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ABSTRACT

The ob ject ive  of this experiment was to determine the thermal con 

ductivity and thermal diffusivity of l ignite from five mines in North 

Dakota and Montana with full bed moisture.

The values of the thermal conductivity and thermal diffusivity 

found in the present work do not show a signif icant  difference between 

samples.  The thermal conductivity ranges from 0. 152 to 0.  170 Btu 

hr ■* ft °F  x. The thermal diffusivity was from 0 .0 0 5 1  to 0 .0 0 5 8  

sq ft hr *.  No signif icant  difference was found due to the cut of the 

samples with the long ax is  parallel  or perpendicular to the bedding 

p la n e .

Specif ic  heat and density determinations for each sample of 

l ignite were made. These values  ranged from 0 .3 3  to 0 . 4  3. Btu 

lb - '*' 0 F - '* and from 7 4 .3  to 8 2 .9  lb ft"^ respect ively .

viii



INTRODUCTION

The primary ob jec t ive  of this investigation was to determine the 

thermal conductivity and thermal diffusivity of l ignite with full bed 

moisture content from different mines in North Dakota and Montana.

Lignite is  e s s e n t ia l ly  an organic material,  the product of the 

degradation of ce l lu lo se  and other plant t i s s u e s  and conta ins ,  l ike many 

other materials of vegetable origin, some water in a state of physical or 

chemical combination, as well as inherent and extraneous ash .  When 

exposed to air of average humidity, l ignite does not dry completely,  but 

assumes rather a s tate  of moisture equilibrium at which there remains in 

the lignite from 12 to 20 percent of moisture depending on the kind of 

l ignite and the humidity of the air.

Lignite is  a conglomerate of varying composition, and is unstable ,  

tending to shrink with lo ss  of moisture and to s lack  on exposure. Con

sequently physical character is t ics  can vary depending on init ial  compo

sition and history of the sample.

The method used for thermal conductivity and for thermal 

diffusivity of l ignite required .the determination of certain other prop

erties of the system including the heat transfer coeff ic ient  at the so l id -  

fluid interface ,  the spec i f ic  heat ,  and the density of the lignite .

1
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A simple unsteady s tate  method with a graphical solution, as out

lined by Newman,  ̂ was used to determine the thermal conductivity and 

thermal diffusivity of l ignite .  Temperature was determined as a function 

of time at the center  of single  p ieces  of lignite cut in the shape of a 

rectangular paral le lopiped. The thermal conductivity and thermal 

diffusivity were ca lcu lated  from the unsteady state temperature history 

and the physical properties of the lignite .



REVIEW OF PERTINENT LITERATURE

Numerous experimental techniques have been devised for the 

determination of thermal conductivity and thermal diffusivity of so l ids ,  

some involving steady state and some, unsteady state measurements of 

temperature. In steady state methods, the conditions of the experiment 

are maintained for a suff ic ient  time to allow the temperature throughout 

the sample to reach a steady value.  In unsteady state methods, the 

temperature i s  measured as  a function of time.

The first  reference to the unsteady state method of determining

O O /[
the thermal conductivity of solids was the work of Angstroem. ' ' ■

He produced periodic changes of temperature by alternately heating and 

cooling metal rods in air .  Neumann'’ in 1862 showed how to determine 

the thermal dif fusivity by air cooling of rods and tubes which had been 

previously heated at one end. Since then numerous modifications of the 

unsteady state method have been applied.
r

In 192 3 Gurney and Lurie presented a set of charts for solution 

of the unsteady state heat transfer of heat in a s la b ,  an infinite 

cylinder,  sphere and semi- infin ite  sol id. By the use of the appropriate 

chart,  it is  poss ib le  to ca lcu late  the thermal conductivity and thermal

3
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diffusivity from the temperature history of the sample given the boundary

values for a sp e c i f ic  c a s e .

7
In 1947 H eis ler  presented similar charts for different geometries .  

These are the most complete charts in this field and were used in the 

present work to determine the thermal conductivity and thermal diffusivity 

of l ig n i te .

O
Kegel and Mastchak determined the thermal conductivity of

German brown coals  using the moisture content as a variable .  Fritz and 

9 10Diemke ' a lso  made many determinations of the thermal conductivity 

of German c o a ls .  Results show a range of thermal conductivity from 

0 .1 1 2  to 0 .2 1 0  Btu ft hr- '*' °F * at 86° F.  Z u b i l i n ^  determined 

the thermal diffusivity and thermal conductivity of Russian coa ls  ground 

and compacted to different d e n s i t ies .  The experimental apparatus used 

by Zubilin was similar to the one used in the present research .  His 

results  are summarized in Table 1. Margit in Hungary and Badzioch, 

Gregory and Field ^  in England determined the thermal properties of 

various coa ls  by a hot wire method. A straight-wire heat source was 

inserted in the coal samples,  and the temperature history at a point in 

the sample was determined. This information was used to calculate  

thermal conductivity and thermal dif fusivity.  Originally the hot-wire 

method was developed by Van der Held and Van D ru n en ^  for deter

mining the thermal conductivity and thermal diffusivity of poor con 

ductors .



TABLE 1

THERMAL CONDUCTIVITY AND THERMAL DIFFUSIVITY OF COALa

Coal Grade c b Kc OSd Mixed Charge

Bulk density rn n- -7  OU • ulb it ^
56 .2 6 2 .4  5 0 .0  56 .2 6 2 .4  5 0 .0  5 6 .2  6 2 .4 5 0 .0  5 6 .2  6 2 .4

0 .0 7 0  0 .0 7 8  0 .0 6 4  0 .0 7 2  0 .0 8 1  0 .0 5 7  0 .0 6 7  0 . 0 7 7  0 .0 6 3  0 .0 7 2  0 .080 '  

0 .0 0 3 7  0 .0 0 3 6  0 .0 0 4 0  0 .0 0 4 1  0 .0 0 4 2  0 .0 0 4 1  0 .0 0 4 3  0 .0 0 4 5  0 .0 0 4 0  0 .0 0 4 0  0 .0 0 4 1

a I.  G .  Zubilin, "Determination of the Thermal Constants of Coals at Different Bulk 
D e n s i t i e s , "  Zavodskaya Laboratorlya, 27 ,  4 3 1 - 4 3 3 ,  1361.

^Volatile matter: 37 .4%

cVolatile matter: 2 6 .3%

^Volatile matter: 15.2%

Thermal 
condu 
Btu ft'
conductivity r n r „ 0 . U b o

i Or“ lhr'

Thermal
diffusivity ' 0 .0 0 6 3  
sq ft hr-
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Badzioch, Gregory and Field "/4 a lso  used another method, the s lab 

method, to determine the thermal diffusivity of c o a l s .  A s lab  of coal 

was heated in a furnace and temperatures were taken at different points.  

The thermal dif fusivity was calculated using the solution of the c o n 

duction equation in one dimension. These results  are summarized for 

Hungarian co a ls  in Table 2 and for British coals  in Table 3.



TABLE 2

THERMAL CONDUCTIVITY OF HUNGARIAN COALS3

Initial Final Average Thermal
Density Temperature Temperature Temperature Conductivity

Samples lb ft -3 °F °F °F Btu hr-1  ft” 1 ° F _1

Wet Dry

Tatai, 4 3 . 7  38 . 4 81 223 152 0 . 1 6 1
washed coa l , 88 289 188 0 . 1 6 2
12. 3% moisture 102 453 278 0 . 1 7 6

162 793 483 0 . 2 3 7

Borsodi, 3 8 . 6  3 5 . 4 81 176 128 0 . 2 3 3
regular briquets, 86 217 152 0 . 2 4 1
8 . 0% moisture 100 329 215 0 . 2 6 0

117 417 267 0 . 2 8 0

Szentgali , 4 2 . 3  39 : 8 77 221 149 0 . 1 3 6
l ig n i te , 79 344 207 0 . 1 3 7
6 . 0% moisture

W . Mar git ,. "Determination of the Specif ic  He:at and the Hoat Conductivity Factor of
Hungarian Coals and C o k e s , "  Nehezvegyipari Kutato Intezet ,  1, 2 7 - 3 7 ,  1958.



TABLE 3

THERMAL CONDUCTIVITY AND THERMAL DIFFUSIVITY OF 
BITUMINOUS AND ANTHRACITE BRITISH COALSa

Hot Wire Method Slab Method

Temperature Thermal Conductivity Thermal Diffusivity Thermal Diffusivity
°F Btu ft"-1 ur- lHi O p -  1 sq ft hr sq ft hr

Mean Range Mean Range Mean Range

68 0 . 160 0 . 1 3 3 - 0 . 1 9 4 0 . 0062 0 . 0039  - 0 . 0 0 7 7 0 . 0 0 6 6 0 . 0 0 4 7  - 0 . 0082
9 1 9Ca XL* 0 . 133 0 . 109 - 0 . 1 9 4 0 . 0 0 5 0 0 . 0031  - 0 . 0 0 7 7 0 . 0 0 5 8 0 . 0 0 3 9  - 0 . 0 0 7 4
302 0 . 133 0 . 1 0 9 - 0 . 1 9 4 0 . 0 0 4 7 0 . 0 0 3 1  - 0 . 0 0 7 7 0 . 0 0 5 4 0 . 0 0 3 1  - 0 . 0 0 7 0
392 0.  136 0 . 109 - 0 . 1 9 4 0 . 0 0 4 3 0 . 0 0 3 1  - 0 . 0 0 7 7 0 . 0 0 4 7 0 . 0 0 3 1  - 0 . 0 0 6 6
482 0 . 136 0 . 1 0 9 - 0 . 1 9 4 0 . 0 0 4 7 0 . 0 0 3 1  - 0 . 0 0 7 7 0 . 0 0 4 3 0 . 0 0 3 1  - 0 . 0 0 5 8
572 0 . 138 0 . 1 0 9 -  0 . 1 9 4 0 . 0 0 4 3 0 . 0 0 3 1  - 0 . 0 0 7 7 0 . 0 0 4 3 0 . 0 0 3 1  - 0 . 0054
662 0 . 136 0 . 109 -  0 . 194 0 . 0 0 5 0 0 . 0 0 3 1  - 0 . 0 0 7 7 0 . 0 0 4 7 0 . 0031  - 0 . 0054
752 • 0 . 124 Q. 109 - 0 . 1 9 4 0 . 0 0 5 5 0 . 0 0 3 1  - 0 . 0 0 7 7 0 . 0 0 4 7 0 . 0 0 3 1  - 0 . 0 0 5 4
842 0 . 155 0 . 1 2 1 -  0 . 2 9 0 0 . 0 0 7 0 0 . 0 0 3 9  - 0 . 0 1 3 5 0 . 0 0 5 1 0 . 0 0 3 1  - 0 . 0054
932 0 . 194 0 . 1 4 5 -  0 . 2 9 0 0 . 0 1 1 0 0 . 0 0 5 8  - 0 . 0 1 5 5 0 . 0062 0 . 0 0 3 5  - 0 . 0 0 5 8

1022 0 . 238 0 . 1 6 9 - 0 . 3 6 3 0 . 0 1 2 0 0 . 0 0 7 7  - 0 . 0 0 2 3 • 0 . 0082 0 . 0 0 3 9  - 0 . 0062

S.  Badzioch, D. R. Gregory, and M. A. Field, "Investigation of the Temperature Variation 
of the Thermal Conductivity and Thermal Diffusivity of  C o a l s , "  Fuel , 43 , 267- 280  , 1964.



MATHEMATICAL ANALYSIS

An unsteady state  method involving a graphical solution was 

used to determine the thermal conductivity and thermal diffusivity of 

l ignite .  Table 4 summarizes the nomenclature used in the present work.

The thermal diffusivity and thermal conductivity are two property 

values that appear in the solution of the heat conduction equation. 

Strict ly speaking,  the thermal conductivity and diffusivity are not c o n 

stants even for the same su bstan ce ,  but are functions of temperature. 

However, when the range of temperature is l imited, this variation in the 

thermal conductivity and thermal diffusivity may be neglected.

Various experimental methods have been used for determining 

thermal conductivity and thermal diffusivity;  some of these are obsole te ,  

but the mathematical treatment,  presented as follows,  is the same for 

all  of them .

An example of a steady state determination can be a solid bounded 

by two infinite parallel  planes at different temperatures,  when heat has 

been flowing for a time suff ic ient  to es tab l ish  uniform conditions.  The 

results  of experiments show that:

9
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%

t

to

ts

t s - t
*8 " t o

k , y 

6 

k

Cp

P

0c

h

a , b

X U )

Y(y)

NOMENCLATURE

= Rate of heat flow, Btu hr"  ̂ ft~^

= Temperature at time 0 at a point in the sol id ,  °F 

= Init ial  uniform temperature of s o l i d , °F 

= Constant temperature of the fluid medium, °F 

= Dim ensionless  temperature at a given x ,  y

-  D istance  from center of solid ,  ft 

= T im e, hr

= Thermal conductivity,  Btu hr-  ft"^ °F~*

= Sp ec i f ic  heat ,  Btu lb~* °F~'*'

= Density ,  lb ft~^

= Thermal diffusivity, sq ft hr“ ]

= Heat transfer coef f ic ient ,  Btu ft~^ °F~*  hr"*

= Half th ickness  of rectangular solid in x  and y direction 
respec t ive ly ,  ft

= Solution of the heat conduction equation in the x direction

-  Solution of the heat conduction equation in the y direction

TABLE 4
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s-
t | -  t £

t .  > t  9 ( 1 )

where is the rate of heat flow, x is the th ickness  of the solid 

between the two p lanes ,  t , and ip, are the temperatures at the 

parallel  planes 1 and 2 resp ec t ive ly ,  and !i is  the thermal conductivity,  

which can be determined if the pertinent data are avai lable .

In the past the unsteady state  methods have been used le s s  

often than steady state methods, as it is difficult to know how nearly 

the actual boundary conditions in an experiment agree with those postu

lated in theory. However,  unsteady state methods allow for rapid 

measurements and involve only small changes in temperature.

The time n eces sary  for the temperature at any particular point 

within an ob ject  to reach a particular value is dependent upon physical 

properties,  dimensions and geometry of the o b je c t .  Convenient 

geometries for tes t  specimens are a rectangular parallelopiped of finite 

c r o s s - s e c t io n  or a cylinder of finite diameter with the length in both 

c a s e s  being such that heat transfer along the long axis is  negligib le .  

Convenient initial  temperature conditions would be a uniform tempera

ture for the ob ject  and a uniform but different temperature for the 

surroundings.

The general partial differential equation for heat flow in rectangu

lar coordinates is:
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(2)

If heat is  permitted to flow only in the x direction there is  no 

temperature gradient in the y or z direct ions ,  and the equation 

reduces to that of the s lab  (see Figure 1).

£t - o* P ll <r
CO " dx2 U

For a s lab  of th ickness  2a the central plane being at X = 0 

the c a s e  of heating or cooling by convection at the surfaces  a 

is represented by the above partial differential equation and by the 

following boundary conditions: 1

each side of the above equation represents the heat quantity passing 

across  unit surface area in unit time, and

represents the condition where there is  no heat flow across  the central

± fc ™  = h ( ts -  f } at x + o

at x = 0

plane of the s lab  because  of symmetry. The condition
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Fig. I . — Heat flow in a slab of finite thickness.
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f = t o  when 6 ~ 0

indicates  uniformity of  temperature at the beginning of heating or c o o l 

ing , and

f - f s when 8 - 0  Q ~ ■

indicates  that eventually  the whole slab will  be heated or cooled to the

temperature of the surroundings.

An equation, in dim ensionless  form, satisfying the differential

1 7equation and the above boundary conditions is :

/3n is defined by c o t  [3 ) tG and the values for (3 , , /3  ̂ , e t c .  , 

being the f i rs t ,  second,  e t c .  , roots of this equation. Tabulated values  

of /3(1 were published by Newman and Green. ^

If it were desired to set up the condition for heat flow in the y 

direction only,  then the partial differential equation would be

d t .. (f #s f 
dO

(5)

and the solution would be identical to the solution obtained for heat flow

in the x direct ion.
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If heat were permitted to flow in the direction and y direction 

but not in the 2 direction the differential equation would be:

i t .  F  r s h
00  ' l 0 ^

P l i  1 
<3y2 J

This is the c a s e  in the present research;  the length of the lignite 

samples is  very great as compared with the dimension of the c r o s s -  

sec t ion .  The th ick n ess  of the sample in the x direction is 2 d  and in 

the y direction is  2b . It can be proved that a solution sat isfying the 

conditions for this c a s e  is:  ^

t s " f  
tS “to

v. t \A U  i Y iy/

Taking as variables  the four dimensionless  quantities

cO? _h_ t s - t
Qr: ’ ha * a" * f - f 0 .

equation 4 has be'en reduced to a set  of tables  which are used to plot 

the curves of Figures 5 and 6 of Appendices D and E. Plots were pre-

7
pared by H eis ler .

In the present research the determinations were made at the center

V
of the samples so that ~  is equal to zero, leaving only three dimension

le s s  parameters.  With the curves of Figure 6 the thermal conductivity

and diffusivity of l ignite can be calcula ted using a trial  and error
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method explained in Appendix E. To use this method of ca lcu lat ion ,  the 

s p e c i f ic  heat and density of l ignite ,  and the heat transfer coeff ic ient  at

the solid-l iquid interface must be-known.



APPARATUS AND MATERIALS

A thermal conductivity apparatus, manufactured by Engineering 

Laboratory Design, Inc .  of Minnetonka, Minnesota ,  was used (see 

Figure 2).  The apparatus had the following components:

1. A constant  temperature bath with automatic control.

2.  A circulation chamber for controlled contact  of the 

samples with the water from the constant temperature 

b a th .

3.  A pump to transfer water from the constant  temperature 

bath to the circulation chamber.

To record the temperature history of the samples a SPEEDOMAX W 

recorder with an ad ju stab le -zero ,  adjustable range (AZAR) control unit 

fabricated by Leeds and Northrup Co. , of Philadelphia,  Pennsylvania,  

was u s e d .

For the spec i f ic  heat determination of l ignite ,  a Parr calorimeter 

manufactured by Parr Instrument Company, Moline, Il l inois  was used.  

The calorimeter consisted  of a cromium-plated brass  water container,

2 l iters  capacity ,  supported within a double walled bakel ite insulating 

ja c k e t .  A stirrer extended into the water container for agitat ion. A 

support rod with bracket was attached to the cover to support a 0.  1

17
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THERM OMETER

Fig. 2 . - -D ia g ra m  of the thermal conductivity apparatus
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degree thermometer.

A pycnometer with a capacity  of 2 5 ml containing a thermometer 

was used to determine the density of l ignite .  The thermometer had a • 

range of 14° to 3 7°  C in 0 . 2  degree div is ions .

The thermocouples used to measure the temperatures were made of 

copper and constantan wire 0 . 0 0 4  in diameter with a measuring junction

0 . 0 0 1  in th ick .  The reference junction was maintained at 3 2°  F with an 

ice  water b a th .

Samples of acryl ic  p la s t i c ,  1 percent carbon s t e e l ,  pure aluminum, 

and 10 percent Sn bronze, all  cylindrically  shaped, were used for the 

heat transfer coef f ic ie n t  determinations. Three reference samples were 

2 in diameter and 6 in long with the exception of the acrylic  p las t ic  

sample which was 1 in diameter and 6 in long. Each sample had a 

copper-constantan thermocouple located at its center (see Figure 3) .

The samples of l ignite were rectangular parallelopipeds with 

copper-constantan thermocouples located at their cen ters .  See 

Figure 4 and Appendix A for additional details  concerning the lignite 

sa m p le s .



CO P PER -C O N S TAN TA N  TH E R M O C O U P L E ,
20

O . O O I " JUNCTION

Reference sample for the heat transfer coefficient . 
Cylindrical shape , radius = 0 .5 "  length = 6 " .



COPPER-CO NSTAN TAN  T H E R M O C O U P L E , 
O .O O I" JUNCTION

21

Fig. 4.—  Sample of l ignite, rectnngulor parallelopiped shape of 
2" x 2 "x  6" dimension .



EXPERIMENTAL PROCEDURE

For the determination of the thermal conductivity and thermal 

diffusivity the following procedure was employed:

1. The water bath was brought to the predetermined tempera

ture and controlled using the automatic temperature control.  

The circulation pump was in operation.

2.  The SPEEDOMAX recorder was se t  adjusting the span to the 

5 millivolt s c a l e .

3 .  Before placing the sample in the circulation chamber the 

bath temperature was measured with a copper-constantan 

thermocouple.  The reference junction was at 32°  F.

4 .  The sample was placed in the circulation chamber and the 

temperature history at the center of the sample was recorded

- until a steady value was achieved.  '

5.  The bath temperature was measured again using the copper- 

constantan thermocouple.

6.  The thermal conductivity and thermal diffusivity were 

calculated using the temperature history of the sample 

and the plots of Figure 6 .  See Appendix E for details of 

the calculat ion.

22
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For the heat  transfer coeff ic ient  at the solid-fluid interface the 

experimental procedure was similar to the one followed for the thermal 

diffusivity and the thermal conductivity,  but the method of ca lculation 

used was different from the one above (see Appendix D) .

The sp e c i f ic  heat of l ignite was determined using a Parr 

calorimeter .  Samples of i ignite weighing about 70 g were wrapped in 

polyethylene bags and left  overnight in a bath of ice  water in a Dewar 

flask  to insure equilibrium temperature of 0°  C .  The polyethylene was 

used to avoid any contact  of l ignite and water.  The sample was 

dropped, without the wrapping, into the Parr calorimeter containing 

water at room temperature. The change in temperature was recorded 

until the equilibrium was reached. The sp e c i f ic  heat was calculated 

from the heat balance (see Appendix C for d e t a i l s ) . To obtain the heat 

capacity  of the calorimeter the above procedure was followed using pure 

copper of known sp e c i f ic  heat .

A pycnometer,  with a capacity  of 25 ml, was used for the density 

determinations. Samples of l ignite weighing approximately 1 g were 

used.  The density was obtained by dividing the weight of the sample 

by the volume of water displaced by the sample in the pycnometer. A 

sample calculation is shown in Appendix A.

The F - te s t  for analys is  of variance for the thermal conductivity,  

heat cap ac i ty ,  density and thermal diffusivity was used for the
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s ta t is t ica l  interpretation of the res u l ts .  The 90 percent confidence 

limits for these  values were a lso  calcula ted (see Appendix F ) .



EXPERIMENTAL RESULTS

Thirteen thermal conductivity and thermal diffusivity determina

tions covering five different l ignites were made. The temperature 

range of each determination was approximately from 70° to 140° F.  All 

the samples,  except one ,  were cut with the long axis  parallel  to the 

bedding plane.  The cut of the remaining sample was with the long axis 

perpendicular to the bedding plane. The thermocouple was always 

placed parallel  to the long a x is .

The proximate analyses  of the lignites used are shown in Table 5. 

The analyses  are of lumps of l ign i tes ,  as c lo s e ly  representative as 

p o s s ib le ,  taken from the same batch as those used in the t e s t s .

In Table 6 the results of the sp e c i f ic  heat ,  density ,  thermal co n 

ductivity and thermal diffusivity measurements are shown. Derailed 

ca lcu lat ions  of these physical constants  are shown in Appendices B,

C and E. .

The results for the heat transfer coeff ic ient  at the sol id-fluid 

in terface are presented in Table 7.  Detai ls  for ca lcu lat ions  are given 

in Appendix D. Several materials were tes te d ,  but the acryl ic  p las t ic  

was chosen  as the reference sample because  its thermal properties are 

similar to those of l ignite .
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TABLE 5

PROXIMATE ANALYSIS OF LIGNITE (as received)

Mines
Moisture
Percent

Ash
Percent

Volatile Matter 
Percent

Fixed Carbon 
Percent

Larson Mine 3 5 , 0  6 . 1
(Baukol-Noonan Mining Co.
Burke County, N. Dak.)

South Beulah Mine 3 2 . 9  4 . 8
(Knife River Coal Mining Co. ,
Mercer County, N. Dak.)

Gascoyne Mine 4 4 . 9  6 . 4
(Knife River Coal Mining Co. ,
Bowman County, N. Dak.)

Velva Mine. 3 6 . 2  3 . 4
(Truax Traer Coal Mining Co.  ,
Ward County, N. Dak.)

3 2 . 3  4 . 2

2 4 . 5

2 8 . 6

2 3 . 2

2 8 . 6

2 7 . 9

34 . 4

13.7

 ̂o .5

3 1 . 8

3 5 . 6

DOCl

Savage Mine
(Knife River Coal Mining C o . , 
Richland County, Mont.)



TABLE 6

THERMAL PROPERTIES OF VARIOUS LIGNITES3,

Initial
Sample Bath Specif ic  Thermal Thermal

Temperature Temperature Heat Density Conductivity Diffusivity
Mines °F  . °F Btu lb - -1 lb f t -  ̂ 3tu hr” -*- f t - '*' ^F- -*- sq ft hr- J '

Larson 79 123 0 . 3 5 8 2 . 9 0 . 1 5 6 0 . 0 0 5 5
do 72 128 0 . 3 4 8 1 . 8 0 . 152 0 . 0053
do 73 141 0 . 3 5 8 0 . 6 0 . 1 5 5 0 . 0055
do 70 137 0 . 3 3 8 1 . 3 0 . 1 5 4 0 . 0058

(Long axis  
perpendicular 
to the bedding 
plane)

72 133 ■ 0 . 34 8 2 . 8 0 . 1 5 8 0 . 0 0 5 6

South Beulah ' 74 137 0 . 4 3 76 . 8 0 . 162 0 . 0052
do 78 126' 0 . 4 0 76 . 6 0 . 1 7 0 0 . 0054

Gascoyne 75 122 0 . 39 76 . 8 0 . 1 5 8 0 . 0053
do 70 144 0 . 3 7 77 . 9 0 . 1 5 6 0 . 0 0 5 1

Velva 73 142 0 . 3 7 7 9 . 5 0 : 1 5 8 0 . 0 0 5 4
do 74 132 • 0 . 3 5 80 . 2 0 . 1 5 7 0 . 0 0 5 4

Savage 71 132 0 . 3 8 74 . 9 0 . 1 6 2  • 0 . 0054
do 73 123 0 . 4 0 7 4 . 3 0 . 162 0 . 0 0 5 3

99% Confidence Limits 0 . 019 1 . 56 0 . 0043 0 . 00014

aAU samnlfis.  pvrpnt r notpri . flit with tho lnnn 3vic 0 m 1 1 c* 1 4* Vl .0 d 4 i r<

CO



TABLE 7
V

THERMAL PROPERTIES OF THE REFERENCE SAMPLES

Heat

Material
Density 
lb ft -3

Thermal 
Conductivity 

Btu f t " 1 h r " 1 ° F ~ 1

Thermal 
Diffusivity 
sq ft hr"

Heat 
Capacity 

Btu l b " 1 ° F “ 1

Transfer 
Coefficient 

Btu f t " 2 h r " 1 °:

10% Sn Bronze3 553 40 0 . 8 0 3 0 . 091 155

100% Aluminum10 169 132 3 . 6 5 0 0 . 214 153

1% Carbon s tee lC 487 25 0 . 452 0 . 1 1 3 130

Acrylic p la s t ic3 • 7 3 . 7 0 . 1 0 8 0 . 0042 0 . 3 5 0 74

J .  H.  Perry, e a .  , Chemical Engineering Handbook, 4th e d . ,  New York: McGraw-Hill ,  
1963,  pp. 2 3 - 4 7 .

bA. J .  Chapman, Heat Transfer , New York: Macmillan C o . ,  1960,  p.  402.  

c Ibid.

bFrom literature provided by the manufacturer. Catalog PL- 693a ,  Rohm and Haas Co. , 
Philadelphia,  Pennsylvania.



DISCUSSION OF THE RESULTS

The measured values  of both the thermal conductivity and thermal 

diffusivity for a l l  the l ignites  invest igated in the present research fall  

within a range of  0 . 1 5 2  to 0 . 1 7 0  Btu hr" * ft - * °F~ * and 0 . 0 0 5 1  to 0 . 0 0 5  

sq ft hr * r e s p e c t iv e ly .  The SO percent confidence intervals for deter

mined conductivity and diffusivity are 0 . 0 0 4 3  and 0 . 0 0 0 1 4 .  The values  

of thermal conductivity and thermal diffusivity are average values for 

the range of temperatures employed, 70°  to 140° F.

Knowledge of the numerical values  of the thermal conductivity and 

thermal dif fusivity permits calculat ion of the temperature profile within 

a lump of  l ignite during heat ing.

It was thought that the thermal conductivity and thermal diffusivity 

would depend to some extent  upon the cut of the sample, long ax is  

paral lel  or perpendicular to the bedding plane.  No signif icant  difference 

was found between t-he two different cu ts .  The different values of the 

thermal conductivity between any two samples can be attributed to 

dif ferences in the extent  to which these particular samples form c r a c k s .  

This variabili ty in crack  formation entirely obscures any variation which 

may e x is t  between the thermal conductivity and the direction of the cut

29
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of the sample. This is  a lso  true of the thermal dif fusivity.

The results  obtained in the present research are in the range of

results  found in the literature for other c o a l s .  Badzioch, Gregory and

Fie ld , ^  reported a range of 0.  133 to 0.  194 Btu ft hr  ̂ °F   ̂ for the

thermal conductivity and 0 . 0 0 4 7  to 0 . 0 0 8 2  sq ft hr- '*' for the thermal

13dif fusivity.  Margit found that the thermal conductivity for Hungarian

coals  ranges from 0 . 1 3  6 to 0 . 2  80 Btu ft  ̂ hr  ̂ °F ^.

The values for surface heat transfer coeff ic ient  of different

reference materials of known thermal conductivity and thermal

diffusivity ranged from 7 4 . 3  to 155 Btu ft  ̂ hr-  ̂ ° F - '*. The value for

the acrylic  p las t ic  was used because its thermal properties are similar

to those of l ignite .  The parameter ™  exp resses  the relative

res is ta n ce  of the interior of the solid to that of the film at the boundary

It can be shown that the value of the surface heat transfer coeff ic ient

does not have a great e f fec t  in this determination because  lignite is  a

poor conductor and has a low thermal conductivity.  From the samples

tested the value of the parameter was c lo se  to zero (see Fiaure 6)ha

The F - te s t  for analys is  of variance for the values of thermal c o n 

ductivity,  thermal diffusivity,  density and spec i f ic  heat as determined 

in the present work shows that there is no signif icant  difference betwee

the mines at the 0 . 0 1  level .



APPENDIX A

The lignite used in this project  was supplied from the Savage mine 

in Montana, and from Larson, Beulah, Gascoyne and Velva mines in 

North Dakota.  The large p ie ce s  of l ignite were stored in polyethylene 

bags to avoid moisture l os s .

For the determination of the sp e c i f ic  heat the samples were 

wrapped in polyethylene bags and left  overnight in a bath of ice water 

in a Dewar f lask .  The polyethylene was used to avoid any contact  of 

l ignite and water.  For density determinations a small lump of lignite 

weighing approximately 1 g was used.

For the determination of the thermal conductivity and thermal 

diffusivity large lumps of l ignite were cut with, a Doall band saw at a 

speed of 1500 ft min ;̂ cutting had to be done carefully because  lignite 

breaks very e a s i ly .  The samples were rectangular parallelopipeds of 

2 in x 2 in x 6 in. The samples were kept in polyethylene bags to 

avoid moisture loss  until the determination was carried out.

A 3 in hole of 2 mm diameter was drilled centrally at the top of 

the sample, parallel  to the long a x i s ,  and in it was placed a

PREPARATION OF THE SAMPLE
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copper-constantan  thermocouple with a 0 . 0 0 1  in measuring junction.

The hole at the top of  the sample was sealed with rubber cement after 

the thermocouple was inserted in order to avoid an influx of v/ater during 

the determination.



APPENDIX B

SAMPLE CALCULATION OF DENSITY

For the density determinations, a 25 ml pycnometer, with a 

thermometer attached to the cover,  was used. A sample calcula t ion 

for l ignite from the Larson mine is  shown below:

Weight of Pycnometer + sample: 
Pycnometer:
Sample:

Temperature of water:  2 6°  C

Density of water at 26°  C: 0 . 9 9 6 8 2  g/cc

Pycnometer fi lled with water:
Pycnometer:

Weight of H^O:

Pycnometer + water + sample:
Pycnometer + sample:
Water:

Weight of LI^O:
Water:
Water displaced by lignite sample: 

Volume of water in cc :

Densi ty -2- = 1 . 3289  g/cc = 8 2 . 90 . 9 1 8 8  cc

29 . 1876 .
27 .9677

1 .2199 (

52 ,, 8390
27, . 9677

24 ,, 8733

53, . 1458
29 ,. 1876
23, .9582

24 ,,8733
23, ,9582

0,.9151 <

0,,9151
0. ,99682

0 . 9 1 8 0  c c

lb ft - 3
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APPENDIX C

SAMPLE CALCULATION OF THE SPECIFIC HEAT

For the sp e c i f ic  heat determinations a Parr calorimeter was used. 

Samples of l ignite weighing around 70 grams were wrapped in poly

ethylene bags and left  overnight in an ice  water bath to insure equil ib

rium temperature of 0°  C. Temperatures in the calorimeter were taken 

until the equilibrium was reached. Once the equilibrium was attained 

the sample was dropped, without the wrapping, quickly in the 

calorimeter and the change in temperature was recorded until the 

equilibrium was obtained. The following data were recorded for a 

sample of  l ignite from the Larson mine:

Weight of water in the calorimeter: 2000 g

Weight of the calorimeter: 7 1 5 . 5  g

Weight of the lignite sample: 70 . 102 g

Heat capacity  of water at 2 6° C 0 . 9 9 8 9 cal g " 1 0 C_1

Heat capacity  of calorimeter: 0 . 1 5 0 cal -1 O^-l  g C

Temperature change in the water: 0 . 3 0 0 ° C

Temperature change in the lignite sample: 2 5 . 6 2 0 ° C

Cp x 70 . 1  x 2 5 . 62  = 2000 x 0 . 9 9 8 9  x 0 . 3 0 0 x 7 1 5 . 5 x 0..300  x o . :

Cp = 0 . 3 5 2  cal  g " 1 ° C _1
t  '
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APPENDIX D

SAMPLE CALCULATION OF THE HEAT TRANSFER COEFFICIENT

* For the determination of the heat transfer co ef f ic ie n t ,  at the solid 

fluid in t e r f a c e , the same experimental procedure used in the thermal 

conductivity and thermal dif fusivity,  was followed:

The following data were obtained for Bronze 10 percent Sn

cylindrically  shaped, 1 in radius and 6 in long.

t_ = 1 5 9 . 6 8 °  Fb

t G = 7 7 . 5 5 °  F

p = 5 5 3 . 2  lb cu f t " 1; Cp = 0 . 0 9 1  Btu l b -1 ° F _ 1 ;

k = 40 Btu ft 1■ ° F ~ 1 hr <£ = . 8032 ft2 hr 1

Temp. °F
tg -  t CC Q

Time (sec) "  to- R 2

0 7 7 . 5 5 1 . 0000 0 . 0 0 0 0
6 ' 7 7 . 5 5 1 . 0000 0 . 1 9 2 8

12 78 . 1 3 0 . 9 9 1 2 0 . 3 8 5 6
18 8 6 . 4 8 0 . 8 9 0 8 0 . 5 7 8 4
24 9 5 . 8 3 0 . 7 7 7 0 0 . 7 7 1 2
30 104 . 22 0 . 6 7 4 9 0 . 9 6 4 0
36 111 . 67 0 . 5 8 4 3 1 . 1566
42 117 . 58  • 0 . 5 1 2 4 1 . 3496
48 123 . 46 0 . 4 4 0 7 1. 5424
54 128 . 08 0 . 3 8 4 6 1. 7352
60 132 . 25 0 . 3 3 3 4 1 . 9280
66 136 . 00 0 . 2 8 8 4 2 . 1 2 0 8

35
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l s * oc o
Time (sec) Temp. °F ■ t s - t o R 2

72 1 38 . 68 0 . 2 5 5 7 2 . 3 1 3 6
78 1 41 . 36 0 . 2 2 2 9 2 . 5 0 6 4
84 1 43 . 25 0.  1999 2 . 6 9 2 2
90 1 45 . 48 0 . 1 7 2 8 2 . 8 9 2 0
96 1 46 . 28 0 . 1 6 3 1 3 . 0 3 4 8

102 148 . 71 0 . 1 3 5 9 3 . 2 7 7 6
108 1 5 0 . 1 6 0 . 1 1 5 8 3 . 4704
114 1 5 1 . 1 7 0.  1035 3.6-632
120 1 52 . 20 0 . 9 1 0 3 3 . 8 5 0 0
. . •

CO 1 59 . 68
X0 .0 ° " 0 

0 . 0 0 0 0  w  • CD

From the plot of the dim ensionless  temperature versus the inverse 
u

of the Biot modulus r™ the heat transfer coeff ic ient  can be calculated
hR

(see Figure 5).

Using a number of pairs of experimentally determined dimension

l e s s  temperatures and dim ensionless  t i mes ,  the inverse of the Biot

modulus can be found for 10 percent Sn bronze whose thermal con

ductivity and thermal diffusivity is known. For example:

0 . 2 5 5 7

0 . 2 2 2 9

<X 0
R a

2 . 3 1 3 6

2 . 5 0 6 4

Plotting these  values in Figure 5 and drawing a vertical

it reaches  the horizontal a x i s ,  a value for can be found.
hR

l i ne,  until 

This

value is  3 . 1 .
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k
h'R " 3.1

k .  4 0
3,1 R 3.1 x

n 155 Btu f t "2 hr I o I
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INVERSE BIOT MODULUS r~

Fig. 5.- -G raph for determining the heat transfer coeffic ient. I %  
carbon steel,  1 0 0 % aluminum and 10%  Sn bronze as 
reference samples, -5- = 0



APPENDIX E

SAMPLE CALCULATION OF THE THERMAL CONDUCTIVITY 

AND THERMAL DIFFU5IVITY

For l ig n i te ,  whose thermal conductivity and diffusivity are

unknown, it is  not poss ib le  to ca lcu la te  either the dimensionless  time 

cf 9 k-— , or the inverse  of the Biot modulus . However, a trial  and
a 2 h a

error determination can be made using Figure 6.

The following data were co l lec ted  for a sample of l ignite from the

Larson mine:

= 8 3 . 0  lb cu ft 3; Cp = 0. 35 Btu lb 1 ° F  a - 1/12 ft;

= 1 2 3 . 4 0 °  F; t rt -  7 9 . 0 0 ° F. i / J J /o

\
t s -  t A s - l k 0 \ — ( ft .

Time (min) Temp. °F *s ~ l o *  *5 "\o PC p a 2 / S'bsvta or

0 7 9 . 0 0 1 . 000 1 . 000 0 . 0 0 0
& __ 

n Or. (1
1 79 . 0 0 1. 000 1. 000 0 . 8 3 8

n ca

2 79 . 0 0 1. 000 1. 000 0 . 1 6 8 or
3 79 . 2 3 0 . 9 9 5 0 . 9 9 8 0 . 2 5 2 K fffUr
4 8 0 . 0 0 0 . 9 7 8 0 . 9 8 9 0 . 3 3 5 <UkJt\ l//
5 8 0 . 7 8 0 . 9 6 0 0 . 9 8 0 0 . 4 1 9 lK c Um
6 8 2 . 3 0 0 . 9 2 6 0 . 9 5 2 0 . 5 0 3
7 8 4 . 0 0 0 . 8 8 7 0 . 9 4 2 0 . 5 8 7
8 8 6 . 0 0 ' 0 . 8 4 2 0 . 9 1 8 0 . 6 7 1
9 8 8 . 0 0 0 . 7 9 7 0 . 8 9 8 0 . 7 5 5

10 8 9 . 7 4 0 . 7 5 8 0 . 8 7 1 0 . 8 3 8
11 9 2 . 0 0 0 . 7 0 7 0 . 8 4 1 0 . 9 2 2
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Temp. °F
t s t / r s“ it 9

le (min) *s “ v  t s -  tG FCpQ£

12 9 4 . 0 0 0 . 6 6 2 0 . 8 1 3 1 . 006
13 9 5 . 5 0 0 . 6 2 8 0 . 7 9 3 1. 089
14 9 7 . 0 0 0 . 5 9 5 0 . 7 7 1 1 . 174
15 9 9 . 0 0 0 . 5 4 9 0 . 7 4 2 1 . 257
16 100 . 50 0 . 5 1 6 0 . 7 1 8 1. 343
17 102 . 00 0 . 4 8 2 0 . 6 9 4 1 . 425
18 103 . 30 0 . 4 5 3 0 . 6 7 3 1. 509
19 105 . 00 0 . 4 1 4 0 . 6 4 3 1 . 593
20 106 . 00 0 . 3 9 2 0 . 6 2 6 1 . 677
21 107 . 00 0 . 3 6 9 0 . 6 0 7 1. 760
22 108 . 20 0 . 3 4 2 0 . 5 8 5 1. 842
2 3 109 . 00 0 . 3 2 4 0 . 5 6 9 1. 928
24 110 . 50 0 . 2 9 1 0 . 5 3 9 2 . 0 1 1
2 5 111 . 50 0 . 2 6 8 0 . 5 1 8 2 . 0 9 6
26 112 . 00 0 . 2 5 7 0 . 5 0 7 2 . 179
27 113 . 00 0 . 2 3 4 0 . 4 8 4 2 . 2 6 3
28 113 . 80 0 . 2 1 6 0 . 4 6 8 2 . 3 4 7
29 114 . 66 0 . 1 9  7 0 . 4 4 4 2 . 4 3 1
30 115 . 25 0 . 1 8 3 0 . 4 2 8 2 . 5 1 5
31 115 . 98 0.  167 0 . 4 0 9 2 . 5 9 3
32 116 . 75 0 . 1 4 9 0 . 3 8 7 2 . 6 8 2
33 117 . 25 0 . 1 3 8 0 . 3 7 2 2 . 7 6 6
34 117 . 80 0.  126 0 . 3 5 5 2 . 8 5 0
35 118 . 32 0.  114 0 . 3 3 8 2 . 9 3 4
36 119 . 00 0 . 0 9 9 0 . 3 1 5 3 . 0 1 8
37 119 . 30 0 . 0 9 2 0 . 3 0 3 3 . 102
38 120 . 00 0 . 0 7 7 0 . 2  78 3.  185
40 121 . 50 0 . 0 4 3 0 . 2 0 7 3 . 3 5 3
45 123 . 00 0 . 0 0 9 0 . 0 9 5 3 . 7 7 2

CO 123. 46 0 . 0 0 0 0 . 0 0 0 m

At any particular time .in the experimentally determined temperature

history of the sample of l ignite there is a corresponding value of



Fig. 6.—  Dimensionless temperature distribution in g slab.
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dimensionless  temperature. For this value of the dimensionless  tempera-

ture there corresponds a pair of values of dimensionless  t ime,  ,
a'-

k ;.
and the reciprocal of  the Biot modulus, ~ ~  , which sat is fy  the plot

of Figure 6 .  A trial  and error procedure was followed for the c a l c u la 

tion of the thermal conductivity.

For example: Let us assume k = 0 . 1 5 6  Btu ft  ̂ hr  ̂ °F~^

So:
ha

-  0 . 0 2 5

From the table above:
A s - t  

v  t s -  tQ

0 . 6 9 4
0 . 6 4 3
0 . 6 0 8

l l i
PCpU2

-----T--—

1 . 4 2 5 k  
1 . 593  k 
1 . 760  k

From Figure 6 the corresponding values  for — ;j~ are:  0 . 2 2 5
Q‘' 0 . 2 5 0

0 . 2  75

The k calculated will  hi 0. 158 
0 . 1 5 7  
0 . 1 5 6

These values of k agree with the assumed value.

The thermal diffusivity is calculated dividing the thermal con

ductivity by the heat capacity  and the density.



APPENDIX F

STATISTICAL INTERPRETATION OF RESULTS

The F - t e s t  for an a lys is  of variance for the thermal conductivity,  

heat capacity , densi ty and thermal diffusivity was used for the 

s ta t i s t i c a l  interpretation of the re s u l t s .  The F values from the tables  

correspond to 0 . 0 1  s ignif icance  lev e l .  The F - te s t  for the thermal con 

ductivity,  thermal diffusivity,  heat capacity and densi ty,  indicates  

that there is no signif icant  difference among the mines at the 0 . 0 1  

le v e l .  The 90 percent confidence intervals for these  property values 

were ca lcu lated  t o o .
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ANALYSIS OF VARIANCE FOR THERMAL CONDUCTIVITY

Source of Sum of Degrees of
Variation Squares Freedom

Between (mines) 1 . 78  x 10~4 4

Within (error) 0 . 4 3  x 10"4 5

Total 2 . 2 1  x 10"4 9

Mean Calculated Critical
Square F F

0 . 4 4  x 10"4 5. 22 11. 4

0 . 0 9  x 10"4

NINETY PERCENT CONFIDENCE INTERVAL FOR THERMAL CONDUCTIVITY: 0 .0 0 4 3  Btu h r " 1 f t ' 1 ° F _1



ANALYSIS OF VARIANCE FOR THERMAL DIFFUSIVITY

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom

Mean
Square

Calculated
p

Critical
F

Between (mines) 7 . 8 3  x  1 0 " 8 4 1 . 96  x 1 0 "8 2 . 0 5 11. 4

Within (error) 4 . 7 9  x 10~8 5 0 . 9 6  x 1 0 ' 8

Total 12. 62  x 1 0 " 8 9

NINETY PERCENT CONFIDENCE INTERVAL FOR THERMAL DIFFUSIVITY: 0 .0 0 0 1 4  sq ft hr-1



ANALYSIS OF VARIANCE FOR DENSITY

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom

Mean
Square

Calculated
F

Critical
•F

Between (mines) 4 6 . 6 4 4 11. 66 9 . 8 11. 4

Within (error) 5 . 9 5 5 1. 19

Total 52 . 59 9

NINETY PERCENT CONFIDENCE INTERVAL FOR DENSITY: 1 .5 6  ib ft



ANALYSIS OF VARIANCE FOR SPECIFIC HEAT

Source of Sum of Degrees of Mean Calculated Critical
Variation Squares Freedom Square F F

Between (mines) 6 . 27  x  I0~3 4 1. 56 x 10-3 8 . 22 11. 4

Within (error) 0 . 9 5  x 10“3 5 0 . 1 9  x 10“3

Total 7. 22 x  10-3 9

NINETY PERCENT CONFIDENCE INTERVAL FOR SPECIFIC HEAT: 0 . 0 1 9

I
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