
University of North Dakota University of North Dakota

UND Scholarly Commons UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2020

Application Of Formal Specification Technique To Microgrid Application Of Formal Specification Technique To Microgrid

Representation Representation

Maksym Tkach

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation Recommended Citation
Tkach, Maksym, "Application Of Formal Specification Technique To Microgrid Representation" (2020).
Theses and Dissertations. 3394.
https://commons.und.edu/theses/3394

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND
Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator
of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/3394
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F3394&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/3394?utm_source=commons.und.edu%2Ftheses%2F3394&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu

i

APPLICATION OF FORMAL SPECIFICATION TECHNIQUE TO MICROGRID

REPRESENTATION

by

Maksym Vasylevich Tkach

Bachelor of Science, University of North Dakota, 2012

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

December

2020

ii

This thesis, submitted by Maksym Tkach in partial fulfillment of the requirements

for the Degree of Master of Science from the University of North Dakota, has been read

by the Faculty Advisory Committee under whom the work has been done and is hereby

approved.

Emanuel Grant

Hossein Salehfar

Ronald Marsh

This thesis is being submitted by the appointed advisory committee as having met

all of the requirements of the School of Graduate Studies at the University of North

Dakota and is hereby approved.

Chris Nelson

Dean of the School of Graduate Studies

December 3, 2020

iii

PERMISSION

Title Application of Formal Specification Technique to Microgrid

Representation

Department Computer Science

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate

degree from the University of North Dakota, I agree that the library of this University

shall make it freely available for inspection. I further agree that permission for extensive

copying for scholarly purposes may be granted by the professor who supervised my

thesis work or, in his absence, by the Chairperson of the department or the dean of the

School of Graduate Studies. It is understood that any copying or publication or other use

of this thesis or part thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of North Dakota in any scholarly use which may be made of any material in

my thesis.

Maksym Tkach

August 23, 2020

iv

1 INTRODUCTION

1.1 Problem Definition

1.2 Significance of the Work

1.3 Methodology

1.4 Scope of the Work

1.5 Expected Results

1.6 Thesis Layout

2 BACKGROUND

2.1 Problem Domain

2.1.1 Microgrids

2.1.2 Multi Agent Systems

2.1.3 Formal Modeling

2.2 Solution Domain

2.2.1 Unified Modeling Language (UML)

2.2.2 Object Constraint Language (OCL)

2.2.3 USE Analysis Tool

2.2.4 Iterative Development

3 LITERATURE REVIEW

4 METHODOLOGY

4.1 Problem Domain Analysis

4. 2 Class Diagram Development

4. 3 Formal Specification Development

4. 4 Iterative Analysis

5 RESULTS AND ANALYSIS

5.1 Structure

5. 2 Behavior

6 CONCLUSION

6.1 Work Accomplished

v

6.2 Outcomes Achieved

6.3 Future Work

APPENDICES

REFERENCES

vi

ABSTRACT

This thesis uses formal specification techniques to analyze and model a microgrid. A

microgrid is a small, local electrical grid, often supplied by a single generator, that can

connect to the larger electrical grid, but can also disconnect from it, going into “island

mode.” Thanks to the growth in renewable energy, microgrids represent a growing

segment of the electrical power generation domain. And like any member of the domain

they are safety-critical systems, meaning that even a small mistake in their

implementation risks damage to life and property.

Formal specification is a way to abrogate the risks of safety critical systems by

ensuring that the system under consideration is fully described, modeled, and analyzed

prior to implementation, and the description and model are robust and error-free.

However, at present there is no established approach to the use of formal specification

techniques of microgrid systems. This thesis proposes a specification that can serve as a

foundation for future work in the microgrid domain as well as an aid to communication

about microgrids. The work uses Unified Modeling Language (UML) graphical notation

and an accompanying Object Constraint Language (OCL) formal specification. The

model transformation accomplished through the use of Iterative Development techniques

is outlined in detail to serve as a guide to future researchers.

1

I. INTRODUCTION

1.1 Problem Definition:

A microgrid is a localized interconnected group of power consumers (otherwise known as

loads) and power producers that can operate in grid-connected or islanded mode. In grid-

connected mode a microgrid is connected to a larger electrical grid (sometimes referred to as a

host grid) and can exchange power with it as needed. In islanded mode the microgrid is cut off

from the larger grid and handles its own power needs [1] [2].

Microgrids are made up of decentralized, modular systems known as Distributed Energy

Resources (DERs). DERs are small-scale power generation sources located close to their loads

that can service loads individually or have their generated power aggregated to serve the grid as a

whole [3]. DERs include renewable energy sources such as photovoltaic cells and wind turbines

[2] as well as small non-renewable generators, typically powered by diesel or gas [1]. The

definition of DERs also includes localized power storage, which typically takes the form of

chemical batteries, but can also take the form of pumped hydro [4], electrical vehicles that double

as power storage [5], and Superconducting Magnetic Energy Storage [6].

Microgrids have become increasingly prevalent in the past several years [7]. This is in part due

to the increased popularity and effectiveness of renewable energy sources, including rooftop solar

panels and wind microturbines, and in part due to the advancements in computing, networking,

and communication that allow a distributed grid to be controlled in a flexible and decentralized

way [7][8]. There has been a corresponding effort to develop and improve microgrid control

schemes. However, there is currently no agreed-upon standard for modeling these schemes, and

efforts frequently resort to an ad-hoc approach. To help establish a shared understanding of

2

microgrid characteristics and facilitate communication between researchers, it’s necessary to

create a formal specification of a microgrid.

A formal specification is an expression of a system’s properties made in a formal language. A

formal language is one whose grammar, vocabulary, and syntax follow a set of clear and

unambiguous rules. Statements made in a formal language have a single unambiguous meaning,

as opposed to statements in a natural language, which may be imprecise or open to

misinterpretation [9]. Therefore, a formal specification can be treated as a mathematical entity and

have its correctness and self-consistency verified via mathematical methods, including automated

methods. A formal specification is not a full implementation but is instead a statement of a

system’s requirements [9] [10].

The main advantage of a formal model over an informal one is that a formal model is

verifiable, meaning that it can be checked for completeness, correctness, and consistency. To be

complete, a model has to encompass all relevant concerns about the system. To be correct, a

model has to fulfill the requirements it lays out, particularly by making sure that any input given

to the system will produce the desired output. To be consistent, a model has to avoid contradicting

itself – it should be possible to fulfill all the requirements it lists at the same time, but there should

not be multiple ways of doing so [9][10][11].

1.2 Significance of the Work:

A microgrid is a safety-critical system, meaning that any malfunction can result in serious

harm to people or property. At the same time microgrids have properties that make ensuring

perfect functioning more challenging. Microgrids are heterogeneous, meaning that a designer has

to account for different types of structures and components. Microgrids are also changeable,

meaning they can have components added or subtracted after the system’s initial creation. Taken

3

together, these properties mean that when a microgrid is designed and built, every measure must

be taken to minimize error. This makes a formal model highly desirable, because a formal model

can be checked for errors and inconsistencies at design time, preventing costly adjustments or

costlier failures later in the process [11].

Formal models can also be used to communicate information about the microgrid with more

precision than natural language or ad-hoc models, but without the complexity of a full

implementation. Communicating precisely and thoroughly about technical subjects is difficult. As

seen in the Methodology section, this issue came up in the course of this project. In the initial

exchange of information important details were omitted or left unclear, and the use of formal

modeling techniques helped ensure all relevant information was transmitted completely and

correctly.

The goal of the project was to create a formal model that can serve as a foundation for future

formal microgrid models. Therefore, the model had to have two characteristics. First, it had to

rigorously define the basic components of a microgrid in a thorough and error-free manner.

Second, it had to be extensible – easy to adapt for specific implementations with different

components, structures, and goals. In accomplishing that, the formal specification in this thesis

can become an important milestone toward future research.

1.3 Methodology:

My interest in microgrids began during my survey on Multi Agent Systems (outlined in more

detail in the Background section). Microgrids came up as one of several systems that benefited

from decentralized control and I focused on that subject, researching the Multi Agent approach to

microgrid and multi-microgrid control. After observing the different ways microgrids were

presented in the papers, I found that none of the models were truly formal and most were made

4

with a specific implementation in mind. For reasons outlined in the previous section, I decided to

pursue the creation of a formal model.

When the background reading phase of my research was finished, I moved onto the practical

task of modeling a single microgrid. In accordance with the principles of formal modeling, my

first task was requirements elicitation – talking to an engineering team that works with microgrids

to find out what aspects of a microgrid were considered important by them. Then I followed a

process of iterative development, creating and refining a model with feedback at every step of the

way. As is usual during requirements elicitation, the first pass-through did not capture the domain

accurately. Attributes deemed important in informal discussion would turn out not to matter as the

model became more defined, and on the other hand the process of formalization revealed

variables that needed to be included in the model but were initially missed. This difficulty in

communicating microgrid-related concepts between professionals with knowledge of the subject

is further proof of the importance of a shared model.

1.4 Scope of the Work:

The scope of the model is deliberately limited to a single microgrid. I modeled a relatively

small microgrid consisting of an arbitrary number of wind turbines and solar cells connected to an

arbitrary number of loads. The components of the microgrid along with all of their potentially

important attributes were outlined in a Universal Modeling Language class diagram and defined

in a separate document. The desired behavior of the components was described by a set of rules

and modeled by a flowchart diagram. The whole of the system was then formally modeled using

the Object Constraint Language in the UML-based Specification Environment. Included in the

thesis is a description of how each part of the model was constructed and of my application of the

iterative development process and how it helped refine the model.

5

1.5 Expected Results:

My research was expected to define the structure of the microgrid in a formal, unambiguous

way and provide the initial set of constraints – mostly to outline scenarios that are either

physically impossible or universally dangerous. I also expected to catalogue and describe useful

attributes and operation, and to provide an example control scheme. The end goal was a proof of

concept and a template for others to build on.

1.6 Thesis Layout:

The rest of the paper is as follows: Section II is a description of the problem domain. Section

III is the literature review. Section IV is a description of the methodology used for the research

and modeling. Section V describes the results of applying the methodology. Section VI deals

with the conclusions and potential future work.

6

II. BACKGROUND

2.1 Problem Domain:

2.1.1 Microgrids:

As outlined in the Introduction section, a microgrid is a small collection of loads and

Distributed Energy Resources that can function in grid-connected or islanded mode. Microgrids

are becoming an increasingly important part of the energy generation infrastructure because they

allow for local control of distributed energy generation, increasing the grid’s overall flexibility

[12]. This decentralized approach makes the larger grid more robust by avoiding a single point of

failure, since, in case of a breakdown in the host grid, microgrids are able to continue functioning

independently and can be called on to help stabilize the host grid [5]. Microgrids can help boost

the efficiency of the power generating process by adjusting for local conditions in a way a

centrally controlled grid cannot [12]. Microgrids are also attractive from a financial standpoint

and are typically installed as a cost-saving measure [13].

Microgrids present special challengers for planners. In a classical grid the flow of power is

unidirectional – it’s generated at a central location and distributed to consumers. Microgrids,

however, feature bi-directional power flow, meaning that depending on the circumstances they

may accept power from the host grid or return power to the host grid. That means the structure of

a multi-microgrid is necessarily more complex than that of the classical grid [5].

Microgrids are heterogeneous, meaning that they are made up of different components, and the

exact components of any two microgrids can differ significantly. Microgrids vary in size, with the

smallest being the size of a single household and the largest the size of a university campus.

Microgrids vary in their power generation mix, particularly the degree to which they incorporate

fossil fuel based power. The earliest microgrids were primarily fossil fuel based, but modern

7

microgrids are predominantly based on renewable energy [12]. A typical microgrid is owned by a

single stakeholder, but there are real world examples of microgrids that have multiple

stakeholders with competing interests [14].

Microgrids also vary in terms of their control logic, particularly the degree of centralization

within the microgrid. Microgrid control schemes can be broadly broken down into centralized

(meaning that the microgrid as a whole is controlled by a single entity), hierarchical (meaning that

a single entity exerts overall control but entities “below” it make some independent decisions),

and distributed (meaning that there is no central control and individual entities make all the

decisions through consensus) [15].

Microgrids are variable – a microgrid can choose to disconnect from the main grid, can have

its component parts changed, and is likely to experience fluctuation in its ability to supply power

due to small size and a tendency to rely on environment-dependent power sources [5].

Microgrids are autonomous, meaning that they make their own decisions on behalf of their

individual owners instead of taking orders from a central authority. The goals microgrids pursue

vary greatly, but common priorities include the following: maximization of stability within the

microgrid [2]; tracking the physical flow of the electricity within the microgrid [3]; setting up an

internal market within the microgrid [14]; performing a simulation of a microgrid’s activity at

different times of day [16].

While the model described in this thesis is meant can be adapted to different microgrids, it was

created with a typical residential microgrid in mind. This means the following assumptions were

made: a single stakeholder maintains ownership of all electricity generators and loads within the

microgrid, there are no competing interests within the microgrid itself, and all components will

serve the microgrid owner’s goals cooperatively; the microgrid contains only renewable energy

8

sources; the microgrid uses chemical batteries for power storage; the microgrid has ready access

to the host grid and is unlikely to be forced into islanded mode; the microgrid can be of any size

and can have components added and subtracted as necessary.

2.1.2 Multi-Agent Systems:

As outlined above, microgrids are distributed, modular, and complex systems. These

characteristics make centralized control inefficient and prone to failure [15]. To handle microgrids

and multi-microgrids, a control system must be able to deal with a distributed system that gives

individual entities local control while coordinating collective action in a way that avoids a single

point of failure and provides needed flexibility. One way of handling these challenges is a Multi-

Agent System (MAS) [2].

A Multi-Agent System is a collection of interacting, autonomous entities which work in

dynamic and uncertain environments to accomplish some goal. The agents are defined by three

characteristics:

Autonomy, meaning that each agent has the ability to act independently, free from external

intervention. Agents have their own goals, their own rules, and their own awareness of the

environment independent of central control [2].

Situatedness/Locality, meaning that each agent is able to receive local data from its

environment, but does not have a global view of the system. It can also refer to an agent’s ability

to modify its immediate environment [2].

Flexibility, which means each agent has the ability to react to its environment in a timely

manner, take initiative to achieve its goals, and interact with other agents and humans [2].

The basic principle of MAS is that decisions are made at the lowest possible level. This

approach prevents the computational complexity of a system from growing exponentially, speeds

9

up system’s response time, and prevents communication bloat [11]. The use of MAS makes

systems more robust because it means there isn’t a single component whose failure can cause the

whole system to fail. In modular systems MAS makes inserting components into the system or

subtracting them from the system simpler [11]. In systems composed of agents that have differing

priorities or that are competing for the same resources, MAS provides coordination, allowing the

goals of the overall system to be achieved [2]. These characteristics have led MAS to see

widespread use in microgrid control systems.

While the use of agents in the structure of a microgrid can take many forms, this thesis makes

several assumptions. First, I chose to use the two types of agents described by Dimeas, et al [17]:

cognitive and reactive agents. Unlike reactive agents, cognitive agents are agents capable of

advanced communication that possess memory. I made the assumption that each cognitive agent

possesses an internal database whereas a reactive agent does not and that cognitive agents are

capable of making sophisticated decisions and holding negotiations with each other while reactive

agents are capable of performing specific tasks in an uncertain and dynamic environment.

Second, I assumed agents follow the principle of hardware encapsulation – which is to say that

agents overlap individual pieces of hardware to the greatest degree possible. This reflects the

aforementioned principle of locality, ensuring that most agents don’t need to know the overall

state of the system and enjoy low latency. It is assumed that each piece of equipment is overseen

by a cognitive agent.

Third, I assumed a two-tier hierarchical architecture with a central Microgrid Control Agent

that oversees all communication between different parts of the microgrid, receives inputs from all

of them, and is ultimately responsible for load balancing (making sure that electrical power is

10

available to the users on request). This appears to be the most common implementation within

microgrid-related papers, and covers multiple use-cases.

2.1.3 Formal Modeling:

A formal model is a precise description of the system being designed, including components,

relationship between components, and behavior. Formal modeling creates mathematically

rigorous descriptions of the system that can be validated with replicable results [9].

One function of formal modeling is to increase precision. By removing ambiguity and

allowing automated validation, formal models remove errors and other unintended behaviors from

the process. This increases the safety and robustness of the system being designed. By identifying

problems at design time, formal modeling prevents them from appearing at later stages, when

they’re more costly to resolve [18].

The other function of formal modeling is to increase discipline. This means that the process of

introducing formality forces a reevaluation of the system. It tells the designer whether the

requirements have been met. If they have not, the model may need to be adjusted – or, if the result

produced is reasonable, the requirements may need to be adjusted instead. Formal modeling

serves as a way to reason about the system and to guide further development of the system [18].

Formal specification can be used to define functional and non-functional requirements.

Functional requirements deal directly with the system’s behavior; in most basic terms, functional

requirements specify what a system should do. Functional requirements define the rules the

system must use to transform inputs into outputs, and therefore specify the system’s command

logic.

Non-functional requirements deal with the users’ expectations of a system and define

acceptable and unacceptable states for the system to be in. In basic terms, non-functional

11

requirements specify how a system should behave. One way of expressing non-functional

requirements is to make use of quality attributes, which are a set of desirable properties of a

system used to indicate which of these properties are most important to the system being

considered. The following was the result of describing the non-functional properties of a

microgrid in terms of quality attributes:

Similar to other power generation and distribution systems, microgrids are required to

prioritize Safety and Security, because of the high risk posed by a malfunctioning electrical

component. The microgrid’s task of load balancing requires high Availability, to make sure

consumers have access to power when they need it. A microgrid must be Scalable, because

microgrids frequently have components added to or subtracted from them. It must be Resilient,

able to easily deal with hardware and software faults, to prevent interruptions in the service [2]

[19] [20].

In this thesis, formal specification was created by supplementing UML diagrams with an OCL

specification, as outlined below.

2.2 Solution Domain:

2.2.1 Unified Modeling Language (UML):

Unified Modeling Language is a graphical modeling language developed to standardize the

visual depiction of a software intensive system. Developed in mid 1990s to combat standards

proliferation, it was officially adopted by the Object Management Group and has since become

the industry standard for graphical modeling notation. UML is used to visualize systems, specify

requirements, provide a blueprint for construction, and document decisions throughout the

development process [21].

12

UML is semantically rich, using a small set of notational elements to model a broad range of

systems in a variety of problem domains. This also allows UML to provide complementary,

interlocking models of a system, allowing different aspects to be highlighted based on a

developer’s current needs. UML also has the advantage of being comprehensible, allowing its

diagrams to be understood without prior training, which makes it an important tool for

communicating with clients [21].

UML is an Object Oriented programming language and works best on systems made up of

self-contained components. This approach has the advantage of making systems more modular,

allowing them to be changed or expanded and of allowing for encapsulation, which makes each

component more secure by protecting its data from unnecessary contact [21].

UML can be used to create several types of diagrams, depending on what aspect of the system

needs to be highlighted. In this research a class diagram shown in Appendix 1 was used to

visualize the structure of the microgrid. Classes in a class diagram, also known as objects,

represent the major entities within the system. The class diagram also shows the relationships

between these objects. At the next step, following the requirements elicitation process, each object

was assigned a set of attributes – properties important to its functioning. Finally, during the work

with the Object Constraint Language outlined below, each object had its associated operations

listed, outlining the actions it can perform. Notably, while operations are listed within the class

diagram, they are not fully described within UML. That description is done in Object Constraint

Language, as seen in the next section. Figure 1 shows an example object with all associated

attributes and operations.

13

Figure 1: UML Object with associated attributes and operations

In addition, a flowchart diagram was used to help visualize the microgrid’s behavior,

demonstrating the microgrid’s control flow. Figure 2 shows a sample flowchart diagram.

Figure 2: Sample Flowchart

2.2.2 Object Constraint Language (OCL):

Object Constraint Language (OCL) is a formal declarative language originally created to

supplement UML. Whereas a UML diagram can be used to show the basic structure of some

14

system (in this thesis a microgrid), OCL can help define that system in a rigorous way. An OCL

file takes the form of a collection of formal expressions which are easy to understand and less

complex than a true programming language, but lack the ambiguity of natural language and can

be checked for correctness and lack of contradictions [22].

OCL expressions are used to supplement UML in two significant ways. First, OCL expressions

are used to create constraints. Constraints are restrictions on attributes that must always hold true.

They can be used to limit the value of an attribute to a range that’s safe and useful and outline

relationships between objects within the system. Constraints are used to model the Non-

Functional Requirements, as explained in Section 2.1.3.

context Generator

inv:

Cost > 0

inv:

GeneratorOutput >= 0

inv:

Voltage >= 118 and Voltage <= 122

GeneratorKind = 'Solar' or GeneratorKind = 'Wind'

Figure 3: OCL Constraints

The OCL fragment seen in Figure 3 shows the constraints on the Generator class. The

constraints establish that neither the cost of operating the generator nor its output can be negative

(ruling out physically impossible scenarios), that the voltage associated with a generator cannot be

lower than 118 volts or higher than 122 volts (ruling out unsafe scenarios), and that all generators

must be either solar panels or wind turbines (ruling out scenarios that don’t fit client preferences).

Second, OCL expressions are used to define operations and therefore specify the expected

behavior of the system. Through the use of OCL a designer can specify the ways objects within

the system gain information about themselves, their environment, and each other, the way the

system makes decisions, and the expected effect of those decisions. Operations are used to model

Functional Requirements, as explained in Section 2.1.3.

15

context Microgrid::changeOperationalMode()

post changePost:

if OperationalMode = 'Islanded'

then OperationalMode = 'GridConnected'

else OperationalMode = 'Islanded'

endif

Figure 4: OCL Operation

The OCL fragment in Figure 4 defines the operation that changes the microgrid’s operational

mode, either connecting to the main grid to enter Grid Connected mode or disconnecting to enter

Islanded mode. Because it’s a specification and not a full implementation, the model doesn’t go

into detail on how the connection/disconnection is to be achieved, only establishing that it should

exist.

In this thesis OCL was used to ensure the safety of the microgrid by specifying the allowable

range of key attributes, including frequency and voltage. OCL was also used to define the

system’s behavior, including the query operations through which attribute values are checked by

appropriate objects, and the non-query operations through which values and states are changed.

2.2.3 UML-based Specification Environment (USE)

The USE tool is used for model transformation and validation of UML/OCL models. The core

functionality of USE is to be an interpreter for UML/OCL, allowing developers to analyze model

structure and behavior, check for errors, model scenarios, and make quick changes to the model

[23].

USE notation supplements OCL by translating UML into textual form. As an example, the

fragment of USE notation seen in Figure 5, defines the Solar Panel object present in the UML

diagram, establishes that it is a subclass of the Generator class, and lists its attributes, along with

an associated data type for each attribute. In this form UML diagrams can be checked for

completeness, correctness, and consistency, eliminating ambiguity and forcing all objects and

16

relationships to conform to proper forms. Combined with traditional OCL notation, this allows for

automatic error checking and scope checking of constraints and invariants [23].

class SolarPanel < Generator

attributes

 Tilt: Real

 InverterEfficiency: Real

 SolarIrradiance: Real

Figure 5: USE object definition

USE specifications can also be used to directly generate UML diagrams, as seen in Figure 6.

This aids in the process of iterative development, as described in section 2.2.4, by allowing the

developer to easily switch between the OCL/USE specification the UML model in order to make

corrections and updates [23].

Figure 6: USE in action

17

In my research USE was an invaluable error-checking tool. It allowed me to ensure the

correctness of the OCL syntax and the model behavior, and by extension to modify the model to

be able to carry out the needed operations.

2.2.4 Iterative Development:

Iterative Development is a design philosophy that treats software development as a cyclical

process. Instead of completing as much of each development phase as possible before moving on

to the next, the developer is encouraged to complete a partial, prototypical model in the early

phases. That model is then updated with information gained in subsequent phases and models

created in those phases are then modified based on that model [24]. This philosophy was followed

in this research. The process of developing the UML diagram and its OCL specification was fully

bi-directional. While a UML diagram was developed first, the creation of the OCL specification

supplemented by USE revealed a number of flaws that caused the UML diagram to be changed.

In turn, when the UML diagram was presented to the engineering team with accompanying

explanations, new insights were gathered, requiring further changes to be made to both UML and

OCL. This process repeated itself several times, and this iterative development resulted in the

latest model – still not exhaustive, but a more complete description of a microgrid than the initial

attempt.

As an example we look the electrical load – a portion of an electrical system that consumes

electrical power (See Section 5.1 for more information and Appendix A for definitions of terms).

During the initial requirements elicitation, it was decided that the load would be an attribute of the

Microgrid class, representing the total demand for electricity in the microgrid. This was its role

in the initial UML diagram. However, during OCL modeling, the question of what, if any, actions

should be associated with the load came up. A new round of requirements elicitation showed that

18

it was desirable that some loads should be able to temporarily shut down to conserve power. At

this point the Load class was created, with each instance of the class representing a separate

electricity-using object. To indicate which loads should have the option to shut down and which

should keep going no matter what, the concept of critical and non-critical loads was introduced,

requiring changes to the UML diagram and the OCL specification. Initially, Critical Load and

Non-Critical Load were introduced as subclasses of Load, to make them easier to view in the

UML diagram. But during the specification of the operations associated with shutting down non-

critical loads, it was established that control flow worked better if the criticality of the load was an

attribute instead, so another change was made, again requiring changes in UML and OCL. These

changes showcase the Iterative Development process.

19

III. LITERATURE REVIEW

3.1) Active Power Management in Multiple Microgrids Using a Multi-Agent System with

JADE [1]: This paper deals with the problem of maintaining and verifying an active power

balance within the microgrid, which is the process of ensuring grid stability by balancing power

generation against load demand. The authors model and simulate a multi-microgrid consisting of

three microgrids connected to a main grid. Each microgrid is composed of photovoltaic cells, a

diesel generator, a battery for power storage, and some loads. Each microgrid also has six inputs

to keep track of: Photovoltaic Power, Battery Power, Diesel Generator Power, Load Active

Power, State of Charge of the Battery, and a Static Switch between Grid-connected and Isolated

modes.

At the core of the control algorithm are the two priority queues. The power supply priority:

photovoltaic system, battery system, diesel generator, the grid. And the power delivery priority:

local load, battery charging, grid transaction. These priorities are chosen to maximize stability,

financial, and environmental advantages.

This paper features a specific microgrid model that considers only the attributes that directly

impact its control algorithm. It’s more narrowly focused than my own work, but useful as a way

to verify the results of my requirements elicitation. The priority queues closely match my own

implementation, as outlined in Section 5. Likewise, the paper’s implementation of a Multi-Agent

System uses the same hardware encapsulation assumptions present in my model, with agents

matching specific pieces of hardware. While this work is less formal and less general than my

model, the aforementioned commonalities serve to confirm the assumptions I made when setting

up the basic structure and the functions.

20

My work deals with creating an extensible formal model that can be used to formalize models

like the one presented in this paper. This paper’s model relies on a set of specific parameters and

the control algorithm that causes states to change as specific breakpoints. Its formal description

could be created from my model by narrowing down the list of used parameters and inserting the

breakpoints as invariants. In effect, I’m exploring a more general case than the one presented in

this paper.

3.2) An Autonomous Agent for Reliable Operation of Power Market and Systems Including

Microgrids [14]: This paper discusses the microgrid as a market in which Generator Agents and

Load Agents place bids which are then matched by a Control Agent. This is used in the paper to

minimize the price of electricity production, especially if there is more generator capacity than

demand from loads. It’s also potentially useful for achieving other goals, like minimizing

environmental impact or strain on the equipment. It has potential uses if the microgrid has

multiple stakeholders who have reason to compete.

In the paper’s model a Microgrid Control Agent interacts with Generator Agents and Load

Agents at fifteen minute intervals, collecting projected demand from each load and available

generation and initial price from each generator. The Microgrid Control Agent creates a priority

list based on these inputs and pairs up generators and loads. If total generating capacity isn’t

enough to meet demand, the Microgrid Control Agent interacts with an outside Grid Agent to buy

power. If there’s excess, it interacts to sell power.

Currently my model is focused more on the physical flow of power. While money and the sale

of electricity are part of it, they are not the primary concern. This paper demonstrates a path

through which my model could be altered to focus on the electricity marketplace, perhaps by a

future adopter doing follow-up work.

21

The basic control algorithm described in this paper appears effective at ensuring that demand is

met and the costs are minimized whenever possible. It is, however, light on details. Price is

always discussed in natural language, and the mechanisms of interaction between agents aren’t

explicitly outlined. This isn’t necessarily a negative in a paper of this length, but any follow-up

work on the subject may benefit from formalism, as it would enable the authors to communicate

with more precision.

This paper demonstrates another potential application for my model. While it’s not suitable to

track complex market interactions in its current form, it could be adapted to do so, in which case it

would be

3.3) Decentralised coordinated control of microgrid based on multi-agent system [2]: This

paper proposes and implements a control scheme based on coordinated switching, a strategy for

increasing the security and stability of a system by ensuring that state changes take place in an

optimized and non-disruptive way.

The control scheme is implemented for a specific type of microgrid – one that includes a wind

turbine, a photovoltaic cell, a fuel cell, and a battery. This setup requires the individual microgrid

to ramp the operation of its various components up and down depending on environmental

conditions, performance, and load, all in a way that doesn’t damage the system and optimizes

outcomes for the grid’s owner.

The switching is governed by “security indexes” which describe the safe operating limits of the

system, including voltage, power balance, component capability limit, and mode switching

duration limits. When the security indexes are violated, the system has to immediately switch to a

more optimum mode of operation to prevent a possible fault. It’s desirable to prevent too many

switches, since rapidly switching between modes of operation can damage components.

22

This paper uses a different type of formalism than the one used in my research. It uses

Coloured Petri Nets – a kind of graph that can rigorously define a sequence of actions and

conditions under which these actions must be taken. It’s a better choice for this paper’s subject

than my approach would be because one of OCL’s weaknesses is the lack of native ability to

handle timing. Declaring that two or more events must happen simultaneously is essentially

impossible in unmodified OCL, but possible through the use of Coloured Petri Nets.

3.4) Multi-Agent based Microgrid Coordinated Control [25]: This paper describes an unusual

microgrid: one consisting of a gas turbine, solar and wind power sources, and a hydrogen fuel

cell. The hydrogen fuel cell is meant to remain idle as much as possible and serves as a backup

power source. The gas turbine handles most of the normal demand due to its stability. Because

solar and wind are particularly volatile, their energy is used mostly to run an elecrolyzer which

creates hydrogen for the fuel cell. In this way the combination of the renewable energy sources

and the fuel cell serves as a balancing mechanism to ensure the stability of the power supply.

The paper goes on to explain the nuances of its approach to the control scheme. It begins by

outlining the importance of controlling frequency. The authors choose to maintain frequency

stability by ensuring that the demand and supply are balanced, which is done using a set of

constraints. The model uses a Multi Agent System that mostly follows the principle of hardware

encapsulation, except that it also includes a Database Agent, used to carry out coordinated

dispatch. The control strategy is based on constant exchange of parameter values between all

agents.

Though this paper doesn’t use formal declarative statements, its notation closely approaches

formalism, especially because its most important function – load balancing, and by extension fault

23

prevention – is defined by invariants. It’s useful as an example of an invariant-based control

strategy, and a way to handle frequency and its stability.

This paper is narrower in scope than my own model, but it’s a good example of how an

application of formalism can help to better define a model and of how a formal model could be

adapted to describe a specific type of microgrid.

3.5) Research on multi-agent decision-making model of wind-solar complementary power

generation system [8]: This paper proposes a decision-making model for a microgrid containing

only solar and wind energy sources based on a Multi Agent System. The paper begins by

proposing a model consisting of nine modules and two categories of agents. The first four

modules are: data collecting and processing, control, info management, and data resource

management. Notably, these do not follow the hardware encapsulation principle, but instead the

task encapsulation principle – meaning that agents that perform similar jobs are grouped together

instead. This group of modules is responsible for gathering and remembering data, analyzing it,

and making decisions. The other five modules are: wind energy power generation, solar energy

power generation, inverter, storage battery, and load. The paper classifies them as “field-level

agent modules” and they’re responsible for executing the decisions made by the higher-level

modules.

Next, the paper goes outlines the parameters of its model. Unlike other models described

above, which tend to keep their parameters simple, this paper pursues an exhaustive definition of

its components. Four running modes are presented, each one designed to best take advantage of

environmental conditions. Finally, the paper outlines its decision making process through a series

of state charts.

24

This paper caught my attention because just like my current model it focuses on wind and solar

power. The task oriented module system is too distinct from the object oriented analysis I employ

to be directly useful at current time. However, the exhaustive list of parameters gave me the

opportunity to compare and contrast the parameters I obtained through requirements elicitation

and thereafter decide whether each parameter deserved to be part of the model and whether I

should adopt one or more of the parameters found within this paper. The decision outline will

prove useful in future work as an example of a more complex control mechanism that better takes

advantage of the attributes I’ve added to the model.

While the paper raises interesting ideas, it’s light on detail. It lists parameters but does not take

time to explain what role each one plays, nor even how they’re quantified. The Data Resource

module includes both a knowledge base and a database, but neither of those is mentioned again.

The process through which the decision making agent interacts with the executive agent is also

unexplained.

For the above reasons, I believe that this paper could benefit from formalism so the concepts it

brings up can be better described and communicated. My model could potentially be used as a

template to create a formal version of this paper’s model, though this would require some follow-

up work.

25

IV. METHODOLOGY

4.1 Problem Domain Analysis

Problem Domain Analysis is the process of defining the problem to be solved and what will

need to be done to solve it – the requirements and the functionality of the system to be modeled

[26]. The first step of the analysis is establishing basic familiarity with the field by studying the

literature. I read the papers outlined in the Literature Review section as well as the additional ones

cited in the bibliography to gain understanding of microgrid structure, the basic approaches to

describing a microgrid, and the relevant terminology.

Once the basic research was completed, I moved on to the requirements elicitation.

Requirements elicitation is the process of talking to the stakeholders of a system to gather

information and understand what aspects of the system they find most important. For this project,

the stakeholders were an engineering team of Dr. Hossein Salehfar and his graduate student. Over

the course of several sessions we established a shared understanding of what the engineering team

needed from a model. These discussions formed the base for later work. The first sessions were

used to establish a shared understanding of the basic components of a microgrid and to decide

which of their attributes belonged in the problem domain. Once this was established, a

Vocabulary document was created to hold a definition for each object and attribute. The shared

vocabulary allowed us to avoid misunderstandings and allowed for a greater understanding of

each proposed attribute.

Some basic decisions were made at this time. First, the model would be object-oriented. It was

believed that this would bring the model in line with modern software development practices. The

model would also be suitable for describing implementation of Multi Agent Systems, as described

above. This was of great interest to both myself and the engineering team for the purposes of

26

future research and fit with the developing paradigm of microgrid control. Second, the model

would be focused on the logical layer rather than the physical one, tracking the flow of

information and commands but not the physical exchange of power. Third, the only power storage

considered would be chemical batteries, and the only generators considered would be solar cells

and wind turbines. While some microgrid models include a non-renewable generator as a backup

power source, one was consciously eschewed in this case.

27

4.2 Class Diagram Development

Figure 7: Final Class Diagram

Figure 7 shows the final class diagram of this project. A class diagram is a graphical

representation of the model created using the Unified Modeling Language, as outlined in Section

2.2.1. Its purpose is to communicate information about the system in a way that’s visual and

therefore easier to understand than pure text. In particular, it helps to visualize the relationship

between different parts of the system.

28

In addition, the process of developing a class diagram can serve as a way to improve and

correct the model. To illustrate, Figure 8 shows the initial state of the class diagram for this

project:

Figure 8: Early Class Diagram

At this stage of the project I had established an initial set of classes and their respective

attributes. In my diagram, a class represents an entity with agency. Therefore, a generator is

assigned a class, but an electrical bus isn’t. As seen in the initial class diagram, Load was not

considered a class at this point because initial requirements elicitation indicated that no decisions

would be made in regard to the Load itself.

29

The next step in developing the class diagram was establishing the relationships between the

classes. On a class diagram, the type of relationship is indicated by the connection between them.

In my model (As seen in Figure 7 and the appendixes), the connection between the Main Grid

and Microgrid is a simple association, which denotes a relationship between equals. The

connection between Load, Generator, or Battery and the Microgrid is an aggregation, meaning

that the Microgrid is in effect a collection of the other classes. The relationship between Solar

Panel or Wind Turbine and the Generator is inheritance, which shows that they’re subclasses

of Generator and not classes in their own right.

At one point during the development a reflexive relationship was added to the Microgrid.

This would have been used to denote a direct connection between microgrids that didn’t use the

main grid as an intermediary. This was a project considered by the engineering team, but due to

lack of concrete data and time pressures this relationship was cut from the model.

4.3 Formal Specification Development

At this stage of the project I began the development of a formal specification document to

complement the class diagram. A class diagram is useful for describing the structure of a system,

but it cannot express all relevant information about a model. Formal specification can add details

about how the system functions that increase the model’s security, reliability, and usability, and

open it up to validation. In addition, formal specification allows for clearer communication with

the model’s stakeholders and helps further the model’s development. As outlined in Sections 2.2.2

and 2.2.3, I used Object Constraint Language (OCL) in conjunction with the UML-based

Specification Environment (USE) to create the formal specification. OCL was chosen due to its

object-oriented nature, synergy with UML, and the fact that its statements are easy to understand

30

even for those with no background. USE was chosen for its ability to serve as an interpreter, give

textual form to UML objects, and do automatic error checking.

The first step in creating the specification was translating the existing classes and attributes

from the class diagram to USE notation. As seen in Figure 9, the structures and relationships that

make up a UML diagram have direct equivalents in USE.

abstract class Load

attributes

 LoadID: String

 LoadAmount: Real

 IsCritical: Boolean

 LoadMode: String

operations

 getLoadAmount() : Real = LoadAmount

end
Figure 9: USE Class

The creation of the textual notation was important because it forced the model to become

complete and consistent. UML allows for placeholder attributes with no data types and

relationships without defined roles or multiplicity. USE ensures that all of these are present before

it validates the model, meaning that by the time a model has been validated by USE, it is free of

errors and can be safely expanded.

The next step is the creation of constraints, using OCL. A constraint is an invariant statement

that must hold true at every system initialization – in other words, a condition or restriction built

into the model. Some constraints are based on logical or physical limitations. For example, “The

capacity of a battery cannot be less than zero.” Other constraints are created for safety reasons.

For example, “the frequency of the microgrid must be between 59.98 and 60.02 Hertz.” Others

may be created for security or usability reasons, such as “the ID assigned to a generator must be

unique.” These constraints can be seen in Figure 10.

context Microgrid

-- All IDs must be unique

inv:

self.generator->forAll(a, b | a.GeneratorID <> b.GeneratorID)

31

inv:

self.battery->forAll(a, b | a.BatteryID <> b.BatteryID)

inv:

self.load->forAll(a, b | a.LoadID <> b.LoadID)

-- Frequency Must be within a safe range

inv:

 Frequency > 59.98 and Frequency < 60.02

inv:

Price > 0

inv:

OperationalMode = 'Islanded' or OperationalMode = 'GridConnected'
Figure 10: Constraint Examples

An operation is an action that a class can take. Operations are present in the class diagram, but

only as dummy values. What they actually do must be explained elsewhere, and an OCL

specification provides a way to do it.

Operations break down into two kinds. The first are query operations. These are operations

that, when given appropriate parameters, return information about the current state of the system

to the user. They’re used to model the way the system gathers information about itself and its

surroundings and the way different parts of the system communicate. Examples of query

operation are seen in Figure 11.

 getGeneratorVoltage(): Bag(Real) = self.generator.Voltage

 getGeneratorOutput(): Bag(Real) = self.generator.GeneratorOutput

 getTotalGeneratorOutput(): Real = self.generator.GeneratorOutput->sum()
Figure 11: Query Operation Examples

 In my model an object is generally allowed to query itself and the Microgrid may query other

objects, but other objects are unable to directly query each other. This represents a hierarchical

model in which all communication and commands flow through a single agent but subordinate

agents are allowed to deal with themselves and their environment.

The other type of operation makes changes to the state of the system. Since the specification

isn’t meant to be a full implementation, it’s not desirable to model every possible action. Thus, for

example, the way the system updates each individual value isn’t modeled. Instead the model

shows major changes in the system’s functioning, specifically the way it decides whether to sell

32

or buy power, charge or discharge batteries, and ramp power generation up or down. This is

discussed in more detail in Section 5.2.

4.4 Iterative Development

As explained in Section 2.2.4., my research followed the Iterative Development design

philosophy. I began with a provisional model based on the results of requirements elicitation. At

that time, it wasn’t a true class diagram, only a placeholder identifying the basic parts of the

microgrid and the properties considered important by the engineering team. The development of

this placeholder model into the initial class diagram and the concurrent development of the

Vocabulary document was the first major iteration.

Figure 12: Placeholder Model

The placeholder model seen in Figure 12 was constructed from answers to the question “what

matters in a microgrid”; at each subsequent meeting a new question was discussed, using the

information gained in previous meetings as a base. The next question to be answered was “how

can these attributes be quantified?” For most attributes this meant assigning a data type on the

33

class diagram and a metric unit in the Vocabulary. Other, ill-defined attributes were changed or

replaced when it became apparent that they could not be quantified. For example, the Battery

class had proposed attributes like Life Cycle, Temperature Dependence, and Ability to

Deep Discharge which turned out to be too difficult to express using units and were therefore

cut.

The next question addressed was “what should the microgrid do?” At this point I was looking

for basic functionality and not a full set of operations. It was necessary to determine what concrete

actions each object within the microgrid could take; how the system would decide when to take

these actions was not yet a concern. At the same time the question of how the system’s command

and communication logic should be handled. It was decided that it should be handled primarily by

the Microgrid class and other classes should not be able to communicate directly with each other.

In preparation for the construction of the formal specification, I created an informal list of

desirable limits. In discussion it was decided that wherever there was room for doubt, limits

would be left open-ended. For example, the Turbine Height attribute doesn’t have a maximum

even though there are realistic limits to the height of a given turbine. While a specific microgrid

may limit the height of a turbine – it can even specify that all turbines should be the same size,

with only a very small tolerance for variance – it was decided that it wasn’t desirable that this

extensible model should make that limitation.

At this point the class diagram was properly formatted and was closer to its final form, but it

still contained errors. The Load was not a class at this point. Attributes necessary to denote system

state didn’t exist. The Microgrid class had a reflexive relationship with itself, denoting a

proposition that microgrids should be able to directly interact with each other in a way different

from their interactions with the Main Grid. Every object had its own Voltage and Frequency

34

rating. These aspects of the model, among others, would change with the creation of the formal

specification, which represented the next major iteration.

 As shown in Section 2.3, the first step of creating an OCL specification was translating the

current state of the Class Diagram into OCL. During this process the ID attributes were added to

each object when formalizing the relations between them showed that it was impossible to address

an individual object in then-current state.

Then next step was formalizing the informal list of constraints. During this process the Betz

Limit was removed from the list of Wind Turbine attributes. It was inserted into the class

diagram during the discussion because it was considered important to the functioning of a wind

turbine, but the process of creating constraints showed that it wasn’t free to vary. Likewise, it was

clarified that while each Battery and Generator would have to maintain their own voltage, only

the Microgrid as a whole had to limit electrical frequency.

The creation of query operations established the communication logic of the microgrid. It also

required further changes in the model, including the addition of the GeneratorKind attribute to

the Generator class to enable the Microgrid to query its subclasses. When creating the class

diagram I believed that setting Wind Turbine and Solar Panel as subclasses of Generator

would be sufficient, but experimentation with OCL showed that wasn’t true. While the class

diagram already held placeholder operations for query operations, the process of formally creating

them in OCL showed that the Microgrid class should have different operations for querying

individual objects vs. collecting the totals of certain values (such as total available power output

of all generators).

The construction of non-query actions, discussed in Section 5.2, required further changes to the

model. As discussed previously, the Load had previously been an attribute of the Microgrid class,

35

serving as a stand-in for total demand. The discussion of decisions a microgrid may have to make

required splitting it off into its own class because the decision was made that in certain situations

a load may have to be temporarily suspended, which meant that each load had to be treated as a

separate object with agency instead of just a value. The Load was initially split into Critical and

Non-Critical subclasses, but further refinement of the model showed that a Boolean variable

was a better way to distinguish between critical and non-critical loads, at least in the context of a

specification. This prompted the creation of further query actions. Several enumerated attributes

were added to model different system states, enabling the results of actions to be shown.

Each revision of the earlier parts of the model prompted alterations to the newer parts. When

attributes were added to the Class Diagram, for example, they had to be inserted into the

Vocabulary document (along with definitions) and into the OCL diagram, which could reveal

previously unquestioned assumptions or errors. Though this mechanism the Iterative

Development cycle enabled the creation of a model that was more complete and correct than

could have been created with a more linear process.

36

V. RESULTS AND ANALYSIS

5.1 Structure

The structure of the Microgrid is outlined in detail in Appendix A (The UML Class Diagram),

Appendix B (The Vocabulary) and Appendix C (The OCL specification). Presented here is a

more thorough explanation of each component part and the history of its iterated development.

Main Grid: a large-scale traditional electrical grid, typically connected to one or more

conventional power stations. It’s not the focus of the model and is therefore represented only in

terms of its relationship with the microgrid, which consists primarily of selling and buying power.

In the model the Main Grid is assumed to be able to supply a functionally limitless amount of

energy and to demand a specific amount of energy, with a set selling and buying price visible to

the microgrid, with the microgrid able to make buying and selling decisions in real time. This is

not universally true. In some grids power consumers and power producers may participate in a

marketplace, bidding for specific amounts of power, leading to an uncertain price. In other grids

the microgrid may have to make commitments over fixed periods of time, only enabling it to

make decisions at fixed intervals. Since these mutually exclusive cases would be impossible to

model in a single specification, the model present in the microgrid was chosen for the sake of

simplicity.

Because the specification in this thesis is focused specifically on the microgrid and not the

multi-microgrid, the Main Grid is deliberately kept as general as possible. As can be seen in

section 4.4 it was not even included in the original placeholder model, though the decision to add

it came early on.

Microgrid: the Microgrid class represents an entity in the overall control of the microgrid. It

takes in information from the other agents, makes decisions, and sends out instructions. The

37

Microgrid governs the relations between Generators, Batteries, and Loads, and thereby

handles load balancing (making sure power demands are filled) and ancillary services (error

checking and keeping voltage, current, and frequency within acceptable tolerances). The

Microgrid is also responsible for negotiating the buying and selling of power with the Main Grid

and establishing or severing the connection to the Main Grid.

Depending on how the microgrid is structured, the Microgrid class may represent a distinct

agent that’s controlling the other parts of the microgrid hierarchically, or it may represent a

mechanism through which other agents reach a consensus.

In the early design on the model consideration was given to creating a separate agent for the

purpose of interacting with the main grid. When the decision was made that the Microgrid agent

would handle all communication within the microgrid, however, it was decided that

communication with the Main Grid should pass through it too.

The possibility of direct microgrid-to-microgrid interaction independent of interactions with

the larger grid was discussed during the requirements elicitation phase. However, this was

dropped later in the process because the concept was too novel and inadequately explored and

would introduce guesswork into the model.

Generator: an entity responsible for producing power. In this model either a photovoltaic cell

or a wind turbine. A single Generator agent may be responsible for one physical device, or for

several devices that aggregate their decisions.

The Generator agent’s main task is to control the intensity of power generation, which may

need to be ramped up or down depending on the load, the environmental conditions, safety

requirements, equipment longevity, or financial considerations. The Generator Agent collects

information about its hardware and its environment through its sensors, and gains relevant

38

information about the state of the microgrid by communicating with other agents, enabling it to

make informed decisions.

The decision to focus on photovoltaic solar panels and wind turbines as the sole considered

power sources was made during the requirements elicitation phase to fit with the needs of the

engineering team. Additional power sources may be added to the model in the future.

The Solar Panel and Wind Turbine subclasses went through alterations that discarded

attributes that are important to the functioning of such generators but not to a microgrid’s decision

making. For example, early in the requirements elicitation phase the decision was made to

consider dirt and snow. When formalizing attributes these were fused into occlusion. But during

the design of the operations it was decided that how much of the panel was covered by occlusion

is not directly relevant to a microgrid’s control logic, only the way it affects solar irradiance.

Since solar irradiance was already an attribute, occlusion was dropped as an attribute at a fairly

late stage.

The Generator class and its subclasses contain attributes which aren’t used by the algorithm

presented in Section 5.2. They were nonetheless kept in the model because they may be used by

other algorithms, fitting with the goal of making the model extensible.

Battery: fulfils a role similar to the Generator Agent, but in respect to power storage. In my

model only chemical batteries are considered, but other means of power storage may be

implemented in future work.

The Battery agent’s primary role is to charge and discharge electrical power. The goals to be

considered when making the decision include maximizing financial benefit, maintaining a store of

power for emergencies, minimizing pollution, and other considerations dictated by the nature of

the microgrid.

39

In the requirements elicitation phase attributes of a battery such as its life cycle, its physical

properties, and its discharge curve were considered important to the functioning of the battery.

However, later in the process it was determined that while these may be important to the

construction of a microgrid, they did not have a direct effect on the microgrid’s decisions.

Load: a section of the microgrid that consumes electrical power. The role of the Load Agent

is to monitor the demand for power, and to coordinate with other parts of the microgrid to make

sure that demand is met.

A critical load is a demand on power that must be filled immediately. A non-critical load is a

demand on power that can be postponed. In the context of a residential microgrid critical loads

encompass typical household applications such as lights and appliances. Jiang, et al [4] provide a

good example of a non-critical load in the form of electrically-pumped water tanks for residential

houses. The tanks provide water to the household, so they must be filled at some point, but the

pumping may take place in off-peak hours without jeopardizing reliability.

The critical/non-critical divide can work differently depending on what the microgrid is

powering. For a hospital microgrid life-support equipment is considered critical, while monitors

and phones are not. For a business microgrid the equipment critical to the organization is critical.

Thus, printers may be considered critical for a printing company, they may be considered non-

critical by a typical office. The ability to distinguish between critical and non-critical loads is a

key part of ensuring a microgrid’s stability.

As outlined in above sections, the Load was originally considered an attribute of the

Microgrid Class, with only the total demand on the microgrid being considered. When it was

decided that a distinction should be made between critical and non-critical loads, Load was split

off into its own class, with each load counting separately.

40

5.2 Behavior

As discussed in above sections, the system’s operations can be broken down into query and

non-query operations. Query operations probe the state of the system without altering it, while

non-query operations alter the state of the system. Thus, query operations represent the work of

the sensors and the communication within the system, while non-query operations represent

concrete actions taken by the system.

As previously outlined (and seen in Appendix B), query operations in this model are laid out in

a way that ensures the Microgrid agent is in control of all communication between other agents.

This creates a single point of failure, losing some of the flexibility and robustness of a fully

distributed framework, but it enables stronger coordination between the system’s various parts.

This set up is suitable for a typical household microgrid.

The Microgrid agent also triggers the non-query operations that adjust the microgrid’s

behavior according to a given microgrid’s goals. The algorithm that governs the behavior of the

modeled algorithm is presented here as an illustrative example. During requirements elicitation, I

was given the following priorities for the behavior of the microgrid:

1. The loads should be serviced whenever possible, including non-critical loads.

2. Charging the batteries always takes priority over selling power.

3. Power should not be purchased to charge batteries.

4. When power is needed for the microgrid, self-generated power should always be used first.

These priorities represent a typical residential microgrid whose stakeholders expect any

interruptions in service to be temporary, consider grid stability to be more important than

41

maximizing profits, and whose non-critical loads aren’t set up in a way that allows them to take

advantage of off-peak hours.

These priorities were then translated into a set of rules shown in Figure 13.

Figure 13: Microgrid Control Flow

This rule set was then implemented in OCL as a set of conditional statements that alter the

state of the system, as seen in Figure 14.

context Microgrid::adjust()

 post adjustment:

 if OperationalMode = 'Islanded' then

 if (getTotalGeneratorOutput()) < (getTotalCriticalLoadAmount()) then

 battery->forAll(BatteryMode = 'Discharging')

 --and load->forAll(l:Load | l.IsCritical = false).LoadMode = 'Off'

 else

 if (getTotalGeneratorOutput()) < (getTotalLoadAmount()) then

 battery->forAll(BatteryMode = 'Discharging')

 else

 if battery->forAll(StateOfCharge = 100) then

 getTotalGeneratorOutput() = getTotalLoadAmount()

42

 else

 battery->forAll(BatteryMode = 'Charging')

 endif

 endif

 endif

 else

 if (getTotalGeneratorOutput()) < (getTotalLoadAmount()) then

 CommerceMode = 'Buying'

 else

 if battery->forAll(StateOfCharge = 100) then

 CommerceMode = 'Selling'

 else

 battery->forAll(BatteryMode = 'Charging')

 endif

 endif

 endif
Figure 14: OCL Operation

The modeled behavior accomplishes the elicited priorities, ensuring that the grid prioritizes

making power available to the consumers, only discharging batteries when the grid is in islanded

mode, and only selling excess power when all current power needs are met and the batteries are

fully charged.

This does not represent the only possible set of goals for a microgrid. For instance, a microgrid

that provides power to safety critical equipment could place even more emphasis on having power

available in case of emergency, while a microgrid that had ample non-critical loads could

prioritize minimizing costs by shutting down non-critical loads or discharging batteries when

power is most expensive. Section 6.3 discusses some possible goal sets to be modeled in future

work.

The model of system behavior modeling went through the same Iterative Development process

as the model of its structure. The initial flow chart was incomplete, and only the development of

the textual specification ensured that all relevant scenarios were covered by the model. Behavior

modeling also forced changes to structure modeling by adding the required state attributes to the

Microgrid, Generator, and Battery classes.

43

The current behavior model is simplified for the sake of comprehensibility. It does not, for

example, deal with the possibility of shutting down one Generator while keeping the rest going.

That possibility was considered during the development, but ultimately eschewed because it

would be too complex to implement in vanilla OCL. Notably, the use of state changes in the

model is partially due to the fact that it’s one of the few available ways to model control flow in

OCL. Future work modeling more complex behavior, particularly time-dependent behavior, may

need to incorporate additional tools, such as the use of one of several OCL-based imperative

languages.

44

VI. CONCLUSION

6.1 Work accomplished

As outlined in the Methodology section, my work went through an iterative process, beginning

with requirements elicitation and continuing with the creation of a class diagram and a formal

specification, with each step increasing the accuracy and detail of the model.

6.2 Outcomes achieved

After undergoing the steps described above, I was able to create a formal model of a microgrid

consisting of a UML class diagram, an OCL specification verified by the application of USE, and

an associated vocabulary document. The model describes a residential microgrid made up of

photovoltaic solar panels, wind turbines, and Critical and Non-Critical Loads, controlled by a

Multi Agent System, with rules governing its behavior based on a priority queue.

The end result is an extensible model that can be used as foundation and template for future

work with formal modeling of microgrids. This model satisfies my initial goals, though the next

section indicates further work that could improve or extend the model.

6.3 Future Work

As noted above, my model is made to be extensible and can therefore be used to pursue

multiple avenues of further research.

A potential first step would be to expand the model to cover more use cases. Non-renewable

power sources would be added to the Generator class, and additional power storage options would

be added to the battery class. The Microgrid class would be expanded with more explicit error

checking. Direct interaction between different microgrids would be added to the model.

To demonstrate the usefulness of formal modeling to the planning stages of an engineering

project, I would like to create a sample microgrid bounded by more specific constraints. As

45

outlined in the Methodology section, the currently existing constraints deal mostly with conditions

that are physically impossible or universally unsafe. The sample microgrid would operate under

more specific restrictions; it would have a maximum number of batteries, a maximum allowable

height for wind turbines, a minimum amount of total provided power and stored power based on

the average load, and other realistic restrictions to be included as part of a potential engineering

project.

I would also like to create several alternative rule sets for control flow to better showcase the

versatility of the model. The rule set presented in this thesis emphasizes stability and keeping the

batteries full when possible. Alternative goals to be explored in the future include: maximizing

financial advantage by selling power during peak hours and buying it during off-peak hours;

ensuring that power storage is full at a specific time (such as the beginning of the night in

predominantly solar-powered microgrid); balancing non-critical loads and power storage;

maximizing environmental benefits; minimizing wear and tear on microgrid components. All of

these rule sets can be modeled using the model in its current state.

46

APPENDICES

47

Appendix A

Vocabulary

Description Notes And Constraints

Data

Type
Units

Classes:

Microgrid A small network of

electricity users with a local

source of supply

Load Consumes electrical power

Battery Any power storage system We are exclusively focused

on chemical batteries

Generator A device that converts

motive power (mechanical

energy) into electrical power

for use in an external circuit

SolarPanel A panel designed to absorb

the sun's rays as a source of

energy

WindTurbine A turbine having a wheel

rotated by the wind to

generate electricity

Attributes:

 MainGrid

GridElectricityPrice Amount of money paid per

watt of electricity bought

from the grid

 Real

GridDemand Amount of electricity the

grid is willing to buy

Due to difference in sizes

may be irrelevant for smaller

microgrids

Real

GridFrequency Nominal frequency of the

oscillations of alternating

current (AC) in an electric

power grid

 Real

48

GridVoltage An electromotive force or

potential difference

expressed in volts

 Real

 Microgrid

MicrogridID A unique ID Must be unique String

Price Amount of money paid per

watt of electricity sold to the

grid

Price for buying and Selling

is different usually utility

power companies will charge

more when buying and will

pay less when buying

electricity

Real Dollar

OperationalMode Grid Connected or Islanded Transition is not being

considered by the current

model

String

Frequency Nominal frequency of the

oscillations of alternating

current (AC) in an electric

power grid

Must be between 60.02 and
59.98 HZ

Real Hertz

 Generator

GeneratorID A unique ID Must be unique String

Voltage An electromotive force or

potential difference

expressed in volts

 Real Volt

RampRate The increase or reduction in

output per minute

 Real Mw/min

Cost Cost of generating electricity In our case cost is sum of

principal plus maintenance

cost

Real Dollars

GeneratorRating The product of the voltage

per phase, the current per

phase, and the number of

phases

 Real kVA

Output Current output of the

generator measured in Watts

 Real Watt

 Load

49

LoadID A unique ID Unique String

LoadAmount Total amount of power

demanded by the load

 Real kWh

IsCritical Whether this load is a critical

load

 Real kWh

LoadMode Whether this load should be

filled

On/Off String

 Battery

BatteryID A unique ID Unique Real

Voltage

An electromotive force or

potential difference

expressed in volts

 Real Volt

Capacity

A measure (typically in

Amp-hr) of the charge stored

by the battery

 Real Amp-hr

Energy density
The amount of energy stored

per unit volume

 Real

Specific energy

density

The amount of energy stored

per unit mass

 Real

Power density
The amount of power per

unit volume

 Real

MaintenanceCost
 Of the battery, not the

electricity

Real Dolalrs

State of Charge
The equivalent of a fuel

gauge

 Real Percent

BatteryMode

Whether the battery is

receiving/Ready to receive

power or putting it out

Charging/Discharging String

 Solar Panel

Tilt Angle of the solar panel Real Degrees

Inverter efficiency

It converts the variable direct

current of a photovoltaic

solar panel into alternating

current

 Real Percent

Time of Day Related to solar irradiance

Temperature Temperature of the air Real Celsius

50

Solar irradiance
How much light is hitting the

solar cell

Determined party by

occlusion

 Wind Turbine

Rotor Size The size of the rotors Real Meters

Temperature Temperature of the air

Blade speed Speed of the blades Real m/s

Air density
How dense air is - varies

with elevation

 Real

Tower Height
The height of the wind

turbine

 Real Meters

Wind speed Wind speed Real

51

Apppendix B

Class Diagram (created in UML)

52

Appendix C

Formal Specification

Created in USE, incorporating USE notation for objects and relationships and OCL notation for

constraints and operations

model Microgrid

-- datatypes

-- enum OperationalMode { GridConnected, Islanded }

-- enum GeneratorKind { Solar, Wind }

-- enum GeneratorMode {On, Off}

-- enum LoadMode {On, Off}

-- enum BatteryMode {Charging, Discharging}

-- enum CommerceMode {Selling, Buying, Neither}

-- datatype Time

-- operations

-- static Time(hour: Integer, minute: Integer, second: Integer) : Time

-- static now() : Time

-- < (time2 : Time) : Boolean

-- > (time2 : Time) : Boolean

-- = (time2 : Time) : Boolean

-- <> (time2 : Time) : Boolean

-- after(when : Time) : Boolean

-- before(when : Time) : Boolean

-- end

-- classes

abstract class Microgrid

attributes

 MicrogridID: Integer

 Price : Real

 OperationalMode : String -- GridConnected, Islanded

 CommerceMode: String -- Selling, Buying, Neither

 Frequency: Real

operations

 adjust()

 getPrice() : Real = Price

 getOperationalMode() : String = OperationalMode

 getFrequency() : Real = Frequency

53

 getGeneratorVoltage(): Bag(Real) = self.generator.Voltage

 getGeneratorOutput(): Bag(Real) = self.generator.GeneratorOutput

 getTotalGeneratorOutput(): Real = self.generator.GeneratorOutput->sum()

 getElectricityPriceMain(): Real = self.maingrid.GridElectricityPrice

 getBatteryVoltage(): Bag(Real) = self.battery.Voltage

 getBatteryCapacity(): Bag(Real) = self.battery.Capacity

 getBatteryStateOfCharge(): Bag(Real) = self.battery.StateOfCharge

 getLoadAmount(): Bag(Real) = self.load.LoadAmount

 getTotalLoadAmount(): Real = self.load.LoadAmount->sum()

 getTotalCriticalLoadAmount(): Real = self.load->select(l:Load | l.IsCritical =

true).LoadAmount->sum()

 getSolarTilt(): Bag(Real) = self.generator->select(g:Generator | g.GeneratorKind =

'Solar').oclAsType(SolarPanel).Tilt

 getSolarIrradiance(): Bag(Real) = self.generator->select(g:Generator | g.GeneratorKind =

'Solar').oclAsType(SolarPanel).SolarIrradiance

 getAirDensity(): Bag(Real) = self.generator->select(g:Generator | g.GeneratorKind =

'Wind').oclAsType(WindTurbine).AirDensity

 getWindSpeed(): Bag(Real) = self.generator->select(g:Generator | g.GeneratorKind =

'Wind').oclAsType(WindTurbine).WindSpeed

 getGridElectricityPrice(): Real = self.maingrid.GridElectricityPrice

 getGridDemand(): Real = self.maingrid.GridDemand

 changeOperationalMode()

 sellToGrid()

 buyFromGrid()

end

abstract class Load

attributes

 LoadID: Integer

 LoadAmount: Real

 IsCritical: Boolean

 LoadMode: String

operations

 getLoadAmount() : Real = LoadAmount

end

abstract class Generator

attributes

 GeneratorID: Integer

 Voltage: Real

 RampRate: Real

 Cost: Real

 GeneratorRating: String

 GeneratorOutput: Real

 GeneratorKind: String

54

 GeneratorMode: String

operations

 getVoltage() : Real = Voltage

 getRampRate() : Real = RampRate

 getCost() : Real = Cost

 getGeneratorRating() : String = GeneratorRating

 getGeneratorOutput() : Real = GeneratorOutput

 RampUp()

 RampDown()

 start()

 stop()

end

class SolarPanel < Generator

attributes

 Tilt: Real

 InverterEfficiency: Real

 Temperature: Real

 SolarIrradiance: Real

 TimeOfDay: Real

operations

 getTilt() : Real = Tilt

 getInverterEfficiency() : Real = InverterEfficiency

 getTemperature() : Real = Temperature

 getSolarIrradiance() : Real = SolarIrradiance

 getTimeOfDay() : Real = TimeOfDay

end

class WindTurbine < Generator

attributes

 RotorSize: Real

 BetzLimit: Real

 Temperature: Real

 BladeSpeed: Real

 PitchAngle: Real

 AirDensity: Real

 WindSpeed: Real

 TowerHeight: Real

operations

 getRotorSize() : Real = RotorSize

 getTemperature() : Real = Temperature

 getBladeSpeed() : Real = BladeSpeed

 getPitchAngle() : Real = PitchAngle

 getAirDensity() : Real = AirDensity

 getWindSpeed() : Real = WindSpeed

 getTowerHeight() : Real = TowerHeight

55

end

class Battery

attributes

 BatteryID: Integer

 Voltage: Real

 Capacity: Real

 EnergyDensity: Real

 SpecificEnergyDensity: Real

 PowerDensity: Real

 MaintenanceCost: Real

 StateOfCharge: Real

 BatteryMode: String

operations

 getVoltage() : Real = Voltage

 getCapacity() : Real = Capacity

 getEnergyDensity() : Real = EnergyDensity

 getSpecificEnergyDensity() : Real = SpecificEnergyDensity

 getPowerDensity() : Real = PowerDensity

 getMaintenanceCost() : Real = MaintenanceCost

 getStateOfCharge() : Real = StateOfCharge

 charge()

 discharge()

end

class MainGrid

attributes

 GridElectricityPrice: Real

 GridDemand: Real

 GridVoltage: Real

 GridFrequency: Real

operations

 getGridElectricityPrice() : Real = GridElectricityPrice

 getGridDemand() : Real = GridDemand

 getGridVoltage() : Real = GridVoltage

 getGridFrequency() : Real = GridFrequency

end

association GridGenerator between

 Microgrid[1] role microgrid

 Generator[*] role generator

end

association GridBattery between

 Microgrid[1] role microgrid

 Battery[*] role battery

56

end

association GridLoad between

 Microgrid[1] role microgrid

 Load[*] role load

end

association MicroMain between

 Microgrid[1] role microgrid

 MainGrid[1] role maingrid

end

-- Constraints

constraints

context Microgrid

-- All IDs must be unique and positive

inv:

self.generator->forAll(a, b | a.GeneratorID <> b.GeneratorID) and self.generator->forAll(a |

a.GeneratorID > 0)

inv:

self.battery->forAll(a, b | a.BatteryID <> b.BatteryID)and self.battery->forAll(a | a.BatteryID >

0)

inv:

self.load->forAll(a, b | a.LoadID <> b.LoadID)and self.load->forAll(a | a.LoadID > 0)

-- Frequency Must be within a safe range

inv:

 Frequency > 59.98 and Frequency < 60.02

inv:

Price > 0

inv:

OperationalMode = 'Islanded' or OperationalMode = 'GridConnected'

context Load

inv:

LoadAmount > 0

context Generator

inv:

Cost > 0

inv:

GeneratorOutput >= 0

inv:

Voltage >= 118 and Voltage <= 122

57

inv:

GeneratorKind = 'Solar' or GeneratorKind = 'Wind'

context Battery

inv:

Capacity > 0

inv:

EnergyDensity > 0

inv:

SpecificEnergyDensity > 0

inv:

PowerDensity > 0

inv:

MaintenanceCost > 0

inv:

StateOfCharge >= 0 and StateOfCharge <= 100

context Microgrid::adjust()

 post adjustment:

 if OperationalMode = 'Islanded' then

 if (getTotalGeneratorOutput()) < (getTotalCriticalLoadAmount()) then

 battery->forAll(BatteryMode = 'Discharging')

 --and load->forAll(l:Load | l.IsCritical = false).LoadMode = 'Off'

 else

 if (getTotalGeneratorOutput()) < (getTotalLoadAmount()) then

 battery->forAll(BatteryMode = 'Discharging')

 else

 if battery->forAll(StateOfCharge = 100) then

 getTotalGeneratorOutput() = getTotalLoadAmount()

 else

 battery->forAll(BatteryMode = 'Charging')

 endif

 endif

 endif

 else

 if (getTotalGeneratorOutput()) < (getTotalLoadAmount()) then

 CommerceMode = 'Buying'

 else

 if battery->forAll(StateOfCharge = 100) then

 CommerceMode = 'Selling'

 else

 battery->forAll(BatteryMode = 'Charging')

 endif

 endif

 endif

58

context Microgrid::changeOperationalMode()

 post changePost: if OperationalMode = 'Islanded' then OperationalMode = 'GridConnected' else

OperationalMode = 'Islanded' endif

context Battery::charge()

 pre: self.BatteryMode = 'Discharging'

 post: self.BatteryMode = 'Charging'

context Battery::discharge()

 pre: self.BatteryMode = 'Charging'

 post: self.BatteryMode = 'Discharging'

context Microgrid::sellToGrid()

 post: self.CommerceMode = 'Selling'

context Microgrid::buyFromGrid()

 post: self.CommerceMode = 'Buying'

59

REFERENCES

[1] Frank Ibarra Hernandez, Carlos Alberto Canesin, Ramon Zamora, Anurag K Srivastava, “Active Power Management in Multiple
Microgrids Using a Multi-Agent System with JADE,” 11th IEEE/IAS International Conference on Industry Applications, doi:
10.1109/INDUSCON.2014.7059471, December 2014

[2] Chunxia Dou, Mengfei Lv, Tianyu Zhao, Yeping Ji, Heng Li, “Decentralised coordinated control of microgrid based on multi-agent
system,” IET Generation, Transmission & Distribution, doi: 10.1049/iet-gtd.2015.0397, November 2014.

[3] M. Reyasudin Basir Khan, Razali Jidin, Jagadeesh Pasupuleti, “Multi-agent based distributed control architecture for microgrid energy
management and optimization,” Energy Conversion and Management 112 (2016) 288–307, 25 January 2016

[4] Jiang, R.; Wang, J.; Guan, Y. Robust unit commitment with wind power and pumped storage hydro. IEEE Trans. Power Syst. 2012, 27,
800–810.

[5] Abhilash Kantamneni, Laura E. Brown, Gordon Parker, Wayne W. Weaver, “Survey of multi-agent systems for microgrid control,”
Engineering Applications of Artificial Intelligence 45 (2015) 192–203.

[6] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid, and fuelcell vehicles,”Proc. IEEE, vol. 95, no. 4, pp. 806–820, Apr. 2007

[7] F. Blaabjerg, F. Iov, T. Kerekes and R. Teodorescu, "Trends in power electronics and control of renewable energy systems," Proceedings of
14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, Ohrid, 2010, pp. K-1-K-19, doi:
10.1109/EPEPEMC.2010.5606696.

[8] Shuyun Jia, Jiang Chang, “Research on multi-agent decision-making model of wind-solar complementary power generation system”, 2009
Second International Conference on Intelligent Computation Technology and Automation, doi: 10.1109/ICICTA.2009.718, October 2009

[9] Axel van Lamsweerde. 2000. “Formal specification: a roadmap,” Proceedings of the Conference on The Future of Software Engineering
(ICSE ’00). Association for Computing Machinery, New York, NY, USA, 147–159. DOI:https://doi.org/10.1145/336512.336546

[10] Ahmed Taki Eddine Dib, Zaidi Sahnoun, “Formal Specification of Multi-Agent System Architecture,” International Conference on
Advanced Aspects of Software Engineering ICAASE, November, 2-4, 2014, Constantine, Algeria.

[11] Mustapha Bourahla, Mohamed Benmohamed , “Formal Specification and Verification of Multi-Agent Systems,” Electronic Notes in
Theoretical Computer Science 123 (2005) 5–17, doi: 10.1016/j.entcs.2004.04.042.

[12] D. E. Olivares et al., "Trends in Microgrid Control," in IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1905-1919, July 2014, doi:
10.1109/TSG.2013.2295514.

[13] “Tracking Corporate Solar Adoption in the U.S.,” Solar Energy Industries Association April 2018. seia.org

[14] T. Funabashi, T. Tanabe, T. Nagata, R. Yokoyama, “An Autonomous Agent for Reliable Operation of Power Market and Systems Including
Microgrids,” Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, doi:
10.1109/DRPT.2008.4523397, April 2008

[15] A. Sujil, Jatin Verma, Rajesh Kumar, “Multi agent system: concepts, platforms and applications in power systems,” Artif Intell Rev (2018)
49:153–182 https://doi.org/10.1007/s10462-016-9520-8, 12 October 10`6

[16] C.M. Colson, M.H. Nehrir, “A Review of Challenges to Real-Time Power Management of Microgrids,” IEEE Power & Energy Society
General Meeting, 2009

[17] A. L. Dimeas, S.I. Hatzivasiliadis, N. D. Hatziargyriou, “Control agents for enabling customer-driven Microgrids,” IEEE Power & Energy
Society General Meeting, 2009

[18] M. Collins, “Formal methods,” Dependable Embedded Systems, 1998.

[19] Soukaina Boudoudouh, Mohamed Maâroufi, “Multi agent system solution to microgrid implementation,” Sustainable Cities and Society 39
(2018) 252–261

[20] Enrique Kremers, Jose Gonzalez de Durana, Oscar Barambones, “Multi-agent modeling for the simulation of a simple smart microgrid,”
Energy Conversion and Management 75 (2013) 643–650.

[21] Booch, Grady & Rumbaugh, James & Jacobson, Ivar. (1999). Unified Modeling Language User Guide, The (2nd Edition) (Addison-Wesley
Object Technology Series). J. Database Manag.. 10.

[22] OM Group. Object constraint language (ocl) v2. 4, February 2014.

[23] Gogolla, M., Büttner, F., & Richters, M. (2005). A UML-based specification environment for validating UML and OCL. Science of
Computer Programming.

[24] X. Ge, R. F. Paige and J. A. McDermid, "An Iterative Approach for Development of Safety-Critical Software and Safety Arguments," 2010
Agile Conference, Orlando, FL, 2010, pp. 35-43, doi: 10.1109/AGILE.2010.10.

[25] ZHOU Xiaoyan， LIU Tianqi, LIU Xueping, “Multi-Agent based Microgrid Coordinated Control”, 2011 2nd International Conference on
Advances in Energy Engineering.

[26] Prieto-Díaz, R. (1990). Domain analysis: An introduction. ACM SIGSOFT Software Engineering Notes, 15(2), 47-54.

	Application Of Formal Specification Technique To Microgrid Representation
	Recommended Citation

	tmp.1611690842.pdf.peDEr

