

University of North Dakota
UND Scholarly Commons

Theses and Dissertations

Theses, Dissertations, and Senior Projects

1-1-2020

Evaluation Of Gas Hydrate In Gas Pipeline Transportation

Paschal Ogadi Mokwenye

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation

Mokwenye, Paschal Ogadi, "Evaluation Of Gas Hydrate In Gas Pipeline Transportation" (2020). *Theses and Dissertations*. 3383. https://commons.und.edu/theses/3383

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

Evaluation of Gas Hydrate in Gas Pipeline Transportation

Prepared by:

Paschal Ogadi Mokwenye

Bachelor of Engineering, Teesside University, 2016

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

In partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

December

2020

Name:Paschal Ogadi MokwenyeDegree:Master of Science

This document, submitted in partial fulfillment of the requirements for the degree from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved.

Legang Ling Kegang Ling Kegang Ling	
Vamegh Rasouli	
Hui Pu Hui Pu Hui Pu	
Bailey Bubach Bailey Bubach	

This document is being submitted by the appointed advisory committee as having met all the requirements of the School of Graduate Studies at the University of North Dakota and is hereby approved.

Chris Nelson Dean of the School of Graduate Studies

Date

PERMISSION

Title	Evaluation of Gas Hydrate in Gas Pipeline Transportation
Department	Petroleum Engineering
Degree	Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies. It is understood that any copying or publication or other use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.

Paschal Ogadi Mokwenye

December 1, 2020

TABLE OF CONTENTS

TABLE OF	CONTENTSv		
LIST OF FIGURESvii			
LIST OF TA	BLESix		
ACKNOWL	EDGEMENTSx		
ABSTRACT			
CHAPTER	1 INTRODUCTION		
1.1 PRO	DBLEM STATEMENT		
1.2 RES	SEARCH OBJECTIVES		
1.3 ME	THOD OVERVIEW		
1.4 TH	ESIS OUTLINE		
CHAPTER	2 LITERATURE REVIEW7		
2.1 DIS	COVERY OF GAS HYDRATES7		
2.2 GAS	S HYDRATE FORMATION		
2.2.1 St	ages of Hydrate Formation		
2.2.1	Mechanisms of Hydrate Formation		
2.2.2	Causes of Hydrate Formation		
2.2.3	Gas Hydrates Structures		
2.3 EFF	ECTS OF GAS HYDRATES		
2.3.1	Gas Hydrate Occurrence During Drilling in Offshore Regions		
2.3.2	Problems with Flow Assurance		
2.3.3	Corrosion in Gas Pipelines		
2.4 CUI	RRENT HYDRATE PREVENTION METHODS		
2.4.1	Hydraulic Method		
2.4.2	Thermal Method		
2.4.3	Mechanical Method		
2.4.4	Chemical Method		
2.5 GAS	S HYDRATES AS A POSSIBLE SOURCE OF ENERGY		
2.6 RES	SEARCH AND EXPERIMENTS ON GAS HYDRATES		
2.6.1 Efficienc	Prediction of Hydrate Deposition in Pipelines to Improve Gas Transportation y and Safety By (Zhang, Et Al 2019)		
2.6.2	Hydrate Formation in Pipelines By (Dorstewitz And Mewes, 1995)35		

2.6.	3 Empirical Correlations	. 36
CHAPT	FER 3 METHODOLOGY	. 39
3.1	DATA COLLECTION	. 39
3.2	MODEL DEVELOPMENT	. 40
3.3	MODEL EVALUATION	. 44
CHAPT	ΓER 4 RESULTS	.46
4.1 DEVL	AVERAGE RELATIVE DEVIATION (ARD) AND AVERAGE ABSOLUTE ATION (AAD)	. 46
CHAPT	FER 5 DISCUSSION	. 50
5.1 Avera	Analysis of Pressure -Temperature Curves, Average Relative Deviation (ARD) a ge Absolute Deviation (AAD) of the Models	nd . 50
5.2 Comp	Analysis of the Hydrate Formation Temperature (HTF) for The Bakken Gas ositions	. 59
CHAPT	TER 6 CONCLUSION AND RECOMMENDATIONS	.63
6.1	CONCLUSION	. 63
6.2	RECOMMENDATIONS	. 65
NOME	NCLATURE	.66
APPEN	DIX A	.67
APPEN	DIX B	. 69
REFER	ENCE	. 85

LIST OF FIGURES

Figure 1.1 Gas hydrate showing its snow-like appearance1
Figure 2.1 Stages of Hydrate Formation9
Figure 2.2 Fluid flow in a pipe showing its Thermal boundary layer region10
Figure 2.3 Schematic of hydrate formation and deposition mechanism in subsea and
cold region long-distance gas transportation pipelines11
Figure 2.4 Disassociation curves showing the conditions of temperature and pressure.
Figure 2.5 Katz gas gravity chat
Figure 2.6 Physical geometry and Lattice structure of Gas hydrates18
Figure 2.7 Lattice structure of gas hydrates
Figure 2.8 Cell unit structures of gas hydrate structure I, II, and H
Figure 2.9 Pictorial summary of the major problems encountered during drilling
operation through a hydrate formation
Figure 2.10 Gas hydrate plugging of gas transportation pipeline
Figure 2.11 General view of corrosion damage of the specimen after exposure to gas
hydrates
Figure 2.12 Fatigue crack growth curves for steel specimen (a) without exposure, (b)
after exposure to hydrates
Figure 2.13 Pipeline pigging25
Figure 2.14 Hydrate inhibition with methanol and glycol
Figure 2.15 Natural hydrates stability
Figure 2.16 Prediction of hydrate phase equilibrium region in the subsea gas pipeline.
Figure 2.17 Comparison between temperature and pressure distribution in the pipeline
Figure 2.18 Hydrate formation pattern in a 15mm test pipe35
Figure 3.1 The Nonlinear Least Square method
Figure 3.2 Custom equation giving 97.42% accuracy

Figure 3.3 Custom equation and coefficients of A, B, and C
Figure 5.1 Pressure – temperature curve of experimental values from 460 data points
compared to all 6 models
Figure 5.2 ARD and AAD of the models from 460 experimental values
Figure 5.3 Pressure - temperature curve of experimental data obtained from Wilcox
W. et al (1941) and all 6 models
Figure 5.4 ARD and AAD of all 6 models from the experimental values of Wilcox
W. et al (1941)
Figure 5.5 Pressure – temperature curve of experimental values obtained from Sloan
D. (1990) compared to the 6 models
Figure 5.6 ARD and AAD of all 6 models for experimental values obtained from
Sloan D. (1990)
Figure 5.7 Pressure – temperature curve of experimental data from (Bahadori and
Vuthaluru, 2009) compared to the models
Figure 5.8 ARD and AAD of the models compared to experimental data from
(Bahadori and Vuthaluru, 2009)
Figure 5.9 Pressure – temperature curve for Lavan gas field
Figure 5.10 ARD and AAD for Lavan gas field
Figure 5.11 Scatterplot of Experimental temperature T(exp) (K) versus Calculated
Temperature Tcal (K) from New Correlation
Figure 5.12 Pressure – temperature curve for The Bakken Gas Composition A 60
Figure 5.13 Pressure – temperature curve for The Bakken Gas Composition B61
Figure 5.14 Pressure - temperature curve for hydrate formation temperature calculated
for The Bakken gas compositions C-H62

LIST OF TABLES

Table 3.1 Gas Composition Data from Wellheads in the Bakken Formation in North
Dakota (Provided to the EERC by several North Dakota operators)
Table 4.1 ARD and AAD of all empirical models compared to experimental hydrate
formation temperature
Table 4.2 ARD and AAD of models compared to experimental values from Wilcox
W. et al (1941)
Table 4.3 ARD and AAD of the models compared to experimental values obtained
from Sloan D. (1990)
Table 4.4 ARD and AAD of all 6 models compared to experimental valves obtained
from (Bahadori and Vuthaluru, 2009)49
Table 4.5 ARD and AAD all 6 models compared to experimental valves obtained
from (Davarnejada R. 2014)

ACKNOWLEDGEMENTS

First, I give thanks to Almighty God for the grace, wisdom, and strength given to me throughout this study, without which I would not have completed it.

I would like to thank my graduate committee Dr. Kegang Ling, Prof. Vamegh Rasouli, Dr. Hui Pu, Mrs. Bailey Bubach, and Mrs. Minou Rabiei. Their thoughtprovoking discussions and editorial comments were greatly appreciated in the development of this thesis. I would especially like to thank my advisor, Dr. Kegang Ling for invaluable discussion, unwavering support, and guidance throughout this work.

I would like to thank my loving parents Mr. Lawrence and Mrs. Nelly Mokwenye for their guidance, support, motivation, and priceless effort to help me succeed in this thesis and overall my career in petroleum engineering, I will forever be grateful to God for giving me you two. I also thank my siblings Grace, Anthony, and Jennifer for their support and encouragement throughout my studies. May God bless you all.

Finally, I would like to thank my graduate colleagues and friends, Olusegun Tomomewo and Mousa Abusurra for their assistance and encouragement throughout this work.

Thank you all and Gog bless.

Х

To my mom Nelly Mokwenye and my dad Lawrence Mokwenye.

The world's greatest parents and my biggest motivators.

ABSTRACT

Gas hydrate formation and deposition is an inherent problem in the gas production and transmission industry. It causes plugging in pipelines and damages to equipment such as pumps and separators. The continuous constriction of pipelines by hydrates can cause a pressure difference between the upstream region behind the hydrate which has high pressure and the downstream region ahead of the hydrate which has low pressure, this pressure difference can cause pipelines to rupture, putting personnel and equipment in danger. The safest and cost-effective way of preventing hydrate formation is by predicting the temperature or pressure in which they form. In the past years, many correlations have been developed to predict the conditions of hydrate formation, but the models require a complex computation, or their accuracy is limited to certain gas mixtures. This study reviews the conditions of hydrate formation and numerus mathematical models developed to predict their formation temperature for natural gas. The study also involves the development of a new model to calculate the hydrate formation temperature of natural gas, the equation was developed by carrying out nonlinear regression of 460 experimental data points in MATLAB software. Hydrate formation temperatures calculated by the model were compared to experimental values as well as other reputable models. The proposed model showed superior accuracy in calculating the reference experimental hydrate formation temperature over models developed

by Hammerschmidt (1934), Motiee (1991), Towler and Mokhatab (2005),

Safamirzaei M. (2015), and Chavoshi S. (2018). Also, the model produced the lowest Average Relative Deviation and Average Absolute Deviation from experimental values. Despite having three adjustable parameters the model produced an accuracy ranking of 1 to 3 across a range of specific gas gravity from 0.55 – 1 compared to other models. The model was also applied to gas compositions obtained from The Bakken and it showed a reliable prediction of the hydrate formation temperature when compared to the Katz gas gravity chart. The model offers a simple and good mathematical model for the prediction of hydrate formation temperature of the Bakken Formation.

CHAPTER 1 INTRODUCTION

A major problem in the gas industry is the effect of water vapor during the transportation and measurement of natural gas. Water liquefies, freezes, and accumulates within the system causing interruptions in pipeline transmission of gas. The solid crystals that form resemble snow and the flow of gas causes it to compress and accumulate at the lower spots of the pipeline, these snow-like crystals are called gas hydrates and they are known to cause plugging in gas pipelines. Figure 1.1 shows a typical example of a gas hydrate from a pipeline (Hammerschmidt, 1934).

Figure 1.1 Gas hydrate showing its snow-like appearance

Gas hydrates are clathrate structures in which guest molecules are enclosed in cages of a host lattice. They are crystalline forms of water in which the stabilization of the solid is facilitated by the presence of gas molecules inside the crystal matrix (cage) at temperatures significantly above the normal freezing point of water. It is composed of gas molecules (methane predominantly) surrounded by a cavity of water molecules (Saleh, 2002). Gas hydrates usually form when 90% of the cage is occupied which gives the gas a solid volume ratio of about 160% (Riedel, et al 2010). The molecular arrangement of gas hydrates is shown in Figure 1.2.

Figure 1.2 Molecular configuration of gas hydrates (Saleh, 2002)

Gas hydrate cages usually contain a single gas molecule and are composed of hydrogen-bonded water molecules. The structure of hydrates is called clathrates due to the entrapped (caged) nature of hydrogen molecules inside the crystal lattice of water molecules (Saleh, 2002), They form when water and gas combine at low temperature and high pressure in pipelines transporting natural gas, hydrates are lighter than water and as a result, they often reside at the point of interface between oil and water (Bellarby, 2009). The crystals have a honeycombed structure with small channels that allow gases to pass through, but with further accumulation, the flow in the pipe is entirely blocked. Gas hydrates also exist in subsea and ocean floors where conditions are ideal for formation, they trap large amounts of energy near subsea

2

seeps and around midline reservoirs (Saleh, 2002). Favorable conditions of natural gas hydrates exist in the sediment of Polar Regions and sediments covering 90% of the ocean floor. Most natural gas hydrates have more than 99% of their hydrocarbon as methane, low amounts of CO_2 , and H_2S are present (Puall, et al 2001).

1.1 PROBLEM STATEMENT

Gas hydrates form inside the pipelines transporting natural gas at subsea levels and low-temperature regions. They form around the surfaces of the pipe and gradually accumulate until they constrict the flow or cause variations in flow pressure thereby causing damage to production equipment such as pumps, compressors, and separators at either end of the pipe. They can cause catastrophic rupture of the pipes and the failure of the gas transportation system. As a result, the safest and most cost-effective way of preventing gas hydrates is by predicting the temperature or pressure in which it will form for a natural gas mixture.

Many correlations have been developed to predict the conditions of hydrate formation, but the models require a complex computation, or their accuracy is limited to certain gas mixtures. Some of them can only be used in a limited range of temperature, pressure, or specific gravity and show a significant error at higher pressure. Also, some correlations are only useful when a comprehensive analysis of gas is accessible.

1.2 RESEARCH OBJECTIVES

The objective of this study is to develop a mathematical model for the prediction of gas hydrate formation temperature across a wide range of gas compositions, and pressure. Other objectives of this study, include:

- To determine the accuracy of the model by comparing the result of the model with experimental data as well as other reputable mathematical models.
- To estimate the hydrate formation temperature of natural gas compositions obtained from the Bakken Formation.

1.3 METHOD OVERVIEW

To fulfill the objectives of this study, the following steps were taken.

- The literature review presented previous research on hydrate formation and empirical correlations from reputable studies such as Hammerschmidt (1934), Motiee (1991), Towler and Mokhatab (2005), Chavoshi S. 2018, and Safamirzaei M. (2015). Also, their correlations were compiled in an Excel sheet.
- Gas composition data for The Bakken Formation were collected from various research and publications.
- A new model was developed by carrying Non-linear regression on 460 experimental data points using MATLAB.
- The new model was applied to the 460 data points in Excel and the calculated hydrate formation temperature was compared to experimental values as well as values calculated by other models.

- The model was evaluated by comparing its Average Relative Deviation and Average Absolute Deviation from reference experimental values, the deviation was compared to other models to assess its accuracy over other models.
- Gas composition data obtained from the Bakken Formation were applied to the model to calculate the hydrate formation temperature and compared with the Katz 1945 gravity chart.

1.4 THESIS OUTLINE

This thesis consists of six chapters. The outline of this thesis is as follows:

- Chapter 1 introduces gas hydrates and how they exist in the gas industry and nature. It also outlines the statement of the problem, research objectives, and methodology.
- Chapter 2 gives an in-depth overview of gas hydrates which includes how they form, mechanisms in play, causes and effects, the structures, methods of prevention, potential as an energy source in the future, and previous experiments and empirical correlations of hydrate formation temperature.
- Chapter 3 describes the methodology behind the development of the model, evaluation of the model, and data collection of gas compositions from the Bakken Formation.
- Chapter 4 presents the results of the calculated hydrate formation temperature of the proposed model and compares it to experimental data as well as values from other models. Also, the Average Relative Deviation and Average

5

Absolute Deviation of the model were compared to reference experimental values and that of other models.

- Chapter 5 discusses the result of the temperature-pressure curve of the new model as well as the Average Relative Deviation and Average Absolute Deviation from the reference experimental values.
- Chapter 6 presents the conclusions of the study including the recommendations for future work.

CHAPTER 2 LITERATURE REVIEW

2.1 DISCOVERY OF GAS HYDRATES

In 1810, Humphrey Davy discovered a crystalline compound formed by chlorine and water, this later became the first known gas hydrate. An acetylene hydrate was later reported by Cailletet in 1878, he discovered that a sudden decrease in pressure helped in the formation of crystalline compounds. The first carbon disulfide and double hydrate hydrogen sulfide were reported by Schutzenberger and in 1882 Bordet discovered the double hydrate of phosphine and carbon dioxide. Double hydrates are compounds having a definite melting point and are not mixtures of a single hydrate, this is because the decomposition temperature of the single hydrate may be overall different from the decomposition temperature of a double hydrate. In 1897, Sully Thomas and De Forcrand found that carbon tetrachloride and acetylene forms double hydrates, they also discovered double hydrates of sulfur dioxide and ethylene in the following compounds: ethylene bromide, methyl Iodide, methylene chloride, methyl

bromide, methylene chloride, and methylene iodide (Hammerschmidt, 1934). The oil and gas industry began to take interest in gas hydrates in the 1930s when gas hydrate was found to cause blockages in pipelines. Hammerschmidt in 1934, discovered that natural gas hydrates were responsible for blocking gas pipelines.

2.2 GAS HYDRATE FORMATION

Gas hydrates are formed when water and gas (having lower molecular weight) combine at low temperature and generally high pressure (e.g. temperatures below 25 °C and pressures greater than 1.5MPa for natural gas hydrates) (Koh, et al 2001), precise conditions vary depending on the composition of the fluid. They exist onshore beneath the permafrost or offshore in shallow depths in the ocean (Sami, et al 2013). The gases that can form gas hydrates include methane (predominantly), propane, ethane, butane, chlorine, CO_2 , nitrogen even oxygen can create hydrates. At high pressure, gas hydrates can exist at temperatures greater than the freezing point of water. The solid hydrate compounds form with the aforementioned gases at elevated pressures in the presence of water. At equilibrium conditions the hydrates cause a higher amount of water to be removed from the vapor phase than in the case of liquid water at the same pressure and temperature, this is due to the lower vapor pressure of the hydrates (Hammerschmidt, 1934).

2.2.1 Stages of Hydrate Formation

There are three main stages of hydrate formation: gas dissolution, hydrate nucleation, and lastly agglomeration as shown in Figure 2.1.

Figure 2.1 Stages of Hydrate Formation (Tang, et al 2010).

Tang, et al, 2010 found that under suitable conditions, water molecules form quasicavities from hydrogen bonds. Gas molecules are trapped inside these quasi-cavities when the gases dissolve, forming labile clusters. The clusters which are in quasiequilibrium agglomerate and continue to attach until a critical radius is reached from which a stable hydrate nucleus is formed. It was found that during hydrate formation, ethane and methane occupy the smaller cavities while propane occupies large cavities. Also, when hydrates form there is a significant depletion of gas content, therefore gases in the fluid stream are consumed significantly (Tang, et al 2010).

2.2.1 Mechanisms of Hydrate Formation

The formation and deposition of hydrates in pipelines involve several processes from the formation of hydrate particles to the deposition and accumulation (growth) of the hydrate layer on the surface of the pipe. To forecast this dynamic deposition of hydrates in a pipeline, a model was developed by Zhang, et al 2019 in which the heat transfer and the hydrodynamic hydrate behavior in the pipeline were investigated. The model consisted mainly of two parts: Hydrate deposition and water condensation.

2.2.1.1 Heat Transfer

The temperature difference between the cold environment and the hot gas in the pipeline is large enough to cause heat transfer between gas pipelines in cold regions and the subseafloor (Gu, et al 2019), as a result, water condenses when the temperature of the fluid falls below the dew point temperature. In cold regions and subsea levels, low temperature and high flow pressure in pipelines causes the molecules of natural gas to diffuse around the surface of water to form hydrates which adhere to the inner surface of the pipe, this leads to variations in fluid velocity, effective inner diameter and the pressure in the pipeline relative to position and time (Rao, et al 2013). The heat exchange between the external environment and fluid leads to a decrease in fluid temperature and this takes place along the direction of fluid flow as shown in Figure 2.2 (Zhang, et al 2019).

Figure 2.2 Fluid flow in a pipe showing its Thermal boundary layer region (Zhang, et al 2019)

2.2.1.2 Dissolved Water Condensate

There are two sources of liquid moisture in gas pipelines in cold regions and subsea levels: small droplets in the gas core and the liquid condensate film near the wall (Zhang, et al 2019). A heat boundary layer having a high variation in temperature forms on the surface of the pipe as shown in Figure 2.2. This is due to a significant difference in temperature between the fluid and the environment during long-distance gas transportation in cold regions and subsea levels (Dorstewitz, et al 1994). When the fluid temperature falls below the dew point, the free water condenses and precipitate around the heat boundary layer, a liquid film forms on the pipe wall and there is a significant drop in temperature along the axis of the pipeline, as a result, water condenses on the surface of insoluble particles and small droplets form on the gas core (Gorbunov, et al 1998). Gas molecules continue to diffuse around the liquid condensate in the fluid system which consists of a thin liquid film near the pipe wall and small droplets in the gas core. A hydrate shell forms rapidly on the surface of liquid droplets when the pressure and temperature satisfy equilibrium conditions for hydrate formation, the shell grows inside the droplet to form hydrates. Also, the liquid film on the surface of the pipe wall crystallizes with gas molecules to form hydrates. These two types of hydrates deposit and accumulate on the inner wall of the pipeline to form larger hydrate layers. These processes continue until the thickness of the hydrate increases as shown in Figure 2.3.

Figure 2.3 Schematic of hydrate formation and deposition mechanism in subsea and cold region longdistance gas transportation pipelines (Zhang, et al 2019).

The formed hydrate particles and the condensate droplets are transported downstream by the high-speed fluid due to their densities being in the same range.

2.2.1.3 Hydrate Layer Growth

The growth of hydrate layers is primarily due to the deposition process which combines the hydrates from scattered drops and thin condensate film (Zhang, et al 2019). The hydrate particles adhere to the pipeline wall due to strong adhesive forces between the wet pipe wall and the hydrates. New hydrate particles form from condensed water keeping the hydrate concentration in the pipe in constant dynamic equilibrium.

2.2.2 Causes of Hydrate Formation

The causes of gas hydrate are subdivided into primary and secondary causes.

2.2.2.1 Primary Causes of Hydrate Formation

The formation of gas hydrates in natural gas transportation pipelines depends primarily on the temperature, pressure, and composition of the gas-water vapor mixture (Hammerschmidt, 1934). After all primary conditions are in effect, hydrate formation is accelerated by pressure, high velocities of the gas stream, and pulsations. As shown by the melting point diagram in Figure 2.4, high pressure and low temperature are favorable to the formation of hydrates. On a practical basis, water vapor is the only component that can be controlled regarding the composition of the gas. Although removing moisture from the gas will eliminate the possibility of any hydrate forming, it is not necessary for the gas to be free of water vapor since hydrates only form when the gas reaches the dew point. Also, if the partial pressure of water vapor in the gas is less than the vapor pressure, the gas hydrate will lose water and dissociate. The driving force behind phase change from gas to solid hydrates is thermal sub-cooling. In this case, the phase change is caused by the temperature difference between the bulk temperature and the hydrate dissociation temperature (Hammerschmidt, 1934).

The conditions of temperature and pressure are represented in disassociation curves where hydrates separate into gas and water as shown in Figure 2.4. The point of hydrate formation lies within the curve, this means that hydrates are certain to form within the curve but will not form immediately if the temperature/pressure point lies outside the disassociation curve (Saleh, 2002). The risk of hydrate agglomeration increases further inside the curve although there is a time delay with an undefined duration. The curves are generated based on experimental values or numerical predictions using the Katz gas gravity chart (Zhang, et al 2019).

Figure 2.4 Disassociation curves showing the conditions of temperature and pressure (Zhang, et al 2019).

Figure 2.5 shows Katz's 1945 gas gravity chart.

Figure 2.5 Katz gas gravity chat (Bahadori and Vuthaluru, 2009)

2.2.2.2 Secondary Causes of Hydrate Formation

As previously stated, a definite pressure, temperature, and gas-water composition are necessary for gas hydrates to form. However, it is not certain that hydrates will crystallize even after these conditions are met (Hammerschmidt, 1934). Certain secondary factors influence the formation of hydrates, these are:

- 1. Gas Stream velocity
- 2. Arrangement of the molecule of crystals
- 3. Water saturation (water vapor)
- 4. Porosity

2.2.2.1 Gas stream velocity

High gas velocity, pressure pulsation of the gas (due to compressors), or introducing small amounts of hydrate crystal can hasten the formation of hydrates. Under operating conditions, high gas stream velocity in the pipeline creates almost ideal conditions for the formation of hydrates provided the proper conditions of temperature, pressure, and water composition are established (Eucken. 1925).

2.2.2.2.2 Arrangement of crystal molecules

The general behavior of crystal formation described by Eucken (1925) explains the secondary causes of hydrate formation, it states that the formation of a crystal requires mostly a definite adjustment or generally a certain arrangement of molecules, this may not always be established at once and the lack of which is characterized by the liquid phase. Ideally, a certain amount of time elapses before the required number of molecules align into the correct position either by coincidence or accident. It is only after a nucleus or elementary crystal is formed that crystallization proceeds smoothly, this exerts a certain directional force on the neighboring liquid molecules and causes them to merge. As a result, hydrate formation is promoted by forces which tend to stir or mix, because the probability of the molecules aligning into the correct position is increased by those forces. Also, high-pressure pulsations and velocity impact a mixing action on the droplets of condensed moisture (Hammerschmidt, 1934).

2.2.2.3 Water Saturation (Water Vapor)

During the process of transporting natural gas, water is removed from the gas before transporting through pipelines, this is called separation and dehydration. However, these processes only remove the free water in the gas, therefore the pipeline system is a water-saturated gas transportation system. The phenomenon of hydrate deposition in

15

pipelines was observed by (Lingelem, et al 1994), they suggested that for a watersaturated gas system the mechanism is similar in a continuous gas system, having small proportions of free water.

Gorbunov, et al 1998 verified that condensation of water vapor takes place on the surface of small-size insoluble particles, it also determined that vapor heterogeneousphase nucleation forms alone on the surface of suspended particles with soluble sites. Gas molecules constantly diffuse in the gas core around the surface of the condensate liquid drops.

2.2.2.2.4 Porosity

Natural gas produced from the reservoir stratum generally contains small-sized insoluble particles, as a result, in an environment where small-sized insoluble particles are suspended, supersaturated vapor molecules collide constantly and undergo initial heterogeneous phase nucleation on particle surfaces. Nicholas, et al. 2008 found in a study that porosity influenced the thickness of hydrate deposition in the pipelines significantly. Free water is the main constraint of hydrate formation/deposition when conditions of pressure and temperature reach hydrate phase equilibrium in a water-saturated gas system. The study proposed that the condensate of free vapor on the cold walls of the pipe formed the free water in a water-saturated system.

2.2.2.3 Other Factors Affecting Hydrate Formation

Other factors that influence hydrate formation include (Zhang, et al 2019)

- 1. Adhesion between hydrate particles and the pipe wall,
- 2. Spatial distribution characteristic of the gas-liquid phase, and

3. Fluid flow rate.

Particle surface energy, the thickness of the dielectric layer, and Hamaker number affect the nature of deposition of the particles (Chein, et al 2005). A parametric analysis was carried out by (Chaudhari, et al 2018) to investigate the effect of mixture velocity, liquid loading, and interfacial tension on hydrate formation with the use of hydrate risk correlation which uses the steady-state and transient dynamic multiphase flow simulation on a long subsea tieback. The study deduced that the flow assurance risk increases with an increase in mixture velocity and liquid loading, however it decreases with a decrease in the interfacial tension.

2.2.3 Gas Hydrates Structures

Gas hydrates form pentagonal cubic structures in their crystal lattice. The hydrocarbon molecules (in this case methane) are lodged in the center of the cubes and bounded (caged) by water molecules. There are three main structures of gas hydrates that have been found Structure I (SI), Structure II (SII), and Structure H (SH) having a cubic (isometric) lattice (Sloan, et al 2008). All the structures contain large and small cavities but only molecules with the appropriate size and geometry enter the cavities (Dorstewitz, et al 1994). Figure 2.6 shows the physical geometry and lattice structure of methane hydrates, it shows that the gas molecule is located at the center of the water cavity.

Figure 2.6 Physical geometry and Lattice structure of Gas hydrates (Studentenergy.org)

Methane and natural gas typically form hydrate Structure (I) but forms Structure II or H if higher hydrocarbons are present in the gas mixture as is the case with thermogenic gas components (Riedel, et al 2010). Figure 2.7 shows the lattice structure of the gas hydrate.

Figure 2.7 Lattice structure of gas hydrates (Bellarby, 2009)

2.2.3.1 The Structure I (SI)

Structure (I) has two main structures of cavities: a small pentagonal dodecahedral cavity which consists of 12 pentagonal rings of water (20 molecules of water) and a large tetrakaidekahedral cavity consisting of 2 hexagonal and 12 pentagonal rings of water (24 molecules of water) (Koh, et al 2002). The arrangement of the cubic

cavities is an in-body-centered packing and the cavities are large enough to contain methane, ethane, and gases having a similar range of molecular diameter such as hydrogen sulfide and carbon dioxide hydrates (Sami, et al 2013).

2.2.3.2 Structure II (SII)

Structure (II) also has two main structures: a pentagonal dodecahedral cavity and a large hexakaidecahedral cavity which consists of 12 pentagonal and 4 hexagonal rings of water (28 molecules of water). They are packed like diamonds in an octagonal shape, this leads to some cavities being large enough to contain not only ethane and methane but also larger gas molecules such as isobutane and propane.

2.2.3.3 Structure H

This structure requires both small molecules such as methane and larger molecules of typical gas condensates or oil fractions. Figure 2.8 shows the cell units and structures of hydrates (Sami, et al 2013).

Figure 2.8 Cell unit structures of gas hydrate structure I, II, and H (Sami, et al 2013).

2.3 EFFECTS OF GAS HYDRATES

Gas hydrates have a wide range of effects on the oil and gas industry from upstream drilling and production to the midstream transportation, compression, and separation systems of natural gas. Gas hydrates are responsible for plugging in natural gas pipelines, they deposit on walls of the pipeline thereby reducing the effective flow diameter of the pipe. This causes fluctuations in the pressure of the fluid stream by causing an increase in pressure in areas where there are hydrate deposits and a decrease where there are no deposits (Sami, et al 2013).

2.3.1 Gas Hydrate Occurrence During Drilling in Offshore Regions

The complexity and challenges of offshore drilling increases with increase in water depth. One main challenge is the formation of gas hydrates, during deepwater drilling it is likely to encounter shallow sediments containing natural gas, if encountered, the gas could enter the drilling fluid causing gas hydrate formation under high pressure and low temperature (Poberezhny, et al 2019). Also, gas hydrates could easily form when drilling mud circulation is stopped and gas enter into the fluid, in cases where the drilling mud is not treated with hydrate inhibitors, this can lead to unexpected gas kick during drilling which can block the annular clearance, pipe or other equipment such as the blowout preventer (BOP) which may result in catastrophic failure of the system in some situations. (Xiaolan, et al 2011).

Solid hydrates can plug well kill-lines and chokes causing problems in well control. Hydrates can stop the circulation of drilling fluid and prevent the drill string from

20

moving if it forms in the annulus between the drilling string and casing, this can seriously affect drilling operations. Hydrates can also form in the riser, plugging the flow of drilling fluid. Figure 2.9 shows a summary of the major problems caused by gas hydrates while drilling through gas hydrate formations (Sami, et al 2013).

Figure 2.9 Pictorial summary of the major problems encountered during drilling operations through a hydrate formation (Sami, et al 2013).

2.3.2 Problems with Flow Assurance

Pipeline transportation is a common means of transporting oil and gas from the wellhead to production sites. Gas hydrate particles form when the pressure and temperature of the fluid in the pipeline falls within the hydrate zone in the phase diagram, these hydrate particles could eventually plug the pipeline. When gas hydrates plug transmission pipelines, operations become uneconomical, production stops for weeks or sometimes months in large extended pipelines. The propagation of hydrates tends to develop a plug that gradually separates the pipe into two pressure zones: a high-pressure zone between the high-pressure gas source and the plug, and a low-pressure zone between the plug and the gas recovery section. Figure 2.10 shows a typical hydrate plug in a gas transportation pipeline (Sami, et al 2013).

Figure 2.10 Gas hydrate plugging of gas transportation pipeline (Polartrec.com) A pipe leak and explosion can occur due to the growth in pressure. The higher pressure can destroy the pipe when there is a large difference in pressure between the upstream and downstream sections. Both failures can put personnel in danger and damage equipment.

2.3.3 Corrosion in Gas Pipelines

Gas hydrates cause pitting corrosion of pipelines that are in acidic or neutral environments. Acidic gases such as CO_2 and H_2S , when dissolved in water accelerate the internal corrosion of pipelines as the gas components of hydrate formation (Poberezhny, et al. 2017). Specimen with gas hydrates formed on the inner surface show an increased rate of localized and general corrosion on their surfaces as shown in Figure 2.11.

Figure 2.11 General view of corrosion damage of the specimen after exposure to gas hydrates (Poberezhny, et al 2019).

(Poberezhny, et al 2019) investigated the influence of gas hydrates on the fatigue test of a St 20 steel pipe where tests were performed at pure bending in air. Specimens were tested after exposure to gas hydrate and without any pretreatment. The curve in Figure 2.12. shows a three-stage kinetics growth of fatigue crack, also a slight higherlevel cyclic deformation on the fatigue growth curve was observed in the pipe after exposure to gas hydrates, it may be attributed to corrosion damage of the pipe surface.

Figure 2.12 Fatigue crack growth curves for steel specimen (a) without exposure, (b) after exposure to hydrates (Poberezhny, et al 2019)

The rate of growth of fatigue crack was higher by 5-7% for the pipe specimen after exposure to hydrates compared to the specimen without pretreatment, it was attributed to the increase in surface damage due to the formation of hydrates. The fatigue test shows that the duration of the low-frequency fatigue stage was influenced by hydrates causing a shortening of the stage (III) shown in Figure 2.12, this corresponds to the serviceability of the pipeline. It also shows an increase in the deformation for steel specimen exposed to hydrates. Similar behaviors were noted for materials of sea pipelines and drill pipes (Poberezhny, et al 2019).
2.4 CURRENT HYDRATE PREVENTION METHODS

The most effective strategy for managing hydrates in an oil production system is staying outside the temperature-pressure envelope where hydrates are stable. Examples of this are insulating the flow path or adding a heat source which can keep the temperature of the fluid sufficiently above the predicted hydrate formation temperature during steady-state operation, this will also allow for adequate time to reduce or depressurize the flow. The purpose of reducing the pressure is to lower the temperature of hydrate formation to below the ambient temperature to allow for an extended shut-in time (Saleh, 2002). There are four main methods of combating gas hydrate plugs to ensure a continuous flow.

- 1. Hydraulic method
- 2. Thermal method
- 3. Mechanical method
- 4. Chemical method

2.4.1 Hydraulic Method

The hydraulic removal method involves depressurizing the fluid stream thereby dissociating the hydrate plug, due to the porous structure of the plugs in the gas pipelines, this method appears promising. However, it is only suitable for gaseous hydrocarbon as depressurization in liquid causes vaporization. Lowering the flow pressure does not dissolve a hydrate plug immediately, this is because the disassociation of hydrates is highly endothermic (absorbs heat from the surroundings) which delays the break-up of the plug (Saleh, 2002).

2.4.2 Thermal Method

The thermal method involves an in-situ delivery of high temperature (heat) flow towards the hydrate plug area through the pipeline wall to raise the temperature of the system above the hydrate formation temperature. This method can be achieved for external pipelines but not suitable for subsea pipelines.

2.4.3 Mechanical Method

The mechanical method involves pigging to clean the pipeline of hydrate deposits. This method involves moving a large spherical or cylindrical disc made of a flexible material, having an outside diameter almost equal to the inside diameter of the pipeline. An example of these flexible materials includes neoprene rubber. The disadvantage of this method is that shutting down production to pig the pipeline is expensive and causes downtime (Sorheim, 2005). Figure 2.13 shows an example of a pipeline pigging operation.

Figure 2.13 Pipeline pigging (Picchemicals, 2019).

2.4.4 Chemical Method

The technology adopted by the oil and gas industry for the prevention of gas hydrates in pipeline transportation involves the introduction of a thermodynamic inhibitor such as methanol into the natural gas fluid flow. However, as oil and gas exploration moves into extreme environments (such as deep-sea, offshore exploration, and production) the temperature and pressure conditions become more severe in the field, as such the concentration of inhibitors required for the prevention of hydrate formation increases significantly, most times to excess levels. Hence other technologies have been developed in the form of low-dosage chemicals such as kinetic or anti-agglomerate inhibitors. These compounds function by retarding the hydrate formation time to longer periods than the resident time of the gas inside the hydrate-prone area of the pipeline. Compared to thermodynamic inhibitors these low dosage inhibitors offer significant environmental and economic advantages. The main aim of low dosage inhibitors is to interfere with the mechanism of hydrate formation (Koh, et al 2002).

The chemical process involves the use of two types of additives thermodynamic inhibitors (THI) and Low dosage hydrate inhibitors (LDHI), they are further subdivided into the following (Sami, et al 2013)

- 1. Thermodynamic Inhibitors (THI)
 - i. Alcohols (e.g. Methanol)
 - ii. Glycols
- 2. Low-dosage hydrate inhibitors (LDHI)

- i. Surfactants
- ii. Kinetic Inhibitors
- iii. Anti-agglomerates

2.4.4.1 Thermodynamic Inhibitors (THI)

Thermodynamic inhibitors reduce the water movement and reaction by shifting the hydrate phase boundary to a higher pressure and lower temperature, this can prevent hydrate formation effectively (Sami, et al 2013). Considering that hydrates are similar to ice, chemical deicers that remove or prevent ice from accumulating can also work for gas hydrates.

2.4.4.2 Alcohols (Methanol)

Alcohols have proven effective in combating ice formation and gas hydrate control. They contain the hydroxyl (OH) group which ensures solubility in water. The simplest form of alcohol is methanol (CH3OH) and it is the most available/widely used in the gas industry. The addition of sufficient amounts of these compounds creates a condition whereby the temperature and/or pressure required for hydrate formation needs to be lower for it to form (Koh, et al 2002). Methanol has a relatively low molecular weight, this allows it to penetrate the hydrate cavities and layers to effectively dissolve the hydrates.

However, due to this low molecular weight, methanol is lighter than water and as a result, may prove ineffective injecting it from the wellhead downhole into the hydrate plug submerged with oil. It is effective when dealing with very light oil. Thermodynamic inhibitors such as methanol are used to prevent hydrate formation after a shut-down where the range of time is much longer. Plots showing the effectiveness of alcohols in hydrate inhibition are used to formulate the required dosage rates for hydrate inhibition of completion and intervention fluids, keeping in mind that less methanol or glycol should be used when brine is used in drilling fluid due to its inherent inhibition characteristics. Figure 2.14 is a curve showing the effectiveness of various alcohols in hydrate inhibition (Bellarby, 2009).

Figure 2.14 Hydrate inhibition with methanol and glycol (Bellarby, 2009)

In some fields, it is common for higher concentrations of methanol (up to 60 mass %) to be used and may also require the addition of glycol. These large volumes of methanol and glycol raise concerns about the environment, higher cost, and logistics. Low dosage hydrate inhibitors in contrast are new categories of chemical additives that can be effective at low volumes (mass %) for the same application. (Sami, et al 2013).

2.4.4.3 Glycols

Glycols are other types of hydrate inhibitors used in the industry. Two frequently used glycols are Triethylene glycol (TEG) (HO–C2H4–O–C2H4–O–C2H4–OH) and Monoethylene glycol (MEG) (HO–C2H4–OH) also diethylene glycol (DEG) is used

occasionally (Elhady, 2005). MEG is denser and more viscous than water, it is flammable (but its flash point is higher than methanol). TEG is slightly denser and more viscous than methanol, this is due to the higher molecular weight of TEG. The greater viscosity and density of the inhibitors compared to methanol provide a useful means of removing hydrates when the glycol is injected above the hydrate plug if the glycol can migrate down the tubing and stay atop the plug before it circulates into water. Compared to methanol, glycols are easier to extract in the production system, for this reason, they are frequently used in wet gas pipelines (Brustad, et al 2005).

2.4.4.4 Low-Dosage Hydrate Inhibitors (LDHI)

LDHI can prevent the formation of gas hydrates during the nucleation and agglomeration stages. Examples of commercial low-dosage hydrate inhibitors are Inhibex 100, Inhibex 501, PVP, and GHI1 (Bellarby, 2009). Ping et al 2010 found that neither GHI1 nor PVP was able to inhibit gas hydrate nucleation, but GHI1 has a greater ability to inhibit hydrates than PVP. This higher inhibition ability is caused by diethylene glycol monobutyl-ether. The categories of low-dosage hydrate inhibitors are:

- 1. Surfactants
- 2. Kinetic Inhibitors
- 3. Anti-agglomerates

2.4.4.1 Surfactants

These chemicals disperse hydrate crystals as they form, preventing the accumulation of the hydrates in a particular location in the pipeline. A typical example of such a chemical is Lecithin which is environmentally friendly and is used as a food

29

antioxidant. Lecithin is sometimes used as a drilling fluid additive to stop blowout preventers from freezing when gas influx occurs in deep-water. Pakulski, (2007) reported an increase in hydrate formation when natural or introduced surfactant (such as anti-agglomerates) are present.

2.4.4.2 Kinetic Inhibitors

Kinetic inhibitors are polymers of various types such as polyvinyl caprolactam, they work by preventing or reducing the nucleation and subsequent crystal growth of the hydrates, thereby delaying the hydrate formation (Sami, et al 2013). A one mass % concentration is sufficient to control the formation process of gas hydrates until the gas is transported to its destination where the thermodynamic conditions for hydrate formation do not exist. A major disadvantage to these inhibitors is that once nucleation occurs, these inhibitors are unable to prevent further crystallization of hydrates (Bellarby, 2009).

2.4.4.3 Anti-agglomerates

These inhibitors work by making the surface of the hydrate hydrophobic (avoid or repel when it makes contact with water) enabling it to be dispersed in the oil phase. Anti-agglomerates do not prevent hydrates from forming but hinders already formed gas hydrates from agglomerating into lumps that cause plugging, an example of an anti-agglomerate is quaternary ammonium salt (QUATS) which is the main active component used in corrosion inhibitors (Sami, et al 2013).

2.5 GAS HYDRATES AS A POSSIBLE SOURCE OF ENERGY

Gas hydrate is commonly known as the new clean energy (Zhang, et al 2019). Methane gas hydrate occurs in large deposits in the form of sedimentary rocks and solid sediments within 2000m of the earth's crust in deep-water and permafrost regions (Giavarini, et al 2011). The volume of methane hydrates under the same standard temperature and pressure condition contains 164 times more methane than one volume of gaseous methane. Potential deposits of gas in hydrates that are distributed on land and offshore are more than 1.5x1016m³.

Methane gas can be extracted from the gas hydrates which can then be used as natural gas. Gas extraction is typically done by depressurization, thermal, and/or use of chemical inhibitors. During thermal stimulation, gas is released from the gas hydrate deposits by warming the formation through the direct heating of the formation or injection of heated fluid. Depressurization involves lowering the flow pressure of the gas hydrates, it is more preferred and economical than thermal stimulation, it does not require expending large energy and can be used to dissociate larger volumes of gas hydrates rapidly. Its main disadvantage is that it requires hydrate deposits with high porosity, also during the transportation phase the recovered gas and water may recrystallize into gas hydrates in the transportation pipelines leading to pipe plugging.

Hydrates occur in most arctic sedimentary regions and deep waters, this makes gas hydrate a widespread potential resource, they are naturally stable under cold temperature (deep-water or arctic) or high pressure (deep-water). The amount of gas

31

(mostly methane) entrapped in natural hydrates is about 50 times greater than natural gas from conventional resources (Milkov and Sassen, 2002). A region of hydrate stability exists which is determined by overlapping the geothermal temperature gradient and hydrostatic pressure with the hydrate disassociation curve for seawater, Figure 2.15 shows a typical hydrate stability zone for three varying water depths. The curve indicates that the hydrate stability zone varies with the geothermal gradient and seabed temperature. The lower portion of the stability zone indicates the point where natural gas caged in hydrates (solid) transition to natural gas (vapor). This is often identified as a bottom simulating reflector (BSR) on seismic charts though it is not a reflection of multiple seabeds.

Figure 2.15 Natural hydrates stability (Bellarby, 2009).

In some circumstances, hydrates can form the cap for gas reservoirs. In a situation where the cap is penetrated by production wells due to the cap being thin, the melting of hydrates around the wellbore could breach the cap during the production of the warmer underlying gas (Bellarby, 2009).

2.6 RESEARCH AND EXPERIMENTS ON GAS HYDRATES

The Following studies are notable research and experiments on the formation and effects of gas hydrate.

2.6.1 Prediction of Hydrate Deposition in Pipelines to Improve Gas Transportation Efficiency and Safety By (Zhang, Et Al 2019)

The study simulated a 48 km long subsea pipeline transporting natural gas to predict the hydrate phase equilibrium region in the gas pipeline. The result shown in Figure 2.16 indicates that the region of hydrate phase equilibrium in the pipeline is around 220-48000m away from the pipe inlet. This suggests that hydrate deposition takes place at a distance of 220m away from the inlet.

Figure 2.16 Prediction of hydrate phase equilibrium region in the subsea gas pipeline (Zhang, et al 2019).

Hence the safety and efficiency of the gas transportation system are significantly reduced by the formation and deposition of hydrates. It can be seen from the curve that the outlet pressure of the pipeline decreased significantly under the effect of hydrate deposition which decreased the effective inner diameter of the pipe and increased the flow velocity, this leads to an increase in pressure in the pipeline. Figure 2.17 shows a comparison between the effective radius of the pipeline and the proposed radius obtained from a test model, the results show that with an increase in hydrate deposition the effective radius of the pipe reduces. Also, there is a region of high-risk of hydrate deposition in the pipeline in which the two models showed similar results within the range of (5-20m) from the pipe inlet. Fluctuations in the outlet pressure of the pipeline due to hydrate deposition can damage pipeline joints and pumps, inducing severe accidents in production (Zhang, et al 2019).

Figure 2.17 Comparison between temperature and pressure distribution in the pipeline (Zhang, et al 2019)

2.6.2 Hydrate Formation in Pipelines By (Dorstewitz And Mewes, 1995)

Hydrate formation was investigated experimentally in a horizontal pipe flow of gas and water by Dorstewitz, 1995. The pressure, temperature, and volumetric flow rate of each fluid were measured. The tubing made of glass had an inner diameter of 15mm. The formation of plugs starts on the pipe wall because the heat transfer is directed radially outwards. The onset of hydrate formation on the pipe wall is located at the interface between water and gas. Flow regime changed from the stratified flow of water and gas to intermittent flow pattern. Water was conveyed into the upper part of the pipe. The whole perimeter of the wall was covered by hydrates and a closed hydrate layer was achieved. The hydrate layer grew radially towards the center of the pipe. In certain volumetric flow rates and heat fluxes the hydrate, layer growth lead to plugging of the pipeline as shown in Figure 2.18.

Figure 2.18 Hydrate formation pattern in a 15mm test pipe (Dorstewitz and Mewes, 1995). Due to the void distribution, the value of the related pressure loss is low. The onset of hydrate formation occurred after 50 minutes. Only small hydrate particles were observed on the pipe wall. The particles were dragged along with the flow and the hydrates decompose in the bulk flow. Due to further deposition of hydrates, the whole perimeter of the pipe was covered by hydrates after 59 minutes and a solid hydrate layer developed.

2.6.3 Empirical Correlations

Other methods have been developed to predict the hydrate formation conditions of gas mixtures without the need for expensive experiments. The methods of predicting hydrate formation include empirical correlations, graphical calculations, software packages, and thermodynamic models. In this study, empirical correlations have been reviewed. The empirical correlations evaluated included: Hammerschmidt (1934), Motiee (1991), Towler and Mokhatab (2005), Safamirzaei M. (2015), and Chavoshi S. 2018. All the equations calculate the hydrate formation temperature (T-explicit) for gas mixtures. Most correlations used to estimate the hydrate formation conditions calculate for T-explicit because the pressure is usually known from the process and/or flow transfer requirements, and hydrate formation temperature is the parameter required.

In 1934, Hammerschmidt proposed a correlation for gas hydrate formation, shown in Equation 1 (Hammerschmidt, 1934).

Where temperature T is in (°F) and pressure P is in (Psi). This equation, although simple does not consider the effect of gas specific gravity on hydrate formation. Motiee (1991) developed Equation (2). Where temperature T is in (°F) and pressure P is in (Psi).

$$T = -238.24469 + 78.99667 \log P - 5.352544(\log P)2 + 349.473877\gamma - 150.854675\gamma2 - 27.604065\gamma \log P.....(2)$$

The equation is widely used in the gas industry due to its accuracy in predicting the hydrate formation temperature for various natural gas mixtures but has 6 adjustable parameters which are relatively high and can lead to errors when carrying out quick hand calculations.

In 2005, Towler and Mokhatab proposed a relatively simple equation for estimating hydrate temperatures as a function of the pressure and the gas gravity shown in Equation 3.

$$T = 13.47 lnP + 34.27 ln\gamma - 1.675 ln\gamma lnP - 20.35 \dots \dots \dots \dots \dots (3)$$

Where temperature T is in (°F) and pressure P is in (Psi). (Towler & Mokhatab, 2005) In 2015, Safamirzaei proposed a T-explicit correlation for specific gravity $0.55 \le \gamma \le$ 1 shown in Equation 4. (Safamirzaei M.,2015).

Where:

$$A = 194.681789$$

 $B = 0.044232$
 $C = 0.189829$

Where P is in (kPa) and T is in (K). The study and its subsequent equation are not peer-reviewed, also the method in which the model was derived was not stated in the study.

Chavoshi S. 2018 developed a hydrate formation equation shown in Equation 5 by fitting a polynomial function to 100 experimental data points using the curve fitting tool in MATLAB software.

where P is the pressure in (kPa), γ is specific gravity, and T is the temperature in (K).

Additionally, there are other equations such as Kobayashi (Kobayashi, Song, Sloan, & Bradley, 1987) and Ameripour and Barrufet (Ameripour & Barrufet, 2009). The main advantage of these correlations is their simplicity and portability. In most cases the required input data are accessible and can be calculated with a simple calculator, also the results agree with the experimental data and sometimes better than results obtained from commercial software. Despite the advantages, these correlations have limitations, most of them can only be used in a limited range of temperature, pressure, and specific gravity and they show a significant error at higher pressure. Some correlations are only accurate for certain gas mixtures such as sweet gas or with pure formers, also some correlations are only useful when a comprehensive analysis of gas is accessible. Some models use the artificial neural network (ANN) such as (Elgibaly & Elkamel, 1998), (Zahedi, Karami, & Yaghoobi, 2009), and (Khamehchi, Shamohammadi, & Yousefi, 2013). These models are often complicated and are not suitable for hand calculations (Safamirzaei M., 2015).

CHAPTER 3 METHODOLOGY

3.1 DATA COLLECTION

In this study, 460 experimental data points were collected from 15 different studies on hydrate formation, the studies are listed in Appendix A. The units of temperature for the data points were converted to Kelvin (K) and the pressure converted to Kilopascals (kPa). Gas compositions of natural gas from the Bakken Formation were collected from various wellheads of oil and gas producing wells by the Energy and Environmental Research Center (EERC) and presented in the study by (Wocken et al, 2012) and also (Eenews, 2013) as shown in Table 3.1.

Component	Gas Composition (Mol%)							
	A	В	C	D	E	F	G	Н
H2O (Water)	0.02	0.29	0	0	0	0	0	0
N2 (Nitrogen)	5.21	7.10	1.72	0.86	1.435	1.715	9.9	2.09
CO2 (Carbon	0.57	0.51	1.72	0.86	1.435	1.715	9.9	2.09
dioxide)								
H2S (Hydrogen	0.01	2.00	0.19	0.18	0.08	0.05	1.00	0.12
sulfide)								

 Table 3.1 Gas Composition Data from Wellheads in the Bakken Formation in North Dakota (Provided to the EERC by several North Dakota operators)

C1 (Methane)	57.67	59.30	70.23	48.07	73.93	68.05	52.9	66.17
C2 (Ethane)	19.94	17.73	13.94	18.78	13.25	14.2	11.32	13.15
C3 (Propane)	11.33	9.42	6.7	14.87	5.55	8.05	8.52	7.01
I-C4 (Isobutane)	0.97	0.70	5.5	16.38	4.32	6.22	6.46	9.37
N-C4 (N-butane)	2.83	2.03	0	0	0	0	0	0
I-C5 (Isopentane)	0.38	0.27	0	0	0	0	0	0
N-C5 (N-pentane)	0.55	0.38	0	0	0	0	0	0
C6 (Hexane)	0.22	0.16	0	0	0	0	0	0
C7	0.09	0.07	0	0	0	0	0	0
C8	0.04	0.03	0	0	0	0	0	0
C9	0.01	0.01	0	0	0	0	0	0
Specific gravity	0.87	0.84	0.79	1.04	0.76	0.82	0.93	0.85

The experimental data points and gas composition data were transferred to excel to calculate the hydrate formation temperature for all the empirical models reviewed in this study.

3.2 MODEL DEVELOPMENT

The model was developed by carrying out nonlinear regression on the 460 experimental data points in MATLAB 2020 using the curve fitting tool. Using the Custom Equation tool on MATLAB, a custom equation was obtained which achieved a 0.9742 R-square value indicating a 97.42% accuracy fitting the curve of all 460 experimental data points. The following steps were taken to carry out the regression analysis.

- All 460 experimental data points of pressure, specific gravity, and temperature were imported into MATLAB as x, y, and z respectively with x and y being the input (independent variables) and z the output (dependent variable)
- The curve fitting tool was selected, and the Nonlinear Least Square method was selected as shown in Figure 3.1

Figure 3.1 The Nonlinear Least Square method

3. By continuous trial, various equations were written inside the custom equation toolbox until an equation that fit the curve of all 460 data points more accurately was written. It produced an R-square value of 0.9742, this indicates a 97.42% coverage of the experimental data points as shown in Figure 3.2

Note POTS Arror Import Import Sign Frank Import Sign Frank Import	Community Community	Workspace Workspace Name - Value 1 4 46h1 double 1 4 46h1 double
Image: Construction Image: Construct		Workspace Name - Value k 465rl double y 440rl double z 465rl double
Control C		Workspace Name - Value x 443x1 double y 443x1 double z 443x1 double
Concert Failer Concert State Conc	• • • • × × × • • • • • • • • • • • • •	Workspace Name - Value x 443x1 double y 443x1 double z 443x1 double
Nome - Image: Control of the first state Mode: Arroys File: First Your Tools Dedday Window Help File: First Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help Image: Control of the first Your Tools Dedday Window Help		Name = Value x 443x1 double y 443x1 double z 443x1 double
The Fit Yees Tool Dealing Window Heig Are do as the fit Yees Tool Dealing Window Heig Are do as the fit Yees Interfect Yees Fit are yees Yate Ya		x 443x1 double y 443x1 double z 443x1 double
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		z 443x1 double
Fit name United fit 1 Fit name United fit 1 I data		
Fit name writing fit 1 X data $\frac{1}{2}$ 1		1
Renuts General model (Ng) = 6/1% al/16/1/10/16/ Cantions Luis al/16/1/10/16/16 Cantions Luis al/16/1/10/16/16	✓ ✓ Auto fit / y) Fit Stop *C Stop Stop	
e dorari receito, contra e dorari receito, contra Generari d'ar Sec. en anto source d'ar Sec. en anto source d'arti- Receito 1,23 Table of Fin. Frances Date Proce SS E summer DF Ad S to DDS	2 (3 A)	
Details → Transme → Uata rettype Solt n-square Ure wojn-sq PANS Guidelf z vs.x.v (3/15/31/7 0/3742 440 0/3741 1.2352	2 3	
Select a file to view details 265.7000 255.7000 255.7000 255.7000 255.7000 256.7000 256.7000 X>> of Croal X>		

Figure 3.2 Custom equation giving 97.42% accuracy

4. The final equation called New Correlation was obtained, and the coefficients

of A, B, and C were defined from the regression shown in Figure 3.3

Fit name:	untitled fit 1	Custom Equation V
X data:	x ~	z = f(x , y)
Y data:	у ~	= 1 (a) * (x-a) ^b* (y*c) ^c
Z data:	z v	Ch Orthon
Weights:	(none) \checkmark	Fit Options

Results General model: $f(x,y) = (a)^*(x-a)^b * (y^*c)^c$ Coefficients (with 95% confidence bound: $a = 278.6$ (276.3, 280.9) $b = 0.02141$ (0.02108, 0.02174) $c = 0.0418$ (0.03871, 0.04489) Goodness of fit: SSE: 671.3 R-square: 0.9742 Adjusted R-square: 0.9741 RMSE: 1.235 \checkmark	
--	--

Figure 3.3 Custom equation and coefficients of A, B, and C

The equation for New Correlation is given in Equation 6, with the derived coefficients of A, B, and C given below. These coefficients were tuned optimally by MATLAB to cover the temperature range of 260 to 305 K.

Where

T = Hydrate formation temperature (in Kelvin) $\gamma = Specific$ gravity P = Pressure (in Kilopascals)

The molecular weight and specific gravity of the gas can be calculated from the gas composition of the gas mixture as shown in Equations 6 and 7.

Molecular Weight (MW^{NG})

$$= \sum \left[\frac{mol \%}{100} \times Molecular \ weight \ of \ gas \right] \dots \dots \dots (7)$$

Specific gravity $(\gamma) = \frac{MW^{NG}}{MW^{air}} \dots \dots \dots \dots (8)$

 $MW^{NG} = Molecular weight of Natural gas$

MW^{air} = *Molecular* weight of Air

The correlation was carried out in Excel with the values of pressure and specific gravity used to calculate the hydrate formation temperature.

The gas composition data of the Bakken formation obtained from EERC were designated as Gas Composition A to H.

3.3 MODEL EVALUATION

The proposed model New Correlation was evaluated based on its accuracy in calculating the reference experimental hydrate formation temperature from the 460 data points, it was also compared to models developed by Hammerschmidt (1934), Motiee (1991), Towler and Mokhatab (2005), Safamirzaei M. (2015), and Chavoshi S. 2018.

The accuracy of the models was evaluated based on their deviation from reference experimental values. The Average Relative Deviation (ARD) and Average Absolute Deviation (AAD) was used to assess the deviation of the models, it shows the suitability of a correlation to calculate the hydrate formation temperature by highlighting its deviation from the reference experimental value (Safamirzaei M. 2015). The equation for Average Relative Deviation (ARD) and Average Absolute Deviation (AAD) are shown in Equations 9 and 10.

where:

n = number of data points $T_{(K)}^{exp} = Experimental hydrate formation temperature$ $T_{(K)}^{cal} = Calculated hydrate formation temperature$

The models will also be evaluated based on their number of adjustable parameters, the higher the parameters the more the models will require complex calculations to

calculate the hydrate formation temperature, this will lead to errors when carrying simple hand calculations.

Using the New correlation, the hydrate formation temperature was calculated and compared to experimental values as well as other correlations. The gas compositions of natural gas from The Bakken were applied to the New Correlation and the hydrate formation temperature was calculated and also compared to values of Katz 1945 gas-gravity chart.

CHAPTER 4 RESULTS

The result of the hydrate formation temperature calculated for all the models including the New Correlation are given in Appendix B. Calculations were made using the pressure and specific gravity of 460 experimental data points obtained from the studies 15 listed in Appendix A. The specific gravity of the gas mixtures ranges from 0.55 - 1.

4.1 AVERAGE RELATIVE DEVIATION (ARD) AND AVERAGE ABSOLUTE DEVIATION (AAD)

Table 4.1 shows the Average Relative Deviation (ARD) and Average Absolute Deviation (AAD) of the models from the reference 460 experimental values of hydrate formation temperature. Table 4.1 also shows the number of adjustable parameters of each model. The models include the New Correlation (NC), Hammerschmidt (1934), Motiee (1991), Towler and Mokhatab (2005), Chavoshi S. 2018, and Safamirzaei M. (2015). A lower value of ARD indicates a lower deviation from experimental values and therefore a higher accuracy.

Correlations	Average Relative	Average	Number of
	Deviation (ARD)	Absolute	Adjustable
		Deviation (AAD)	Parameters
New Correlation	0.393	1.115	3
Towler and Mokhatab (2005)	0.485	1.395	4
Motiee (1991)	0.592	1.675	6
Hammerschmidt (1934)	0.998	2.892	2
Chavoshi S. (2018)	0.529	1.497	3
Safamirzaei M. (2015)	0.406	1.157	3

Table 4.1 ARD and AAD of all empirical models compared to experimental hydrate formation temperature.

The model by Motiee (1991) has the highest number of adjustable parameters with 6, this is followed by Towler and Mokhatab (2005) with 4 parameters. Models with a high number of parameters require a long and complex calculation to obtain results, this is prone to errors when doing quick hand calculations. The New correlation, Safamirzaei M. (2015) and Chavoshi S. (2018) have 3 adjustable parameters while Hammerschmidt (1934) has 2 parameters.

Table 4.2 shows the ARD and AAD of the models compared to experimental values obtained from the study by Wilcox W. et al (1941) with specific gravity ranging from 0.597 to 0.668.

Models	Average Relative	Average Absolute
	Deviation ARD	Deviation AAD
New Correlation	0.241	0.700
Towler and Mokhatab (2005)	0.437	1.282
Motiee (1991)	0.618	1.779
Hammerschmidt (1934)	1.275	3.747
Chavoshi S. (2018)	0.314	0.909
Safamirzaei M. (2015)	0.360	1.048

Table 4.2 ARD and AAD of models compared to experimental values from Wilcox W. et al (1941).

Table 4.3 shows the ARD and AAD of the models compared to experimental values

obtained from Sloan D. (1990) with specific gravity ranging from 0.57 to 0.8.

Table 4.3 ARD and AAD of the models compared to experimental values obtained from Sloan D. (1990)

Models	Average Relative	Average Absolute
	Deviation ARD	Deviation AAD
New Correlation	0.353	1.006
Mokhatab 2005)	0.441	1.268
Motiee (1991)	0.670	1.901
Hammerschmidt (1934)	0.955	2.778
Chavoshi S. 2018	0.496	1.407
Safamirzaei M. (2015)	0.436	1.250

Table 4.4 shows the ARD and AAD of all 6 models compared to experimental values obtained from the study carried out by Bahadori and Vuthaluru (2009).

Table 4.4 ARD and AAD of all 6 models compared to experimental valves obtained from (Ba	hadori
and Vuthaluru, 2009)	

Models	Average Relative	Average Absolute
	Deviation ARD	Deviation AAD
New Correlation	0.550	1.543
Towler and Mokhatab (2005)	0.646	1.841
Motiee (1991)	0.451	1.277
Hammerschmidt (1934)	1.393	3.973
Chavoshi S. (2018)	0.662	1.853
Safamirzaei M. (2015)	0.465	1.305

Table 4.5 shows the ARD and AAD of all 6 models compared to experimental values obtained from the study carried out by Davarnejada R. (2014) on the Lavan gas field which has a specific gravity of 0.65.

Table 4.5 ARD and AAD all 6 models compared to experimental valves obtained from (Davarnejada R. 2014)

Models	Average Relative	Average Absolute
	Deviation ARD	Deviation AAD
New Correlation	0.480	1.380
Towler and Mokhatab (2005)	0.951	2.787
Motiee (1991)	0.336	0.962
Hammerschmidt (1934)	2.080	6.163
Chavoshi S. (2018)	0.463	1.310
Safamirzaei M. (2015)	0.320	0.918

CHAPTER 5 DISCUSSION

The most accurate way of determining the hydrate formation conditions of natural gas transported in pipelines is by measuring the formation pressure and temperature directly, this process is expensive, time-consuming, and not feasible for long and subsea pipelines. As a result, correlations, and thermodynamic models have been developed to estimate the hydrate formation conditions without carrying out experiments. When using thermodynamic models, it is possible to improve the model's accuracy by adjusting parameters, if the predicted results significantly deviate from experimental values. The ARD and AAD of the New Correlation was compared to that by Hammerschmidt (1934), Motiee (1991), Towler and Mokhatab (2005), Chavoshi S. 2018, and Safamirzaei M. (2015) to assess its accuracy. The result of the pressure-temperature curve of all the models will be discussed in this chapter.

5.1 Analysis of Pressure -Temperature Curves, Average Relative Deviation (ARD) and Average Absolute Deviation (AAD) of the Models

Figure 5.1 shows the pressure-temperature curve of 460 experimental data points compared to the values calculated by the 6 models. Specific gravity range from 0.55-1. The New correlation (colored yellow) showed the highest accuracy in following the experimental curve compared to other models. It tracked the experimental curve more closely across the range of pressure and specific gravity. There is a slight deviation at higher pressure, but overall, the New Correlation followed the experimental points very closely.

Figure 5.1 Pressure – temperature curve of experimental values from 460 data points compared to all 6 models

Figure 5.2 shows the bar chart of ARD and AAD for all 6 models, the New correlation has the lowest ARD of 0.3932 and AAD of 1.1149 compared to other models. This shows that the New correlation has superior accuracy in calculating the HTF across the range of specific gravity, due to its lower deviation from experimental values compared to the other models. Safamirzaei M. (2015) model shows the second-highest accuracy followed by the Towler and Mokhatab (2005)

Figure 5.2 ARD and AAD of the models from 460 experimental values.

Figure 5.3 shows the pressure-temperature curve of experimental values obtained from Wilcox W. et al (1941) compared to all 6 models. The study has 32 data points with the specific gravity ranging from 0.59-0.67. The New Correlation shows excellent accuracy, tracking the experimental points more accurately than all the other models. This is confirmed by the values of ARD and AAD in Figure 5.4 which shows that New Correlation has the lowest ARD of 0.2413 and AAD of 0.4644. It is followed by Chavoshi S. 2018 which has the second-lowest ARD and AAD.

Figure 5.3 Pressure - temperature curve of experimental data obtained from Wilcox W. et al (1941) and all 6 models.

Figure 5.4 ARD and AAD of all 6 models from the experimental values of Wilcox W. et al (1941).

Figure 5.5 shows the pressure-temperature curve of experimental values obtained from Sloan D. (1990) compared to the 6 models. The study has 123 data points with the specific gravity ranging from 0.58-0.80. The New Correlation produced the highest accuracy following the experimental points more accurately than the other models. This is followed by Safamirzaei M. 2015 which produced the second-highest accuracy. The chart of ARD and AAD, showed in Figure 5.6, shows that the New Correlation has the lowest deviation from experimental values with ARD of 0.3524 and AAD of 1.0057. Safamirzaei M. 2015 has the second-lowest deviation with ARD of 0.4360 and AAD of 1.2498.

Figure 5.5 Pressure – temperature curve of experimental values obtained from Sloan D. (1990) compared to the 6 models.

Figure 5.6 ARD and AAD of all 6 models for experimental values obtained from Sloan D. (1990)

Figure 5.7 shows the pressure-temperature curve of experimental data collected from (Bahadori and Vuthaluru, 2009) compared to values from all 6 models. The study has 22 data points with the specific gravity ranging from 0.55-1. The model by Motiee (1991) produced the highest accuracy, tracking the experimental point, this is followed by the Safamirzaei M. (2015) model. The New Correlation produced the third-highest accuracy compared to the other models, it followed the experimental curve closely except for slight deviations at high pressure. The chart of ARD and AAD in Figure 5.8 shows that the model by Motiee (1991) with the ARD of 0.4514 and AAD of 1.2765. Safamirzaei M. (2015) showed the second-lowest ARD and AAD, followed by the New Correlation produced the third-lowest ARD of 0.5503 and AAD of 1.5427.

Figure 5.7 Pressure – temperature curve of experimental data from (Bahadori and Vuthaluru, 2009) compared to the 6 models

Figure 5.8 ARD and AAD of the models compared to experimental data from (Bahadori and Vuthaluru, 2009)

Figure 5.9 shows the pressure-temperature curve of experimental data collected by Davarnejad, R. (2014) from the Lavan gas field with a specific gravity of 0.65. The curve is compared to that of all 6 models. The curve shows that Safamirzaei M. (2015) produced the highest accuracy, tracking the experimental point closely, this is followed by the model by Motiee (1991). The New Correlation produced the third-highest accuracy following the experimental curve closely up to the pressure of 10000 kPa where it starts to deviate. The chart of ARD and AAD in Figure 5.10 shows that Safamirzaei M. (2015) has the lowest ARD (0.3203) and AAD (0.9184) followed by Motiee (1991). The New Correlation produced the third-by Motiee (1991). The New Correlation produced the third-lowest ARD and AAD with values of 0.4796 and 1.3803, respectively.

Figure 5.9 Pressure – temperature curve of experimental data collected by Davarnejad, R. (2014) compared to the 6 models.

Figure 5.10 ARD and AAD of the models compared to experimental data from Davarnejad, R. (2014)

The New Correlation produced consistently high accuracy and overall superior accuracy in predicting the hydrate formation temperature of natural gas mixtures compared to other models. The experimental values of pressure and specific gravity range from 330 to 68600 kPa and 0.55 to 1.0 respectively. The New correlation having only three adjustable parameters, requires less complex calculations than those proposed by Motiee (1991), Towler and Mokhatab (2005), and Safamirzaei M. (2015) which have logarithmic functions and as such require more complex calculations. The New Correlation offers a simple mathematical equation that can accurately predict the hydrate formation temperature of various gas mixtures. Figure 5.11 shows the scatterplot of Experimental HTF from all 460 data points T(exp) versus Calculated HTF from New Correlation T(cal). The plot shows that the points of New Correlation align accurately with experimental hydrate formation temperature indicating a strong agreement with the experimental data, except for some slight deviations at high temperature.

Figure 5.11 Scatterplot of Experimental temperature T(exp) (K) versus Calculated Temperature Tcal (K) from New Correlation

5.2 Analysis of the Hydrate Formation Temperature (HTF) for The Bakken Gas Compositions

Figure 5.12 shows the pressure-temperature curve of The Bakken gas composition A with a specific gravity of 0.87. The values of HFT were calculated using the New Correlation and compared to Katz's 1945 gravity chart having a specific gravity of
0.9. The curve of New Correlation shows very good accuracy tracking the Katz's 1945 gravity chart, with a slight deviation at higher pressures from 10000 kPa and above.

Figure 5.12 Pressure – temperature curve for The Bakken Gas Composition A

The curve also indicates that the hydrate formation temperature increases rapidly at lower pressures than at higher pressures. For example, within the pressure range of 482.63 to 6205.28, there is an increase in hydrate formation temperature of 20.31 K, this is a large increase in temperature for a small increase in pressure. However, moving to a higher pressure range of 6894.75 to 20684.27 kPa there is an increase in hydrate formation temperature of 7.14 K, this represents a small increase in temperature for a large increase in pressure.

The same increase in HFT relative to pressure can be seen in the curve of Gas Composition B shown in Figure 5.13.

Figure 5.13 Pressure - temperature curve for The Bakken Gas Composition B

Figure 5.13 shows the pressure-temperature curve of The Bakken gas composition B with a specific gravity of 0.84 compared to Katz's 1945 gravity chart having a specific gravity of 0.8. The curve of New Correlation shows very good tracking of Katz's 1945 gravity chart with slight deviations at higher pressures of 14000 kPa and above. Figures 5.14 shows the pressure-temperature curves for hydrate formation temperature calculated for The Bakken gas compositions C, D, E, F, G, and H. The curves indicate that an increase in the specific gravity causes an increase in the hydrate formation temperature at high pressures. For example, the gas composition E which has a specific gravity of 0.76 produced a HTF of 298.20 K at the pressure of 20684.27 kPa. However, gas composition D having a specific gravity of 1.04 produced a higher HTF of 302.22 (K) at the same pressure. This shows a 4.02 K

increase in HFT moving from the specific gravity of 0.76 to 1.04 suggesting that gases with higher specific gravity produce higher hydrate formation temperature.

Figure 5.14 Pressure - temperature curve for hydrate formation temperature calculated for The Bakken gas compositions C-H.

Overall, the result of the calculated HTF for The Bakken gas composition A and B compared to Katz's 1945 gravity chart show that the New Correlation calculated the HTF with reliable accuracy and the pressure-temperature curve followed the Katz gravity chart sufficiently.

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS

6.1 CONCLUSION

The model (New Correlation) proposed in this study shows a high potential for estimating the hydrate formation temperature for natural gas with a wide range of gas compositions.

The model's equation, which was developed by nonlinear regression of 460 experimental data points in MATLAB was compared to models by Hammerschmidt (1934), Motiee (1991), Towler and Mokhatab (2005), Chavoshi S. 2018, and Safamirzaei M. (2015). Overall, the New Correlation produced the highest accuracy in predicting the hydrate formation temperature compared to the other models when all data points were considered.

The following findings were made from the analysis of models.

- The pressure-temperature curve of 460 experimental data points obtained from 15 studies shows that New Correlation produced the most accurate tracking of experimental points compared to the other models. The Average Relative Deviation (ARD) and Average Absolute Deviation (AAD) show that the New Correlation has the lowest deviation from experimental values.
- 2. The pressure-temperature curve of experimental values obtained from Wilcox

- 3. W. et al (1941) having 32 data points with the specific gravity ranging from 0.59-0.67 show that the New correlation produced the highest accuracy in following the experimental points across various specific gravities. The Average Relative Deviation (ARD) and Average Absolute Deviation (AAD) show that the New Correlation has the lowest deviation from experimental values.
- 4. The pressure-temperature curve of HFT obtained from Sloan D. (1990) having 123 experimental data points with the specific gravity ranging from 0.58-0.80 shows that the New correlation produced the most accurate tracking of HFT points than the other models. The Average Relative Deviation (ARD) and Average Absolute Deviation (AAD) show that the New Correlation has the lowest deviation from experimental values.
- 5. The pressure-temperature curve of HFT obtained from the study by (Bahadori and Vuthaluru, 2009) having 22 data points show that Motiee (1991) produced the most accurate results of HFT, this is followed closely by Safamirzaei M. (2015). The New correlation produced the third-highest accuracy compared to the other models. ARD and AAD also show that Motiee (1991) has the lowest deviation. The New Correlation has the third-lowest ARD and AAD.
- 6. The result of HTF for The Bakken Gas Composition with a specific gravity of 0.837 and 0.869 calculated with the New correlation shows that it produced reliable accuracy compared to Katz 1945 gravity chart. There were slight deviations at the higher pressure.

Compared to other reputable models the New Correlation provides consistently high accuracy in predicting the hydrate formation temperature of gas mixtures

64

with a specific gravity ranging between 0.55 to 1. The model produced the highest accuracy at the range of 0.55-0.8 specific gravity. Also, the New correlation offers less complicated calculations having only three adjustable parameters and without the use of complex logarithmic functions as in the case of other models. It also offers a reliable accuracy in estimating the hydrate formation temperature of natural gas from the Bakken Formation.

6.2 RECOMMENDATIONS

The following recommendation is suggested for future research:

- 1. Further investigation of correlations of hydrate formation temperatures and pressure.
- 2. Further tuning of the adjustable parameters to obtain more accurate hydrate formation temperature at higher pressures.
- 3. Further development of the equation on MATLAB to cover the data points more accurately.
- 4. Further development of models to predict hydrate formation temperature and pressure.

NOMENCLATURE

ARD	Average Relative Deviation
AAD	Average Absolute Deviation
HFT	Hydrate Formation Temperature
Κ	Kelvins
kPa	Kilo Pascals
NC	New Correlation
Р	Pressure
T(exp)	Experimental Temperature
T(cal)	Calculated Temperature
γ	Specific gravity
Mol %	Mol percentage
MW ^{air}	The molecular weight of air
MW ^{NG}	The molecular weight of Natural gas

APPENDIX A

- Bahadori, A., & Vuthaluru, Hari. B. (2009). A novel correlation for estimation of hydrate forming condition of natural gases. *Journal of Natural Gas Chemistry*, *18*(4), 453–457. <u>https://doi.org/10.1016/S1003-9953(08)60143-7</u>
- Chavoshi, S., Safamirzaei, M., & Pajoum Shariati, F. (2018). Evaluation of Empirical Correlations for Predicting Gas Hydrate Formation Temperature. *Gas Processing*, 6(2). <u>https://doi.org/10.22108/gpj.2018.112052.1036</u>
- Chen, G.J. and Guo, T.M.: "Thermodynamic Modeling of Hydrate Formation Based on New Concepts," *Fluid Phase Equilibria* (1996) **122**, 43.
- Davarnejad, R. (2014). Prediction of Gas Hydrate Formation using HYSYS Software. *International Journal of Engineering*, 27 (9 (C)).
- Deaton, W. M., & Frost, E. M. (n.d.). *Gas Hydrates and Their Relation to the Operation of Natural-gas Pipe Lines*. 126.
- Elgibaly, A. A., & Elkamel, A. M. (1998). A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors. *Fluid Phase Equilibria*, 152(1), 23–42. <u>https://doi.org/10.1016/S0378-3812(98)00368-9</u>
- Hammerschmidt, E. G. (1934). Formation of Gas Hydrates in Natural Gas Transmission Lines. *Industrial & Engineering Chemistry*, 26(8), 851–855. https://doi.org/10.1021/ie50296a010

- Jossang, A. and Stange, E.: "A New Predictive Activity Model for Aqueous Salt Solutions," *Fluid Phase Equilibria* (2001) 181, 33.
- Nasrifar, K. and Moshfeghian, M A Model for Prediction of Gas Hydrate Formation Conditions in Aqueous Solutions Containing Electrolytes and/or Alcohol," J. Chem. Thermodynamics (2001) 33, 999"
- Salufu, S., & Nwakwo, P. (2013). New Empirical Correlation for Predicting Hydrate Formation Conditions. <u>https://doi.org/10.2118/167571-MS</u>
- Safamirzaei, M. (2015). Predict gas hydrate formation temperature with a simple correlation. *Gas*, *51*. <u>http://www.gasprocessingnews.com/features/201508/predict-gas-hydrate-formation-temperature-with-a-simple-correlation.aspx</u>
- Sloan, E.D. Jr.: *Clathrate Hydrates of Natural Gases*, Marcel Dekker, New York (1990).
- Sun, C.-Y., Chen, G.-J., Lin, W., & Guo, T.-M. (2003). Hydrate Formation Conditions of Sour Natural Gases. *Journal of Chemical & Engineering Data*, 48(3), 600–602. <u>https://doi.org/10.1021/je020155h</u>
- Towler, B., & Mokhatab, S. (2005). Quickly estimate hydrate formation conditions in natural gases. *Hydrocarbon Processing*, *84*, 61–62.
- Wilcox, W. I., Carson, D. B., & Katz, D. L. (1941). *Natural Gas Hydrates*. *33*(5),
 4.

APPENDIX B

	Specific gravity	Press ure (MPa)	Experim ental Temper atue (K)	Hammersc hmidt (1934)	Towler and Mokhat ab (2005)	Chavos hi S. 2018	Motiee (1991)	New Correlat ion	Safamir zaei M. 2015
Davarn ejad, R. (2014).	0.65028 3952	720	273.08	273.97078 36	272.521 0923	275.474 5036	270.175 9873	272.998 2404	273.131 7095
	0.65028 3952	1080	275.09	276.24909 1	275.717 6958	277.830 1194	273.941 6086	276.506 5362	276.250 0843
	0.65028 3952	1450	277.03	278.07763 87	278.040 2815	279.554 2858	276.561 9575	278.762 8952	278.425 0623
	0.65028 3952	1810	279.04	279.55899 84	279.788 6176	280.859 2144	278.470 2113	280.366 8972	280.015 7119
	0.65028	2900	281.04	283.03673 47	283.504 9113	283.653 2635	282.343 1733	283.612 1195	283.274 1455
	0.65028	3620 4350	283.12	284.84163 85 286.42561	285.253 2475 286.701	284.977 3257 286.078	284.079 0016 285.475	285.089 5484 286.208	284.753 3444 285.054
	0.05028 3952 0.65028	5800	287.08	31 289.07894	280.701 5148 288.969	280.078 8169 287.812	1322 287 585	1896 288 171	285.954 3022 287.792
	3952 0.65028	7980	289.08	81 292.28786	5411 291.485	3427 289.747	4531 289.817	6553 290.232	8535 289.775
	3952 0.65028	1052	290.96	34 295.31277	1061 293.663	3599 291.433	5138 291.658	1001 292.008	1073 291.446
	3952 0.65028	0 1560	293.04	56 300.05910	7122 296.769	6914 293.854	3076 294.134	6932 294.537	2687 293.760
	3952	0	205.04	92	8697	972	7004	9281	4101
	3952	0	275.04	07	2543	233	4942	1864	9537
	0.65028 3952	3046 0	296.98	309.44797 98	302.045 2589	298.013 3741	297.941 5271	298.844 4589	297.520 9881
	0.65028 3952	4026 0	298.99	313.92245 37	304.244 3966	299.764 2075	299.380 1414	300.649 0025	299.030 5106
	0.65028 3952	5114 0	301.14	318.05329 17	306.130 2676	301.273 8254	300.544 3084	302.202 2972	300.299 5872
	0.65028 3952	6420 0	303.08	322.25080 7	307.923 3282	302.716 1995	301.591 6572	303.684 6736	301.485 3421
Davarn ejad, R. (2014).	0.79432 2761	330	273.22	270.26295 48	269.459 5679	272.084 6861	269.227 4629	262.904 4129	269.035 6737
	0.79432 2761	660	276.88	273.51524 36	274.795 1432	276.074 1405	275.494 6336	274.431 2199	274.864 1138
	0.79432 2761	1000	279.23	275.79616 53	277.993 6183	278.493 6557	278.993 1942	278.201 6534	278.120 1716
	0.79432 2761	1340	281.16	277.57280 93	280.246 4743	280.210 5657	281.341 1697	280.511 2134	280.319 5785
	0.79432 2761	1670	283.17	279.01038 86	281.941 1336	281.509 0441	283.044 059	282.141 8196	281.926 7798
	0.79432 2761	2340	285.24	281.39574 65	284.537 7469	283.510 2984	285.547 8104	284.526 2695	284.316 0059
	0.79432 2761	3010	287.32	283.33182 79	286.475 9211	285.013 3498	287.333 4757	286.245 8276	286.045 1032
	0.79432 2761	4350	289.18	286.42561 31	289.310 4557	287.225 8878	289.816 9161	288.702 6496	288.496 2212

	0.79432	5690	291.32	288.895	291.377	288.850	291.532	290.466	290.229
	2761			5086	5283	1941	0502	676	2192
	0.79432	8040	293.32	292.366	294.038	290.954	293.621	292.718	292.397
	2761			7566	7364	9051	0585	2313	2432
	0.79432	12700	295.24	297.515	297.557	293.761	296.177	295.680	295.162
	2761			0479	8743	7078	6584	2706	8082
	0.79432	19760	297.24	303.173	300.960	296.501	298.426	298.543	297.735
	2761			4299	6612	457	7817	021	6967
	0.79432	27120	299.22	307.687	303.397	298.479	299.902	300.598	299.521
	2761			3333	8146	4182	9337	545	7806
	0.79432	37180	301.28	312.609	305.826	300.463	301.262	302.654	301.257
	2761			3413	4062	5563	0467	0869	4887
	0.79432	47560	303.19	316.770	307.721	302.021	302.245	304.264	302.583
	2761			1223	7197	1695	1498	494	0086
Bahador	0.55240	3157.8	274.82	283.716	282.000	283.235	277.872	282.251	281.805
i, A., &	1687			4225	5391	4068	4706	0391	3215
Vuthalur									
u, Hari.									
В.									
(2009).									
	0.55240	4136.85	277.59	285.984	284.170	284.846	280.129	284.025	283.574
	1687			1357	6253	2663	2691	385	3892
	0.55240	5515.81	280.37	288.599	286.482	286.572	282.443	285.889	285.408
	1687			7662	3378	3342	3605	6745	5002
	0.60073	1723.69	277.59	279.224	278.301	280.126	275.451	279.092	278.689
	6835			5326	746	8216	6788	7999	9038
	0.60073	3309.48	283.15	284.097	283.492	283.990	280.996	283.553	283.164
	6835			9555	6401	6268	0843	9291	7267
	0.60073	6756.86	288.71	290.578	289.172	288.279	286.515	288.203	287.738
	6835			2392	4733	4565	846	0726	3057
	0.60073	18098.7	294.26	301.991	297.012	294.306	293.196	294.514	293.582
	6835	4		9109	9133	3729	4127	9124	2567
	0.65079	2688.96	283.15	282.447	282.919	283.208	281.762	283.112	282.772
	8238			3883	9037	031	5015	2834	4447
	0.65079	14134.2	294.26	298.819	296.001	293.251	293.548	293.914	293.198
	8238	5		9762	4173	3509	5175	2014	4033
	0.70085	827.37	274.82	274.722	2/4.709	2/6.693	273.967	275.133	275.127
	9641	0044.0	202.15	3584	2557	9621	4029	8379	8253
	0.70085	2344.2	283.15	281.409	282.847	282.812	282.754	283.053	282.758
	9641	1757.00	200 51	05	2274	0272	8276	6/53	4869
	0.70085	4/5/.38	288.71	287.228	288.377	287.046	288.032	287.782	287.482
	9641	22442	207.04	205 559	0//3	8013	2879	9025	0038
	0.70085	23442	297.04	303.338 9564	300.839 8500	290.823	297.804	298.087	297.055
	9041	106 12	272.04	0304	0309	2219	272 107	271.254	0935
	0.80098	490.42	272.04	272.100	272.720 4615	274.475 6510	273.197 5560	1522	0521
	0 20002	1020 52	292.15	280.007	4015	282 414	2209	1323	9521 292.069
	0.80098	1930.33	205.15	280.007	203.172	202.414	204.200	203.279	203.000
	0.80008	11721.0	204.26	206 562	2431	203 316	205.818	205 264	204 704
	2446	0	294.20	290.302	297.041 5004	2703	293.010	1005	294.794
	0.00110	758 12	277 50	274.248	277 714	2703	278 002	277.241	277 515
	5252	750.42	211.37	3921	7001	5179	8523	2095	6217
	0.00110	1585 70	283.15	278 664	283 305	281.013	284 340	2075	283 127
	5252	1303.19	205.15	3739	205.505 9856	6052	4869	4291	7552
	0.90110	179263	297.04	301 864	301 680	296.643	297.017	299.486	298 830
	5252	7	277.04	9377	4967	076	1063	6906	6097
	1 00122	413.60	274.82	271 252	274 724	274 647	274 722	271.000	273 781
	8058	13.07	277.02	7388	7848	8488	8211	9295	5718
	1 00122	1344 48	283.15	277 593	283 543	281 530	283 136	283.264	283 220
	8058	1377.40	205.15	9376	6373	6399	7091	263.204	5397
	1 00122	3033.69	288 71	283 394	289 632	286 383	288.035	289.082	289.042
	8058	5055.07	200.71	3677	4379	1234	8513	5439	7481
1	0000		1	5077	1017	1207	0010	5.57	7 101

A. A. Elkamel , A. M. (1998). 9984 4310 8141 9839 689 422 k. (1998). 1.03042 2310 286 281.300 287.984 284.912 286.044 287.547 287.516 1.03042 3080 288 283.515 290.129 286.633 287.630 289.533 289.573 280.533	Elgibaly	1.03042	1810	284	279.558	286.166	283.456	284.626	285.813	285.775
Ekamel . A. M. Image: Solution of the state	, A. A.,				9984	4316	8141	9859	689	422
A. M. (1998). I. I. <thi.< th=""> I. I.</thi.<>	a Elkamel									
(1998). - </td <td>A. M.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	A. M.									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(1998).									
2215 9695 4998 6432 8853 6857 1.03042 3080 288 283.515 290.122 286.638 289.533 289.531 289.533 289.533 289.531 280.987 281.073 4 1.01540 990 279 275.737 281.456 279.805 280.989 280.987 281.071 4 1.01540 1710 283 279.170 285.538 283.035 284.497 285.225 285.177 4 2990 288 283.278 280.712 286.376 287.738 289.153 289.153 289.153 289.123 4 2990 288 280.741 286.346 284.008 286.067 283.001 38.301 283.301 285.302 288.033 283.031 286.040 286.406 286.407 288.403 288.433 288.302 3 0.95243 3000 287 277.032 277.932 277.272 277.232 277.232 277.239 277.239 2	· · · /	1.03042	2310	286	281.300	287.984	284.912	286.044	287.547	287.516
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					2215	9695	4998	6432	8853	6857
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.03042	3080	288	283.515	290.129	286.638	287.630	289.533	289.514
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					6211	7682	9581	8659	3391	1426
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.01540	990	279	275.737	281.456	279.805	280.989	280.987	281.079
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	1710	202	7478	295 529	001/	3904	8512	0/13
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.01340	1/10	203	279.170	203.330 5401	203.033 5984	204.497 6887	683	203.177
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.01540	2990	288	283.278	289.712	286.376	287.738	289.153	289.123
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	_//0	200	7549	1286	4086	1256	5045	1409
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.95243	1420	282	277.942	283.248	281.572	283.736	283.087	283.010
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3			7529	9986	4177	0597	8987	0369
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.95243	2140	285	280.741	286.336	284.008	286.406	286.067	285.978
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3			4657	8806	1114	2706	7026	5665
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.95243	3000	287	283.305	288.880	286.030	288.463	288.403	288.328
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	0.45	075	3231	1189	0098	7971	459	3823
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0./649/	945	275	2/5.469	277.013	277.953	2/7.627	277.293	277.224
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0 76497	1200	278	2195	279 /20	279 776	280.201	279 780	279 572
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6	1290	278	5027	279.420	1607	4213	9622	0321
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.76497	2430	283	281.677	284.316	283.521	285.103	284.338	284.104
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6		200	1661	984	5366	663	9264	5821
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.64630	68600	304	323.526	308.381	303.100	301.789	304.039	301.745
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1			3187	5967	6509	6964	7149	2188
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.64630	23500	296	305.594	299.929	296.357	296.400	297.095	296.006
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1			2139	6253	8856	5857	5365	752
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.64630	7000	289	290.934	290.374	288.915	288.757	289.313	288.889
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	1520	275	7420	/14/	0859	9037	2804	0042
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.00028 4	1520	213	278.384 7865	4586	279.383	274.301 8657	6564	7221
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.60028	2890	280	283.009	282,403	283 179	279 859	282.642	282.250
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	2070	200	5136	9982	2036	2692	1012	2361
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.60028	3970	283	285.627	284.930	285.073	282.434	284.744	284.351
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4			064	8172	6668	4544	3761	3483
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.57800	1840	275	279.672	278.287	280.294	274.706	279.105	278.675
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2			5802	4136	8557	0219	2885	8665
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.57800	2530	278	281.981	280.832	282.175	277.497	281.300	280.879
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	1770	202	2459	9555	6173	2355	7814	3237
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.57800	4770	283	287.252	285.901	285.958	282.710	285.490	285.059
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	2160	275	13	0157	281 140	4995	9900 280.013	2013
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.50785	2100	215	280.808 8134	0183	402	8793	6794	9212
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.56783	2960	278	283.198	281.849	283.006	278.243	282.145	281.717
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					6674	8066	7921	8029	9554	5112
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.56783	4030	280	285.756	284.321	284.846	280.806	284.181	283.750
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					6827	4987	6647	5011	6864	5433
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.56443	2370	275	281.490	279.987	281.654	276.126	280.578	280.138
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		9			3998	7088	9716	7478	5266	9068
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.56443	4410	280	286.547	284.965	285.351	281.344	284.698	284.257
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		9	(000	292	0878	2364	9973	0212	064	3325
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.56443	6090	285	289.550	287.552	287.292	285.884	280.785	280.301
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		9 0 55050	2860	275	9200 282.027	4392	7319	2004 277 /61	4302 281 744	2304
0.55959 3810 278 285.274 283.679 284.427 279.873 283.640 283.202 5 4269 5497 9473 8315 9622 2403		5	2000	215	444	332	9981	638	3585	3358
5 4269 5497 9473 8315 9622 2403		0.55959	3810	278	285.274	283.679	284.427	279.873	283.640	283.202
		5			4269	5497	9473	8315	9622	2403

	0.55959	5090	280	287.847	286.003	286.163	282.216	285.525	285.064
	5		a a	5961	5629	2872	2727	4592	4349
KATZ	0.6	20684.2	294.4	303.800	298.061	295.125	293.988	295.355	294.321
Gas		/188		2808	2/15	568	3914	3008	2086
Specific									
gravity									
(γ) 0.6									
	0.6	13789.5	293.705	298.515	294.834	292.623	291.429	292.759	292.002
		1459	5556	2927	3024	3107	7973	4775	8783
	0.6	10342.1	292.038	295.119	292.544	290.860	289.502	290.918	290.309
	0.6	3594	8889	1449	7314	8079	6066	8709	0518
	0.6	6894.75 7203	289.122	290.781	289.317	288.394	286.628	288.318	287.847
	0.6	6205.28	288.15	289 734	288 479	287 757	285 851	2708	287 193
	0.0	1564	200.15	0785	2312	3215	7958	7477	1694
	0.6	5515.80	287.316	288.599	287.541	287.046	284.968	286.879	286.453
		5835	6667	759	8332	4495	4883	1109	8471
	0.6	4826.33	286.344	287.358	286.479	286.242	283.948	286.013	285.605
		0105	4444	9963	0989	653	2553	4042	7016
	0.6	4136.85	285.65	285.984	285.252	285.317	282.745	285.008	284.613
	0.6	43/6	292 705	1449	2622	284 227	6105	381	0301
	0.0	5447.57 8647	205.705	204.434	205.801	204.227	201.288	203.809	205.419 546
	0.6	2757.90	281.761	282.643	282.025	282.898	279.455	282.322	281.929
	0.0	2917	1111	4442	2931	4379	0113	5705	0211
	0.6	2068.42	279.538	280.496	279.735	281.194	277.008	280.359	279.956
		7188	8889	7009	7221	5091	4548	7659	3649
	0.6	1378.95	276.205	277.754	276.508	278.810	273.402	277.454	277.071
		1459	5556	8489	7531	3679	5982	7669	1914
	0.6	1034.21	273.427	275.992	274.219	277.131	270.732	275.231	274.943
ΚΑΤΖ	0.7	20684.2	296 761	9275 303 800	200 8/17	296.036	207 176	207 264	296 334
Gas	0.7	7188	1111	2808	6496	8482	1776	5668	8634
Chat									
Specific									
gravity									
(γ) 0.7	0.7	10700 5	204.016	200 515	206 670	202.526	204.007	204 651	204.000
	0.7	13/89.5	294.816	298.515	296.678	293.526	294.887	294.651	294.000
	0.7	10342.1	293 288	2927	294 430	291 758	293 152	292 799	292 295
	0.7	3594	8889	1449	5386	9194	0401	4584	2566
	0.7	6894.75	291.761	290.781	291.261	289.285	290.548	290.182	289.817
		7293	1111	5353	7318	2066	2349	0533	0667
	0.7	6205.28	290.927	289.734	290.438	288.645	289.841	289.499	289.158
	0.7	1564	7778	0785	3141	8502	4475	138	0563
	0.7	5515.80	289.816	288.599	289.517	287.932	289.036	288.733	288.413
	0.7	2822 1826 22	288.092	139	8115 288 474	1832	282 105	287 862	0/38
	0.7	4020.55	200.905	207.550	200.474	5048	2865	2813	7276
	0.7	4136.85	287.872	285,984	287.269	286.198	287.005	286.850	286.560
		4376	2222	1449	5073	5319	3085	7614	2645
	0.7	3447.37	286.483	284.434	285.844	285.104	285.669	285.644	285.358
		8647	3333	1188	6208	8436	9039	2422	615
	0.7	2757.90	284.816	282.643	284.100	283.771	283.984	284.147	283.857
	0.7	2917	6667	4442	7005	9635	7557	5889	8924
	0.7	2068.42	282.594	280.496	281.852	282.062	281.729	282.172	281.8/1
	0.7	1378.95	279 261	277 754	278 683	279.671	278 393	279 248	278 966
	0.7	1459	1111	8489	5895	2705	9899	3184	8269
	0.7	1034.21	277.038	275.992	276.435	277.986	275.915	277.010	276.824
		3594	8889	9273	2853	7793	3556	2101	6253

	0.7	689.475	273.566	273.742	273.266	275.629	272.264	273.420	273.679
		7293	6667	5752	4785	8352	288	4038	7792
KATZ	0.8	20684.2	297.594	303.800	301.395	296.828	298.687	298.928	298.090
Gas		7188	4444	2808	0807	5091	801	4215	303
Chat									
Specific									
$\frac{gravity}{(x) 0.8}$									
(7) 0.8	0.8	13789 5	296 205	298 515	298 276	294 311	296 669	296 301	295 742
	0.0	1459	5556	2927	6563	8132	2996	1947	284
	0.8	10342.1	294.261	295.119	296.064	292.539	295.125	294.438	294.026
		3594	1111	1449	099	1403	3108	321	7662
	0.8	6894.75	292.316	290.781	292.945	290.058	292.791	291.806	291.533
		7293	6667	5353	6746	8123	552	2656	8959
	0.8	6205.28	291.761	289.734	292.135	289.417	292.154	291.119 5270	290.870
	0.8	5515.80	201 205	288 500	201 220	7401	9303	200 340	9817 200 122
	0.0	5835	5556	759	4819	7722	5197	6892	1915
	0.8	4826.33	290.233	287.358	290.202	287.894	290.586	289.473	289.263
		0105	3333	9963	4945	3377	1548	5094	1847
	0.8	4136.85	289.122	285.984	289.016	286.963	289.588	288.456	288.257
		4376	2222	1449	9246	8832	8437	3278	8009
	0.8	3447.37	287.872	284.434	287.614	285.867	288.374	287.243	287.049
	0.0	8647	2222	1188	693	2/01	8683	0555	033
	0.8	2/57.90	286.205	282.643	285.898	284.530	286.838	285.738	285.539
	0.8	2917	284 122	280.496	283 685	0237	28/ 77/	283 751	283 5/1
	0.0	7188	204.122	7009	203.003 9429	0648	9826	475	5023
	0.8	1378.95	280.927	277.754	280.567	280.419	281.709	280.811	280.619
		1459	7778	8489	5186	1666	2188	3322	381
	0.8	1034.21	278.566	275.992	278.354	278.730	279.422	278.560	278.464
		3594	6667	9273	9613	1707	1854	6967	4894
	0.8	689.475	275.372	273.742	275.236	276.366	276.041	274.950	275.301
	0.8	7293	2222	272.610	272 520	9237	1042	1915	272 401
	0.8	5835	8889	6696	3441	8939	7818	2905	602
KATZ	0.9	20684.2	298.011	303.800	302.760	297.528	298.523	300.403	299.647
Gas		7188	1111	2808	0116	5606	2616	7739	34
Chat									
Specific									
gravity									
(γ) 0.9	0.0	13780.5	205 027	208 515	200 686	205.005	206 774	207 763	207 287
	0.9	13789.5	7778	298.515	0277	9292	8066	5805	0565
	0.9	10342.1	294.816	295.119	297.505	293.229	295.422	295.891	295.562
		3594	6667	1449	0014	0756	4187	5126	5779
	0.9	6894.75	292.872	290.781	294.431	290.742	293.358	293.246	293.056
		7293	2222	5353	0175	8979	7063	4668	6864
	0.9	6205.28	292.316	289.734	293.632	290.100	292.792	292.556	292.390
	0.0	1304	000/	288 500	2397	3198	2024	559/ 201 792	3095 201 627
	0.9	5835	291.701	200.399 759	292.739	209.383 6596	292.144	291.782	6082
	0.9	4826.33	290,927	287,358	291.726	288.573	291,390	290,902	290.774
		0105	7778	9963	9303	3184	8604	1973	1144
	0.9	4136.85	290.094	285.984	290.558	287.640	290.496	289.879	289.763
		4376	4444	1449	2558	6696	2162	9954	4792
	0.9	3447.37	288.983	284.434	289.176	286.541	289.403	288.660	288.548
	0.0	8647	3333	1188	0073	4702	6699	7351	3974
	0.9	2/5/.90	287.316	282.643	287.484	285.201	288.015	287.148	287.030
	0.9	2068.42	285 372	280 496	285 303	283 484	286 144	285 151	285 022
	0.2	7188	2222	7009	2456	0712	0024	922	5455

	0.9	1378.95	282.316	277.754	282.229	281.080	283.348	282.197	282.085
		1459	6667	8489	2617	5177	285	2682	1609
	0.9	1034.21	280.094	275.992	280.048	279.387	281.252	279.935	279.919
		3594	4444	9273	2354	5384	8525	5248	0135
	0.9	689.475	277.177	273.742	276.974	277.018	278.141	276.307	276.739
	0.0	7293	1118	3/32 272.610	2010	/1/8	8///	272 800	274.020
	0.9	5835	273.372	6696	5161	6408	1125	275.899 4742	274.920
	0.9	482,633	274 261	271 966	274 270	274 951	275 252	272 197	273 806
	0.9	0105	1111	9619	1643	5509	7879	6077	6654
Wilcox,	0.66840	1254.84	278.816	277.161	277.290	278.860	276.176	277.996	277.704
W. I.,	8755	5827	6667	2497	9389	2461	0821	6125	4484
Carson,									
D. B., &									
Katz, D.									
(1941).									
	0.66840	1923.63	282.872	279.982	280.648	281.373	279.820	281.119	280.787
	8755	7285	2222	3971	0074	2426	6202	7542	0148
	0.66840	12265.7	295.094	297.099	295.206	292.535	293.256	293.331	292.713
-	8755	7322	4444	2688	0921	652	5023	2737	0921
	0.66840	16843.8	296.094	301.046	297.698	294.490	295.170	295.369	294.560
	8/33	9207	4444	9208	5238 200 212	0428	8218	8037	205 720
	8755	20084.2 7188	8889	2808	4867	293.703 5522	290.330	290.091	1718
Gas C	0.59666	27323.9	298.316	307.799	300.213	296.822	295.509	297.072	295.796
	8956	2315	6667	1444	8086	924	4684	8974	1115
	0.59666	1599.58	277.705	278.721	277.612	279.649	274.552	278.477	278.073
	8956	3692	5556	9369	205	5863	0953	6549	6864
	0.59666	3392.22	283.872	284.300	283.598	284.099	280.982	283.636	283.243
	8956	0588	2222	8315	972	3242	9584	9176	1669
	0.59666	6963.70 4866	289.15	290.882	289.326 7983	288.422	286.542	288.315	287.838
	0.59666	10500.7	292.038	295.291	292.597	290.921	289.456	290.948	290.328
	8956	1536	8889	8951	8107	3749	7975	5563	2073
Gas C	0.59666	14127.3	293.316	298.813	294.960	292.739	291.444	292.846	292.071
2nd	8956	5769	6667	937	4491	4918	2195	1671	5631
Series	0.0000	1000 10	AF O OO (
	0.59666	1923.63	279.094	279.982	279.081	280.735	276.188	279.788	279.380
	8930 0.50666	1285	281.816	29/1	281 625	282 624	8903 278 032	7380 281.081	281 583
	8956	6801	6667	0021	2382	5535	8575	9599	3241
	0.59666	4819.43	286.705	287.345	286.395	286.202	283.769	285.937	285.526
	8956	5348	5556	9665	6588	191	8734	5654	2439
	0.59666	8135.81	290.261	292.491	290.565	289.366	287.668	289.314	288.792
	8956	3606	1111	8723	69	6361	4271	1257	1528
	0.59666	9480.29 1279	291.205	294.145 612	291.783	290.297	288.749	290.294	289./16
	0 59666	1270	293 316	298 500	294 763	4702	291 282	292 688	2029
	8956	1983	6667	1437	7032	6577	4877	1589	0741
	0.59666	20263.6	294.983	303.517	297.833	294.965	293.727	295.154	294.133
	8956	9168	3333	5761	1549	4335	7061	9405	1721
	0.59666	17161.0	294.261	301.290	296.509	293.937	292.693	294.090	293.191
	8956	509	1111	3949	6531	8115	7989	7281	0368
	0.59666	27503.1	296.65	307.896	300.265	296.863	295.547	297.114	295.832
Gas D	0 64044	2299/10	295 538	305 283	299.813	296 251	296 376	297.015	295 0/8
Gas D	1297	1557	8889	6295	5921	1707	7586	6098	5691
<u> </u>	0.64944	1206.58	276.761	276.919	276.573	278.470	274.895	277.361	277.060
	1297	2526	1111	0502	0092	2865	9915	0518	9988
	0.64944	2185.63	281.594	280.894	281.257	281.966	280.010	281.671	281.322
	1297	8062	4444	4977	6129	366	038	5233	5158

	0.64944	3516.32	284.927	284.598	285.007	284.796	283.817	284.881	284.545
	1297	622	7778	6005	0014	0991	8735	7901	0676
	0.64944	5446.85	288.705	288.480	288.457	287.425	287.098	287.748	287.379
	1297	8262	5556	8531	653	4577	1909	5528	1672
	0.64944	8204.76	291.205	292.581	291.687	289.908	289.974	290.395	289.928
	1297	1179	5556	2554	9458	9005	3421	1677	3222
Gas D	0.64944	11996.8	293.205	296.836	294.683	292.231	292.473	292.836	292.209
2nd	1297	7769	5556	4935	7085	2104	4179	2402	8247
Series	0.440.44								
	0.64944	6170.80	289.15	289.679	289.441	288.179	287.994	288.557	288.165
	1297	////	202.029	202.042	6284	6/44	2309	3239	8933
	0.64944	9307.92	292.038	293.943	292.682	290.677	290.822	291.206 4738	290.694
	0 64944	14065 3	293 927	298 759	295 937	293 208	293 471	293 857	293 142
	1297	0488	7778	4697	9338	9996	6113	1738	8537
	0.64944	18202.1	294.983	302.067	297.970	294.800	295.029	295.512	294.628
	1297	5925	3333	6782	9166	8593	3046	7762	808
	0.64944	26544.8	296.872	307.368	300.945	297.145	297.174	297.940	296.747
	1297	1558	2222	6861	8819	8971	3566	6419	2448
Sun, C	0.65610	22545.8	295.927	305.004	299.775	296.189	296.471	297.015	295.972
Y.,	6473	5635	7778	4319	9013	224	1798	6625	0199
Chen,									
GJ.,									
Lin, W.,									
& Guo,									
1M.									
(2005).	0.65610	1044	274.2	276.048	275 578	277 691	272 022	276 227	276 102
	6473	1044	274.2	3512	4939	894	1215.952	5223	8958
-	0.65610	1580	277.2	278 640	278 841	280 108	277 589	279 495	279 155
	6473	1500	277.2	1047	828	7344	5595	8364	5645
	0.65610	2352	280.2	281.433	281.975	282.458	280.919	282.296	281.957
	6473			7113	026	7521	9143	8242	33
-	0.65610	3126	282.2	283.634	284.215	284.151	283.192	284.220	283.890
	6473			7791	5127	2827	5121	5983	2997
•	0.65610	3964	284.2	285.614	286.085	285.572	285.020	285.794	285.462
	6473			0253	939	0236	2147	7478	0463
	0.65610	5121	286.2	287.903	288.102	287.111	286.920	287.470	287.116
	6473			8431	8238	9724	133	2827	479
	0.65610	6358	288.2	289.973	289.806	288.419	288.467	288.873	288.483
	6473			0063	7994	476	9555	8738	2001
	0.65610	7212	289.2	291.238	290.799	289.183	289.345	289.687	289.266
00.450/	6473	0000	200.2	4309	3678	8415	3616	9742	7551
82.45%	0.70005	8220	290.2	292.600	292.636	290.355	291.701	291.319	290.903
CH4 + 10.770	9936			9384	/861	/15	6614	6163	/843
10.77% CO2									
6 78%									
H2S									
	0.70005	1114	276.2	276.434	277.017	278.421	276.567	277.607	277.385
	9936			3319	3062	4298	1193	1795	854
	0.70005	1385	278.2	277.782	278.719	279.697	278.433	279.282	278.999
	9936			7857	0024	4556	4697	0943	9371
	0.70005	1815	280.2	279.578	280.832	281.290	280.677	281.252	280.950
	9936			0217	1069	1209	0117	24	3399
	0.70005	2265	282.2	281.155	282.563	282.601	282.453	282.803	282.506
ļ	9936			2568	081	5261	732	3445	0507
	0.70005	3110	284.2	283.593	285.040	284.489	284.901	284.957	284.671
	9936	40.57	20 5 2	4759	8615	3668	2324	6229	2317
	0.70005	4065	286.2	285.831	287.133	286.093	286.880	286.736	286.446
	9936	4570	207.2	03/0	091	/514	04/	3303 297.505	1962
	0.70005	4570	281.2	200.805	288.048	280.798	287.720	287.505	281.208
1	7730	1	1	3431	042	1209	9230	7/07	0/0

	0.70005	4890	288.2	287.478	288.577	287.206	288.199	287.949	287.645
	9936			6965	7649	0318	5612	0123	111
	0.70005	6110	289.2	289.582	290.318	288.552	289.738	289.399	289.061
	9936			873	4703	5628	4896	7352	8221
	0.70005	6862	290.2	290.733 5077	291.225	289.256 7721	290.518 4048	290.152 2567	289.788 5142
-	0 70005	7650	290.9	291.846	292.075	289.917	291 235	290.855	290.462
	9936	7050	270.7	1976	1531	8535	1252	4313	1116
82.91% CH4 + 7.16% CO2 + 9.93%	0.68484 0337	8024	291.2	292.345 7597	292.174 0948	290.081 0521	291.072 7759	290.896 398	290.473 2394
H2S									
	0.68484 0337	1192	278.2	276.844 5103	277.233 1122	278.694 8568	276.486 7396	277.882 8004	277.621 77
	0.68484	1932	282.2	280.012 8417	281.017 1114	281.535 5892	280.566 5072	281.435 8294	281.119 4034
	0.68484	2460	284.2	281.769	282.910	282.967	282.509	283.110	282.801
	0337	3303	286.2	3149 284.081	2396	6512 284 724	4287	6701	8031
	0337	5505	200.2	9143	1582	1025	4469	151	5434
	0.68484 0337	4212	288.2	286.141 6043	287.124 0463	286.181 4028	286.598 9915	286.706 7383	286.400 2557
Deaton,	0.80260	3103	282.65	283.575	286.848	285.254	287.706	286.575	286.382
W. M.,	126			358	6081	6811	9478	2658	38
& Frost,									
E. M.	0.000(0	(07.400	074.016	070.055	274 550	275.020	275 205	274.025	074 501
(Sample	0.80260	627.422	2/4.816	273.255	274.559	275.838	275.305	274.025	274.581
A)	120	9157	000/	277 105	3745	0225	8190	8383	9000
	0.80200	1201.74	260.510	3031	279.950	279.914 7179	201.070	280.172	280.001 7208
	0.80260	1806.42	283.15	279 545	282 689	282 032	283 830	282 829	282 620
	126	6411	205.15	379	2768	1307	6257	9511	2916
	0.80260	2571.74	285.927	282.105	285.404	284.131	286.398	285.299	285.100
	126	447	7778	642	925	999	6989	6314	4782
	0.80260	3592.16	288.705	284.776	287.974	286.132	288.699	287.556	287.364
	126	855	5556	8884	0231	9376	3494	9777	9595
	0.80260	4295.43	290.038	286.314	289.348	287.209	289.878	288.744	288.545
	126	3794	8889	0949	6032	3078	8578	3716	9527
	0.80260 126	5364.12 1174	291.483 3333	288.336 7369	291.056 7142	288.552 4944	291.294 5977	290.206 4203	289.985 3378
	0.80260	6301.80 8166	292.538 8889	289.885 5763	292.295 2757	289.530 3741	292.286 5267	291.259 7609	291.010 2887
(Sample	0.65083	599.843	273.705	273.027	271.094	274.424	268.450	271.156	271.686
В	6699 0.65083	8845	5556 275.372	7412	3005	96 275.620	7045	9537	6181
	6699	0304	2222	2428	4572	023	0702	3394	4998
	0.65083	992.845	277.594	275.754	275.066	277.344	273.204	275.835	275.625
	6699	0502	4444	4106	5869	3466	0817	5775	613
	0.65083	1337.58	280.372	277.561	277.416	279.085	275.881	278.171	277.846
	6699	2915	2222	389	0756	6725	5066	277	9188
(Sample	0.69338 0674	723.949 5158	273.705 5556	273.999 8028	273.508 0409	275.859 9636	272.406 3859	273.783 6992	273.951 2778
	0.69338	806.686	274.816	274.583	274.354	276.487	273.397	274.784	274.800
	0674	6033	6667	2443	7127	5641	6997	3639	2782
	0.69338	903.213	275.927	275.212	275.239	277.144	274.419	275.773	275.675
ļ	0674	2054	7778	1378	0168	5843	0503	7559	2227
	0.69338 0674	972.160 7783	276.483 3333	275.632 4792	275.814 5763	277.573 052	275.076 1098	276.392 6684	276.238 3862
	0.69338	1172.10	277.594	276.741	277.277	278.665	276.719	277.895	277.648
	0674	874	4444	7755	9809	45	397	7625	6092

	0.69338	1241.05	278.15	277.092	277.725	279.000	277.213	278.338	278.073
	0674	6313		7396	193	1404	7521	3746	5337
	0.69338	1461.68	279.816	278.129	279.005	279.960	278.608	279.571	279.274
	0674	8546	6667	6526	4428	4948	6975	0506	8922
(Sample	0.67926	2213.21	283.15	280.985	281.970	282.293	281.436	282.287	281.968
D	2806	7091		8702	1303	9866	5067	3791	9268
	0.67926	751.528	273.705	274.199	273.498	275.963	272.074	273.900	273.996
	2806	545	5556	3493	7181	0764	569	5059	4524
	0.67926	882.528	274.816	275.081	274.758	276.895	273.550	275.338	275.246
	2806	9335	6667	5741	9858	8397	1757	1366	2842
	0.67926	1089.37	276.483	276.300	276.410	278.122	275.440	277.079	276.848
	2806	1652	3333	5617	4923	9455	0275	8732	2992
	0.67926	1399.63	278.705	277.850	2/8.3/6	279.590	277.624	279.008	278.704
	2806	5/31	2220	0258	0898	51/6	4/8	7444	8339
	0.67926	10/5.42	280.372	279.032	279.780	280.648	279.148	280.325	280.005
(Sample	2800	2006.00	2222	2321	280.007	281 747	7035	7265	281.004
(Sample	5123	2090.00	202.030	200.391	280.997	201.747 4635	5176	261.441	201.094 0103
Б	0.65278	0/1/581	275 372	275 466	274 716	277.070	272.848	275 457	275 283
	5123	7492	273.372	9841	9844	8273	272.040	1219	0581
	0.65278	1716.79	280.316	279.197	279.425	280.569	278.140	280.035	279.687
	5123	4566	6667	2994	1961	1109	845	1535	486
	0.65278	3454.27	285.927	284.450	284.934	284.718	283.825	284.824	284.491
	5123	3404	7778	6722	6786	8769	695	9188	7976
(Sample	0.63879	5253.80	289.261	288.142	287.960	287.112	286.388	287.315	286.940
F	8761	5057	1111	0884	564	8303	9352	6098	1576
	0.63879	765.318	273.705	274.297	272.741	275.729	270.125	273.366	273.395
	8761	0595	5556	1639	1495	5604	8525	3846	37
	0.63879	1241.05	277.594	277.092	276.560	278.543	274.598	277.386	277.066
	8761	6313	4444	7396	4021	0127	2557	0948	9076
	0.63879	1730.58	280.372	279.251	279.187	280.494	277.522	279.838	279.476
	8761	4081	2222	6828	2464	7223	1736	9109	6206
	0.63879	1730.58	280.372	279.251	279.187	280.494	277.522	279.838	279.476
	8761	4081	2222	6828	2464	7223	1736	9109	6206
	0.63879	3461.16	285.927	284.467	284.663	284.607	283.218	284.580	284.232
	8/01	8101	1118	2021	3/01	4892	8/08	2895	286.507
	0.038/9	4909.00	288.705	287.514	287.424	280.703	285.880	280.874	280.507
	0.63870	/193	288 705	287 488	287.402	286.686	285.865	2223	2373
	8761	4693.27	288.703 5556	267.466 5684	1529	280.080 981	205.005	280.855	230.489
	0.63879	8652.92	292.038	293 149	291 902	290.136	289 922	290 536	290.040
	8761	0403	8889	5264	4118	9653	3836	5994	2671
(Sample	0.63983	9390.65	292.705	294.040	292.568	290.645	290.515	291.082	290.556
G	6517	9433	5556	7802	8134	3401	5576	0039	2268
	0.63983	758.423	273.705	274.248	272.693	275.686	270.097	273.301	273.344
	6517	3022	5556	4156	4567	1138	4173	4383	2253
	0.63983	1234.16	277.594	277.058	276.539	278.519	274.602	277.362	277.045
	6517	1555	4444	2802	4576	4691	6319	2195	6535
	0.63983	1723.68	280.372	279.224	279.178	280.480	277.539	279.829	279.468
	6517	9323	2222	53	2721	3142	9183	3806	2749
	0.63983	3468.06	285.927	284.483	284.700	284.628	283.281	284.612	284.266
	6517	2918	7778	7084	6004	6237	7325	8857	1719
	0.63983	5033.17	288.705	287.743	287.642	286.863	286.116	287.056	286.687
	6517	2824	5556	8484	5675	5873	7795	1945	4023
	0.63983	5033.17	288.705	287.743	287.642	286.863	286.116	287.056	286.687
(C	0.0120	2824	201 492	8484	201.000	280.007	7795	1945	4023
	0.09130	2026	291.483	291.953	291.999	289.907	291.034 1827	290.769	290.364
п	0.60126	2920	3333	1024	272 820	9127 276 112	4027	011/	1731
	0.09130	3022	274.200 5556	274.248 4156	213.829	4723	603/	∠/4.18/ 6397	214.282
	0.69136	944 581	275 372	275 466	2200	277 380	274 728	276.118	2220
	0127	7492	213.312	9841	213.347	1585	1846	9734	0236
	0141	1774		7071	201	1505	10-10	7154	0250

	0.69136	1254.84	277.594	277.161	277.770	279.048	277.221	278.389	278.119
	0127	5827	4444	2497	2187	6015	1251	2006	4584
	0.69136	1758.16	280.372	279.359	280.409	281.031	280.063	280.878	280.568
	0127	311	2222	527	8594	9488	7651	4887	5908
(Sample	0.63218	2130.48	282.038	280.709	280.687	281.663	278.960	281.177	280.810
Ι	6651	0004	8889	25	0584	3233	3464	9149	1003
	0.63218	792.897	273.705	274.489	272.868	275.877	270.091	273.570	273.545
	6651	0887	5556	0746	684	2103	7834	1498	543
	0.63218	972.160	275.316	275.632	274.480	277.060	272.010	275.327	275.111
	6651	7783	6667	4792	9735	6013	3336	2739	761
	0.63218	1310.00	277.594	277.430	276.840	278.801	274.733	277.676	277.337
	6651	3886	4444	0264	2607	4298	7839	4989	2043
(Sample	0.62942	1813.32	280.372	279.571	279.351	280.686	277.447	279.998	279.625
J	92	1168	2222	6385	4991	9834	3912	1435	254
	0.62942	882.528	2/3./05	2/5.081	2/3.652	2/6.4/4	270.950	2/4.462	2/4.320
-	92	9555	274 261	275 508	2465	201	9044	275.008	1965
	92	5065	1111	6784	6762	2902	7831	5851	1382
	0.62942	1020.42	274.816	275 914	274 801	277 318	272 307	275 673	275 425
	92	4079	6667	1922	3373	408	5055	7432	2713
	0.62942	1027.31	274.816	275.953	274.854	277.357	272.369	275.728	275.476
	92	8837	6667	6542	6313	6277	8527	352	0714
	0.62942	1172.10	275.927	276.741	275.898	278.126	273.580	276.773	276.462
	92	874	7778	7755	1257	6659	3602	9972	7727
	0.62942	1441.00	277.594	278.037	277.532	279.335	275.437	278.337	277.978
	92	4274	4444	4033	6763	5912	3251	3949	7892
	0.62942	1454.79	277.594	278.099	277.608	279.391	275.521	278.407	278.047
	92	3789	4444	0071	0495	4644	8003	6813	8512
	0.62942	2027.05	280.372	280.352	280.233	281.344	278.400	280.780	280.408
	92	8644	2222	4556	3364	5432	6249	8677	8589
	0.62942	1992.58	280.372	280.230	280.097	281.243	278.254	280.661	280.288
-	92	4858	2222	6345	5848	2171	7894	1821	837
	0.62942	2006.37	280.372	280.279	280.152	281.283	2/8.313	280.709	280.337
	92	4572	2222	292.974	1032	9319	4038	292.097	1194
	0.02942	2840.04	205.15	202.074	202.903	203.343	261.202 4614	203.007	282.720 5826
	0.62942	3764 53	285 372	285 172	285 132	285.025	283 142	28/ 050	284 600
	92	7482	203.372	3005	491	8489	8163	62	4855
	0.62942	4033.43	285.927	285.764	285.678	285.439	283.978	285.413	285.051
	92	3017	7778	0573	5093	108	1526	3256	6708
-	0.62942	4026.53	285.927	285.749	285.664	285.428	283.964	285.402	285.040
	92	8259	7778	2419	9694	8529	942	0948	5192
	0.62942	4054.11	285.927	285.808	285.718	285.469	284.017	285.446	285.085
	92	7288	7778	3949	9909	7707	6296	8972	0004
	0.62942	4364.38	286.483	286.454	286.302	285.912	284.583	285.929	285.563
	92	1367	3333	8379	6061	1954	5004	9583	6687
	0.62942	4674.64	287.038	287.069	286.846	286.324	285.105	286.378	286.006
	92	5445 4691 54	8889	2079	1235	8395	0069	3/38	3908
	0.62942	4081.54	287.038	287.082	280.857	280.333	285.110	280.387	280.015
	0.62942	5067.64	287 594	287.806	287 484	286.810	285 711	286.903	286 523
	92	661	4444	8855	9772	6254	2248	8611	0575
	0.62942	5433.06	288.15	288.456	288.036	287.230	286.228	287.355	286.965
	92	8747		943	0188	3007	2449	8997	5349
	0.62942	5812.28	288.705	289.099	288.569	287.637	286.724	287.792	287.391
	92	0398	5556	2725	9759	5503	0477	9771	5337
	0.62942	6984.38	289.816	290.912	290.023	288.749	288.048	288.979	288.537
	92	9138	6667	1216	8369	3403	1425	1789	9803
(Sample	0.71862	8384.02	290.927	292.811	293.116	290.628	292.347	291.766	291.361
K	1772	4868	7778	1645	4505	2836	6373	1373	7753
	0.71862	1068.68	274.261	276.186	277.068	278.324	276.978	277.579	277.394
	1772	738	1111	533	1897	3719	527	3923	3368

	0.71862	1220.37	275.372	276.988	278.102	279.101	278.112	278.625	278.388
	1772	2041	2222	9465	2216	2044	2586	0604	8151
	0.71862	2247.69	280.372	281.098	282.860	282.703	283.074	283.059	282.779
	1772	0878	2222	948	4391	9273	5829	82	9093
	0.71862	3164.69	283.15	283.734	285.526	284.742	285.671	285.386	285.118
	1772	3598		0436	0859	5293	7121	3796	1075
(Sample	0.58220	4591.90	285.983	286.908	285.691	285.771	282.641	285.330	284.906
L	0927	8357	3333	2985	6772	3466	1782	121	9284
	0.58220	1261.74	273.705	277.195	275.374	278.123	271.513	276.438	276.053
	0927	0585	5556	3031	42	1858	3096	3093	697
	0.58220	1427.21	274.816	277.975	276.358	278.843	272.655	277.360	276.951
	0927	476	6667	3765	6431	8688	6292	5318	8558
	0.58220	1420.32	274.816	277.944	276.319	278.815	272.611	277.324	276.916
	0927	0002	6667	2024	9665	5132	0615	7811	7951
	0.58220	2027.05	277.594	280.352	279.160	280.906	275.814	279.866	279.443
	0927	8644	4444	4556	8672	0005	6824	9268	1162
	0.58220	2854.42	280.372	282.912	281.894	282.932	278.763	282.198	281.785
	0927	9519	2222	1374	6071	43	4635	0855	4216
	0.58220	4047.22	283.15	285.793	284.683	285.014	281.636	284.506	284.092
	0927	2531		6337	2367	6099	0463	6342	1019
	0.58220	7425.65	287.705	291.538	289.530	288.670	286.303	288.431	287.920
	0927	3605	5556	0972	4484	3988	7468	8314	978
	0.58220	10328.3	289.816	295.104	292.165	290.677	288.668	290.544	289.914
G 1 6	0927	4643	6667	0339	6745	5363	0071	3/2/	6725
Salufu,	1	413.685	2/4.816	2/1.253	2/4.706	2/4.641	274.724	270.995	2/3.769
S., &		4376	6667	6889	0118	0437	7618	8308	6144
Nwakw									
0, P.									
(2015).	1	1244 47	202.15	277 502	202 526	201 522	202 147	282 240	202 214
	1	1344.47	285.15	277.595	283.520	281.525	285.147	285.249	285.214
	1	2022.60	200 705	9200	20	7195	2049	280.067	280.027
	1	3033.09	200.70J	205.594	289.010	200.370	200.033	209.007	269.027
	0.7	827 370	274.816	274 722	274 601	276.687	273 028	275 110	275 112
	0.7	827.370	6667	3642	3651	1765	273.928 8462	7329	8983
	0.7	2344 21	283.15	281.409	282 830	282.805	282 722	283.039	282 743
	0.7	748	205.15	1053	5762	1202.005	2826	205.057	189
	0.7	4757 38	288 705	287 228	288 361	287.039	282.003	2037	287.467
	0.7	2532	5556	0938	7803	7587	7402	1427	0613
	0.7	23442.1	297.038	305.558	300.825	296.815	297.845	298.072	297.039
	017	748	8889	963	8295	9826	3803	4699	8097
	0.65	758.423	274.816	274.248	272.924	275.773	270.653	273.481	273.534
		3022	6667	4156	5695	0219	8414	536	8349
	0.65	2688.95	283.15	282.447	282.903	283.201	281.726	283.097	282.757
		5344		3749	3373	0691	2483	7481	0828
	0.65	14134.2	294.261	298.819	295.986	293.244	293.521	293.899	293.182
		5245	1111	9783	7611	1539	1015	1247	4881
	0.6	1723.68	277.594	279.224	278.284	280.119	275.409	279.078	278.674
		9323	4444	53	6823	9433	8623	4796	7725
	0.6	3309.48	283.15	284.097	283.476	283.983	280.957	283.539	283.149
		3501		9641	333	6623	4811	3898	3622
	0.6	6756.86	288.705	290.578	289.156	288.272	286.480	288.188	287.722
		2147	5556	2424	9754	3823	7394	2898	6879
	0.6	18098.7	294.261	301.991	296.998	294.299	293.166	294.499	293.566
		3789	1111	9093	5372	1482	1382	8031	319
Chen,	0.63109	841.999	274	274.819	273.318	276.215	270.600	274.084	273.990
G.J., and	0548	781		2621	6907	9487	5108	8923	1979
Guo,									
T.M.:									
	0.63109	940.999	274.612	275.445	274.198	276.861	271.645	275.036	274.842
	0548	7552		2369	1771	5075	9418	4764	8779
	0.63109	989.999	275.113	275.737	274.599	277.156	272.118	275.457	275.228
	0548	7425		7463	7879	7986	72	0341	5223

	0.63109	1113.99	276.449	276.434	275.533	277.844	273.206	276.406	276.116
	0548	971		3304	4245	4884	6313	2571	2332
	0.63109	1435.99	278.174	278.014	277.542	279.329	275.494	278.342	277.985
	0548	9626		9411	2327	9093	4138	3509	9524
	0.63109	2004.99	281.234	280.274	280.183	281.294	278.391	280.735	280.365
	0548	9478		6768	0116	7321	9137	483	009
	0.63109	2846.99	284.349	282.891	282.957	283.373	281.301	283.133	282.774
	0548	9259		6873	0164	565	0025	324	6416
	0.63109	3761.99	286.739	285.166	285.161	285.036	283.514	284.986	284.629
	0548	9021	207 461	3122 295 767	8805	8381	8/25	5/49 285 447	2434
	0.05109	4054.99	287.401	265.707	263.710	283.430 4835	284.037	203.447	203.007 1383
	0.63100	09J 1306.00	288 072	286 337	1373	4033	284 558	285 874	4365
	0.05107	888	200.072	815	2578	8101	204.558	8823	203.311
	0.63109	4628.99	288 627	286 980	286 802	286 280	285 105	286 345	285 976
	0548	8796	200.027	6872	6835	9356	8384	9336	6539
	0.63109	5024.99	289.182	287.728	287.452	286.774	285.722	286.880	286.502
	0548	8693		8563	11	8455	2126	5274	5537
	0.63109	5370.99	289.904	288.348	287.978	287.176	286.216	287.313	286.926
	0548	8603		7768	9378	141	6752	0292	1677
	0.63109	5816.99	290.403	289.107	288.610	287.657	286.802	287.829	287.430
	0548	8487		0729	0563	6164	4734	9408	1514
	0.63109	7029.99	291.622	290.978	290.108	288.804	288.164	289.052	288.611
	0548	8171		1107	5435	0365	761	9675	8942
	0.63109	8365.99	292.839	292.788	291.485	289.861	289.380	290.172	289.679
т	0548	/824	200 (21	2043	089	1909	7292	532	2623
Jossang,	0.70313	4/58.99	289.631	287.231	288.422	287.067	288.109	287.824	287.526
A. allu Stange	0909	8702		1//9	2550	4275	5240	0322	0014
E · "A									
<u> </u>	0.70313	30075.9	299.688	309.252	302.823	298.399	299,190	299.739	298.481
	0909	9218	2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8046	475	9246	3323	8943	3266
	0.70313	59961.9	304.483	320.961	308.212	302.755	302.356	304.230	302.173
	0909	844		7117	9958	1126	7239	9654	9016
	0.70313	4758.99	287.522	287.231	288.422	287.067	288.109	287.824	287.526
	0909	8762		1779	2536	4273	5248	0522	0014
	0.70313	29694.9	296.891	309.057	302.723	298.320	299.126	299.657	298.411
	0909	9228		3892	8928	046	8021	3211	2381
	0.70313	59771.9	301.686	320.902	308.188	302.734	302.343	304.210	302.157
	0909	8445	202 176	4125	2057	9353	3821	1973	352
	0.70515	00814.9 8262	505.170	1226	2840	0205	502.804 8023	504.959 7856	502.755 0051
Sloan	0.66840	1254 99	278.8	277 162	2047	278 860	276 177	277 997	277 705
E.D. Ir	8755	9674	270.0	011	9023	270.000 9641	1573	5504	3542
2121111	0.66840	1923.99	282.9	279.983	280.649	281.374	279.822	281.121	280.788
	8755	9499		7177	487	3551	1813	0793	3419
	0.66840	4122.99	288.7	285.954	286.638	285.914	285.815	286.275	285.953
	8755	8927		8895	8178	1743	7942	5243	6453
	0.66840	6963.99	292.2	290.882	290.757	289.078	289.559	289.687	289.287
	8755	8188		5194	8805	798	6298	007	7182
	0.66840	9679.99	294.1	294.376	293.345	291.084	291.754	291.809	291.301
	8755	7482		6612	6518	8408	0326	2748	3167
	0.66840	12269.9	295.1	297.103	295.208	292.537	293.258	293.333	292.715
	8/33	9081	207.1	3033	19/6	/0/	0414	4801	124
	0.00840	10839.9	290.1	0002	297.696	294.489	295.109 4666	295.308	294.338 7137
	0133	20670.0	207.1	2023 202 707	200 210	2121	206 340	206 600	205 720
	8755	9467	271.1	4265	8615	295.102	0717	270.089 9663	0035
	0.66840	27319.9	2983	307 796	301 498	297 496	297 872	298 485	297 284
	8755	9289	270.5	9951	9964	8015	5673	1875	5378
	0.59666	1599.99	277.7	278.723	277.614	279.651	274.554	278.479	278.075
	8956	<u>95</u> 84		6669	2754	113	4288	5318	5465

0.59666	3391.99	283.9	284.300	283.598	284.098	280.982	283.636	283.242
8956	9118		2932	4521	9347	4274	4856	735
0.59666	6963.99	289.2	290.882	289.327	288.423	286.542	288.315	287.838
8956	8188		5194	1338	1173	6112	4487	5605
0.59666	10500.9	292.1	295.292	292.598	290.921	289.456	290.948	290.328
8956	9727		2006	0245	5389	9818	7281	3671
0.59666	13779.9	293.3	298.506	294.762	292.586	291.281	292.686	291.926
8956	9982		8065	1892	4895	2405	943	9687
0.59666	1923.99	279.1	279.983	279.082	280.736	276.190	279.790	279.381
8956	9499		7177	8339	1495	5474	0774	7609
0.59666	2647.99	281.8	282.329	281.626	282.625	278.934	281.983	281.584
8956	9311		199	4789	4781	1679	011	3807
0.59666	4819.99	286.7	287.347	286.396	286.202	283.770	285.938	285.526
 8956	8/46		0317	5898	8936	778	3249	991
0.59666	8135.99	290.3	292.492	290.565	289.366	287.668	289.314	288.792
8956	/883	201.2	204.146	8/03	1/3/	2891	2709	2907
0.39000	9480.99 7534	291.2	294.140 4352	291.784	290.297	288.749	290.294 6670	289.717 4303
 0.59666	17150.0	20/13	301 280	2712	203 037	202 603	20/ 000	203 100
8956	9554	274.5	5901	1633	4319	4106	3344	6857
0.59666	20264.9	295	303.518	297.833	294.965	293.728	295.155	294.133
8956	9473		4585	667	8318	1001	3525	5342
0.59666	22989.9	295.6	305.281	298.838	295.748	294.492	295.964	294.840
8956	9402		1415	4207	364	3081	1567	2599
0.59666	27499.9	296.7	307.895	300.264	296.862	295.546	297.114	295.831
8956	9285		2044	9614	9638	6529	1729	4079
0.64944	1206.99	276.8	276.921	276.575	278.472	274.899	277.363	277.063
1297	9686		1731	7349	308	0822	7207	561
0.64944	2185.99	281.6	280.895	281.258	281.967	280.011	281.672	281.323
1297	9431		7002	9165	3449	406	6659	6639
0.64944	3515.99	284.9	284.597	285.006	284.795	283.817	284.881	284.544
1297	9085	200.7	8256	2678	5426	1533	1/38	4522
0.04944	5440.99 9592	288.7	288.481	288.457	287.425	287.098	287.748	287.579
0.64044	8204.00	201.2	202 581	201.688	280.000	280.074	200 305	280.028
1297	7866	291.2	5613	1733	0761	538	3534	209.920 4983
0 64944	11999.9	293.2	296 839	294 685	292.232	292.475	292.837	292.211
1297	9688	275.2	5657	7584	8058	0724	9088	36
0.64944	6170.99	289.2	289.679	289.441	288.179	287.994	288.557	288.166
1297	8395		8658	872	8614	4505	5238	0869
0.64944	9307.99	292.1	293.943	292.682	290.677	290.822	291.206	290.694
1297	7579		4644	7126	988	1365	5257	4124
0.64944	14069.9	293.9	298.763	295.940	293.211	293.473	293.859	293.144
1297	9634		5937	5634	053	6743	3144	7966
0.64944	18199.9	295	302.066	297.969	294.800	295.028	295.512	294.628
 1297	9527	2010	096	9791	1233	6035	0123	1301
0.64944	26549.9	296.9	307.371	300.947	297.147	297.175	297.941	296.748
 1297	9309	205.0	205.007	4197	1141	4241	8992	3233
0.04944	22349.9	293.9	0278	299.039	290.129	290.200 6708	290.890	295.859 4065
0.80260	626 999	274.8	273 251	274 554	275 834	275 299	274.018	274 576
126	8369	274.0	9461	1887	1152	9816	7385	4423
0.80260	1261.99	280.3	277.196	279.931	279.915	281.079	280.174	280.003
126	9672		5801	9667	9248	9549	5767	2492
0.80260	1805.99	283.2	279.543	282.687	282.030	283.828	282.828	282.618
126	953		7509	4598	731	8606	259	6008
0.80260	2570.99	285.9	282.103	285.402	284.130	286.396	285.297	285.098
 126	9331		4343	6972	27	6495	6462	481
0.80260	3591.99	288.7	284.776	287.973	286.132	288.699	287.556	287.364
 126	9066	200.1	493	6603	6541	0334	6627	6451
0.80260	4295.99	290.1	286.315	289.349	287.210	289.879	288.745	288.546
126	8882		200	0145	1012	/124	2412	814

0.80260	5363.99	291.5	288.336	291.056	288.552	291.294	290.206	289.985
126	8605		5223	5385	3559	4549	2705	1914
0.80260	6301.99	292.6	289.885	292.295	289.530	292.286	291.259	291.010
126	8361		8732	5077	5576	7098	9578	4792
0.80260	8535.99	294	293.003	294.628	291.381	294.075	293.233	292.900
126	7779		3354	2305	3176	858	772	0585
0.65083	599.999	273.7	273.029	271.096	274.426	268.453	271.159	271.688
 6699	8439		0494	3498	4582	2302	7715	7141
0.65083	737.999	275.4	274.102	272.728	275.622	270.440	273.241	273.336
6699	808		1293	2432	0686	4218	6611	2766
0.65083	992.999	277.6	275.755	275.067	277.345	273.205	275.836	275.626
6699	7417		3156	815	254	5073	8564	7943
0.65083	1337.99	280.4	277.563	277.418	279.087	275.884	278.173	277.849
6699	9652	202.6	3591	5312	4982	2529	6202	2012
0.65083	1778.99	282.6	279.440	279.664	280.762	278.350	280.254	279.903
 0.099	2088.00	2027	2057	2055	201 710	1308	11/4	0954
0.03085	2088.99	205.7	260.307	280.950	201./10	279.700	201.303	201.054
 0.65083	22/7 00	28/1 3	281.000	281 508	282 145	280 307	281.800	281 544
6699	9415	204.5	9544	7457	1094	4581	9274	3313
0.65083	2667.99	285.9	282.387	282.859	283.161	281.701	283.060	282.719
6699	9306		0697	0112	8275	3485	0463	9685
0.65083	2860.99	286.5	282.930	283.409	283.577	282.260	283.531	283.193
6699	9256		1875	5766	4411	2562	1846	4005
0.69338	723.999	273.7	274.000	273.508	275.860	272.407	273.784	273.951
0674	8117		1717	5845	3661	0266	3612	8264
0.69338	806.999	274.8	274.585	274.357	276.489	273.401	274.787	274.803
0674	7901		3697	7498	8179	2319	8519	3035
0.69338	902.999	275.9	275.210	275.237	277.143	274.416	275.771	275.673
0674	7651		8015	1677	2088	9296	738	4054
0.69338	971.999	276.5	275.631	275.813	277.572	275.074	276.391	276.237
06/4	/4/1	277.6	5227	2802	0864	63/	2943	1235
0.09558	0605	277.0	2/0./41	277.277	278.004	270.718 5803	0364	0152
0.60338	1240.00	278.2	2089	233	278 000	2095	278 338	278.073
0.09338	9677	270.2	4571	8359	8731	3588	024	1955
0.69338	1461 99	279.8	278 131	279.007	279 961	278 610	279 572	279 276
0674	962	279.0	0328	1077	7458	492	6242	4402
0.69338	2212.99	283.2	280.985	282.250	282.409	282.009	282.529	282.224
0674	9424		1522	531	569	9633	5334	9227
0.67926	751.999	273.7	274.202	273.503	275.966	272.080	273.906	274.001
2806	8044		7132	6347	7093	3821	3466	3759
0.67926	882.999	274.8	275.084	274.763	276.898	273.555	275.342	275.250
2806	7703		5703	1691	9412	0255	7307	3928
0.67926	1088.99	276.5	276.298	276.407	278.120	275.437	277.077	276.845
2806	9/17	070.7	525	814	951	0029	1512	733
0.67926	1399.99	278.7	277.851	2/8.3/8	279.592	277.626	279.010	278.706
2800	9030	280.4	270.020	1200	280 647	7074	0052	7520
2806	1074.99 0564	200.4	279.030 5356	279.764 7307	260.047	6335	200.323	260.003 5674
0.67926	2095 99	282.1	280 591	281 543	281 971	280.996	281 909	281 589
2806	9455	202.1	6991	3284	5795	1427	8789	6754
0.63879	764.999	273.7	274.294	272.737	275.727	270.121	273.362	273.392
8761	801		9207	8635	152	8916	5563	1191
0.63879	1240.99	277.6	277.092	276.560	278.542	274.597	277.385	277.066
8761	9677		4571	0415	7457	8459	7453	5706
0.63879	1730.99	280.4	279.253	279.189	280.496	277.524	279.840	279.478
 8761	955		3165	1428	1362	2398	625	3285
0.63879	3460.99	285.9	284.466	284.662	284.607	283.218	284.580	284.232
 8761	91	202.1	797	9842	1973	4883	0658	2648
0.63879	8652.99	292.1	293.149	291.902	290.137	289.922	290.536	290.040
8/61	//49		6227	4825	0197	4444	0208	3214

0.63879	9390.99	292.7	294.041	292.549	290.636	290.475	291.062	290.535
8761	7557		177	0943	1244	4018	4856	5831
0.63983	757.999	273.7	274.245	272.689	275.682	270.092	273.296	273.339
6517	8028		411	0448	8802	0964	2715	8546
0.63983	1233.99	277.6	277.057	276.538	278.518	274.601	277.361	277.044
6517	9679		4695	4215	7019	454	2134	6844
0.63983	1722.99	280.4	279.221	279.175	280.477	277.536	279.826	279.465
6517	9552		8092	1106	9567	474	5202	4255
0.63983	3467.99	285.9	284.483	284.700	284.628	283.281	284.612	284.266
6517	9098		5557	455	5137	5886	7638	05
0.63983	5032.99	288.7	287.743	287.642	286.863	286.116	287.055	286.687
6517	8691		5292	2942	3789	5234	9694	1814
0.63983	7728.99	291.5	291.953	291.030	289.459	289.188	289.829	289.371
6517	7989	27.4.2	1488	6175	184	9086	9943	7783
0.69136	757.999	274.2	274.245	273.824	276.110	272.734	274.182	274.277
 0127	8028	275 4	411	8492	2337	4742	4362	837
0.09150	944.999 7540	273.4	273.409 518	6608	277.591	1383	6828	275.980
0.60136	1254.00	277.6	277 162	277 771	270.040	1385	278 300	278 120
0.09130	9674	277.0	011	1782	3199	1816	1398	3655
0.69136	1757 99	280.4	279 358	280 409	281.031	280.062	280 877	280 567
0127	9543	20011	891	1312	3997	9985	8239	9277
0.69136	2130.99	282.1	280.711	281.915	282.169	281.627	282.233	281.925
0127	9446		0105	1207	2622	6638	2133	3697
0.71862	1068.99	274.3	276.188	277.070	278.326	276.981	277.581	277.396
1772	9722		2666	4663	0799	0448	7412	5432
0.71862	1219.99	275.4	276.987	278.099	279.099	278.109	278.622	278.386
1772	9683		0665	8441	4158	6746	7013	5459
0.71862	1606.99	277.6	278.752	280.246	280.718	280.400	280.684	280.403
1772	9582		7378	3536	933	1566	5217	8994
0.71862	2247.99	280.4	281.099	282.861	282.704	283.075	283.060	282.780
 1772	9415	202.2	9544	5084	7421	6511	7695	864
0./1862	3164.99	283.2	283.734	285.526	284.743	285.672	285.387	285.118
 0.71962	91// 4501.00	206	024 286.008	0001	286.077	4203	0203	1338
0.71802	4391.99	200	200.900 4755	200.420	200.977	200.340	207.032	207.372 A1A2
 0.58220	1261.99	273.7	277 196	275 376	278 124	2037	276.439	276.055
0.50220	9672	213.1	5801	0599	3849	227	8688	2039
0.58220	2026.99	277.6	280.352	279.160	280.905	275.814	279.866	279.442
0927	9473		2477	634	8283	4253	7241	9128
0.58220	2854.99	280.4	282.913	281.896	282.933	278.765	282.199	281.786
0927	9257		7039	201	6158	1445	4217	7633
0.58220	4046.99	283.2	285.793	284.682	285.014	281.635	284.506	284.091
0927	8947		1547	7955	2792	6026	2729	7432
0.58220	7424.99	287.7	291.537	289.529	288.669	286.303	288.431	287.920
0927	8068		1873	7433	8636	0979	2649	4366
0.70312	1764.99	281.6	279.386	280.674	281.149	280.570	281.104	280.805
4418	9541	202.0	0/2/	4115	/14	4392	4031	/421
0.70312	2516.99	283.9	281.942	283.446	283.253	283.394	283.579	283.289
4418	9545 3846.00	2877	2032	286 760	285 787	7942	2100	286.140
4418	8999	207.7	205.550 8997	3709	7262	3113	8415	4315
0.70312	4460 99	288.9	286 649	287 917	286 677	287 651	287 400	287 107
4418	884		4133	0326	8138	4548	1196	7808
0.70312	5832.99	290.9	289.133	290.011	288.296	289.519	289.151	288.824
4418	8483		492	6441	7448	5437	1372	9555
0.67368	2185.99	283.3	280.895	281.760	282.174	281.099	282.104	281.780
2203	9431		7002	2254	0804	9999	464	039
0.67368	2929.99	285.7	283.117	284.059	283.915	283.428	284.100	283.786
 2203	9238	a 0 = -	9954	9819	2269	4002	701	8991
0.67368	3577.99	287.2	284.743	285.628	285.108	284.961	285.433	285.121
2203	9069		785	6039	9904	3436	7957	7756

	0.67368	4612.99	289.4	286.949	287.623	286.634	286.846	287.106	286.781
	2203	88		5114	3167	2728	0086	0537	6258
	0.67368	5660.99	291	288.846	289.230	287.869	288.311	288.440	288.089
	2203	8527		723	5698	2136	9105	2715	8479
	0.61771	13549.9	293.6	298.300	295.043	292.685	292.051	293.003	292.276
	8353	9648		3807	5642	966	9928	6083	9042
	0.61771	27679.9	297.5	307.992	300.709	297.109	296.365	297.587	296.321
	8353	928		9552	2953	5842	5717	0553	3105
	0.61771	41339.9	300	314.365	303.890	299.622	298.536	300.175	298.492
	8353	8925		8555	8233	8658	8685	2894	9946
	0.61771	52159.9	301.7	318.407	305.734	301.089	299.712	301.682	299.721
	8353	8643		079	8049	2591	7129	2244	456
	0.61771	62849.9	303.1	321.846	307.213	302.270	300.611	302.894	300.691
	8353	8365		9496	5335	3749	8438	7381	2874
	0.61771	20239.9	295.8	303.501	298.226	295.162	294.545	295.575	294.577
	8353	9473		5232	3127	7815	6188	4848	9817
	0.61771	33749.9	298.6	311.052	302.281	298.349	297.461	298.864	297.403
	8353	9122		0118	8965	2312	3819	6774	2143
	0.62942	882.999	273.7	275.084	273.656	276.477	270.955	274.467	274.324
	92	7703	074.0	5703	5696	2978	9913	1/58	293
	0.62942	951.999	274.3	2/5.511	274.252	2/6.914	2/1.661	2/5.103	274.899
	92	1323	275.0	0000	0272	40/5	9165	1034	3214
	0.02942	0605	275.9	2/0./41	273.897	1225	2/3.3/9 5120	270.775	270.402
	92	28/0.00	283.2	2009	282 004	283 346	281 203	283 087	282 727
	92	9261	203.2	1457	9085	0725	4874	9533	4361
	0.62942	3764 99	285.4	285 173	285 133	285.026	283 443	284 960	284 601
	92	9021	203.1	3417	4613	5827	7723	4278	2899
	0.62942	4363.99	286.5	286.454	286.301	285.911	284.582	285.929	285.563
	92	8865		0615	9124	6691	8315	3852	1018
	0.62942	5067.99	287.6	287.807	287.485	286.811	285.711	286.904	286.523
	92	8682		5277	527	0438	7433	3127	5005
	0.62942	5432.99	288.2	288.456	288.035	287.230	286.228	287.355	286.965
	92	8587		8212	9166	2228	1496	816	4531
	0.62942	5811.99	288.7	289.098	288.569	287.637	286.723	287.792	287.391
	92	8488		8063	592	2573	6931	6632	2284
	0.62942	6984.99	289.8	290.913	290.024	288.749	288.048	288.979	288.538
	92	8183	200.0	0048	527	8691	762	7408	5199
	0.62942	8383.99	290.9	292.811	291.469	289.858	289.327	290.154	289.658
Nanifan	92	/819	272 476	1301	272 5 (1	9923	267.000	3721	8/49
Nasrilar,	0.57475	908.199	2/3.4/0	275.245	042	270.138	207.900	2/3.005	275.458
K. and Moshfeg	5795	1037		2931	942	4242	0050	002	/134
hian									
M.:									
	0.57475	1111.79	274.987	276.422	274.179	277.313	269.851	275.312	274.961
	5795	9711		4675	8438	8695	3223	4958	9
	0.57475	1336.89	276.593	277.558	275.654	278.389	271.589	276.725	276.319
	5795	9652		158	5866	6649	376	7393	6093
	0.57475	1476.29	277.695	278.194	276.447	278.970	272.508	277.459	277.038
	5795	9616		2551	9398	1255	6057	8287	3843
	0.57475	1594.09	278.766	278.699	277.062	279.420	273.212	278.017	277.589
	5795	9585		0936	0016	2376	5208	6815	3077
	0.57475	1851.69	279.71	279.716	278.260	280.300	274.566	279.084	278.651
	5795	9518		5164	1631	5913	9699	1904	0282
	0.57475	2205.99	280.938	280.962	279.660	281.333	276.118	280.300	279.870
	5795	9426	a 04 - 1 (0362	5471	0448	1188	537	4531
	0.57475	2635.69	281.914	282.293	281.084	282.386	277.659	281.510	281.087
	5795	9314		4531	0559	4452	643	952	2022

REFERENCE

- Andersson, V., & Gudmundsson, J. S. (2006). Flow Properties of Hydrate-in-Water Slurries. *Annals of the New York Academy of Sciences*, 912(1), 322–329. <u>https://doi.org/10.1111/j.1749-6632.2000.tb06786.x</u>
- Ameripour, S., & Barrufet, M. (2009). Improved Correlations Predict Hydrate Formation Pressures or Temperatures for Systems with or Without Inhibitors. *Journal of Canadian Petroleum Technology - J CAN PETROL TECHNOL*, 48, 45–50. <u>https://doi.org/10.2118/09-05-45</u>
- Bahadori, A., & Vuthaluru, Hari. B. (2009). A novel correlation for estimation of hydrate forming condition of natural gases. *Journal of Natural Gas Chemistry*, *18*(4), 453–457. <u>https://doi.org/10.1016/S1003-9953(08)60143-7</u>
- Bellarby, J. (2009). Well, completion design. (Amsterdam, Netherlands; Boston, Mass: Elsevier), 410-419.
- Berge, B. K. (1986, January 1). *Hydrate Predictions on a Microcomputer*.
 Petroleum Industry Application of Microcomputers.
 https://doi.org/10.2118/15306-MS
- Bishnoi, P. R., & Dholabhai, P. D. (1999). Equilibrium conditions for hydrate formation for a ternary mixture of methane, propane, and carbon dioxide, and a natural gas mixture in the presence of electrolytes and methanol. *Fluid Phase Equilibria*, 158–160, 821–827. <u>https://doi.org/10.1016/S0378-3812(99)00103-X</u>
- Brustad, S., Løken, K. P., & Waalmann, J. G. (2005). Hydrate Prevention using

- MEG instead of MeOH: Impact of experience from major Norwegian developments on technology selection for injection and recovery of MEG. *Offshore Technology Conference*. Presented at the Offshore Technology Conference, Houston, Texas. <u>https://doi.org/10.4043/17355-MS</u>
- Chavoshi, S., Safamirzaei, M., & Pajoum Shariati, F. (2018). Evaluation of Empirical Correlations for Predicting Gas Hydrate Formation Temperature. *Gas Processing*, 6(2). <u>https://doi.org/10.22108/gpj.2018.112052.1036</u>
- Chaudhari, P., Zerpa, L. E., & Sum, A. K. (2018). A correlation to quantify hydrate plugging risk in oil and gas production pipelines based on hydrate transportability parameters. *Journal of Natural Gas Science and Engineering*, 58, 152–161. <u>https://doi.org/10.1016/j.jngse.2018.08.008</u>
- Chen, G.J. and Guo, T.M.: "Thermodynamic Modeling of Hydrate Formation Based on New Concepts," *Fluid Phase Equilibria* (1996) **122**, 43–65.
 <u>https://doi.org/10.1016/0378-3812(96)03032-4</u>
- Chein, R., & Liao, W. (2005). Analysis of particle-wall interactions during particle-free fall. *Journal of Colloid and Interface Science*, 288, 104–113. <u>https://doi.org/10.1016/j.jcis.2005.02.071</u>
- Clennell, M. B., Hovland, M., Booth, J. S., Henry, P., & Winters, W. J. (1999). Formation of natural gas hydrates in marine sediments: 1. Conceptual model of gas hydrate growth conditioned by host sediment properties. *Journal of Geophysical Research: Solid Earth*, *104*(B10), 22985–23003. https://doi.org/10.1029/1999JB900175

86

- Davarnejad, R. (2014). Prediction of Gas Hydrate Formation using HYSYS Software. *International Journal of Engineering*, 27(9 (C)).
 <u>https://doi.org/10.5829/idosi.ije.2014.27.09c.01</u>
- Deaton, W. M., & Frost, E. M. (n.d.). *Gas Hydrates and Their Relation to the Operation of Natural-gas Pipe Lines*. 126.
- Dorstewitz F. (1995). Hydrate Formation in Pipelines: Proceedings of the Fifth International Offshore and Polar Engineering Conference. *The International Society of Offshore and Polar Engineers*, (1), 244-249.
- Dorstewitz, F., & Mewes, D. (1994). The influence of heat transfer on the formation of hydrate layers in pipes. *International Journal of Heat and Mass Transfer*, 37(14), 2131–2137. <u>https://doi.org/10.1016/0017-9310(94)90314-X</u>
- Du, Y., & Guo, T.-M. (1990). Prediction of hydrate formation for systems containing methanol. *Chemical Engineering Science*, 45(4), 893–900.
 https://doi.org/10.1016/0009-2509(90)85011-2
- Eenews.net, 2013. Assessing the Emissions from the Oil and Gas Development in the Bakken Formation and Their Impact on Air Quality in National Parks, Retrieved November 8, 2019, from https://www.eenews.net/assets/2013/11/06/document_gw_01.pdf
- Elgibaly, A. A., & Elkamel, A. M. (1998). A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors. *Fluid Phase Equilibria*, 152(1), 23–42. <u>https://doi.org/10.1016/S0378-3812(98)00368-9</u>
- Elhady, A. (2005, January 1). Operating Experiences of DEG and MEG for Hydrate and Dew Point Control in Gas Production Offshore Mediterranean. <u>https://doi.org/10.2523/IPTC-10103-MS</u>

- Englezos, P., & Bishnoi, P. R. (1988). Prediction of gas hydrate formation conditions in aqueous electrolyte solutions. *AIChE Journal*, *34*(10), 1718–1721. <u>https://doi.org/10.1002/aic.690341017</u>
- Eslamimanesh, A., Mohammadi, A. H., Richon, D., Naidoo, P., & Ramjugernath, D. (2012). Application of gas hydrate formation in separation processes: A review of experimental studies. *The Journal of Chemical Thermodynamics*, 46, 62–71. <u>https://doi.org/10.1016/j.jct.2011.10.006</u>
- Eucken, A. (1925). Fundamentals of Physical Chemistry. *McGraw-Hill Book Co.*, 371. <u>http://archive.org/details/in.ernet.dli.2015.84084</u>
- Michael Riedel, Eleanor C. Willoughby, and Satind (2010), *Geophysical Characterization of Gas Hydrates Geophysical Developm edition by Edited, Hardcover* (Geophysical Developm edition). (1600). Society of Exploration Geophysicists.
- Gas Hydrates Student Energy. (2013). Accessed: September 14, 2019, from <u>https://www.studentenergy.org/topics/hydrates</u>
- Giavarini, C., & Hester, K. (2011). Gas Hydrates: Immense Energy Potential and Environmental Challenges. Springer Science & Business Media. 75-92
- Ghayyem, M. Ali, Izadmehr, M., & Tavakoli, R. (2014). Developing a simple and accurate correlation for initial estimation of hydrate formation temperature of sweet natural gases using an eclectic approach. *Journal of Natural Gas Science and Engineering*, 21, 184–192. <u>https://doi.org/10.1016/j.jngse.2014.08.003</u>
- Gorbunov, B., Hamilton, R., Clegg, N., & Toumi, R. (1998). Water nucleation on aerosol particles containing both organic and soluble inorganic substances.
 Atmospheric Research, 271–283. <u>https://doi.org/10.1016/S0169-8095(98)00035-0</u>

- Gu, R., Ding, J., Wang, Y., Yuan, Q., Wang, W., & Lu, J. (2019). Heat transfer and storage performance of steam methane reforming in a tubular reactor with a focused solar simulator. *Applied Energy*, 789–801. <u>https://doi.org/10.1016/j.apenergy.2018.10.072</u>
- Hammerschmidt, E. G. (1934). Formation of Gas Hydrates in Natural Gas Transmission Lines. *Industrial & Engineering Chemistry*, 26(8), 851–855. <u>https://doi.org/10.1021/ie50296a010</u>
- Harju, J., Wocken, C., Stevens, B., Almlie, J., & Schlasner, S. (n.d.). End-Use Technology Study – An Assessment of Alternative Uses for Associated Gas. 21. <u>https://ndpipelines.files.wordpress.com/2012/11/eerc-slides-nov-5-2012.pdf</u>
- Jossang, A. and Stange, E.: "A New Predictive Activity Model for Aqueous Salt Solutions," *Fluid Phase Equilibria* (2001) 181, 33.
- Jujuly, M. M., Rahman, M. A., Maynard, A., & Addy, M. (2017). Hydrate Induced Vibration in an Offshore Pipeline. *SPE Annual Technical Conference and Exhibition*. Presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA. <u>https://doi.org/10.2118/187378-MS</u>
- Khamehchi, E., Shamohammadi, E., & Yousefi, S. (2013). Predicting the Hydrate Formation Temperature by a New Correlation and Neural Network. *Gas Processing*, *1*, 4150.
- Koh, C. A., Westacott, R. E., Zhang, W., Hirachand, K., Creek, J. L., & Soper, A. K. (2002). Mechanisms of gas hydrate formation and inhibition. *Fluid Phase Equilibria*, 194–197, 143–151. <u>https://doi.org/10.1016/S0378-3812(01)00660-4</u>
- Kvenvolden, K. A., & Lorenson, T. D. (2001). The Global Occurrence of Natural Gas Hydrate. In *Natural Gas Hydrates: Occurrence, Distribution, and Detection*

(pp. 3–18). American Geophysical Union (AGU).

https://doi.org/10.1029/GM124p0003

- Lingelem, M. N., Majeed, A. I., & Stange, E. (1994). Industrial Experience in Evaluation of Hydrate Formation, Inhibition, and Dissociation in Pipeline Design and Operation. *Annals of the New York Academy of Sciences*, 715(1), 75–93. <u>https://doi.org/10.1111/j.1749-6632.1994.tb38825.x</u>
- Liu, W., Li, X., Hu, J., Wu, K., Sun, F., Sun, Z., ... Qi, X. (2019). Research on flow assurance of deepwater submarine natural gas pipelines: Hydrate prediction and prevention. *Journal of Loss Prevention in the Process Industries*, *61*, 130–146. <u>https://doi.org/10.1016/j.jlp.2019.06.007</u>
- Liu, Z., Li, H., Chen, L., & Sun, B. (2018). A New Model of and Insight into Hydrate Film Lateral Growth along the Gas-Liquid Interface Considering Natural Convection Heat Transfer. *Energy & Fuels*, *32*(2), 2053–2063. <u>https://doi.org/10.1021/acs.energyfuels.7b03530</u>
- Makogon, Y. F., & Makogon, T. Y. (2016). Natural Gas Hydrates. In M. Riazi (Ed.), *Exploration and Production of Petroleum and Natural Gas* (pp. 429–459).
 ASTM International. <u>https://doi.org/10.1520/MNL7320140017</u>
- Milkov, A. V., & Sassen, R. (2002). Economic geology of offshore gas hydrate accumulations and provinces. *Marine and* Petroleum *Geology*, *19*(1), 1–11.
 https://doi.org/10.1016/S0264-8172(01)00047-2
- Nasrifar, K. and Moshfeghian, M A Model for Prediction of Gas Hydrate Formation Conditions in Aqueous Solutions Containing Electrolytes and/or Alcohol," J. Chem. Thermodynamics (2001) 33, 999"

- Nicholas, J. W., Koh, C. A., & Sloan, E. D. (2008). A preliminary approach to modeling gas hydrate/ice deposition from dissolved water in a liquid condensate system. *AIChE Journal*, 55(7), 1889–1897. <u>https://doi.org/10.1002/aic.11921</u>
- Pakulski, M., & Services, B. C. (2007). Accelerating Effect of Surfactants on Gas Hydrates Formation. SPE 106166. 5.
- Peytavy, J. L., Monfort, J. P., & Gaillard, C. (1999). Investigation of Methane Hydrate Formation in a Recirculating Flow Loop: Modeling of the Kinetics and Tests of Efficiency of Chemical Additives on Hydrate Inhibition. *Oil & Gas Science and Technology*, *54*(3), 365–374. <u>https://doi.org/10.2516/ogst:1999033</u>
- PIC chemicals, Mechanical Pig Aides. (2014). Accessed: August 22, 2019, from Production Improvement Consultants, LLC website: <u>http://picchemicals.com/maintenance.html</u>
- Poberezhny, L., Hrysanchuk, A., & Grytsuliak, H. (2019). Influence of the gas hydrates on the corrosion rate of gas gathering pipelines. *Procedia Structural Integrity*, *16*, 141–147. <u>https://doi.org/10.1016/j.prostr.2019.07.033</u>
- PolarTREC (2010). Piston Coring. Accesses October 12, 2019, from <u>https://www.polartrec.com/expeditions/international-continental-shelf-</u> <u>survey/journals/2010-08-13</u>
- Rao, I., Koh, C. A., Sloan, E. D., & Sum, A. K. (2013). Gas Hydrate Deposition on a Cold Surface in Water-Saturated Gas Systems. *Industrial & Engineering Chemistry Research*, 52(18), 6262–6269. <u>https://doi.org/10.1021/ie400493a</u>
- Rich, S. R., & Pantazelos, T. G. (1974). Flux Force Condensation Aspirative Wet Scrubbing of Submicron Particles. *Journal of the Air Pollution Control Association*, 24(10), 952–954. <u>https://doi.org/10.1080/00022470.1974.10469995</u>

- Safamirzaei, M. (2015). Predict gas hydrate formation temperature with a simple correlation. *Gas*, *51*. <u>http://www.gasprocessingnews.com/features/201508/predict-gas-hydrate-formation-temperature-with-a-simple-correlation.aspx</u>
- Saleh, J. M. (2002). Fluid Flow Handbook: Flow Assurance, *McGraw-Hill Education*, Ch. 29.
 <u>https://www.accessengineeringlibrary.com/content/book/9780071363723/chapter/chapter20</u>
- Salufu, S., & Nwakwo, P. (2013). New Empirical Correlation for Predicting Hydrate Formation Conditions. <u>https://doi.org/10.2118/167571-MS</u>
- Sami, N. A., Sangwai, J. S., & Balasubramanian, N. (2013). Gas Hydrate Applications and Problems in Oil and Gas Industry. *Research gate*. *4*(8), 6.
- Sloan, E.D. Jr.: *Clathrate Hydrates of Natural Gases*, Marcel Dekker, New York (1990).
- Sloan E. D. (1998). Clathrate hydrates of natural gas 2nd Edition. New York: Marcel Dekker. 24, 110 <u>https://doi.org/10.1021/ef000056e</u>
- Sloan, E. D., Koh, C. A., & Koh, C. (2008). Clathrate Hydrates of Natural Gases 3rd Edition. New York: CRC Press.
- Sorheim, R. (2005). Transportation of petroleum in subsea pipelines: A Competitive Analysis. *University of Science and Technology Norway (NTNU)*. 2005.
- Sun, C.-Y., Chen, G.-J., Lin, W., & Guo, T.-M. (2003). Hydrate Formation Conditions of Sour Natural Gases. *Journal of Chemical & Engineering Data*, 48(3), 600–602. <u>https://doi.org/10.1021/je020155h</u>

- Tang, C., Dai, X., Du, J., Li, D., Zang, X., Yang, X., & Liang, D. (2010). Kinetic studies of gas hydrate formation with low-dosage hydrate inhibitors. *Science China Chemistry*, 53(12), 2622–2627. <u>https://doi.org/10.1007/s11426-010-4145-2</u>
- Towler, B., & Mokhatab, S. (2005). Quickly estimate hydrate formation conditions in natural gases. *Hydrocarbon Processing*, *84*, 61–62.
- USGS. (2017). EarthWord Gas Hydrate. Accessed: September 12, 2019, from https://www.usgs.gov/news/earthword-gas-hydrate
- Vysniauskas, A., & Bishnoi, P. R. (1983). A kinetic study of methane hydrate formation. Chemical Engineering Science, 38, 1061}1972.
- Wang, Z., Zhang, J., Chen, L., Zhao, Y., Fu, W., Yu, J., & Sun, B. (2018a).
 Modeling of hydrate layer growth in horizontal gas-dominated pipelines with free water. *Journal of Natural Gas Science and Engineering*, *50*, 364–373.
 https://doi.org/10.1016/j.jngse.2017.11.023
- Wilcox, W. I., Carson, D. B., & Katz, D. L. (1941). *Natural Gas Hydrates*. *33*(5),
 4.
- Xiaolan, L., Zuohui, L., Yong, Z., & Rongqiang, L. (2011). Gas Hydrate Inhibition of Drilling Fluid Additives. *Proceedings of the 7th International Conference on Gas Hydrates*, 7.
- Zahedi, G., Karami, Z., & Yaghoobi, H. (2009). Prediction of hydrate formation temperature by both statistical models and artificial neural network approaches. *Energy Conversion and Management*, 50(8), 2052–2059. <u>https://doi.org/10.1016/j.enconman.2009.04.005</u>
- Zhang, J., Wang, Z., Liu, S., Zhang, W., Yu, J., & Sun, B. (2019). Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and

safety. Applied Energy, 253, 113521.

https://doi.org/10.1016/j.apenergy.2019.113521

 Zhong, Y., & Rogers, R. E. (2000). Surfactant effects on gas hydrate formation. *Chemical Engineering Science*, 13.