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ABSTRACT

The continuity-noncontinuity issue remains a focus for both the 

theoretical and experimental inquiry into the fundamental nature of the 

learning process. Although experimental studies of paired-associate 

learning have often disclosed continuities, mathematical models incor­

porating all-or-none processes have generally fit the data quite well. 

The most basic of these is the one-element model proposed by Bower in 

1961. The model assumes only two states, a learned state and an 

unlearned state. Transitions from the unlearned to the learned state 

occur with a fixed probability which is constant across trials. Exten­

sions and modifications of the Bower model have consisted basically of 

the addition of intermediate states which have their owned fixed transi­

tion probabilities. Theoretical explanations of these intermediate 

states include short-term memory stores, discrimination processes, and 

recognition-recall differences.

Previous evidence has shown that Bower's model loses its accu­

racy of prediction with difficult and/or long lists. In an effort to 

predict accurately both quickly and slowly learned lists an all-or- 

none three state model was built. The model, called the paired- 

associate recognition-recall (PARR) model, was based upon established 

differences between recognition and recall learning. The first state 

is a nonrecognition-nonrecall state in which the probability of a 

correct response is zero. The intermediate state or recognition
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state contains paired-associate items which can be recognized but are 

not yet recalled. While in the recognition state an item may be 

selected for rehearsal with probability p, in which case a correct 

response will be given. The third state is the recall or learned 

state in which pairs are correctly recalled on every trial. Unlike 

many previous models direct transitions from the first state to the 

third state are possible. Also, the probability of moving into the 

recall state from the recognition state is independent of the prob­

ability that an item is rehearsed. Predictions for the learning 

curves, errors before the first correct response (J), total errors 

(T), and last error trial (L) were derived and tested against obtained 

data. Predictions from the Bower model and from a model for discrete 

performance levels by Bower and Theios were also compared to the data.

List difficulty was varied by manipulating stimulus term mean­

ingfulness. CVC’s selected from Archer's 1960 list were used to build 

low, medium, and high meaningfulness lists. Response terms were the 

digits 1-16 for each list.

None of the models tested adequately described data from the 

three meaningfulness conditions. In all cases the models predicted a 

more rapid rate of learning than was observed. The Bower-Theios and 

one-element models made very similar predictions about the learning 

curves but were very dissimilar in their predictions of the probability 

distributions of J, T, and L. Data from the high meaningfulness list 

indicated that an intermediate state did not exist. Since the Box̂ er- 

Theios and PARR models are intermediate state models only the one- 

element model was used in the consideration of the high meaningfulness

x



data. Surprisingly, the one-element model provided a very bad fit to 

the data; predicting a much more rapid learning rate than was observed.

Results were discussed in terms of parameter estimates, the 

failure of the one-element model, and with regard to the conventional 

two-stage analysis of paired-associate learning.
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CHAPTER I

INTRODUCTION

The formulation of learning theories is by no means new. In the 

years between the turn of the century and the 1950's numerous theoretical 

approaches to learning arose. The most well known was Clark Hull’s

(1943) comprehensive and elaborate theory of learning. Theories of
|

learning, while they are formulated for the purpose of understanding 

learning, find their ultimate test and usefulness in whether or not 

they can predict data. Hull’s system with its numerous definable but 

unmeasurable hypothetical constructs (e.g., gHr, Ir) could be used only 

to make, at best, limited ordinal predictions about data.

Reaction to the Hullian-type theories came mostly from men like 

B. F. Skinner and W. K. Estes. Skinner (1950) argued against the for­

mulation of elaborate theories which are based upon undemonstrable 

hypothetical constructs. He suggested that psychologists concentrate 

on studying observable stimulus-response relationships and that 

response probability should be the basic dependent variable. This 

emphasis upon response probability had a profound effect upon later 

formulation of learning theory in mathematical terms. Estes (1950) 

felt that progress toward general agreement among learning theorists 

would be slow as long as theories were built upon verbally defined 

hypothetical constructs. He suggested "the possibility of agreement 

on a theoretical framework, at least in some intensely studied areas,

1
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may be maximized by defining concepts in terms of experimentally mani- 

pulable variables, and developing the consequences of assumptions by 

strict mathematical reasoning" (p. 94). He described several studies 

which were used to develop a statistical theory of elementary learn­

ing processes. Since Estes 1950 article mathematical models have 

thrived and been extended to many other areas of psychology.

At this point it would be wise to examine just what a mathe­

matical theory of learning really is. Atkinson, Bower and Crothers 

(1965) define mathematical learning theory as "the conduct of theoriz­

ing and research on learning by explicit mathematical means" (p. 1).

They explain that if mathematics is the application of rigorous logi­

cal thinking then any scientist who states and derives his theory with 

precision and logic is applying mathematics to his own science. They 

point out that the word mathematical refers to the method of theorizing 

and not to the substantive ideas expressed in a theory. To Bush and 

Estes (1959), mathematical learning theory "denotes the growing body 

of research methods and results concerned with the conceptual repre­

sentation of learning phenomenon, the mathematical formulation of 

assumptions or hypotheses about learning, and the derivation of test­

able theorems" (p. 3). This definition provides a better description 

of what the theorist actually does. Ideas, hypotheses, or just plain 

guesses about the learning process are translated into mathematical 

language and are used to derive predictions about data obtained in 

learning experiments. If the predictions are found to be accurate 

the theorist has gained information as to the validity of his origi­

nal formulations; if the predictions are found to be inaccurate the 

theorist must reformulate or reconsider his view of the learning process.
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Almost all mathematical learning theories assume an underlying 

stochastic process. A stochastic process is characterized by a tempo­

ral sequence of events that can be analyzed by using probability theory.

A distinction should be made here between probability theories and deter­

ministic theories. With a deterministic theory if certain circumstances 

are met an event will occur. With a probability theory, however, only 

the likelihood of an event can be predicted regardless of the amount of 

information available. There are basically two types of stochastic 

processes: the independent trials Bernoulli process and the Markov

chain process. A sequence of responses is a Bernoulli process if the 

probability that a given event in the sequence will occur is indepen­

dent of the outcomes of preceding trials and independent of the trial 

number. A Markov chain process is satisfied if the probability of the 

occurrence of an event in the sequence is dependent only upon the pre­

ceding event or trial in the sequence.

Mathematical learning theory has been used widely by both sides 

in the long standing controversy over whether learning is all-or-none 

or incremental. The all-or-none position maintains that the learning 

of an association occurs all-at-once on a single trial whereas the 

incremental or continuity position states that an association is 

learned by the .gradual build up of associative strength. A mathe­

matical theory of paired-associate learning based upon the all-or- 

none position was proposed by Bower (1961). In this model an item 

is in one of two states, an unlearned state or a learned state. In 

the unlearned state the probability of a success is the same as the 

probability of a correct guess (g) since the item is yet unlearned.

On each trial an item either moves into the learned state with
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probability, c, or remains in the unlearned state. Once an item is in|
the learned state its probability of being correct is one. With this 

simple formulation Bower developed predictions concerning such "fine 

grain" aspects of the data as mean trial of last error, distribution 

6f total errors, distribution of last error trials, and many others.

Despite its success the Bower model has some difficulties, 

such as accounting for experimentally-produced variations in learn­

ing rate. The purpose of this paper is to examine the logical exten­

sions of Bower's model and to build an all-or-none based Markov model 

that will describe data regardless of the learning rates under which 

the data are obtained. Recent findings concerning the role of recall 

and recognition in learning are considered in the formulation of the

model to be built and tested.



CHAPTER II

REVIEW OF THE LITERATURE 

Bower's One-Element Model

A variation of the traditional stimulus sampling theory devel­

oped by Estes (1950, 1959) provides the basis for all the models which 

will be described in this chapter. Stimulus sampling theory assumes 

that a stimulus is composed of discrete elements and postulates that 

an organism draws a sample from this population on each trial during 

learning. Only a certain number of these elements are selected and 

conditioned to the response on each trial. Response probability is 

related to the proportion of elements that have been selected and con­

ditioned. A special case of this theory involves regarding the stim­

ulus as just one element (Estes, 1960) and then assuming that it is 

sampled on every trial and conditioned to the response with some fixed 

probability. Although Bush and Mosteller (1959) were the first to use 

this one-element idea to build a model for learning, they did not fully 

investigate the properties of the model. It was Bower (1961) who for­

malized and applied the one-element idea to paired-associate learning. 

Bower felt that the true test of a model was its ability to describe 

the response sequences of paired-associate items. His intent was to 

build a model which was theoretically simple but which would allow 

for the derivation of an extensive number of predictions about

5
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response sequences. Bower's formulation was a two-state model charac­

terized by the following axioms:

1. Each item may be represented by a single stimulus element 
which is sampled on every trial.

2. This element is in either of two conditioning states: 
(conditioned to the correct response) or Cq (not condi­
tioned) .

3. On each reinforced trial the probability of a transition 
from Cq to C-̂ is a constant, c, and the probability of a 
transition from to is 1.

4. If the element is in state then the probability of a 
correct response is 1; if the element is in state Cq , then 
the probability of a correct response is 1/N, where N is 
the number of response alternatives.

5:. The probability, c, is independent of the trial number and 
the outcomes of preceding trials (p. 258).

It can be seen that the first axiom gives the model its one- 

element characteristic and that the remaining axioms make the model all- 

or-none since an item is either learned completely or not at all. Using 

these axioms, transition probabilities can be determined and are given 

in the following matrix:

Trial N+l

C1 co

C1 1 0

co c 1-c

Examining the matrix it can be seen if an item is in state Cq on

trial N then with probability c it will move into state C-̂ on trial N+l;

otherwise with probability 1-c it will remain in Cq . Once an item is in

C^ it remains there and cannot return to Cq . From this basic design

Bower derived expressions to predict many of the characteristics of the

response sequences. For example, his formula for predicting the mean

last error trial is, E(L) = , where b = -------.The formulal-g(l-c)
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for the probability distribution of total errors is, Pr(T=lc) =

(1-gb)(l-b)k ^b, (notations and formulas are from Atkinson, Bower and - * 

Crothers, 1965, Ch. 3).

The utility of Bower's model lies in the numerous predictions 

about response sequences which can be derived using only one parameter, 

c. This learning rate constant is estimated very simply by proper 

manipulation of the formula T = (l~g)/c where T is equal to the observed 

mean total number of errors for each subject-item and g is equal to the 

probability of a correct guess (one divided by the number of response 

alternatives). Bower demonstrated a very satisfactory fit of his model 

to paired-associate data obtained from ten item lists which used conso­

nant pairs as stimuli and the integers "one" and "two" as responses. 

However, in a comparison of seven models Atkinson and Crothers (1964) 

found that the one-element model provided an unsatisfactory fit to 

paired-associate data. Atkinson and Crothers used, for the most part, 

longer lists and more response alternatives than did Bower. Calfee 

and Atkinson (1965) also failed to demonstrate a satisfactory fit of 

the Bower model when list length was 9, 15, or 21 items and responses 

were three consonant-vowel-consonant (CVC) trigrams. Because of these 

and other failures of the Bower model, theorists have extended and 

modified it in various ways. The remainder of this section will be 

devoted to reviewing models of paired-associate learning which are 

direct extensions or modifications of the one-element model just 

described.

Extensions of Bower's One-Element Model

An explicit prediction of the all-or-none position which the 

Bower model epitomizes is that the probability of a correct response
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is stationary or constant before learning occurs. Suppes and Ginsberg 

(1963) by vincentizing the pre-criterion response sequences demonstrated 

that the probability of a correct response was not stationary over 

trials; but response probability increased as trials increased. A two 

element model was devised by Suppes and Ginsberg to handle this problem. 

The transition matrix for their model is given below:

Trial N+l Pr (Correc

c2 C1 C0

C2 1 0 0 1

C1 b (1-b) 0 g'

C0 0 a (1-a) g

In this model the stimulus is thought of as being composed of two 

elements. In state Cq the response is not conditioned to either of the 

elements and the probability of a correct response is g. With a fixed 

probability, a, the correct response becomes conditioned to one of the 

elements and moves into state C-̂ . In state the probability of a cor­

rect guess, g', is greater than g but less than one. This formulation 

allows Suppes and Ginsberg to account for an increased probability of 

correct responding as trials increase. The model, however, does not 

give up its all-or-none properties since movement between states is 

still seen to occur in an all-or-none manner with fixed probabilities. 

This model is really nothing more than two one-element models placed 

end to end with different c and g values. The two one-element models 

are overlapped with the terminal probability for the first model being 

the starting probability for the next.
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Atkinson and Crothers (1964) objected to the Suppes and Ginsberg 

model for two reasons. First, while g given by 1/N is a reasonable esti­

mate of the guessing probability in state Cq there is no convincing 

experimental interpretation given for the value of g', the guessing 

probability in state C^. Secondly, Atkinson and Crothers demonstrated 

that when g' is estimated from data several predictions from the two 

element model are inaccurate. Atkinson and Crothers produced their 

own model which assumes four states L, S, F, and U. Learning consists 

of encoding a stimulus and then associating the encoded stimulus to 

the correct response. Before encoding the stimulus is in state U 

(uncoded); the subject responds by guessing randomly with probability 

g. Once the stimulus is encoded it can become associated to the cor­

rect response. When this happens the item moves into the L or learned 

state and has a correct response probability of one. F and S are 

intermediate states which represent events assumed to occur between 

encoding and learning. When an item is in state S it is in a short­

term memory store and the probability of a correct response is also 

one. However, an item in short-term memory may be forgotten in which 

case it will move into state F wherein the probability of a correct 

response is again g. The transition matrix for this model is given 

below.

Trial N+l Pr (Cor:

L S F U

L 1 0 0 0 1

S a (l-a)(l-f) (l-a)f 0 1

F a (l-a)(l-f) (l-a)f 0 g

U ca c(l-a) c(1-a)f 1-c g
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The probability that an item is encoded on any trial is c and 

the probability an item is both encoded and associated on a single trial 

is ca. It is interesting to note that Atkinson and Crothers postulate 

the same probability of moving into the L state following a correct 

response in the S state as following an error in the F state. The model 

has the desirable feature of predicting increasing response probability 

over precriterion trials and is also qualitatively in accord with over­

learning data since trials past the criterion serve to allow more transi- 
|

tions from S to L. Atkinson and Crothers propose two forms of the above 

model. The model as it was described is termed the LS-3 model because of 

the three parameters a, c, and f. The LS-2 model is a special case in 

which c equals one, which would mean that all stimulus items become 

encoded on the first trial.

Calfee and Atkinson (1965) propose a model which is quite similar 

to the Atkinson and Crother LS model. The trial dependent forgetting 

(TDF) model has three states (L, S, U) rather than the four found in the 

LS models. In the TDF model when an item has been in the S or short­

term memory state and then is forgetten it returns to the U state rather 

than to an F state. The probability of returning to the U state from 

the S state is a function of the number of items that remain to be 

learned on any given trial. The transition matrix for the TDF model 

follows:
Trial N+l Pr (Correct)

L S U
L 1. 0 0 1

Trial N S a (1-a)(1-Fn) U-a)Fn 1

U a (l-a)(l-Fn) (l-a)Fn g
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The parameter F Is the probability of returning to the U state

and is dependent upon the number of items that remain to be learned on

trial N. As in the Atkinson and Crothers model the probability of

learning following an error or a correct response is the same. Calfee

and Atkinson also describe a revised version of the TDF model in which

the probability, a, of moving into the learned state following a

response is state S is different from the probability, b, of moving
ointo the learned state following a response in state U. Minimum X 

estimates of these parameters showed the probability of getting into 

the learned state following a response in the S state is about four 

times greater than following a response in the U state. One serious 

drawback of this model is that it is difficult to determine just how 

many items are yet to be learned on each trial in order to estimate F. 

When a correct response is given it is impossible to tell whether it 

is correct because the item is in state L or because it is in state S. 

It will be evident as this review progresses this difficulty of para­

meter estimation increases as the models become more complex.

Greeno (1967) also uses the idea of a short-term memory store 

as an important state in a model. Grenno’s contribution to the short­

term memory store type models is his emphasis upon the effects of con­

solidation processes which occur while the item is in the short-term 

store. His model allows an item to drop out of the short-term memory 

state back into an unlearned state with the probability of this occur­

ring being a function of the length of time between successive presen­

tations of the same item. Greeno has a parameter, h, which is the 

probability of going into the short-term state and a is the parameter 

describing the probability of achieving long term storage or learning
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during the interval between successive presentations of the same.item 

and is related to the length of the interval.

Bower and Theios (1964) developed a model for learning which 

separates an intermediate state into two states, one of which is an 

error state (E) and the other a success state (S). They adopt this 

formulation not because of theoretical assumptions such as short-term 

memory effects but rather as an aid in assessing the effectiveness of 

reinforcement following responses in the E or S state. The model is 

given by the following transition matrix.

Trial N+l

Trial N

1 s E 0

1 1 0 0 0

s s p(l-s) q(l-s) 0

E £ p(l-e) q(l-e) 0

0 0 cp cq 1-c

If s were equal to e then the probability of going into the 

learned state after a success would be the same as after an error. In 

this case the S and E states could be collapsed and the model would 

become a three-state model. Bower and Theios feel that the values of 

s and e obtained from the data are very instructive as to the learning 

process. This model is very interesting because it exemplifies how 

mathematical models can be used other than as direct tests of theories.

Bower and Theios have set up the model's framework so that the para­

meters obtained from the data are indicative of the learning process 

and provide information as to differential effects of reinforcement.
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A mathematical model built from a nonassociative point of view 

was proposed by Restle (1964). His model is based on trace theory of 

learning. The basis of this theory is the assumption that each time a 

stimulus-response pair is seen it is permanently recorded as an engram 

or memory trace. Learning is the process of adopting "strategies" which 

are used as aids in recalling the engram. After a strategy has been 

adopted it remains in use until the next presentation, if the subject 

is successful in recalling the stimulus then he maintains the strategy

but if he is unsuccessful in recalling the engram he discards the;!
strategy and adopts a new one. Once the subject has adopted a success­

ful strategy he will thereafter respond correctly. This conceptualiza­

tion is similar to the hypothesis explanation of concept learning. 

Explicit in this theory is the requirement that learning can occur 

only after an error unless the subject adopts a successful strategy 

on the first trial. The subject must make an error in order to force 

him to discard an ineffective strategy and resample from the popula­

tion of strategies. If 9 is the proportion of effective strategies in 

the pool then with probability 9 the subject will sample an effective 

strategy and move into the learned state.

Restle is concerned with the problem of stimulus similarity.

When stimuli are similar the subject may adopt the same strategies 

for both or he may become confused due to the similarity of stimuli 

and use the inappropriate strategy. Restle's model was built to 

describe paired-associate learning when the stimuli are similar and 

the problem of discrimination was introduced. The model requires 

the subject to select not only a successful learning strategy but 

also a successful discrimination strategy. Errors due to
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inappropriate discrimination strategies Restle calls confusion errors.

transition matrix for the model is given below •

Trial N+l Pr (Correct)

S 3 s2 S1 s0

S3 1 0 0 0 1

s2 d q(l-d) p(l-d) 0 0
Trial N

S1 0 q P 0 1
[ 1

so 0d q0(l-d) p0(1-d) 1-0 g
J

Theta is the probability that the subject will select a strategy

leads to recall, d is the probability that he selects a successful

discrimination strategy, p is the probability that he will make a cor­

rect response in the discrimination learning phase, and q is the prob­

ability of an error in the discrimination learning phase.

Two very similar models which were introduced at about the same 

time assume an all-or-none elimination of incorrect responses. Nahinsky 

(1964) and Millward (1964) both built their models upon the assumption 

that subjects can learn to eliminate incorrect response alternatives on 

their way to the learned state. These models can account for increasing 

response probability before learning because the subject can increase 

his guessing probability by learning to eliminate some of the wrong 

responses. This theoretical approach assumes simultaneous operation 

of two learning processes: (1) learning which is the correct response 

(2) learning which are not correct responses.

A model which views the learning of paired-associate lists as a

decrease, with repetition, in the probability of forgetting was described 

by Bernbach (1965). The transition matrix is given below.
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Trial N+l Pr (Correct)

C' C G E

C ' 1 0 0 0 1

c 6 (1-0)(1-6) (1-0)6 0 1
Trial N

G 0 [i-eci-g)](i-6) 6 3(l-g)(1-6) g

E 0 (1-3)(1-6) 6 3(1-6) 0

Bernbach uses four states in his theory. An error state (E), a 

state in which a correct guess is made (G), a state which is similar to 

a short-term memory state which he calls C and a learned state (C') in 

which the probability of forgetting is zero. As learning progresses, 

the probability of forgetting, 6, decreases to an asymptote of zero.

The relationship between 6 and the number of trials is given by a step­

wise function. Steps or changes in the probability of forgetting occur 

in an all-or-none manner only when the item is in state C and occur 

with probability 0. Bernbach also postulates the possibility of pro­

active inhibition which may operate after a subject makes an error and 

is then shown the correct response. The result of this proactive inhi­

bition will be to produce an increase in the subjects tendency to repeat 

the incorrect response upon the next presentation of the stimulus. The 

probability of this occurring is g. It is interesting that Bernbach 

requires all items to be in the C state for at least one trial before 

final learning occurs. In other words, items cannot go directly from 

the error or from the guessing states into the learned state as they 

can in many of the other models reviewed.

The lack of stationarity observed in paired-associate data was 

a troublesome point for all-or-none theorists for many years. Recently,
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however, Poison and Greeno (1969) have demonstrated nonstationary data 

can be produced by an all-or-none process. They demonstrated that 

sequential probabilities can be manipulated by the effects of short 

term memory when randomized lists are used. They also describe bias­

ing factors such as forgetting by the subject of the response which 

the experimenter gave as correct. These and other factors can produce 

data which is nonstationary even though the underlying association 

process is all-or-none. While Suppes and Ginsberg (1963) used an 

intermediate state to account for nonstationarity most authors, espe­

cially since the Poison and Greeno article, make use of intermediate 

states not as an explanation for nonstationarity but as theoretical 

steps through which items must pass on their way to the learned state.

Poison, Restle and Poison (1965) discuss the reasons for intro 

ducing intermediate states into all-or-none models. They propose the 

idea that the number of intermediate states needed to described paired 

associate learning is proportional to the number of sources of diffi­

culty in the list. When learning involves only the association of a 

stimulus with a response that is familiar to the subject then it can 

be described by a simple formulation such as Bower's one-element model 

If other sources of difficulty are introduced into the list (e.g., 

stimulus similarity, response learning) then intermediate states must 

be added to models to account for these difficulties. To emphasize 

their contention they demonstrate that data obtained from lists made 

up of easily discriminated stimulus items and familiar response terms 

could be quite adequately described by Bower's model. However, when 

an additional source of difficulty was added by introducing similar
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pairs of stimulus items a three state model was needed to adequately 

predict the data. The three state model they used is described by the

following matrix.

S2

S2 1

Trial N S1 Qd

S0 cd

Pr (Correct)

si S0
0 0 1

1-Qd 0 Q

c(l-d) (1-c) 0

When a subject learns the correct response to one of the pair 

of similar stimuli he goes into the intermediate state state and 

makes a confusion error with probability Q. It will be noted that 

this model is merely a simpler formulation of Restle's model described 

earlier. Poison et al. conclude that unitary learning is an all-or- 

none process but most experiments require multiple processes for solu­

tion. These processes, however, are each all-or-none and with suffi­

cient experimental control can be separated.

The following two models were built to describe free-recall 

learning rather than paired-associate learning but are included in 

the review because of their influence upon the formulation of the 

model which will be developed in the next chapter.

Waugh and Smith (1962) proposed a complex five-state model for 

free-recall. Three processes are proposed by Waugh and Smith to account 

for learning. The first process is labeling, which is finding a mne­

monic device for associating the item. The next process is selecting 

or sampling items to be rehearsed and the third process is fixing which 

is analogous to learning to the point of recall on every trial.



Labeling occurs with probability A, selecting with probability o, and <J> 

is the probability that an item will be fixed. The matrix follows:

18I

Trial N+l

5 A 3 2 1

5 1 0 0 0 0

A a 1-0 o(l-*) 0 0

Trial N 3 a 1-0 0(1-*) 0 0

2 a 0 o(1—*) (1 -a) 0

1 Xa 0 Xo(1-*) (1-a) 1-A

State 1 is the not yet labeled state in which the probability

of a correct response is zero. State 2 is the labeled but not selected

state, here also the probability of a correct response is zero. State

3 is the labeled, selected but not yet stored state. When an item is

in state 3 it is recalled with probability one. State A is for items 

which have been labeled and selected on previous trials but are not 

selected on trial N. State 5 is the absorbing learned state in which 

recall occurs on each trial. Waugh and Smith assume initial recall 

depends on a dual process, labeling and selecting. They do provide, 

however, for both these processes and the fixing process to occur on 

a single trial so that an item may move into the learned state on the 

first trial with probability Xa.

The traditionally recognized difference between recognition 

and recall forms the basis for a model proposed by Kintsch and Morris 

(1965). The model assumes recognition can be described by Bower's 

simple model and that recall can also be described by a two-state 

process once the items to be recalled have moved into the recognition



state. In this conceptualization the learned state for recognition, C 

is the initial state of the recall learning model. Their matrix is 

presented below.

Trial N+l Pr (Correct)

C2 C1 C0

C2 1 0 0 1

Trial N 0 (1-0) 0 1-r

C0 0 c (1-c) 0

Cq is the non-recognition , nonrecall state and C-̂ is the

recognition-but-not-recall state. It should be noted that Kintsch and

Morris propose different learning rates for the two initial stages 0

and c. The model is very similar to the Bower and Theios model of 

paired-associate learning, except Kintsch and Morris do not propose 

differential learning probabilities following successes and errors. 

Kintch and Morris also do not provide for a direct transition from 

Cq to C2 which means an item cannot be learned (state Cq) on the 

first trial. Kintch and Morris had subjects learn lists of nonsense 

syllables by the methods of recall and recognition. They found that 

a two state model would describe data from the recognition learning 

but that a three-state model was needed to describe the free recall 

data. They also found, as they predicted, that once a list had been 

learned by the recognition method a two state model would describe 

the data from that point in learning until the list was learned to 

a recall criterion.

In summary, Bower's model has been extended and modified in

many ways while still retaining its all-or-none and Markov properties.
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Also, greatly different theoretical assumptions have used it as a start­

ing point for their mathematical expression. It has proven useful not 

only as an incentive to research but also as a basic tool which can be 

used by differing theoretical views (e.g., cognitive, associative) of 

the learning process. It has also been used to test more subtle dif­

ferences in subprocesses from similar theoretical positions such as 

the question of whether or not an item must go trrough intermediate 

states on its way to the learned state. However, a note of caution 

should be sounded. Too many processes and subprocesses may have 

been elaborated. It is highly possible that paired-associative 

learning may be simpler than many of these models would postulate.



CHAPTER III

A THREE STATE MARKOV MODEL

Data from the author's Master’s Thesis was used to test Bower's 

one-element model. It was found that the model provided a satisfactory 

fit to data from easily learned lists but failed to describe adequately 

data from slowly learned lists (Linscheid, 1969) . Other examples of 

the failure of Bower's model when applied to paired-associate data from 

difficult lists have been reported in the literature (e.g., Atkinson 

and Crothers, 1964; Calfee and Atkinson, 1965). In an effort to 

describe data regardless of the learning rate a three state Markov 

model was developed. The model is based on theoretical formulations 

from both the Waugh and Smith (1961) paper and the Kintsch and Morris 

(1965) paper.

The model assumes three states. An unlearned state, A, a 

recognition state, B, and the learned or recall state C. Transition

probabilities for the model are given below:

Trial N+l Pr (Correct)

C B A 1

C 1 0 0 1

Trial N B b 1-b 0 P

A ah a(l-b) (1-a) 0

21
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The learning of paired-associates is viewed as a recognition- 

recall process. Subjects first learn to recognize a stimulus-response 

pair and then to recall it. In state A a pair is neither recognized 

nor recalled. Once a pair is recognized it moves into state B. While 

in state B a recognized pair may be selected for rehearsal with prob­

ability p. If the recognized pair is rehearsed the correct response 

is given with probability one; if the recognized pair is not rehearsed 

the probability of a correct response is zero. The transition from 

the B state to the C state (recognition to recall) occurs with prob­

ability b and is independent of whether or not an item has been 

selected for rehearsal on any previous trial. Like the Kintsch and 

Morris model this model views recognition and recall as two separate 

processes which are each described by two-state models. Unlike the 

Kintsch and Morris formulation the present model allows for a direct 

transition from the unlearned to the learned state. The model is 

designed for use with the train-test method. The train-test method 

allows subjects to view the correct pairs before the first test so 

that the probability of a correct response on the first trial is not 

the guessing probability. The model was designed for longer lists 

with each stimulus paired with a different response. In such lists 

the guessing probability is negligible and it has been ignored in 

the formulation of the model. However, with minor modifications 

the model could be adapted for use with the anticipation method or 

to accommodate larger guessing probabilities.

The first step in deriving predictions from a Markov model is 

to determine the state probabilities. The notation W will be usedO a n

I



to denote the probability that an item is in state S on trial n. The 

probability of being in the A state on the ntk trial is the probability 

of having not left the A state for n trials or

»A,n " U-a)n

The probability of being in the B state on Trial n is the sum of 

the separate pathways an item can take in getting to the B state on 

Trial n [e.g., Wg ̂ 3 = PrCA^A^g) + PrCA-gB.^) + Pr(8 3 8 ^ 3 )]. In general 

form it is given by
m-2 , o—v

Wt, = a(l-b)n + a(1-b) (1-a) E (l-a)k (l-b) n ~ 2 k (2)
k=0

23
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The probability of being in the C state is obtained by subtrac­

tion

W„ = 1 - (WA „ + W„ ) C,n A,n B,n' (3)

The next derivation of interest is the learning curve or prob­

ability of an error which is denoted by qn. An error can occur in two 

of the three states. If an item is in state A an error occurs with 

probability 1; if the item is in state B an error occurs with prob­

ability q, which is the probability of an item in the B state not being 

rehearsed. The formulation of the error probability formula is quite 

simple.

In ' WA,n + 1 «B,„ <4>

The variable J will be defined as the number or errors before 

the first correct response. To derive the probability distribution of 

J two paths must be considered. A subject may make k errors in state A 

and then move either into state B and make a correct response with prob­

ability p or he may move directly into state C and be correct with



probability 1. In either case, the correct response ends the error run.

A subject also may make i errors in state A (where i J) and then move 

into state B and make J-i errors before making a correct response.

Alpha (a) will be defined as the probability that an error follows an 

error in the intermediate state or a = q(l-b) and w will be defined as 

the probability of making a correct response upon leaving the A state 

and is given by w = b + p(l-b). The distribution of J can now be writ­

ten as follows:

k
Pr(J=k) = (l-a)kaw + £ (1-w) (l-a)aa(a)k-i(l-a) (5)i=o

or in general form

Pr(J=k) = (l-a)kaw + fa^-(l-a)^] (6)°< ~(l~a)

It can be seen from inspection of equation 5 that Pr(J=k) is 

equal to the probability that all J errors are made in state A plus the 

probability that i errors are made in state A followed by a string of 

J-i errors in state B. The formula for the mean number of errors before 

the first success, E(J), is:

E(J) = I  + -3---- (7)a b + qb

This is simply the mean number of errors in the A state plus the mean 

number of errors before a success in the intermediate state..

The next formulation to be considered is the probability distribu­

tion of the total errors. To do this we break up the total errors into 

the total errors made in state A and the total errors made in state B

24I

or T = tA+tB:
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therefore Pr(tA=k) = (l-a)ka (8 )

,_u (for j=0 )

and Pr(tfi=j) = "S (9)

—̂  (l-u)aE(l-E)^ (for j<l)

where E is equal to the probability of no more errors starting in the 

intermediate state and is given by E = b/ l-p(l-b). The quantity u is 

the probability of no more errors upon leaving the A state. The formula 

for us is; u = b + pE(l-b). Conceptually the overall distribution of T 

may be given by

k
Pr(T=k) = [Pr(tA+K)][Pr(tB+))] + E [Pr(tA=i)][Pr(tg+k-i)] (10)

i=l

Summing and simplifying we obtain

Pr (T=k) = (l-a)k au + g.E,(.l-u). [ (1-E)k- (l-a)k] (11)
a-E

The mean total errors is the sum of the average number of errors in 

state A and state B and is given by

E(T) = 1/a + q/b (12)

The final statistic to be developed is the probability distribu­

tion of the last error trial. In order for an error to occur an item 

must be either in state A or state B. If an item is in state A on 

trial n then with probability aw it will leave A and no more errors 

will be made. If an item is in state B on trial n an error will be 

made with probability q and no further errors will be made with prob­

ability E. Therefore the probability distribution of the last error

trial is given by
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Pr(L=k) = WAjn a w + WB>n q E 

and the mean last error, trial is given by

E(L) I + — 9____a b(q+pb)

(13)

(14)

Parameter Estimates

Bower and Theios (1964) in the formulation of their model describe 

the estimation of parameters. Because of the similarity of the present

model to the Bower-Theios model several of the same methods will be used.j
Their c is comparable to a in the present model since it is the probabil­

ity of leaving the initial state. Since the present model does not 

postulate differential learning rates following successes and errors the 

best estimate of the b value is an average of Bower-Theios error and suc­

cess learning probabilities or b = . The probability of an error

in the intermediate state, q, will be taken directly from the data by 

counting the number of errors between the first success and the last 

error and dividing by the number of intermediate trials.

To produce the differential learning rates needed to test the 

model stimulus term meaningfulness will be manipulated. Numerous 

studies which have held response meaningfulness constant and varied 

stimulus meaningfulness (Goss and Nodine, 1965, pp. 90-92) have demon­

strated differential and reliable effects upon learning rates. Response 

term meaningfulness will be held constant by using digits as responses 

and stimulus meaningfulness will be manipulated by using CVC's from

Archer's (1961) list.



CHAPTER IV

METHOD

The subjects were 90 introductory psychology students (65 males, 

25 females) from the University of North Dakota who participated in the 

experiment as a course requirement. They were run in groups of 8 to 15 

until 30 had been run for each of the three lists.

The task for all subjects was to learn a paired-associate list 

of 16 pairs. The train-test method was used. The items were presented 

on slides using a Kodak 800 slide projector. The projector was pro­

grammed to change slides every four seconds. The changing time was 

slightly under one second so the actual exposure time was just over 

three seconds. During the training phase the subjects studied the 

stimulus-response slides. At the end of the training phase a blank 

slide appeared for four seconds followed by the test phase in which 

subjects were shown the stimulus items and were required to supply 

the response. Exposure time was the same during the test phase. Fol­

lowing the test phase two successive blank slides signaled the begin­

ning of the next trial. There were four random orders of each list, 

both for the training and test phases. Subjects wrote their responses 

in booklets and after each trial (i.e., during the exposure of the two 

blank slides) turned the page so that a blank answer sheet was exposed. 

This prevented them from studying previously given responses. Subjects 

were required to copy down the stimulus and supply the response during

27
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the test phase. They were instructed to copy the stimulus even if they 

did not know the response. The following instructions were read to the 

subjects before each experimental session: This is a learning experi­

ment in which you will learn to associate or "hook up" a three letter 

sequence like RTX with a number. You will be presented a series of 

slides. On each slide there will appear a three letter sequence and 

number. The numbers will be the integers from 1 to 16. Following the 

presentation of the three-letter sequence and number slides you will 

see. a: blank slide. After the blank slide you wTill be shown a series 

of slides which have only the three letter sequences on them. As 

these slides are presented you are to copy down the three letter 

sequence and supply the number that was paired with it previously.

You may guess if you wish but you are not required to do so. You 

should write quickly because you will not have unlimited time to 

answer. Write the letter sequences and number in your answer book­

let, one sequence and number per line. At the end of each trial, 

which will be signaled by two successive blank slides, turn the page 

of your answer booklet so that you can no longer see the answers 

which you have just written. The same sequence of events will then 

be repeated. Do not go back to previous pages of your answer book­

let and do not attempt to study from your previous answers. Remember. 

You must copy the three letter sequence, and if you can, supply the 

number which goes with it. Also, remember to turn to the next blank 

page of your answer booklet each time you see the two successive blank 

slides.- Are there any questions?
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The stimulus items were CVC trigrams selected from Archer's (1961) 

list. To control for stimulus similarity the following restrictions were 

placed on the items. No consonant could appear in each list more than 

twice in the first position of the trigram nor could it appear more than 

twice in the third position. No vowel (y included) could appear more than 

four times in each list and no CV or VC combination could appear more than 

once in each list. Three lists were chosen in this manner. The low mean­

ingfulness (LM) list was made up of trigrams whose mean association value 

(AV) ]was 8.0 (range 1 to 15). The mean AV for the medium meaningfulness 

(MM) list was 45.25 (range 43 to 47) and the high meaningfulness list 

(HM) had a mean of 99.9 (range 99 to 100). The response items for all 

three lists were the integers 1 through 16. Each was paired with a CVC 

and was used only once in each list. The lists are shown in Table 1.

TABLE 1

LOW, MEDIUM, AND HIGH MEANINGFULNESS LISTS

Low
Meaningfulness

Medium High

XIH-16 FUJ-10 BAN-3
QUJ-7 GYT-12 BIT-16
GYQ-1 SIQ-5 CAT-10
TEJ-14 DEG-15 GUM-5
WUQ- 8 GOZ- 6 DEN-4
JYH- 6 HAQ-16 FAR-15
MYV-9 JOH- 8 FOX- 6
RYW-13 PEM-1 GAS-11
ZOS-5 QIC-11 HIM-12
ZUF-3 WYM-3 HOP-7
GEX-2 CYK-2 WIG-1
VOF-12 DYS-14 JUG- 8
VUB-10 LIX-4 WED-14
FEP-15 CIB-13 MUD-2
BIW-11 MOG-9 TUB-13
XAZ-4 PAJ-7 SIR-9



30

The LM group was run for 24 trials, the MM group for 18 trials, 

and the HM group for 16 trials. The number of trials each list was run 

was adequate to insure virtually all items were learned to a criterion 

of five successive correct responses.



CHAPTER V

RESULTS

For the analysis of stimulus meaningfulness effects four subjects 

(three from the LM group and one from the MM group) were excluded because 

they failed to learn to the criterion of two perfect recitations of the 

list.,; Using trials to criterion as the dependent variable a one way 

analysis of variance yielded a significant effect for meaningfulness 

(F = 37.66, df = 2 and 83, P <.001). Table 2 is the analysis of vari-

ance summary table and Table 3 shows the means and standard deviations.

TABLE 2
ANALYSIS OF VARIANCE SOURCE TABLE

Source df ss MS F

Meaningfulness 2 817.045 403.523 37.662
P<.001

Error 83 900.268 10.847
Total 85 1717.313 20.204

TABLE 3

MEANS .AND STANDARD DEVIATIONS

Group M SD

LM 12.481 4.069
MM 8.380 3.429
HM 4.900 1.938
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The means are in the expected direction and show the usual marked 

relationship between stimulus meaningfulness and trials to criterion.

The learning curves for the three groups are shown in Figure 1. The HM 

curve is remarkably smooth, an almost picture-perfect curve. The MM and 

LM curves are also quite smooth for paired-associate data. It is evident 

that the desired differential learning rates were obtained and the 

results indicate once again the potent effects of meaningfulness in 

verbal learning.

The criterion for considering an individual subject-item correct 

was five successive correct responses. For the HM group all 480 subject- 

items met this criterion. The MM group had 471 items and the LM had 450 

items. The maximum loss of items (6.2%) occurred in the LM group. The 

data obtained was compared to predictions from Bower's one-element model, 

the Bower-Theios model, and to the model developed in Chapter III here­

after called the paired-associate recognition-recall (PARR) model. While 

many predictions about the data could be made, the three models will be 

evaluated by comparing predictions of probability of correct response 

(pn), errors before the first success (J), total errors per item (T), 

and trial of last error (L) with their respective observed values. Both 

the means and distributions of these statistics will be considered.

Fits of Models to LM Data

Data from the LM list will be considered first. Since the Bower- 

Theios model was designed for use with the anticipation method a modifi­

cation was required. The learning curve and probability distributions 

were all shifted one trial so predictions from Bower-Theios were in line 

with the actual trial number of the data. For example, the prediction
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Fig. 1. Learning curves for the LM, MM, and HM lists.
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for the probability of being correct on the second trial was actually the 

prediction of the first trial correct response probability. The same 

modification was used for the probability distributions. The one-element 

model was also modified since it too was designed for the anticipation 

method. The guessing probability aspect was removed from the one-element 

model to make it more in line with the other models. The modified for­

mula used to calculate the predicted learning curve for the one-element 

model is given below:

Pr (correct) = l-(l-c)n
I

The estimate of the c parameter for the Bower one-element model 

was .1974. This was obtained by dividing one by the mean total errors 

for the LM list or 5.0666. The estimate of the Bower-Theios c value \<7as 

.3238 and the estimates of s and e were .3070 and .2470 respectively.

The PARR estimate for a was .3238 or the same value as the BOwer-Theios 

c value. The b parameter used in the PARR model was .2745 and was found 

by averaging the s and c estimates from Bower-Theios. The p value was 

determined to be .4570.

The observed and predicted learning curve values are shown in 

Table 4. Figure 2 shows the predicted learning curves and the observed 

learning curve. Only fifteen trials are shown because after that point 

the predictions from the several models are virtually the same. All 

three models predict a more rapid learning rate than is observed.

Because it has only one constant it is easiest to appraise the failure 

of the one-element model to predict the learning curve by saying that 

c is roughly twice what it should be. A c  value of around .10 would 

fit fairly well, although it would do quite badly in predicting other



35

TABLE 4

PREDICTED AND OBSERVED LEARNING CURVES FOR THE LM LIST

Pr(correct)
Trial Observed One-Element Bower & Theios PARR

1 .0688 .1974 .1478 .1962
2 .1813 .3558 .2963 .3639

3 .3188 .4830 .4316 .5028

4 1
.4000 .5851 .5485 .6150

I5 .4939 .6670 .6460 .7043
6 .5938 .7327 .7253 .7744

7 .6875 .7855 .7886 .8289
8 .7188 .8278 .8384 .8708

9 .8188 .8618 .8772 .9028
1 0 .8500 .8891 .9072 .9272

1 1 .8875 .9110 .9301 .9456
1 2 .8938 .9286 .9476 .9595

13 .9188 .9427 .9608 .9699
14 .9295 .9540 .9708 .9777

15 .9438 .9631 .9783 .9835
16 .9500 .9704 .9839 .9878

17 .9750 .9763 .9881 .9910
18 .9906 .9809 .9912 .9934

19 .9956 .9847 .9935 .9951
2 0 .9906 .9877 .9952 .9964

2 1 .9906 .9902 .9965 .9974
2 2 .9956 .9921 .9974 .9981

23 1 . 0 0 0 0 .9937 .9981 .9986
24 1 . 0 0 0 0 .9949 .9986 .9990
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statistics (e.g., it would predict a mean of 1 0 errors compared to an 

observed mean of 5 errors). Similar considerations apply to the other 

models. Thus, all the models predict that the first stage of learning 

(the only stage in the one-element model) progresses more rapidly than 

what is observed. The models do not have to predict such fast learn­

ing, in the sense that the first stage constants can be very small, 

but given the particular estimates they are seriously in error in 

predicting the LM learning curve.

Despite its failure to predict the LM learning curve, the PARR 

model does very well in its predictions of the mean number of errors 

before first correct response, mean total errors, and mean last error 

trial. These predictions are shown in Table 5. The Bower-Theios model

TABLE 5

OBSERVED AND EXPECTED MEANS OF J, T AND L FOR THE LM LIST

Observed One-Element Bower & Theios PARR

J A.0066 5.0666 4.0066* 3.8942

T 5.0666 5.0666* 5.0666* 5.0665

L 6.0911 5.0666 5.9836 6.0477

*Values used in parameter estimation

predicts the mean last error trial well, the other two means are used in 

parameter estimation. The one-element model fails in predicting the 

means. The means imply the typical LM pair is learned with four con­

secutive errors and five total errors with the last error made on the 

sixth trial. Judging from the closeness of the J and L means the
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transition of an item from unlearned to learned is abrupt, but not as 

abrupt as the one-element model would have it.

The probability distributions of number of errors (trials) before 

the first success (J) are shown in Table 6 and graphically represented

• TABLE 6

OBSERVED AND PREDICTED PROBABILITY DISTRIBUTIONS OF J FOR THE LM LIST

J 1Observed One-Element Pr (J) Bower & Theios PARR

o .0688 .1974 .1478 .1962
i I .1400 .1584 .2040 . 2 1 0 0

2 .1666 .1272 .1804 .1725
3 .1288 . 1 0 2 1 .1394 .1286

4 .1155 .0819 . 1014 .0917
5 .1244 .0657 .0714 .0639

6 .0822 .0528 .0495 .0439
7 .0511 .0423 .0340 .0300

8 .0466 .0340 .0232 .0204
9 .0311 .0272 .0157 .0138

1 0 .0177 .0219 .0107 .0094
1 1 .0066 .0176 .0072 .0063

1 2 .0044 .0141 .0049 .0043
13 . 0 0 2 2 .0113 .0033 .0029

14 . 0 0 0 0 .0091 . 0 0 2 2 .0 0 2 0
15 .0044 .0073 .0015 .0013

16 . 0 0 2 2 .0058 . 0 0 1 0 .0009
17 . 0 0 0 0 .0047 .0007 .0006

18 .0044 .0038 .0005 .0004
19 . 0 0 2 2 .0030 .0003 .0003

in Figure 3. It should be noted that when the guessing probability is

assumed to be zero the probability distributions of J, T , and L will be

the same for the one-element model since there can be no correct
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responses before learning. The mode of the obtained J distribution is 2. 

The one-element model predicted a mode of 0 and the PARR and Bower- 

Theios model both predicted a mode of 1. All three models predicted a 

higher proportion of small J values than were observed. The obtained J 

distribution differs from the predicted distributions in two other ways. 

First, it has a larger tail.- This means that some pairs are not recalled 

for the first time until practice is rather well along. Although it may 

be that some pairs are of greater intrinsic difficulty than others, it 

seems, certain that any heterogeneity whatever, regardless of the source,
I

will stretch the tail of the J distribution. Second, the models grossly 

overestimate the proportion of items which will be recalled on the first 

test trial. Paired-associate learning of LM trigrams started out very 

slowly, so much so that from the obtained J distribution we may deduce 

the initial positive acceleration in the learning curve (see Table 4). 

This positive acceleration is not present in the MM and HM curves to be 

considered later.

The T probability distributions are shown in Figure 4 and 

Table 7. The obtained distribution does not have a well defined mode.

The geometric distribution predicted by the one-element model is not 

realized. The Bower-Theios model appears to have an edge on the PARR 

model, particularly for small values of T. The L distributions are 

shown in Figure 5 and Table 8 . The obtained L distribution is more 

irregular. Although the Bower-Theios model appears to predict the 

shape, the point-by point discrepancies are fairly sizeable. None of 

the models fit well, although it may be recalled that both the Bower- 

Theios and PARR models predicted mean L very well.
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TABLE 7

OBSERVED AND PREDICTED PROBABILITY DISTRIBUTIONS OF T FOR THE LM LIST

T Observed
Pr (T)

One-Element Bower & Theios PARR

0 .0244 .1974 .0665 .1330

1 .1088 .1584 .1483 .1683

2 .1311 .1272 .1621 .1600

3 .1244 . 1 0 2 1 .1466 .1354

4 .1044 .0819 .1213 .1076

5 .1288 .0657 .0953 .0822

6 .0933 .0528 .0723 .0612

7 .0733 .0423 .0537 .0446

8 .0711 .0340 .0391 .0321

9 .0355 .0272 .0281 .0229

1 0 .0288 .0219 . 0 2 0 1 .0161

1 1 .0 2 0 0 .0176 .0142 .0113

1 2 .0155 .0141 .0099 .0079

13 .0155 .0113 .0069 .0055

14 .0044 .0091 .0048 .0038

15 . 0 2 0 0 .0073 .0033 .0026

16 . 0 0 0 0 .0058 .0023 .0018

17 . 0 0 0 0 .0047 .0016 . 0 0 1 2

18 . 0 0 0 0 .0038 . 0 0 1 1 .0008

19 . 0 0 0 0 .0030 .0007 .0006
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TABLE 8

OBSERVED AND PREDICTED PROBABILITY DISTRIBUTIONS OF L FOR THE LM LIST

L Observed
Pr(L)

One-Element Bower & Theios PARR

0 .0244 .1974
1

.0665 .1329

1 .0911 .1584 .1156 .1423

2 |
.1066 .1272 .1294 .1342

3
.0800 . 1 0 2 1 .1247 .1183

4 | .0866 .0819 .1113 . 1 0 0 0

5 .1266 .0657 .0948 .0821

6 .0933 .0528 .0783 .0661

7 .0666 .0423 .0633 .0523

8 .0800 .0340 .0502 .0409

9 .0488 .0272 .0394 .0317

1 0 .0555 .0219 .0306 .0243

1 1 .0244 .0176 .0235 .0186

1 2 .0288 .0141 .0180 .0141

13 .0266 .0113 .0137 .0106

14 . 0 1 1 1 .0091 .0103 .0080

15 . 0 1 1 1 .0073 .0078 .0060

16 .0088 .0058 .0058 .0045

17 .0088 .0047 .0044 .0033

18 . 0 1 1 1 .0038 .0033 .0025

19 .0066 .0030 .0024 .0018
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Fit of the Model to MM Data

The fit of the models to the MM list data will be considered 

next. Parameter estimates yielded .3209 for the one-element c value, 

.6889 for the Bower-Theios c and .4819 and .2938 for s and e respec­

tively. The PARR estimates were .6889 for a and .3879 for b. The 

value of p was .3889. The observed and predicted learning curves are 

given in Figure 6 and Table 9.

All three models, as they did for the LM list, overpredict the 

learning rate. They predict a higher initial correct response prob­

ability and continue to predict more rapid learning across all trials. 

There is very little difference in the learning rates predicted by the 

Bower-Theios model and the one-element model. The PARR model provides 

the worst predictions about the learning rate. The shape of the PARR 

learning curve is very similar to the other models but is elevated 

considerably. Ironically, the constants calculated for the LM list 

are about right for all three models to predict the MM learning curve. 

Again this seems to be a fault of the estimates.

Table 10 gives the mean J, T, and L values. The one-element 

model, with its across-the-board prediction of the equality of these 

means is less in error than with the LM data because the spread of 

the MM means is reduced. The PARR predictions of the J and T means 

are good but the model is outpointed by the Bower-Theios model in 

predicting the L mean. The J distributions are shown in Table 11 

and Figure 7. Approximately 60 percent of the items are recalled 

correctly on the first three test trials; thereafter, the proportion 

of newly recalled items declines. All three models overpredict the
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TABLE 9

OBSERVED AND PREDICTED LEARNING CURVES FOR THE MM LIST

Trial Observed One-Element Bower & Theios PARR

1 .2044 .3209 .2679 .4313

2 .3456 .5388 .5058 .6653

3 .4400 . 6 8 6 8 .6776 .7994

4 |
.5963 .7873 .7929 .8785

5 1 .7056 .8556 .8680 .9260

6 .8144 .9019 .9161 .9548

7 .8769 .9334 .9468 .9724

8 .8606 .9548 .9663 .9831

9 .8831 .9693 .9787 .9897

1 0 .9425 .9792 .9864 .9937

1 1 .9356 .9859 .9914 .9961

1 2 .9668 .9904 .9946 .9976

13 .9581 .9935 .9966 .9986

14 .9738 .9956 .9978 .9991

15 .9794 .9970 .9986 .9995

16 .9856 .9980 .9991 .9997

17 1 . 0 0 0 0 .9986 .9995 .9998

18 1 . 0 0 0 0 .9990 .9997 .9999
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TABLE 10

OBSERVED AND EXPECTED MEANS OF J, T AND L FOR THE MM LIST

Observed One-Element Bower & Theios PARR

J 2.5265 3.1167 2.5265* 2.4279
T 3.1167 3.1167* 3.1167* 3.0270
L 3.5647 3.1167 3.5368 3.9685

*Used in parameter estimation

j TABLE 11

OBSERVED AND PREDICTED PROBABILITY DISTRIBUTIONS OF J FOR THE MM LIST

J Observed One-Element Bower & Theios PARR

0 .2038 .3209 .2679 .4313

1 .2080 .2179 .3227 .2955

2 .1995 .1480 .2036 .1522

3 .1380 .1004 .1079 .0699

4 .0828 .0682 .0528 .0302

5 .0509 .0463 .0247 .0125

6 .0509 .0315 .0113 .0051

7 .0191 .0214 .0051 .0020

8 .0084 .0145 .0022 .0008

9 .0084 .0099 .0010 .0003

10 .0084 .0067 .0004 .0001

11 .0106 .0045 .0002 .0000

12 .0042 .0031 .0001 .0000

13 .0063 .0021 .0000 .0000
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probabilities of first and second trial recalls, then underestimate the
f

larger J values. The T distributions are found in Figure 8 and Table 12. 

The Bower-Theios model predicts this distribution rather well except for 

erroneously forecasting a peaked mode of one error. The PARR model does 

very poorly. Here the fault seems to be the formulation that an item 

can go straight through from the A state to the C state with probability 

ab, in which case no errors are made. This probability is (.6889)(.3879) 

.2672 alone, and this is not the only error-free pathway available to the 

subject item. The L distributions shown in Table 13 and Figure 9 are 

similar to the T distributions just described and for much the same 

reasons.

Fit of the. Models to HM Data

Inspection of data from the HM list indicated the absence of an 

intermediate state. Only 24 of the 480 subject-items showed response 

sequences which indicated intermediate states. While the guessing prob­

ability has not been considered to this point it is possible that chance 

guessing produced what looked like intermediate trials for the HM list. 

The correct response probability before learning was determined by the 

formula, p = (L - T)/(L), which is the average number of correct 

responses before learning divided by the average number of trials to 

learn. The formula yielded a p value of .0643. With the 16 item lists 

used, the probability of a correct guess xrould be .0625 which is very 

close to the obtained p value. This bit of evidence also argues against 

the existence of intermediate states for the HM subject-items. Inter­

mediate states postulate greater than chance correct response probabil­

ities before learning and are not needed when correct response



,5

M

T

Fig. 8 Observed and predicted probability 
distributions of T.for the MM list



52

TABLE 12
OBSERVED AND PREDICTED PROBABILITY DISTRIBUTIONS OF T FOR THE MM LIST

T Observed One-Element Bower & Theios PARR

0 .1380 .3209 .1617 .3507
1 .1719 .2179 .2926 .2813
2 .2123 .1480' . 2 2 2 0 .1720
3 .1528 .1004 .1398 .0950
4 .0934 .0682 .0817 .0499
5 .0764 .0463 .0461 .0255
6 .0424 .0315 .0255 .0128
7 .0169 .0214 .0140 .0064
8 .0339 .0145 .0076 .0032
9 .0084 .0099 .0041 .0016

1 0 .0233 .0067 . 0 0 2 2 .0008
1 1 .0191 .0045 . 0 0 1 2 .0004
1 2 .0 0 0 0 .0031 .0007 . 0 0 0 2
13 .0106 . 0 0 2 1 .0004 . 0 0 0 1

OBSERVED AND PREDICTED

TABLE 13

PROBABILITY DISTRIBUTIONS OF L FOR THE MM LIST

L Observed One-Element Bower & Theios PARR

0 .1380 .3209 .1617 .3507
1 .1464 .2179 .2438 .2403
2 .1825 .1480 .1983 .1550
3 .1549 .1004 .1392 .0974
4 .0955 .0682 .0924 .0604
5 .0764 .0463 .0598 .0372
6 .0573 .0315 .0383 .0228
7 .0191 .0214 .0244 .0140
8 .0276 .0145 .0155 .0086
9 .0233 .0099 .0098 .0053

1 0 .0148 .0067 .0062 .0032
1 1 .0339 .0045 .0039 . 0 0 2 0

1 2 .0084 .0031 .0025 . 0 0 1 2
13 . 0 2 1 2 . 0 0 2 1 .0016 .0007
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probabilities before learning are only chance. The Bower-Theios model 

and the PARR model are both intermediate state models and are therefore 

inappropriate for the HM list. For this reason only the one-element 

model's fit to the HM data will be examined.

The c parameter for the one-element model was determined to be 

.7037. The observed and predicted learning curves are shown in Figure 

10 and Table 14. Again, the one-element model predicts a more rapid 

learning rate than is observed. It is evident that the estimate of c 

is much too high. The correct response probability on the first trial 

is predicted to be just slightly more than twice what is observed.

The one-element model predicts that by the second trial over 90 per­

cent of the items will be recalled while in reality it takes four trials 

before 90 percent of the items have been recalled. This gross inaccu­

racy of the one-element model is surprising in light of the success the 

model has had with rapidly learned lists.

Predictions of the mean J, T and L from the one-element model 

are compared to the observed means in Table 15. Again, the one-element 

model predicts the same mean for J, T, and L but in this case is rather 

accurate because of the small differences between the observed means of 

J, T, and L. Even though the probability of correct response before 

learning is only about chance for the HM list the correct guesses do 

not appear to occur at random during the precriterion trials. If cor­

rect guesses occurred at random the observed J should have been about 

half of the L. The fact that it is considerably greater than half 

indicates that correct guesses tended to be made later in the pre­

criterion trials.
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I TABLE 14|
OBSERVED AND PREDICTED LEARNING CURVES FOR THE HM LIST

Trials
Pr (Correct) 
Observed One-Element

1 .3413 .7037

2 .6063 .9122

3 .8063 .9740

4 .9009 .9923

5 .9569 .9977

6 .9812 .9993

7 .9925 .9998

8 .9975 .9999

9 .9975 .9999

1 0 1 . 0 0 0 0 .9999

TABLE 15

OBSERVED AND EXPECTED MEANS OF J, T, AND L FOR THE HM LIST

Observed One-Element

J 1.2688 1.4210

T 1.4210* 1.4210

L 1.5187 1.4210

*Used in parameter estimation.
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The predicted and observed probability distributions of J for 

the HM list are shown in Table 16. The observed J distribution shows 

that the probability that J=0 is about equal to the probability that 

J = 1, whereas the one-element model predicts a vast difference between 

these two points. The one-element model's prediction for J = 0 is 

clearly too high and its prediction of all other J ’s is clearly too low.

TABLE 16

OBSERVED AND PREDICTED PROBABILITY DISTRIBUTIONS OF J FOR THE HM LIST

• • J
Pr(J)
Observed One-Element

0 .3417 .7037

1 .3000 .2035

2 . 2 0 0 0 .0618

3 . 1 0 0 0 .0183

4 .0375 .0054

5 .0125 .0016

6 .0063 .0005

7 . 0 0 0 0 . 0 0 0 1

8 . 0 0 0 0 . 0 0 0 0

9 . 0 0 2 1 . 0 0 0 0

1 0 . 0 0 0 0 . 0 0 0 0

1 1 . 0 0 0 0 . 0 0 0 0

Table 17 shows the obtained and predicted distributions of T for the 

HM list and Table 18 shows the obtained and predicted distributions 

of L. The obtained T and L distributions are very similar; both are
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TABLE 17
OBSERVED AND PREDICTED PROBABILITY DISTRIBUTIONS OF T FOR THE HM LIST

T
Pr(T)
Observed One-Element

0 .2895 .7037
1 .3145 .2085
2 .2104 .0618
3 .1062 .0183
4 .0500 .0054
5 .0145 .0016
6 .0125 .0005
7 I . 0 0 0 0 . 0 0 0 1

8 . 0 0 0 0 . 0 0 0 0
9 . 0 0 2 0 . 0 0 0 0

1 0 . 0 0 0 0 . 0 0 0 0
1 1 . 0 0 0 0 . 0 0 0 0

OBSERVED AND

TABLE 18

PREDICTED PROBABILITY DISTRIBUTIONS OF L FOR THE HM LIST

Pr(L)
L Observed One-Element

0 .2895 .7037
1 .2750 .2085
2 .2145 .0618
3 .1062 .0183
4 .0645 .0054
5 .0229 .0016
6 .0125 .0005
7 .0041 . 0 0 0 1

8 . 0 0 0 0 . 0 0 0 0
9 . 0 0 2 0 . 0 0 0 0

1 0 . 0 0 0 0 . 0 0 0 0
1 1 . 0 0 0 0 . 0 0 0 0
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smooth for T and L equal to 0 and 1. The distributions indicate that 

in actuality T and L are distributed very evenly over the first few 

points. The one-element model predicts a much more skewed distribution 

than is observed. The one-element prediction that approximately 70 per­

cent of the items show correct responses on the first trial, are learned 

with no errors and are learned on the first trial is far too high. The 

one-element model was formulated with the assumption that the probability

of a correct guess should be the same for each precriterion trial. How-
/ever,; it was shown earlier that the probability of a correct guess seemed
I

to increase as practice increased. This would have a tendency to string 

out the obtained J, T, and L distributions and may be responsible for the 

bad fit of the one-element model to the distributions.



CHAPTER VI

DISCUSSION AND CONCLUSIONS

It is evident that none of the models tested provided what could 

be considered a good fit to the data. In all the cases the models pre­

dicted more rapid learning rates than were observed. The one-elementImodel' and the Bower-Theios model were remarkably similar in their pre­

dictions of the learning curve for the LM and MM lists. They predicted, 

however, quite different probability distributions of J, T, and L. The 

agreement of the Bower-Theios model and the one-element model in pre­

dicting the learning curves and their contrasting disagreement in pre­

dicting the probability distributions exemplifies the advantage of the 

intermediate state models. Models with transition states do not neces­

sarily lose accuracy in learning curve predictions but they have the 

advantage of being more flexible in the prediction of the fine grain 

aspects of the data.

The fact that the s and e values obtained for the Bower-Theios 

model were not equal (s = .3070 and e = .2470 for the LM list and s = 

.4819 and c = .2938 for the MM list) indicates that the probability of 

moving into the learned state following an error is not as great as 

following a success. These differential learning probabilities make 

the PARR assumption that recall is independent of correct response 

probability seem tenuous.

60
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Two of the models (Bower-Theios and PARR) showed some of the
!

Iflexibility needed to describe the data but were shown to be inaccurate 

in predicting obtained values. Better methods of parameter estimation 

may be a solution to this problem. It is suspected that the parameter 

estimates obtained from the Bower-Theios model and then used in the PARR 

model were not appropriate. It would seem that the estimates of a and 

b were not as descrepant as the recognition-recall reasoning would sug­

gest. With recognition shown to be a more simple learning process than

recall one would expect a rather wide range between estimates of the
|

recognition and recall learning probabilities.

An interesting feature of the results is that the one-element 

model did no better in predicting data from the easily learned list than 

it did in predicting the learning of the difficult list. The one-element 

model has had its greatest success with easily learned lists, however, 

these lists generally were shorter and had higher guessing probabilities. 

In Bower's (1961) original test of the model only two response alterna­

tives were used, making the guessing probability .50. It is of interest 

to note that if we were to obtain an estimate of c for the LM list by 

assuming the guessing probability to be .50 we would obtain a c value 

of about .10 which, it may be remembered, would have provided a much 

better fit to the data. The same holds true for the MM and HM lists.

It is likely that the one-element model is not effective unless the 

guessing probability is high. The presence of more correct responses 

before learning, as a result of a higher guessing probabilities would 

tend to increase the probability of small J's, T's, and L's in the 

obtained data. This would be more in line with the predictions from
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the model. This idea may partially explain the one-element model's 

surprisingly bad fit to the HM data.

The general failure of the PARR to predict many details of the 

data satisfactorily tends to reflect on the adequacy of the conventional 

two-stage analysis of paired-associate learning (Underwood and Schulz, 

1960). Two stage theory posits a response learning phase which precedes 

or occurs simultaneously with an associative stage. The PARR model has 

similar formal properties. Recognition is assumed to precede or occur 

concomitantly with recall. An advocate of two-stage analysis might 

argue that no response learning phase was involved in the present expe­

riment because the response terms are the already-known numbers 1 to 16. 

If that argument is accepted, then the one-element model is the Markov 

model, which is analagous to a one-stage analysis of paired-associate 

learning. One could make a case for the obtained distributions being 

multiply determined, so that more parameters may be needed if Markov 

models are to be successfully applied to paired-associate data. Aside 

from the computational problems posed by such models, there is some 

reason to believe that paired-associate learning is a very simple 

process, at least with HM pairs. It would be a shame if mathematical 

models of learning had to be more complex than psychological reality

in order to work.
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