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ABSTRACT 

 

This thesis uses formal specification techniques to analyze and model a microgrid. A 

microgrid is a small, local electrical grid, often supplied by a single generator, that can 

connect to the larger electrical grid, but can also disconnect from it, going into “island 

mode.” Thanks to the growth in renewable energy, microgrids represent a growing 

segment of the electrical power generation domain. And like any member of the domain 

they are safety-critical systems, meaning that even a small mistake in their 

implementation risks damage to life and property. 

Formal specification is a way to abrogate the risks of safety critical systems by 

ensuring that the system under consideration is fully described, modeled, and analyzed 

prior to implementation, and the description and model are robust and error-free. 

However, at present there is no established approach to the use of formal specification 

techniques of microgrid systems. This thesis proposes a specification that can serve as a 

foundation for future work in the microgrid domain as well as an aid to communication 

about microgrids. The work uses Unified Modeling Language (UML) graphical notation 

and an accompanying Object Constraint Language (OCL) formal specification. The 

model transformation accomplished through the use of Iterative Development techniques 

is outlined in detail to serve as a guide to future researchers. 
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I. INTRODUCTION 

1.1  Problem Definition: 

A microgrid is a localized interconnected group of power consumers (otherwise known as 

loads) and power producers that can operate in grid-connected or islanded mode. In grid-

connected mode a microgrid is connected to a larger electrical grid (sometimes referred to as a 

host grid) and can exchange power with it as needed. In islanded mode the microgrid is cut off 

from the larger grid and handles its own power needs [1] [2]. 

Microgrids are made up of decentralized, modular systems known as Distributed Energy 

Resources (DERs). DERs are small-scale power generation sources located close to their loads 

that can service loads individually or have their generated power aggregated to serve the grid as a 

whole [3]. DERs include renewable energy sources such as photovoltaic cells and wind turbines 

[2] as well as small non-renewable generators, typically powered by diesel or gas [1]. The 

definition of DERs also includes localized power storage, which typically takes the form of 

chemical batteries, but can also take the form of pumped hydro [4], electrical vehicles that double 

as power storage [5], and Superconducting Magnetic Energy Storage [6]. 

Microgrids have become increasingly prevalent in the past several years [7]. This is in part due 

to the increased popularity and effectiveness of renewable energy sources, including rooftop solar 

panels and wind microturbines, and in part due to the advancements in computing, networking, 

and communication that allow a distributed grid to be controlled in a flexible and decentralized 

way [7][8]. There has been a corresponding effort to develop and improve microgrid control 

schemes. However, there is currently no agreed-upon standard for modeling these schemes, and 

efforts frequently resort to an ad-hoc approach. To help establish a shared understanding of 



 

 

2 

 

microgrid characteristics and facilitate communication between researchers, it’s necessary to 

create a formal specification of a microgrid.  

A formal specification is an expression of a system’s properties made in a formal language. A 

formal language is one whose grammar, vocabulary, and syntax follow a set of clear and 

unambiguous rules. Statements made in a formal language have a single unambiguous meaning, 

as opposed to statements in a natural language, which may be imprecise or open to 

misinterpretation [9]. Therefore, a formal specification can be treated as a mathematical entity and 

have its correctness and self-consistency verified via mathematical methods, including automated 

methods. A formal specification is not a full implementation but is instead a statement of a 

system’s requirements [9] [10]. 

The main advantage of a formal model over an informal one is that a formal model is 

verifiable, meaning that it can be checked for completeness, correctness, and consistency. To be 

complete, a model has to encompass all relevant concerns about the system. To be correct, a 

model has to fulfill the requirements it lays out, particularly by making sure that any input given 

to the system will produce the desired output. To be consistent, a model has to avoid contradicting 

itself – it should be possible to fulfill all the requirements it lists at the same time, but there should 

not be multiple ways of doing so [9][10][11]. 

1.2 Significance of the Work: 

A microgrid is a safety-critical system, meaning that any malfunction can result in serious 

harm to people or property. At the same time microgrids have properties that make ensuring 

perfect functioning more challenging. Microgrids are heterogeneous, meaning that a designer has 

to account for different types of structures and components. Microgrids are also changeable, 

meaning they can have components added or subtracted after the system’s initial creation. Taken 
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together, these properties mean that when a microgrid is designed and built, every measure must 

be taken to minimize error. This makes a formal model highly desirable, because a formal model 

can be checked for errors and inconsistencies at design time, preventing costly adjustments or 

costlier failures later in the process [11]. 

Formal models can also be used to communicate information about the microgrid with more 

precision than natural language or ad-hoc models, but without the complexity of a full 

implementation. Communicating precisely and thoroughly about technical subjects is difficult. As 

seen in the Methodology section, this issue came up in the course of this project. In the initial 

exchange of information important details were omitted or left unclear, and the use of formal 

modeling techniques helped ensure all relevant information was transmitted completely and 

correctly. 

The goal of the project was to create a formal model that can serve as a foundation for future 

formal microgrid models. Therefore, the model had to have two characteristics. First, it had to 

rigorously define the basic components of a microgrid in a thorough and error-free manner. 

Second, it had to be extensible – easy to adapt for specific implementations with different 

components, structures, and goals. In accomplishing that, the formal specification in this thesis 

can become an important milestone toward future research. 

1.3 Methodology: 

My interest in microgrids began during my survey on Multi Agent Systems (outlined in more 

detail in the Background section). Microgrids came up as one of several systems that benefited 

from decentralized control and I focused on that subject, researching the Multi Agent approach to 

microgrid and multi-microgrid control. After observing the different ways microgrids were 

presented in the papers, I found that none of the models were truly formal and most were made 



 

 

4 

 

with a specific implementation in mind. For reasons outlined in the previous section, I decided to 

pursue the creation of a formal model. 

When the background reading phase of my research was finished, I moved onto the practical 

task of modeling a single microgrid. In accordance with the principles of formal modeling, my 

first task was requirements elicitation – talking to an engineering team that works with microgrids 

to find out what aspects of a microgrid were considered important by them. Then I followed a 

process of iterative development, creating and refining a model with feedback at every step of the 

way. As is usual during requirements elicitation, the first pass-through did not capture the domain 

accurately. Attributes deemed important in informal discussion would turn out not to matter as the 

model became more defined, and on the other hand the process of formalization revealed 

variables that needed to be included in the model but were initially missed. This difficulty in 

communicating microgrid-related concepts between professionals with knowledge of the subject 

is further proof of the importance of a shared model. 

1.4 Scope of the Work: 

The scope of the model is deliberately limited to a single microgrid. I modeled a relatively 

small microgrid consisting of an arbitrary number of wind turbines and solar cells connected to an 

arbitrary number of loads. The components of the microgrid along with all of their potentially 

important attributes were outlined in a Universal Modeling Language class diagram and defined 

in a separate document. The desired behavior of the components was described by a set of rules 

and modeled by a flowchart diagram. The whole of the system was then formally modeled using 

the Object Constraint Language in the UML-based Specification Environment. Included in the 

thesis is a description of how each part of the model was constructed and of my application of the 

iterative development process and how it helped refine the model. 
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1.5 Expected Results: 

My research was expected to define the structure of the microgrid in a formal, unambiguous 

way and provide the initial set of constraints – mostly to outline scenarios that are either 

physically impossible or universally dangerous. I also expected to catalogue and describe useful 

attributes and operation, and to provide an example control scheme. The end goal was a proof of 

concept and a template for others to build on. 

1.6 Thesis Layout: 

The rest of the paper is as follows: Section II is a description of the problem domain. Section 

III is the literature review. Section IV is a description of the methodology used for the research 

and modeling. Section V describes the results of applying the methodology. Section VI deals 

with the conclusions and potential future work. 
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II. BACKGROUND 

2.1 Problem Domain: 

2.1.1 Microgrids: 

As outlined in the Introduction section, a microgrid is a small collection of loads and 

Distributed Energy Resources that can function in grid-connected or islanded mode. Microgrids 

are becoming an increasingly important part of the energy generation infrastructure because they 

allow for local control of distributed energy generation, increasing the grid’s overall flexibility 

[12]. This decentralized approach makes the larger grid more robust by avoiding a single point of 

failure, since, in case of a breakdown in the host grid, microgrids are able to continue functioning 

independently and can be called on to help stabilize the host grid [5]. Microgrids can help boost 

the efficiency of the power generating process by adjusting for local conditions in a way a 

centrally controlled grid cannot [12]. Microgrids are also attractive from a financial standpoint 

and are typically installed as a cost-saving measure [13]. 

Microgrids present special challengers for planners. In a classical grid the flow of power is 

unidirectional – it’s generated at a central location and distributed to consumers. Microgrids, 

however, feature bi-directional power flow, meaning that depending on the circumstances they 

may accept power from the host grid or return power to the host grid. That means the structure of 

a multi-microgrid is necessarily more complex than that of the classical grid [5]. 

Microgrids are heterogeneous, meaning that they are made up of different components, and the 

exact components of any two microgrids can differ significantly. Microgrids vary in size, with the 

smallest being the size of a single household and the largest the size of a university campus. 

Microgrids vary in their power generation mix, particularly the degree to which they incorporate 

fossil fuel based power. The earliest microgrids were primarily fossil fuel based, but modern 
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microgrids are predominantly based on renewable energy [12]. A typical microgrid is owned by a 

single stakeholder, but there are real world examples of microgrids that have multiple 

stakeholders with competing interests [14]. 

Microgrids also vary in terms of their control logic, particularly the degree of centralization 

within the microgrid. Microgrid control schemes can be broadly broken down into centralized 

(meaning that the microgrid as a whole is controlled by a single entity), hierarchical (meaning that 

a single entity exerts overall control but entities “below” it make some independent decisions), 

and distributed (meaning that there is no central control and individual entities make all the 

decisions through consensus) [15]. 

Microgrids are variable – a microgrid can choose to disconnect from the main grid, can have 

its component parts changed, and is likely to experience fluctuation in its ability to supply power 

due to small size and a tendency to rely on environment-dependent power sources [5]. 

Microgrids are autonomous, meaning that they make their own decisions on behalf of their 

individual owners instead of taking orders from a central authority. The goals microgrids pursue 

vary greatly, but common priorities include the following: maximization of stability within the 

microgrid [2]; tracking the physical flow of the electricity within the microgrid [3]; setting up an 

internal market within the microgrid [14]; performing a simulation of a microgrid’s activity at 

different times of day [16].  

While the model described in this thesis is meant can be adapted to different microgrids, it was 

created with a typical residential microgrid in mind. This means the following assumptions were 

made: a single stakeholder maintains ownership of all electricity generators and loads within the 

microgrid, there are no competing interests within the microgrid itself, and all components will 

serve the microgrid owner’s goals cooperatively; the microgrid contains only renewable energy 
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sources; the microgrid uses chemical batteries for power storage; the microgrid has ready access 

to the host grid and is unlikely to be forced into islanded mode; the microgrid can be of any size 

and can have components added and subtracted as necessary. 

2.1.2 Multi-Agent Systems: 

As outlined above, microgrids are distributed, modular, and complex systems. These 

characteristics make centralized control inefficient and prone to failure [15]. To handle microgrids 

and multi-microgrids, a control system must be able to deal with a distributed system that gives 

individual entities local control while coordinating collective action in a way that avoids a single 

point of failure and provides needed flexibility. One way of handling these challenges is a Multi-

Agent System (MAS) [2]. 

A Multi-Agent System is a collection of interacting, autonomous entities which work in 

dynamic and uncertain environments to accomplish some goal. The agents are defined by three 

characteristics: 

Autonomy, meaning that each agent has the ability to act independently, free from external 

intervention. Agents have their own goals, their own rules, and their own awareness of the 

environment  independent of central control [2]. 

Situatedness/Locality, meaning that each agent is able to receive local data from its 

environment, but does not have a global view of the system. It can also refer to an agent’s ability 

to modify its immediate environment [2]. 

Flexibility, which means each agent has the ability to react to its environment in a timely 

manner, take initiative to achieve its goals, and interact with other agents and humans [2]. 

The basic principle of MAS is that decisions are made at the lowest possible level. This 

approach prevents the computational complexity of a system from growing exponentially, speeds 
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up system’s response time, and prevents communication bloat [11]. The use of MAS makes 

systems more robust because it means there isn’t a single component whose failure can cause the 

whole system to fail. In modular systems MAS makes inserting components into the system or 

subtracting them from the system simpler [11]. In systems composed of agents that have differing 

priorities or that are competing for the same resources, MAS provides coordination, allowing the 

goals of the overall system to be achieved [2]. These characteristics have led MAS to see 

widespread use in microgrid control systems. 

While the use of agents in the structure of a microgrid can take many forms, this thesis makes 

several assumptions. First, I chose to use the two types of agents described by Dimeas, et al [17]: 

cognitive and reactive agents. Unlike reactive agents, cognitive agents are agents capable of 

advanced communication that possess memory. I made the assumption that each cognitive agent 

possesses an internal database whereas a reactive agent does not and that cognitive agents are 

capable of making sophisticated decisions and holding negotiations with each other while reactive 

agents are capable of performing specific tasks in an uncertain and dynamic environment. 

Second, I assumed agents follow the principle of hardware encapsulation – which is to say that 

agents overlap individual pieces of hardware to the greatest degree possible. This reflects the 

aforementioned principle of locality, ensuring that most agents don’t need to know the overall 

state of the system and enjoy low latency. It is assumed that each piece of equipment is overseen 

by a cognitive agent. 

Third, I assumed a two-tier hierarchical architecture with a central Microgrid Control Agent 

that oversees all communication between different parts of the microgrid, receives inputs from all 

of them, and is ultimately responsible for load balancing (making sure that electrical power is 
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available to the users on request). This appears to be the most common implementation within 

microgrid-related papers, and covers multiple use-cases. 

2.1.3 Formal Modeling: 

A formal model is a precise description of the system being designed, including components, 

relationship between components, and behavior. Formal modeling creates mathematically 

rigorous descriptions of the system that can be validated with replicable results [9]. 

One function of formal modeling is to increase precision. By removing ambiguity and 

allowing automated validation, formal models remove errors and other unintended behaviors from 

the process. This increases the safety and robustness of the system being designed. By identifying 

problems at design time, formal modeling prevents them from appearing at later stages, when 

they’re more costly to resolve [18]. 

The other function of formal modeling is to increase discipline. This means that the process of 

introducing formality forces a reevaluation of the system. It tells the designer whether the 

requirements have been met. If they have not, the model may need to be adjusted – or, if the result 

produced is reasonable, the requirements may need to be adjusted instead. Formal modeling 

serves as a way to reason about the system and to guide further development of the system [18]. 

Formal specification can be used to define functional and non-functional requirements. 

Functional requirements deal directly with the system’s behavior; in most basic terms, functional 

requirements specify what a system should do. Functional requirements define the rules the 

system must use to transform inputs into outputs, and therefore specify the system’s command 

logic.  

Non-functional requirements deal with the users’ expectations of a system and define 

acceptable and unacceptable states for the system to be in. In basic terms, non-functional 
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requirements specify how a system should behave. One way of expressing non-functional 

requirements is to make use of quality attributes, which are a set of desirable properties of a 

system used to indicate which of these properties are most important to the system being 

considered. The following was the result of describing the non-functional properties of a 

microgrid in terms of quality attributes: 

Similar to other power generation and distribution systems, microgrids are required to 

prioritize Safety and Security, because of the high risk posed by a malfunctioning electrical 

component. The microgrid’s task of load balancing requires high Availability, to make sure 

consumers have access to power when they need it. A microgrid must be Scalable, because 

microgrids frequently have components added to or subtracted from them. It must be Resilient, 

able to easily deal with hardware and software faults, to prevent interruptions in the service [2] 

[19] [20]. 

In this thesis, formal specification was created by supplementing UML diagrams with an OCL 

specification, as outlined below. 

2.2 Solution Domain: 

2.2.1 Unified Modeling Language (UML):  

Unified Modeling Language is a graphical modeling language developed to standardize the 

visual depiction of a software intensive system. Developed in mid 1990s to combat standards 

proliferation, it was officially adopted by the Object Management Group and has since become 

the industry standard for graphical modeling notation. UML is used to visualize systems, specify 

requirements, provide a blueprint for construction, and document decisions throughout the 

development process [21]. 
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UML is semantically rich, using a small set of notational elements to model a broad range of 

systems in a variety of problem domains. This also allows UML to provide complementary, 

interlocking models of a system, allowing different aspects to be highlighted based on a 

developer’s current needs. UML also has the advantage of being comprehensible, allowing its 

diagrams to be understood without prior training, which makes it an important tool for 

communicating with clients [21]. 

UML is an Object Oriented programming language and works best on systems made up of 

self-contained components. This approach has the advantage of making systems more modular, 

allowing them to be changed or expanded and of allowing for encapsulation, which makes each 

component more secure by protecting its data from unnecessary contact [21]. 

UML can be used to create several types of diagrams, depending on what aspect of the system 

needs to be highlighted. In this research a class diagram shown in Appendix 1 was used to 

visualize the structure of the microgrid. Classes in a class diagram, also known as objects, 

represent the major entities within the system. The class diagram also shows the relationships 

between these objects. At the next step, following the requirements elicitation process, each object 

was assigned a set of attributes – properties important to its functioning. Finally, during the work 

with the Object Constraint Language outlined below, each object had its associated operations 

listed, outlining the actions it can perform. Notably, while operations are listed within the class 

diagram, they are not fully described within UML. That description is done in Object Constraint 

Language, as seen in the next section. Figure 1 shows an example object with all associated 

attributes and operations.  
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Figure 1: UML Object with associated attributes and operations 

In addition, a flowchart diagram was used to help visualize the microgrid’s behavior, 

demonstrating the microgrid’s control flow. Figure 2 shows a sample flowchart diagram.  

 

Figure 2: Sample Flowchart 

2.2.2 Object Constraint Language (OCL):   

Object Constraint Language (OCL) is a formal declarative language originally created to 

supplement UML. Whereas a UML diagram can be used to show the basic structure of some 
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system (in this thesis a microgrid), OCL can help define that system in a rigorous way. An OCL 

file takes the form of a collection of formal expressions which are easy to understand and less 

complex than a true programming language, but lack the ambiguity of natural language and can 

be checked for correctness and lack of contradictions [22]. 

OCL expressions are used to supplement UML in two significant ways. First, OCL expressions 

are used to create constraints. Constraints are restrictions on attributes that must always hold true. 

They can be used to limit the value of an attribute to a range that’s safe and useful and outline 

relationships between objects within the system. Constraints are used to model the Non-

Functional Requirements, as explained in Section 2.1.3. 

context Generator 

inv: 

Cost > 0 

inv: 

GeneratorOutput >= 0 

inv: 

Voltage >= 118 and Voltage <= 122 

GeneratorKind = 'Solar' or GeneratorKind = 'Wind' 

Figure 3: OCL Constraints 

The OCL fragment seen in Figure 3 shows the constraints on the Generator class. The 

constraints establish that neither the cost of operating the generator nor its output can be negative 

(ruling out physically impossible scenarios), that the voltage associated with a generator cannot be 

lower than 118 volts or higher than 122 volts (ruling out unsafe scenarios), and that all generators 

must be either solar panels or wind turbines (ruling out scenarios that don’t fit client preferences). 

Second, OCL expressions are used to define operations and therefore specify the expected 

behavior of the system. Through the use of OCL a designer can specify the ways objects within 

the system gain information about themselves, their environment, and each other, the way the 

system makes decisions, and the expected effect of those decisions. Operations are used to model 

Functional Requirements, as explained in Section 2.1.3. 
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context Microgrid::changeOperationalMode() 

post changePost:  

if OperationalMode = 'Islanded'  

then OperationalMode = 'GridConnected'  

else OperationalMode = 'Islanded'  

endif 

Figure 4: OCL Operation 

The OCL fragment in Figure 4 defines the operation that changes the microgrid’s operational 

mode, either connecting to the main grid to enter Grid Connected mode or disconnecting to enter 

Islanded mode. Because it’s a specification and not a full implementation, the model doesn’t go 

into detail on how the connection/disconnection is to be achieved, only establishing that it should 

exist. 

In this thesis OCL was used to ensure the safety of the microgrid by specifying the allowable 

range of key attributes, including frequency and voltage. OCL was also used to define the 

system’s behavior, including the query operations through which attribute values are checked by 

appropriate objects, and the non-query operations through which values and states are changed. 

2.2.3 UML-based Specification Environment (USE)  

The USE tool is used for model transformation and validation of UML/OCL models. The core 

functionality of USE is to be an interpreter for UML/OCL, allowing developers to analyze model 

structure and behavior, check for errors, model scenarios, and make quick changes to the model 

[23]. 

USE notation supplements OCL by translating UML into textual form. As an example, the 

fragment of USE notation seen in Figure 5, defines the Solar Panel object present in the UML 

diagram, establishes that it is a subclass of the Generator class, and lists its attributes, along with 

an associated data type for each attribute. In this form UML diagrams can be checked for 

completeness, correctness, and consistency, eliminating ambiguity and forcing all objects and 
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relationships to conform to proper forms. Combined with traditional OCL notation, this allows for 

automatic error checking and scope checking of constraints and invariants [23]. 

class SolarPanel < Generator 

attributes 

 Tilt: Real 

 InverterEfficiency: Real 

 SolarIrradiance: Real 

Figure 5: USE object definition 

USE specifications can also be used to directly generate UML diagrams, as seen in Figure 6. 

This aids in the process of iterative development, as described in section 2.2.4, by allowing the 

developer to easily switch between the OCL/USE specification the UML model in order to make 

corrections and updates [23]. 

 

Figure 6: USE in action 
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In my research USE was an invaluable error-checking tool. It allowed me to ensure the 

correctness of the OCL syntax and the model behavior, and by extension to modify the model to 

be able to carry out the needed operations. 

2.2.4 Iterative Development:  

Iterative Development is a design philosophy that treats software development as a cyclical 

process. Instead of completing as much of each development phase as possible before moving on 

to the next, the developer is encouraged to complete a partial, prototypical model in the early 

phases. That model is then updated with information gained in subsequent phases and models 

created in those phases are then modified based on that model [24]. This philosophy was followed 

in this research. The process of developing the UML diagram and its OCL specification was fully 

bi-directional. While a UML diagram was developed first, the creation of the OCL specification 

supplemented by USE revealed a number of flaws that caused the UML diagram to be changed. 

In turn, when the UML diagram was presented to the engineering team with accompanying 

explanations, new insights were gathered, requiring further changes to be made to both UML and 

OCL. This process repeated itself several times, and this iterative development resulted in the 

latest model – still not exhaustive, but a more complete description of a microgrid than the initial 

attempt. 

As an example we look the electrical load – a portion of an electrical system that consumes 

electrical power (See Section 5.1 for more information and Appendix A for definitions of terms).  

During the initial requirements elicitation, it was decided that the load would be an attribute of the 

Microgrid class, representing the total demand for electricity in the microgrid. This was its role 

in the initial UML diagram. However, during OCL modeling, the question of what, if any, actions 

should be associated with the load came up. A new round of requirements elicitation showed that 
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it was desirable that some loads should be able to temporarily shut down to conserve power. At 

this point the Load class was created, with each instance of the class representing a separate 

electricity-using object. To indicate which loads should have the option to shut down and which 

should keep going no matter what, the concept of critical and non-critical loads was introduced, 

requiring changes to the UML diagram and the OCL specification. Initially, Critical Load and 

Non-Critical Load were introduced as subclasses of Load, to make them easier to view in the 

UML diagram. But during the specification of the operations associated with shutting down non-

critical loads, it was established that control flow worked better if the criticality of the load was an 

attribute instead, so another change was made, again requiring changes in UML and OCL. These 

changes showcase the Iterative Development process. 
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III. LITERATURE REVIEW 

3.1) Active Power Management in Multiple Microgrids Using a Multi-Agent System with 

JADE [1]: This paper deals with the problem of maintaining and verifying an active power 

balance within the microgrid, which is the process of ensuring grid stability by balancing power 

generation against load demand. The authors model and simulate a multi-microgrid consisting of 

three microgrids connected to a main grid. Each microgrid is composed of photovoltaic cells, a 

diesel generator, a battery for power storage, and some loads. Each microgrid also has six inputs 

to keep track of: Photovoltaic Power, Battery Power, Diesel Generator Power, Load Active 

Power, State of Charge of the Battery, and a Static Switch between Grid-connected and Isolated 

modes. 

At the core of the control algorithm are the two priority queues. The power supply priority: 

photovoltaic system, battery system, diesel generator, the grid. And the power delivery priority: 

local load, battery charging, grid transaction. These priorities are chosen to maximize stability, 

financial, and environmental advantages. 

This paper features a specific microgrid model that considers only the attributes that directly 

impact its control algorithm. It’s more narrowly focused than my own work, but useful as a way 

to verify the results of my requirements elicitation. The priority queues closely match my own 

implementation, as outlined in Section 5. Likewise, the paper’s implementation of a Multi-Agent 

System uses the same hardware encapsulation assumptions present in my model, with agents 

matching specific pieces of hardware. While this work is less formal and less general than my 

model, the aforementioned commonalities serve to confirm the assumptions I made when setting 

up the basic structure and the functions. 
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My work deals with creating an extensible formal model that can be used to formalize models 

like the one presented in this paper. This paper’s model relies on a set of specific parameters and 

the control algorithm that causes states to change as specific breakpoints. Its formal description 

could be created from my model by narrowing down the list of used parameters and inserting the 

breakpoints as invariants. In effect, I’m exploring a more general case than the one presented in 

this paper. 

3.2) An Autonomous Agent for Reliable Operation of Power Market and Systems Including 

Microgrids [14]: This paper discusses the microgrid as a market in which Generator Agents and 

Load Agents place bids which are then matched by a Control Agent. This is used in the paper to 

minimize the price of electricity production, especially if there is more generator capacity than 

demand from loads. It’s also potentially useful for achieving other goals, like minimizing 

environmental impact or strain on the equipment. It has potential uses if the microgrid has 

multiple stakeholders who have reason to compete. 

In the paper’s model a Microgrid Control Agent interacts with Generator Agents and Load 

Agents at fifteen minute intervals, collecting projected demand from each load and available 

generation and initial price from each generator. The Microgrid Control Agent creates a priority 

list based on these inputs and pairs up generators and loads. If total generating capacity isn’t 

enough to meet demand, the Microgrid Control Agent interacts with an outside Grid Agent to buy 

power. If there’s excess, it interacts to sell power. 

Currently my model is focused more on the physical flow of power. While money and the sale 

of electricity are part of it, they are not the primary concern. This paper demonstrates a path 

through which my model could be altered to focus on the electricity marketplace, perhaps by a 

future adopter doing follow-up work. 
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The basic control algorithm described in this paper appears effective at ensuring that demand is 

met and the costs are minimized whenever possible. It is, however, light on details. Price is 

always discussed in natural language, and the mechanisms of interaction between agents aren’t 

explicitly outlined. This isn’t necessarily a negative in a paper of this length, but any follow-up 

work on the subject may benefit from formalism, as it would enable the authors to communicate 

with more precision. 

This paper demonstrates another potential application for my model. While it’s not suitable to 

track complex market interactions in its current form, it could be adapted to do so, in which case it 

would be  

3.3) Decentralised coordinated control of microgrid based on multi-agent system [2]: This 

paper proposes and implements a control scheme based on coordinated switching, a strategy for 

increasing the security and stability of a system by ensuring that state changes take place in an 

optimized and non-disruptive way. 

The control scheme is implemented for a specific type of microgrid – one that includes a wind 

turbine, a photovoltaic cell, a fuel cell, and a battery. This setup requires the individual microgrid 

to ramp the operation of its various components up and down depending on environmental 

conditions, performance, and load, all in a way that doesn’t damage the system and optimizes 

outcomes for the grid’s owner. 

The switching is governed by “security indexes” which describe the safe operating limits of the 

system, including voltage, power balance, component capability limit, and mode switching 

duration limits. When the security indexes are violated, the system has to immediately switch to a 

more optimum mode of operation to prevent a possible fault. It’s desirable to prevent too many 

switches, since rapidly switching between modes of operation can damage components. 
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This paper uses a different type of formalism than the one used in my research. It uses 

Coloured Petri Nets – a kind of graph that can rigorously define a sequence of actions and 

conditions under which these actions must be taken. It’s a better choice for this paper’s subject 

than my approach would be because one of OCL’s weaknesses is the lack of native ability to 

handle timing. Declaring that two or more events must happen simultaneously is essentially 

impossible in unmodified OCL, but possible through the use of Coloured Petri Nets. 

3.4) Multi-Agent based Microgrid Coordinated Control [25]: This paper describes an unusual 

microgrid: one consisting of a gas turbine, solar and wind power sources, and a hydrogen fuel 

cell. The hydrogen fuel cell is meant to remain idle as much as possible and serves as a backup 

power source. The gas turbine handles most of the normal demand due to its stability. Because 

solar and wind are particularly volatile, their energy is used mostly to run an elecrolyzer which 

creates hydrogen for the fuel cell. In this way the combination of the renewable energy sources 

and the fuel cell serves as a balancing mechanism to ensure the stability of the power supply. 

The paper goes on to explain the nuances of its approach to the control scheme. It begins by 

outlining the importance of controlling frequency. The authors choose to maintain frequency 

stability by ensuring that the demand and supply are balanced, which is done using a set of 

constraints. The model uses a Multi Agent System that mostly follows the principle of hardware 

encapsulation, except that it also includes a Database Agent, used to carry out coordinated 

dispatch. The control strategy is based on constant exchange of parameter values between all 

agents. 

Though this paper doesn’t use formal declarative statements, its notation closely approaches 

formalism, especially because its most important function – load balancing, and by extension fault 
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prevention – is defined by invariants. It’s useful as an example of an invariant-based control 

strategy, and a way to handle frequency and its stability. 

This paper is narrower in scope than my own model, but it’s a good example of how an 

application of formalism can help to better define a model and of how a formal model could be 

adapted to describe a specific type of microgrid. 

3.5) Research on multi-agent decision-making model of wind-solar complementary power 

generation system [8]: This paper proposes a decision-making model for a microgrid containing 

only solar and wind energy sources based on a Multi Agent System. The paper begins by 

proposing a model consisting of nine modules and two categories of agents. The first four 

modules are: data collecting and processing, control, info management, and data resource 

management. Notably, these do not follow the hardware encapsulation principle, but instead the 

task encapsulation principle – meaning that agents that perform similar jobs are grouped together 

instead. This group of modules is responsible for gathering and remembering data, analyzing it, 

and making decisions. The other five modules are:  wind energy power generation, solar energy 

power generation, inverter, storage battery, and load. The paper classifies them as “field-level 

agent modules” and they’re responsible for executing the decisions made by the higher-level 

modules. 

Next, the paper goes outlines the parameters of its model. Unlike other models described 

above, which tend to keep their parameters simple, this paper pursues an exhaustive definition of 

its components. Four running modes are presented, each one designed to best take advantage of 

environmental conditions. Finally, the paper outlines its decision making process through a series 

of state charts. 
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This paper caught my attention because just like my current model it focuses on wind and solar 

power. The task oriented module system is too distinct from the object oriented analysis I employ 

to be directly useful at current time. However, the exhaustive list of parameters gave me the 

opportunity to compare and contrast the parameters I obtained through requirements elicitation 

and thereafter decide whether each parameter deserved to be part of the model and whether I 

should adopt one or more of the parameters found within this paper. The decision outline will 

prove useful in future work as an example of a more complex control mechanism that better takes 

advantage of the attributes I’ve added to the model. 

While the paper raises interesting ideas, it’s light on detail. It lists parameters but does not take 

time to explain what role each one plays, nor even how they’re quantified. The Data Resource 

module includes both a knowledge base and a database, but neither of those is mentioned again. 

The process through which the decision making agent interacts with the executive agent is also 

unexplained. 

For the above reasons, I believe that this paper could benefit from formalism so the concepts it 

brings up can be better described and communicated. My model could potentially be used as a 

template to create a formal version of this paper’s model, though this would require some follow-

up work. 
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IV. METHODOLOGY 

4.1 Problem Domain Analysis 

Problem Domain Analysis is the process of defining the problem to be solved and what will 

need to be done to solve it – the requirements and the functionality of the system to be modeled 

[26]. The first step of the analysis is establishing basic familiarity with the field by studying the 

literature. I read the papers outlined in the Literature Review section as well as the additional ones 

cited in the bibliography to gain understanding of microgrid structure, the basic approaches to 

describing a microgrid, and the relevant terminology. 

Once the basic research was completed, I moved on to the requirements elicitation. 

Requirements elicitation is the process of talking to the stakeholders of a system to gather 

information and understand what aspects of the system they find most important. For this project, 

the stakeholders were an engineering team of Dr. Hossein Salehfar and his graduate student. Over 

the course of several sessions we established a shared understanding of what the engineering team 

needed from a model. These discussions formed the base for later work. The first sessions were 

used to establish a shared understanding of the basic components of a microgrid and to decide 

which of their attributes belonged in the problem domain. Once this was established, a 

Vocabulary document was created to hold a definition for each object and attribute. The shared 

vocabulary allowed us to avoid misunderstandings and allowed for a greater understanding of 

each proposed attribute. 

Some basic decisions were made at this time. First, the model would be object-oriented. It was 

believed that this would bring the model in line with modern software development practices. The 

model would also be suitable for describing implementation of Multi Agent Systems, as described 

above. This was of great interest to both myself and the engineering team for the purposes of 
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future research and fit with the developing paradigm of microgrid control. Second, the model 

would be focused on the logical layer rather than the physical one, tracking the flow of 

information and commands but not the physical exchange of power. Third, the only power storage 

considered would be chemical batteries, and the only generators considered would be solar cells 

and wind turbines. While some microgrid models include a non-renewable generator as a backup 

power source, one was consciously eschewed in this case.  
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4.2 Class Diagram Development 

 

Figure 7: Final Class Diagram 

Figure 7 shows the final class diagram of this project. A class diagram is a graphical 

representation of the model created using the Unified Modeling Language, as outlined in Section 

2.2.1. Its purpose is to communicate information about the system in a way that’s visual and 

therefore easier to understand than pure text. In particular, it helps to visualize the relationship 

between different parts of the system. 



 

 

28 

 

In addition, the process of developing a class diagram can serve as a way to improve and 

correct the model. To illustrate, Figure 8 shows the initial state of the class diagram for this 

project: 

 

Figure 8: Early Class Diagram 

At this stage of the project I had established an initial set of classes and their respective 

attributes. In my diagram, a class represents an entity with agency. Therefore, a generator is 

assigned a class, but an electrical bus isn’t. As seen in the initial class diagram, Load was not 

considered a class at this point because initial requirements elicitation indicated that no decisions 

would be made in regard to the Load itself. 
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The next step in developing the class diagram was establishing the relationships between the 

classes. On a class diagram, the type of relationship is indicated by the connection between them. 

In my model (As seen in Figure 7 and the appendixes), the connection between the Main Grid 

and Microgrid is a simple association, which denotes a relationship between equals. The 

connection between Load, Generator, or Battery and the Microgrid is an aggregation, meaning 

that the Microgrid is in effect a collection of the other classes. The relationship between Solar 

Panel or Wind Turbine and the Generator is inheritance, which shows that they’re subclasses 

of Generator and not classes in their own right. 

At one point during the development a reflexive relationship was added to the Microgrid. 

This would have been used to denote a direct connection between microgrids that didn’t use the 

main grid as an intermediary. This was a project considered by the engineering team, but due to 

lack of concrete data and time pressures this relationship was cut from the model. 

4.3 Formal Specification Development 

At this stage of the project I began the development of a formal specification document to 

complement the class diagram. A class diagram is useful for describing the structure of a system, 

but it cannot express all relevant information about a model. Formal specification can add details 

about how the system functions that increase the model’s security, reliability, and usability, and 

open it up to validation. In addition, formal specification allows for clearer communication with 

the model’s stakeholders and helps further the model’s development. As outlined in Sections 2.2.2 

and 2.2.3, I used Object Constraint Language (OCL) in conjunction with the UML-based 

Specification Environment (USE) to create the formal specification. OCL was chosen due to its 

object-oriented nature, synergy with UML, and the fact that its statements are easy to understand 
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even for those with no background. USE was chosen for its ability to serve as an interpreter, give 

textual form to UML objects, and do automatic error checking. 

The first step in creating the specification was translating the existing classes and attributes 

from the class diagram to USE notation. As seen in Figure 9, the structures and relationships that 

make up a UML diagram have direct equivalents in USE. 

abstract class Load 

attributes 

  LoadID: String 

  LoadAmount: Real 

  IsCritical: Boolean 

  LoadMode: String 

operations 

  getLoadAmount() : Real = LoadAmount  

end 
Figure 9: USE Class 

The creation of the textual notation was important because it forced the model to become 

complete and consistent. UML allows for placeholder attributes with no data types and 

relationships without defined roles or multiplicity. USE ensures that all of these are present before 

it validates the model, meaning that by the time a model has been validated by USE, it is free of 

errors and can be safely expanded. 

The next step is the creation of constraints, using OCL. A constraint is an invariant statement 

that must hold true at every system initialization – in other words, a condition or restriction built 

into the model. Some constraints are based on logical or physical limitations. For example, “The 

capacity of a battery cannot be less than zero.” Other constraints are created for safety reasons. 

For example, “the frequency of the microgrid must be between 59.98 and 60.02 Hertz.” Others 

may be created for security or usability reasons, such as “the ID assigned to a generator must be 

unique.” These constraints can be seen in Figure 10. 

context Microgrid 

-- All IDs must be unique 

inv: 

self.generator->forAll(a, b | a.GeneratorID <> b.GeneratorID) 
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inv: 

self.battery->forAll(a, b | a.BatteryID <> b.BatteryID) 

inv: 

self.load->forAll(a, b | a.LoadID <> b.LoadID) 

-- Frequency Must be within a safe range 

inv: 

  Frequency > 59.98 and Frequency < 60.02 

inv: 

Price > 0 

inv:  

OperationalMode = 'Islanded' or OperationalMode = 'GridConnected' 
Figure 10: Constraint Examples 

An operation is an action that a class can take. Operations are present in the class diagram, but 

only as dummy values. What they actually do must be explained elsewhere, and an OCL 

specification provides a way to do it. 

Operations break down into two kinds. The first are query operations. These are operations 

that, when given appropriate parameters, return information about the current state of the system 

to the user. They’re used to model the way the system gathers information about itself and its 

surroundings and the way different parts of the system communicate. Examples of query 

operation are seen in Figure 11. 

  getGeneratorVoltage(): Bag(Real) = self.generator.Voltage 

  getGeneratorOutput(): Bag(Real) = self.generator.GeneratorOutput   

  getTotalGeneratorOutput(): Real = self.generator.GeneratorOutput->sum() 
Figure 11: Query Operation Examples 

  In my model an object is generally allowed to query itself and the Microgrid may query other 

objects, but other objects are unable to directly query each other. This represents a hierarchical 

model in which all communication and commands flow through a single agent but subordinate 

agents are allowed to deal with themselves and their environment.  

The other type of operation makes changes to the state of the system. Since the specification 

isn’t meant to be a full implementation, it’s not desirable to model every possible action. Thus, for 

example, the way the system updates each individual value isn’t modeled. Instead the model 

shows major changes in the system’s functioning, specifically the way it decides whether to sell 
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or buy power, charge or discharge batteries, and ramp power generation up or down. This is 

discussed in more detail in Section 5.2. 

4.4 Iterative Development 

As explained in Section 2.2.4., my research followed the Iterative Development design 

philosophy. I began with a provisional model based on the results of requirements elicitation. At 

that time, it wasn’t a true class diagram, only a placeholder identifying the basic parts of the 

microgrid and the properties considered important by the engineering team. The development of 

this placeholder model into the initial class diagram and the concurrent development of the 

Vocabulary document was the first major iteration.  

 

Figure 12: Placeholder Model 

The placeholder model seen in Figure 12 was constructed from answers to the question “what 

matters in a microgrid”; at each subsequent meeting a new question was discussed, using the 

information gained in previous meetings as a base. The next question to be answered was “how 

can these attributes be quantified?” For most attributes this meant assigning a data type on the 
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class diagram and a metric unit in the Vocabulary. Other, ill-defined attributes were changed or 

replaced when it became apparent that they could not be quantified. For example, the Battery 

class had proposed attributes like Life Cycle, Temperature Dependence, and Ability to 

Deep Discharge which turned out to be too difficult to express using units and were therefore 

cut. 

The next question addressed was “what should the microgrid do?” At this point I was looking 

for basic functionality and not a full set of operations. It was necessary to determine what concrete 

actions each object within the microgrid could take; how the system would decide when to take 

these actions was not yet a concern. At the same time the question of how the system’s command 

and communication logic should be handled. It was decided that it should be handled primarily by 

the Microgrid class and other classes should not be able to communicate directly with each other. 

In preparation for the construction of the formal specification, I created an informal list of 

desirable limits. In discussion it was decided that wherever there was room for doubt, limits 

would be left open-ended. For example, the Turbine Height attribute doesn’t have a maximum 

even though there are realistic limits to the height of a given turbine. While a specific microgrid 

may limit the height of a turbine – it can even specify that all turbines should be the same size, 

with only a very small tolerance for variance – it was decided that it wasn’t desirable that this 

extensible model should make that limitation. 

At this point the class diagram was properly formatted and was closer to its final form, but it 

still contained errors. The Load was not a class at this point. Attributes necessary to denote system 

state didn’t exist. The Microgrid class had a reflexive relationship with itself, denoting a 

proposition that microgrids should be able to directly interact with each other in a way different 

from their interactions with the Main Grid. Every object had its own Voltage and Frequency 
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rating. These aspects of the model, among others, would change with the creation of the formal 

specification, which represented the next major iteration. 

 As shown in Section 2.3, the first step of creating an OCL specification was translating the 

current state of the Class Diagram into OCL. During this process the ID attributes were added to 

each object when formalizing the relations between them showed that it was impossible to address 

an individual object in then-current state.  

Then next step was formalizing the informal list of constraints. During this process the Betz 

Limit was removed from the list of Wind Turbine attributes. It was inserted into the class 

diagram during the discussion because it was considered important to the functioning of a wind 

turbine, but the process of creating constraints showed that it wasn’t free to vary. Likewise, it was 

clarified that while each Battery and Generator would have to maintain their own voltage, only 

the Microgrid as a whole had to limit electrical frequency.  

The creation of query operations established the communication logic of the microgrid. It also 

required further changes in the model, including the addition of the GeneratorKind attribute to 

the Generator class to enable the Microgrid to query its subclasses. When creating the class 

diagram I believed that setting Wind Turbine and Solar Panel as subclasses of Generator 

would be sufficient, but experimentation with OCL showed that wasn’t true. While the class 

diagram already held placeholder operations for query operations, the process of formally creating 

them in OCL showed that the Microgrid class should have different operations for querying 

individual objects vs. collecting the totals of certain values (such as total available power output 

of all generators).  

The construction of non-query actions, discussed in Section 5.2, required further changes to the 

model. As discussed previously, the Load had previously been an attribute of the Microgrid class, 
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serving as a stand-in for total demand. The discussion of decisions a microgrid may have to make 

required splitting it off into its own class because the decision was made that in certain situations 

a load may have to be temporarily suspended, which meant that each load had to be treated as a 

separate object with agency instead of just a value. The Load was initially split into Critical and 

Non-Critical subclasses, but further refinement of the model showed that a Boolean variable 

was a better way to distinguish between critical and non-critical loads, at least in the context of a 

specification. This prompted the creation of further query actions. Several enumerated attributes 

were added to model different system states, enabling the results of actions to be shown. 

Each revision of the earlier parts of the model prompted alterations to the newer parts. When 

attributes were added to the Class Diagram, for example, they had to be inserted into the 

Vocabulary document (along with definitions) and into the OCL diagram, which could reveal 

previously unquestioned assumptions or errors. Though this mechanism the Iterative 

Development cycle enabled the creation of a model that was more complete and correct than 

could have been created with a more linear process. 
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V. RESULTS AND ANALYSIS 

5.1 Structure 

The structure of the Microgrid is outlined in detail in Appendix A (The UML Class Diagram), 

Appendix B (The Vocabulary) and Appendix C (The OCL specification). Presented here is a 

more thorough explanation of each component part and the history of its iterated development. 

Main Grid: a large-scale traditional electrical grid, typically connected to one or more 

conventional power stations. It’s not the focus of the model and is therefore represented only in 

terms of its relationship with the microgrid, which consists primarily of selling and buying power. 

In the model the Main Grid is assumed to be able to supply a functionally limitless amount of 

energy and to demand a specific amount of energy, with a set selling and buying price visible to 

the microgrid, with the microgrid able to make buying and selling decisions in real time. This is 

not universally true. In some grids power consumers and power producers may participate in a 

marketplace, bidding for specific amounts of power, leading to an uncertain price. In other grids 

the microgrid may have to make commitments over fixed periods of time, only enabling it to 

make decisions at fixed intervals. Since these mutually exclusive cases would be impossible to 

model in a single specification, the model present in the microgrid was chosen for the sake of 

simplicity. 

Because the specification in this thesis is focused specifically on the microgrid and not the 

multi-microgrid, the Main Grid is deliberately kept as general as possible. As can be seen in 

section 4.4 it was not even included in the original placeholder model, though the decision to add 

it came early on.   

Microgrid: the Microgrid class represents an entity in the overall control of the microgrid. It 

takes in information from the other agents, makes decisions, and sends out instructions. The 
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Microgrid governs the relations between Generators, Batteries, and Loads, and thereby 

handles load balancing (making sure power demands are filled) and ancillary services (error 

checking and keeping voltage, current, and frequency within acceptable tolerances). The 

Microgrid is also responsible for negotiating the buying and selling of power with the Main Grid 

and establishing or severing the connection to the Main Grid. 

Depending on how the microgrid is structured, the Microgrid class may represent a distinct 

agent that’s controlling the other parts of the microgrid hierarchically, or it may represent a 

mechanism through which other agents reach a consensus. 

In the early design on the model consideration was given to creating a separate agent for the 

purpose of interacting with the main grid. When the decision was made that the Microgrid agent 

would handle all communication within the microgrid, however, it was decided that 

communication with the Main Grid should pass through it too.  

The possibility of direct microgrid-to-microgrid interaction independent of interactions with 

the larger grid was discussed during the requirements elicitation phase. However, this was 

dropped later in the process because the concept was too novel and inadequately explored and 

would introduce guesswork into the model. 

Generator: an entity responsible for producing power. In this model either a photovoltaic cell 

or a wind turbine. A single Generator agent may be responsible for one physical device, or for 

several devices that aggregate their decisions.  

The Generator agent’s main task is to control the intensity of power generation, which may 

need to be ramped up or down depending on the load, the environmental conditions, safety 

requirements, equipment longevity, or financial considerations. The Generator Agent collects 

information about its hardware and its environment through its sensors, and gains relevant 
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information about the state of the microgrid by communicating with other agents, enabling it to 

make informed decisions.   

The decision to focus on photovoltaic solar panels and wind turbines as the sole considered 

power sources was made during the requirements elicitation phase to fit with the needs of the 

engineering team. Additional power sources may be added to the model in the future. 

The Solar Panel and Wind Turbine subclasses went through alterations that discarded 

attributes that are important to the functioning of such generators but not to a microgrid’s decision 

making. For example, early in the requirements elicitation phase the decision was made to 

consider dirt and snow. When formalizing attributes these were fused into occlusion. But during 

the design of the operations it was decided that how much of the panel was covered by occlusion 

is not directly relevant to a microgrid’s control logic, only the way it affects solar irradiance. 

Since solar irradiance was already an attribute, occlusion was dropped as an attribute at a fairly 

late stage. 

The Generator class and its subclasses contain attributes which aren’t used by the algorithm 

presented in Section 5.2. They were nonetheless kept in the model because they may be used by 

other algorithms, fitting with the goal of making the model extensible. 

Battery: fulfils a role similar to the Generator Agent, but in respect to power storage. In my 

model only chemical batteries are considered, but other means of power storage may be 

implemented in future work. 

The Battery agent’s primary role is to charge and discharge electrical power. The goals to be 

considered when making the decision include maximizing financial benefit, maintaining a store of 

power for emergencies, minimizing pollution, and other considerations dictated by the nature of 

the microgrid. 
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In the requirements elicitation phase attributes of a battery such as its life cycle, its physical 

properties, and its discharge curve were considered important to the functioning of the battery. 

However, later in the process it was determined that while these may be important to the 

construction of a microgrid, they did not have a direct effect on the microgrid’s decisions.  

Load: a section of the microgrid that consumes electrical power. The role of the Load Agent 

is to monitor the demand for power, and to coordinate with other parts of the microgrid to make 

sure that demand is met.  

A critical load is a demand on power that must be filled immediately. A non-critical load is a 

demand on power that can be postponed. In the context of a residential microgrid critical loads 

encompass typical household applications such as lights and appliances. Jiang, et al [4] provide a 

good example of a non-critical load in the form of electrically-pumped water tanks for residential 

houses. The tanks provide water to the household, so they must be filled at some point, but the 

pumping may take place in off-peak hours without jeopardizing reliability. 

The critical/non-critical divide can work differently depending on what the microgrid is 

powering. For a hospital microgrid life-support equipment is considered critical, while monitors 

and phones are not. For a business microgrid the equipment critical to the organization is critical. 

Thus, printers may be considered critical for a printing company, they may be considered non-

critical by a typical office. The ability to distinguish between critical and non-critical loads is a 

key part of ensuring a microgrid’s stability. 

As outlined in above sections, the Load was originally considered an attribute of the 

Microgrid Class, with only the total demand on the microgrid being considered. When it was 

decided that a distinction should be made between critical and non-critical loads, Load was split 

off into its own class, with each load counting separately. 
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5.2 Behavior 

As discussed in above sections, the system’s operations can be broken down into query and 

non-query operations. Query operations probe the state of the system without altering it, while 

non-query operations alter the state of the system. Thus, query operations represent the work of 

the sensors and the communication within the system, while non-query operations represent 

concrete actions taken by the system. 

As previously outlined (and seen in Appendix B), query operations in this model are laid out in 

a way that ensures the Microgrid agent is in control of all communication between other agents. 

This creates a single point of failure, losing some of the flexibility and robustness of a fully 

distributed framework, but it enables stronger coordination between the system’s various parts. 

This set up is suitable for a typical household microgrid.  

The Microgrid agent also triggers the non-query operations that adjust the microgrid’s 

behavior according to a given microgrid’s goals. The algorithm that governs the behavior of the 

modeled algorithm is presented here as an illustrative example. During requirements elicitation, I 

was given the following priorities for the behavior of the microgrid: 

 

1. The loads should be serviced whenever possible, including non-critical loads.  

2. Charging the batteries always takes priority over selling power. 

3. Power should not be purchased to charge batteries. 

4. When power is needed for the microgrid, self-generated power should always be used first. 

 

These priorities represent a typical residential microgrid whose stakeholders expect any 

interruptions in service to be temporary, consider grid stability to be more important than 
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maximizing profits, and whose non-critical loads aren’t set up in a way that allows them to take 

advantage of off-peak hours. 

These priorities were then translated into a set of rules shown in Figure 13. 

 

 

Figure 13: Microgrid Control Flow 

This rule set was then implemented in OCL as a set of conditional statements that alter the 

state of the system, as seen in Figure 14. 

context Microgrid::adjust() 

  post adjustment:  

    if OperationalMode = 'Islanded' then 

   if (getTotalGeneratorOutput()) < (getTotalCriticalLoadAmount()) then 

  battery->forAll(BatteryMode = 'Discharging')  

  --and load->forAll(l:Load | l.IsCritical = false).LoadMode = 'Off' 

   else 

  if (getTotalGeneratorOutput()) < (getTotalLoadAmount()) then 

   battery->forAll(BatteryMode = 'Discharging') 

  else 

   if battery->forAll(StateOfCharge = 100) then 

    getTotalGeneratorOutput() = getTotalLoadAmount() 
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   else 

    battery->forAll(BatteryMode = 'Charging') 

   endif 

  endif 

   endif 

 else 

   if (getTotalGeneratorOutput()) < (getTotalLoadAmount()) then 

  CommerceMode = 'Buying' 

   else 

  if battery->forAll(StateOfCharge = 100) then 

   CommerceMode = 'Selling' 

  else 

   battery->forAll(BatteryMode = 'Charging') 

  endif 

   endif 

    endif 
Figure 14: OCL Operation 

The modeled behavior accomplishes the elicited priorities, ensuring that the grid prioritizes 

making power available to the consumers, only discharging batteries when the grid is in islanded 

mode, and only selling excess power when all current power needs are met and the batteries are 

fully charged. 

This does not represent the only possible set of goals for a microgrid. For instance, a microgrid 

that provides power to safety critical equipment could place even more emphasis on having power 

available in case of emergency, while a microgrid that had ample non-critical loads could 

prioritize minimizing costs by shutting down non-critical loads or discharging batteries when 

power is most expensive. Section 6.3 discusses some possible goal sets to be modeled in future 

work. 

The model of system behavior modeling went through the same Iterative Development process 

as the model of its structure. The initial flow chart was incomplete, and only the development of 

the textual specification ensured that all relevant scenarios were covered by the model. Behavior 

modeling also forced changes to structure modeling by adding the required state attributes to the 

Microgrid, Generator, and Battery classes.  
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The current behavior model is simplified for the sake of comprehensibility. It does not, for 

example, deal with the possibility of shutting down one Generator while keeping the rest going. 

That possibility was considered during the development, but ultimately eschewed because it 

would be too complex to implement in vanilla OCL. Notably, the use of state changes in the 

model is partially due to the fact that it’s one of the few available ways to model control flow in 

OCL. Future work modeling more complex behavior, particularly time-dependent behavior, may 

need to incorporate additional tools, such as the use of one of several OCL-based imperative 

languages. 
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VI. CONCLUSION 

6.1 Work accomplished 

As outlined in the Methodology section, my work went through an iterative process, beginning 

with requirements elicitation and continuing with the creation of a class diagram and a formal 

specification, with each step increasing the accuracy and detail of the model. 

6.2 Outcomes achieved 

After undergoing the steps described above, I was able to create a formal model of a microgrid 

consisting of a UML class diagram, an OCL specification verified by the application of USE, and 

an associated vocabulary document. The model describes a residential microgrid made up of 

photovoltaic solar panels, wind turbines, and Critical and Non-Critical Loads, controlled by a 

Multi Agent System, with rules governing its behavior based on a priority queue. 

The end result is an extensible model that can be used as foundation and template for future 

work with formal modeling of microgrids. This model satisfies my initial goals, though the next 

section indicates further work that could improve or extend the model. 

6.3 Future Work 

As noted above, my model is made to be extensible and can therefore be used to pursue 

multiple avenues of further research. 

A potential first step would be to expand the model to cover more use cases. Non-renewable 

power sources would be added to the Generator class, and additional power storage options would 

be added to the battery class. The Microgrid class would be expanded with more explicit error 

checking. Direct interaction between different microgrids would be added to the model.   

To demonstrate the usefulness of formal modeling to the planning stages of an engineering 

project, I would like to create a sample microgrid bounded by more specific constraints. As 
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outlined in the Methodology section, the currently existing constraints deal mostly with conditions 

that are physically impossible or universally unsafe. The sample microgrid would operate under 

more specific restrictions; it would have a maximum number of batteries, a maximum allowable 

height for wind turbines, a minimum amount of total provided power and stored power based on 

the average load, and other realistic restrictions to be included as part of a potential engineering 

project. 

I would also like to create several alternative rule sets for control flow to better showcase the 

versatility of the model. The rule set presented in this thesis emphasizes stability and keeping the 

batteries full when possible. Alternative goals to be explored in the future include: maximizing 

financial advantage by selling power during peak hours and buying it during off-peak hours; 

ensuring that power storage is full at a specific time (such as the beginning of the night in 

predominantly solar-powered microgrid); balancing non-critical loads and power storage; 

maximizing environmental benefits; minimizing wear and tear on microgrid components. All of 

these rule sets can be modeled using the model in its current state. 
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Appendix A 

Vocabulary 

 
Description Notes And Constraints 

Data 

Type 
Units 

Classes:     

Microgrid A small network of 

electricity users with a local 

source of supply 

    

Load Consumes electrical power     

Battery Any power storage system We are exclusively focused 

on chemical batteries 

  

Generator A device that converts 

motive power (mechanical 

energy) into electrical power 

for use in an external circuit 

    

SolarPanel A panel designed to absorb 

the sun's rays as a source of 

energy 

    

WindTurbine A turbine having a wheel 

rotated by the wind to 

generate electricity 

    

      

Attributes:      

      

 MainGrid     

GridElectricityPrice Amount of money paid per 

watt of electricity bought 

from the grid 

  Real  

GridDemand Amount of electricity the 

grid is willing to buy 

Due to difference in sizes 

may be irrelevant for smaller 

microgrids 

Real  

GridFrequency Nominal frequency of the 

oscillations of alternating 

current (AC) in an electric 

power grid 

  Real  
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GridVoltage An electromotive force or 

potential difference  

expressed in volts 

  Real  

        

  Microgrid     

MicrogridID A unique ID Must be unique String  

Price Amount of money paid per 

watt of electricity sold to the 

grid 

Price for buying and Selling 

is different usually utility 

power companies will charge 

more when buying and will 

pay less when buying 

electricity 

Real Dollar 

OperationalMode Grid Connected or Islanded Transition is not being 

considered by the current 

model 

String  

Frequency Nominal frequency of the 

oscillations of alternating 

current (AC) in an electric 

power grid 

Must be between 60.02 and 
59.98 HZ 

 

Real Hertz 

      

        

  Generator     

GeneratorID A unique ID Must be unique String  

Voltage An electromotive force or 

potential difference  

expressed in volts 

  Real Volt 

RampRate The increase or reduction in 

output per minute 

  Real Mw/min 

Cost Cost of generating electricity In our case cost is sum of 

principal plus maintenance 

cost 

Real Dollars 

GeneratorRating The product of the voltage 

per phase, the current per 

phase, and the number of 

phases 

  Real kVA 

Output Current output of the 

generator measured in Watts 

  Real Watt 

        

  Load     
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LoadID A unique ID Unique String  

LoadAmount Total amount of power 

demanded by the load 

  Real kWh 

IsCritical Whether this load is a critical 

load 

  Real kWh 

LoadMode Whether this load should be 

filled 

On/Off String  

        

  Battery     

BatteryID A unique ID Unique Real  

Voltage 

An electromotive force or 

potential difference  

expressed in volts 

 Real Volt 

Capacity 

A measure (typically in 

Amp-hr) of the charge stored 

by the battery 

  Real Amp-hr 

Energy density 
The amount of energy stored 

per unit volume 

  Real  

Specific energy 

density 

The amount of energy stored 

per unit mass 

  Real  

Power density 
The amount of power per 

unit volume 

  Real  

MaintenanceCost 
  Of the battery, not the 

electricity 

Real Dolalrs 

State of Charge  
The equivalent of a fuel 

gauge 

  Real Percent 

BatteryMode 

Whether the battery is 

receiving/Ready to receive 

power or putting it out 

Charging/Discharging String  

        

  Solar Panel     

Tilt Angle of the solar panel   Real Degrees 

Inverter efficiency 

It converts the variable direct 

current of a photovoltaic 

solar panel into alternating 

current 

 Real Percent 

Time of Day   Related to solar irradiance   

Temperature Temperature of the air   Real Celsius 
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Solar irradiance 
How much light is hitting the 

solar cell 

Determined party by 

occlusion 

  

        

  Wind Turbine     

Rotor Size The size of the rotors   Real Meters 

Temperature Temperature of the air     

Blade speed Speed of the blades   Real m/s 

Air density 
How dense air is - varies 

with elevation 

  Real  

Tower Height 
The height of the wind 

turbine 

  Real Meters 

Wind speed Wind speed   Real  
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Apppendix B 

Class Diagram (created in UML) 
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Appendix C 

Formal Specification 

Created in USE, incorporating USE notation for objects and relationships and OCL notation for 

constraints and operations 

--------------------------------------------------------------------------------------------------------------------- 

model Microgrid 

 

--  datatypes 

 

--  enum OperationalMode { GridConnected, Islanded } 

--  enum GeneratorKind { Solar, Wind } 

--  enum GeneratorMode {On, Off} 

--  enum LoadMode {On, Off} 

--  enum BatteryMode {Charging, Discharging} 

--  enum CommerceMode {Selling, Buying, Neither} 

 

-- datatype Time 

-- operations 

--   static Time(hour: Integer, minute: Integer, second: Integer) : Time 

--   static now() : Time 

--   < (time2 : Time) : Boolean 

--   > (time2 : Time) : Boolean 

--   = (time2 : Time) : Boolean 

--   <> (time2 : Time) : Boolean 

--   after(when : Time) : Boolean 

--   before(when : Time) : Boolean 

 

-- end 

 

-- classes 

 

abstract class Microgrid 

attributes 

  MicrogridID: Integer 

  Price : Real 

  OperationalMode : String -- GridConnected, Islanded 

  CommerceMode: String -- Selling, Buying, Neither 

  Frequency: Real   

operations 

  adjust() 

  getPrice() : Real = Price 

  getOperationalMode() : String = OperationalMode   

  getFrequency() : Real = Frequency   
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  getGeneratorVoltage(): Bag(Real) = self.generator.Voltage 

  getGeneratorOutput(): Bag(Real) = self.generator.GeneratorOutput   

  getTotalGeneratorOutput(): Real = self.generator.GeneratorOutput->sum() 

  getElectricityPriceMain(): Real = self.maingrid.GridElectricityPrice 

  getBatteryVoltage(): Bag(Real) = self.battery.Voltage   

  getBatteryCapacity(): Bag(Real) = self.battery.Capacity 

  getBatteryStateOfCharge(): Bag(Real) = self.battery.StateOfCharge 

  getLoadAmount(): Bag(Real) = self.load.LoadAmount  

  getTotalLoadAmount(): Real = self.load.LoadAmount->sum() 

  getTotalCriticalLoadAmount(): Real = self.load->select(l:Load | l.IsCritical = 

true).LoadAmount->sum() 

  getSolarTilt(): Bag(Real) = self.generator->select(g:Generator | g.GeneratorKind = 

'Solar').oclAsType(SolarPanel).Tilt   

  getSolarIrradiance(): Bag(Real) = self.generator->select(g:Generator | g.GeneratorKind = 

'Solar').oclAsType(SolarPanel).SolarIrradiance 

  getAirDensity(): Bag(Real) = self.generator->select(g:Generator | g.GeneratorKind = 

'Wind').oclAsType(WindTurbine).AirDensity   

  getWindSpeed(): Bag(Real) = self.generator->select(g:Generator | g.GeneratorKind = 

'Wind').oclAsType(WindTurbine).WindSpeed   

  getGridElectricityPrice(): Real = self.maingrid.GridElectricityPrice  

  getGridDemand(): Real = self.maingrid.GridDemand    

  changeOperationalMode() 

  sellToGrid() 

  buyFromGrid() 

   

end 

 

abstract class Load 

attributes 

  LoadID: Integer 

  LoadAmount: Real 

  IsCritical: Boolean 

  LoadMode: String 

operations 

  getLoadAmount() : Real = LoadAmount  

end 

 

abstract class Generator 

attributes 

  GeneratorID: Integer 

  Voltage: Real 

  RampRate: Real   

  Cost: Real 

  GeneratorRating: String 

  GeneratorOutput: Real 

  GeneratorKind: String   
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  GeneratorMode: String 

operations 

  getVoltage() : Real = Voltage  

  getRampRate() : Real = RampRate   

  getCost() : Real = Cost    

  getGeneratorRating() : String = GeneratorRating  

  getGeneratorOutput() : Real = GeneratorOutput 

  RampUp() 

  RampDown() 

  start() 

  stop() 

end 

 

class SolarPanel < Generator 

attributes 

 Tilt: Real 

 InverterEfficiency: Real 

 Temperature: Real 

 SolarIrradiance: Real 

 TimeOfDay: Real 

operations 

  getTilt() : Real = Tilt 

  getInverterEfficiency() : Real = InverterEfficiency     

  getTemperature() : Real = Temperature    

  getSolarIrradiance() : Real = SolarIrradiance  

  getTimeOfDay() : Real = TimeOfDay  

end 

 

class WindTurbine < Generator 

attributes 

 RotorSize: Real 

 BetzLimit: Real 

 Temperature: Real 

 BladeSpeed: Real 

 PitchAngle: Real 

 AirDensity: Real 

 WindSpeed: Real 

 TowerHeight: Real 

operations 

  getRotorSize() : Real = RotorSize   

  getTemperature() : Real = Temperature    

  getBladeSpeed() : Real = BladeSpeed  

  getPitchAngle() : Real = PitchAngle 

  getAirDensity() : Real = AirDensity     

  getWindSpeed() : Real = WindSpeed    

  getTowerHeight() : Real = TowerHeight    
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end 

 

class Battery 

attributes 

  BatteryID: Integer 

  Voltage: Real 

  Capacity: Real 

  EnergyDensity: Real 

  SpecificEnergyDensity: Real 

  PowerDensity: Real 

  MaintenanceCost: Real 

  StateOfCharge: Real 

  BatteryMode: String 

operations 

  getVoltage() : Real = Voltage 

  getCapacity() : Real = Capacity     

  getEnergyDensity() : Real = EnergyDensity    

  getSpecificEnergyDensity() : Real = SpecificEnergyDensity  

  getPowerDensity() : Real = PowerDensity   

  getMaintenanceCost() : Real = MaintenanceCost 

  getStateOfCharge() : Real = StateOfCharge         

  charge() 

  discharge() 

end 

 

class MainGrid 

attributes 

  GridElectricityPrice: Real 

  GridDemand: Real 

  GridVoltage: Real 

  GridFrequency: Real 

operations 

  getGridElectricityPrice() : Real = GridElectricityPrice 

  getGridDemand() : Real = GridDemand     

  getGridVoltage() : Real = GridVoltage    

  getGridFrequency() : Real = GridFrequency    

end 

 

association GridGenerator between 

  Microgrid[1] role microgrid 

  Generator[*] role generator 

end 

 

association GridBattery between 

  Microgrid[1] role microgrid 

  Battery[*] role battery 
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end 

 

association GridLoad between 

  Microgrid[1] role microgrid 

  Load[*] role load 

end 

 

association MicroMain between 

  Microgrid[1] role microgrid 

  MainGrid[1] role maingrid 

end 

 

 

-- Constraints 

 

constraints 

 

context Microgrid 

-- All IDs must be unique and positive 

inv: 

self.generator->forAll(a, b | a.GeneratorID <> b.GeneratorID) and self.generator->forAll(a | 

a.GeneratorID > 0) 

inv: 

self.battery->forAll(a, b | a.BatteryID <> b.BatteryID)and self.battery->forAll(a | a.BatteryID > 

0) 

inv: 

self.load->forAll(a, b | a.LoadID <> b.LoadID)and self.load->forAll(a | a.LoadID > 0) 

-- Frequency Must be within a safe range 

inv: 

  Frequency > 59.98 and Frequency < 60.02 

inv: 

Price > 0 

inv:  

OperationalMode = 'Islanded' or OperationalMode = 'GridConnected' 

 

context Load 

inv: 

LoadAmount > 0 

 

context Generator 

inv: 

Cost > 0 

inv: 

GeneratorOutput >= 0 

inv: 

Voltage >= 118 and Voltage <= 122 
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inv: 

GeneratorKind = 'Solar' or GeneratorKind = 'Wind' 

 

context Battery 

inv: 

Capacity > 0 

inv: 

EnergyDensity > 0 

inv: 

SpecificEnergyDensity > 0 

inv: 

PowerDensity > 0 

inv: 

MaintenanceCost > 0 

inv:  

StateOfCharge >= 0 and StateOfCharge <= 100 

 

context Microgrid::adjust() 

  post adjustment:  

    if OperationalMode = 'Islanded' then 

   if (getTotalGeneratorOutput()) < (getTotalCriticalLoadAmount()) then 

  battery->forAll(BatteryMode = 'Discharging')  

  --and load->forAll(l:Load | l.IsCritical = false).LoadMode = 'Off' 

   else 

  if (getTotalGeneratorOutput()) < (getTotalLoadAmount()) then 

   battery->forAll(BatteryMode = 'Discharging') 

  else 

   if battery->forAll(StateOfCharge = 100) then 

    getTotalGeneratorOutput() = getTotalLoadAmount() 

   else 

    battery->forAll(BatteryMode = 'Charging') 

   endif 

  endif 

   endif 

 else 

   if (getTotalGeneratorOutput()) < (getTotalLoadAmount()) then 

  CommerceMode = 'Buying' 

   else 

  if battery->forAll(StateOfCharge = 100) then 

   CommerceMode = 'Selling' 

  else 

   battery->forAll(BatteryMode = 'Charging') 

  endif 

   endif 

    endif 
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context Microgrid::changeOperationalMode() 

  post changePost: if OperationalMode = 'Islanded' then OperationalMode = 'GridConnected' else 

OperationalMode = 'Islanded' endif 

 

 

context Battery::charge() 

  pre: self.BatteryMode = 'Discharging' 

  post: self.BatteryMode = 'Charging' 

 

context Battery::discharge() 

  pre: self.BatteryMode = 'Charging' 

  post: self.BatteryMode = 'Discharging' 

   

   

context Microgrid::sellToGrid()   

  post: self.CommerceMode = 'Selling' 

   

context Microgrid::buyFromGrid() 

  post: self.CommerceMode = 'Buying' 
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