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ABSTRACT

This thesis presents methods for determining yield line patterns of
isotropic plates that are uniform in thickness and subjected to a uniform
loading. The importance of these methods arises from the mathematical
complications involved in finding yield line patterns by the present pro-
cedures .

Since yielding patterns are dependent on the shape of a plate as
well as the support conditions, the methods recommended here will be
based on assuming a yielding pattern and checking for its correctness.
The use of the computer can provide many trial solutions in a very short
time. The correct pattern will be that which gives the same value of the
yielding moment along all yield lines.

The benefit of the recommended methods is that no mathematical
complications are involved and a very elementary knowledge of computer

programming is sufficient.



INTRODUCTION

S .fety and economy are two criteria that a structural engineer
strives to satisfy. These two criteria were, and are, the basis for most
changes :hat occur in design codes. Not long ago, the basis for design
was the Elastic Method or what is known as Working Strength Design
(WSD). today, this method is almost completely replaced by a new one,

namely th ; Ultimate Strength Design (USD).

Working S xength Design

The Working Strength Design method uses the elastic behavior of
the material as a basis for design. In this method the yield strength of
the mater: al is reduced to an allowable working value and the design is
carried out on the basis of that value. This presents some problems to the
engineerr . The factor of safety against failure is not really defined. The
method assumes an elastic stress condition but does not allow a solution
for loading on a plate or a beam that produces a non-elastic stress
distribu .ion. A more serious limitation is in the analysis of plates that
have ir-egular shapes. The present design codes list coefficients for the
purpose of analyzing regularly shaped plates or slabs. The analysis is

not g .:ie that easy in the case of plates having irregular shapes and



various support conditions.

Ultimate Strength Design

This is one of the accepted design procedures at the present time
in the area of reinforced concrete. In this method design is carried out
on the basis of an ultimate load which is equal to the working load
multiplied by a load factor. The strength of the material used is that of
the yielding strength.

For purposes of safety, the load factor is subdivided into two
factors, namely the overload factor (U) and the undercapacity factor (O).
To be certain that the loading on a structure is not underestimated, the
overload factor is applied. The American Concrete Institute Code [1] of
1963 specifies that when wind and earthquake loading are not critical,

(U) can be computed by the following equation:
U = 1.5 dead load + 1.8 live load

To correct for errors in the quality of a material, quality of work-
manship, accuracy of calculations and other approximations, the under-
capacity factor (0) is applied. This factor takes on different values
depending on the function a member serves. Knowing U and , the load
factor is then computed as U (h.

The Ultimate Strength Design applies for two dimensional members;

however, in tne case of slabs or plates, the Yield Line Theory is applied.



Yield Line Theory*

The Yield Line Theory for slabs or plates is a relatively new concept
of analysis. Even though test results show that the concept is an
accurate one, the United States design codes have not yet adopted it.

Up to this date most of the literature concerning the Yield Line Theory is
still in foreign languages since most of the pioneers in this area, such
as K. W. Johansen, are Europeans.

The basic concept of the Yield Line Theory states that failure does
not occur until a mechanism is formed. Consider a fixed end beam
subjected to a uniform loading that causes the end portions to reach their
plastic moment. This does no: signify failure. The beam will continue to
carry an additional loading until plastic moment in the middle is reached,
thus forming a mechanism. Ir. the case of a plate, the same concept is
involved. When a plate is subjected to some loading, various points
will have different stresses. The addition of loading that causes some
points to reach their yielding stress does not signify failure. The plate
continues to take more loading until more adjacent points reach their
yielding strength to form a mechanism. In joining the points that form
the mechanism, the yield line pattern is obtained. The Yield Line Theory
is only concerned with bending and completely ignores deflection and

shear.



Purpose of Thesis

The purpose of this thesis is the development of methods by which
the location of yield lines for plates of various shapes and support condi
tions can be determined. AIll plates will have a uniform thickness and
will be acted upon by uniformly distributed loads. It is quite easy to
determine the yield lines for symmetrical plates. However, this is not
true in the case of non-symmetrical plates. It is hoped that with the
information contained in this thesis, one could apply this theory to deter

mine the yield lines of any plate.



SIGN CONVENTION

In this thesis, the sign of an angle of rotation will be determined
by the right hand rule. This angle will be represented by a single headed

arrow (--—---- -) as shown in Figure 1.

Fig. 1.--A Negative Angle of Rotation

A positive moment is a moment that tends to produce compressive
stresses on the top fibers of a plate. Each moment will be represented
by double headed arrows (— -) placed along a yield line. An arrow

lying in a region represents a moment acting on that region. The



right hand rule will be used to establish the sense of that moment.
Figure 2 illustrates a positive yielding moment acting along a yield

line.

— Simple
Edge Suppor

M M UR uiM im nim

Fig. 2.—A Positive Yielding Moment



RULES FOR DETERMINING YIELD LINES

In discussing this section, it is essential to define the terms, an

axis of rotation and a rigid region.

An Axis of Rotation

An axis of rotation is a line about which a portion of a plate rotate
For a plate that is simply supported along an edge, that edge will serve
as an axis of rotation whose direction is well determined. For a plate
that is supported on a column, the axis of rotation passes over the

column but its direction is not known. Figure 3 illustrates the above

mentioned casesi of axes of rotation.
I



A Rigid Region
Failure in a plate is characterized by the appearance of yield lines
in some pattern. Figure 4 shows a square plate, simply supported along

four edges, with the yield lines dividing it into regions A, B, C, and D.

Fig. 4.--A Plate Divided into Four Regions

The deformation in each region of the plate shown in the above figure is
elastic, and for all practical purposes each of these regions will be con-

sidered as a plane rigid region, thus ignoring all elastic deformations.

Johansen's Rules

The following two rules have been presented by K. W. Johansen [2]

for determining yield lines:



(@) Avyield line between two regions will pass through the inter-

section of their axes of rotation.

Fig. 5.--Johansen’'s Rule (a)

(b) The yield line pattern is determined by the axes of rotation of
the various regions of a plate and the ratios between their rotations.

To prove this rule, consider a plate similar to that shown in
Figure 6.

Let plane A'B'C'D' be passed at a distance ofA from the undeflected
surface of the plate. This plane, parallel to the original position of the
plate, will cut regions I, II, Ill, and IV in lines A'B', B‘C', C'D' and
D'A'. These lines will be consecutively parallel to the axes of rotation
of the regions. Let be the distance between AB and A'B', and let Q~*

be the angle that region | rotates about AB.
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Fig. 6.--Johansen's Rule (b)

A

91 sincxl

Let 9-i be the angle that region IV rotates about AE, and let

distance between AE and A'D".

04 sin& 4

be the

()

(2)
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By equating equation 1 to equation 2 the following will be obtained.

A

94 sin°h

sin0C4 sinCXx» 3
Equation 3 shows that the direction of the yield line between regions |
and IV is dependent on the rotations Q, and Q

Similarly, it can be proven that an identical relation holds true for
all regions.

With these two rules one can determine the apparent locations of

the yield lines.



NODAL FORCES

In determining yield line patterns, equilibrium must exist in all
parts of a plate that are bounded by yield lines. The distribution of
shearing stresses along yield lines is of no concern in this thesis. For
that reason, these stresses can be replaced by two forces that are equal
in magnitude, opposite in direction, and acting at the ends of a yield
line. It must be noted that these forces w.'U cause a torsional moment
that will induce torsional stresses along each yield line. However, the
main concern here is not the state of stress at various points but the

equilibrium condition of each region of a plate.

Nodal Forces at Intersecting Yield Lines

Figure 7 illustrates a case of four yield lines intersecting at point
0. Let m", m2, m3 and m” represent moments per unit length along
J1., L2, L3 and L4, respectively. The symbol, O , represents a force
acting upward while the symbol, (#) , is used to represent a force acting
downward .

Examination of Figure 7 (b) indie wus that at point 0 there exists
two forces, Qtl and o 'II'_2, that are parallel, unequal and directionally

opposite. Let QB represent the resultant of these two forces (i.e. |,
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Fig. 7.--Nodal Forces at Intersecting Yield Lines
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Qb - Qj . The same argument
Thus:
AN =o0L -7
N3 2
ab T~ QP
o S
O™ ¢ ~ a4
_ n t
ad - Qyy, s
But

This proves that there can be an infinite number of yield lines intersect

ing at one point.

Magnitude of Nodal Forces

Figure 8 shows a small element of region B that is adjacent to
region A. A free body diagram of this element is shown in Figure 9.

An assumption is made here that the element is small enough that
dm?2 may be considered negligibly small. The summation of moments

about aO' yields the following:
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9.--Free Body Diagram of the tlement Shown in Figure 8
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m272 cosA + Qf\ dx sinQ”! - m~dx cos '

(redMld ~ mAdx cosQ” ) - dP dx sin (X' _ 0 (4)

The term dP is small enough that the value of dP dx sin CX' can
3

neglected. As O approaches 0, Qf' approachesCX / A approaches zero

and equation 4 becomes:

m2L2 ¥ gA b dx sinCX - m~dx cosa - moLr

m2dxcosa. = 0

cos CX
aAb = (mi " m2>gincx

QA B cot(X (5)

(mi "V

Equation 5 gives direct computation for the nodal force that acts on a
region at the intersection of two yield lines. This force is equal to the
difference of moments along these yield lines multiplied by the cotangent

of the angle between them.

Cases of Nodal Forces at Intersecting Yield Lines
Having obtained an expression for the nodal forces, various cases

of intersecting yield lines will be examined.

(@) Three Yield Lines of the Same Sign Intersecting at a Point

Figure 10 shows three yield lines of the same sign intersecting at

ooint 0.
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Fig. 10--Case (a) of Intersecting Yield Lines

Two segments, Aband” , are shown in the above figure. In an
isotropic plate that has uniform thickness, the moments per foot of
length along yield lines of the same sign are equal in magnitude.

Hence:

ml = m2 = m3

Equation 5 yields:
QA c¢c = Ocot OC] = 0
QAP = °COtn™ 2 = °

0
But + 0 AC + A g must be equal to zero to satisfy the



18
condition of equilibrium. This would make Q,. = 0. Using the same
analysts, ;; can be shown that 4 - Q>U =9, = 0. Thus, me ioilowing
can be concluded: In an isotropic plate the nodal forces at the inter-
section of yield lines of the same sign are all equal to zero.

(b) Two Yield Lines of the Same Sign Intersecting a Third One of
a Different Sign

Fig. 11.--Case (b) of Intersecting Yield Lines

To evaluate use Figure 11 (b) .

(-m + m) cotQC = &
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(}\b- (m+ m) cotJ3 -2m cot

But

oa FQAC +AB=0

Therefore:

Qa « -<AC - Q\ B=-2mcotJ3

To evaluate Qg refer to Figure 11 (c).
QAc =0
QA = 2mcot$
But
o
cp = —AC - dfa
Therefore:

-2m cot Q

O
I

For evaluating Qq refer to Figure 11 (d)

QA -2mcot Q

A

-2m cotlJ3

QA
B

Therefore:
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Qc = 2m (cot Q + cot )

If the sumr ‘;on of Q

of two yield lines of the same sign intersecting a third one of a different

sign is possible.

ga + Qr + Qq = 2m (cot 0

2mcot™® = 0

Therefore, the mentioned case is possible. To generalize, the following
can be stated: It is possible to have two yield lines of the same sign

intersecting a third one of a different sign.

(c) Intersection of Three Yield Lines of the Same Sign
with a Fourth of a Different Sign

To evaluate QB refer to Figure 12 (b).

QAa = Otan (cc+7 ) =20

But

Therefore:
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Fig. 12.--Case (c) of Intersecting Yield Lines
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To evaluate Qq refer to Figure 12 (c).

gA b = 0 tanfi 0
QA d = Otan(a +/) =0
Therefore:
Qc = -QADb - = 0
Qc 0
To evaluate refer to Figure 12 (d)
QA ~ = -2m cot (CX+J3)
QA = (-m+m) cot0 =0
Therefore;
Qd = 2mcot (cx +13)
To evaluate refer to Figure 12 (e)

(-m - m) cot (Cf) = -2m cotCC

QA (0)cot (-jn =0

Therefore:
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Qa“ gAa " gAd = ‘2Zncota

To satisfy the equilibrium condition:

QA + QB+ QC 4 QD = 0 or QA+ Qd =0

Therefore:

(2m) [cot (CC+J3 ) ~cot CX1 =0

IfyQ 7 0, then m= 0. This shows that the yield line between A
and D cannot exist. |If there was a yield line between regions A and D,
it would have to be of a different sign. This leads to the conclusion
that when there are yield lines of one sign in at least three directions,
no yield line of opposite sign can intersect them. Conversely, it can be
stated that when yield lines of different signs intersect, they cannot

radiate in more than three directions.

Nodal Forces at a Free Edge
Equation 5 gives direct computation for the nodal force at a free

edge. Referring to Figure 13:
A= (0- m) cot CX = _m cotCC

But
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Fig. 13.--A Yield Line Intersecting a Free Edge

Therefore:
Qb = m cot CX (5a)

Ifa is an acute angle, the force, QA will be acting upward while
Qg, which is equal in magnitude to Q”, will act downward.

The study of the nodal forces presented here is adequate and
sufficient for the use of the yield line theory, and with this information

procedures for determination of yield line patterns will be established.



THE EQUILIBRIUM CONDITIONS

Having studied the nodal forces and the geometric layout of yield-
ing patterns, the equilibrium conditions of a yielded plate can now be
introduced.

As mentioned by K. W. Johansen [2], statical equilibrium must
e;<ist in each region of a yielded plate. This implies that three equilibrium
conditions must be satisfied. Two of these conditions state that the sum
of moments about any two non-parallel axes in the plane of a region must
equal zero. The third condition specifies that the sum of forces in a
direction perpendicular to the region must also equal zero. To apply

the se conditions , prepare a free body diagram of each region as shown

Fig. 14.--A Free Body Diagram of a Region

25
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For a region that is supported along an edge, the magnitude and
the distribution of the reaction are r t known. Summing moments about
that edge will give a direct computation of the yielding moment in that
region while the application of the remaining two conditions will deter-
mine the magnitude of the resultant of the reaction and its point of action.

If a plate has "n" regions, "n" values of the yielding moment along
the yield lines can be determined. The critical location of the yield lines

is that which causes all "n" values of the yielding moments to be equal.
This is due to the fact that the yielding moment at any point of an iso-
tropic plate of uniform thickness has the same value. With this criteria
in mind, the validity of a yielding pattern can be determined. Methods
are established for determining yield lines in a later section of this
thesis.

A commonly occurring region in yielded plates is a trapezoidal
region which is bounded by yield lines and simply supported along one

edge as shown in Figure 15.

Equating the summation of moments about AA' to zero yields:

m = 1/6 phr (I + 2—) (6)

where p is the intensity of loading per unit area.
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Fig. 15.—A Trapezoidal Region

In a following section of this thesis methods for determining yield
line patterns are developed. These methods are based on the equilibrium

conditions mentioned in this section.



PROCEDURES FOR DETERMINATION OF YIELD LINE PATTERNS

All shapes of plates can be classified as symmetrical or non-
symmetrical. Symmetrical plates are defined as those that possess a
geometric symmetry and whose supports give symmetric yielding lines
about some axis. Figure 16 shows a symmetrical rectangular plate,
simply supported along all four edges and subjected to a uniformly
distributed load p. Non-symmetric plates are those that do not possess

an axis of symmetry.

Fig. 16.—A Case of Symmetrical Plates

28
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In this thesis three methods are recommended for the determination
of yield line patterns. These are mathematical method, semi-graphical

solution and thin membrane analogy solution.

Mathematical Method

The location of a yielding pattern in an isotropic plate, having
uniform thickness, is critical when the values of the yielding moment
along all yield lines are equal. With this in mind, the following steps

describe the mathematical method as well as the procedure.

Fig. 17.—Application of the Mathematical Method
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(@ Assume a failure pattern using Johansen's rules as mentioned
before.

(b) Select a convenient set of axes.

(c) Let the coordinates of the points that determine the location of
the yield lines be defined in terms of some unknowns x and y.

(d) Place nodal forces where needed with their values computed in
terms of the chosen unknowns .

(e) Define all dependent unknowns in terms of those that can vary
independently. If point A of Figure 17 is to be an independent variable
point, point B will have to be related to point A since the yield line AB
has to pass through the intersection of the axes of rotation of regions |
and 1.

() Considering each region separately and usxng the equilibrium
conditions, obtain expressions for the moment along a yield line. |If
there are n independent variables that determine a yielding pattern,

(n + 1) equations must be obtained since the value of the yielding moment
is an unknown.

(g) Let the chosen variables, such as y” or Figure 17, take
all possible values. This could be performed best by the use of a com-
puter. The change in the variables will cause the yield line pattern to
take all possible locations. When the values of the yielding moments
are equal to each other, within some accuracy, print the values of the

variables. This will determine the exact location of the yield lines.



Attempts were made to find the solution for yielding patterns of non-
symmetrical plates. However, the calculations involved made it a tedious
task due to their complexity. In cases of symmetrical plates, the

variables are reduced in number and the solution is an easy one.

Semi-Graphical Solution

A quick process to perform the operations of the mathematical
method is the semi-graphical solution. The following steps describe the
semi-graphical solution as well as the procedure:

(@ Draw the plate to scale.

(b) Assume a yielding pattern according to Johansen's rules.

(c) Scale the values needed to use the equation of equilibrium for
each region.

(d) Obtain the values of the yielding moment in each region by
simply applying the equation of statics.

(e) Repeat the process until values of moments for all regions
compare.
The method is fairly simple and does not involve any mathematical
complications .

For certain shapes the mathematical method consumes a sub-
stantial amount of computer time due to the number of trials needed. One
can easily cut down this time by the application of the semi-graphical

solution by which the yielding pattern is confined within some limits.
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The semi-graphical method is applicable to all plates regardless of

shape.

Thin Membrane Analogy

In this thesis deformation in a plate, subjected to loadings, is con-
sidered to be concentrated at the location of yield lines. All regions will
rotate, referenced to the original position of the plate, about their axes
of rotation. If planes parallel to the original position of the plate are
passed through the plate they will intersect the deflected surface of the
plate in lines. These lines may be thought of as contour lines showing
certain deflections from the original surface of the plate. The change in
direction of a contour line simply represents the existence of a yield line

at that location as shown in Figure 18.

Fig. 18.— Deflected Surface of a Yielded Plate



33

In a thesis submitted to the faculty of the University of North
Dakota, Mr. G. Bihnam [3] presented an adequate procedure for deter-
mining the contour lines of any shape of a plate subjected to a uniform
loading. This was done by taking a metallic sheet and cutting out the
shape of the plate. A thin membrane was used to cover the hole.

Pressure was then applied to the thin membrane, and an optical com-
parator was used for measuring defections, from which contour lines were
plotted. Having obtained the contour lines of the deflected surface, the
points where these lines change direction could be joined, and the results
obtained would be, as previously discussed, the yield line pattern. It
must be noted here that contour lines will take a relatively straight
direction at some points of the plate. |If there is a considerable change
in direction, it means that the contour line has passed through a point on
a yield line. To determine the locations of the points where contour
lines change directions , interpolation must be applied as done in the
following paragraph.

The square section used by Mr. G. Bihnam is a good illustration for
the purposes of this thesis. Referring to Figure 19, the change in direction
of contour lines of the deflected surface of a square shaped plate can be
easily noted. Where contour lines are reasonably straight, tangents are
drawn. The intersections of these tangents define the path of a yield
line. This is a rather crude and lengthy method for determining the

location of yield lines. However, for certain plates that have odd
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shapes, the method can be used well.
One of the many difficulties that exists in using this method is in
providing fixed end supports ona membrane since the membrane cannot

resist moment.

Fig. 19.— Contour Map of a Square Plate



PROBLEM ILLUSTRATIONS

The following problems were chosen to demonstrate the validity of
the proposed methods as well as the use of the Yield Line Theory. These
problems consist of two groups: (a) symmetrical plates and (b) non-

symmetricai jiates.

Symmetrical Piates
Problem 1.S.1.
Determine the location of yield lines of the plate shown in
Figure 20 (a) The plate is <ubjected to a uniform load of (p) pounds per

square foot.

(a) (b)
Fig. 20.— Problem 1.S.P.

35
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Solution

From symmetry the pattern is shown in Figure 20 (b).

Z mab = 0

(2) (m) (o) = (PY()(®)DO-1)

From symmetry the same value of m is obtained for region Il.. Therefore,

the pattern assumed is correct.

Problem 2.S.P.
Determine the location of yield lines of the plate shown in
Figure 21 (a). The plate is subjected to a uniform load of one kip per

square foot and is simply supported along all edges.

B

Fig. 21.--Problem 2.S.P.
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Solution

The nodal forces are all equal to zero. From symmetry the pattern

of yield lines is shown in Figure 21 (b). Y MA for region | yields:
d

m, = 6 (2.S.P.a)
Applying equation 6 for region Il, the following can be obtained:

? - 1) (9 1+ 2 (1° ~2 2.S.P.b

m2 -1 (9) I (125 2] ( )

With the above equations one can use the proposed method to solve for x.
However, the problem is quite simple, and there is no need to do so.

Equating equation 2.S.P.a to 2.S.P.b, the following is obtained:

9o r, 2 (10 - 2x) i
6 6 . 10

Which yields: x = 3.69 ft. and m = 2.2 75 ft. - Kip/ft.
The same problem was solved on the computer with the use of the

proposed method, and the results obtained were:
X = 3.687and m = 2.2 77 ft. = Kip/ft.

The programming involved is very simple and an elementary
knowledge of it is sufficient. The following flow chart was used to solve

the above problem.
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Problem 3.S.P.

Repeat problem 2.S.P. using the semi-graphical solution.

Fig. 22 .--Problem 3.S.P.

The yielding pattern is shown in Figure 22 .
Try x = 3.0

]TM~g for region | yields:

m, = —= 1.5 ft. - kip/ft
i 6

Applying equation 6 for region Il yields:

= 2.7 ft. - kip/ft
m2 - f + 2M ] 'P

Try x = 3.5

for region 1 yields:
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m, = = 2.04 ft. - kip/ft.
Applying equation 6 for region Il yields:
m9 = 7- (1 + 2—) = 2.40 ft. - kip/ft.
N 6 10

Try x = 3.75

Y, for region | yields:

3 75)7
(6)

ml = -** "= 2.35 ft. - kip/ft.

3
©
n

9 =7 @+ 7/7) =225t - Kkip/ft.

The values of m™ and compare well and there is no need for

more trials.

Problem 4 .S.P.

Determine the yield line pattern for the plate shown in Figure 23 (a).

The plate is subjected to a uniform loading of (P) pounds per square foot.

1.5

Fig. 23 .--Problem 4.S.P.
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Solution

All nodal forces are equal to zero. For region |

£ mab - O

Ifn,1(6) t 3(mi) - p[(6)(2) () + (x - 2)(1.5) (2L2+-1) (2)]

mi = % [12 + 1.5 (x2 - 4)] (4.S.P.a)

for region Il gives:
9
3m2 = p[(1Q ~ X)-- (1.5) () + (3) (2) (]

m2 = [(1.5)(10 - x)2 + 6] (4.S.P.b)

Equating equation 3.S.P .a to equation 3.S.P.b, the following is

obtained:
X2 - 30x + 154 = 0
X = 6.43 ft.

Problem 5.S.P.

Determine the yielding pattern for a circular isotropic plate which
is subjected to a uniform loading of (p) pounds per square foot. The

plate is simply supported along its edge.
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Fig. 24.— Problem 5.S.P.

Solution

The solution provided here is the same as that presented by K. W.

Johansen [2]. Consider a plate, which is symmetrically supported on (n)
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columns. From symmetry the yielding pattern is shown in Figure 24 (b).

p 7T r"

sm cl
d

Referring to Figure 24 (c) and equating the sum of moments about AAl to

zero, the following is obtained:

P . \ 1L
m ” : (i 2 sin '} _n_
ns
In 7T T
n
When n approaches 00 , mapproaches — — . The problem
67T

is then reduced to that of a circular plate which is simply supported along
all its edges, and the yielding pattern is identical to that shown in

Figure 24 (d).

Non-Symmetrical Plates
Problem 1.N.S.P.
Knowing that the imposed loading is equal to one kip per square

foot, find the exact yielding pattern of the plate shown in Figure 25 (a).
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(a) J (b)

Fig. 25.--Problem |I.N.S.P.

Solution
The yielding pattern will be similar to that shown in Figure 25 (b).
The nodal force, acting at the intersection of the yield line with edge AD,

is equal to:
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mX2 - Xj)

yi

The nodal force, acting at the intersection of the yield line with edge

DC, is equal to:

m(y2 - yx)
(b - x2)

Summation of moments about line AB for region | yields the following:

(m1)'L) + mj Al--(x") = P [(L - y*) {--) 3 + xD(yD{=)+

Y1
(x2 - x)(y)(1)(-"—- + xi)l
From which is obtained:
2 2
pyXx x2 (L~yx)+3x1lyl+ VI*®2 - xx)(x2 + 2x"
mi " 6 (y1) (L) + (x2 - XjHx~"
(I.N.S.P.a)
Summation of moments about line DC for region Il yields:
(xX? - X ] _ x - x,) b-xn
. (b - x2)2
P I J1
m2 x9 - x
[y9 - ——mmmmem (b - xj) 1
Y1

(1.N.S.P.b)
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Summation of moments about line AD for region Il yields the following

results:

. (y2 - yi) !
m2( - Xj)  m, = y2=p (b" X2)(yl)(¥) ¥

b - X2 y9 - yy
(2= )<y2 - yDyl +* 3 1
+ (1d,

From which is obtained:

3y2 (b x2) + (b - x2)(y2 - y1)(2yl + y2) + y2 (x2 - x”"
I

mO0 = £6__
2 -Yij 2
b - xr - (y2 -yj)(y2)
b - x.
(I.N.S.P.c)
Summation of moments about line BC for region IlIl yields:
_ y9 - yn (x9)(L - yd (L-yn)
m (b)) +m, (———=)(L-y0)=p —-— e = —
b - Xr
L-y?

(b - x9(L -y ) et

(y2 - yx)(b - x2)(y) [(1 - y2)+

Vy2 " yl

which gives:
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*2(L - y3R2 + 301 - y2)2(b - x2) + (y2 -

(b - x2)(3L - 2y2 - y*j

rru = £ _
6 (y2 " Vi)
b + b x.) (L - Yr
2
(1.N.S. P.d)
Next step is to establish the value of y in terms of , X?, and y~
- ~Xlyl
1 X -x2
S’ " * 7 L
L - Yy

The values of x , x2,y , and y that give relatively equal values for

ml, mo, and mg are:

xA = 2.02 ft.
x2 = 3.54 ft.
yj = 2.07 ft.
y2 = 2.27 ft.

mr = 2.19ft. -kip/ft.

1
N

m 2 .15 ft. - kip/ft.; m2=2.15 ft. - kip/ft.

mg = 2.23 ft. - kip/ft.

The following flow chart was used to program this problem on the computer
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CONCLUSIONS

The following conclusions can be stated about the proposed
methods.

(1) The values of moments, computed from each region, change
considerably wlith a small change in the location of a yielding pattern.

(2) The thin membrane analogy is rather limited in its applications.

(3) The mathematical method provided an accuracy of 3.5% in the
case of non-symmetrical plates while early investigators were satisfied
with an accuracy of 25%.

(4) Avery elementary knowledge of computer programming is
sufficient for applying the mathematical method.

(5) The mathematical method consumes a considerable amount of
computer time when there are many variables.

(6) In applying the semi-graphical solution to non-symmetrical
plates, an accuracy of 30% is considered to be adequate.

(7) The proposed methods do not involve any mathematical com-
plications .

To apply the mathematical method efficiently, a computer program
should be run with large increments in the independent variables. The
values of the moments obtained will not only confine the yielding pattern
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within limits but will also enable the programmer to set boundaries on
the value of the yielding moment. Having confined the yielding pattern
within limits, small increments in the variables are chosen, and the

exact location of the yielding pattern is determined.



LIST OF NOTATIONS AND SYMBOLS

m Ultimate moment of a plate per unit length
mj, m2, . Ultimate moments per unit length along some

specified lines

P Load per unit area
P Total load
Q Nodal force
QA\a Nodal force acting on a segment /\ 7
u Overload factor
Y, X, 7 Coordinate axes
a flj Angles between yield lines
A Magnitudes of defections
A a Segment of region A
e Angle of region rotation
O Undercapacity factor
AXis

Axis of rotation
Fixed edge support
Q Force acting downward

O Force acting upward
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Free edge of a plate

Moment

Simple column support

Simple edge support

Yield line
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