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ABSTRACT

Chars made from two lignites, a subbituminous coal and a bituminous' 
coal, were reacted, with COg over a range of temperatures and space 
times to determine the effect of coal rank on the conversion of 

COg to CO by the Bouduard reaction. The rank of the coals tested 
was found to have a definite effect on the conversion of CO^ with 

the degree of conversion decreasing with increasing rank. Conversion 
increased with increasing temperature and contact time. Calculation 
of the heats of formation of the carbon constituents of these coals 
from the pseudo equilibrium data indicate that the carbon in the 
lower rank coals is in a more reactive state.

The effects of sodium concentration of the coals on the conversion of 
CO2 were also studied. Analysis of variance for a two way classification 

design indicate that the sodium content of the coals is significant. The 
number of experiments of this type was too small to predict a definite 

trend in the relationship of conversion to sodium content, butr,,evidence 

indicates that increased sodium concentration increases conversion.

ix
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INTRODUCTION

Greater industrialization and mobilization, as well as population 

growth, have increased the demand for energy in the United States.
In the years 1900-1955 the total energy consumption of the United 

States increased over fourfold or at an average annual rate of 
3.1 percent (l). The total energy consumption in 1955 amounted to 

1+0,796 trillion Btu, equivalent to 1,557 million tons of bituminous 
coal with a heating value of 26.2 million Btu per ton. By 1970 
energy consumption was 69,000 trillion Btu or I .69 times the 1955 
total. Per capita consumption of energy in 1970 was 338 million Btu 
per year, equivalent to 6.7 gallons of petroleum per day. Projections 
of energy use from 1970 to 2000 predict an increase in total energy 
demand by a factor of 2.5 to 3 (2).

As technology has advanced, the sources of energy have become 

more sophisticated as evidenced by two changes in the country’s 
energy base since 1850; first from wood to coal, then from coal to 

natural gas and oil (l). Today oil and natural gas supply approximately 
75 percent of the energy requirements of the United States (3). The 
growth of the natural gas industry has been phenomenal. In the last 
25 years, natural gas has been used for 50 percent of the nation’s 
new energy requirements, but at present the projected demands are 
already greater than what proven reserves in the contiguous U8 states 
will be able to supply (H).

1
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Two methods of meeting future natural gas requirements are 
importation of liquefied natural gas or manufacture of synthetic 

gas from coal. In view of possible restrictions on imports or a 

possible international crisis halting imnorts, coal, gasification 
will probably provide an important source of gaseous fuels. The 

main advantage of coal gasification is the abundance of coal available 
in this country.

The technology of producing a low heating value gas from coal 
dates back to the early l800's, but the use of this gas was limited 
mainly to the steel industries (5). Recently the Interior Department’s 

Office of Coal Research has agreed to provide $30 million per year for 
h years to private firms in an effort to stimulate progress towards 

the development of a commercially acceptable process for manufacturing 
a high heating value gas from coal (U).

At present there are several processes under development for 

producing high heating value gas. These include the Bigas process 
developed by Bituminous Coal Research, Inc., the Hvgas-Oxygen process 

developed by the Institute of Gas Technology, the Stean-Iron process 
developed by IGT — Fuel Gas Associates and the Svnthane process 
developed by the U.S. Bureau of Mines (3). These processes all 
have several features in common; the reaction of coal with oxygen 
or air and steam in a gas producer to form a synthesis gas and the 
raethanation of this synthesis gas to a high-heating-value pipeline gas.
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The synthesis gas for the methanation step consists primarily 
of Hg and CO, and is usually the result of several simultaneous 

reactions involving COg, CO, Hg, Og and HgO. A primary reaction is: 

C(s) + ®2(g)— >- C0o^g) - 17^,600 Btu/lb mole C 
This reaction provides thermal energy for the following 

endothermic reactions:

h . ) +
C(8) + HgO(g)^ C O (g) + Hg( j + 70,900 Btu/lb mole

C 0 (g )  + H2 ° ( g ) ^ : C02 (g )  + H2 ( g ) + 700 B t u / lb  ™ l e

It is desirable to have a Hg/CO ratio of about 3:1 in the gases 
from these reactions if methane is to be synthesized. The synthesis 
gas is purified and then methanated over a nickel or iron catalyst:

2C0/ » + 70,200 Btu/lb mole

CO, . + 3H / v(g) 2(g) •CH^^ + HgO^  ̂ “ 88,000 Btu/lb mole
Because all coals can be gasified and because the production of 

CO is so important in the gasification processes, the primary objective 
of this investigation is to determine if there is a relationship 
between the rank of coal and the reactivity of the constituent carbon 

towards COg in forming CO as in reaction 2. The reactivity of the carbon 
is defined as the rate of CO formation by the coal substance at defined 
temperature, pressure and flow conditions (6).

The results of these reactivity investigations may provide useful 
information for determining a set of criteria for use in selecting coals 
for gasification processes, and may prove to be of some value in 
determining uses for coals which cannot be mined either for economic or 

ecological reasons. Such coals may be gasified underground to produce 
a gas for synthesis of a high-heating-value pipeline gas or for its
heating value.
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If of high reactivity, the large deposits of low-rank coals in the 
Northern Great Plains Province, about h5 percent of the nation's solid 
fuel reserves, would become even more important in the total energy 
picture to meet expanded energy needs.



LITERATURE REVIEW

'There iS“asuhstantlaX“aaoiuht' oT'inTdmatidn available on the
production of producer gas as such, but very little information was 
found pertaining only to the Bouduard reaction. As this reaction was 

of primary interest, references pertaining to the Bouduard reaction were 
particularly useful.

Clement, Adams and Haskins (7) examined the effects of temperature 

and gas flow rate on the production of CO by the Bouduard reaction. Their 
experiments were performed by passing a stream of CO^ through a bed of 

fuel contained in a porcelain tube heated by an electric furnace. The 
COg was supplied by a tank of liquid C0p. By metering the flow of 

gases from the reactor, they were able to calculate the contact time 
of the gases. The exit gases were analyzed by the Hempel method.
From their experiments, they were able to plot the relationship of 
the percent CO formed and the temperature and contact time.

Professor C. N. Haskins used the data of Clement, et al., for

approximating the constants k^ and k.2 in the rate equation for the 
Bouduard reaction with respect to CO:

. tl (C02) - (co)2

Wenzel, Meraikib and Franke (6) investigated the effect of alkaline 
carbonates on the reactivities of coals and measured the reactivity with 

regard to the Bouduard reaction using parameter, k , the rate constant
for the equation:

dllc 
dt

dN COo r, > , ...
S t *  = kn x  Mc [ ( C02) -  ( c o a -o p i
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where M is the availability of carbon, (CO^) is the concentration of 

CO2 in the exit gas and (CC^-G^) is the thermodynamically required 
equilibrium concentration. The temperature dependence of the rate 
constant was determined by the Arrhenius equation. The experiments were 
performed by passing GO^ into- a- heated tubular reactor which contained the 
carbonates and char or coke. The results showed that the addition of 

carbonates does have an activating effect. They also found that the 
coals affected the least are those which are naturally reactive while those 
affected the most are those that are naturally the least reactive.

In another investigation by Franke and Meraikib with Nefedow (8), 

the influence of metal vapors on the reactivities of coals was studied.

Here again the Bouduard reaction was the reaction under study and the 
rate constant, k , was the measure of reactivity. The results were mixed 

and inconclusive. A trend, however, was that there was a reactivity increase 
due to the presence of the metal vapors at the lower temperatures (800° C) 
studied and an inhibiting effect noted at the higher temperatures (1100° C).

G. C. Scott and G. W. Jones (9) investigated the effect of time of 
contact on the concentration of effluent gases from the oxidation of

■S&-
anthracite in an effort to establish a means of predicting the "trend 
of a mine fire by sampling the effluent gases from the burning area.
The results were such that they concluded that the percentage of oxygen 
in the gases was of little value of predicting the activity of the fire.

Though this report contained no information on the Bouduard reaction, 
there was a description of their apparatus, which could be adapted for use 
in this investigation and a method for calculating the time of contact of
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the gases. This information proved quite useful in determining the 

experimental methods used in this investigation. The work of Clement, 
Adams and Haskins (7) was used to the greatest extent as a reference 

because their methods adapted themselves well to a study of the rate 

of formation of CO. - -—  —
The coals studied by Franke, et al (6, 8) were European brown coal, 

gas coal and bituminous coal. Clement, Adams and Haskins performed their 
experiments with charcoal, coke and anthracite. There was no information 

available on the reactivity of lignite and subbituminous coals from the

i

United States



SCOPE OF INVESTIGATION

The objectives were to determine the effects of rank and of sodium 
content on the reactivity of coal measured by conversion according to 

the Bouduard reaction:
C, s + C0„, «— :a— 2C0, x + 70,200 Btu/lb mole (s) 2(g)-^—  (g)

This reaction was chosen because of its importance as a major reaction 

in the formation of synthesis gas that may be used in producing a high- 

heating-value pipeline gas.
Standardized conditions of temperature, pressure and gas feed are 

necessary for comparing reactivities. Each coal was tested at three 
temperature levels of 1100°, 1250° and 1400° F, and at four space 

times of 5, 10, 25, and 50 seconds. These space tines are determined by 
the flow into the reactor. All experiments were carried out at atmospheric 

pressure.
The coals tested included a bituminous coal, a subbituminous coal 

and two lignites. The coals were carbonized simultaneously in a slot 

oven to drive off some volatile matter, and were then crushed and screened 
to the desired size fraction of l6 by 30 mesh. The experiments were performed 
in an externally-heated flow-through reactor containing a fixed bed 
of the test coal. Each sample was gasified at the same temperatures and 
space times} in this manner, it was possible to gather data for comparison 

of reactivities.

8
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The reactivity was measured by the percentages of CO present in the 
exit gas. Results of these experiments were compiled and analyzed 
statistically to determine if significant differences in reactivity 

existed.
Experiments were also performed on the two lignite coals to determine 

if the sodium concentration, reported as percent sodium oxide in the ash, 
had any significant effect on the reactivity. These experiments were 

performed in the same manner except the sodium concentrations were 
increased or decreased by adding sodium or by leaching the chars with 

acid solutions.

* i



EXPERIMENTAL DESIGN

As in most experimental situations there vas more than one factor 

affecting the outcome of the experiments. The independent variables 
of temperature, space time and type of coal are considered to influence 
the formation of CO. In order that the significance of these variables 

may be determined, an experimental design suitable for statistical 
analysis was used. The variables of coal, temperature and space time were 

considered in one experimental design, and the variables of sodium 
concentration and contact time in another.

The four coals are taken to be fixed effects while the three 
temperatures and four space times are considered to be random effects 

representing a range of possible space times and temperatures. These 
variable levels were combined into a mixed model 3 x h x k factorial 
design for analysis of variance to determine the possible significance 

of differences due to these variables.
The variables of sodium concentration and space time were 

combined into a random-model two-way classification design. Both the 
contact time and sodium concentration were considered to be random 
effects. Explanations of these designs and analyses are available 

in Volk (10) and Wine (ll).
The significance level selected was 0.05, which means that there 

was a 0.05 probability of falsely rejecting the null hypothesis.

10
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Of major interest is the null hypothesis that the effects of the coals on 

the conversion of CO^ to CO were all equal to zero. Letting factor B 
represent the coal effects, this null hypothesis can be written:

h ob B! = b2 = b3 = BU = 0 (ii).
Letting factor A represent the temperature effects and factor C the 

space time effects, the other null hypotheses are written:

H0A ; \  = A2 = A3 = 0 

H0C * C! = C2 = C3 = Cu = 0
The model equation for the design including the three factors and their 

interactions is written:

Xijku ’ U + Ai + * Ck + <aB)iJ + (AC)ik + lBC)jk + Eijku
For the second design the appropriate model equation is:

xu  = u + ^  + bj  + Ei 3
The null hypotheses are similar to those of the first design.
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MATERIALS TESTED 

Coals
The bituminous coal (A) was obtained from Consolidation Coal Company's 

Arkwright mine at Osage, West Virginia, and the subbituminous coal (C) 
from Western Energy Company's mine at Colstrip, Montana. The North 
Dakota lignites were from the Larson pit of Baukol-Noonan, Inc. (B), 

and the Gascoyne mine of the Knife River Coal Mining Company (D).

As indicated, these coals will be designated A, B, C and D for simplifying 
future references (see Appendix A, Table 1). The analyses of coals and 
their ash on an as-received basis are given in Appendix A, Tables 2 

and 3.

Sample Preparations
As received, the coals contained volatile matter which would be 

released on heating in the reactor. The released gases would consist 
primarily of hydrogen and methane with some CO^, CO and tar vapors 
included, and would influence the results of the reactivity measurements 
because of the dilution effect on the gasifying medium.

The volatile matter content was reduced by carbonization. A 
50-pound sample of each coal was placed in an iron retort, and the 
retorts were placed in a slot oven at 1100° F. The samples were 
maintained at this temperature for approximately J hours. Coal3 B,
C and D formed unconsolidated chars while coal A formed a hard porous 

coke.

12
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The proximate analyses of the carbonized samples are given in 

Appendix A, Table h. After carbonization the samples were sized by 

crushing and screening. The particle size range used was 16-30 mesh 
(0.59 - 1.19 mm), similar to the size used by Scott and Jones (9). 

Carbonization and sizing were the only preparations required.
Two samples of char D having sodium concentrations greater than 

the original char were prepared by spraying water solutions of sodium 
acetate on the samples followed by redrying. Char B originally had 
a high sodium concentration in its ash, and attempts were made to leach 

sodium from the char by treatment with strong acid solutions to reduce 
the sodium concentration. This process replaces the sodium with hydrogen 

by ion exchange. An effort was made to obtain samples in a wide range 
of sodium concentration, but analyses showed that all the extracted 

samples contained from lU to 17 percent sodium oxide in their ash, 
indicating that there may be a limiting value as to the amount of 
exchangeable sodium in a given char. The ash analyses of chars B 

and.D and the samples prepared from them are given in Appendix A,

Tables 5 and 6.

CO^ Source
The CC>2 source was a 50-pound cylinder of commercial grade COg.

The minimum purity for the commercial grade specifies 99.5 percent.
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EQUIPMENT

The principle equipment used for investigating the Bouduard reaction 

included a reactor, a furnace to provide the heat for and maintain the 
reaction temperature and a system for delivering and metering the flow 
of COg into the reactor. The percentages of CO and COg in the exit gas 

were determined "by sampling and analyzing the gases with an Orsat 
apparatus. The schematic flow diagram is shown in Figure 1.

Reactor and Furnace
A tubular reactor in which a fixed bed of char rested on a 

porous support has been used successfully in similar work (6, 7, 8, 9), 

and the same concept was employed in this investigation. The final 
design of the reactor is shown in Figure 2.

The reactor was designed for use with a Burrel model B-l-23 
tube furnace capable of maintaining temperatures up to 2300° F. The 
heating zone of this furnace is 23 inches long and permits the use of 

a reactor up to 2 inches in outside diameter. An effort was made to 
design the reactor so that the bed of char would be centered in the 
heating zone of the furnace.

The temperature of the furnace was controlled and recorded by 

a Honeywell Eleetr-0-Pulse relay controller used in conjunction with 
a strip chart recorder. The temperature sensor was a shielded 
chromel-alumel thermocouple.

The reactor was fabricated of 2 inch nominal outside diameter 
schedule ItO type-30H stainless steel pipe. Stainless steel was

lit
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Thermocouple

Fig. 2 --C ross section of reaction tube.
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chosen because of resistance to scaling under repeated heating and cooling 

and brittling by the carburizing conditions to which it would be exposed.
The reaction tube was fitted with a porous plug of alumina.

The purpose of this plug was to support the bed of char and to 
uniformly distribute the CC>2 entering the reactor.

CO,, Flow Meter

The CO^ was delivered from a cylinder with a regulator and an 
additional valve used to control the flow. An orifice type meter was 

employed to measure the C02 flow. Glass capillaries were used as 
orifices and the pressure drops across the capillaries were read on a 
manometer filled with unity oil. By varying the length or diameter of 

the capillaries it was possible to cover a wide range of flow rates. Each 
capillary was calibrated against a standard wet test meter to determine 

the relationship of volume flow rate of C02 and the manometer readings 
in inches of oil. The calibration curves prepared for the flow meters 

are shown in Figures 3 and U.

Sampling Apparatus
Gas samples were taken by using the slight positive pressure in 

the reactor to force the gas from the discharge line into a sampling 
bottle where it displaced a collecting fluid to prevent the seepage 
of air into the sample. The apparatus used for collecting the samples 

is shown in Figure 5. The collecting fluid was a solution of water,
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5 - - Sampling apparatus.
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sulfuric acid and sodium sulfate. The low solubility of COg in the acid 

solution reduced errors in the gas analysis due to absorption of COg.

Orsat Apparatus
A standard Orsat apparatus with a burette calibrated from zero to 

100 milliliters was used to analyze the gas samples for CO and CO2 .
The COg was absorbed in a contact pipette filled with a potassium hydroxide 

solution and the CO was absorbed in a bubbler pipette filled with an 

acidic cuprous chloride solution.

Gas Chromatograph

A Burrel model K-3 Kromo-Tog gas-liquid chromatograph was available 
for use in analyzing the gas samples. The separation columns did not 

permit the analysis for CO and CO^ simultaneously. The chromatograph, 
using a silica gel column, was used for determining the time necessary 

to remove the remaining volatiles from the samples.



PROCEDURES

Sample Measuring and Charging

It was necessary to insure that the sane volume of char was placed 
in the reactor for each experiment because the space time is dependent 

on the void volume of the reactor. A piece of 2 inch schedule UO pipe 
was cut to a length of 30 centimeters, the same as the bed depth desired, 
and one end was closed with a flat plate. By filling the pipe and leveling 
the top, the correct volume of char could be measured. The weights of the 
samples were recorded for each experiment and are given in Appendix A,

Table 7.
The thermocouple was placed in the reactor with the hot junction 

resting on the porous plug. The sample of char was then poured 
around the thermocouple without tamping. The thermocouple was 
then raised 1 inch from the plug and the fittings holding the thermocouple 

were tightened to seal the reactor.

Preheating
The electric furnace, temperature recorder and temperature controller 

were switched on and nitrogen was passed through the reactor. The furnace 
was maintained at the reaction temperature for approximately l6 hours 

prior to the start of a test. This heating period was necessary 
because the initial carbonization at 1100° F for 7 hours was insufficient 

to remove all volatile matter from the char. The nitrogen flow was 
used to flush released volatiles from the reactor.

22
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The length of the initial heating period was determined by the time 

necessary to produce a gas sample which upon chromatographic analysis of 
a gas sample showed no methane peak and a very small hydrogen peak.

After several tests it was determined that l6 hours was sufficient 
time to remove the volatile matter and the gas chromatograph was 

no longer used as an indicator.
After the heating period was complete, the nitrogen flow was 

stopped. The COg flow was started at the rate necessary to give 

desired space time. The introduction of CO^ lowered the temperature 
because of the thermal requirements of the reaction. Several minutes 

were required for the controller to adjust the reactor temperature 
to the desired level. During this stabilization period, essentially 

all of the purge nitrogen was flushed from the reactor.

Sampling Procedure
The valve on the exhaust line was closed and the valve on the 

sampling line opened. The sampling bottle was connected into this line 
for taking a sample; otherwise, the gas was exhausted. When the 
reactor temperature stabilized at the desired temperature level, the 
sampling process was begun. Samples were taken at intervals and 
analyzed for CO and CO^ until the analyses were reasonably constant.
At least three consistent analyses were obtained and recorded before 
terminating a test.

After the reaction had reached a steady state and the analyses 
had been recorded, the flow rate was changed to provide the next space
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time. The order in which the flow rates were tested was varied in a 
random manner to prevent any bias in the statistical analyses. Several 
minutes were usually required for the reaction to return to a steady 

state after changing the flow rate. After some experience in operating 
the equipment was acquired, it became possible to judge the time 

required and a minimum number of samples was needed.
The sampling procedure was repeated for each contact time and 

the analyses were recorded. The Orsat apparatus was used to determine 

the volume percentages of CO^ and CO. The total of these two gases 
represented more than 90 percent and usually more than 95 percent of 

the gas leaving the reactor.
The same procedures were followed in the experiments relating 

sodium concentration to reactivity.
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RESULTS

The analyses of the gases were adjusted to a basis in which the 
total of CO and CO^ represented 100 percent. This was done by the 

following method:
„ , volume C0/100 ml „Percent CO = —  ---- — ---— r x 100volume CO + CO2/IOO ml

This percentage of CO was calculated for each recorded analysis and the 

three most consistent percentages were averaged.
The results of the experiments relating reactivity to coal rank are 

given in Appendix B, Table 8. These results are shown for the space 

times based on the flow rate of COg into the reactor. These same 
results are shown in Figures 6, 7 and 8, but with the residence times 

calculated from the volume of gas leaving the reactor. An explanation 
of the method used in calculating the residence times is given in 

Appendix C.

Effect of Coal Rank
The analyses of variance tests performed on the 3 x U x U factorial 

design confirm that there were significant differences in the reactivities 
of the coals as tested. The null hypothesis, which states that the 
effects of rank are all equal to zero, could not be accepted at the 
0.05 significance level. The analysis of variance table for this design 
is shown in Appendix B, Table 11. An example of the calculations 

involved i3 given in Appendix C.
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The order of reactivity of the samples from greatest to least was 

, D, C and A. In terms of coal rank, the lignites were most reactive 
d the bituminous coal was least reactive. The same order of reactivity 
as noted at each of the three temperature levels investigated.

A comparison of conversions was made with that of beta graphite by 

calculating the equilibrium constant for the Bouduard reaction using 
established thermodynamic data for CO^, CO and beta graphite. The 
highest value of CO for each test was then used to calculate a pseudo­

equilibrium constant, K^, for each char at each temperature. The 
values calculated from test data do not represent true equilibrium 

values because the concentrations of CO were observed to be slowly 
increasing. However, of the values calculated from data, all but 
those for the bituminous coal were higher than the equilibrium 

constants for beta graphite. The values of for the beta graphite 
reaction are shown in Table 10, and the values of for the coals 

tested are shown in Table 11. Methods for calculation are given 

in Appendix C.

Effect of Temperature

The null hypothesis states that the effect of temperature arei
all equal to zero. Table 9 shows that the calculated F is greater 
than the critical F at the 0.05 significance label, so the null 

hypothesis cannot be accepted. The results of this test agree with 
the manner in which the equilibrium constants for beta graphite 
increase with temperature, meaning that the Bouduard reaction is 
highly temperature dependent.

' i
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Effect of Space Tine

The percentage of CO in the product varied with the space tine of 
the gasifying nediun. The F test for the null hypothesis, that 

the effects of residence tine are all equal to zero, was significant.
The effect of contact time becomes less as the temperature level 

is increased. The reaction velocities increased such that the 
reaction nears completion in a shorter tine, as illustrated 

in the curves for coals B and D in Figure 6.

Effect of Sodium Concentration
The results of the experiments relating sodium concentration to 

reactivity are shown in Appendix B, Tables 13 and lU, and are plotted 

in Figures 9 and 10. The results of the analyses of variance tests 
in Table 15 show that the effects of adding sodium to char D were 

significant. Samples D-l and D-2 were more reactive than char D, but 
D-2 with 6.5 percent sodiiim oxide in its ash was more reactive than D-l 

with 8.U percent sodium oxide in its ash.
The tests performed with samples of char B which had been leached 

in acid solutions indicated significant increases in reactivity, with 
reduced sodium content, as shown in Appendix B, Table l6. This 

is in direct conflict with the results obtained using char D,

to which sodium had been added.
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DISCUSSION

Coal Rank ____  ___
The rank of coal was found to have a definite effect on the conversion 

of COg to CO, with the degree of conversion decreasing with increasing 

rank at all levels of contact time and temperature tested. However, 
as the temperature increases, the differences between coals become 

smaller.
From the analysis of variance data in Table 9» it can be seen that 

the interaction effects were significant. Significant interactions mean 
that level of variables tested effects resnonse. The interaction 
of coals with temperature are illustrated in figures 6 , 7 and 8.
As the temperature level increased the curves become closer together.
This is due to the temperature dependence of the reaction and indicates 
that if the temperature level is high enough the conversions for 
the four coals will probably be similar.

The interaction of the coals with contact time is illustrated by 
the divergence of the curves in Figures 6, 7 and 8. The interaction 
of temperature and contact time is shown by the way the curves become 
steeper as the temperature level increases. These interactions 
are predictable because the rate equation

rC0 ’ kl(C02> - k2 (C0)2

shows the dependence of the conversion on time and the rate constants 

k-̂  and kg. The rate constants are in turn dependent on the carbon

. -r.

fl i
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Thermodynamic Data

The heats of reaction at 298° K, A H ° 2^g, were calculated from
the pseudo-equilibrium constants at lU00° F. The heats of formation*

AH°, of the carbon in the coals relative to the heat of formation of f
beta graphite were also calculated. The heat of formation of beta 
graphite is taken to be zero by convention and the A H ° 2pg for the 
reaction i3 klt22k calorie per gram mole. The values of A H ° 0^g of 
the reaction of the coals were found to be l+l+,057 calories per gram 

mole for coal A, 37,215 calories per gram mole for coal B, U0,800 calories 
per gram mole for coal C, and 38,99^ calories per grant mole for coal D.
It is evident that the heats of reaction for the lignite and subbituininous 
coals are less than those of beta graphite and the bituminous coal. In 

effect, this means that the reactions of the low rank coals are less 
endothermic than that of the bituminous coal.

The heats of formation calculated for the carbon in the coals were 

2833 calories per gram mole for coal A, -1+009 calories per gram mole for 
coal B, -1+21+ calories per gram mole for coal C and -2230 calories per 

gram mole for coal D. This shows the carbon in the lignite and 
subbituminou3 coals to be in a lower state with regard to enthalpy than 
the bituminous coal or the reference carbon, beta graphite, if the 

pseudo equilibrium values can be considered to represent equilibrium.
It had previously been established that the carbon in cokes can differ 

in reactivity with beta graphite by as much as 2600 calories.
The reasons for the differences in conversion due to the coals and 

the differences in the heats of reaction probably stem from two sources, 
the structure of the coals and their mineral matter content.

i i
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Coal Structure

Coal is formed from plant debris, which, under the influence of 

pressure, temperature and time, becomes coalified through the processes 
of dehydration, denethanation and decarboxylation. As the coalification 

process advances, the coal becomes more aromatic in character as straight 

chain carbon groups, peripheral groups such as carboxyl, methyl and 

the cross linking straight chain groups are eliminated. In terms 
of structure this means that the coal becomes a more tightly knit 

unit as coalification proceeds.
In the lignites, the lowest rank of coal, the coalification process 

is not as far advanced as in the subbituminous and bituminous coals.
As a consequence of this, the lignites are not as condensed in structure 
and are more porous than the higher rank coals. Because of the greater 

porosity, the lignites exhibit greater surface area. The internal pore 
surface of lignites can range as high as l80 square meters per gram 

while the internal surface of bituminous coals can be as low as 
1+0 square meters per gram with the subbituminous coals falling 
in between (12). The greater surface area of the lignite coal3 

means a greater number of possible sites for the reaction between 
COg and the coal substance. This may be part of the reason for 
the greater conversion of CO^ by the lignites.

Another reason for the differences in conversion may be the degree 

of aromaticity. Higher aromatic compounds have a lower average
sbond order and a lower average free valance than do the simpler aromatics.
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t is known that substitution reactions preferably take place at bonds 
here the free valance is maximum while addition reactions take place 

re readily at bonds with a high bond order (12). The mechanism of 
he Bouduard reaction is not positively known, but if it is substitution 

or addition, the reaction should result in greater conversion for coals 
of low aromatic character. The higher conversion for the lignites 
of lower aromatic character than the bituminous coal supports this 

conclusion.

Mineral Content

Most of the coals in the United States average from 6 to 10 percent 

ash. The character and amount of the ash varies with the location and rank 
of the coals. Because of the soil conditions in North Dakota, the lignite 

coals found there have a high content of the alkaline metals, sodium 
and calcium. At present there is evidence to predict that sodium and 

calcium positively affect gasification (6).
This investigation also revealed evidence as to the effect of sodium 

on the reactivity of coals with COg. The samples of char to which 

sodium had been added produced more CO than under similar conditions 
the original sample and the chars from the two lignites which. 

differ in sodium content were found to differ in reactivity.
Char from coal B with 21 percent sodium as sodium oxide in 

its ash was found to be more reactive than char from coal D with 
2 percent sodium oxide in its ash. Both of these samples were 
derived from lignites so the effects of rank are considered equal.

The difference is then attributed to the mineral constituents, 
especially sodium, in their ash.
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Samples of char from coal D to which sodium was added were 
found to be more reactive than the original char. These results 

follow more closely the results of previous investigations than 
do the results of the tests made with sarrroles of char from coal 

B from which sodium had been leached. The leached samples of char 
from coal D which had lower sodium contents were found to be somewhat 
more reactive. It is possible, however, that the treatment of 

these samples with the strong acid solutions may have changed the 
physical state of the samples.

Because of the small number of experiments performed, it is 
not possible to predict a definite trend in the relationship of 
reactivity and the sodium content of the source coals. Future work 

should be carried out using a greater number of tests at different 

sodium levels in an effort to make a definite correlation between 

the reactivity of coals and sodium content. Such further investigations 
should also include the determination of the effects of other alkaline 

metal3 on reactivity.
The determination of the effects of the a3h constituents would be 

of great value in forming a set of criteria for selecting or preparing 

coals for gasification.

Advantages of Gasifying Low Rank Coals
There are two important advantages in using the lower rank coals in 

gasification. The first is the greater reactivity of the low rank coals 

and the second is their abundance.
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It has been shown that the reaction of the low rank coals is less 

endothermic than that of the bituminous coal and that high conversions 

of CC>2 can be attained at relatively low temperatures. Operation at 
low temperatures is advantageous because it requires a lower expenditure 

of energy, to carry out the reaction. Lower temperatures also result in 
a reduction of the heat losses to the surroundings which means an increase 

in thermal efficiency.
In addition to being well suited for several gasification processes, the 

low rank coals may prove to be useful in underground gasification. 
Gasification of coal "in situ" can be greatly benefitted if significant 
conversion can be attained at low temperatures. There is no sure way to 
control the temperature of underground gasification, consequently in some 
situations losses to the surroundings result in low temperatures.

Low rank, coals may possibly be gasified underground using an air or 
oxygen-enriched air blast to produce a gas rich in CO which could be 
purified and reformed to a mixture of CO and hydrogen by the water gas 

shift reaction. Preparation of a synthesis gas in this manner is not 
presently economically feasible, but may be in the future (13).

Abundance of Low Rank Coals
The question of the feasibility of the use of low rank coals for 

gasification would be entirely academic if there were few deposits of 
these coals. However, it is estimated that the lignite and subbituminous 
coals make up k5 percent of the United State's coal reserves (l). The 
combined tonnages of these coals has been estimated at 876 billion tons 
of which there are 350 billion tons of lignite in North Dakota (lU).
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Of the lignite in North Dakota, about 10 percent is readily rained by 

strip raining.
Because of their abundance and mineability, these coals are a 

low cost source of raw materials. The reserves of lignite and 
subbituminous coals are as yet relatively untapped. The reasons 

for this are the unsuitability of these coals for the production 
of metallurgical coke and the remoteness of the deposits in relation 

to industry and population centers. The remoteness, low heating 
value and high moisture content have restricted the use of these 

coals for electrical power generation because of the high cost of 
transportation. The exceptions to this are the cases in which the 
coals are utilized near the mine or where environmental concern 
over sulfur dioxide pollution makes long distance shipping necessary.

While shipping the lignites and subbituminous coals long distances 

is economically unfeasible, the pipelining of a synthetic gas is not. 
Gasification and pipeline transport will be an important means of 

moving the stored energy in coal to points of need.

1 I



CONCLUSIONS

The results of the experiments performed and observations support 

the following conclusions:
1. Coals of different rank differ in reactivity with C02 in 

forming CO.
2. As the rank of the coals increases, the reactivity in terms 

of conversion of COg decreases.
3. Low-rank coals may be well suited for the manufacture of a 

synthetic gas for production of a high-heating-value pipeline gas.
L. The reactivity of a coal can be altered by modifying the 

sodium content of the coal.
5. Temperature and space time also have significant effects on 

the conversion of C02 to CO by the Bouduard reaction.

6. Severe treating of the chars, such as acid leaching, may 

affect the reactivity.

1+0



RECOMMENDATIONS FOR FUTURE WORK

The investigations in this study are not complete. The following 

recommendations are suggested for future work:
1. The variables of coal rank and sodium concentration should be 

separated into individual investigations, each of which could be 

carried out in greater depth.
2. The reactivity experiment should be revised so that the test 

material is the only variable from one test to another. An example 

of such a test is the Muller-Jandl reactivity test for coke (15).
3. To determine the relationship of sodium concentration to 

reactivity, a greater number of samples should be prepared and tested.
U. The effect of sodium on the reactivity of high-rank coals, 

such as bituminous coals, should be determined.

Ul
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APPENDIX A

TABLE 1 

COALS TESTED -

Coal Mine Town County State Operator

A Arkwright Osage Monangalia W. Va. Consolidation Coal Co.

B Larson Pit Larson Burke N. Dak. Baukol-Noonan, Inc.

C Colstrip Colstrip Rosebud Montana Western Energy Co.

D Gascoyne Gascoyne Bowman N. Dak. Knife River Coal 
Mining Co.

k2
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TABLE 2
ANALYSES OF COALS AS RECEIVED 

Proximate Analysis

A B C D

1 .1 2U.6 19.0 3U.9
37.8 30.5 32.1 27.9
5^.2 32.7 Hl.O 25.6

6.8 7.2 7.9 9.6

Elemental Analysis

A B C D

5.3 6.0 5.9 6.6

77.3 50.1 5^.9 39.9
1.6 0.8 0.8 0.6

6.8 35.5 29.8 H2.3
2.1 0.3 0.7 1 .0

6.8 7.2 7.9 9.6
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TABLE 3
ASH ANALYSES OF CHARS

Coal A B C D

Loss on ignition at 800° C 0.3 1 .2 0.3 0.2

Silica, SiOg H5.8 18.8 35.6 29-2

Aluminum oxide, AlgO-̂ 28.0 12.0 19.7 11.7

Ferric Oxide, FegO^ 17.7 7.2 7.3 7.1+

Titanium oxide, TiOg 0.8 0.2 0.7 0.5

Phosphorous pentoxide, PgOc- 0.3 0.3 0.3 0.1

Calcium oxide, CaO 2.5 1U .8 1U.5 18.1

Magnesium oxide, MgO 1.2 3.2 U .6 6.6

Sodium oxide, Nao0 0.8 21.2 0.2 2.2

Potassium oxide, K^O 0.8 0.3 0.1 0.3

Sulfur trioxide, SO^ 2.6 17.5 15.8 22.7
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TABLE H
PROXIMATE ANALYSES OF CHARS

Coal
h 2o ,

as rec’d
Volatile natter, 

as rec’d
Fixed carton, 

as rec'd
Ash,

as rec’d

A 0.6 19.6 71. H 8.b

B 2.1 2b.2 61.9 11.9

C 1.5 27.0 60.2 11.2

D 8.7 32.1 ^5.7 13.6
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TABLE 5

ASH ANALYSES OF CHAR SAMPLES PREPARED FROM COAL B

1 .2 1.2 1.7
18.8 25.0 20.8

12.0 15.9 lU.O

7.2 6.0 6.1

0.2 O.H 0.2

0.3 0 .1 0.0

lH.8 15.3 2U .8

3.2 3.6 3. b
21.2 16.8 16.2

0.3 0.3 0.5
17.5 13.3 10.9

96.7 97.9 98.6Total
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ASH ANALYSES OF CHAR

TABLE 6

SAMPLES PREPARED FROM COAL D

Coal D D-l . D-2

Loss on ignition at 800° C 0.2 0.3 0.2

Silica, SiO^ 29.2 22.7 23.2

Aluminum oxide, AlgO^ 11.7 10.9 11.0

Ferric oxide, FegO^ l.h 6.2 6.5

Titanium oxide, TiO,, 0.5 0.6 0.7
Phosphorus pentoxide, 0 .1 0 .1 0 .1

Calcium oxide, CaO 18.1 20.9 20.9

Magnesium oxide, MgO 6.6 8.0 8.0

Sodium oxide, NagO 2.2 8.U 6.5

Potassium oxide, KgO 0.3 0.3 0.3

Sulfur trioxide, SO^ 22.7 22.1 23.^

Total 99.0 100.5 100.8
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TABLE 7
WEIGHT OF SAMPLES CHARGED, GRAMS

Char A 

Char B 

Char C 
Char D 

Char B^ 
Char Bg 

Char B.X
Char D^

1100° F 1250° F lU00°

20h 201 206

267 269 267
256 261 261

251 2U9 2H9

275 — —

281 — —

2U7

253
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APPENDIX B

TABLE 8 

TEST RESULTS8-

Coal
Space time,

Temperature seconds A B C D

5 1.9 2 9 .6 2b.0 31. U

10 U.U bo .6 27.7 b2.9
1100° F

25 15.T 6o .6 27.0 U6.lt

50 27.1 6 9 .0 36.3 55.1

5 10.0 78. b b9.9 60. b

10 18.2 87.8 57.0 69. u
1250° F

25 3U.U 9 2 .6 66.5 77.0

50 bb.O 92.5 71.3 79.8

5 30.0 97.0 80.6 91.5

10 U2.1 9 8 .2 85. b 93.8
lH00° F

25 56.5 97.8 9^.3 95.2

50 67.1 98.0 9 U.6 95. U

aResuits reported as x 100

k9



TABLE 9

ANALYSIS OF VARIANCE FOR 3 x h x U FACTORIAL

Source Sum Degrees Calcu-
of of of Mean lated Critical

variation squares freedom square F F Estimated mean square

Temperature (A ) 19058.9 2 9529.h 726.9 FO.05(2,18) = 3.55 2s + , 2 
3s t, ab + Ol6sa

Coal (B) 16580.1 3 5526.7 1*21.6 FO.05(3,18) = 3.16 2s + 2
Sabc t

0 p
l*sab+ 3sbc+ '* b'

Space time (C) 2902.9 3 967.63 73.8 FO.05(3,18) - 3.16 2s + Us2ac + 12s2c
A x B 99h. 1 6 165.7 12.6 FO.05(6,18) = 2.66 2s + 2

Sabc + **4

A x C 286.9 6 1*7.8 3.6 FO.05(6,18) = 2.66 2s + l*s2ac
B x C 61H.7 9 68.3 5.2 FO.05(9,18) s 2.1*6 2s + 2

sabc + 3sbc
Subtotal UOU37.6 29
Error 236.1 18 13.11 2s + 2

sabc

O

1+0673.7 1*7Total
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TABLE 10
EQUILIBRIUM CONSTANTS FOR BETA GRAPHITE

I  J

T In K .K
. • - r~ . ---  .

1100° F -1.911 0.1^7

1250° F 0.UU9 1.3

ll00° F 2.U5 8.12

TABLE 11
CALCULATED K 's BASED ON ACTUAL PERCENTAGES OF CO AND C02

Temp. Coal A Coal B Coal C Coal D

1100° F 0.087 1.5U 0.192 0.5U8

1250° F .336 10.37 1.67 3.01

1^00° F 1.29 U3.6 15.57 15.73
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TABLE 12
SODIUM TEST RESULTS FOR COAL B&

Space tine,
sec onda ■ __

Coal
B B-l B-2

5 29.6 1+6.5 50.1
10 Ho.6 57.6 58.2

25 6o.6 65.1 72.0

50 69.0 68.7 71.0

0.Results reported as CO
CO + C02 x 100

TABLE 13 
SODIUM TEST RESULTS FOR COAL Da

Space time, 
seconds

Coal
D D-l D-2

5 31. H U2.0 1+3.1+
10 1+2.9 51.3 50.5
25 1+6.1+ 62.0 68.5
50 55.1 65.H 71.3

Results reported as CO
CO + co2 x 100



TABLE lU

ANALYSIS OF VARIANCE FOR TOO WAY CLASSIFICATION OF EFFECTS OF SODIUM 
CONCENTRATION AND SPACE TIME FOR COAL D

Source
of

variation

Sums
of

squares

Degrees
of

freedom
lie an 
squares

Calculated
F

Critical
F

Estimated
mean
squares

Sodium concentration 562.5 2 231.25 U2.51* F0.05(2,6) = 5.1k
2 , 2 S + 4Sa

Space time 1127.0 3 375.66 56.83 F0.05(3,6) = 14.76 2 _ 2  s + 3sb

Error 37.7 6 6.6l 1'i;, j;
2s

Total 161+9.3 11
];;

I

a) C\J ,0



TABLE 15

ANALYSIS OF VARIANCE FOR TWO WAY CLASSIFICATION OF EFFECTS OF SODIUM 
CONCENTRATION AND SPACE TIME FOR COAL B

Source
of

variation
Sums
of

squares
Degrees

of
freedom

Mean
squares

Calculated
F

Critical
F H

Estimated
mean
squares

Sodium concentration 356.9 2 178.1+5 7.06 F0.05(2,6) is 5.Hi 2 ^ . 2 s + l+sa
Space time 11+1+9.1+ 3 U83.13 19.13 F0.05(3,6) = I4.76 2 A , 2 s + 3 s,D
Error 151.5 6 25.25 2s
Total 1957.8 11
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APPENDIX C 

- - CALCULATIONS

Calculations made included the computation of the flow rates 
necessary to provide the space times used, the calculation of the 

residence times, the calculations for the heats of reaction and 
equilibrium constants of the carbon and the analysis of variance 

calculations.

Flow Hate Calculation
The space times used were determined by the flow rate of

the gases through the bed of char. The space time was defined as 
the void volume of the bed divided by the volume flow rate CO^ through 

the bed.
The volume of the bed is equal to the product of the cross sectional 

area of the bed and its depth. The bed depth, 30.0 centimeters, 

provided a volume of:
Volume = 30.0 cm x 13.3 cm^ = ^00 ctt
The void volume of the bed was calculated by multiplying the bed 

volume by an assumed fraction of voids in the bed. The void fraction 
was assumed to be 0.U5 for a bed of particles of the size range used (5).

Void volume = O.U5 x ^00 cm^ = 180 cm^

55
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The flow rate necessary to produce a space tine of 5 seconds in
a kOO cubic centimeters bed with a void volume of l80 cubic centimeters

is calculated as follows:
void volumeSpace time = volume flow rate

Volume flow rate = -CP. . _ 36 o cm3/sec5 sec '
This is the required volume flow rate at the temperature of the 

reactor and it must be corrected to the temperature at which the flow will 
be metered. This is done as follows:

3cm
secFlow rate at 70° F = 36.0 cm3/sec x qf'oo^o'p = 12.:

Flow rates were calculated for space times of 5, 10, 25 and 

50 seconds at temperatures of 1100° F, 1250° F and lH00° F. Corrections 
for pressure were not necessary as the reaction was carried out 

essentially at atmospheric pressure.
The choice of 30.0 centimeters as the bed depth was arbitrary, 

but calculations using 30.0 centimeters as the bed depth showed 
that carbon usage would not exceed the 20 to 50 percent under conditions 
of maximum reaction. Wenzel, Meraikib and Franke (6) have found 

that carbon depletion in this range should not affect the reactivity 
determination. The weights of the reacted samples showed that these 

estimates were essentially correct.

Residence Time Calculation
The space times are sufficient for designating the feed rates 

used in the experiments, but are not indicative as to what happens 
due to the increase in volume of the gases. The space times are



57

too high when the conversion of C02 to CO is considered. To give a better 

picture of what was happening the plots in Figures 6, 7, 8, 9 and 10 
were drawn for the percentage of CO versus the residence time based 
on flow leaving the reactor. Since this quantity was not measured, 
it was necessary to calculate the flow rate from the conversion.

Let:

= volume flow rate into reactor,
Vg = volume flow rate from reactor,
X = percent CO,

and Z = conversion of C02 to CO.
From the equation of the Bouduard reaction,

co2 + C 2C0
before reaction 1 0

after reaction 1 - Z 2Z
We can see that the total volume leaving the reactor will be: 

V - Vi (! - Z + 2Z)
V2 ** (1 + Z) V1

The presence of C02 in the exit gas is:

*  ■  ■( & ■■»■ v p V u L x )  v j

or

Since the experimental data provides the percent CO it is possible 
to calculate the conversion, Z.
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It is now possible to calculate the flow rate of gas from the reactor 
from the flow rate of CO^ into the reactor and the percent CO in the 

exit gas. The residence time is equal to the space time multiplied 

by the ratio of over V^.

Analysis of Variance Calculations 
An example of the analysis of variance for the data in Table 6 

is shown below:

E X = 539.7 
E X 2 = 23,367.3 
(Ex ) 2 _ (539. 7) 2
N 16 18,204.7

o

E (Column totals)" _ ^ gi2 7

E (row totals)' = 1 9 , 620.3
2. , E (column totals)1 (EX) „sum of squares (coals) = --------------- —  ~ —  - 2808.0N

sum of squares , . , E (row totals)'(contact times) = — 1--- —--- -— •

= 1415.6

m rN

sum of squares (total) = 2 (X) 2 ( E X )  
N

23,367.3

sum of squares (error) = SS(total) -SS(coals) -SS(contact times)
= 939.0
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The degrees of freedom for the coals and the contact times are the 
number of coals minus one and the number of contact times minus one.

The total number of degrees of freedom is the number of elements in the 
table minus one. The number of error degrees of freedom is the total 

degrees of freedom minus the degrees of freedom for coals and contact 
times.

The mean squares are calculated by dividing each sum of squares with 
the corresponding number of degrees of freedom. The F tests are made by 
dividing the mean squares of the effects by the mean square of the 

error term. The results of the F tests are then compared with the 
critical F value to determine significance. The AITOVA tables prepared 

from these calculations are shown in Appendix B, Tables 9, 1*+ and 15.

J  1

Equilibrium Constants for Beta Graphite 
The equilibrium constants were calculated from published data for 

the free energies, F, heats of formation, A H  , and heat capacities of 
CO, COg and beta graphite.

The relationship of the equilibrium constant, K, with temperature
is:

InK « A H c + A  InT + _2. T + c 2 „
RT "r W — * ■ or” x  + ZtT T -  + C ( 16 ) .

To \ise this relationship it is necessary to solve for the constant c,
This is done in the following manner: 

- A  FInK = RT
at 298° K

AF°(reaction) = 2 (AF°q) - AF ° Q

AF°= 2 (-32808) - (-9**260) 
- 2Q6kh cal/gm mole
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, v- _ -2861+1+ cal/gm mole_______
(1,987 cal/gm nole °K) (298° K)

= -1+8.3

AH° = 2 ( A H ° ) - A  H°298 f_CQ f-C02
= 2 (-261+16) - (-91+052)

-.. = 1+1220 cal/gm mole ----

AH = AH, - a T -- &■ T2 - T~ (1 6).o 298 ~~ 2 - 3

a = 2 (6.1+2 ) - 6.211+ = 6.626

b = [2 (1.161+) - IO.396] x 10" 3 = -8.066 x 10~3 

c = [2 (-.196) = 3.51+5] x 10"6 = 3.153 x 10“ 6 

Using these values of a, b, and c, obtained from the heat 

capacities of the products and reactants, and letting T = 298°, A H C 
can be calculated. By substitution into the first equation, the 

constant, C, can be determined. The final equation for calculating K
ax any temperature is:

InK = + 3.33 lnT - 2.03 x 10~ 3 T + 2.61+ x 10”T T2 + 3.031
+ 2.61+ x io“T T2 + 3.031.

Calculation of KP
The equilibrium constant, K^, is calculated from the equilibrium 

partial pressures of the components in the gas mixture as follows:
( .pn o il = ( p+. y?0)

co2 Pt  co2
( 16) .

In the experiment performed, was equal to one atmosphere so:
-  ̂-Y-G©i

CO-
where Y^q is the mole fraction or volume percent of the ga3. For 

calculating the values of K^, the original data for percents CO and
COg were used.
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