1 − 𝛼)𝑛−1;  0 ≤ α ≤ 1  
(15-3) 

 

Therefore, it is enough that α varies from zero to one and error (e) associated to different α be 

calculated. Minimum error, corresponds to optimum α, could be said optimum weights (wi) in 

OOWA. 

 

• Pessimistic Operator 

In pessimistic ordered weighted averaging mechanism (POWA), weights (wi) again are defined as 

a function of the α [81]: 

w1 = 𝛼𝑛−1; w2 = (1 − 𝛼)𝛼𝑛−2; w3 = (1-α) 𝛼𝑛−3; …; 

wn-1 = (1 − 𝛼)𝛼; wn = (1-α);    0 ≤ α ≤ 1 
(16-3) 

  

The procedure for optimization of weights (you say α), is similar to optimistic mechanism. 
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4 
 

Implementation Procedure 

 

 

4.1 Introduction 

Nobody can answer the question about which machine learning algorithm is the best for a specific 

problem. It can just be found by applying different algorithms individually and comparing the 

results to figure out which one could work more accurately. DT, RF, SVM, and DL, are four 

classifiers that were used in the current study. The flowchart of procedures was followed up for 

FZ detection which is shown in Figure 4.1.  Utilized methods are introduced briefly as follows: 

 

4.2 Data Preprocessing 

Data preprocessing is the first step in data mining. For this purpose, depth shifting, tolls pickup 

correction, tolls malfunction correction, cycle skipping data, and wash out error removing are done 

over all PLs data. 

For two classifiers SVM and DL methods, data needs to be normalized.  Relations 4-1 and 4-2 are 

the ways for normalization for SVM and DL respectively [84]: 

𝑥�̂� 
=  

𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
,              𝑥�̂�  → [0 , 1] (4-1) 
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Figure 4.1 Steps for finding fractured zone by ML approaches 

 

 

where 𝑥�̂�   
 is the normalization and xi is the primary amount of one of the logs at the same depth, 

and 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥 are minimum and maximum range of data respectively [84]:  

�̂��̂� 
=  2𝑥�̂� 

− 1,              �̂��̂�  → [−1 , 1] (4-2) 

 

where �̂��̂� 
 , 𝑥�̂�   

 are normalized data. 

 

4.3 Classifiers 

4.3.1 Decision Tree and Random Forest 

DT and RF follow the following algorithm in Scikit-learn in Python programing language: 

a) Importing and loading required libraries such as numpy, pandas, xlsxwriter, matplotlib, 

seaborn, pylab, sklearn.model_selection, sklearn.tree, sklearn.metrics and  klearn.ensemble. 

https://www.bing.com/search?q=Python&filters=sid%3ae65d3762-dcc6-13d6-cc71-5e09b7526398&form=ENTLNK
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b) Importing dataset (Petrophysics logs in the current study), by path direction and make the 

data as a data frame.  

c) Dividing data into two types of variables. These two types are feature and target variables 

or dependent and independent variables. 

d) Splitting data into train and test, by train_size=70% and test_size=30%. 

e) Creating a DT model and an RF model by using Scikit-learn and fitting the model, the 

number of estimators can be varied, and the best one can be defined by several tries and test 

and find the best result that is precise.. 

f) Evaluating the model by how accurately the classifier or model can predict the type of 

samples. This is done by comparing actual test set values and predicted values. Commands 

classification_report and confusion_matrix show the correct classification rate (CCR), 

precision, recall, f1-score, and support values. 

g) Improving accuracy by tuning the parameters such as the criterion in the Algorithm. In this 

research, Gini Index is defined as a criterion. Optimizing performance by a) changing the 

attribute selection measure, b) changing the split strategy, and c) changing the maximum 

depth of a tree. 

In appendix A and B, codes that are written for DT and RF are shown respectively. 

• Visualization of DT: 

In this study for splitting Decision Tree nodes, Gini Index has been used.  The Gini Index varies 

between 0 and 1, where 0 represents purity of the classification and 1 denotes random distribution 

of elements among various classes. This is a criterion for categorical and splits variables to the 

binary classes.  
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Gini Index works based on the concept of entropy which is used to determine which attribute gives 

us the maximum information about a class. Entropy is the degree of impurity or uncertainty. This 

index tries to decrease the level of this impurity from the root nodes to the leaf nodes of the decision 

tree.  

In each node, the Gini Gain is calculated for each feature in the dataset. The comment sklearn.tree. 

DecisionTreeClassifier, will select the largest Gini Gain as the Root Node. If Gini reaches 0, then 

the branch becomes the leaf node. By Gini, more than 0 splitting is continuing. 

These nodes are grown recursively until all of them are classified [85]. 

In Fig 4.2   the visualize of the Decision Tree for well 1 is shown.  For more clarity, Fig 4.3 is 

shown. 

As it shows, the Decision Tree for 70% of the total data set is created. It is a training part for 

classification. Each node contains a feature or attributes that are present in one of the petrophysical 

logs data (X[index]), which the index is PL data. Each node is separated in half True (Is the feature 

less or equal than the range that the Gini Index is higher?) or false (Is the feature less or equal than 

the range that the Gini Index is lower?) and how much of the sample data in this node belonged to 

this condition. 

In appendix C, the code that is written for DT visualization is shown. 
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X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8] X[9] X[10] X[11] X[12] X[13] 
CGR RHOB SGR DT PEF NPHI DOLOM SHALE POTA URAN THOR LIME PORE SW 

 

Figure 4.3. Output of training Decision Tree by using 70 % of the data of well 1. Index of PLs and their range are 

reported. Training continues by the time all fractured zones were discriminated from non-fractured ones. In this case 

by running a trained classifier over test data, accuracy (CCR) was about 80 percent. 

 

4.3.2 Support Vector Machine 

The SVM algorithm is very similar to the DT and RF one. Differences will be such as:  

a) Importing the SVC from sklearn.svm. in step one and fitting the SVM model on data in step 

five. 

b) For the last step, SVM classifier and parameter is optimized by cross-validation grid-search 

to find the best model. In this study, to do optimization, SKlearn’s GridSearchCV is used. 
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Also, the Radial Basis Function (RBF) as a kernel hyperparameters is used. RBF is suitable 

for this research since PLs data set are linearly inseparable or non-linear.    

On the other hand, choosing the best fit kernel is a big issue in which the wrong choice of kernel 

can lead to higher error. Although SVMs are a popular method, they might need a big runtime, 

especially in big data problems. Also, they need extensive memory due to the use of quadratic 

programming and complex algorithms. 

In appendix D, the code that is written for SVM is shown. 

 

4.3.3 Deep Learning 

In this study, the Multilayer Perceptron is implemented in the Colab. Google Colab is a free cloud 

service and now it supports free GPU and has popular libraries for developing DL applications 

such as Kersa, TensorFlow, PyTorch, and OpenCV. The steps of implementation are like DT, RF, 

and SVM with some differences such as follows: 

a) Import libraries (google.colab, io, sklearn.preprocessing, tensorflow, tensorflow.keras) and 

datasets 

b) Initialize model parameters (number of class (here binary classification), number of 

features (here are 10 features), number of hidden layers (we tried several nodes in 3 hidden 

layers), and bias vector) 

c) Determine the activation function (here tf.nn.relu is used) 

d) Determine the model (here model_dir = 'models/iris')  

e) Implement the Loss function to examine the source code to deepen the information of 

implementation details. Backpropagation performs iterative backward passes which 
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attempt to minimize the “loss”. It optimizes the weights and minimizes the difference 

between the real results and predicted results. Here loss_reduction=losses_utils and 

optimizer= lambda: tf.keras.optimizers.Adam. 

f) Train the model on data. It depends on the number of steps necessary to train the model. If 

None, train forever or train until input_fn generates the tf.errors.OutOfRange error or 

StopIteration exception. In this study, we didn’t want to have incremental behavior so we 

set the steps to equal 200. 

g) Evaluated values of predictions tensors. Here is eval_results3 = model.evaluate 

(input_fn=lambda:eval_input_fn(X_test, y_test), steps=1).  

In appendix E, the code that is written for DL is shown. 

After applying classifiers, Ambiguity in decision making leads to data fusion. The data fusion 

method takes advantage of ordered weighted averaging aggregation operator and fuzzy defined 

interval to fuse the results achieved from different classifiers and all wells to obtain more accurate 

and reliable results. The results of the experiments revealed that applying data fusion to the outputs 

obtained from different classifiers produces more accurate discrimination compared to the 

situation that only outputs of one classifier are used. 

 

4.4 Ordered Weighted Averaging 

Table 4.1 shows an example of how the OWA method is used for data fusion.  Fractures in every 

depth are shown by number 1. RF1, FR2, SVM1, and SVM2 are classifiers that are used on this 

part of the well test data while other wells’ data are a training one. For fusing the results of these 

four classifiers, two methods are introduced. The first one is Majority Voting (MV), that is a 

decision rule that selects alternatives which have a majority, that is, more than half the votes. And 
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the second one is OWA. As Table 4.1 shows, OWA makes a better fusion than MV. For example, 

while MV leads to an uncertainty zone, OWA can fuse results correctly as a fractured zone (True 

Positive). Also, in the part that MV shows False Negative, OWA can make a better fusion. 

Therefore, this study using OWA on classification results achieved reliable and robust results. 

 

Table 4.1 An example of beneficiary of using OWA data fusion for integration of results to achieve more 

reliable/accurate/general discrimination 

DEPTH Fracture RF1 RF2 SVM1 SVM2 MV OWA 
Interpretation Interpretation 

Majority Voting OWA 

2369.972 0 0 0 0 0 0 0 
Non-Fractured 

Zone 

(True Negative) 

Non-Fractured 

Zone 

(True Negative) 

2370.125 0 0 0 0 0 0 0 

2370.277 0 0 0 0 0 0 0 

2370.43 0 0 0 0 0 0 0 

2370.582 1 0 0 1 1 0.5 0.8 
Uncertainty Zone 

(Uncertainty) 

Fractured Zone 

(True Positive) 
2370.734 1 0 0 1 1 0.5 0.8 

2370.887 1 0 0 1 1 0.5 0.8 

2371.039 1 1 1 1 1 1 1 

Fractured Zone 

(True Positive) 

Fractured Zone 

(True Positive) 

2371.192 1 1 1 1 1 1 1 

2371.344 1 1 1 1 1 1 1 

2371.496 1 1 1 1 1 1 1 

2371.649 1 1 1 1 1 1 1 

2371.801 1 1 0 0 0 0 0.56 

Non-Fractured 

Zone 

(False Negative) 

Fractured Zone 

(True Positive) 

2371.954 1 1 0 0 0 0 0.56 

2372.106 1 1 0 0 0 0 0.56 

2372.258 1 1 0 0 0 0 0.56 

2372.411 1 1 0 0 0 0 0.56 

 

Fig 4.4 is a schematic way of validation of classifications. In this figure, the image log works as a 

validation criterion in which fractured and non-fractured zones are determined by professional 

interpretation image processing. In the next of image log, a schematic classified zone is shown. By 

cross-validation between real and classified fractured zones, True Positive, False Negative, False 

Positive, and True Negative will be achieved. On the other hand, this leads to the configuration of 

the confusion matrix which is the base of all validation. 
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Figure 4.4 A schematic validation procedure 
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5 
 

Experimental Results: Fractured Zone Detection from 

Petrophysical Logs 

 

 

5.1 Introduction 

As aforementioned, the databases of eight wells were used to investigate how fractured zones could 

be discriminated from non-fractured zones by using petrophysical logs. Petrophysical logs as well 

as image logs were available for studied wells. Image logs were professionally interpreted, and 

fractures and their properties, e.g. depth, opening, aperture, dip and dip direction were reported. 

By using the depth of the fractures, wells were labeled with zero for non-fractured zones, and one 

for fractured zones. Therefore, a valuable database was achieved containing petrophysical logs and 

fracture labels. 

In this chapter, the correlation between all logs, depth and fracture is reported. This helped in log 

selection. Histograms of selected logs as well as 2D and 3D graphs for fractured versus non-

fractured zones are plotted to investigate which logs are useful for fractured zone detection.  
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Afterward, the results of applying a two-step procedure, containing classification and data fusion 

for the discrimination of fractured/non-fractured zones are also represented. Those procedures 

were applied over imbalanced and balanced versions of the petrophysical logs.  

 

5.2 Statistical Studies 

Table 5.1 shows cross correlation between all logs plus fractured zone and depth in well number 

1.  As it shows, correlations between fractures and petrophysics logs are not impressive, while its 

maximum amount is about 0.25. Therefore, it seems discrimination between fractured/non-

fractured zones is not straight-forward. 

Correlation between fractured zones and Water Saturation (SW) is negative, which means fractures 

are filled by oil instead of water. Positive correlation between porosity (POR) and fractures is an 

indicator that fractures are mainly open.  

Limestone (LIME) and dolomite both are brittle rocks, therefore their correlation with fracture 

might be positive. This has happened for limestone, while for dolomite, correlation is about zero, 

because it has not been the main frame of rock in the studied reservoir.  

Thorium and potassium are primarily radioactive materials, formed during sedimentation by shale, 

while uranium (URAN) is a secondary accumulated material that migrates by fluid to the reservoir. 

Fractures are a suitable path for fluid flow and deposition of the uranium. Therefore, a positive 

correlation between uranium and fractured zones could also be reasonable. The spectral gamma-

ray (SGR) is a summation of potassium, thorium and uranium. In carbonate reservoirs, limestone 

is the dominant rock, which means the lack of primarily radioactive materials. Therefore, SGR 

would be mainly affected by uranium and their high correlation (0.94) confirms this hypothesis. 

Its correlation of fractures is also similar to uranium. 
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Table 5.1: Cross correlation between all petrophysical logs, fracture label and depth in well 1 

 
DEPT

H 

Fractu

re 

CAL

I 

CG

R 

RHO

B 
SGR DT PEF 

NP

HI 

DOLOMI

TE 

SHA

LE 

POT

A 

URA

N 

THO

R 

LIM

E 

POR

E 
SW 

DEPTH 1 -0.0044 

-

0.509

8 

-

0.40

04 

-

0.053

1 

-

0.3433 
0.0299 

0.31

33 

-

0.060

2 

-0.2534 
-

0.2460 

-

0.388

7 

-

0.208

9 

-

0.286

3 

0.342

4 

0.063

7 

-

0.19

28 

Fracture -0.0044 1 
0.108

8 

-

0.20

72 

-

0.221

6 

0.1225 0.1420 
0.02

59 

0.008

8 
-0.02273 

-

0.2103 

-

0.225

1 

0.203

3 

-

0.124

2 

0.226

7 

0.156

3 

-

0.24

79 

CALI -0.5098 0.1088 1 
0.16

28 

-

0.203

5 

0.3075 
-

0.0012 

-

0.26

83 

0.049

1 
0.204364 0.0119 

0.135

2 

0.241

9 

0.117

0 

-

0.146

9 

0.018

4 

-

0.10

07 

CGR -0.4004 -0.2072 
0.162

8 
1 

-

0.047

8 

0.3547 0.0186 

-

0.26

68 

0.177

4 
0.178001 0.8336 

0.924

6 

0.012

9 

0.816

4 

-

0.248

0 

-

0.166

4 

0.20

99 

RHOB -0.0531 -0.2216 

-

0.203

5 

-

0.04

78 

1 
-

0.1055 

-

0.6114 

0.06

28 

-

0.596

1 

0.060154 
-

0.1436 

-

0.020

9 

-

0.087

9 

-

0.055

6 

-

0.375

4 

-

0.587

7 

0.36

70 

SGR -0.3433 0.1225 
0.307

5 

0.35

47 

-

0.105

5 

1 
-

0.1012 

-

0.43

49 

0.180

2 
0.444305 0.2707 

0.333

2 

0.939

0 

0.270

0 

-

0.307

6 

0.023

0 

-

0.11

78 

DT 0.0299 0.1420 

-

0.001

2 

0.01

86 

-

0.611

4 

-

0.1012 
1 

-

0.02

04 

0.651

3 
-0.11206 0.1853 

0.034

8 

-

0.116

5 

-

0.015

6 

0.218

8 

0.742

2 

-

0.32

43 

PEF 0.3133 0.0259 

-

0.268

3 

-

0.26

68 

0.062

8 

-

0.4349 

-

0.0204 
1 

-

0.505

4 

-0.93244 
-

0.1475 

-

0.273

3 

-

0.362

6 

-

0.169

0 

0.782

4 

-

0.433

8 

0.43

04 

NPHI -0.0602 0.0088 
0.049

1 

0.17

74 

-

0.596

1 

0.1802 0.6513 

-

0.50

54 

1 0.4319 0.3581 
0.193

0 

0.126

2 

0.096

2 

-

0.256

3 

0.863

1 

-

0.49

76 

DOLOMI

TE 
-0.2534 -0.0227 

0.204

3 

0.17

80 

0.060

1 
0.4443 

-

0.1120 

-

0.93

24 

0.431

9 
1 0.0553 

0.183

9 

0.407

3 

0.110

6 

-

0.837

1 

0.390

4 

-

0.45

10 

SHALE -0.2460 -0.2103 
0.011

9 

0.83

36 

-

0.143

6 

0.2707 0.1853 

-

0.14

75 

0.358

1 
0.055373 1 

0.851

5 

-

0.011

7 

0.562

0 

-

0.118

3 

-

0.022

8 

0.09

12 

POTA -0.3887 -0.2251 
0.135

2 

0.92

46 

-

0.020

9 

0.3332 0.0348 

-

0.27

33 

0.193

0 
0.183956 0.8515 1 

0.018

5 

0.535

8 

-

0.271

7 

-

0.156

7 

0.19

86 

URAN -0.2089 0.2033 
0.241

9 

0.01

29 

-

0.087

9 

0.9390 
-

0.1165 

-

0.36

26 

0.126

2 
0.407353 

-

0.0117 

0.018

5 
1 

-

0.010

5 

-

0.237

2 

0.083

7 

-

0.20

04 

THOR -0.2863 -0.1242 
0.117

0 

0.81

64 

-

0.055

6 

0.2700 
-

0.0156 

-

0.16

90 

0.096

2 
0.110614 0.5620 

0.535

8 

-

0.010

5 

1 

-

0.138

2 

-

0.136

5 

0.17

34 

LIME 0.3424 0.2267 

-

0.146

9 

-

0.24

80 

-

0.375

4 

-

0.3076 
0.2188 

0.78

2 

-

0.256

3 

-0.83713 
-

0.1183 

-

0.271

7 

-

0.237

2 

-0.138 1 

-

0.154

0 

0.14

79 

PORE 0.0637 
0.15633

4 

0.018

46 

-

0.16

64 

-

0.587

78 

0.0230

18 

0.7422

13 

-

0.43

3 

0.863

1 
0.390416 

-

0.0228 

-

0.156

7 

0.083

78 

-

0.136

5 

-

0.154

0 

1 

-

0.63

2 

SW -0.1928 -0.2479 

-

0.100

7 

0.20

99 

0.367

0 

-

0.1178 

-

0.3243 

0.43

04 

-

0.497

6 

-0.45108 0.0912 
0.198

6 

-

0.200

4 

0.173

4 

0.147

9 

-

0.632

5 

1 

 

Cumulative gamma ray (CGR), is the summation of potassium and thorium, and an indicator of 

shale. Hence, shale, CGR, potassium and thorium, all have to have a similar correlation with 

fractures. It should be mentioned that shale is a ductile and in fact plastic rock. Therefore, unlike 
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the limestone, it is anticipated that its correlation to fracture be negative. Ironically, correlation of 

shale, CGR, potassium and thorium to fractures are negative, which is reasonable. 

NPHI is an indicator for hydrogen, which is a main part of water and oil as well. Based on 

literature, and the image log’s interpretation, a majority of the fractures in the studied reservoir are 

open, while the rest are closed. Therefore, a combination of occurrence of open and closed 

fractures is the reason that NPHI’s correlation with fracture is low. 

Photoelectric factor (PEF), is an indicator of specific weight. In oil wells, PEF usually increases 

because of deposition of mud cake, which contains barite with a specific weight higher than 4 

gr/m3 in fractures or porous media. Therefore, its correlation with fractures is also positive. 

Density log (RHOB) is mainly affected by rock and fluid. By increasing the fluid saturation, it 

might be decreased. Hence, in fractured zones, density should decrease, which negatively affects 

the correlation between RHOB and fractures confirms it.  

Sonic (DT) is addressed as a suitable indicator for fractures. The reason is that in fractured zones, 

the sonic wave arrival time will increase. Also, its correlation with fractures is positive. In the 

studied reservoir, two leg caliper logs were run, which could not be an effective indicator of 

fractured zones. The reason is that it could be decreased because of mud cake, or increased because 

of washout around open fractures. 

Tables 5.2 and 5.3 show correlation coefficient between logs, fracture and depth in wells 3 and 5 

respectively. They, overall, confirm the observations in well 1. However, minor differences are a 

sign of complexity of discrimination of fractured zones from non-fractured ones.  

In appendix F, the code that is written for correlation coefficient between logs, fracture and depth 

is shown. 
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5.3 Histograms 

Comparison between the histogram of petrophysical logs in fractured/non-fractured zones will 

help to figure out which logs might be useful to discriminate those zones from each other. These 

histograms and corresponding probability density functions (PDFs) for well 1 are displayed in 

Figure 5.1. As it can be seen in Figure 5.1, almost all the logs of the histograms of two classes are 

matched together, which clearly shows why the industry doesn’t utilize petrophysical logs for 

fractured zone detection. Also, it shows that discrimination between fractured/non-fractured zones 

in 1D feature space (by using just one log) is impossible. In appendix G, similar histograms for 

petrophysical logs of wells 2 and 5 are presented, which again show the same behavior as well 1. 

However, it might be possible that by increasing feature space and using more logs, classification 

of fractured/non-fractured zones is possible. To visually investigate this possibility, 2D and 3D 

plots of fractured/non-fractured zones should be plotted. 

Code that is written for Histogram and the corresponding PDF for different logs in fractured zones 

and non-fractured ones is shown in appendix H. 

 
Table 5.2 Cross correlation between all petrophysical logs, fracture label and depth in well 3 

 DEPTH Fracture CALI CGR RHOB SGR DT PEF NPHI POTA URAN THOR 

DEPTH 1 -0.07336 -0.57776 -0.09963 -0.05912 -0.32121 0.227034 -0.0844 0.161339 -0.11378 -0.32386 -0.03263 

Fracture -0.07336 1 -0.07464 0.013317 -0.16876 0.149943 0.198929 -0.28905 0.154407 0.022499 0.161401 -0.00121 

CALI -0.57776 -0.07464 1 0.170612 0.041254 0.123247 -0.1629 0.068334 -0.18031 0.163828 0.081759 0.091154 

CGR -0.09963 0.013317 0.170612 1 -0.01025 0.436472 -0.04695 -0.10667 -0.07539 0.859329 0.142732 0.766563 

RHOB -0.05912 -0.16876 0.041254 -0.01025 1 -0.03041 -0.78033 0.6722 -0.9072 -0.03469 -0.02825 0.013941 

SGR -0.32121 0.149943 0.123247 0.436472 -0.03041 1 -0.04126 -0.22342 -0.02338 0.398561 0.948783 0.367711 

DT 0.227034 0.198929 -0.1629 -0.04695 -0.78033 -0.04126 1 -0.46904 0.824402 -0.03039 -0.03018 -0.04583 

PEF -0.0844 -0.28905 0.068334 -0.10667 0.6722 -0.22342 -0.46904 1 -0.63973 -0.12778 -0.20908 -0.04885 

NPHI 0.161339 0.154407 -0.18031 -0.07539 -0.9072 -0.02338 0.824402 -0.63973 1 -0.04937 -0.00321 -0.06076 

POTA -0.11378 0.022499 0.163828 0.859329 -0.03469 0.398561 -0.03039 -0.12778 -0.04937 1 0.128948 0.435153 

URAN -0.32386 0.161401 0.081759 0.142732 -0.02825 0.948783 -0.03018 -0.20908 -0.00321 0.128948 1 0.122347 

THOR -0.03263 -0.00121 0.091154 0.766563 0.013941 0.367711 -0.04583 -0.04885 -0.06076 0.435153 0.122347 1 
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Table 5.3 Cross correlation between all petrophysical logs, fracture label and depth in well 5 

 
DEPT

H 

Fractur

e 
CALI CGR 

RHO

B 
SGR DT PEF NPHI 

DOLOMIT

E 

SHAL

E 

POT

A 

THO

R 

POR

E 

POR

T 

DEPTH 1 0.09450 
0.0271

8 

0.1190

6 

0.7146

7 

-

0.4368

1 

-

0.6032

5 

0.5777

7 

-

0.6217

3 

-0.44189 0.17223 
0.0067

8 

0.0008

1 

-

0.2493

4 

-

0.7235

4 

Fracture 0.09450 1 

-

0.0250

3 

0.0532

9 

-

0.1509

9 

0.1610

3 

0.1505

7 

-

0.0321

9 

0.1402

6 
0.142329 0.02419 

-

0.0429

1 

0.0530

0 

-

0.1172

2 

0.0714

4 

CALI 0.02718 -0.02503 1 
0.0132

9 

0.1168

6 

-

0.0465

4 

-

0.0372

5 

0.3579

9 

-

0.0977

3 

-0.09184 0.07723 

-

0.0026

1 

-

0.1151

1 

-

0.0954 

-

0.1186

2 

CGR 0.11906 0.05329 
0.0132

9 
1 

-

0.0087

4 

0.3142

8 

0.2232

8 

0.0084

1 

0.1975

0 
0.149966 0.69630 

0.0167

4 

0.8311

6 

0.1605

4 

-

0.1124

9 

RHOB 0.71467 -0.15099 
0.1168

6 

-

0.0087

4 

1 

-

0.6246

2 

-

0.9100

9 

0.6306

5 

-

0.9123

5 

-0.68264 0.04746 
0.0479

4 

-

0.1023

4 

-

0.1469

5 

-

0.8580

7 

SGR 
-

0.43681 
0.16103 

-

0.0465

4 

0.3142

8 

-

0.6246

2 

1 
0.7232

1 

-

0.2710

1 

0.7369

0 
0.677047 0.14975 

0.1641

3 

0.4801

0 

0.1752

7 

0.5457

4 

DT 
-

0.60325 
0.15057 

-

0.0372

5 

0.2232

8 

-

0.9100

9 

0.7232

1 
1 

-

0.5489

6 

0.9625

3 
0.705118 0.18042 

-

0.0614 

0.3023

3 

0.1333

1 

0.8099

0 

PEF 0.57777 -0.03219 
0.3579

9 

0.0084

1 

0.6306

5 

-

0.2710

1 

-

0.5489

6 

1 

-

0.5457

9 

-0.32854 0.00378 
0.0017

5 

-

0.1062

5 

-

0.1411

9 

-

0.5633

5 

NPHI 
-

0.62173 
0.14026 

-

0.0977

3 

0.1975

0 

-

0.9123

5 

0.7369

0 

0.9625

3 

-

0.5457

9 

1 0.738413 0.12858 

-

0.0644

2 

0.3004

3 

0.2786

5 

0.8379

4 

DOLOMIT

E 
-

0.44189 
0.14232 

-

0.0918

4 

0.1499

6 

-

0.6826

4 

0.6770

4 

0.7051

1 

-

0.3285

4 

0.7384

1 
1 0.01258 

-

0.0177

4 

0.2191

7 

0.0886

0 

0.5613

0 

SHALE 0.17223 0.02419 
0.0772

3 

0.6963

0 

0.0474

6 

0.1497

5 

0.1804

2 

0.0037

8 

0.1285

8 
0.012586 1 

-

0.0283

3 

0.5949

4 

0.1742

1 

-

0.2417

7 

POTA 0.00678 -0.04291 

-

0.0026

1 

0.0167

4 

0.0479

4 

0.1641

3 

-

0.0614 

0.0017

5 

-

0.0644

2 

-0.01774 
-

0.02833 
1 

0.0146

9 

-

0.0315 

-

0.0543 

THOR 0.00081 0.05300 

-

0.1151

1 

0.8311

6 

-

0.1023

4 

0.4801

0 

0.3023

3 

-

0.1062

5 

0.3004

3 
0.21917 0.59494 

0.0146

9 
1 

0.2556

3 

0.0387

9 

PORE 
-

0.24934 
-0.11722 

-

0.0954 

0.1605

4 

-

0.1469

5 

0.1752

7 

0.1333

1 

-

0.1411

9 

0.2786

5 
0.088604 0.17421 

-

0.0315 

0.2556

3 
1 

0.3208

8 

PORT 
-

0.72354 
0.07144 

-

0.1186

2 

-

0.1124

9 

-

0.8580

7 

0.5457

4 

0.8099

0 

-

0.5633

5 

0.8379

4 
0.561304 

-

0.24177 

-

0.0543 

0.0387

9 

0.3208

8 
1 

 

 

 



69 

 

  

  

  

  



70 

 

  

  

  

 

Figure 5.1 Histogram and corresponding PDF for different logs in fractured zones and non-fractured ones in well 1. 

 

5.4 Petrophysical Log Selection 

Availability of logs, their correlation coefficient with fractured zones, as well as studies were done 

over histograms and helped to log selections for fractured zone detection. Selected logs, and the 

reason they have been selected are described as follows:  
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Correlation coefficient of caliper with fractures is low; however, it was selected, because it is an 

individual log with low correlation to other logs. Caliper is also available in all studied wells. It 

might be useful for fractured zone detection. 

Correlation coefficients between CGR, potassium, thorium and shale are high, therefore, one of 

them could represent the others. CGR was selected for the study just because it is available in all 

of the studied wells. SGR is also preferred over uranium, because it is available in more wells.  

Effective porosity could be efficient for the discrimination of open fractures from closed ones, 

which of course is not the aim of this study. However, both effective and total porosity were 

selected.   

Dolomite and limestone might be useful, but weren’t selected, because they are not available in a 

majority of wells. SW, RHOB, DT, PEF and NPHI were also selected, because of their correlation 

of fractures and availability as well. 

Overall, caliper, CGR, SGR, RHOB, DT, PEF, NPHI, SW, effective and total porosity were 

selected for fractured zone detection. Therefore, classifiers will define and discriminate 

fractured/non-fractured zones in 10D feature space. 

 

5.5 2D and 3D Cross Plot of Petrophysical Log 

2D and 3D cross plots of petrophysical logs could visually show the importance of feature space 

over discrimination of fractured zones from non-fractured ones. In Figure 5.2, 2D cross plots in 

well 1 for selected logs are displayed.  Comparison between Figures 5.1 and 5.2 clearly shows 

better discrimination in 2D feature space. For example, high CGR and low RHOB contains mainly 

non-fractured zones. Similar interpretation could be presented for other cross plots. In appendix I, 

similar cross plots for wells 2 and 5 are displayed and the corresponding code is in appendix J. 
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Figure 5.2 Cross plots of selected petrophysical logs in fractured and non-fractured zones in well 1.  

 

 

In Figure 5.3, 3D cross plots for selected wells are displayed. Again, comparison between Figures 

5.1, 5.2 and 5.3 shows that discrimination between fractured/non-fractured zones will be increased 
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in higher feature space. For example, in Figure 5.3, fractured zones and non-fractured ones are 

visually discriminated by dash lines. Three dimensional cross plots of selected logs in wells 2 and 

5 are displayed in appendix K and in appendix L its code is shown. 
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Figure 5.3 3D cross plots of selected petrophysical logs in order to show how higher feature space could help to 

discriminate fractured zones from non-fractured ones in well 1.  
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5.6 Classification of Fractured/Non-Fractured Zones 

Four classifiers were applied to discriminate fractured zones from non-fractured ones by using 

selected petrophysical logs. Classifications were done over imbalanced and balanced data. In Table 

5.4 the number of fractured/non-fractured zones in studied wells are presented.  

 

Table 5.4 Comparison between the numbers of fractured/non-fractured zones in 

studied wells, and imbalance index. 

Well 
Non-Fractured 

Imbalance Index 
Fractured 

1 
1215 

0.28 
945 

2 
1608 

0.11 
1450 

3 
1103 

2.18 
347 

4 
1778 

5.73 
264 

5 
1056 

0.53 
690 

6 
1493 

0.10 
1353 

7 
965 

0.54 
625 

8 
1408 

0.63 
864 

 

Table 5.4 obviously shows that for all wells the number of fractured zones are less than non-

fractured ones. Imbalance index is defined as the difference between non-fractured and fractured 
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data divided by the number of fractured ones. Imbalance index approaches zero if two classes are 

balanced, and increases in imbalanced situations.  

𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 =  
No. of NonFractured − No. of Fractured

No. of Fractured
 (5-1) 

 

In wells 4 and 3 imbalance indexes are the highest at 5.73 and 2.18 respectively. On the opposite 

side, the imbalance index for wells 6 and 2 are the lowest at about 0.1. Therefore, comparison 

between classification in imbalanced and balanced scenarios for those four wells could be a sign 

of the importance of balancing. In the current study, NearMiss Under balance sampling algorithm 

over non-fractured zones was applied to make the balance dataset. 

The four utilized classifiers are:  decision tree, random forest, support vector machine and deep 

learning. The three first classifiers have been scripted in Jupyter iPython Notebook, and deep 

learning was coded in Colab. 

Let’s recap that CALI, CGR, RHOB, DT, PEF, NPHI, SW, PORE, PORT and SGR are utilized 

petrophysical logs.  

To be sure that discrimination of fractured/non-fractured zones by using petrophysical logs is 

possible, the data of each individual well was randomly divided into training (70%) and testing 

(30%) sets, and classification performance over test data was investigated. It should be mentioned 

that fractured/non-fractured zones were labeled with 1 and zero respectively.  

Confusion matrix, accuracy or correct classification rate (CCR), precision and recall have been 

calculated, as the classifier’s performance index. Those evaluation parameters are briefly 

introduced as follows: 

Confusion matrix (C) is a square matrix, in which entry diagonals represent the number of accurate 

classified data, and the rest represent misclassified data. The current study is two-class problem, 



79 

 

in which C00 represents the count of true negative, which means true classified non-fractured zones 

(Figure 5.4). C01 represents false negative or non-fractured zones which are misclassified as 

fractured ones. C10 represents false positive or non-fracture zones which are misclassified as 

fractured ones. Finally, C11 represents true positive, or the fractured zones that are correctly 

classified [84]. 

[
𝐶00 𝐶01

𝐶10 𝐶11
] = [

𝑇𝑁 𝐹𝑁
𝐹𝑃 𝑇𝑃

] 

Figure 5.4 Confusion Matrix. 

 

Accuracy or Correct Classification Rate (CCR) represents the number of correctly classified data 

divided by the total number of the data [84]: 

 

Accuracy or CCR =
TN + TP

TN + FP + TP + FN
   (5-2) 

 

where TN/TP, and FN/FP are true negative/positive, and false negative/positive respectively. 

Accuracy may not be a good measure if the dataset is not balanced (fractured and non-fractured 

classes have different number of data). In these cases, precision (positive predictive value) might 

be a better validation tool [84]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5-3) 

 

Obviously, one represents the highest precision and it occurs when FP is zero. 

Recall is known as sensitivity or true positive rate. The highest recall is also equal to one, which 

means FN is zero [84]: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5-4) 
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5.6.1 Classification by Using Imbalanced Data 

The results of classification over imbalanced data are presented as follows. 

 

5.6.1.1 Decision Tree 

In chapter 3, the decision tree, which is one of the most frequently and widely used supervised 

machine learning algorithms that can perform both regression and classification tasks, has been 

introduced. 

In this section, the decision tree algorithm using Python’s Scikit Learn library is implemented on 

selected petrophysical logs, in order to perform discrimination of fractured zones from non-

fractured ones. Scikit-Learn contains built-in classes/methods for various decision tree algorithms 

(Appendix A). 

In Table 5.5 the results of fractured zone detection by using decision tree classifier is presented. 

Table 5.5 The results of discrimination of fractured zones from non-fractured ones using Decision Tree. Imbalanced 

version of selected petrophysical logs are used.  

Well Confusion Matrix 
Accuracy or 

CCR 
Precision Recall  Support 

1 [
318 44
52 234

] 0.85 0.82 0.84 648 

2 [
454 33
53 378

] 0.91 0.88 0.92 918 

3 [
328 19

9 79
] 0.94 0.90 0.81 435 

4 [
532 10

9 62
] 0.97 0.87 0.86 613 

5 [
308 10
21 185

] 0.94 0.90 0.95 524 

6 [
427 32
22 373

] 0.94 0.94 0.92 854 

7 [
286 9
10 172

] 0.96 0.94 0.95 477 

8 [
414 0

6 262
] 0.99 0.97 1 682 
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Surprisingly, CCR for all wells is higher than 85 percent, which much better than the results 

previously reported. Also, these results confirm that discrimination of fractured/non-fractured 

zones by using selected petrophysical logs in the studied reservoir is absolutely possible. Let’s 

recap that, wells 3 and 4 contain the highest imbalance index (Table 5.4), and wells 2 and 6 contain 

the lowest index. Comparison of CCR and precision shows the highest difference for well 4. In 

well 4, the accuracy of classification is very high (97 %), while precision is low (87 %). This shows 

that the classifier is biased toward non-fractured zones, and could not recognize fractured zones. 

A similar problem was observed for well 3. Comparison between implantation of balanced and 

non-balanced data would show the importance of balancing before classification. 

 

5.6.1.2 Random Forest 

In Table 5.6 the results of classification of fractured/non-fractured zones by using random forest 

classifier and imbalanced data are presented. CCRs of random forest are even better than decision 

tree and all results are higher than 91 percent (Appendix B).  

Also, the difference between accuracy and precision for wells 3 and 4 are the highest and wells 2 

and 6 are the lowest. This obviously confirms the importance of balancing the data over the 

application of random forest.   
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Table 5.6 The results of discrimination of fractured zones from non-fractured ones using Random Forest. 

Imbalanced version of selected petrophysical logs are used. 

Well Confusion Matrix 
Accuracy or 

CCR 
Precision Recall  Support 

1 [
342 20
39 247

] 0.91 0.86 0.92 648 

2 [
466 28
30 394

] 0.94 0.93 0.93 918 

3 [
338 9
15 73

] 0.94 0.83 0.89 435 

4 [
539 3
12 59

] 0.98 0.83 0.95 613 

5 [
309 9
15 191

] 0.95 0.93 0.96 524 

6 [
442 17
20 375

] 0.96 0.95 0.96 854 

7 [
279 16

9 173
] 0.95 0.95 0.92 477 

8 [
407 7
18 250

] 0.96 0.93 0.97 682 

 

5.6.13 Support Vector Machine 

In Table 5.7 the results of support vector machine are presented. Here again CCRs are higher than 

91 percent, which confirms that fractured zone detection by using petrophysical logs is possible. 

CCR and precision for well 4 are 95 and 78 percent respectively, which shows that in well 4, SVM 

is biased toward non-fractured zones, too. Another important point is that for well 8, CCR is above 

99 percent, which is amazing. It seems that in this well a synthetic image log is created (Appendix 

D). 
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Table 5.7 The results of discrimination of fractured zones from non-fractured ones using Support Vector Machine. 

Imbalanced version of selected petrophysical logs are used. 

Well Confusion Matrix 
Accuracy or 

CCR 
Precision Recall  Support 

1 [
311 33
24 280

] 0.91 0.92 0.89 648 

2 [
452 24
24 418

] 0.95 0.94 0.94 918 

3 [
325 17
10 83

] 0.94 0.89 0.83 435 

4 [
518 16
17 62

] 0.95 0.78 0.79 613 

5 [
303 9
20 192

] 0.95 0.90 0.96 524 

6 [
437 13
16 388

] 0.97 0.96 0.97 854 

7 [
264 6
10 197

] 0.97 0.95 0.97 477 

8 [
400 2

6 274
] 0.99 0.98 0.99 682 

 

5.6.1.4 Deep Learning 

As aforementioned, for deep learning, Colab (a Google cloud-based service that replicates Jupyter 

Notebook in the cloud) was used. The Google Colab is free for education and research purposes 

and runs entirely in the cloud. TensorFlow, a free and open-source software library, was also pre-

installed and optimized for the current study. Colab runs in cloud; however, one of its benefits is 

that it could be run over CPU to decrease CPU processing time, especially for Big Data. 

In Table 5.8, the results of deep learning as well as optimum structures are represented. Here, the 

results are weaker than the three previous classifiers. For well 4, CCR and Precision, are both low. 

By better optimizing the structure and parameters of the neural network, it could be possible to 

achieve better results; however, this could be addressed as another shortcoming of deep learning 

(Appendix E).  
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Table 5.8 The results of discrimination of fractured zones from non-fractured ones using Deep Learning. 

Imbalanced version of selected petrophysical logs is used. 

Well Confusion Matrix 
Accuracy 

or CCR 
Precision Recall  Structure (3 layers) 

1 [
315 29
30 274

] 0.91 0.90 0.90 [10   100   10] 

2 [
402 75
61 380

] 0.85 0.86 0.83 [100   100   100] 

3 [
318 29
19 69

] 0.89 0.78 0.70 [10   100   10] 

4 [
520 14
19 61

] 0.95 0.76 0.81 [10   100   10] 

5 [
296 21
28 175

] 0.90 0.86 0.89 [10   20   10] 

6 [
357 89
90 311

] 0.79 0.77 0.78 [10   20   10] 

7 [
264 32
19 163

] 0.89 0.89 0.83 [10   100   10] 

8 [
354 55
75 193

] 0.81 0.72 0.78 [100   100   100] 

 

5.6.1.5 Conclusion of Classification using Imbalanced Data 

In Figure 5.5 CCR for different classifiers in all studied wells, as well as the average CCR are 

presented. Comparison between classifiers show that deep learning has the weakest discrimination, 

while both random forest and SVM have the best. Based on the results, random forest and SVM 

are the two selected classifiers for the next step of imbalanced data, which is using the database of 

a well to discriminate fractured zones from non-fractured ones in other wells.  

Surprisingly, the best results have been for well 4, which has the highest imbalance index. This 

clearly shows that for an imbalanced situation, CCR might be perfect, as the aforementioned 

precision is dramatically low. Therefore, judgment based just on CCR could be a big mistake.    
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Figure 5.5 Comparison between correct classification rate (CCR) of discrimination of fractured/non-fractured 

zones of imbalanced data by using different classifiers over studied wells.  

 

5.6.2 Classification by Using Balanced Data 

The procedure that was applied on imbalanced data is repeated over balanced data. As 

aforementioned, near miss under sampling algorithm over non-fractured zones was done to make 

balanced data. The most focus is on the investigation of the effect of balancing over accuracy and 

precision of wells 3 and 4, which have the highest imbalance index. Results are presented as 

follows. 

 

5.6.2.1 Decision Tree 

The results of classification of fractured/non-fractured zones by using decision tree classifier and 

balanced petrophysical data are presented in Table 5.9. Comparison between Tables 5.5 and 5.9 

shows that overall the accuracy for imbalanced data was higher than balanced data, while for wells 

3 and 4, accuracy and precision in balanced data are so similar to each other. This means that in 

the current scenario not only non-fractured but also fractured zones are detected. 
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Table 5.9 The results of discrimination of fractured zones from non-fractured ones using Decision Tree. Balanced 

version of selected petrophysical logs are used. 

Well Confusion Matrix 
Accuracy or 

CCR 
Precision Recall  Support 

1 [
226 47
57 237

] 0.82 0.81 0.83 567 

2 [
385 48
57 380

] 0.88 0.87 0.89 870 

3 [
101 9

7 92
] 0.92 0.93 0.91 209 

4 [
68 11
5 75

] 0.90 0.94 0.87 159 

5 [
200 17
14 183

] 0.93 0.93 0.91 414 

6 [
371 28
26 387

] 0.93 0.94 0.93 812 

7 [
177 12

4 182
] 0.96 0.98 0.94 375 

8 [
249 3

5 262
] 0.98 0.98 0.99 519 

 

 

5.6.2.2 Random Forest 

In Table 5.10, results of random forest are reported. Both CCR and precision for all wells are 

higher than 88 percent, which shows capability of method in detection of fractured and non-

fractured zones. The most amazing result is for well 4, where precision is even bigger than 

accuracy, while in the case of imbalanced data (Table 5.6), precision was 15% lower than accuracy. 

This might be called the magic of balancing! 

 

 

 



87 

 

Table 5.10 The results of discrimination of fractured zones from non-fractured ones using Random Forest. Balanced 

version of selected petrophysical logs are used. 

Well Confusion Matrix 
Accuracy or 

CCR 
Precision Recall  Support 

1 [
237 36
33 261

] 0.88 0.89 0.88 567 

2 [
405 28
42 395

] 0.92   0.90 0.93 870 

3 [
104 6

7 92
] 0.94 0.93 0.94 209 

4 [
73 6
1 79

] 0.96 0.99 0.93 159 

5 [
198 19

9 188
] 0.93 0.95 0.91 414 

6 [
383 16
19 394

] 0.96 0.95 0.96 812 

7 [
178 11

4 182
] 0.96 0.98 0.94 375 

8 [
238 14

6 261
] 0.96 0.98 0.95 519 

 

 

5.6.2.3 Support Vector Machine 

The results of applying SVM over balanced data are displayed in Table 5.11. Again both accuracies 

and precisions are great. 

 

5.6.2.4 Deep Learning 

In Table 5.12, the structure of semi-optimum network and the results of classification of fractured 

zones by using deep learning and balanced data are presented. Accuracies and precisions are lower 

than other classifiers. For sure one of reasons accuracies are not as high as other methods might 

be that the structure and parameters are not well optimized.  
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Table 5.11 The results of discrimination of fractured zones from non-fractured ones using Support Vector Machine. 

Balanced version of selected petrophysical logs are used. 

Well Confusion Matrix 
Accuracy or 

CCR 
Precision Recall  Support 

1 [
253 24
23 267

] 0.92 0.92 0.92 567 

2 [
414 35
29 392

] 0.93 0.93 0.92 870 

3 [
97 15
10 87

] 0.88 0.90 0.85 209 

4 [
83 2
14 60

] 0.91 0.81 0.97 159 

5 [
182 32

7 193
] 0.91 0.96 0.86 414 

6 [
414 18
12 368

] 0.96 0.97 0.95 812 

7 [
183 11

6 175
] 0.96 0.97 0.94 375 

8 [
261 7

1 250
] 0.98 1 0.97 519 

 

Table 5.12 The results of discrimination of fractured zones from non-fractured ones using Deep Learning. Balanced 

version of selected petrophysical logs are used. 

Well Confusion Matrix 
Accuracy 

or CCR 
Precision Recall  Structure (3 layers) 

1 [
242 31
29 275

] 0.90 0.90 0.90 [100   100   100] 

2 [
395 53
41 380

] 0.89 0.90 0.88 [100   100   100] 

3 [
101 11

7 90
] 0.91 0.93 0.89 [10   20   10] 

4 [
86 1
10 64

] 0.93 0.86 0.98 [10   100   10] 

5 [
178 28
11 185

] 0.90 0.94 0.87 [10   100   10] 

6 [
324 101
98 294

] 0.76 0.75 0.74 [10   20   10] 

7 [
173 20
16 165

] 0.90 0.91 0.89 [10   100   10] 

8 [
211 57
50 198

] 0.79 0.80 0.78 [10   20   10] 
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5.6.2.5 Conclusion of Classification using Balanced Data 

In Figure 5.6 CCR for different classifiers for balanced data are presented. Similar to imbalanced 

data (Figure 5.5), deep learning has presented the weakest discrimination, while both random 

forest and SVM presented the best discrimination. Here again random forest and SVM are selected 

for future studies, in which classifiers will be trained by balanced data and then will be applied to 

discriminate fractured zones from non-fractured ones in other wells.  

 

5.6.3 Comparison between Imbalanced and Balanced Data 

In Table 5.13, average accuracy and precision of the four utilized classifiers by using 

imbalanced/balanced data for eight studied wells are abstracted. 

 

 

Figure 5.6. Comparison between correct classification rates (CCR) of discrimination of fractured/non-fractured 

zones of balanced data by using different classifiers.  
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Table 5.13 Comparison between average accuracy and precision of different classifiers for eight studied wells while 

using imbalanced and balanced data. 

Well 

Imbalanced Data Balanced Data 

Average Accuracy or 

CCR 

Average 

Precision 

Average Accuracy or 

CCR 

Average 

Precision 

1 0.895 0.875 0.880 0.880 

2 0.912 0.902 0.905 0.900 

3 0.927 0.850 0.912 0.922 

4 0.962 0.810 0.925 0.900 

5 0.935 0.897 0.917 0.945 

6 0.915 0.905 0.902 0.902 

7 0.942 0.932 0.945 0.960 

8 0.937 0.900 0.927 0.940 

Average 0.928 0.884 0.914 0.919 

 

The difference between accuracy and precision might be an index of reliability of classification 

(Figure 5.7). The reason is that a low difference shows that classifiers have distinguished both 

fractured and non-fractured zones. As can be seen in Figure 5.7, the average difference between 

accuracy and precision for balanced data is almost zero, while for imbalanced data it is about 4 

percent. This means that classifiers for imbalanced data were biased toward non-fractured zones, 

which were the dominant class. The importance of balancing is highlighted in the case of wells 3 

and especially 4, where imbalance indexes were 2.18 and 5.73 respectively (Table 5.4). For 

example, in well 4, the difference between average accuracy and precision while using the original 

data is about 15 percent. After balancing, it declined to about 2 percent, amazing result! 

In abstract, it might be deduced that balancing is mandatory if the imbalance index is higher than 

1. 
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Figure 5.7. Average accuracy minus average precision of application of four utilized classifiers for balanced and 

imbalanced data.  

 

5.7 Generalization of Classification 

As aforementioned, in the studied oil field about 450 wells were drilled. Image and petrophysical 

logs were run in eight wells, which are being used in the current study, while just petrophysical 

logs were run in the rest. Therefore, classifiers have to be trained and utilized to discriminate 

fractured zones from non-fractured ones in the wells in which just petrophysical logs were run. In 

other words, making semi-image logs for fracture detection is the goal of this study. 

In this section, one well is considered a test and the remaining seven as training wells, to check the 

possibility of using trained classifiers for fracture detection in other wells. Random Forest (RF) 

and Support Vector Machine (SVM) are the classifiers that were used. Two scenarios were 

considered for training wells: using an imbalanced database and balanced sets. The results are 

reported as follows: 

 

 

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5 6 7 8 9

A
cc

u
ra

cy
 -

P
re

ci
si

o
n

Well

Imbalanced Balanced

Average 



92 

 

5.7.1 Classification by Imbalanced Dataset 

In Tables 5.14 through 5.21, confusion matrix, CCR, precision and recall resulted from 

classification when one well is a test and the others were utilized for training. For example, in 

Table 5.14, wells 2 through 8 were individually trained to discriminate fractured/non-fractured 

zones, and trained classifiers were used for well 1. Overall, CCR, precision and recalls are the 

same, which means that imbalanced data was suitable for fractured zone detection. Of course, in 

the case in which well 3 was the test, there are significant differences between accuracy and 

precision when well 4 was used as a testing set (Table 5.16). In the opposite situation (well 3: train, 

well 4: test, Table 5.17) a difference between accuracy and precision could also be observed. The 

imbalance index for wells 3 and 4 was the highest (Table 5.4). It could be interpreted that using 

highly imbalanced data for both training and test makes the classification biased toward the major 

class (non-fractured zones in the current study). 

 

Table 5.14 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 1 is test 

and imbalanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

2 

1 

[
1158 56

39 906
] [

1182 32
38 907

] 0.96 0.97 0.96 0.96 0.94 0.97 

3 [
1183 31

31 914
] [

1194 20
37 908

] 0.97 0.97 0.97 0.96 0.97 0.98 

4 [
1179 35

38 907
] [

1167 47
33 912

] 0.97 0.96 0.96 0.97 0.96 0.95 

5 [
1187 27

57 888
] [

1180 34
39 906 

] 0.96 0.97 0.94 0.96 0.97 0.96 

6 [
1195 19

46 899 
] [

1179 35
39 906 

] 0.97 0.97 0.95 0.96 0.98 0.96 

7 [
1171 43

54 891 
] [

1178 36
33 912 

] 0.96 0.97 0.94 0.97 0.95 0.96 

8 [
1188 26

43 902 
] [

1175 39
39 906 

] 0.97 0.96 0.95 0.96 0.97 0.96 
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Table 5.15 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 2 is test 

and imbalanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

2 

[
1597 10

38 1412
] [

1568 39
27 1423

] 0.98 0.98 0.97 0.98 0.99 0.97 

3 [
1595 12

47 1403
] [

1578 29
25 1425

] 0.98 0.98 0.97 0.98 0.99 0.98 

4 [
1593 14

41 1409
] [

1581 26
41 1409

] 0.98 0.98 0.97 0.97 0.99 0.98 

5 [
1597 10

32 1418
] [

1581 26
38 1412

] 0.99 0.98 0.98 0.97 0.99 0.98 

6 [
1591 16

42 1408
] [

1579 28
35 1415

] 0.98 0.98 0.97 0.98 0.99 0.98 

7 [
1594 13

26 1424
] [

1575 32
35 1415

] 0.99 0.98 0.98 0.98 0.99 0.98 

8 [
1584 23

31 1419
] [

1576 31
30 1420

] 0.98 0.98 0.98 0.98 0.98 0.98 

 

 

Table 5.16 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 3 is test 

and imbalanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

3 

[
1095 7

26 321
] [

1082 20
14 333

] 0.98 0.98 0.93 0.96 0.98 0.94 

2 [
1087 15

32 315
] [

1089 13
11 336

] 0.97 0.98 0.91 0.97 0.95 0.96 

4 [
1087 15

32 315
] [

1077 25
28 319

] 0.97 0.97 0.91 0.92 0.95 0.93 

5 [
1098 4

23 324
] [

1089 13
13 334

] 0.98 0.98 0.93 0.96 0.99 0.96 

6 [
1087 15

17 330
] [

1077 25
16 331

] 0.98 0.97 0.95 0.95 0.96 0.93 

7 [
1094 8

23 324
] [

1087 15
15 332

] 0.98 0.98 0.93 0.96 0.98 0.96 

8 [
1093 9

23 324
] [

1088 14
12 335

] 0.98 0.98 0.93 0.97 0.97 0.96 
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Table 5.17 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 4 is test 

and imbalanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

4 

[
1774 3

5 259
] [

1756 21
27 237

] 1 0.98 0.98 0.90 0.99 0.92 

2 [
1772 5

14 250
] [

1759 18
10 254

] 0.99 0.99 0.95 0.96 0.98 0.93 

3 [
1773 4

8 256
] [

1760 17
12 252

] 0.99 0.98 0.97 0.95 0.98 0.94 

5 [
1760 0

14 250
] [

1771 6
15 249

] 0.99 0.99 0.95 0.94 1 0.98 

6 [
1774 3

8 256
] [

1762 15
7 257

] 0.99 0.98 0.97 0.97 0.99 0.94 

7 [
1776 1

16 248
] [

1763 14
9 255

] 0.99 0.99 0.94 0.97 0.99 0.95 

8 [
1771 6

10 254
] [

1767 10
11 253

] 0.99 0.99 0.96 0.96 0.98 0.96 

 

 

Table 5.18 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 5 is test 

and imbalanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

5 

[
1045 10

27 663
] [

1029 26
16 674

] 0.98 0.98 0.96 0.98 0.99 0.96 

2 [
1039 16

18 672
] [

1023 32
11 679

] 0.98 0.98 0.97 0.98 0.98 0.95 

3 [
1049 6

13 677
] [

1036 19
10 680

] 0.98 0.98 0.98 0.99 0.99 0.97 

4 [
1037 18

21 669
] [

1032 23
15 675

] 0.98 0.98 0.97 0.98 0.97 0.97 

6 [
1041 14

15 675
] [

1039 16
17 673

] 0.98 0.98 0.98 0.98 0.98 0.98 

7 [
1042 13

25 665
] [

1037 18
16 674

] 0.98 0.98 0.96 0.98 0.98 0.97 

8 [
1037 18

29 661
] [

1031 24
26 664

] 0.97 0.97 0.96 0.96 0.97 0.97 
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Table 5.19 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 6 is test 

and imbalanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

6 

[
1488 4

19 1334
] [

1469 23
15 1338

] 0.99 0.99 0.99 0.99 1 0.98 

2 [
1475 17

17 1336
] [

1478 14
19 1334

] 0.99 0.99 0.99 0.99 0.99 0.99 

3 [
1469 23

34 1319
] [

1474 18
22 1331

] 0.98 0.99 0.97 0.98 0.98 0.99 

4 [
1479 13

24 1329
] [

1476 16
17 1336

] 0.99 0.99 0.98 0.99 0.99 0.99 

5 [
1483 9

24 1329
] [

1479 13
20 1333

] 0.99 0.99 0.98 0.99 0.99 0.99 

7 [
1469 23

20 1333
] [

1473 19
34 1319

] 0.98 0.98 0.99 0.97 0.98 0.99 

8 [
1482 10

21 1332
] [

1465 27
39 1314

] 0.99 0.98 0.98 0.97 0.99 0.98 

 

 

Table 5.20 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 7 is test 

and imbalanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

7 

[
952 12

5 620
] [

951 13
15 610

] 0.99 0.98 0.99 0.98 0.98 0.98 

2 [
955 9

8 617
] [

956 8
9 616

] 0.99 0.99 0.99 0.99 0.99 0.99 

3 [
954 10
19 606

] [
955 9

8 617
] 0.98 0.99 0.97 0.99 0.98 0.99 

4 [
956 8

8 617
] [

960 4
18 607

] 0.99 0.99 0.99 0.97 0.99 0.99 

5 [
953 11
17 608

] [
960 4
18 607

] 0.98 0.99 0.97 0.97 0.98 0.99 

6 [
940 24
12 613

] [
953 11
24 601

] 0.98 0.98 0.98 0.96 0.96 0.98 

8 [
958 6
21 604

] [
957 7
10 615

] 0.98 0.99 0.97 0.98 0.99 0.99 
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Table 5.21 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 8 is test 

and imbalanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

8 

[
1399 8

12 852
] [

1400 7
10 854

] 0.99 0.99 0.99 0.99 0.99 0.99 

2 [
1401 6

10 854
] [

1398 9
6 858

] 0.99 0.99 0.99 0.99 0.99 0.99 

3 [
1405 2

5 859
] [

1398 9
3 861

] 1 0.99 0.99 1 1 0.99 

4 [
1397 10

11 853
] [

1402 5
8 856

] 0.99 0.99 0.99 0.99 0.99 0.99 

5 [
1400 7

15 849
] [

1397 10
3 861

] 0.99 0.99 0.98 1 0.99 0.99 

6 [
1403 4

8 856
] [

1397 10
10 854

] 0.99 0.99 0.99 0.99 1 0.99 

7 [
1394 13

13 851
] [

1405 2
9 855

] 0.99 1 0.98 0.99 0.99 1 

 

 

In Figure 5.8 average CCRs (ACCR) for each test well when RF or SVM were utilized for 

classification are displayed. The amazing point is that in all cases ACCRs are higher than 96 

percent, while in previous studies, ACCRs while using Parzen, Bayesian [9] and case-based 

reasoning [10] classifiers were reported less than 70 percent. Therefore, RF and SVM are both 

great; however, the performance of RF is a little bit better than SVM (average in Figure 5.8). 

Surprisingly, the average accuracy for discrimination of fractured/non-fractured zones for well 4, 

which contain the most imbalanced data among the utilized dataset (Table 5.4), was the best. This 

shows that, at least in the current study, being imbalanced for test data is not important.  
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Figure 5.8. Comparison between average correct classification rate (ACCR) of discrimination of fractured/non-

fractured zones by using imbalanced data resulting from different classifiers over studied wells.  

 

In Figures 5.9 through 5.12 discrimination between fractured/non-fractured zones for wells 1 and 

3, while using RF and SVM classifiers were displayed, and could be comprised by real zones 

achieved from the interpretation of image logs. In these figures, fractured zones are addressed by 

1 and zero for non-fractured ones. All figures confirm validation of the results. However, by 

digging over the results, it was observed that errors occurred in the boundaries of fractured/non-

fractured zones. In the industry, fractured zone recognition is much more important than resolution 

of the boundaries; therefore, achieved results are highly encouraging.  
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Figure 5.9. Discrimination between fractured zones and non-fractured ones for well # 1, when imbalanced version 

of petrophysical logs of other wells were used for training of Random Forest classifier (0: non-FZ and 1: FZ).  
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Figure 5.10. Discrimination between fractured zones and non-fractured ones for well # 1, when imbalanced version 

of petrophysical logs of other wells were used for training of Support Vector Machine classifier (0: non-FZ and 1: 

FZ). 

 

2350

2400

2450

2500

2550

2600

2650

2700

0 1

Real

0 1

SVM 2

0 1

SVM 3

0 1

SVM 4

0 1

SVM 5

0 1

SVM 6

0 1

SVM 7

0 1

SVM 8



100 

 

        
 

Figure 5.11. Discrimination between fractured zones and non-fractured ones for well # 3, when imbalanced version 

of petrophysical logs of other wells were used for training of Random Forest classifier (0: non-FZ and 1: FZ). 
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Figure 5.12. Discrimination between fractured zones and non-fractured ones for well # 3, when imbalanced version 

of petrophysical logs of other wells were used for training of Support Vector Machine classifier (0: non-FZ and 1: 

FZ). 
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5.7.2 Classification by Balanced Dataset 

In Tables 5.22 through 5.29, the results of classification by using balanced data for training wells 

are presented. Like the imbalanced data, here accuracies, precisions and recalls are high and in the 

majority of wells are similar.  

In the case that well 4 was the test well (Table 5.25), it contains the highest imbalanced dataset 

(Table 5.4) and the difference between accuracy and precision are high. Comparison between 

Tables 5.17 and 5.25 shows that no matter if training data are balanced or imbalanced, for the 

imbalanced test well, the difference between accuracy and precision are considerably higher than 

balanced test wells.  

 

Table 5.22 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 1 is test 

and balanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

2 

1 

[
1176 38

45 900
] [

1174 40
46 899

] 0.96 0.96 0.95 0.95 0.96 0.96 

3 [
1189 25

28 917
] [

1182 32
27 918

] 0.98 0.97 0.97 0.97 0.97 0.97 

4 [
1186 28

48 897
] [

1185 29
48 897

] 0.96 0.96 0.95 0.95 0.97 0.97 

5 [
1183 31

42 903
] [

1189 25
43 902 

] 0.97 0.97 0.96 0.95 0.97 0.97 

6 [
1189 25

56 889 
] [

1178 36
40 905 

] 0.96 0.96 0.94 0.96 0.97 0.96 

7 [
1178 36

55 890 
] [

1189 25
33 912 

] 0.96 0.97 0.94 0.97 0.96 0.97 

8 [
1188 26

43 902 
] [

1184 30
47 898 

] 0.97 0.96 0.95 0.95 0.97 0.97 
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Table 5.23 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 2 is test 

and balanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

2 

[
1584 23

34 1416
] [

1578 29
32 1418

] 0.98 0.98 0.98 0.98 0.98 0.98 

3 [
1588 19

35 1415
] [

1587 20
21 1429

] 0.98 0.99 0.98 0.98 0.99 0.99 

4 [
1586 21

39 1411
] [

1573 34
36 1414

] 0.98 0.98 0.97 0.98 0.99 0.98 

5 [
1584 23

40 1410
] [

1575 32
28 1422

] 0.98 0.98 0.97 0.98 0.98 0.98 

6 [
1574 33

41 1409
] [

1557 50
65 1385

] 0.98 0.97 0.97 0.96 0.98 0.97 

7 [
1587 20

39 1411
] [

1575 33
31 1419

] 0.98 0.98 0.97 0.98 0.99 0.98 

8 [
1589 18

41 1409
] [

1566 41
62 1388

] 0.98 0.97 0.97 0.96 0.99 0.97 

 

 

Table 5.24 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 3 is test 

and balanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

3 

[
1096 6

26 321
] [

1084 18
14 333

] 0.98 0.98 0.98 0.98 0.98 0.98 

2 [
1092 10

14 333
] [

1087 15
9 338

] 0.98 0.98 0.98 0.99 0.99 0.99 

4 [
1092 10

14 333
] [

1090 12
9 338

] 0.98 0.99 0.97 0.98 0.99 0.98 

5 [
1098 4

22 325
] [

1092 10
17 330

] 0.98 0.98 0.97 0.98 0.98 0.98 

6 [
1088 14

18 329
] [

1077 25
16 331

] 0.98 0.97 0.97 0.96 0.98 0.97 

7 [
1084 18

18 329
] [

1071 31
16 331

] 0.98 0.97 0.97 0.98 0.99 0.98 

8 [
1091 11

23 324
] [

1091 11
15 332

] 0.98 0.98 0.97 0.96 0.99 0.97 
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Table 5.25 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 4 is test 

and balanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

4 

[
1772 5

11 253
] [

1763 14
7 257

] 0.99 0.99 0.95 0.97 0.98 0.95 

2 [
1776 1

14 250
] [

1765 12
8 256

] 0.99 0.99 0.95 0.97 1 0.96 

3 [
1772 45

11 253
] [

1754 23
30 234

] 0.97 0.97 0.96 0.89 0.85 0.91 

5 [
1775 2

17 247
] [

1763 14
13 251

] 0.99 0.99 0.94 0.95 0.99 0.95 

6 [
1771 6

23 241
] [

1757 20
14 250

] 0.99 0.98 0.91 0.95 0.98 0.93 

7 [
1775 2

14 250
] [

1763 14
14 250

] 0.99 0.99 0.95 0.95 0.99 0.95 

8 [
1774 3

23 241
] [

1763 14
10 254

] 0.99 0.99 0.91 0.96 0.99 0.95 

 

 

Table 5.26 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 5 is test 

and balanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

5 

[
1042 13

22 668
] [

1031 24
22 668

] 0.98 0.97 0.97 0.97 0.98 0.97 

2 [
1048 7

12 678
] [

1038 17
16 674

] 0.99 0.98 0.98 0.98 0.99 0.98 

3 [
1043 12

15 675
] [

1034 21
30 660

] 0.98 0.97 0.98 0.96 0.98 0.97 

4 [
1036 19

16 674
] [

1030 25
21 669

] 0.98 0.97 0.98 0.97 0.97 0.96 

6 [
1043 12

26 664
] [

1025 30
15 675

] 0.98 0.97 0.96 0.98 0.98 0.96 

7 [
1036 19

27 663
] [

1038 17
21 669

] 0.97 0.98 0.96 0.97 0.97 0.98 

8 [
1038 17

5 685
] [

1030 25
19 671

] 0.99 0.97 0.99 0.97 0.98 0.96 
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Table 5.27 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 6 is test 

and balanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

6 

[
1479 13

20 1333
] [

1474 18
19 1334

] 0.99 0.99 0.99 0.99 0.99 0.99 

2 [
1476 16

25 1328
] [

1474 18
21 1332

] 0.99 0.99 0.98 0.98 0.99 0.99 

3 [
1471 21

18 1335
] [

1483 9
20 1333

] 0.99 0.99 0.99 0.99 0.98 0.99 

4 [
1476 16

22 1331
] [

1459 33
12 1341

] 0.99 0.98 0.98 0.99 0.99 0.98 

5 [
1480 12

22 1331
] [

1474 18
37 1316

] 0.99 0.98 0.98 0.97 0.99 0.99 

7 [
1478 14

21 1332
] [

1480 12
18 1335

] 0.99 0.99 0.98 0.99 0.99 0.99 

8 [
1472 20

26 1327
] [

1477 15
17 1336

] 0.98 0.99 0.98 0.99 0.99 0.99 

 

 

Table 5.28 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 7 is test 

and balanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

7 

[
954 10
12 613

] [
956 8

7 618
] 0.99 0.99 0.98 0.99 0.98 0.99 

2 [
957 7

4 621
] [

955 9
9 616

] 0.99 0.99 0.99 0.99 0.99 0.99 

3 [
949 15
10 615

] [
944 20

9 616
] 0.98 0.98 0.98 0.99 0.98 0.97 

4 [
958 6
21 604

] [
938 26
20 605

] 0.98 0.97 0.97 0.97 0.99 0.96 

5 [
954 10
16 609

] [
938 26
20 605

] 0.98 0.97 0.97 0.97 0.98 0.96 

6 [
955 9
17 608

] [
950 14
14 611

] 0.98 0.98 0.97 0.98 0.99 0.98 

8 [
946 18
13 612

] [
953 11
10 615

] 0.98 0.99 0.98 0.98 0.97 0.98 
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Table 5.29 Results of discrimination between fractured/non-fractured zones using RF and SVM when well 8 is test 

and balanced data of other wells are train. 

Training 

Wells 

Test 

Well 

Confusion Matrix Accuracy or CCR Precision Recall 

RF SVM RF SVM RF SVM RF SVM 

1 

8 

[
1395 12

4 860
] [

1403 4
9 855

] 0.99 0.99 1 0.99 0.99 1 

2 [
1406 1

1 863
] [

1403 4
4 860

] 1 1 1 1 1 1 

3 [
1404 3

7 857
] [

1404 3
2 862

] 1 1 0.99 1 1 1 

4 [
1399 8

8 856
] [

1402 5
8 856

] 0.99 0.99 0.99 0.99 0.99 0.99 

5 [
1398 9

7 857
] [

1395 12
3 861

] 0.99 0.99 0.99 1 0.99 0.99 

6 [
1391 16

10 854
] [

1406 1
14 850

] 0.99 0.99 0.99 0.98 0.98 1 

7 [
1393 14

8 856
] [

1402 5
4 860

] 0.99 1 0.99 1 0.98 0.99 

 

In Figure 5.13, average CCRs (ACCR) for each test well while using balanced data for training 

are displayed. Here, similar to using imbalanced data for training (Figure 5.8), all ACCRs are 

higher than 96 percent. Therefore, no matter if balanced or imbalanced data were used for training, 

discrimination between fractured/non-fractured zones are acceptable. Here again, the average 

accuracy for RF is a little bit better than SVM (average in Figure 5.13). 

Comparison between Figures 5.8 and 5.13 shows that the average accuracy for well 4 using 

imbalanced data is better than using balanced data. Therefore, based on the studied case, in 

imbalanced wells, imbalanced data are welcome.  
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Figure 5.13. Comparison between average correct classification rate (ACCR) of discrimination of fractured/non-

fractured zones by using balanced data resulting from different classifiers over studied wells.  

 

In Figures 5.14 through 5.17, discrimination between fractured/non-fractured zones for wells 1 

and 3 using balanced data for training wells is presented. Here again all figures confirm validation 

of the results, and digging over the results, also showed that errors occurred in the boundaries of 

fractured/non-fractured zones.  
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Figure 5.14. Discrimination between fractured zones and non-fractured ones for well # 1, when balanced version of 

petrophysical logs of other wells were used for training of Random Forest classifier (0: non-FZ and 1: FZ).  
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Figure 5.15. Discrimination between fractured zones and non-fractured ones for well # 1, when balanced version of 

petrophysical logs of other wells were used for training of Support Vector Machine classifier (0: non-FZ and 1: FZ).  
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Figure 5.16. Discrimination between fractured zones and non-fractured ones for well # 3, when balanced version of 

petrophysical logs of other wells were used for training of Random Forest classifier (0: non-FZ and 1: FZ).  
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Figure 5.17. Discrimination between fractured zones and non-fractured ones for well # 3, when balanced version of 

petrophysical logs of other wells were used for training of Support Vector Machine classifier (0: non-FZ and 1: FZ).  
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5.7.3 Comparison between Balanced/Imbalanced Dataset 

In Figures 5.8 and 5.13, average CCRs of fracture zone classification by RF and SVM, while one 

of the wells were test and the other wells were training, are presented. In the mentioned figures, 

imbalanced and balanced data were utilized for training wells respectively. Here, average CCRs 

achieved from both RF and SVM classifiers are calculated, and results are reported (Figure 5.18). 

Based on Figure 5.18, there are not considerable differences between the results of balanced and 

imbalanced data. Therefore, it could be concluded that classification is not sensitive to the 

balancing of training data.   

 

Figure 5.18. Comparison between average correct classification rate (ACCR) of discrimination of fractured/non-

fractured zones by using balanced and imbalanced data over studied wells.  
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data were used for training of other wells, accuracy, precision and recall while well 3 was a training 

well were 98, 97 and 97 percent respectively (RF classifier). In this table, while well 6 was a 

training well, accuracy, precision and recall were 96, 94 and 97 percent respectively. In this case, 

both performance and harmony when well 3 was used as training are better.  

Now, the question is when image logs are not available for a well, which well should be considered 

the training well? Ambiguity in decision-making leads to data fusion. Integrating the results 

achieved from different classifiers and all wells, to achieve more reliable, robust and accurate 

discrimination is the goal of data fusion. Based on the literature, OWA was selected for fusion. 

Optimistic (OOWA) and pessimistic (POWA) scenarios were applied over the 14 results of 

classifiers, and optimum 𝛼, which minimizes the sum of squared error (SSE), was found. It should 

be emphasized that SSE in the current study is equal to the number of misclassified data. In other 

words, SSE is equal to false negative (FN) plus false positive (FP) in Figure 5.4.  

Results of optimization of 𝛼 for all wells are presented in Figures 5.19 (for imbalanced data) and 

5.20 (for balanced data). As can be seen in those figures, accuracy increased to about 100%. These 

are amazing results, in comparison to the best results (about 72%) that have been published so far 

[9, 10].  

It should be emphasized that in all cases SSE for OOWA and POWA are equal (Figures 5.19 and 

5.20); therefore, there is no priority for one of them. 𝛼𝑜𝑝𝑡 differs in the range of 0.09 to 0.13 in 

optimistic and 0.89 to 0.92 in pessimistic scenarios. In general, 𝛼𝑜𝑝𝑡 could be considered equal to 

0.11 and 0.91 for optimistic and pessimistic scenarios respectively. 

Code that is written for OWA is in appendix M. 
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𝛼 

Well # 1 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.12 No. of Errors = 14 
𝐶𝐶𝑅 =  

(2159 − 14)

2159
≈ 1 

𝛼𝑜𝑝𝑡 = 0.91 No. of Errors = 14  
𝐶𝐶𝑅 =  

(2159 − 14)

2159
≈ 1 

 

𝛼 

Well # 2 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.12 No. of Errors = 4 
𝐶𝐶𝑅 =  

(3057 − 4)

3057
≈ 1 

𝛼𝑜𝑝𝑡 = 0.91 No. of Errors = 4 
𝐶𝐶𝑅 =  

(3057 − 4)

3057
≈ 1 
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𝛼 

Well # 3 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.10 No. of Errors = 3 
𝐶𝐶𝑅 =  

(1449 − 3)

1449
≈ 1 

𝛼𝑜𝑝𝑡 = 0.90 No. of Errors = 3 
𝐶𝐶𝑅 =  

(1449 − 3)

1449
≈ 1 

 

𝛼 

Well # 4 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.10 No. of Errors = 1 
𝐶𝐶𝑅 =  

(2041 − 1)

2041
≈ 1 

𝛼𝑜𝑝𝑡 = 0.90 No. of Errors = 1 
𝐶𝐶𝑅 =  

(2041 − 1)

2041
≈ 1 
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𝛼 

Well # 5 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.12 No. of Errors = 9 
𝐶𝐶𝑅 =  

(1745 − 9)

1745
≈ 1 

𝛼𝑜𝑝𝑡 = 0.91 No. of Errors = 9 
𝐶𝐶𝑅 =  

(1745 − 9)

1745
≈ 1 

 

𝛼 

Well # 6 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.10 No. of Errors = 3 
𝐶𝐶𝑅 =  

(2845 − 3)

2845
≈ 1 

𝛼𝑜𝑝𝑡 = 0.90 No. of Errors = 3 
𝐶𝐶𝑅 =  

(2845 − 3)

2845
≈ 1 
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𝛼 

Well # 7 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.09 No. of Errors = 3 
𝐶𝐶𝑅 =  

(1589 − 3)

1589
≈ 1 

𝛼𝑜𝑝𝑡 = 0.89 No. of Errors = 3 
𝐶𝐶𝑅 =  

(1589 − 3)

1589
≈ 1 

 

𝛼 

Well # 8 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.13 No. of Errors = 2 
𝐶𝐶𝑅 =  

(2271 − 2)

2271
≈ 1 

𝛼𝑜𝑝𝑡 = 0.92 No. of Errors = 2 
𝐶𝐶𝑅 =  

(2271 − 2)

2271
≈ 1 

 

Figure 5.19 14 results of classifications by using IMBALANCED training data were fused using OWA data fusion 

method, in two scenarios (optimistic and pessimistic). The results of optimization of 𝛼, number of errors, and 

approximate CCR for all studied wells are presented. 
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𝛼 

Well # 1 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.12 No. of Errors = 16 
𝐶𝐶𝑅 =  

(2159 − 16)

2159
≈ 1 

𝛼𝑜𝑝𝑡 = 0.91 No. of Errors = 16  
𝐶𝐶𝑅 =  

(2159 − 16)

2159
≈ 1 

 

𝛼 

Well # 2 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.10 No. of Errors = 3 
𝐶𝐶𝑅 =  

(3057 − 3)

3057
≈ 1 

𝛼𝑜𝑝𝑡 = 0.90 No. of Errors = 3 
𝐶𝐶𝑅 =  

(3057 − 3)

3057
≈ 1 
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𝛼 

Well # 3 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.12 No. of Errors = 4 
𝐶𝐶𝑅 =  

(1449 − 4)

1449
≈ 1 

𝛼𝑜𝑝𝑡 = 0.91 No. of Errors = 4 
𝐶𝐶𝑅 =  

(1449 − 4)

1449
≈ 1 

 

𝛼 

Well # 4 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.10 No. of Errors = 0 
𝐶𝐶𝑅 =  

(2041 − 0)

2041
= 1 

𝛼𝑜𝑝𝑡 = 0.90 No. of Errors = 0 
𝐶𝐶𝑅 =  

(2041 − 0)

2041
= 1 
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𝛼 

Well # 5 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.09 No. of Errors = 9 
𝐶𝐶𝑅 =  

(1745 − 9)

1745
≈ 1 

𝛼𝑜𝑝𝑡 = 0.89 No. of Errors = 9 
𝐶𝐶𝑅 =  

(1745 − 9)

1745
≈ 1 

 

𝛼 

Well # 6 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.10 No. of Errors = 2 
𝐶𝐶𝑅 =  

(2845 − 2)

2845
≈ 1 

𝛼𝑜𝑝𝑡 = 0.90 No. of Errors = 2 
𝐶𝐶𝑅 =  

(2845 − 2)

2845
≈ 1 
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𝛼 

Well # 7 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.09 No. of Errors = 3 
𝐶𝐶𝑅 =  

(1589 − 3)

1589
≈ 1 

𝛼𝑜𝑝𝑡 = 0.89 No. of Errors = 3 
𝐶𝐶𝑅 =  

(1589 − 3)

1589
≈ 1 

 

𝛼 

Well # 8 

OOWA POWA 

𝛼𝑜𝑝𝑡 = 0.10 No. of Errors = 0 
𝐶𝐶𝑅 =  

(2271 − 0)

2271
= 1 

𝛼𝑜𝑝𝑡 = 0.90 No. of Errors = 0 
𝐶𝐶𝑅 =  

(2271 − 0)

2271
= 1 

 

Figure 5.20 14 results of classifications by using BALANCED training data were fused using OWA data fusion 

method, in two scenarios (optimistic and pessimistic). The results of optimization of 𝛼, number of errors, and 

approximate CCR for all studied wells are presented. 

 

 



122 

 

The average number of errors (FP plus FN) for RF, SVM, and OWA in balanced and imbalanced 

scenarios in Table 5.30 are reported. This table helps to rank the methods and kinds of the training 

database. Based on Table 5.30, accuracy of classifiers while using imbalanced data were a little 

bit better than the accuracy using balance data. Better results were achieved from balanced OWA. 

Table 5.30 also highlights that data fusion has improved the results more than 85 percent. 

Approximately, the summation of the number of errors for data fusion declined from about 300 to 

40.  

 

Table 5.30 Average FP plus FN for all utilized methods.  

Well 
Imbalance Balance Imbalance 

OWA 
Balance OWA 

RF SVM RF SVM 

1 78 72 75 72 14 16 

2 51 63 61 73 4 3 

3 36 33 30 31 3 4 

4 14 27 25 30 1 0 

5 35 38 32 43 9 9 

6 37 42 38 38 3 2 

7 24 23 24 29 3 3 

8 18 14 15 11 2 0 

Summation 293 312 300 327 39 37 
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5.11 ROC (Receiver Operating Characteristic) Curve Analysis 

ROC (Receiver Operating Characteristic) curve is a fundamental graphical tool evaluation for a 

range of diagnostic test results. ROC curve plots the true positive rate (sensitivity) of a test versus 

its false positive rate (specificity) for different cut-off points of a parameter. ROC curve is a 

graphical plot to display discrimination of a binary classifier system by the trade-off relationship 

between sensitivity and specificity for all possible thresholds.  

Sensitivity is the probability of a depth will be positive given as a fracture zone. Specificity is the 

probability of a depth will be negative given as a nonfracture zone. The accuracy of a test is 

measured by the area under the ROC curve (AUC). AUC is the area between the curve and the x-

axis.  An area of 1 represents a perfect test, while an area of .5 represents a worthless test. The 

closer the curve follows the left-upper corner of the plot, the more accurate the test.  

The most appropriate threshold or cut-off for a classifier has the highest true positive rate together 

with the lowest false positive rate [86]. 

In figures 5.21-5.24, the ROC curve for both balance and imbalance data(one well as train and one 

well as a test), while SVM and RF classifiers are utilized, are shown respectively. (Appendix N & 

O) 

As these figures show, ROC analysis provides important information about discrimination 

performance: the closer the apex of the curve toward the upper left corner, the greater the dis-

criminatory ability of the classifier. This is measured quantitatively by the AUC such that a value 

of >0.96 indicates excellent discriminatory ability.  
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Figure 5.21 Receiver operating characteristic curve for SVM classifier on balanced data and while one well is as a 

train an another is as a test. 

 

 

 

 

Figure 5.22 Receiver operating characteristic curve for SVM classifier on imbalanced data and while one well is as 

a train an another is as a test. 
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Figure 5.23 Receiver operating characteristic curve for RF classifier on balanced data and while one well is as a 

train an another is as a test. 

 

 

 

 

Figure 5.24 Receiver operating characteristic curve for RF classifier on imbalanced data and while one well is as a 

train an another is as a test. 
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6 
 

Conclusions & Future Directions 

 

 

6.1 Conclusions 

In the current study image and petrophysical logs of a carbonate-fractured reservoir of a giant oil 

field in Iran were available. Therefore, conclusions dependent on the utilized database are not 

necessarily general. Contributions are briefly addressed as follows: 

• Statistical studies showed that correlation coefficients between fractured zones and 

various logs differ in the range of -0.25 and 0.25. Hence, because of low correlation, 

fractured zone detection using one log is impossible.  

• Statistical studies also showed that correlation coefficient between some of the logs are 

considerably high. In these cases, just one of the logs were selected. For instance, 

correlation coefficients between shale, CGR, potassium and thorium are often higher than 

0.8, which is compatible with their physical behavior. CGR was selected in this case.  
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• Histograms of petrophysical logs in fractured/non-fractured zones showed that 

discrimination between those zones in 1D feature space (just using one of the 

petrophysical logs) is impossible. 2D and 3D graphs showed that better discrimination 

between fractured/non-fractured zones is possible by increasing the feature space. This 

leads to using classifiers for fractured zone detection in high feature space. 

• 10 logs containing: caliper, CGR, SGR, RHOB, DT, PEF, NPHI, SW, effective and total 

porosity, were selected for fractured zone detection.  

• Studies showed that in studied wells, the number of fractured zones are less than non-

fractured ones. Imbalance index (UI) was defined to represent imbalanced situations in 

different wells. It showed that wells 6 (UI = 0.1) and 4 (UI = 5.73) are the most balanced 

and imbalanced wells respectively. 

• Decision tree (DT), random forest (RF), support vector machine (SVM) and deep learning 

(DL) were applied to discriminate fractured zones from non-fractured ones by using 

selected petrophysical logs in each well. Database were split into train (70 %) and test (30 

%) and classifications were utilized for imbalanced and balanced databases. Results 

showed that RF and SVM, with an average CCR of about 95%, give better discrimination 

in comparison with DT and DL. Also, imbalanced data give better accuracy in comparison 

to balanced ones.  

• One of the most important outputs was about imbalanced wells (well 4: UI = 5.73 and 

well 3: UI = 2.18), in which the difference between average accuracy and precision using 

imbalanced data is high. This shows that classifiers have biases to non-fractured zones, 

and using balanced data is important. For example, in well 4, while using imbalanced 
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data, average accuracy was 15 percent higher than average precision, which dropped to 

about 2 percent by switching to balanced data.  

• RF and SVM were selected for the generalization step, in which classifiers were tested in 

one of the wells and trained by the other wells. In this step, average accuracy was about 

98 percent.  These are unbelievable results. CCRs for imbalanced datasets were a little bit 

better than balanced ones.  

• In the generalization stage, there was not an observed considerable difference between 

the results of balanced and imbalanced data. Therefore, it was concluded that 

classification during generalization is not sensitive to balancing of the training data. 

• Examining the results showed that errors occurred in the boundaries of fractured/non-

fractured zones. In the industry, fractured zone recognition is important, not the resolution 

of boundaries. So, achieved results are highly encouraging.  

• In the generalization step, 14 results were achieved for each well. Seven results were 

obtained when RF was utilized for training of 7 wells, and the classifier was applied to 

the remaining well, which was used as test well. Seven similar results were achieved while 

using SVM. Ordered weighted averaging was applied to integrate 14 results together, in 

order to achieve one unique, more accurate and reliable result. The accuracy for outputs 

for all wells were about 100 percent, amazing! It should be emphasized that the best 

accuracy in previous studies was about 72 %.  

• In all cases SSE for optimistic and pessimistic OWA were similar. 0.11 and 0.91 were 

reported as 𝛼𝑜𝑝𝑡 for optimistic and pessimistic scenarios respectively. 
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• On average, the summation of the number of errors for data fusion declined from about 

300 to 40. So, data fusion decreases the number of errors of classifiers by more than 85 

percent.  

 

6.2 Possible Future Directions 

Fractures contain more than 10 properties, the recognition of some of which are highly important 

in oil reservoirs. For example, fracture could be open or closed. Open fractures are a high 

permeable path for fluids, while closed ones are a barrier. Aperture, roughness, spacing, length, 

filling and filler of open fractures have a considerable effect on porosity, permeability and stability 

of the reservoir. Also, orientation (dip and dip direction) of fractures are the main factors in fracture 

network simulation.  

In the current study, fractured zones were discriminated from non-fractured ones. The accuracy of 

discrimination was about 100 percent. Now the question is how open fractured zones could be 

discriminated from closed fractured zones. Or how an estimation of aperture, or other properties 

would be assigned to open fractures. Answers to those kinds of questions will help in making semi-

image logs, which are so beneficial, and might be the topic of future research.   
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Appendix A  
 

Code: Decision Tree  

 
#!/usr/bin/env python 

# coding: utf-8 

import numpy as np 

import pandas as pd 

import xlsxwriter 

from pandas import DataFrame 

import matplotlib.pyplot as plt 

import seaborn as sns 

plt.style.use('classic') 

get_ipython().run_line_magic('matplotlib', 'inline') 

import pylab as plot 

import matplotlib as mpl 

path119 = ('D:\Documents\Haleh CSCI-Thesis\Data (Haleh)\Final Data For 

Start\Petrophysics\Petrophysics2\\GS#119.xlsx') 

x = pd.ExcelFile(path119) 

df119 = x.parse('Sheet1') 

zeros = df119.loc[(df119['Fracture'] == 0)].sample(n = 945) 

ones = df119.loc[(df119['Fracture'] == 1)]  

from IPython.display import display 

from IPython.display import Image 

dfbalance = pd.concat([zeros, ones]) 

dfbalance 

from sklearn.model_selection import train_test_split 

X1 = dfbalance.drop('CALI', axis=1) 

X = X1.drop('Fracture', axis=1) 

y = X1['Fracture'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) 

from sklearn.tree import DecisionTreeClassifier 

dtree = DecisionTreeClassifier() 

dtree.fit(X_train,y_train) 

predictions = dtree.predict(X_test) 

from sklearn.metrics import classification_report,confusion_matrix 

print(confusion_matrix(y_test,predictions)) 

print('\n') 

print(classification_report(y_test,predictions)) 

from sklearn.ensemble import RandomForestClassifier 

rfc = RandomForestClassifier(n_estimators=500) 

rfc.fit(X_train, y_train) 

rfc_pred = rfc.predict(X_test) 

print(confusion_matrix(y_test,rfc_pred )) 

print('\n') 

print(classification_report(y_test,rfc_pred )) 
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Appendix B  
 

Code: Random Forest  

 
#!/usr/bin/env python 

# coding: utf-8 

import numpy as np 

import pandas as pd 

import xlsxwriter 

from pandas import DataFrame 

import matplotlib.pyplot as plt 

import seaborn as sns 

plt.style.use('classic') 

get_ipython().run_line_magic('matplotlib', 'inline') 

import pylab as plot 

import matplotlib as mpl 

path119 = ('D:\Documents\Haleh CSCI-Thesis\Data (Haleh)\Final Data For 

Start\Petrophysics\Petrophysics2\\GS#119.xlsx') 

x = pd.ExcelFile(path119) 

df119 = x.parse('Sheet1') 

zeros = df119.loc[(df119['Fracture'] == 0)].sample(n = 945) 

ones = df119.loc[(df119['Fracture'] == 1)]  

from IPython.display import display 

from IPython.display import Image 

dfbalance = pd.concat([zeros, ones]) 

dfbalance 

from sklearn.model_selection import train_test_split 

X1 = dfbalance.drop('CALI', axis=1) 

X = X1.drop('Fracture', axis=1) 

y = X1['Fracture'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) 

from sklearn.ensemble import RandomForestClassifier 

rfc = RandomForestClassifier(n_estimators=500) 

rfc.fit(X_train, y_train) 

rfc_pred = rfc.predict(X_test) 

print(confusion_matrix(y_test,rfc_pred )) 

print('\n') 

print(classification_report(y_test,rfc_pred )) 
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Appendix C 
 

Code: Decision Tree Visualization 
 

 

#!/usr/bin/env python 

# coding: utf-8 

# In[1]: 

import numpy as np 

import pandas as pd 

import xlsxwriter 

from pandas import DataFrame 

import matplotlib.pyplot as plt 

import seaborn as sns 

plt.style.use('classic') 

get_ipython().run_line_magic('matplotlib', 'inline') 

import pylab as plot 

import matplotlib as mpl 

# In[2]: 

path119 = ('D:\Documents\Haleh CSCI-Thesis\Data (Haleh)\Final Data For 

Start\Petrophysics\Petrophysics2\\GS#119.xlsx') 

x = pd.ExcelFile(path119) 

df119 = x.parse('Sheet1') 

# In[3]:from sklearn.tree import export_graphviz 

# In[4]:from sklearn.model_selection import train_test_split 

# In[5]:X1 = df119.drop('CALI', axis=1) 

# In[6]:X = X1.drop('Fracture', axis=1) 

# In[7]:y = X1['Fracture'] 

# In[8]:X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) 

# In[9]:from sklearn.tree import DecisionTreeClassifier 

# In[10]:dtree = DecisionTreeClassifier() 

# In[11]:dtree.fit(X_train,y_train) 

# In[12]:predictions = dtree.predict(X_test) 

# In[13]:from sklearn.metrics import classification_report,confusion_matrix 

# In[14]: 

print(confusion_matrix(y_test,predictions)) 

print('\n') 

print(classification_report(y_test,predictions)) 

# In[15]:from sklearn import tree 

# In[16]: 

with open("dtree.txt", "w") as f: 

    f = tree.export_graphviz(dtree, out_file=f) 

# In[17]: 

with open("dtree.dot", "w") as f: 

    f = tree.export_graphviz(dtree, out_file=f) 

# In[18]:dot -Tpdf dtree.dot -o dtree.pdf 

features = list (df119.columns[1:]) 

features 

# In[ ]:features = list (X.columns[1:]) 

features 
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# In[ ]:import pydot 

from IPython.display import Image 

from sklearn.externals.six import StringIO 

# In[ ]: 

dot_data = StringIO() 

export_graphviz(dtree, out_file=dot_data, feature_names=features, filled=True) 

graph = pydot.graph_from_dot_data(dot_data.getvalue()) 

Image(graph[0].create_png()) 
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Appendix D 
 

Code: Support Vector Machine 
 

 

#!/usr/bin/env python 

# coding: utf-8 

import numpy as np 

import pandas as pd 

import xlsxwriter 

from pandas import DataFrame 

import matplotlib.pyplot as plt 

import seaborn as sns 

plt.style.use('classic') 

get_ipython().run_line_magic('matplotlib', 'inline') 

import pylab as plot 

import matplotlib as mpl 

from sklearn.model_selection import train_test_split 

path119 = ('D:\Documents\Haleh CSCI-Thesis\Data (Haleh)\Final Data For 

Start\Petrophysics\Petrophysics2\\GS#119.xlsx') 

x = pd.ExcelFile(path119) 

df119 = x.parse('Sheet1') 

X1 = df119.drop('CALI', axis=1) 

X = X1.drop('Fracture', axis=1) 

y = X1['Fracture'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101) 

from sklearn.svm import SVC 

model = SVC() 

model.fit(X_train,y_train) 

predictions = model.predict(X_test) 

from sklearn.metrics import classification_report,confusion_matrix 

print(confusion_matrix(y_test,predictions)) 

print('\n') 

print(classification_report(y_test,predictions)) 

from sklearn.model_selection import GridSearchCV 

param_grid = {'C':[0.1,1,10,100,1000],'gamma':[1,0.1,0.01,0.001,0.0001]} 

grid = GridSearchCV(SVC(),param_grid,verbose=3) 

grid.fit(X_train,y_train) 

grid.best_params_ 

grid.best_estimator_ 

grid_predictions = grid.predict(X_test) 

print(confusion_matrix(y_test,grid_predictions)) 

print('\n') 

print(classification_report(y_test,grid_predictions)) 
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Appendix E 
 

Code: Deep Learning 
 

# -*- coding: utf-8 -*- 

"""DeepLernWell.ipynb 

Automatically generated by Colaboratory. 

Original file is located at 

    https://colab.research.google.com/drive/1zWaVcXduLeQwrcm8M5UPWRxTfcL37M3d 

""" 

# Commented out IPython magic to ensure Python compatibility. 

import tensorflow as tf 

import numpy as np 

import pandas as pd 

from pandas import DataFrame 

import matplotlib.pyplot as plt 

import seaborn as sns 

plt.style.use('classic') 

# %matplotlib inline 

import pylab as plot 

import matplotlib as mpl 

import pandas.util.testing as tm 

from google.colab import files 

uploaded = files.upload() 

import io 

df318 = pd.read_excel(io.BytesIO(uploaded['GS#318.xlsx'])) 

df318 

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

X1 = df318.drop('CALI', axis=1) 

X318 = X1.drop('Fracture', axis=1) 

y318 = X1['Fracture'] 

scaler.fit(X318) 

scaled_feature = scaler.fit_transform(X318) 

df_feat = pd.DataFrame(scaled_feature,columns=X1.columns[:-1]) 

df_feat.head() 

X = df_feat.drop('Fracture', axis = 1) 

y = X1['Fracture'] 

from tensorflow import feature_column 

from tensorflow.keras import layers 

from sklearn.model_selection import train_test_split 

tf.keras.backend.floatx() 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) 

def train_input_fn(X_train, y_train): 

    dataset = tf.data.Dataset.from_tensor_slices((dict(X_train), y_train)) 

    dataset = dataset.shuffle(1000).repeat().batch(10) 

    return dataset 

def eval_input_fn(X_test, y_test): 

    dataset = tf.data.Dataset.from_tensor_slices((dict(X_test), y_test)) 

    return dataset.shuffle(1000).repeat().batch(10) 
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my_feature_columns = [] 

for key in (X_train).keys(): 

 my_feature_columns.append(tf.feature_column.numeric_column(key=key)) 

optimizer_adam= tf.optimizers.Adam(learning_rate=0.01) 

model=tf.estimator.DNNClassifier( feature_columns=my_feature_columns, hidden_units=[100,100, 100], 

optimizer=optimizer_adam, n_classes=2, model_dir='models/iris') 

model.train(input_fn=lambda:train_input_fn(X_train, y_train), steps=200) 

eval_results3 = model.evaluate(input_fn=lambda:eval_input_fn(X_test, y_test), steps=1) 

eval_results3 

eval_results2 

eval_results 

print('AUC: {}'.format(eval_results['auc'])) 

print('AUC: {}'.format(eval_results2['auc'])) 

print('AUC: {}'.format(eval_results3['auc'])) 
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Appendix F  
 

Code: Correlation Coefficient 
 

#!/usr/bin/env python 

# coding: utf-8 

pd.read_excel('GS#119.xls')  

import pandas as pd 

pd.read_excel('GS#119.xls')  

import xlsxwriter 

import pandas as pd 

from pandas import DataFrame 

path = ('D:\Documents\Haleh CSCI-Thesis\Data (Haleh)\Final Data For 

Start\Petrophysics\Petrophysics2\\GS#119.xlsx') 

xl = pd.ExcelFile(path) 

print(xl.sheet_names) 

df1 = xl.parse('Sheet1') 

df1.count() 

df1.groupby('group').apply(lambda d: d.filter(like=df1.drop('Fracture', axis = 1)).corrwith(df1.['Fracture'])) 

df2 = df1.drop('Fracture', axis = 1) 

df3 = df1['Fracture'] 

df1.apply(lambda d: d.filter(like=df1.drop('Fracture', axis = 1)).corrwith(df1['Fracture'])) 

corr = pg.pairwise_corr(df1, columns=[['Fracture'], df2], method='pearson') 

import pingouin as pg 

corrMatrix = df1.corr() 

corrMatrix 

# In[ ]: 

 

 

 

 

 

 

 

 

 

 

 



146 

 

 

Appendix G 
 

Histogram and corresponding PDF for different logs in fractured zones and 

non-fractured ones in wells 2 and 5 
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Figure A.1 Histogram and corresponding PDF for 

different logs in fractured zones and non-fractured ones 

in well 2. 
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Figure A.2 Histogram and corresponding PDF for 

different logs in fractured zones and non-fractured 

ones in well 5. 
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Appendix H 
 

Code: Histogram and corresponding PDF for different logs in fractured zones 

and non-fractured ones 
#!/usr/bin/env python 

# coding: utf-8 

import numpy as np 

import pandas as pd 

import xlsxwriter 

from pandas import DataFrame 

import matplotlib.pyplot as plt 

import seaborn as sns 

plt.style.use('classic') 

get_ipython().run_line_magic('matplotlib', 'inline') 

path119 = ('D:\Documents\Haleh CSCI-Thesis\Data (Haleh)\Final Data For 

Start\Petrophysics\Petrophysics2\\GS#119.xlsx') 

x = pd.ExcelFile(path119) 

df119 = x.parse('Sheet1') 

df119a = df119.drop('Fracture', axis = 1) 

df119Logs = df119a.drop('DEPTH', axis = 1) 

X = df119Logs.iloc[1:1216, :] 

Y = df119Logs.iloc[1216::, :] 

plt.hist(X['CALI'], bins=10, alpha = 0.5, color = 'r') 

plt.figure(figsize=(16,9)) 

try: 

    sns.distplot(X["CALI"], bins=9, label="CALI(NF)") 

    sns.distplot(Y["CALI"], bins=9, label="CALI(F)") 

except RuntimeError as re: 

    if str(re).startswith("Selected KDE bandwidth is 0. Cannot estimate density."): 

        sns.distplot(X['CALI'], kde_kws={'bw': 0.1}) 

    else: 

        raise re 

plt.legend() 

import pylab as plot 

import matplotlib as mpl   

mpl.rc('font',family='Times New Roman') 

params = {'legend.fontsize': 27, 

          'legend.handlelength': 2 

          } 

plot.rcParams.update(params) 

CGR_PDF = plt.figure(figsize=(16,9)) 

try: 

    sns.distplot(X["CGR"],color="b", bins=9, label="CGR(NF)") 

    sns.distplot(Y["CGR"],color="r", bins=9, label="CGR(F)") 

except RuntimeError as re: 

    if str(re).startswith("Selected KDE bandwidth is 0. Cannot estimate density."): 

        sns.distplot(X['CGR'], kde_kws={'bw': 0.1}) 

    else: 

        raise re 
plt.legend() 

plt.xlabel('Cumulative  Gamma Ray', size = 27, fontname="Times New Roman") 
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plt.ylabel('Frequency', size = 27, fontname="Times New Roman") 

plt.xticks(size = 25, fontname="Times New Roman") 

plt.yticks(size = 25, fontname="Times New Roman") 
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Appendix I 
 

Cross plots of selected petrophysical logs in fractured and non-fractured 

zones in wells 2 and 5 
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Figure B.1 Cross plots of selected petrophysical logs in fractured and non-fractured zones in well 2. 
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Figure B.2 Cross plots of selected petrophysical logs in fractured and non-fractured zones in well 5. 
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Appendix J 
 

Code: 2D Cross plots of selected petrophysical logs in fractured and non-

fractured zones in wells 2  
#!/usr/bin/env python 

# coding: utf-8 

import numpy as np 

import pandas as pd 

import xlsxwriter 

from pandas import DataFrame 

import matplotlib.pyplot as plt 

import seaborn as sns 

plt.style.use('classic') 

get_ipython().run_line_magic('matplotlib', 'inline') 

import pylab as plot 

import matplotlib as mpl 

path119 = ('D:\Documents\Haleh CSCI-Thesis\Data (Haleh)\Final Data For 

Start\Petrophysics\Petrophysics2\\GS#119.xlsx') 

x = pd.ExcelFile(path119) 

df119 = x.parse('Sheet1') 

df119a = df119.drop('Fracture', axis = 1) 

df119Logs = df119a.drop('DEPTH', axis = 1) 

df119NoF = df119Logs.iloc[1:1216, :] 

df119F = df119Logs.iloc[1216::, :] 

CGR_RHOB119 = plt.figure(figsize=(16,9)) 

df119NoF['CGR'].plot() 

df119NoF['RHOB'].plot() 

df119F['CGR'].plot() 

df119F['RHOB'].plot() 

import pylab as plot 

import matplotlib as mpl   

mpl.rc('font',family='Times New Roman') 

params = {'legend.fontsize': 27, 

          'legend.handlelength': 2 

          } 

plot.rcParams.update(params) 

CGR_RHOB119 = plt.figure(figsize=(16,9)) 

NF = plt.scatter(df119NoF['CGR'], df119NoF['RHOB'],c='blue', alpha=0.5) 

F =  plt.scatter(df119F['CGR'], df119F['RHOB'],c='red', alpha=0.5) 

import matplotlib.pyplot as plt 

plt.xlim(-20,50) 

plt.ylim(1.8,3.2) 

plt.legend([NF, F], ['Non-Fracture Zone','Fracture Zone']) 

plt.xlabel('Cumulative  Gamma Ray (CGR)', size = 27, fontname="Times New Roman") 

plt.ylabel('Density (RHOB) ', size = 27, fontname="Times New Roman") 

plt.xticks(size = 25, fontname="Times New Roman") 

plt.yticks(size = 25, fontname="Times New Roman") 

CGR_SGR119 = plt.figure(figsize=(16,9)) 

NF = plt.scatter(df119NoF['CGR'], df119NoF['SGR'],c='blue', alpha=0.5) 
F =  plt.scatter(df119F['CGR'], df119F['SGR'],c='red', alpha=0.5) 

import matplotlib.pyplot as plt 
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plt.legend([NF, F], ['Non-Fracture Zone','Fracture Zone']) 

plt.xlabel('Cumulative  Gamma Ray (CGR)', size = 27, fontname="Times New Roman") 

plt.ylabel('Sum of Gamma Ray (SGR) ', size = 27, fontname="Times New Roman") 

plt.xticks(size = 25, fontname="Times New Roman") 

plt.yticks(size = 25, fontname="Times New Roman") 

NPHI_SW119 = plt.figure(figsize=(16,9)) 

NF = plt.scatter(df119NoF['NPHI'], df119NoF['SW'],c='blue', alpha=0.5) 

F =  plt.scatter(df119F['NPHI'], df119F['SW'],c='red', alpha=0.5) 

import matplotlib.pyplot as plt 

plt.legend([NF, F], ['Non-Fracture Zone','Fracture Zone']) 

plt.xlabel('Neutron Porosity (NPHI)', size = 27, fontname="Times New Roman") 

plt.ylabel('Water Saturation (SW) ', size = 27, fontname="Times New Roman") 

plt.xticks(size = 25, fontname="Times New Roman") 

plt.yticks(size = 25, fontname="Times New Roman") 

DT_CALI119 = plt.figure(figsize=(16,9)) 

NF = plt.scatter(df119NoF['DT'], df119NoF['CALI'],c='blue', alpha=0.5) 

F =  plt.scatter(df119F['DT'], df119F['CALI'],c='red', alpha=0.5) 

import matplotlib.pyplot as plt 

plt.legend([NF, F], ['Non-Fracture Zone','Fracture Zone']) 

plt.xlabel('Sonic (DT)', size = 27, fontname="Times New Roman") 

plt.ylabel('Caliper (CALI) ', size = 27, fontname="Times New Roman") 

plt.xticks(size = 25, fontname="Times New Roman") 

plt.yticks(size = 25, fontname="Times New Roman") 

RHOB_PEF119 = plt.figure(figsize=(16,9)) 

NF = plt.scatter(df119NoF['RHOB'], df119NoF['PEF'],c='blue', alpha=0.5) 

F =  plt.scatter(df119F['RHOB'], df119F['PEF'],c='red', alpha=0.5) 

import matplotlib.pyplot as plt 

plt.legend([NF, F], ['Non-Fracture Zone','Fracture Zone']) 

plt.xlabel('Density (RHOB))', size = 27, fontname="Times New Roman") 

plt.ylabel('Photoelectric Factor (PEF) ', size = 27, fontname="Times New Roman") 

plt.xticks(size = 25, fontname="Times New Roman") 

plt.yticks(size = 25, fontname="Times New Roman") 

DT_SGR119 = plt.figure(figsize=(16,9)) 

NF = plt.scatter(df119NoF['DT'], df119NoF['SGR'],c='blue', alpha=0.5) 

F =  plt.scatter(df119F['DT'], df119F['SGR'],c='red', alpha=0.5) 

import matplotlib.pyplot as plt 

plt.legend([NF, F], ['Non-Fracture Zone','Fracture Zone']) 

plt.xlabel('Density (DT))', size = 27, fontname="Times New Roman") 

plt.ylabel('Sum of Gamma Ray (SGR) ', size = 27, fontname="Times New Roman") 

plt.xticks(size = 25, fontname="Times New Roman") 

plt.yticks(size = 25, fontname="Times New Roman") 

CGR_RHOB119.savefig("CGR_RHOB119.JPEG", bbox_inches='tight', dpi=600) 

CGR_SGR119.savefig("CGR_SGR119.JPEG", bbox_inches='tight', dpi=600)  

NPHI_SW119.savefig("NPHI_SW119.JPEG", bbox_inches='tight', dpi=600) 

DT_CALI119.savefig("DT_CALI119.JPEG", bbox_inches='tight', dpi=600) 

RHOB_PEF119.savefig("RHOB_PEF119.JPEG", bbox_inches='tight', dpi=600) 

DT_SGR119.savefig("DT_SGR119.JPEG", bbox_inches='tight', dpi=600) 

path245 = ('D:\Documents\Haleh CSCI-Thesis\Data (Haleh)\Final Data For  

 

 

 

 



160 

 

Appendix K 
 

3D cross plots of selected petrophysical logs in fractured/non-fractured zones 

in wells 2 and 5 
 

 

 



161 

 

 
 

Figure C.1 3D cross plots of selected petrophysical logs in order to show how higher feature space could help to 

discriminate fractured zones from non-fractured ones in well 2. 
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Figure C.2 3D cross plots of selected petrophysical logs in order to show how higher feature space could help to 

discriminate fractured zones from non-fractured ones in well 5. 
 

 

 



164 

 

Appendix L  

 
Code: 3D cross plots of selected petrophysical logs in fractured/non-fractured 

zones in wells 2  
#!/usr/bin/env python 

# coding: utf-8 

import numpy as np 

import pandas as pd 

import xlsxwriter 

from pandas import DataFrame 

import matplotlib.pyplot as plt 

import seaborn as sns 

plt.style.use('classic') 

get_ipython().run_line_magic('matplotlib', 'inline') 

import pylab as plot 

import matplotlib as mpl 

path119 = ('D:\Documents\Haleh CSCI-Thesis\Data (Haleh)\Final Data For 

Start\Petrophysics\Petrophysics2\\GS#119.xlsx') 

x = pd.ExcelFile(path119) 

df119 = x.parse('Sheet1') 

df119a = df119.drop('Fracture', axis = 1) 

df119Logs = df119a.drop('DEPTH', axis = 1) 

df119NF = df119Logs.iloc[1:1216, :] 

df119F = df119Logs.iloc[1216::, :] 

from mpl_toolkits.mplot3d import axes3d  

get_ipython().run_line_magic('matplotlib', 'notebook') 

XF=df119F['CGR'] 

YF=df119F['RHOB'] 

ZF=df119F['SGR'] 

XNF=df119NF['CGR'] 

YNF=df119NF['RHOB'] 

ZNF=df119NF['SGR'] 

import pylab as plot 

import matplotlib as mpl   

mpl.rc('font',family='Times New Roman') 

params = {'legend.fontsize': 27, 

          'legend.handlelength': 2 

          } 

plot.rcParams.update(params) 

CGR_RHOB_SGR119 = plt.figure(figsize=(16,9)) 

ax = CGR_RHOB_SGR119.gca(projection='3d')  

scatter = ax.scatter3D(XNF, YNF, ZNF,s=80, c='blue',cmap=plt.cm.viridis, marker='o', label='Non_Fracture 

Zone')  

scatter = ax.scatter3D(XF, YF, ZF,s=80, c='red',cmap=plt.cm.viridis, marker='^', label='Fracture Zone') 

plt.show() 

ax.legend() 

ax.set_xlabel('CGR', size = 20, fontname="Times New Roman") 

ax.set_ylabel('RHOB', size = 20, fontname="Times New Roman") 

ax.set_zlabel('SGR', size = 20, fontname="Times New Roman") 

XF=df119F['CGR'] 

YF=df119F['SGR'] 
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ZF=df119F['CALI'] 

XNF=df119NF['CGR'] 

YNF=df119NF['SGR'] 

ZNF=df119NF['CALI'] 

CGR_SGR_CALI119 = plt.figure(figsize=(16,9)) 

ax = CGR_SGR_CALI119.gca(projection='3d')  

scatter = ax.scatter3D(XNF, YNF, ZNF,s=80, c='blue',cmap=plt.cm.viridis, marker='o', label='Non_Fracture 

Zone')  

scatter = ax.scatter3D(XF, YF, ZF,s=80, c='red',cmap=plt.cm.viridis, marker='^', label='Fracture Zone') 

plt.show() 

ax.legend() 

ax.set_xlabel('CGR', size = 20, fontname="Times New Roman") 

ax.set_ylabel('SGR', size = 20, fontname="Times New Roman") 

ax.set_zlabel('CALI', size = 20, fontname="Times New Roman") 

XF=df119F['DT'] 

YF=df119F['RHOB'] 

ZF=df119F['PEF'] 

XNF=df119NF['DT'] 

YNF=df119NF['RHOB'] 

ZNF=df119NF['PEF'] 

DT_RHOB_PEF119 = plt.figure(figsize=(16,9)) 

ax = DT_RHOB_PEF119.gca(projection='3d')  

scatter = ax.scatter3D(XNF, YNF, ZNF,s=80, c='blue',cmap=plt.cm.viridis, marker='o', label='Non_Fracture 

Zone')  

scatter = ax.scatter3D(XF, YF, ZF,s=80, c='red',cmap=plt.cm.viridis, marker='^', label='Fracture Zone') 

plt.show() 

ax.legend() 

ax.set_xlabel('DT', size = 20, fontname="Times New Roman") 

ax.set_ylabel('RHOB', size = 20, fontname="Times New Roman") 

ax.set_zlabel('PEF', size = 20, fontname="Times New Roman") 

XF=df119F['DT'] 

YF=df119F['SGR'] 

ZF=df119F['SW'] 

XNF=df119NF['DT'] 

YNF=df119NF['SGR'] 

ZNF=df119NF['SW'] 

DT_SGR_SW119 = plt.figure(figsize=(16,9)) 

ax = DT_SGR_SW119.gca(projection='3d')  

scatter = ax.scatter3D(XNF, YNF, ZNF,s=80, c='blue',cmap=plt.cm.viridis, marker='o', label='Non_Fracture 

Zone')  

scatter = ax.scatter3D(XF, YF, ZF,s=80, c='red',cmap=plt.cm.viridis, marker='^', label='Fracture Zone') 

plt.show() 

ax.legend() 

ax.set_xlabel('DT', size = 20, fontname="Times New Roman") 

ax.set_ylabel('SGR', size = 20, fontname="Times New Roman") 

ax.set_zlabel('SW', size = 20, fontname="Times New Roman") 

scatter = ax.scatter3D(XNF, YNF, ZNF,s=70, c='blue',cmap=plt.cm.viridis, marker='o', label='Non_Fracture 

Zone')  

scatter = ax.scatter3D(XF, YF, ZF,s=70, c='red',cmap=plt.cm.viridis, marker='^', label='Fracture Zone') 

plt.show() 

ax.legend() 

ax.set_xlabel('DT', size = 20, fontname="Times New Roman") 

ax.set_ylabel('RHOB', size = 20, fontname="Times New Roman") 
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ax.set_zlabel('PEF', size = 20, fontname="Times New Roman") 

CGR_RHOB_SGR119.savefig("CGR_RHOB_SGR119.JPEG", bbox_inches='tight', dpi=600) 

CGR_SGR_CALI119.savefig("CGR_SGR_CALI119.JPEG", bbox_inches='tight', dpi=600) 

DT_RHOB_PEF119.savefig("DT_RHOB_PEF119.JPEG", bbox_inches='tight', dpi=600) 

DT_SGR_SW119.savefig("DT_SGR_SW119.JPEG", bbox_inches='tight', dpi=600) 
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Appendix M 
 

Code: Ordered Weighted Averaging 

 
#!/usr/bin/env python 

# coding: utf-8 

import numpy as np 

import pandas as pd 

import xlsxwriter 

from pandas import DataFrame 

import matplotlib.pyplot as plt 

import seaborn as sns 

plt.style.use('classic') 

get_ipython().run_line_magic('matplotlib', 'inline') 

import pylab as plot 

import matplotlib as mpl 

import matplotlib.pyplot as pp 

import pylab as plot 

import matplotlib as mpl   

mpl.rc('font',family='Times New Roman') 

params = {'legend.fontsize': 27, 

          'legend.handlelength': 2 

          } 

plot.rcParams.update(params) 

RFSVM119 = ('D:\Documents\Haleh CSCI-Thesis\Txt Material\WelltoWellresult\WelltoWellbalance\RF-

SVM Balance\\RFSVMB119.xlsx') 

x = pd.ExcelFile(RFSVM119) 

df119 = x.parse('Sheet1') 

X1 = df119.drop('DEPTH', axis=1) 

X2 = X1.drop('Fracture', axis=1) 

Sortassend119 = np.sort(X2,axis=1) 

Sd119 =abs(np.sort(-X2)) 

Sortdessend119 = pd.DataFrame(Sd119) 

np.savetxt('D:\Documents\Haleh CSCI-Thesis\Txt Material\OWA\\Sortdessend119.csv',Sortdessend119, 

delimiter=',') 

Sortdessend119 

Sortdessend119.info() 

Sortdessend119.index 

[r,c] =  Sortdessend119.shape 

wo = np.zeros((100, 14)) 

alpha = np.linspace(0,1,num =100) 

for j in range (100): 

    for i in range (14): 

        if i == 0: 

            wo[j, i] = alpha [j] 

        elif i < 13: 

            wo[j, i] = alpha [j] * (1 - alpha [j]) ** i 

        else: 

            wo[j, i] = (1 - alpha [j]) ** i 
np.savetxt('D:\Documents\Haleh CSCI-Thesis\Txt Material\OWA\\OWAo119.csv',wo, delimiter=',') 

wp = np.zeros((100, 14)) 
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alpha = np.linspace(0,1,num =100) 

for j in range (100): 

    for i in range (14): 

        if i == 0: 

            wp[j, i] = alpha [j] ** (14-(i+1)) 

        elif i < 13: 

            wp[j, i] = (1 - alpha[j]) * alpha[j]**(14-(i+1)) 

        else: 

            wp[j, i] = 1 - alpha[j] 

np.savetxt('D:\Documents\Haleh CSCI-Thesis\Txt Material\OWA\\OWAp119.csv',wp, delimiter=',') 

wot = np.transpose(wo) 

wpt = np.transpose(wp) 

np.savetxt('D:\Documents\Haleh CSCI-Thesis\Txt Material\OWA\\wot119.csv',wot, delimiter=',') 

np.savetxt('D:\Documents\Haleh CSCI-Thesis\Txt Material\OWA\\wpt119.csv',wpt, delimiter=',') 

reso119 = np.dot(Sortdessend119,wot) 

resO119 = np.round(reso119) 

[ro,co] = resO119.shape  

np.savetxt('D:\Documents\Haleh CSCI-Thesis\Txt Material\OWA\\resO119.csv',resO119, delimiter=',') 

resp119 = np.dot(Sortdessend119,wpt) 

resP119 = np.round(resp119) 

[rp,cp] = resP119.shape  

np.savetxt('D:\Documents\Haleh CSCI-Thesis\Txt Material\OWA\\resP119.csv',resP119, delimiter=',') 

real = ('D:\Documents\Haleh CSCI-Thesis\Txt Material\OWA\\real119.xlsx') 

x = pd.ExcelFile(real) 

real119 = x.parse('Sheet1') 

Eo119 = np.subtract(resO119, real119) 

np.savetxt('D:\Documents\Haleh CSCI-Thesis\Txt Material\OWA\\Eo119.csv',Eo119, delimiter=',') 

Ep119 = np.subtract(resP119, real119) 

np.savetxt('D:\Documents\Haleh CSCI-Thesis\Txt Material\OWA\\Ep119.csv',Ep119, delimiter=',') 

ssqo119 = np.sum(Eo119**2) 

np.savetxt('D:\Documents\Haleh CSCI-Thesis\Txt Material\OWA\\ssqo119.csv',ssqo119, delimiter=',') 

ssqp119 = np.sum(Ep119**2) 

np.savetxt('D:\Documents\Haleh CSCI-Thesis\Txt Material\OWA\\ssqp119.csv',ssqp119, delimiter=',') 

ssqo119.min() 

ssqp119.min() 

minssqo119 = np.where(ssqo119 == ssqo119.min()) 

minssqo119 

minssqp119 = np.where(ssqp119 == ssqp119.min()) 

minssqp119 

alpha[minssqo119] 

alpha[minssqp119] 

plt.plot(alpha,ssqo119)  

plt.plot(alpha,ssqp119) 

sse_alpha119 = plt.figure(figsize=(16,9)) 

Ploto = plt.scatter(alpha, ssqo119,c='black', alpha=1,linewidths = 2, marker ="o",edgecolor ="black",s = 100) 

Plotp = plt.scatter(alpha, ssqp119,c='black', alpha=1, linewidths = 3, marker ="x",edgecolor ="black", s = 100) 

import matplotlib.pyplot as plt 

plt.xlim(0,1) 

plt.ylim(0,250) 

plt.legend([Ploto, Plotp], ['Optimistic OWA ','Pessimistic OWA ']) 

plt.xlabel('Alpha', size = 27, fontname="Times New Roman") 

plt.ylabel('SSE ', size = 27, fontname="Times New Roman") 

plt.xticks(size = 25, fontname="Times New Roman") 
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plt.yticks(size = 25, fontname="Times New Roman") 

sse_alpha119.savefig("SSE_ALPHAbalance119.JPEG", bbox_inches='tight', dpi=600) 
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Appendix N 
 

Code: ROC (Receiver Operating Characteristic) Curve for SVM Classifier  
 

import numpy as np 

import pandas as pd 

import xlsxwriter 

from pandas import DataFrame 

import matplotlib.pyplot as plt 

import seaborn as sns 

plt.style.use('classic') 

get_ipython().run_line_magic('matplotlib', 'inline') 

import pylab as plot 

import matplotlib as mpl 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.metrics import classification_report,confusion_matrix 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 

from IPython.display import display 

from IPython.display import Image 

from sklearn.svm import SVC 

from sklearn.model_selection import GridSearchCV 

path119 = ('D:\Documents\Haleh CSCI-Thesis\Data (Haleh)\Final Data For 

Start\Petrophysics\Petrophysics2\\GS#119.xlsx') 

x119 = pd.ExcelFile(path119) 

df119 = x119.parse('Sheet1') 

X1 = df119.drop('CALI', axis=1) 

X119 = X1.drop(['DOLOMITE','SHALE','LIME','PORE','SW'], axis=1 ) 

path245 = ('D:\Documents\Haleh CSCI-Thesis\Data (Haleh)\Final Data For 

Start\Petrophysics\Petrophysics2Balanced\\GS#245.xlsx') 

path = pd.ExcelFile(path245) 

df245 = path.parse('Sheet1') 

zeros = df245.loc[(df245['Fracture'] == 0)].sample(n = 1450) 

ones = df245.loc[(df245['Fracture'] == 1)]  

dfbalance245 = pd.concat([zeros, ones]) 

X2 = dfbalance245.drop('CALI', axis=1) 

X245 = X2 

X_train = X245.drop('Fracture', axis=1) 

y_train = X245['Fracture'] 

X_test = X119.drop('Fracture', axis=1) 

y_test = X119['Fracture'] 

X_train, X_test, y_train, y_test = train_test_split(pd.concat([X119, X245]).drop('Fracture', axis=1), 

pd.concat([X119, X245])['Fracture'], test_size=0.3) 

model119245 = SVC() 

model119245.fit(X_train,y_train) 

predictions119245 = model119245.predict(X_test) 

param_grid = {'C':[0.1,1,10,100,1000],'gamma':[1,0.1,0.01,0.001,0.0001]} 

grid119245 = GridSearchCV(SVC(),param_grid,verbose=3) 

grid119245.fit(X_train,y_train) 

grid_predictions119245 = grid119245.predict(X_test) 

SVM119245 = grid119245.predict(X119.drop('Fracture', axis=1)) 
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print(confusion_matrix(X119['Fracture'],SVM119245)) 

print('\n') 

print(classification_report(X119['Fracture'],SVM119245)) 

print ('\n') 

print("Accuracy:", accuracy_score(X119['Fracture'], SVM119245))  

res = pd.DataFrame(SVM119245) 

res.columns = ["SVM119245"] 

res.to_csv("D:\Documents\Haleh CSCI-Thesis\Txt 

Material\WelltoWellresult\WelltoWellbalance\\SVM119245.csv") 

from sklearn import metrics 

preds = model119245.predict(X_train)     

targs = (y_train)  

print("accuracy: ", metrics.accuracy_score(targs, preds)) 

print("precision: ", metrics.precision_score(targs, preds))  

print("recall: ", metrics.recall_score(targs, preds)) 

print("f1: ", metrics.f1_score(targs, preds)) 

print("area under curve (auc): ", metrics.roc_auc_score(targs, preds)) 

train_preds = preds 

preds = model119245.predict(X_test) 

targs = (y_test)  

print("accuracy: ", metrics.accuracy_score(targs, preds)) 

print("precision: ", metrics.precision_score(targs, preds))  

print("recall: ", metrics.recall_score(targs, preds)) 

print("f1: ", metrics.f1_score(targs, preds)) 

print("area under curve (auc): ", metrics.roc_auc_score(targs, preds)) 

test_preds = preds 

from sklearn.model_selection import GridSearchCV  

from sklearn.linear_model import SGDClassifier  

from sklearn.metrics import roc_curve, auc 

y_train_pred =model119245.decision_function(X_train)     

y_test_pred = model119245.decision_function(X_test)  

train_fpr, train_tpr, tr_thresholds = roc_curve(y_train, y_train_pred) 

test_fpr, test_tpr, te_thresholds = roc_curve(y_test, y_test_pred) 

ROC119245 = plt.figure(figsize=(16,9)) 

plt.grid() 

plt.plot(train_fpr, train_tpr,linewidth=3, label=" AUC TRAIN ="+str(auc(train_fpr, train_tpr))) 

plt.plot(test_fpr, test_tpr, linewidth=3, label=" AUC TEST ="+str(auc(test_fpr, test_tpr))) 

plt.rcParams["legend.fontsize"] = 20 

plt.plot([0,1],[0,1],'g--' , linewidth=3) 

plt.legend() 

plt.xlabel("Specifity(Fals Positive Rate)",size = 22, fontname="Times New Roman") 

plt.ylabel("Sensitivity(True Positive Rate)",size = 22, fontname="Times New Roman") 

plt.title("AUC(ROC curve)",size = 20, fontname="Times New Roman") 

plt.grid(color='black', linestyle='-', linewidth=1) 

plt.show() 
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Appendix O 

Code: ROC (Receiver Operating Characteristic) Curve for RF Classifier  

import numpy as np 

import pandas as pd 

import xlsxwriter 

from pandas import DataFrame 

import matplotlib.pyplot as plt 

import seaborn as sns 

plt.style.use('classic') 

get_ipython().run_line_magic('matplotlib', 'inline') 

import pylab as plot 

import matplotlib as mpl 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.metrics import classification_report,confusion_matrix 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 

from IPython.display import display 

from IPython.display import Image 

from sklearn.svm import SVC 

from sklearn.model_selection import GridSearchCV 

path119 = ('D:\Documents\Haleh CSCI-Thesis\Data (Haleh)\Final Data For 

Start\Petrophysics\Petrophysics2\\GS#119.xlsx') 

x119 = pd.ExcelFile(path119) 

df119 = x119.parse('Sheet1') 

X1 = df119.drop('CALI', axis=1) 

X119 = X1.drop(['DOLOMITE','SHALE','LIME','PORE','SW'], axis=1 ) 

path245 = ('D:\Documents\Haleh CSCI-Thesis\Data (Haleh)\Final Data For 

Start\Petrophysics\Petrophysics2Balanced\\GS#245.xlsx') 

path = pd.ExcelFile(path245) 

df245 = path.parse('Sheet1') 

zeros = df245.loc[(df245['Fracture'] == 0)].sample(n = 1450) 

ones = df245.loc[(df245['Fracture'] == 1)]  

dfbalance245 = pd.concat([zeros, ones]) 

X2 = dfbalance245.drop('CALI', axis=1) 

X245 = X2 

X_train = X245.drop('Fracture', axis=1) 

y_train = X245['Fracture'] 

X_test = X119.drop('Fracture', axis=1) 

y_test = X119['Fracture'] 

X_train, X_test, y_train, y_test = train_test_split(pd.concat([X119, X245]).drop('Fracture', axis=1), 

pd.concat([X119, X245])['Fracture'], test_size=0.3) 

rfc119245 = RandomForestClassifier(n_estimators=500) 

rfc119245.fit(X_train, y_train) 

rfc_pred119245 = rfc119245.predict(X_test) 

print(confusion_matrix(y_test,rfc_pred119245 )) 

print('\n') 

print(classification_report(y_test,rfc_pred119245 )) 

print ('\n') 
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print("Accuracy:", accuracy_score(y_test, rfc_pred119245)) 

import pylab as pl 

from sklearn.utils import shuffle 

from sklearn.metrics import roc_curve, auc 

random_state = np.random.RandomState(0) 

#classifier = svm.SVC(kernel='linear', probability=True) 

probas_ = rfc119245.fit(X_train, y_train).predict_proba(X_test) 

# Compute ROC curve and area the curve 

fpr, tpr, thresholds = roc_curve(y_test, probas_[:, 1]) 

roc_auc = auc(fpr, tpr) 

print( "Area under the ROC curve : %f" % roc_auc) 

# Plot ROC curve 

ROC119245 = plt.figure(figsize=(16,9)) 

pl.clf() 

plt.grid() 

pl.plot(fpr, tpr, linewidth=3, label='ROC curve (area = %0.2f)' % roc_auc) 

plt.rcParams["legend.fontsize"] = 20 

pl.plot([0, 1], [0, 1], 'g--', linewidth=3) 

pl.xlim([0.0, 1.0]) 

pl.ylim([0.0, 1.0]) 

pl.xlabel('Specifity (Fals Positive Rate)',size = 22, fontname="Times New Roman") 

pl.ylabel('Sensitivity (True Positive Rate)',size = 22, fontname="Times New Roman") 

pl.title('AUC(ROC curve)',size = 22, fontname="Times New Roman") 

pl.legend(loc="lower right") 

pl.show() 
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