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ABSTRACT 

Blowing snow is an impactful process in cold climates that affects regional 

thermodynamics, radiation properties, and the surface mass balance of snow. Though it has 

significant climatic impacts, the process is still poorly understood and not widely included 

in weather and climate models. In 2016, the AWARE Field Campaign saw the deployment 

of a large suite of in situ and remote sensing instruments to McMurdo Station, Antarctica 

allowing for investigation of blowing snow. A ceilometer-based blowing snow detection 

algorithm used elsewhere in Antarctica is applied to data from AWARE, yielding a 

blowing snow frequency of 14.1% compared to 8.2% as detected by human observers. To 

increase confidence in detections, the algorithm is updated to have shorter temporal 

averaging and to include a variety of meteorological thresholds to limit false detections due 

to fog. The revised algorithm detected a blowing snow frequency of 7.8%, which is in 

closer agreement with human observations.  A multi-instrument probabilistic depth 

algorithm is developed to increase confidence in the depth estimations given for detected 

blowing snow. This algorithm is applied to 41 blowing snow case days and found an 

average depth of 218.3 m and a mean absolute difference of 97.6 m when compared to the 

results of the ceilometer-based algorithm. The largest differences between the two 

algorithms were found during intense events occurring with precipitation. The results of 

this study help to aid the modelling community in reproducing the process and its impact 

on the regional climate.
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CHAPTER 1 

BACKGROUND & INTRODUCTION 

The movement of surface snow by wind is a common phenomenon in high latitude 

regions, and is often referred to as snow transport (Li and Pomeroy 1997a). The 

redistribution of surface snow is typically broken down into two processes: blowing and 

drifting snow. The distinction between these two types of snow transport is the height at 

which the process occurs. Mahesh et al. (2003) defines blowing snow (BLSN) as “masses 

of snow particles carried by the wind to fill the near-surface atmospheric layer and to limit 

the horizontal visibility”. The Atmospheric Environment Service (part of Environment and 

Climate Change Canada) states that BLSN can obscure visibility from the surface up to 9.7 

km altitude (Li and Pomeroy 1997a). Drifting snow only includes cases of BLSN where 

the transportation layer is less than 2 m in depth (Li and Pomeroy 1997a; Leonard et al. 

2012; Gossart et al. 2017). These definitions are consistent with those given by the 

American Meteorological Society Glossary of Meteorology, although the National Weather 

Service (NWS) often states "eye-level" vs. providing an exact height as the distinction 

between the two processes (NOAA 1998). 

1.1. Impacts of Blowing Snow 

BLSN has economic impacts in cold regions since the low visibilities can cause 

dangerous transportation conditions (Rooney 1967; Changnon and Changnon 1978; 

Hershey and Osborne 2008) and  extended power and communications outages (Burrows 

et al. 1979). In regions where these conditions are common, structures must be designed 

such that they can handle the weight of the drifts that build as a product of the transportation 
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of snow (DeGaetano et al. 1997). The redistribution of moisture can have implications on 

available moisture for agriculture (Hershey and Osborne 2008). Major events can also lead 

to widespread loss of livestock and wildlife (Graff and Strub 1975). 

Additionally, the transportation of snow has significant impacts on the energy 

budgets of cold climate regions. BLSN plumes can alter the surface radiation budget, 

commonly increasing the surface albedo of the region and reducing the surface temperature 

(Bintanja 2001; Yang and Yau 2011; Leonard et al. 2012). This cooling increases the 

stability of the surface inversion layer (Bintanja 2001; Yang and Yau 2011). This effect 

depends on the surface in which the snow is blowing over. For example, if BLSN is 

occurring over a city with dark cement surfaces, it increases the albedo more than a case 

over a snow-covered field or ice surface. The depth of the BLSN plume affects the behavior 

of longwave radiation, altering the depth of the surface inversion (Mahesh et al. 2003). 

Particles in the air increase friction and resistance, having a strong impact on vertical wind 

speed gradients (Bintanja 2001).   

BLSN has a thermodynamic impact that is associated with the process of sublimation. 

As particles are lifted, a higher proportion of each particle’s surface area is exposed to the 

air, increasing the rate at which particles may sublimate if the relative humidity (RH) is less 

than 100% (Déry and Yau 2002; Palm et al. 2017). As BLSN is initiated, sublimation 

increases due to the increased ventilation of particles. The presence of particles in the air 

causes increased turbulence, which mixes warmer air above the inversion down towards 

the surface, increasing the temperature and making the layer nearly isothermal. The mixing 

of warmer, drier air into the layer prevents the BLSN layer from becoming fully saturated. 

The humidity of the layer tends to decrease with height, as entrainment plays a bigger role 
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towards the top of the plume. The extent of sublimation varies depending on the size and 

quantity of particles suspended in the air, as well as the temperature and humidity of the 

layer (Palm et al. 2017). Smaller particles, which are more likely further aloft (see Section 

1.2.2. Microphysical Properties of ), sublimate faster than the larger particles found near 

the surface due to drier air and their higher surface area to mass ratio (Pomeroy and Male 

1988). Sublimation may increase by up to 80% due to entrainment or advection of dry air 

into a BLSN plume (Bintanja 2001). Because sublimation is a cooling process, it can cause 

a dynamic response if it is widespread. A modelling study by Yang and Yau (2011) found 

that BLSN can cause cyclolysis and anticyclogenesis due to these effects, leading to 

changes in the evolution of synoptic scale systems (Yang and Yau 2011) and low-level 

flow (Bintanja 2001). Additionally, BLSN particles act to increase the absorption of 

longwave radiation while reflecting incoming shortwave energy (Yang et al. 2014; Palm et 

al. 2018b). 

Palm et al. (2018b) provided a summary of the net effect of BLSN plumes on the 

thermodynamic structure and radiative balance of the lower atmosphere (summarized in 

Figure 1). The described processes act to alter the temperature and moisture content of the 

layer. Generally, prior to BLSN initiation, a strong inversion layer exists above the surface. 

As BLSN occurs, the temperature of the layer increases and becomes nearly isothermal due 

to mechanical mixing of air into the layer from above the inversion and absorption of 

longwave radiation. The strength of the warming is related to the depth of the layer, with 

deeper layers seeing stronger surface warming. RH increases as sublimation occurs, but 

typically does not reach saturation due to the drier air being mixed in from above the 

inversion. 
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BLSN modifies the properties of the surface snow pack by transportation and 

sublimation (Budd 1966; Bintanja and Reijmer 2001; Déry and Yau 2002; Lenaerts et al. 

2010). These processes can significantly impact the surface mass balance in regions where 

BLSN is common, such as Antarctica and the Northern Canada. For example, BLSN 

transportation and sublimation combined has been estimated to remove over 50% of fallen 

snow in coastal regions of Antarctica (Scarchilli et al. 2010). Palm et al. (2017) calculated 

that the Antarctic continent loses an average of 393.4 ± 197 Gt of snow annually to BLSN 

sublimation. This estimate is based upon satellite observations and atmospheric reanalysis 

data, and can be used as a rough approximation of the impact of the process. Further 

observations are required to validate and reduce the uncertainty of these numbers. 

1.2. Properties of Blowing Snow 

1.2.1. Physical Process of Blowing Snow 

For BLSN to occur, the wind must be strong enough to dislodge particles from the 

surface snowpack (Figure 2). The wind speed at which this occurs, known as the threshold 

wind speed, varies depending on the properties of the surface snow. This is because the 

cohesive forces between individual particles must be overcome by the shear force exerted 

by the wind (Kind 1981; Li and Pomeroy 1997a; Leonard et al. 2012). A simple relationship 

exists between particle size and the wind speed needed to begin movement (Kind 1981; 

Leonard et al. 2012). The surface of the snowpack is typically made up of many particles 

of different sizes, complicating said relationship. Small particles tend to be shielded from 

the wind by larger particles, increasing the necessary wind speed to begin drift (Schmidt 

1982; Leonard et al. 2012). The cohesion between particles also becomes more important 

than particle size alone in surfaces with variable particle sizes (Schmidt 1982).  
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Li and Pomeroy (1997a) investigated the factors affecting threshold wind speeds for 

BLSN. Snow elasticity and kinetic friction both increase with decreasing temperatures, 

requiring higher wind speeds to dislodge particles. Warm snow surface temperatures see 

high threshold wind speeds due to liquid water cohesion. For dry snow that has not reached 

temperatures above 0°C, the wind threshold is lowest around -25°C, increasing at both 

warmer and colder temperatures, based on surface observations from Canadian weather 

stations. Wet snow shows higher threshold wind speeds in all cases, with a steep increase 

as temperatures warm to approximately 0°C. There is significant variability in threshold 

wind speed at a given temperature due to factors including snow particle properties and the 

approximations made to estimate snow surface temperature.   

Once transport is initiated, larger particles bounce along the surface as they move 

with the wind while smaller particles may be suspended in the air (Li and Pomeroy 1997a; 

Nishimura and Nemoto 2005). A particle is only lifted from the surface if the vertical 

component of the wind speed is at least the same magnitude as the particle’s fall velocity 

(Kind 1981). Saltation is the primary mode of transport in the lowest few centimeters above 

the surface, while particles above are supported by the vertical component of the wind 

(Kind 1981; Pomeroy and Male 1988). Saltating snow loses much of its kinetic energy 

during its collisions with the surface (Kind 1981), but the collision displaces surface 

particles, reducing the wind speed required to move additional snow from the surface (Li 

and Pomeroy 1997a; Leonard et al. 2012). By the definitions made earlier, BLSN cases 

herein  include both processes as observations are made above the saltation layer (Leonard 

et al. 2012). These transport mechanisms can be seen in Figure 2. As the particles begin to 

move, the suspended particles increase friction and act to reduce wind speed in the column. 
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1.2.2. Microphysical Properties of Blowing Snow 

A gamma distribution has been shown to fit near-surface (0-10 m) BLSN particle size 

distributions in both the Arctic and Antarctic (Budd 1966; Schmidt 1982; Nishimura and 

Nemoto 2005). The average particle size decreases quickly with height after the first 2 m 

(Budd 1966) and varies depending on the extent of turbulence in the layer (Pomeroy and 

Male 1988). Nishimura and Nemoto (2005) used in-situ measurements recorded over 

October and November 2000 in western Antarctica to study particle size distribution and 

mass flux during BLSN events. Four snow particle counters, three ultrasonic anemometers, 

thermometers, and humidity sensors were mounted on a 30 m tower. Particle size 

distributions were measured at a variety of heights and the distributions agreed with 

previous studies such as Li and Pomeroy (1997a); the distribution of particle sizes was 

wider at low elevations, trending towards smaller particles with height. It was also observed 

that the particle size distribution is much wider and has a bi-modal distribution at higher 

elevations if BLSN is concurrent with precipitation.  

BLSN particles tend to be irregularly-shaped and non-uniform (Budd 1966). An 

image showing fragmented BLSN particles is shown in Figure 3. This early study 

hypothesized that many of the discrepancies between the predictions of existing snow drift 

theory and measurements can be explained by the varying particle sizes and distribution of 

fall velocities. Particles are broken from the surface snow pack and continue to shatter as 

they bounce along the surface (Pomeroy and Male 1988).  Suspended particles tend to be 

rounded and smooth due to sublimation on particle edges (Pomeroy and Male 1988).   

Pomeroy and Male (1988) modelled a BLSN plume to investigate the optical 

characteristics of BLSN, which are closely tied to the shape of the particles. When looking 
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at individual particles, large variations in extinction were observed for particles of 

approximately the same size. The optical properties are further complicated by considering 

the irregular nature of the particles, with many particles generating wave-like signals. These 

wave-like effects were shown to average out to approximately the interference expected 

from an ice sphere when looking at ensembles of particles together. Observation of 

microphysical properties of BLSN show amorphous BLSN particles can be approximated 

as ice spheres, assuming small cross-sectional area, with relatively low error. The small 

size and spheroidal shape of BLSN particles influence remote sensing observations of the 

process 

1.3. Remote-Sensing Observations of Blowing Snow 

A variety of remote-sensing projects have been performed to better observe and 

understand BLSN. These include ground-based studies with lidar and radar, and satellite-

based studies. Limitations exist for both types of work. Ground-based studies have no 

obstruction due to cloud cover, but BLSN can occur below the minimum detection height 

of some platforms. Meanwhile, satellite studies have used space-borne lidar that is unable 

to penetrate optically thick clouds. Gossart et al. (2020) estimated that 90% of BLSN in 

coastal Antarctica occurs during cloudy conditions, and is likely missed by space-borne 

lidar. In summary, satellite studies are optimal for getting a broader spatial understanding 

of the process, as measurements are made over broad geographic areas, rather than point 

measurements where ground-based instruments are deployed. In the following sections, 

some notable ground- and satellite-based remote sensing BLSN studies are discussed. 
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1.3.1. Ground-Based Remote-Sensing of Blowing Snow 

Mahesh et al. (2003) investigated BLSN with a micropulse lidar (MPL) at the South 

Pole Station between 1999 and 2002. BLSN occurred on forty days during the study period. 

The top of the BLSN layer was determined by identifying a surface-based peak in 

backscatter coefficient that is above the background molecular backscatter signal. The 

mean layer thickness for the 40 cases was 416 m, although half of the plumes had depths < 

200 m. BLSN was usually limited to the surface inversion layer and below. No relationship 

was found between wind speed and depth of BLSN layer. It was hypothesized this was 

because particles remained suspended in the air after being lofted, allowing for weaker 

wind speeds during portions of the event.    

A climatology of high Arctic winter tropospheric particles was produced by 

investigating observations from a high spectral resolution lidar (HSRL) and millimeter-

wave cloud radar (MMCR) deployed at the Zero-altitude PEARL Auxiliary Laboratory in 

Eureka, Nunavut from 2005 to 2008 (Bourdages et al. 2009). Layers were analyzed by 

looking at the color ratio, the backscatter coefficient, and linear depolarization ratio. This 

study did not explicitly investigate BLSN but observed boundary-layer ice crystals in 1338 

h of observations. These layers were constrained to the lowest 750 m of the atmosphere. 

The depolarization found in these layers was inconsistent between cases, with a wide 

variety of values being observed. Analysis of the color ratio showed that low-level ice 

crystals were likely contaminating the retrievals of aerosol properties at this location. The 

results presented in this study help to more accurately classify remotely-sensed 

observations of different types of tropospheric particles in high latitude regions. 
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Building on previous lidar-based studies, Gossart et al. (2017) developed an 

algorithm to detect BLSN based on backscatter profiles from a ground-based ceilometer. 

This algorithm used vertical backscatter profiles, as in Mahesh et al. (2003), and is 

discussed in detail in Chapter 3. Ceilometer data were analyzed at Neumayer III and 

Princess Elisabeth stations in western Antarctica from 2010 to 2016. The algorithm agreed 

with human observations of BLSN 78% of the time. At these locations, availability of fresh 

snow was as important as wind speed, as 92% of BLSN observed occurred during or shortly 

after a synoptic-scale precipitation event. 

1.3.2. Satellite-Based Remote-Sensing of Blowing Snow 

Several studies have used satellite-borne observations to study BLSN in remote 

regions. Active and passive remote sensing were used in concert by Palm et al. (2011) to 

investigate BLSN frequency over Antarctica. An algorithm was developed using ICESat 

(75 m resolution) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 

onboard the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations 

(CALIPSO).  BLSN was detected with backscatter cross-section profiles (like ground-

based studies), a digital elevation model, and 10 m wind speed from the Goddard Earth 

Observing System 5 (GEOS-5). The elevation model was used to remove the signal due to 

the ground itself, and measurements were checked to determine if the backscatter 

coefficient was above 2.5x10-2 km-1 sr-1 and the wind speed was above 4 ms-1. This 

algorithm was applied over Antarctica from 2007 to 2009, and spatial and temporal patterns 

as well as characteristics of BLSN plumes were investigated. It was found that regional 

frequencies did not shift significantly from year to year, though East Antarctica had higher 

interannual variability. The average depth of the BLSN layers investigated was 120 m, with 
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an average optical depth of 0.2.  

Later, Palm et al. (2017) measured BLSN over Antarctica using CALIOP along with 

Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) 

reanalysis data (Gelaro et al. 2017) to quantify the extent of surface snow transport and 

sublimation from BLSN for the period of 2007-2015. To reduce false detection of BLSN, 

the layer mean depolarization and color ratio were assessed, and the analysis layer was 

limited to the lowest 500 m AGL. MERRA-2 provided the necessary temperature, 

humidity, and wind speeds at the location and times of BLSN profiles to estimate 

sublimation and snow transport. It was found that the spatial patterns of transport agreed 

with recent modelling studies (ex. Déry and Yau 2002), but the extent of the sublimation 

observed was larger than expected. Maximum sublimation values of 250 ± 125 mm snow 

water equivalent annually were found within 200 km of the coast, where relatively warmer 

air is found, increasing local sublimation. Interannual variability was found to be 10-15%, 

and was largely attributed to precipitation and temperature differences. 

1.4. Blowing Snow in Antarctica 

1.4.1. Importance of Blowing Snow in the Antarctic Climate 

Recent studies have identified that Western Antarctica is one of the most rapidly 

warming regions on Earth; Bromwich et al. (2013) found the warming trend to be 2.2 ± 

1.2°C per decade between 1958 and 2010. This dramatic warming has implications for the 

surface mass balance of the Antarctic Ice Sheet. The surface mass balance represents the 

balance of inputs and outputs to the system, which is given by:  

𝑆 = ∫(𝑃 − 𝐸 − 𝑀 − 𝑄𝑡 − 𝑄𝑠)𝑑𝑡 (1) 
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where S represents the surface mass balance, P is precipitation, E denotes surface 

evaporation and sublimation, M represents surface melt and runoff, and Qt and Qs represent 

BLSN transport and sublimation, respectively (Palm et al. 2017). As the climate warms, 

the melting of the ice sheet has been shown to be a large contributor to sea level rise 

(Giovinetto et al. 1992; Gallée et al. 2001). Modelling the ice sheet’s surface mass balance 

accurately is pivotal to understanding the contributions it will make to the changing climate. 

Surface processes, such as BLSN, play a role in redistribution and sublimation of surface 

mass alter the surface mass balance, particularly at regional and local scales. Better 

understanding BLSN in Antarctica may help to better model the region’s surface mass 

balance.  

The frequency of BLSN varies across Antarctica due to topography and climate 

dynamics of the region. Although much of the continent is very remote, estimations of the 

frequency of BLSN have been made for several regions. Human-observations indicate that 

BLSN occurs 33.8% of the time at the South Pole Station, with annual frequencies ranging 

from 22.1% to 53.3% (Mahesh et al. 2003). Palm et al. (2017) estimated that winter BLSN 

frequency along the Antarctic coast is approximately 15-20% while megadune regions of 

the ice sheet can see BLSN frequencies reaching up to 75% (Figure 4a). Moisture is more 

bountiful in coastal regions allowing for higher amounts of precipitation compared to the 

inland portions of the continent. Many BLSN events occur within 24-48 hours of a 

precipitation event (Gossart et al. 2017) meaning that the coastal regions may see frequent 

BLSN.   

Previous studies have suggested that sublimation occurring with BLSN removes 

substantial amounts of snow from the Antarctic continent (Giovinetto et al. 1992; Gallée et 
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al. 2001; Déry and Yau 2002). Giovinetto et al. (1992) estimated that BLSN and drifting 

snow move approximately 1.2 x 1014 kg year-1 at 70°S. It is believed mass transport is much 

higher over the central regions of the ice sheet but this is more difficult to assess due to the 

lack of observations (Giovinetto et al. 1992). Déry and Yau (2002) estimated the average 

annual BLSN sublimation rate over the Antarctic Ice Sheet using ERA15 reanalysis data 

and found it to be in excess of 50 mm snow water equivalent per year along the fringes of 

the ice sheet (shown in Figure 4b).   

Antarctica often sees strong katabatic winds flowing towards the ocean. Katabatic 

winds are gravity-driven flows due to air temperature/density differences (Kodama et al. 

1985). As sublimation occurs with BLSN, cooling causes air density to increase, therefore 

accelerating the katabatic flow by up to 30% (Kodama et al. 1985). Zhdanov (1977) made 

observations of BLSN plumes associated with the katabatic winds based on satellite 

observations. More recently, Scarchilli et al. (2010) observed the same phenomenon using 

visible imagery from NASA’s Terra and Aqua satellites. The shadows cast by these plumes 

suggested depths greater than 100 m, altering the outgoing longwave radiation in the region 

(Yang et al. 2014). 

1.4.2. 2016 AWARE Field Campaign 

The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) 

West Antarctic Radiation Experiment (AWARE) Field Campaign took place in 2016 to 

investigate cryospheric loss in the West Antarctic Ice Sheet (WAIS). McMurdo Station on 

Ross Island (77°51’S, 166°40’E) was the central facility for the project, with an additional 

mobile facility deployed at the WAIS (79°28’S, 112°5’W) during the summer (Lubin et al. 

2020). The locations of the sites are shown in Figure 5. The full ARM Mobile Facility 
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(AMF2) was deployed to McMurdo Station for all of 2016. A full list of instruments in the 

AMF2 are listed in Appendix A.  

The primary goal of the AWARE Campaign was to investigate the surface energy 

budget and thermodynamic structure of the atmosphere in Western Antarctica (Lubin et al. 

2015). At McMurdo Station, priority was placed on studying the importance of mixed-

phased clouds and aerosols with respect to the radiation budget and understanding cloud 

microphysical properties (Lubin et al. 2015). While understanding BLSN in the region was 

not explicitly a goal of the campaign, the campaign provides a unique opportunity to study 

the process with a wide variety of instruments deployed for a full year, supplying 

continuous, quality-controlled data.   

1.5. Objectives 

Although the effects of BLSN are vital to understanding the climate of high-latitude 

regions, this phenomenon is still poorly understood and not widely included in weather and 

climate models (Gallée et al. 2001). While BLSN models exist to simulate plumes and 

regional surface mass balance, there are several issues that limit their accuracy. A primary 

issue limiting the accuracy of these models, and the ability to correctly parameterize the 

process in weather and climate models, is a lack of observations and understanding of the 

process itself. The varying parameterizations bring difficulty to modelling the surface mass 

balance of ice sheets in the polar regions (Leonard et al. 2012). Better understanding of the 

process will allow for the improvements of model parameterizations and estimates of snow 

transport and sublimation. 

The occurrence of BLSN in Western Antarctica is analyzed by applying the 

ceilometer-based detection algorithm derived in Gossart et al. (2017) to the observations 
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from McMurdo Station during AWARE. The algorithm has been shown to perform well in 

Eastern Antarctica, but it is hypothesized that it produces a positive bias over the true 

frequency of BLSN because of the lack of meteorological thresholds and lengthy temporal 

averaging applied to ceilometer backscatter observations. Additionally, the estimation of 

BLSN depth during complex events was noted to be questionable based on limitations of 

the ceilometer.  

The objective of this study is to implement improvements to the Gossart et al. (2017) 

BLSN detection algorithm to increase confidence in its detections and to provide a more 

robust estimation of plume depth during events occurring with precipitation. In situ 

observations from the AMF2 of basic meteorological properties are incorporated into the 

algorithm to provide confirmation that BLSN may truly be occurring and the temporal 

averaging is reduced to lessen the positive bias in BLSN frequencies. The frequency of 

BLSN is compared to human observations to grossly assess validity of detections, as human 

observations are subjective and cannot be considered ground truth. Given the limitations of 

the ceilometer profile analysis in complex scenes, such as precipitation mixed with BLSN, 

alterations are made to the algorithm by supplementing it with a variety of remote sensing 

observations available during AWARE. These additional observations improve the ability 

for the algorithm to detect the top of the BLSN layer, particularly during precipitation 

events. The updated algorithms will help to gain an in-depth understanding of the frequency 

and characteristics of BLSN during the AWARE Field Campaign.  

In summary, the performed analysis will provide the most comprehensive remotely-

sensed study of BLSN to date at any location in the world. In turn, it will better characterize 

the plume height during complex events which will aid in understanding the amount of 
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surface snow being removed. Further, more robust estimations of BLSN occurrence and 

depth are an excellent resource for model validation and these properties will be distributed 

to the ARM user community to aid other researchers.  
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Figure 1. Temporal evolution of temperature (black) and moisture (red) structure during a BLSN 

event. Figure adapted from Palm et al. 2018. 
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Figure 2. Graphic depiction of the movement of particles in BLSN and its effect on the vertical 

wind profile (adapted from Nishimura and Nemoto 2005). The dotted line represents the top of 

the snowpack, and the dashed line represents the top of the saltation layer. Z represents altitude, 

U(z) represents the initial vertical wind speed profile, and U’(z) represents the vertical wind speed 

profile altered due to BLSN. Transport is initiated by the wind at A. Collisions with the snowpack 

occur at B, dislodging more particles to be transported. Particles begin to be carried in suspension 

by the wind at C. 
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Figure 3. Image from Dr. Aaron Kennedy's snowflake camera in Grand Forks, North Dakota at 

07:31:13 UTC on 12 February 2020 showing several broken snow crystals (appearing as brighter 

particles) surrounded by other fragmented (darker) BLSN particles. 
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Figure 4. Average winter (April - October) (a) BLSN frequency and (b) average annual 

sublimation from 2007-2015 based on CALIPSO and MERRA-2 data (Palm et al. 2017). 
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Figure 5. Map showing the location of McMurdo Station and the Western Antarctic Ice Sheet 

field site 
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CHAPTER 2 

DATA SOURCES 

2.1. Human Observations 

Surface weather conditions are recorded by human observers at McMurdo Station for 

every three-hour period. These observations are available from 1999 to present from the 

Antarctic Meteorological Research Center (AMRC) at the University of Wisconsin-

Madison. For the purposes of this study, only complete years of records (2002-2018) were 

analyzed. Freezing precipitation (snow, snow grains, or ice crystals), fog/mist, and BLSN 

conditions are recorded as the length of time for each three-hour period that said condition 

occurred. The daily observer spreadsheets from McMurdo Station were accessed from the 

AMRC repository (ftp://amrc.ssec.wisc.edu/archive/). Figure 6 shows an example of a 

daily observation worksheet. The date, hours, and timing of each weather condition from 

each daily worksheet were aggregated into csv files to compare with algorithm results.  

Several potential issues need to be considered when comparisons are made to 

instrumentation at the AMF2. First, the observation sites are not collocated. The human 

observations are made in McMurdo Station (10 m elevation) while the AMF2 is located 

near the observation hill southeast of town (78 m elevation). The complex terrain of Ross 

Island suggests that location alone could cause some differences in the two datasets. Human 

observations also have a degree of subjectivity; observations may be inconsistent between 

different observers and human error is possible even from the standpoint of simple data 

entry (Hanesiak and Wang 2005; Elevant 2010). Additionally, it is dark in Antarctica for 

approximately half of the year, making it more difficult to observe surface weather 
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conditions as noted in other high latitude studies (Hanesiak and Wang 2005). Collectively, 

it is probable that the human observed frequency of BLSN at McMurdo Station is biased 

compared to observations at the AMF2. Shorter BLSN events could easily be missed by 

human observers, leading to reduced frequencies being reported. On the other hand, it is 

also possible that estimations of the length of events may be longer or shorter than the actual 

period of BLSN, and periods of cyclic BLSN may be overestimated. 

2.2. AMF2 Instrumentation 

Deployment of the AMF2 at McMurdo Station started in November 2015, but the 

data were of variable quality until 1 January 2016. For this reason, this study analyzes data 

from 1 January 2016 to 1 January 2017. All AMF2 observations are subject to ARM’s 

stringent data quality protocol, including automated quality control checks and data quality 

reports that notify the user of periods of missing or suspect data. Examples of data from 12 

June 2016, a day with falling snow and BLSN at McMurdo Station, are used for all 

instruments described in this section. 

2.2.1. Meteorological Instrumentation at the AMF2 

The surface meteorological station equipment (MET) deployed with the AMF2 in 

McMurdo Station and WAIS is composed of a variety of in situ sensors to measure basic 

meteorological properties (Ritsche and Prell 2011). An image of the MET at the DOE ARM 

Southern Great Plains site is shown in Figure 7. The measurements encompassed by MET 

include barometric pressure, temperature, RH, wind speed, and wind direction (Ritsche and 

Prell 2011). All sensors were supplied by Vaisala, including a barometer, present weather 

detector, and ultrasonic wind detectors installed at 1 m, 2 m, and 10 m AGL, respectively 
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(Ritsche and Prell 2011). An example of output from the MET instrumentation is shown in 

Figure 8.  

The Vaisala HMP155 measures air temperature using platinum resistance sensors, 

and RH with respect to liquid water directly based on voltage measurements using 

capacitance measurements from a water vapor absorbing thin polymer film (Ritsche and 

Prell 2011). Although this study focuses on solid hydrometeors, supercooled liquid was 

shown to be present in the lower atmosphere during the AWARE Field Campaign (Silber 

et al. 2018a), so use of RH with respect to water is deemed appropriate to distinguish fog 

from BLSN. To confirm this, RH with respect to ice was calculated using vapor pressure 

measurements from the HMP155, and only small differences (0-5%) between the value 

provided and calculated RH were found. The uncertainty associated with the RH 

measurements is ±(1.0 + 0.008 × 𝑟𝑒𝑎𝑑𝑖𝑛𝑔)%; for example, if the measured RH is 85%, 

the associated uncertainty would be ±1.68% (Vaisala Oyj 2020). The uncertainty associated 

with temperature measurements is ±(0.226 − 0.0028 × |𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒|)℃ (Vaisala Oyj 

2020). This means that for a measured temperature of -30°C, the uncertainty is ±0.142°C. 

The Vaisala Ultrasonic WS425 sensor is composed of an array of three ultrasonic 

transducers on a horizontal plane and measures the transit time between transducers to 

measure the wind vector and derive the horizontal wind speed and direction (Vaisala Oyj 

2010). Invalid measurements can occur when raindrops or ice pellets hit the sensor, but are 

removed using a signal processing technique (Vaisala Oyj 2010). Wind speed 

measurements are subject to an uncertainty of ±0.135 m s-1 or 3% of the measurement 

(whichever is greater), while wind direction accuracy is within 2° (Vaisala Oyj 2010).  
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The final measurement from the instrumentation suite that is used in this study is 

visibility from the Vaisala PWD22 sensor. The PWD22 uses a forward scattering visibility 

meter, measuring the amount of incident light that is scattered in the forward direction by 

particles between the transmitter and receiver, yielding measurements with an accuracy of 

±10% (Vaisala Oyj 2004). The connection of the sensors to data loggers used single-ended 

0 to 1 V measurement, rather than a four-wire bridge. Data are available from the 

meteorological sensors from 17 November 2015 to 1 January 2017 with no downtime noted 

by ARM, though manual inspection saw short periods in which a single sensor may have 

failed. 

2.2.2. Parsivel2 Optical Disdrometer 

The OTT Particle Size and Velocity disdrometer (Parsivel2) is an optical disdrometer 

allowing for the measurement of different forms of precipitation (OTT HydroMet 2016). 

An image of the Parsivel2 is shown in Figure 9. The instrument uses a 650 nm laser to 

produce a horizontal sheet of light with a surface area of 27 mm by 180 mm onto a single 

photodiode, recording the shadow of particles that pass through by the reduction in voltage 

measured. This allows for direct measurement of particle size and fall speed. The following 

variables can then be derived: particle size spectrum, type and intensity of precipitation, 

kinetic energy, radar reflectivity, and horizontal visibility. Particles up to 25 mm in 

diameter can be measured by the instrument, sorted into 32 size classes of varying widths. 

The two size bins of smallest diameter (< 0.25 mm) are typically not used due to low signal-

to-noise ratio (Battaglia et al. 2010). Particle fall speeds are also sorted into 32 classes, with 

0.2 and 25 m s-1 being the minimum and maximum detectable fall speeds, respectively 

(OTT HydroMet 2016). An example of output from the Parisvel2 at McMurdo Station is 
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shown in Figure 10. The Parsivel2 was deployed from 19 November 2015 to 1 January 

2017. The only period of missing data noted during the official campaign dates was from 

31 January to 4 February 2016. Manual inspection showed that data were also missing on 

22 October and 30 December 2016. Based on assessment of other observations, it is 

unlikely that BLSN occurred during these periods. 

The Parsivel2 was designed for measurement of liquid precipitation; therefore, 

limitations exist to its use when studying snow. The diameters measured by the instrument 

are given as the diameter of a sphere with equivalent volume for a raindrop (Battaglia et al. 

2010). Battaglia et al. (2010) investigated the errors introduced by this assumption when 

using the Parsivel to observe snow particles. With regards to particle diameter, the highest 

uncertainty in measured particle diameter is found with the smallest particle sizes, as shape 

and orientation are more unclear. Fall velocities are found to be underestimated for particles 

with a widest horizontal dimension of less than 10 mm and overestimated for larger 

particles (by 30-40%).  Maahn (2010) found a positive bias in precipitation rate during 

BLSN events in measurements from northern Norway. Friedrich et al. (2013) also identified 

an artifact in Parsivel2 measurements in observations from six separate instruments 

deployed into hurricanes. Unrealistically large particle number concentrations were 

observed for large particles (> 5 mm diameter) at high wind speeds (beginning around 10 

ms-1). It was hypothesized that this effect was caused by particles moving through the 

instrument’s field of view at an angle. These effects need to be considered when 

investigating Parsivel2 observations during BLSN events. 
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2.2.3. Vaisala CL31 Ceilometer 

The Vaisala CL31 ceilometer is a lidar system that transmits at a single-wavelength 

(910 nm at 25°C), measuring the backscatter coefficient with an avalanche photodiode 

receiver (Morris 2016). An image of a vertically pointing CL31 is shown in Figure 11. The 

CL31 yields data with 16 s temporal resolution and 10 m vertical resolution up to 

approximately 7.5 km above the instrument. Accuracy is considered within ±1% for 

backscatter coefficient and ± 5 m for retrieved height (Morris 2016). An example of 

backscatter coefficient from the ceilometer is shown in Figure 12. The ceilometer began 

collecting data on 30 November 2015 and was removed on 2 January 2017. Periods of 

missing data from the ceilometer are noted in Table 1.  

The ceilometer uses overlapping transmitting and receiving optics such that beam 

overlap occurs closer to the instrument than many other remote sensing instruments, 

producing data only 10 m above instrument level (Morris 2016). The instrument includes a 

built-in filter to correct unrealistically high backscatter coefficient values in the first range 

bin due to window obstruction (Gossart et al. 2017). This filter introduces artifacts into the 

data in the first range bin, resulting in values that are consistently higher than that in the 

following bins. For this reason, the first range bin is not used in the BLSN detection 

algorithm. The ceilometer also uses relatively low energy (310 W), allowing for more 

economical operation (Morris 2016). Since the energy of the emitted pulses is quite low, 

many pulses are averaged to reduce random background noise (Morris 2016). The low 

emitted energy can introduce attenuation issues, particularly in mixed events where snow 

is both falling and blowing due to many particles being present in the sample volume. While 

this is not expected to affect the retrieval of BLSN plume heights for cases under clear sky, 
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it may cause issues in determining the depth of layers with more complicated hydrometeor 

profiles.   

2.2.4. High Spectral Resolution Lidar 

The high spectral resolution lidar (HSRL) is a ground-based system measuring 

vertical profiles of variables such as backscatter coefficient, and depolarization. An image 

of a HSRL is shown in Figure 13. The instrument is absolutely calibrated with respect to 

the molecular scattering measured at each point in the vertical profile (Goldsmith 2016). 

The presence of particles in air is determined by measuring the Doppler frequency shift of 

returned photons. For molecular scattering, the Doppler shift is broad (approximately 

Maxwellian), while aerosols and cloud particles largely return radiation near the frequency 

of the instrument’s laser transmitter, allowing for the signal of particulate matter to be 

separated from that of molecules in random thermal motion (Eloranta 2005). The 

instrument has a narrow, angular field of view (45 µrad), reducing multiple scattering 

effects (Goldsmith 2016). Received light is separated by a spectrometer into two spectral 

channels; one detecting photons scattered by aerosols and the other from molecules 

(Shipley et al. 1983). The 532 nm laser allowing for continuous profiles from 

approximately 50 m to 30 km (Goldsmith 2016). The vertical resolution is 7.5 m with a 

typical time resolution of 0.5 s, yielding high-resolution data (Goldsmith 2016). Figure 14 

shows an example of observations from the HSRL. A discontinuity in backscatter 

coefficient related to partial beam overlap can be seen in Figure 14a near 200 m. The HSRL 

was deployed at McMurdo Station from 29 November 2015 to 3 January 2017 with no 

reported periods of missing data reported by ARM. Several periods of missing or 

questionable data were found through manual inspection and are listed in Table 2. 
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Additionally, periods where data were missing for periods of several minutes to half of an 

hour were common throughout the campaign around 09 and 21 UTC. 

The HSRL holds several advantages over the ceilometer when studying BLSN. 

Firstly, depolarization measurements can be useful in separating BLSN particles from 

falling snow during precipitation events, since BLSN particles are more spheroidal (Sassen 

1977, 1991). Also, since the HSRL uses a more powerful laser, it likely experiences fewer 

issues with attenuation through BLSN layers. This would allow for the true depth of the 

layer to be found with higher confidence. While these advantages can help provide insight 

into BLSN characteristics, the instrument can only be used if the BLSN plume is deep 

enough that it is visible to the HSRL (> 200-300 m). Because of this, the HSRL is most 

useful during intense BLSN events and those occurring with precipitation. 

2.2.5. Sky Radiometers for Downwelling Radiation 

The ARM sky radiometers on stand for downwelling radiation (SKYRAD) 

instrumentation provide continuous observation of downwelling and upwelling longwave 

and shortwave irradiances (Andreas et al. 2018). The total radiative flux is divided into six 

components; direct normal shortwave, diffuse horizontal shortwave, global horizontal 

shortwave, reflected shortwave, downwelling longwave, upwelling longwave (Andreas et 

al. 2018). SKYRAD were deployed at McMurdo Station from 16 November 2015 to 29 

December 2016, but data are only available for 1 January to 29 December 2016. Data were 

not available on 31 August 2016 during radiometer replacement. It is also noted that 

SKYRAD can experience intermittent shadowing at low sun angles, but this is not expected 

to impact this study, as SKYRAD was only used to determine which lidar calibration 
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constant was used in the calculation of  attenuated backscatter coefficient for the micropulse 

lidar (described in the following section).  

2.2.6. Micropulse Lidar 

The micropulse lidar (MPL) is a ground-based lidar with a relatively low pulse energy 

(10 µJ) and high pulse repetition frequency (2500 Hz) (Flynn et al. 2007). Backscatter 

coefficient is measured up to altitudes of approximately 20 km (Muradyan and Coulter 

2020). Some derived parameters include cloud/layer boundaries, cloud ice/water content, 

backscatter coefficient profiles and aerosol extinction (Muradyan and Coulter 2020). The 

vertical resolution is 15 m, and profiles are averaged over 10 s (Muradyan and Coulter 

2020). The uncertainty associated with the measurements are ±2% for reported distances 

and ± 7 m for retrieved distances (Muradyan and Coulter 2020). An example of 

observations from the MPL at McMurdo Station can be seen in Figure 15. Data used in this 

study are reprocessed as described in Silber et al. (2018b), with range corrections and cloud 

masking. The normalized relative backscatter coefficient is provided and can be converted 

to attenuated backscatter coefficient by dividing the normalized relative backscatter 

coefficient by the MPL calibration constant. The calibration constant is a system-specific 

value derived for each deployment. For AWARE, a daytime and nighttime calibration 

constant were derived. Day and night were distinguished based on measurement of direct 

incoming shortwave radiation of at least 20 W m-2 from SKYRAD.  

The solid-state laser pulses energy with a wavelength of 523 to 532 nm (Flynn et al. 

2007). Before transmission, the energy passes through a polarizing beam splitter that 

widens the beam, followed by a depolarizer that randomly rotates the light passing through, 

resulting in a net polarization of approximately zero. The light transmitted back to the MPL 
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by atmospheric scatterers passes through the depolarizer where approximately half of the 

received light may be reflected towards the laser and lost (Flynn et al. 2007). The remaining 

light passes through and converges onto the focal point of the transceiver telescope (Flynn 

et al. 2007). Polarization measurements can be made for environments that are not changing 

quickly by alternating between measurements with the depolarizer and without, thereby 

measuring depolarized signal versus non-depolarized signal (Flynn et al. 2007).  

Observations began on 6 December 2015 and ended on 2 January 2017 from the MPL 

at McMurdo Station. No periods of missing data were reported but it should be noted that 

the MPL deployed during AWARE experienced problems with high levels of noise, 

particularly during daytime, so some data may be problematic (I. Silber, personal 

communication, 29 July 2020). That said, this noise is more problematic at heights above 

the boundary layer, and thus, is less of an issue for this study. Periods of missing data based 

on manual inspection are noted in Table 3. 

2.2.7. Ka-band ARM Zenith Radar 

The Ka-band ARM zenith radar (KAZR) is a vertically-pointing Doppler cloud radar 

with both dual- and single-polarization versions available (Widener et al. 2012). The former 

was deployed on the AMF2 during AWARE. An image of the KAZR at the DOE’s SGP 

site can be seen in Figure 16. The first three Doppler moments are measured: equivalent 

radar reflectivity factor, radial Doppler velocity, and spectral width yielding vertical 

profiles of the atmosphere (Widener et al. 2012). Usable data begins approximately 200 m 

above the instrument and continues up to 20 km (Widener et al. 2012). The center frequency 

is 35 GHz with a 8.6 mm wavelength and maximum pulse repetition frequency of 20 kHz 

(Widener et al. 2012). The dual-channel digital receiver has a dynamic range of greater than 
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80 dB (Widener et al. 2012). Uncertainty associated with reflectivity observations is ±3 

dBZ while the accuracy of the Doppler velocity is ± 0.1 m s-1 (Widener et al. 2012). An 

example of radar reflectivity factor and Doppler velocity from the KAZR is shown in Figure 

17. The KAZR was deployed from 17 November 2015 to 2 January 2017, with no noted 

periods of missing data. Periods of missing data are noted in Table 4. 

2.2.8. Summary of Remote Sensing Instrumentation 

A summary of remote sensing instrument properties can be found in Table 5. Each 

instrument has unique advantages and has been used in previous studies of snow and BLSN, 

but they have never been used together. The ceilometer produces usable data at the lowest 

altitude, which is useful for studying a ground-based process, but issues with attenuation 

are possible due to its low power. The MPL and HSRL provide polarization measurements 

and a more powerful laser, but the laser is not fully in focus until higher above the 

instrument. The HSRL begins retrieving data 50 m above the instrument, but can have laser 

overlap issues up to 200-300 m. Similarly, the KAZR does not retrieve usable data until a 

high altitude but is more powerful and can help to distinguish falling and BLSN during 

mixed events.  
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Figure 6. Daily Observation Worksheet from McMurdo Station, Antarctica for 12 June 2016. 
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Figure 7. MET instrumentation at the DOE ARM Southern Great Plains site (Ritsche and Prell 

2011). 
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Figure 8. 5-minute mean a) 10 m wind speed, b) 2 m visibility, and c) 2 m RH at McMurdo 

Station on 12 June 2016 from the MET datastream. 
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Figure 9. Image of a Parisvel2 optical disdrometer at the University of North Dakota Oakville 

Prairie Observatory taken by Aaron Kennedy. 
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Figure 10. Logarithmic 1-min particle size densities at McMurdo Station on 12 June 2016 

measured by the Parisvel2. 
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Table 1. Periods of missing data for the ceilometer during 2016 determined through manual 

inspection and ARM data quality reports. The likelihood of BLSN during each period is based on 

human reporting of BLSN and other available observations. 

Date Hours [UTC] Issue BLSN Occurrence 

14 April 2016 00-24 Missing data Unlikely 

21 April 2016 13-20 Missing data ~ 3 hours 

23 May 2016 00-24 Missing data Unlikely 
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Figure 11. Image of the Vasisala CL31 ceilometer at Princess Elisabeth station in Eastern 

Antarctica. Figure adapted from Gossart et al. (2017). 
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Figure 12. Logarithmic backscatter coefficient and lowest detected cloud base height (shown in 

black) detected by a Vaisala CL31 ceilometer at McMurdo Station on 12 June 2016. 
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Figure 13. Image of a HSRL with its protective cover removed (Goldsmith 2016). The protective 

covering is shown behind the HSRL. 
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Figure 14. 5-minute average a) attenuated backscatter coefficient and b) linear depolarization ratio 

from the HSRL for 12 June 2016 at McMurdo Station. 
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Table 2. As in Table 1 but for the HSRL.  

Date Hours [UTC] Issue BLSN Occurrence 

14 January 2016 02-13  Questionable data Unlikely 

17-20 January 2016 00-24 Strong laser overlap 

artifact at ~ 500 m 

~ 1-3 hours 

19 January 2016 15-18 Questionable data Unlikely 

22 January 2016 08-17 Questionable Unlikely 

26 February 2016 15-24 Missing data ~ 4.5 hours 

2 March 2016 00-15 Questionable data Unlikely 

3 March 2016 00-24 Missing data ~ 3 hours 

1 April 2016 17-22 Missing data Unlikely 

11 April 2016 05-10 Questionable data Unlikely 

4 June 2016 09-24 Missing data ~ 2 hours 

5 June 2016 10-24 Missing data ~ 1 hour 

6 June 2016 00-11 Questionable data Unlikely 

30 June 2016 00-09 Questionable data ~ 2.5 hours 

2 September 2016 12-17 Missing data Unlikely 

3 November 2016 04-08 Missing data Unlikely 

26 November 2016 05-08 Missing data Unlikely 
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Figure 15. 5-minute mean a) attenuated backscatter coefficient and b) linear depolarization ratio 

from the MPL for 12 June 2016 at McMurdo Station. 
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Table 3. As in Table 1, but for the MPL. 

Date Hours [UTC] Issue BLSN Occurrence 

8 October 2016 00-24 Missing data ~ 5 hours 

9 October 2016 00-24 Missing data ~ 4 hours 

10 October 2016 00-24 Missing data Unlikely 

11 October 2016 00-24 Missing data ~ 6 hours 

12 October 2016 00-16 Missing data ~ 10 hours 

6 December 2016 01-14 Missing data ~ 2.5 hours 

30 December 2016 00-24 Missing data Unlikely 
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Figure 16. Image of the KAZR deployed at DOE ARM Southern Great Plains site (Widener et al. 

2012). 
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Figure 17. 5-minute mean a) radar reflectivity and b) mean Doppler velocity at McMurdo Station 

on 12 June 2016 measured by KAZR. 
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Table 4. As in Table 1, but for the KAZR. 

Date Hours [UTC] Issue BLSN Occurrence 

18 April 2016 00-24 Missing data ~ 3 hours 

27 April 2016 00-24 Missing data ~ 11 hours 

28 April 2016 12-24 Missing data ~ 0.5 hours 

3 May 2016 13-24 Missing data ~ 15 min 

8 May 2016 17-24 Missing data Unlikely 

17 May 2016 00-24 Missing data ~ 15 min 

28 May 2016 00-24 Missing data Unlikely 

6 June 2016 00-24 Missing data Unlikely 

19 June 2016 00-24 Missing data ~ 19 hours 

6 September 2016 00-24 Missing data ~ 5 hours 
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Table 5. Summary of properties of the remote sensing instrumentation discussed in  

Sections 2.2.3-2.2.7. 

Instrument Valid 

Heights [m] 

Temporal 

Resolution [s] 

Vertical 

Resolution [m] 

DOI 

Ceilometer 10-7700 16 10 10.5439/1181954 

HSRL 50-30000 0.5 7.5 10.5439/1025200* 

MPL 100-20000 10 15 10.5439/1468777 

KAZR 200-20000 2 30 10.5439/1025214 

* Unaveraged HSRL observations retrieved from the University of Wisconsin-Madison Lidar Group 

Archive (http://hsrl.ssec.wisc.edu/) 
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CHAPTER 3 

METHODOLOGY 

3.1. Climatology of Human Observations of Blowing Snow at McMurdo Station 

Seventeen years (2002-2018) of human observations of BLSN at McMurdo Station 

are used to provide insight into the climatological properties of BLSN, putting the detailed 

observations during the AWARE campaign into proper context. These observations also 

provide a means of verification of BLSN periods identified by the instrumentation, but due 

to the limitations discussed in Section 2.1, were used as a general assessment tool rather 

than ground truth.  

To determine the climatology of BLSN at McMurdo Station, the total amount of 

BLSN reported by human observers in each year of the record was calculated. The amount 

of BLSN was then broken down into times including occurrence with other phenomena 

such as snow, snow grains, and ice crystals (SN/SG/IC) and/or fog and mist (FG/BR). The 

distribution of BLSN occurrence was then analyzed on an annual and monthly basis, 

including assessing the proportion that occurred concurrently with other observed 

phenomena. 

3.2. Ceilometer-Based Blowing Snow Detection Algorithm 

Gossart et al. (2017) developed an algorithm to detect BLSN based on ceilometer 

attenuated backscatter coefficient profiles. This algorithm was applied to Neumayer III and 

Princess Elisabeth stations in Eastern Antarctica to investigate the frequency of BLSN in 

the region. Hourly running means were applied to the original 16 s profiles to smooth noise 

in the data, including artifacts due to partial laser overlap that periodically appear in the 4th 
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to 6th range bin. A flowchart describing the process of the algorithm is shown in Figure 18. 

This algorithm will be referred to as the Gossart algorithm herein. 

The algorithm is now described.  The first step checks that the backscatter coefficient 

in the instrument’s lowest usable bin (bin 2, 10-20 m above the ceilometer) is higher than 

the clear sky threshold. The clear sky threshold was set by subjectively selecting periods of 

clear sky observed by the ceilometer and using the 95th percentile of the backscatter 

coefficient in the lowest usable bin. Next, the algorithm looks for a decreasing profile by 

checking if the backscatter coefficient in the lowest usable bin is higher than the average of 

the third to seventh bin (30-80 m). If these two criteria are met, BLSN is detected and the 

algorithm ascends the profile, bin-by-bin, until the backscatter coefficient begins to 

increase with height or falls below the clear sky threshold. The algorithm sorts profiles into 

four categories; non-BLSN, clear sky with BLSN, cloud/precipitation with BLSN, and 

intense mixed event (shown in Figure 18). The non-BLSN profiles are those that show no 

ground-based maximum in backscatter coefficient. Schematics showing the three BLSN 

categories are shown in Figure 19. The BLSN with cloud/precipitation and clear-sky BLSN 

appear as profiles with high backscatter coefficient in the low levels with and without 

secondary peaks at higher altitudes, respectively. Intense mixed events are those with very 

high backscatter coefficient (over 1000 sr-1 km-1 10-4) in the low levels but may have no 

clear pattern with height.  

As in Gossart et al. (2017), the clear sky signal at McMurdo Station was determined 

by subjectively selecting profiles that were cloudless with no BLSN. In this study, 

continuous clear sky periods of at least three hours were selected and the 95th percentile for 

each bin was found, yielding the clear sky signal used in the algorithm for McMurdo Station 
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(Figure 20). The only threshold used in the algorithm derived by Gossart et al. (2017) was 

the clear sky signal in the lowest usable bin. The clear sky thresholds found in Gossart et 

al. (2017) were 32.5 and 21.0 sr-1 km-1 10-4 in the lowest usable bin for the Neumayer III 

and Princess Elisabeth stations, respectively. The value found for McMurdo Station was 

21.0 sr-1 km-1 10-4 based on approximately 117.5 days of clear sky data. As part of the 

implemented improvements to the algorithm, the threshold used for each bin was the 95th 

percentile of the clear sky signal for said bin, rather than only using a single value applied 

to the entire column. 

3.3. A Revised Blowing Snow Detection Algorithm 

3.3.1. Temporal Averaging 

The hourly running means (225 profiles) of the 16 s raw data used in the Gossart 

algorithm helped to reduce noise but manual inspection showed that the signal of BLSN 

events became elongated. This is particularly the case during cyclic events that had breaks 

in which BLSN did not occur throughout their duration. In this study, the observations were 

averaged to a common temporal grid spacing so they can be used in concert with a variety 

of data available from the AMF2. To do this, the 16 s ceilometer profiles were grouped into 

five-minute periods (18 profiles) and the average profile for each grouping was found. The 

algorithm then checks for BLSN as in the Gossart algorithm. This is a common interval 

used with other profiling instruments at ARM sites (e.g. Clothiaux et al. 2000; Mace et al. 

2006; Kennedy et al. 2014), meaning that it will be easier to implement the algorithm at 

other ARM sites and use in concert with a variety of instrumentation. To assess the impact 

of temporal averaging alone, the Gossart algorithm with adjusted temporal averaging was 
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applied to the AWARE Campaign data and is referred to herein as the five-minute no 

thresholds (5-min NT) algorithm.  

3.3.2. Meteorological Thresholds 

Multiple meteorological thresholds were applied to increase confidence in BLSN 

occurring at the surface. These included conservative thresholds of 10 km for visibility to 

ensure backscatter coefficient signal was not decoupled from the surface layer, and a wind 

threshold of 3 m s-1 (Mellor 1965) to remove cases of ice fog with calm winds. Despite 

these thresholds, advection fog was still falsely detected during the summer months due to 

profiles with backscatter coefficient maximized at the surface associated with moderate 

wind speeds. In an effort to remedy this issue, an additional 90% RH threshold was included 

to separate fog from BLSN. While imperfect (see Section 5.2.3), this value offered the best 

balance of retaining nearly all of the BLSN signal throughout the year while reducing false 

positives during the summer months. The algorithm with five-minute averaging and 

meteorological thresholds applied is referred to as the five-minute algorithm (5-min). 

3.4. Assessment of Algorithm Performance 

The three versions of the BLSN detection algorithm were compared to human 

observations to grossly assess performance. Although this is not quite a direct comparison, 

it can provide insight into the potential skill of the algorithm (or human observers for that 

matter). To do this, output of the algorithms was grouped into three-hour periods to match 

the human observations. The output was then converted to binary to show whether BLSN 

has occurred within the period, rather than show specific categories. BLSN was determined 

to occur based on the algorithm in each period if at least 20 minutes of BLSN was detected 

(as in Gossart et al. 2017). The percent correct was calculated for each algorithm based on 
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two-by-two contingency analysis based on the NOAA Forecast Verification Glossary. The 

percent correct (PC) describes the amount of agreement between the algorithm and the 

human observers and is calculated as 

𝑃𝐶 =  
𝐴 + 𝐷

𝐴 + 𝐵 + 𝐶 + 𝐷
× 100% (2) 

where the variables are as defined in Table 6.  

3.5. Multi-Instrument Blowing Snow Depth Estimation 

To increase confidence in the estimated depth of the detected BLSN plumes, 

observations from the MPL, HSRL, and KAZR were incorporated into a combined depth 

estimation algorithm. These instruments do not produce usable data until much higher 

above the instrument (~100-400 m), so they are most useful during intense mixed events 

(Category 3). A subset of dates was selected that saw at least two hours of detected Category 

3 BLSN or that had a depth of at least 150 m based on the five-minute algorithm and no 

missing data. This resulted in 41 days to be analyzed with the additional instrumentation.  

First, all observations were averaged to a common grid with five-minute temporal 

and 30 m vertical grid spacing. The vertical grid spacing of 30 m was selected because it is 

the resolution of the coarsest dataset (KAZR). The following variables were assessed to 

characterize BLSN depth: ceilometer, MPL and HSRL backscatter coefficient; MPL and 

HSRL linear depolarization ratio (LDR); and color ratio. Observations from the KAZR 

were only used in the color ratio calculations; manual inspection of observations on BLSN 

days showed that KAZR direct observations were not useful in determining plume depth. 

All variables were combined with the results of the five-minute algorithm to yield a 

probabilistic view of the BLSN plume to gain further insight into the likely depth of the 
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layer. The following sections describe how each variable is treated in the combined 

algorithm and the methods used to determine the top of the layer using a probabilistic 

approach.  

3.5.1. Attenuated Backscatter Coefficient 

An adapted version of the five-minute algorithm was applied to attenuated 

backscatter coefficients from the MPL and HSRL. It was also applied to 30 m averaged 

ceilometer profiles. The clear sky threshold was calculated for backscatter coefficient for 

each instrument using the same methodology as for the ceilometer, shown in Figure 21. 

The threshold values of clear sky backscatter coefficient in the lowest usable bin are given 

in Table 7. The HSRL clear sky signal has a similar magnitude to that of the ceilometer in 

the lowest kilometer, while the MPL sees higher noise. The HSRL laser overlap signal is 

visible as an increase in backscatter coefficient at around 200 m.    

The algorithm then was applied as in Gossart et al. (2017), shown in the flowchart in 

Figure 22. It begins by checking that backscatter coefficient is above the clear sky threshold 

in the lowest usable bin and shows a decreasing profile with height, then ascends the profile 

until the backscatter coefficient decreases below the clear sky threshold or begins 

increasing again with height. Analysis of the 30 m averaged profiles begins at bin 2 (30-60 

m) for the ceilometer, bin 5 (120-150 m) for the MPL, and bin 8 (210-240 m) for the HSRL. 

These levels were selected as the first bin in which laser overlap does not produce erroneous 

backscatter coefficient measurements. These algorithms are referred to herein as 30 m 

CEIL, MPL BS, and HSRL BS. 
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3.5.2. Linear Depolarization Ratio 

Because BLSN particles tend to be more spherical than falling ice crystals, LDR can 

be used to help distinguish between the two habits (Sassen 1991, 1977). Walden et al. 

(2003) collected microscope images of ice crystals at the South Pole Station and found that 

falling snow tends to be composed of sector-plate clusters, bullet clusters, and snow-grain 

columns, while BLSN particles are small and spheroidal, meaning the LDR should be lower 

for BLSN than for falling snow. The analysis of LDR profiles is based on the assumption 

that its value within the BLSN plume will differ from that above it. This helps to distinguish 

the BLSN depth during precipitation events. 

 A flowchart describing the LDR algorithm is shown in Figure 23. Analysis begins 

by checking that the instrument’s backscatter coefficient is above the clear sky threshold 

for the lowest usable bin to ensure particles are present, and if the LDR in said bin is less 

than the upper level average. The upper level used for this analysis is 1200-1440 m. If both 

criteria are met, the algorithm ascends the profile and checks that the LDR in each bin 

remains lower from the mean of the layer above it by at least 0.01. Appropriate averaging 

layer depth for each instrument was determined through manual inspection of the data. A 

layer of 210 m and 390 m was used for the HSRL and MPL, respectively. Next, it checks 

that the instrument’s backscatter coefficient remains above the clear sky threshold. A 210 

m layer was used to assess whether the profile is decreasing or increasing with height, rather 

than using a single bin, because the LDR tends to yield noisy profiles. The top of the layer 

was denoted as the bin in which either the backscatter falls below the clear sky threshold, 

or where the difference between the bin’s LDR and that of the layer above falls below 0.01. 

These algorithms are referred to going forward as MPL LDR and HSRL LDR. 
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3.5.3. Color Ratio 

The color ratio (CR) is a derived quantity that acts as a proxy for particle size, and is 

calculated as  

𝐶𝑅 =
𝛽𝑟𝑎𝑑𝑎𝑟

𝛽𝑙𝑖𝑑𝑎𝑟

(3) 

where βradar and βlidar represent the attenuated backscatter coefficients derived from a radar 

and lidar, respectively (Bourdages et al. 2009). As BLSN particles tend to be smaller than 

that of falling snow (Gordon and Taylor 2009), CR may be able to help distinguish the two 

populations of particles. Smaller particles yield a lower CR, typically in the range of 10-8 

to 10-5 for boundary layer ice crystals (Bourdages et al. 2009). In this study, CR was 

calculated using KAZR reflectivity factor and HSRL backscatter coefficient. Radar 

attenuated backscatter coefficient is derived from the linear equivalent radar reflectivity 

factor, Ze, based on the analysis presented in Intrieri et al. (1993); 

𝛽𝑟𝑎𝑑𝑎𝑟 = 𝑍𝑒𝐾2
𝜋4

4𝜆4
 (4) 

where λ represents the radar wavelength (8.6 mm), and K2 is the dielectric constant. The 

value of K2 used for ice is 0.176 (Rauber and Nesbitt 2018). As with the LDR, the CR is 

expected to aid only when precipitation is occurring and there are different populations of 

particles to distinguish between. 

The CR BLSN depth detection algorithm is outlined in Figure 24. Profile analysis 

begins by checking if the color ratio in the lowest usable bin (bin 10, 300-330 m) is greater 

than 10-8 to suggest the presence of low-level particles, the lower end of the CR range given 

for ice in the boundary layer by Bourdages et al. (2009). It also verifies that the CR in the 

lowest usable bin is less than the average of the 300 m above it, as a generally increasing 
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trend would be expected with height. If these two criteria are met, the algorithm ascends 

the profile, checking that the CR in each bin is less than the average of the two bins directly 

above, and that it does not exceed 10-5, suggesting the majority of the particles in the bin 

are larger than expected for BLSN (Bourdages et al. 2009). This algorithm is referred to as 

the CR algorithm going forward. 

3.5.4. Probabilistic Blowing Snow Depth Estimation 

The BLSN depth estimation methods described in Sections 3.5.1-3.5.3 were 

combined with the results of the five-minute algorithm (outlined in Section 3.3) to produce 

the best approximation of the depth of the BLSN layer based on the available observations. 

To do this, the results of each algorithm were converted to binary; each bin received a value 

of one if it met the criteria for BLSN based on that algorithm and a zero if it did not. The 

total number of algorithms that designated the bin as BLSN was then divided by the number 

of algorithms that were valid to assess in said bin. The number of valid algorithms was 

determined based on the criteria outlined in Table 8. For example, if the five-minute and 

30 m ceilometer algorithms both estimate a BLSN depth of less than 100 m for a time that 

is Category 1 or 2, then the algorithms applied to MPL and HSRL data are not valid, 

therefore there are only 2 valid algorithms at that time. The result is an array in which each 

bin’s value is a fraction representing the agreement of the valid algorithms. This can be 

interpreted as relative certainty as to whether BLSN is occurring within the cell.  

To estimate the BLSN depth, the altitude at which the fraction falls below 0.5 for 

each period of BLSN was determined. To reduce unrealistic increases or decreases in BLSN 

depth, a running mean was applied using a window of five profiles (25 minutes). This 

reduces abrupt changes in BLSN depth that are physically unlikely; for example, the 
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estimated depth of BLSN being 100 m in one five-minute period and 800 m in the next. 

This window length was selected to be a period long enough to reduce the effects of noise 

and inconsistencies in the profile while still maintaining the temporally unsteady nature of 

the phenomenon. Sensitivity testing for the probabilistic algorithm is conducted through 

varying the threshold used and the length of the smoothing window to assess their impacts 

on the height of the layer.  

3.5.5. Blowing Snow Depth Assessment Methods 

Since there is no way of identifying the true depth of the BLSN at any given time, 

algorithm performance was assessed based on the degree of agreement between the 

different methods and consistency of the results when different thresholds were selected. 

All thresholds used were varied to assess the change in detected BLSN depth depending on 

the selected threshold. Clear sky thresholds were varied as described in Section 3.4.3 to 

assess their impact on the backscatter algorithms. The layers used in profile analysis for the 

color ratio and LDR algorithms were also varied. 

The results of the probabilistic depth algorithm were compared to the depth results 

from the five-minute algorithm to assess the impact of incorporating additional 

observations and changing to a probabilistic depth detection approach. The resulting BLSN 

plume depths were investigated based on meteorological variables to determine if any 

patterns emerge. Finally, case studies were performed to illustrate the performance of the 

algorithm and highlight its performance.  
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Figure 18. Flowchart describing the BLSN detection algorithm (adapted from Gossart et al. 2017). 
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Figure 19. Diagrams of (a) clear-sky BLSN, (b) clouds/precipitation with BLSN, and (c) heavy 

mixed events. Orange and dark blue lines represent the clear-sky signal and idealized backscatter 

coefficient profile from the ceilometer, respectively.  

  
 
 
   

 
 
  
 
   

 
 
  
   

  
    

 
  
 
   

 
 
  
  
 
 
 

 
 
   

 
 
  
   

  
    

     
         

   
          

   
  
   

         
   
   

 
  
     

   
   

  
   

     
         

    
   

    
    

     
 

 
 
 
 
  
 
   

   
 
 
 
 
  
 
   

   
 
 
 
 
  
 
   

   

          

 
 
 
 
  
 
    

  

 
 
    

 
  
 
 
 



 

61 

 

 

Figure 20. 95th percentile clear sky backscatter profile for McMurdo Station during the AWARE 

Campaign. The lowest 100 m of the profile is highlighted in the inset. 

  



 

62 

 

Table 6. 2x2 Contingency table for comparisons between human observations and algorithm 

results. BLSN refers to periods in which BLSN was detected, and non-BLSN means it was not 

observed. Human and algorithm refer to the human observations and algorithm results, 

respectively. 

 

Human 

BLSN Non-BLSN 

Algorithm 

BLSN A B 

Non-BLSN C D 
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Figure 21. Clear sky 30 m averaged attenuated backscatter coefficient profiles for the ceilometer 

(CEIL), MPL, and HSRL. 
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Table 7. Altitude and clear sky threshold backscatter coefficient for the lowest usable bin for the 

30 m and five-minute averaged ceilometer, MPL, and HSRL observations. 

Instrument Height of lowest usable bin 

[m] 

Clear sky threshold in 

lowest usable bin [sr-1 km-1 

10-4] 

Ceilometer 30-60 22.17 

MPL 120-150 26.01 

HSRL 210-240 10.70 
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Figure 22. Flowchart describing the BLSN depth detection algorithm applied to backscatter 

coefficient profiles from the ceilometer (CEIL), MPL, and HSRL. 
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Figure 23. Flowchart describing the BLSN depth detection algorithm applied to LDR profiles 

from the MPL and HSRL. 
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Figure 24. Flowchart describing the BLSN depth detection algorithm applied to color ratio 

profiles. 
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Table 8. Criteria for validity of each algorithm. 

Algorithm Criteria for Validity 

5-min Algorithm 5-min Algorithm Category 1-3 

30 m CEIL 5-min Algorithm Category 1-3 

MPL BS 
(Depth of 5-min or 30 m CEIL algorithms at least 100 m) or (5-

min Category 3) 

MPL LDR 
(Depth of 5-min or 30 m CEIL algorithms at least 100 m) or (5-

min Category 3) 

HSRL BS 
(Depth of 5-min, 30 m CEIL, MPL BS, or MPL LDR algorithm 

at least 200 m) or (5-min Category 3) 

HSRL LDR 
(Depth of 5-min or 30 m CEIL, MPL BS or MPL LDR 

algorithms at least 200 m) or (5-min Category 3) 

Color Ratio 

(Depth of 5-min or 30 m CEIL, MPL BS, MPL LDR, HSRL 

BS, or HSRL LDR algorithms at least 300 m) or (5-min 

Category 3) 
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CHAPTER 4 

CASE STUDIES 

To demonstrate properties of the algorithms, three case studies are presented that 

represent the variety of BLSN events McMurdo station receives.   

4.1. 4-5 July 2016 

From 2200 UTC 4 July 2016 to 0600 UTC 5 July 2016, a BLSN event was observed 

by both human observers and the ceilometer-based algorithms (Figure 25). Human 

observers noted snow during the event (Figure 25a), but this is not supported by the 

backscatter coefficient profiles at the AMF2 (Figure 25b). Analysis of vertically pointing 

radar data revealed surface-based backscatter coefficient < 500 m AGL decoupled from 

cirrus clouds at heights above 4 km AGL (not shown). In other words, this BLSN event 

was independent of falling precipitation. Initial detection of BLSN by the AMF2 around 

2200-2300 UTC was tied to rapid fluctuations in wind speed and direction suggesting the 

influence of topography. The high Parsivel2 particle counts around 2300 UTC for example 

(Figure 25c), were associated with northeasterly winds shifting to northwesterly before 

shifting back by 2345 UTC. Backscatter coefficient profiles after this time led to 

straightforward detection of the BLSN layer which had heights that reached up to ~200 m 

(Figure 25b). Modulation of the BLSN layer can be attributed to a change in wind intensity. 

During the most prolonged portion of the event (0000-0230 UTC), increasing BLSN depths 

can be seen as the wind speed increased up to 17 m s-1 (Figure 25d).  Eventually, backscatter 

coefficient became intense enough to classify the BLSN as an intense mixed case (Category 

3), although this is clearly not the case. As the winds began to subside by 0200 UTC plume 
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heights dropped below the top of the backscatter coefficient column. This is caused by the 

backscatter coefficient decoupling from the surface layer, suggesting that as the event 

waned, BLSN became suspended above the surface layer. At around 0300 UTC, the BLSN 

becomes more variable, shown through the oscillating visibility observations and periodic 

ground-based peaks in backscatter coefficient. It is possible that the BLSN organized into 

horizontal convective rolls at this time (e.g. Kennedy and Jones 2020), but without satellite 

imagery, this is purely speculative. 

This case demonstrates peculiar behavior of  the Parsivel2 in high wind environments 

as noted by Friedrich et al. (2013) and discussed further in Section 5.2.5. Particle number 

density peaks in the smallest particle size bins with a moderate number of larger particles 

with diameters of 2-5 mm (Figure 25c). The periods of highest wind speeds are associated 

with broad increases in large particles detected. Provided that this case is purely BLSN, 

these particle size distributions do not appear to be realistic as the majority of BLSN 

particles are < 500µm (Budd et al. 1966; Pomeroy and Male 1988; Gordon and Taylor 

2009).  

The results of the probabilistic depth estimation and its contributing algorithms are 

shown in Figure 26. The mean depth during the event was 87.1 m, with a maximum depth 

of 216.0 m. For most of this case, the five-minute algorithm appears to appropriately 

designate the top of the plume. The results of the 30 m CEIL and MPL BS algorithms agree 

with that of the five-minute algorithm. The HSRL BS algorithm is only valid for 

approximately 35 minutes due to shallow BLSN during most of the event and the 

algorithm’s criteria not being met. The shallow nature of the event also limited analysis for 

the LDR and CR algorithms. The CR algorithm was valid for approximately 20 minutes 
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(during periods designated as Category 3). Despite the short duration, there were peaks of 

low CR at the bottom of the profile indicative of BLSN.  

Generally, the probabilistic depth estimation remained within ~50 m of the results of 

the five-minute algorithm during this event, with a mean absolute difference of 38.1 m. 

These results suggest that the use of ceilometer backscatter coefficient adequately estimated 

BLSN depth during clear sky events, though supplementing it with backscatter 

observations from other instrumentation may help to increase confidence. Additionally, it 

is possible that the 25-minute running means applied to smooth the BLSN top may reduce 

precision in detection of the plume, particularly around 2300 4 July to 0000 5 July, when 

the BLSN depth may be rapidly fluctuating. 

4.2. 2 July 2016 

A BLSN event occurred at McMurdo Station on 2 July 2016 from approximately 

1430 to 1930 UTC. This event was detected as a Category 2 and 3 event by the five-minute 

algorithm (though several time periods are indicated as Category 1 as the cloud layer was 

decoupled from the BLSN) and was associated with some falling snow according to human 

observations. Figure 27 shows human observations, ceilometer backscatter coefficient, 

Parsivel2 observations, and environmental conditions during the event. BLSN initiation was 

associated with northeasterly winds increasing from approximately 3 to 10 m s-1 and a sharp 

drop in temperature from -33 to -40°C over ~15 minutes. The highest particle number 

densities occurred in the smallest size bins (< 1 mm), with few larger particles being 

measured. While some larger size particles are detected by the instrument, a clear bimodal 

distribution was not seen as in the previous case. This is a realistic particle size distribution 
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that would be expected for a BLSN event (Pomeroy and Male 1988). It can also be noted 

that the wind speed was lower than the previous event throughout its duration. 

Figure 28 shows the results of all contributing algorithms (a-f) and the probabilistic 

BLSN depth estimation (g). Early in the event (1430-1530 UTC), the ceilometer 

observations (Figure 28a-b) showed some separation of high backscatter coefficient values 

above and below ~ 100 m, but the MPL BS and MPL LDR algorithms did not see this 

separation, and the top of the probabilistic BLSN layer was denoted near 200 m. The five-

minute, 30 m CEIL, MPL BS algorithms agreed well on detected depths from ~ 1530 to 

1615 UTC, then the five-minute algorithm began to deviate, falling to depths of less than 

100 m. At this time, the probabilistic algorithm most closely followed the 30 m CEIL and 

MPL BS algorithms, with the HSRL BS algorithm becoming useful later on in the event 

(after 1700 UTC).  

The average absolute difference between the five-minute and probabilistic algorithms 

during this event was 41.9 m. The largest differences occurred when the five-minute 

algorithm detected BLSN less than 100 m thick while the other backscatter coefficient-

based algorithms yielded heights closer to 200 m. This case was relatively simple, and 

likely did not have substantial precipitation occurring as the backscatter coefficient profiles 

were fairly straightforward. The LDR and CR algorithms were not valid for the majority of 

the event as the height of the BLSN likely below the detection level most of the time. 

4.3. 12 June 2016 

An intense mixed event occurred at McMurdo Station on 12 June 2016, from 

approximately 0400 to 2300 UTC. This event saw falling snow and BLSN throughout its 

duration (Figure 29). The onset of the event can be seen clearly in the visibility observations 
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and was associated with increasing wind speed and low-level backscatter coefficient around 

0300 UTC. Further investigation of other radar and lidars demonstrated that ceilometer 

observations did not penetrate through the entire column of hydrometeors (Figure 30). 

From 0800 UTC onward, reflectivity was noted up to 5km AGL from KAZR observations 

(not shown).   

Parsivel2 number densities showed little evidence of artifacts due to high wind speeds. 

The only hint of this artificial distribution occurred around 0600 UTC which also happened 

to be a local maximum for wind speed at 13 m s-1. While values increase in the smallest 

size bins first, time periods of falling and BLSN were associated with a higher density of 

particles from 0.5 to 1 mm. Particle counts are also notably higher than those seen in the 

previous cases.  

The algorithm appropriately detects the presence of BLSN, but there are periods when 

the detected BLSN plume height is inconsistent. For example, heights from 1300 UTC 

onward fluctuate depending on the presence and intensity of fall streaks modifying the 

column of ceilometer backscatter coefficient based on observations from the other available 

remote sensing instrumentation, demonstrating the need of incorporating further 

observations. The results of the multi-instrument depth estimation approach are shown in 

Figure 30. The average depth of BLSN during this event was 226.2 m. The maximum depth 

was found to be 552.0 m, which occurred at 1040-1050 UTC. The four backscatter 

coefficient-based algorithms (Figure 30a-d) agreed well with each other early in the event 

(until approximately 1200 UTC), though the HSRL backscatter coefficient profiles 

appeared to be noisier. The CR and HSRL LDR algorithms designate the top of the layer 

to be around the same height for much of this period as well. After 1200 UTC, fall streaks 
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overpowered the BLSN signal, shown clearest in the LDR and color ratio profiles between 

1300-1500 UTC. After this period, the ceilometer and MPL backscatter coefficient profiles 

became more unclear, yielding little continuity in the heights detected by the individual 

algorithms throughout much of the rest of the event (Figure 30a-c). Regardless of lidar 

instrument, this is a good indication of the limitations of backscatter observations; at some 

point it becomes difficult to distinguish fall streaks from the BLSN layer.  

At this point, the LDR algorithms display the clearest signal of a BLSN layer; a region 

of lower LDR is present in the lowest 400-500 m. The HSRL BS algorithm also designated 

the top of the layer to be near the top of the region of low LDR, increasing confidence that 

this may be the true BLSN depth.  

The differences between the five-minute and probabilistic algorithms was much 

greater during this case than the previous cases. While the average absolute height 

difference between the two algorithms was 115.6 m, the difference was found to be at least 

300 m for almost two hours of the event. The maximum difference occurred at 1855 UTC, 

when the five-minute algorithm detected a depth of 975.0 m, compared to the more realistic 

depth of 354.0 m given by the probabilistic algorithm. This case helps to illustrate how all 

of the variables aid in characterizing the BLSN plume during intense mixed events. 

Additionally, it shows how any one algorithm may err, but the probabilistic approach helps 

to give a more accurate overall view of the plume regardless of artifacts.  
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Figure 25. a) Human observations, b) five-minute average ceilometer attenuated backscatter 

coefficient, c) five-minute average Parsivel2 particle number density, and d) five-minute average 

wind speed (green), visibility (orange), and RH (blue) from MET instrumentation on 4-5 July 

2016 at McMurdo Station. BLSN tops derived from the five-minute algorithm are denoted by 

black stars, diamonds, and dots corresponding to Categories 1, 2, and 3, respectively. 
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Figure 26. a) 5-minute averaged ceilometer backscatter coefficient (as used in the 5-min 

algorithm), b) 30 m averaged ceilometer backscatter coefficient, c) MPL backscatter coefficient, 

d) MPL LDR, e) HSRL backscatter coefficient, f) color ratio, and g) probabilistic algorithm 

results for 4-5 July 2016. Black dots indicate the top of the BLSN plume as indicated by the single 

algorithm. The gray line shows the BLSN depth indicated by the probabilistic algorithm. 
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Figure 27. As in Figure 25, but for 2 July 2016. 
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Figure 28. As in Figure 26, but for 2 July 2016. 
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Figure 29. As in Figure 25, but for 12 June 2016. 
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Figure 30. As in Figure 26, but for 12 June 2016. 

  



 

81 

 

CHAPTER 5 

RESULTS AND DISCUSSION 

5.1. Human-Observed Climatology of Blowing Snow 

From 2002 to 2018, McMurdo Station had an annual average of 806.9 hours of 

BLSN, yielding a frequency of 9.2% (Figure 31a). The frequency of BLSN has significant 

annual variability at this location with annual totals ranging from 371.0 to 1214.2 hours (4-

14%). BLSN also has a defined seasonal cycle with maximum frequencies occurring during 

the Antarctic winter (April-October, Figure 31b). Overall, June is the climatological 

maximum for BLSN with an average of 118.6 hours (16.4%).  Conversely, very little BLSN 

occurs during the summer months of December to February. For example, the December 

average for BLSN is only 11.3 hours (1.6%). Between these seasons, transitional periods 

are observed, but the greatest variability occurs at the end of the cold season (September 

and October).  

Observations of BLSN were also examined by its occurrence with other conditions 

(Figure 32). The majority of all BLSN observations occurred concurrently with falling solid 

precipitation in all seasons, accounting for 44.5-82.2% of annual BLSN observations. This 

is particularly the case during summer, accounting for an average of 78% of BLSN 

observations. This proportion falls to 56-63% during the rest of the year, as more BLSN is 

observed independently of other hydrometeors.  

BLSN during the AWARE Campaign was slightly below average, with an annual 

total of 723.5 hours (Figure 31a). Month-to-month variability was seen during the first half 

of the year with April and June being the most prolific months for the process; each month 

had ~150 hours of BLSN, easily falling outside the third quartile of the distributions. 
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Observations of BLSN were above average for most of the first half of the year, followed 

by below-normal occurrence in the late winter and spring, with only 2.7 BLSN hours 

reported in November (Figure 31b). 

5.2. Blowing Snow Detection Algorithm Results 

5.2.1. Comparison to Human Observations 

Monthly BLSN frequencies from the algorithms are shown in Figure 33 while 

seasonal and total values are listed in Table 9. For comparative purposes, human 

observations are also provided along with the frequencies of visibility measurements < 5 

km. Broadly speaking, the algorithms had similar seasonal cycles of BLSN with local 

maxima and minima during similar months. Of the methods analyzed, the Gossart 

algorithm had the highest positive bias compared to human observations with 1234.9 vs. 

723.2 hours detected. In a relative sense, this difference was notably larger for the summer 

(DJF), with a ~500% increase over human observations. The five-minute algorithms with 

and without thresholds detected 679.0 and 1044.8 hours of BLSN, respectively. Overall, 

the five-minute algorithm most closely matched the human observations throughout the 

year. The only month in which human observers reported a higher occurrence of BLSN 

than the algorithms was in April, which was also the peak month for these observations 

during the AWARE campaign.   

Separation of BLSN events by category shed additional light on the process at 

McMurdo Station (Figure 34). All algorithms detected a higher frequency of intense mixed 

events (Category 3) than other categories. This means BLSN is closely tied to ongoing 

precipitation events at this location. Seasonally, this is most common during the autumn 

and early winter (March to June). Once snow accumulates, clear sky BLSN becomes more 
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likely until peaking in August. At this point, warming conditions reduce the likelihood of 

BLSN, and frequencies drop for all categories into the summer.  

The impacts of time averaging can be identified by comparing results between the 

Gossart and the no thresholds algorithms. Over the course of the year, the alteration of 

temporal averaging alone led to a decrease of BLSN detection from 1234.9 to 1044.8 hours 

(a 2.2% absolute reduction in frequency).  The difference between these two methods 

varied month-to-month shedding more light on temporal variability in the ceilometer 

backscatter coefficient. These differences were largest during April, July, and August 

suggesting BLSN occurrence had spatial heterogeneity, such as what has been seen at other 

locations (Scarchilli et al. 2010; Kennedy and Jones 2020). Manual inspection of ceilometer 

data supports this conclusion, but unfortunately, this time of year did not allow for the 

analysis of passively-sensed satellite data as there was insufficient solar radiation to support 

the detection of BLSN with near-infrared bands (Palm et al. 2011; Kennedy and Jones 

2020).  

The final point of discussion is the impact of wind speed, visibility, and RH 

thresholds. As this can be considered a quality-control process that helps confirm BLSN is 

occuring, detected BLSN frequency is decreased year-round (Figure 33). In total, 679.0 

hours were detected by the five-minute algorithm (absolute frequency of 7.8%), slightly 

below the results for human observations. While there is good agreement for the entire 

campaign, inspection of individual months revealed some differences. During the month of 

April, the 5-min algorithm had ~30% less hours of BLSN than the orginal Gossart algorithm 

and human observations. Half of this diference can be explained by the lack of temporal 

averaging. In this case, five-minute averages appeared to better handle artifacts in the lower 
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bins of the ceilometer profiles. The remainder was removed due to the wind speed threshold 

not being met. Finally, it is worth mentioning April had the highest number of hours of 

observed falling snow, so complicated backscatter coefficient profiles were commonplace. 

This led to cases where BLSN was observed but not detected by any algorithm. As a result, 

it is probable even the original Gossart algorithm is biased low (compared to other months).   

The other major difference caused by the inclusion of thresholds occurred during the 

summer months. The five-minute algorithm performed notably better during this season 

due to the removal of fog cases. The most important contributer to this reduction was the 

inclusion of the RH threshold. While imperfect (manual inspection of data noted missed 

cases in November), the chosen value (90%) prevented wintertime BLSN cases from being 

removed. Overall, it is concluded that the other algorithms are biased high by at least 5% 

from November to January (Figure 34).  

Agreement between the algorithms and human observations varied seasonally 

(Figure 35). The average monthly PC for the Gossart algorithm was 76.5%, agreeing with 

the results of Gossart et al. (2017), but was only 62% during July. The five-minute 

algorithm has the highest PC in all months, while the Gossart algorithm has the lowest, 

meaning that the included  wind speed, visibility, and RH thresholds are essential to remove 

cases that cannot be associated with BLSN. The PC is highest for all algorithms during the 

summer months (DJF). This is expected due to the lower frequency of BLSN allowing for 

correct null detections to dominate the statistic. Although various shortcomings in the 

human observations have been identified, the high agreement between the five-minute 

algorithm, along with meteorological variables suggesting the presence of BLSN rather 

than backscatter coefficient alone, help to increase confidence in algorithm results. 
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Another factor affecting the seasonality of the agreement is shortcomings of the 

human observations, rather than failings of the algorithm. Human observations are 

inherently subjective; what one observer may denote as BLSN, another may not. The record 

is expected to be biased towards longer periods of BLSN, as the observer only records the 

number of hours of occurrence of a phenomena within a three-hour period. It is likely that 

short-lived BLSN plumes may be missed, leading to discrepancies between the algorithm 

and the human. 

Based on the algorithm results and human observations, it is estimated that the 

frequency of BLSN during AWARE was 7.7-12.0% including the analysis from the 

algorithms and the human observations. Extrapolating these values to the range of 

frequencies based on human observations, the annual range of BLSN frequency is 

estimated to be 3.5-21.3% at McMurdo Station. Overall, the detection of BLSN by the 

algorithm is considered to perform quite well, but considerable uncertainty is associated 

with the detected depth of the BLSN layer, particularly during intense mixed events. 

5.2.2. Sensitivity Testing 

The five-minute algorithm results can be impacted by the selected clear sky 

backscatter coefficient and wind speed, visibility, and RH thresholds. The values selected 

to assess the impact of the clear sky threshold profile were the 90th, 98th, and 99th percentile 

compared to the value used in the algorithm (95th percentile). The resulting frequencies are 

shown in Table 10, along with the value of the backscatter coefficient in the lowest usable 

bin for each tested percentile. The backscatter coefficient varied from 8.6 to 205.8 sr-1km-1 

10-4, but the frequency of detected BLSN did not vary as drastically. When the 90th 

percentile clear sky profile was used, BLSN detection increased slightly to 102.1% of the 
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amount detected when the 95th percentile was used. On the other hand, the value of the 99th 

percentile backscatter coefficient was approximately 10 times as high as that of the 95th 

percentile, but only reduced the amount of BLSN detected by 17%. The range of absolute 

frequencies detected was only 1.5%, showing that the clear sky threshold used did not have 

a substantial impact on the detection of BLSN using this methodology. 

The selected meteorological thresholds were also varied to identify their impact on 

BLSN detection. For this sensitivity study, individual values were altered as other 

thresholds were held constant. The results of varying the wind speed threshold are shown 

in Table 11. This threshold was tested in 2 ms-1 increments. The temperature-dependent 

BLSN initiation wind speed threshold relationship derived in Li and Pomeroy (1997b) was 

also tested. This relationship is given by the following equation: 

𝑈𝑡 = 𝑎 + 𝑏𝑇 + 𝑐𝑇2 (5) 

where Ut represents the threshold wind speed at 10 m elevation, T represents temperature, 

and a, b, and c, are empirical parameters; a = 9.43 m s-1, b = 0.18 m s-1 °C-1, and c = 

0.0033 m s-1 °C-2. Like the clear sky threshold, the tested wind speed thresholds do not 

impact BLSN substantially. The lowest wind speed tested, 1 m s-1, yielded a 9.5% 

increase in detection over the five-minute algorithm, while tripling the threshold (9 m s-1) 

reduced the amount of BLSN detected by 21.4%. The absolute frequency of BLSN using 

the empirical relationship derived by Li and Pomeroy (1997b) only differed from the five-

minute algorithm by 1%. Since the Li and Pomeroy (1997b) relationship was derived in 

the Canadian Arctic, it may not accurately represent the relationship between BLSN 

occurrence and wind speed in Antarctica. It is anticipated that BLSN can occur at lower 

wind speeds in the Antarctic, therefore a lower wind speed threshold of 3 m s-1 is deemed 

appropriate for this study. The visibility threshold was varied in increments of 2 km (  
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Table 12). The results of these tests are similar to that of the wind speed threshold, with the 

overall detected BLSN remaining largely unchanged. Absolute frequencies of detected 

BLSN ranged from 6.8-8.0% using thresholds of 4-14 km.  

Rather than impacting the total number of hours detected as potential BLSN by the 

algorithm, varying the RH threshold impacted the amount of the detected hours that were 

designated as fog. Figure 36 shows the proportion of each category detected when the RH 

threshold is varied from 70-95%. It is apparent that a 95% RH threshold did not sufficiently 

remove cases of fog during the summer months, and that 70-85% thresholds denoted 

profiles as fog during the winter months, causing the difference between the algorithm’s 

BLSN detection and hours of occurrence from human observations to increase. Based on 

these results and manual inspection of daily observations, a RH threshold of 90% was 

deemed the most appropriate for separation of BLSN and fog cases. 

5.2.3. Fog 

Previous BLSN detection algorithms did not account for fog, leading to a positive 

bias in the occurrence of BLSN when compared with human observations. Lazzara (2008) 

presented a climatology of fog at McMurdo Station and found that fog occurrence peaks in 

January and September. It was noted that the majority of fog observed at McMurdo Station 

in the austral summer is advected from the Ross Ice Shelf or the northern Scott Coast of 

McMurdo Sound. Advective fog would not be removed with a wind speed threshold alone; 

agreement between the algorithm BLSN detection and human observations increases when 

a RH threshold is used to separate fog from BLSN. The five-minute algorithm (Figure 36b) 

does not detect any fog during austral spring associated with the climatological fog peak in 

September, but the methodology used here aims to distinguish periods of BLSN from fog, 
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rather than to detect all fog periods. Based on the presented analysis, the RH threshold is a 

simple, effective way to distinguish periods of advective fog from BLSN. The selected RH 

threshold performs appropriately for this dataset, but it should be investigated before 

applying the presented BLSN detection algorithm to different locations. 

5.2.4. Parsivel2 Particle Observations 

Although the Parsivel2 is only sensitive to particles 250 μm and greater, it was 

hypothesized the instrument could provide enough information about the large tail of the 

BLSN particle size distribution (e.g. Mellor 1965; Nishimura and Nemoto 2005; Gordon 

and Taylor 2009), to distinguish between the categories of BLSN, falling snow, and fog. 

Distributions and mean particle counts were computed for the various categories (Figure 

37).  

Mean particle counts are lowest (highest) for Category 1 (3) events while fog has 

significant overlap with all categories. The mean particle size distributions for each 

category are shown in Figure 37b. For all categories, the peak occurred at particle sizes of 

0.3-0.5 mm. Fog events have the highest peak particle number density, along with 

considerable variation in mean particle counts. Category 3 events had a greater quantity of 

larger diameter particles which would be expected with intense mixed events including 

falling snow. Overall, Parsivel2 particle counts and number densities alone do not appear 

to aid in separating scenes of hydrometeors.  

Since characteristics and limitations of the Parsivel2 have been documented for falling 

snow (Battaglia et al. 2010) but minimally for BLSN, further investigation was warranted. 

Given the importance of wind for the process, Parsivel2 observations during time periods 

of detected BLSN were segregated into 2 m s-1 wind speed increments, shown in Figure 
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38a. It is evident that at approximately 10 m s-1, the particle concentrations become 

significantly higher at sizes above 1 mm and lower in the smallest size bins. This pattern 

continues to particle sizes much larger than expected in BLSN or falling snow. This effect 

is expected to be due to sampling issues with the instrument at high wind speeds, as 

suggested by Friedrich et al.  (2013). As wind speed increases particles may overlap, 

leading to incorrectly large particles being detected.  

Data from other locations in which a Parsivel2 was deployed during BLSN were 

analyzed to assess whether this effect was present in other observations from the 

instrument, shown in Figure 38b-c. The Phoenix Airfield Antarctica Precipitation Site 

(APS) refers to an observation site located near the Phoenix Airfield in McMurdo Station. 

Observations were available for BLSN event days in 2018 and 2019. It should be noted that 

the Parsivel2 deployed at the Phoenix Airfield was deployed at a 45° angle to the surface, 

therefore results are expected to be different than those from the AMF2. The final dataset 

was retrieved from a Parsivel2 deployed near Grand Forks, North Dakota during the 2020 

Blowing Snow Observations at the University of North Dakota: Education through 

Research (BLOWN-UNDER) Field Campaign. While data from these periods cannot be 

verified to be associated with BLSN through the presented ceilometer-based algorithms, it 

provides a gross comparison to other observations at the same wind speeds. The Phoenix 

APS distributions showed the same drop in small particles (< 0.5 mm) as seen in the 

observations from the AWARE Campaign, though the differences at the largest particle 

sizes were less clear. The BLOWN-UNDER observations showed evidence of the same 

effect of wind speeds on the concentration of large particles (> 3 mm). This artifact was 

present to a varying extent in all datasets analyzed, suggesting that the issue is most likely 
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a fundamental limitation of the Parsivel2. It is currently hypothesized that high number 

concentrations of BLSN may contribute to separate particles creating voltage signals 

indicative of singular particles with a greater diameter than reality. As a result, it is 

concluded Parsivel2 observations should be used with caution during periods of wind 

greater than 10 m s-1.  

5.3. Probabilistic Blowing Snow Algorithm Results 

5.3.1. Criteria Analysis  

The amount of time that the criteria for each algorithm, as described in Section 3.5, 

are met for all of 2016 is shown in Figure 39a. Since the MPL, HSRL, and color CR 

algorithms were only valid when BLSN was deep or an intense mixed event occurred, the 

monthly frequency of validity for each algorithm is also provided for periods designated as 

Category 3 (Figure 39b). Table 13 shows the seasonal and total number of hours each 

criterion is met during BLSN periods and the proportion of five-minute algorithm 

detections that meet the criteria for each algorithm. The requirements for the backscatter 

algorithms was met more commonly than the others, particularly the 30 m CEIL and MPL 

BS algorithms. Backscatter is the fundamental variable to use to observe BLSN in simple 

Category 1 and 2 cases, while CR and LDR are typically most useful during more complex 

events. The criteria for the MPL LDR and CR algorithms were met the most infrequently, 

being met during only 17.9 and 30.8% of five-minute algorithm BLSN detection periods, 

respectively. While these values are relatively low, it is not expected to negatively impact 

the probabilistic BLSN detection since each of these algorithms only act to supplement one 

another, rather than requiring all algorithms to be valid to detect BLSN.  

5.3.2. Probabilistic Blowing Snow Depth 
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The average depth of the detected BLSN during the 41 days analyzed was 218.3 m. 

Figure 40 shows the mean depth during each month of 2016, along with the number of 

cases investigated. June and October saw the highest mean detected BLSN depths, though 

October had only one case day. The deepest detected plume reached 678 m, recorded on 25 

June 2016, associated with Category 3 BLSN. The monthly average depth ranged from 

185.2 to 253.3 m and was generally higher during the winter and autumn months. Boxplots 

of the distribution of heights detected by the probabilistic and five-minute algorithms are 

shown in Figure 41. The distribution of depths detected by the probabilistic algorithms 

approximates a normal distribution with slight positive skewness, while the five-minute 

algorithm depths were more variable. The selected cases represent higher end events; 

therefore, the overall depth of BLSN at McMurdo Station likely contains more shallow 

plumes. 

To investigate the impact of using the probabilistic approach, the distribution of 

depths detected by the probabilistic algorithm was compared to that of the five-minute 

algorithm (Figure 41-Figure 42). The distribution of BLSN depths from the five-minute 

algorithm, shown in Figure 42a, shows that approximately 41% of all detected plumes were 

<100 m deep. Mahesh et al. (2003) noted that approximately 50% of sampled BLSN layers 

were less than 200 m deep, and similar results were found by Gossart et al. (2017), although 

both studies hypothesized that the depth of mixed events were underestimated due to 

attenuation issues. While some of these shallow estimations are likely accurate, it also may 

suggest that 50-100 m is a height where the algorithm commonly failed due to noise in the 

profiles. This bin includes the region where the ceilometer is noted to have common laser 
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overlap issues leading to increased artifacts in backscatter coefficient retrievals (Gossart et 

al. 2017). 

The distribution of differences between the two algorithms in individual detections is 

shown in Figure 43. It is evident that during the majority of observation periods, the two 

depths are within ~100 m, but periods exist when there are larger differences. Figure 44 

shows two-dimensional histograms of probabilistic versus five-minute algorithm depth 

estimations by category to help highlight the relationship between the two algorithms. 

Category 1 events approximate a one-to-one relationship, suggesting that the five-minute 

algorithm performed adequately during clear sky events. The depths of Category 2 events 

tended to be underestimated by the five-minute algorithm, with the majority of these 

periods seeing higher BLSN depths estimated by the probabilistic algorithm. Finally, 

intense mixed events (Category 3) saw the most substantial differences. Based on Figure 

44c, the probabilistic algorithm acted to regulate the depths suggested by the five-minute 

algorithm; generally, deep plumes (> 400 m) were made shallower and shallow depths (< 

300 m) were increased. 

The mean depth of BLSN detected for each category by both the probabilistic and 

five-minute algorithms, along with the average absolute difference between the two, are 

shown in Table 14. The average depth for Category 1 and 2 events was highest for the 

probabilistic algorithm, with the largest difference between means for the Category 2 

events. However, the largest absolute difference in depth estimations was in intense mixed 

events (Category 3), which was found to be 97.6 m. The differences in heights during 

intense mixed events ranged from -801.0 m, where the five-minute algorithm detected a 

depth of 1005.0 m while the probabilistic algorithm estimated only 204.0 m, to +465.0 m, 
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when the probabilistic algorithm estimated a depth of 498.0 m compared to 75.0 m given 

by the five-minute algorithm. Category 1 saw the shallowest BLSN layers which, on 

average, were approximately 147.1 m shallower than that of Category 3 based on the 

probabilistic algorithm. 

To evaluate the impact that each of the additional contributing algorithms had on the 

probabilistic BLSN depth, two-dimensional histograms comparing the top of the BLSN 

layer designated by each algorithm to the final probabilistic BLSN depth are shown in 

Figure 45. The probabilistic depth is most closely related to the results of the 30 m CEIL 

and MPL BS algorithms, based on their histograms (Figure 45a-b) approximating a one-to-

one relationship more so than that of the other algorithms. It follows logic that the 30 m 

CEIL algorithm was important in overall results of the probabilistic algorithm, as it was the 

only one that was performed during all BLSN periods detected by the five-minute algorithm 

(the others have depth/category requirements, as explained in Table 8). The results of the 

LDR and CR algorithms appear to be less closely tied to the probabilistic BLSN depth than 

those that are based on backscatter coefficient. These algorithms appear to have a bin with 

very high variance in the histogram, where a variety of probabilistic BLSN depths are 

detected when the individual algorithm only reached the lowest usable bin for said 

instrument (e.g. Figure 45d-f). This suggests that these individual algorithms may have 

failed in the first bin of analysis due to artifacts/noise in the observations. This effect was 

seen to a lesser extent in the 30 m CEIL results. Additionally, the LDR and CR algorithms 

are more experimental than those based on backscatter coefficient, so it is expected that 

they provide guidance to distinguish falling and BLSN for the final depth estimation and 

may not be valid for many cases. In summary, a benefit of using the probabilistic approach 
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to estimate the layer’s depth is that it better defined the overall patterns associated with 

BLSN and the noise that can cause any one algorithm to err may be overcome by the others. 

5.3.3. Sensitivity Testing 

The 23 sensitivity tests applied in the analysis of the probabilistic algorithm are listed in  

Table 15. These tests were selected such that any assigned thresholds or subjectively 

selected values in all of the algorithms, including the final probabilistic depth detection 

algorithm, were examined to determine the impact they had on the final results.    

The results of the sensitivity testing applied to the CEIL 30 m, MPL BS, and HSRL 

BS algorithms are presented in Figure 46-Figure 48, respectively.  It is evident that varying 

the clear sky percentile used did not substantially change the distribution of detected depths 

of the algorithms. The use of the 98th percentile shifted the distribution of depths detected 

by both the CEIL 30 m and MPL BS algorithms towards slightly lower values, but the 

median values remained comparable to that of the 95th percentile threshold. 

Seven tests were applied to the two LDR algorithms, shown in Figure 49 and Figure 

50. The median value for all tests performed on both algorithms was the lowest usable bin 

(150 m for MPL LDR and 240 m for HSRL LDR). This suggests that the algorithms may 

be detecting the presence of BLSN but are unable to continue profile analysis past the first 

usable bin. These algorithms are only developed with the goal of aiding BLSN 

characterization when the plume is sufficiently deep, particularly during precipitation 

events. Because of this, they are not expected to be adequate to provide useful information 

for all BLSN plumes. Further study is necessary to develop more in-depth profile analysis 

routines to provide more insight into a higher proportion of the detected BLSN. The MPL 

LDR algorithm saw the most dramatic reduction in spread when the 98th percentile MPL 
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clear sky threshold profile was used rather than the 95th but did not see marked changes 

with the rest of the performed sensitivity tests. On the other hand, the HSRL LDR algorithm 

saw larger changes than the MPL LDR algorithm for some of the tests with the most notable 

differences arising when the averaging layer for LDR profile analysis was changed to 90 

or 300 m. Additionally, the median value for both of the LDR algorithms was the lowest 

usable bin. This may suggest that the LDR algorithms need finer tuning in the future, 

though the analysis presented here does help to prove the usefulness in incorporating these 

observations in future work.  

The CR algorithm was impacted by eight of the sensitivity tests listed in  

Table 15. The resulting distributions are shown in Figure 51. The tests that altered 

the distribution of heights detected by the CR algorithm the most incorporated all categories 

of detected BLSN, using three bin vertical averaging in profile analysis (rather than two) 

and increasing the minimum threshold from 10-8 to 10-7. Most of the tests shifted the 

distributions towards shallower depths, though the most substantial changes were 

associated with incorporating all BLSN categories. This test reduced the interquartile range 

of the distribution noticeably, likely due to the fact that the algorithm was run even if the 

detected plume was much shallower than the required depth to be seen by the HSRL and 

KAZR. This led to a higher number of detections in the lowest usable bin for the CR 

algorithm. 

Finally, the distributions of probabilistic BLSN depths that resulted from each of the 

23 sensitivity tests are shown in Figure 52. Changing the proportion of criteria to be met 

for a bin to be designated as BLSN led to the most substantial impacts on final detected 

BLSN depths. Increasing the required percentage from 50% to 60% or 70% reduced the 
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spread of detected BLSN depths, shifting towards shallower depths. This effect was 

reversed when the proportion was decreased to 30% or 40%. Increasing the ceilometer or 

MPL clear sky percentile to 98 also acted to shift the distribution towards shallower plumes, 

but not as noticeably as when the percentage of criteria required was increased. 

Additionally, the use of no smoothing led to the widest interquartile range. This is because, 

without smoothing, the heights detected can change drastically between consecutive five-

minute periods which allows for depth variations that are very physically unlikely. Overall, 

the probabilistic BLSN depth distribution remained relatively consistent during the 

sensitivity testing; the median and mean of the distribution remained within 20 m of the 

value found for the final probabilistic algorithm during all of the performed tests. 

5.4. Environmental Properties of Blowing Snow 

Surface weather conditions are often the deciding factor in the occurrence of BLSN, 

since sufficient wind is required to initiate the process. Previous studies have attempted to 

quantify relationships between BLSN occurrence and environmental properties (e.g. Li and 

Pomeroy 1997) but these associations are still poorly constrained and vary by location.  

5.4.1. Blowing Snow Occurrence by Meteorological Variables 

To investigate the relationship between meteorological properties and BLSN 

occurrence, two-dimensional histograms were produced (Figure 53). First, the relationship 

between detections and visibility and wind speed is investigated (Figure 53a). The majority 

of detections of BLSN occurred with 10 m wind speeds of 7.5-12.5 ms-1 and 2 m visibility 

of less than 2 km. Observations of very high wind speeds were uncommon, therefore there 

were few BLSN detections above ~17.5 ms-1. Overall, it appears that low to moderate wind 

speeds (3-12.5 ms-1) were associated with variable visibility observations (0-10 km), while 
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BLSN with higher wind speeds tended to occur with visibility < 4 km. Figure 53b shows 

the connection observed between wind speed and temperature, to compare to the threshold 

wind speed relationship defined by Li and Pomeroy (1997b). As discussed in Section 4.2.2, 

this relationship (given by Equation 5) is likely higher than would be expected in the 

Antarctic but can be used for general comparison purposes. Most of the detected BLSN 

occurred at wind speeds exceeding the expected threshold wind speed, but 27% occurred 

associated with lower wind speeds. In addition to the differences between the Arctic and 

Antarctic climate, some of these lower wind speed BLSN observations may have been 

associated with periods in which BLSN had already been initiated before the wind speed 

decreased. Figure 54 shows the likelihood of BLSN sorted by wind speed and temperature 

observations. All bins with that had detected BLSN over 40% of the time were found in 

bins that exceeded the Li and Pomeroy (1997b) threshold wind speed. 

BLSN occurrence by wind direction must also be considered when evaluating the 

process in the region. The most frequent wind direction observed at McMurdo Station 

during AWARE was northeasterly, as shown in Figure 55a. This is likely due to 

topographic effects, as the Ross Sea is bounded by the Transantarctic Mountains to the west 

and south, with Mount Erebus to the north of McMurdo Station (Costanza et al. 2016). 

Over half of all wind observations during 2016 were from the northeasterly quadrant. This 

is also the most common wind direction for all BLSN categories due to its frequent 

occurrence, shown in Figure 55b-d. Fog detections were found at similar wind directions 

to that of category 1 (not shown). 

Although southerly winds were relatively uncommon at McMurdo Station, they were 

associated with detected BLSN a higher proportion of the time. This is particularly true for 



 

98 

 

intense mixed events; over 10% of wind observations coming from 170-190° were 

associated with category 3 BLSN. This pattern is evident in the other BLSN categories to 

a lesser degree. Strong wind events (> 15 ms-1) observed at McMurdo Station most often 

are associated with southerly winds associated with a deep low pressure system 

approaching the region from the north (Seefeldt et al. 2003; Weber et al. 2016), meaning 

that it may be more likely to see more significant BLSN events during the occurrence of 

these southerly winds. 

5.4.2. Connections Between Blowing Snow Depth and Meteorological Variables 

To examine relationships between meteorological variables and the BLSN depth 

estimated by the probabilistic algorithm, two-dimensional histograms were produced 

(Figure 56). First, the relationship between BLSN depth and the observed 10 m wind speed 

is investigated. In this study, the deepest plumes occurred at wind speeds near 10.0 m s-1, 

rather than with the highest observed speeds, suggesting no clear relationship between the 

two variables. While it has been hypothesized previously, no relationship between BLSN 

depth and wind speed was found in previous studies (Mahesh et al. 2003; Gossart et al. 

2017). Further study with a larger number of cases is required to make a definitive statement 

on this relationship.  

Figure 56b shows the probabilistic plume depth versus wind direction. The majority 

of BLSN assessed, including the deepest detected layers, were associated with winds from 

the northeast quadrant (particularly between 25-75°). This is not surprising, as Figure 55 

showed that northeasterly winds were by far the most common at McMurdo Station (due 

to topographic effects). There was also some detected BLSN up to ~300 m in height 
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accompanying southerly winds (associated with strong windstorms, as discussed in Section 

4.2.3). 

The relationship between plume depth and 2 m visibility can be seen in Figure 56c. 

The deepest detected plumes were largely associated with near-zero visibility. The BLSN 

depth appears to fall as visibility increases. This suggests that the events that were the most 

intense near the surface (causing the largest reduction in visibility) were also associated 

with the highest BLSN depths. 

Finally, no relationship appears to be present between temperature and BLSN depth, 

shown in Figure 56d. It can be noted that the majority of cases investigated occurred 

between -10 and -35°C, with the deepest plumes occurring between -20 and -30°C.  
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Figure 31. Boxplots of a) annual and b) monthly frequencies of BLSN from human observations 

at McMurdo Station, Antarctica. The box represents the interquartile range of the distribution, and 

the whiskers cover the minimum and maximum of the data within 1.5 times the interquartile range 

of the median. Observations falling outside of the whiskers (outliers) are shown as empty black 

circles. The orange solid and green dashed lines represent the median and mean of the 

distribution, respectively. Red dots show the observed frequency in 2016 during the AWARE 

Campaign.  
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Figure 32. Seasonal proportion of human BLSN observations occurring with other phenomena at 

McMurdo Station. a) Climatological average for 2002 to 2018 and b) during the AWARE 

campaign. 
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Figure 33. Monthly hours of BLSN detected by humans, ceilometer-based algorithms, and the 

visibility sensor during the 2016 AWARE campaign. 
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Table 9. Seasonal and total BLSN hours and frequencies for each algorithm shown in Figure 33. 

The five-minute algorithm is further broken down into BLSN categories. 

Algorithm BLSN Hours (Frequency) 

Summer (DJF) Fall (MAM) Winter (JJA) Spring (SON) Total 

Human 36.7 (1.7%) 282.9 (12.8%) 307.4 (13.9%) 96.2 (4.4%) 723.2 (8.2%) 

< 5 km visibility 119.3 (5.5%) 326.8 (14.8%) 394.8 (17.9%) 204.0 (9.3%) 1044.9 (11.9%) 

Gossart 173.2 (7.9%)  338.2 (15.3%) 467.8 (21.2%) 255.7 (11.7%) 1234.9 (14.1%) 

5-min NT 155.3 (7.1%) 294.8 (13.4%) 394.0 (17.8%) 200.6 (9.2%) 1044.8 (11.9%) 

5-min 41.3 (1.8%) 215.3 (9.7%) 284.4 (12.9%) 138.0 (6.3%) 679.0 (7.7%) 

    Category 1 7.0 (0.3%) 24.3 (1.1%) 63.2 (2.9%) 23.2 (1.1%) 117.7 (1.3%) 

    Category 2 11.3 (0.5%) 81.8 (3.7%) 98.1 (4.4%) 43.2 (2.0%) 234.3 (2.7%) 

    Category 3 23.0 (1.1%) 109.2 (4.9%) 123.1 (5.6%) 71.7 (3.3%) 326.9 (3.7%) 
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Figure 34. Monthly hours of BLSN detected by a) the Gossart algorithm, b) the 5-min NT 

algorithm, and c) the 5-min algorithm, divided into the category of BLSN detected. Monthly 

hours of human-observed BLSN are shown in black for comparison. 
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Figure 35. Percent correct by month for each algorithm during 2016.  
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Table 10. Impacts of clear-sky backscatter coefficient percentile on algorithm characteristics. The 

95th percentile (used in the five-minute algorithm) results are included for comparison. 

Percentile Lowest Usable Bin 

Backscatter Coefficient 

[sr-1 km-1 10-4] 

Total BLSN 

Hours 

Absolute 

Frequency [%] 

Percent of 5-min 

Detections [%] 

90th 8.6 693.4 7.9 102.1 

95th 21.3 679.0 7.7 - 

98th 79.6 607.3 6.9 89.4 

99th 205.8 563.5 6.4 83.0 
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Table 11. As in Table 10, but for the wind speed threshold. 

Threshold Wind Speed 

[ms-1] 

Total BLSN 

Hours 

Absolute 

Frequency [%] 

Percent of 5-min 

Detections [%] 

5-min (3 ms-1) 679.0 7.7 
 

1 743.2 8.5 109.5 

5 649.3 7.4 95.6 

7 610.2 6.9 89.9 

9 533.4 6.1 78.6 

Li & Pomeroy (1997b) 585.6 6.7 86.2 
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Table 12. As in Table 10, but for the visibility threshold. 

Threshold Visibility [km] 
Total BLSN 

Hours 

Absolute 

Frequency [%] 

Percent of 5-min 

Detections [%] 

5-min (10 km) 679.0 7.7 
 

4 600.6 6.8 88.5 

6 642.5 7.3 94.6 

8 663.2 7.6 97.7 

12 691.5 7.9 101.8 

14 703.8 8.0 103.6 
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Figure 36. Monthly hours of fog and BLSN separated by category for the 5-min algorithm with 

varied RH thresholds. Human observations are shown in black dots. 
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Figure 37. a) Boxplots showing the distribution of mean particle counts from the Parsivel2 for 

each category based on the five-minute algorithm. The orange solid and green dashed lines 

represent the median and mean of the distribution, respectively. b) Mean particle number density 

distributions from Parsivel2 for each category. 
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Figure 38. Logarithmic particle number density distributions from the Parsivel2 for 2 m s-1 wind 

speed increments for a) AWARE Campaign observations, b) observations from the Phoenix APS 

site, and c) BLOWN-UNDER. 
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Figure 39. Monthly hours of BLSN for each algorithm and human observations of BLSN with and 

without falling snow during a) all BLSN detected by the five-minute algorithm, and b) only 

Category 3 BLSN. 
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Table 13. Annual and seasonal hours of BLSN for each algorithm during BLSN times detected by 

the five-minute algorithm. Percentages given are the proportion of five-minute algorithm 

detections that met said criteria. 

Algorithm 
Autumn (MAM) Winter (JJA) Spring (SON) Summer (DJF) Total 

Hours (Proportion) Hours (Proportion) Hours (Proportion) Hours (Proportion) Hours (Proportion) 

5-min 215.3 284.4 138.0 41.3 679.0 

30 m CEIL 183.2 (85.1%) 256.9 (90.3%) 122.8 (89.0%) 34.8 (84.2%) 604.1 (89.0%) 

MPL BS 136.5 (63.4%) 174.3 (61.3%) 66.5 (48.2%) 23.3 (56.3%) 400.6 (59.0%) 

MPL LDR 40.2 (18.7%) 68.2 (24.0%) 12.3 (8.9%) 0.8 (2.0%) 121.6 (17.9%) 

HSRL BS 109.9 (51.1%) 107.4 (37.8%) 46.1 (33.4%) 9.8 (23.6%) 273.2 (40.2%) 

HSRL LDR 73.8 (34.3%) 132.8 (46.7%) 60.8 (44.0%) 9.5 (23.0%) 276.8 (40.8%) 

CR 64.8 (30.1%) 99.2 (34.9%) 40.6 (29.4%) 4.4 (10.7%) 209.0 (30.8%) 
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Figure 40. Monthly cases (blue bars) mean BLSN depth (black line) detected by the probabilistic 

algorithm. 
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Figure 41. Boxplots of detected BLSN depth for the probabilistic algorithm and five-minute 

algorithm for the 41 case days, and the five-minute algorithm for all of 2016. The box represents 

the interquartile range of the distribution, and the whiskers cover the minimum and maximum of 

the data within 1.5 times the interquartile range of the median. Observations falling outside of the 

whiskers (outliers) are shown as black dots. Orange (green) lines show the median (mean) depth 

of the distribution. 
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Figure 42. Histograms of BLSN depths detected by a) the five-minute algorithm and b) the 

probabilistic algorithm for the 41 case days. 
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Figure 43. Histograms of the differences between the probabilistic and five-minute BLSN depths 

(probabilistic - 5 min) for each category. 
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Figure 44. Two-dimensional histograms of probabilistic vs. five-minute algorithm BLSN depths. 

The dashed lines represent the 1:1 relationship. 



 

119 

 

Table 14. Number of analyzed hours and detected BLSN depth for the probabilistic and 5-min 

BLSN algorithms for BLSN case days.  

Category Hours Analyzed 
Mean Depth 

[m] 

5-min Mean Depth 

[m] 

Mean absolute 

difference [m] 

1 52.8 128.9 128.1 41.5 

2 116.6 169.8 123.9 86.9 

3 202.8 276.0 306.3 119.2 

Total 372.2 218.3 222.0 97.6 
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Figure 45. Two-dimensional histograms of BLSN depth vs. depth detected by the contributing 

algorithms. The dashed lines represent the 1:1 relationship.  
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Table 15. List of sensitivity tests applied to the probabilistic algorithm. 

Title Definition Algorithms Affected 

All Categories Perform all algorithms for any period with 

any detected BLSN 

All algorithms 

LDR Decreased 

Averaging 

Averaging used in LDR profile analysis 

reduced by 4 bins (120 m) 

MPL LDR, HSRL LDR 

LDR Increased 

Averaging 

Averaging used in LDR profile analysis 

increased by 4 bins (120 m) 

MPL LDR, HSRL LDR 

Upper Level 1800-

2040 m 

Upper layer used in profile analysis is 

1800-2040 m instead of 1200-1440 m 

MPL LDR, HSRL LDR 

Upper Level 1200-

1500 m 

Upper layer used in profile analysis is 

1200-1500 m instead of 1200-1440 m 

MPL LDR, HSRL LDR 

CR 3 Bin Averaging 3 bin averaging used in CR profile 

analysis instead of 2 

CR 

CR 1 Bin Averaging No averaging used in CR profile analysis 

instead of 2 

CR 

CR 10-9 Minimum 

Threshold 

Minimum threshold used in CR analysis is 

10-9 instead of 10-8 

CR 

CR 10-7 Minimum 

Threshold 

Minimum threshold used in CR analysis is 

10-7 instead of 10-8 

CR 

CR 10-3 Maximum 

Threshold 

Maximum threshold used in CR analysis 

is 10-3 instead of 10-4 

CR 

MPL 90th Percentile 

Clear Sky 

90th percentile MPL clear sky profile used 

instead of 95th  

MPL BS, MPL LDR 

MPL 98th Percentile 

Clear Sky 

98th percentile MPL clear sky profile used 

instead of 95th  

MPL BS, MPL LDR 

HSRL 90th Percentile 

Clear Sky 

90th percentile HSRL clear sky profile 

used instead of 95th  

HSRL BS, HSRL LDR 

HSRL 98th Percentile 

Clear Sky 

98th percentile HSRL clear sky profile 

used instead of 95th  

HSRL BS, HSRL LDR 

CEIL 90th Percentile 

Clear Sky 

90th percentile CEIL clear sky profile used 

instead of 95th  

30 m CEIL 

CEIL 98th Percentile 

Clear Sky 

98th percentile CEIL clear sky profile used 

instead of 95th  

30 m CEIL 

No Smoothing No smoothing applied to final depth 

algorithm instead of 25 min (5 bins) 

Probabilistic Depth Algorithm 

3 Bin Smoothing 15 min (3 bins) smoothing applied to final 

depth algorithm instead of 25 min (5 bins) 

Probabilistic Depth Algorithm 
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Title Definition Algorithms Affected 

7 Bin Smoothing 35 min (7 bins) smoothing applied to final 

depth algorithm instead of 25 min (5 bins) 

Probabilistic Depth Algorithm 

30% of Criteria Met 30% of valid algorithms need to detect 

BLSN in the bin instead of 50% 

Probabilistic Depth Algorithm 

40% of Criteria Met 40% of valid algorithms need to detect 

BLSN in the bin instead of 50% 

Probabilistic Depth Algorithm 

60% of Criteria Met 60% of valid algorithms need to detect 

BLSN in the bin instead of 50% 

Probabilistic Depth Algorithm 

70% of Criteria Met 70% of valid algorithms need to detect 

BLSN in the bin instead of 50% 

Probabilistic Depth Algorithm 

 

  



 

123 

 

 

Figure 46. Boxplots of BLSN depths detected by the 30 m CEIL algorithm for the various 

sensitivity tests. Sensitivity tests are as defined in  

Table 15. Orange (green) line shows the median (mean) depth of the distribution. 
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Figure 47. As in Figure 46, but for the MPL BS algorithm. 

  



 

125 

 

 

Figure 48. As in Figure 46, but for the HSRL BS algorithm. 
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Figure 49. As in Figure 46, but for the MPL LDR algorithm. 
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Figure 50. As in Figure 46, but for the HSRL LDR algorithm. 
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Figure 51. As in Figure 46, but for the CR algorithm. 
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Figure 52. As in Figure 46, but for the probabilistic depth algorithm.  
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Figure 53. Two-dimensional histograms of a) 2 m visibility versus 10 m wind speed, and b) wind 

speed versus temperature for all BLSN detections by the five-minute algorithm. Dots in a) 

denoted the visibility bin with the highest occurrence for each wind speed bin. The dashed line in 

b) shows the relationship derived by Li and Pomeroy (1997b). 
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Figure 54. Percent of observations in each wind speed/temperature bin associated with BLSN 

detections. Bins are as those shown in Figure 53b. The dashed line shows the relationship derived 

by Li and Pomeroy (1997b). 
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Figure 55. Distribution of 10 m wind direction occurrence for each five-minute period during 

2016 for a) all times and b-d) Category 1-3 BLSN cases. Blue (red) bars represent the percent of 

wind (BLSN) observations in each 10° wind direction bin. 
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Figure 56. Two-dimensional histograms of probabilistic BLSN depth vs. meteorological variables 

from the MET instrumentation. 
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CHAPTER 6 

CONCLUSIONS 

The objective of this thesis was to investigate BLSN at McMurdo Station during the 

AWARE Field Campaign. The use of a wide range of observations available from the 

AMF2 allowed for the most comprehensive remote sensing study of the process to date. 

Characterization of BLSN was based on modifications to the ceilometer-based detection 

algorithm derived by Gossart et al. (2017) to improve the detection of BLSN plumes. 

Additional instruments such as the MPL, HSRL, and KAZR were included to generate a 

better estimate of BLSN plume height. Frequencies of BLSN during the AWARE campaign 

were compared to a climatology of human observations at this site. The results of the 

presented work are summarized below. 

Human Climatology of BLSN at McMurdo Station 

Human observers reported an average BLSN frequency of 9.2% at McMurdo Station 

over the 18 years of available records, with a total range of 4.0-14.0%. June had the highest 

frequency of the process (16.3% on average), while December had the lowest occurrence 

(mean of 1.6%). BLSN at this location occurred concurrently with falling precipitation most 

of the time, accounting for 44.5-82.2% of annual observations. Based on human 

observations, BLSN frequency was slightly below average during AWARE (8.2%). 

BLSN During the AWARE Field Campaign 

The BLSN detection algorithm derived by Gossart et al (2017) was applied to 

ceilometer observations from the campaign. The algorithm detected 1234.9 hours of BLSN 

(14.1%) in 2016, compared to 723.2 hours suggested by human observations. Through the 

reduction of temporal averaging and the inclusion of basic meteorological thresholds (10 
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m wind speed, 2 m visibility, and 2 m RH), BLSN detection was decreased to 679.0 hours 

(7.7%), with increased agreement with human observations. Better agreement between the 

algorithm and human observations was seen during the summer months, when the 90% RH 

threshold allowed for the removal of advective fog that was falsely detected as BLSN with 

the original scheme.  

Based on the results of the human observations along with the Gossart and five-

minute algorithms with and without thresholds, the estimated frequency of BLSN during 

the AWARE Field Campaign was 7.7-12.0%. Extrapolating this range of frequencies based 

on the record of human observations suggests that the annual frequency of BLSN 

occurrence at McMurdo Station is 3.5-21.3%. BLSN frequency for the region based on 

space-borne lidar studies is estimated to be ~5% (Palm et al. 2011, 2018a), but ground-

based study allows for the inclusion of cases when cloud cover is present so a higher 

occurrence is expected. 

Investigation of Parsivel2 observations during BLSN periods yielded artifacts in the 

observations at high wind speeds (> 10 ms-1), as previously noted in Friedrich et al. (2013). 

These artifacts appeared as decreases in particle number density in the smallest size bins 

and increases in the number density of large particles, including those larger than expected 

for falling snow or BLSN. As a result, the reader is cautioned that Parsivel2 observations 

are suspect during the strongest BLSN episodes associated with winds > 10 ms-1. It is 

hypothesized that number concentrations are too high for the instrument and shading by 

multiple particles yields voltage drops determined to be larger than reality.  
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During the initial investigation of BLSN, it was clear that the ceilometer only 

algorithm struggled with detecting plume heights during many events due to complicated 

backscatter profiles associated with falling snow. To improve estimation of BLSN height, 

the suite of remotely-sensed observations available at the AMF2 were incorporated into a 

probabilistic algorithm for BLSN height. This approach provided estimates of BLSN depth 

that were not impacted by noise/artifacts in any one set of observations. The probabilistic 

algorithm was applied to 41 case days during the campaign with prolonged BLSN events. 

This yielded an average depth of 218.3 m with Category 3 events seeing the deepest plumes. 

Overall, 43% of detected plumes were estimated to be less than 200 m in depth. The mean 

absolute difference between the depth estimated by the five-minute algorithm and that using 

the probabilistic approach was 97.6 m. The depth detected by the probabilistic algorithm 

was generally similar to that given by the five-minute algorithm for Category 1 events, with 

a mean absolute difference of 41.5 m. Differences were larger for Categories 2 and 3, where 

the mean absolute differences were 86.9 m and 119.2 m, respectively, because more plumes 

were deep enough to reach the detection level of the additional instruments and complex 

backscatter profiles are more common for these categories. The results of the probabilistic 

algorithm were most closely related to that of the backscatter coefficient-based algorithms, 

as the LDR and color ratio observations generally help to distinguish between precipitation 

and BLSN during mixed events. The probabilistic approach tended to regulate the heights 

found by the five-minute algorithm; the depth of very deep plumes was reduced while very 

shallow plumes were made deeper. Since the selected case days are generally more intense 

events, it is expected that the difference in performance would be smaller if applied to all 

of the BLSN that occurred. 
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Connections Between BLSN and Meteorological Conditions 

Analysis of the BLSN environment was performed through examination of 

meteorological observations during detected BLSN periods. It was found that most BLSN 

was associated with 10 m wind speeds of 5.0-15.0 ms-1 and 2 m visibilities below 6 km. 

The most common wind direction during BLSN was northeasterly due to topography, 

though southerly winds also produced some BLSN associated with downsloping events. 

Relationships between estimated BLSN depth and environmental variables were also 

investigated. No clear relationship was found between 10 m wind speed and direction or 

temperature with BLSN depth, as noted by previous studies (Mahesh et al. 2003; Gossart 

et al. 2017). The clearest relationship emerged with 2 m visibility; the deepest plumes were 

observed with the lowest visibilities (< 2 km), suggesting that the most intense events at 

the surface may be associated with deeper BLSN plumes.  

Future Work 

While this study yielded promising results, further work is needed to refine and 

validate the detection and characteristics of BLSN. Repeating this study at additional 

locations (particularly other high latitude ARM sites) is required to assess the validity of 

the algorithms in various locations. Since most of the remote sensing instruments used in 

this study do not record usable data until at least ~100-200 m above the instrument, which 

is  above the top of many BLSN layers, future studies may consider tilting the instruments 

such that usable data begins nearer to the surface. This technique was used by Mahesh et 

al. (2003) to retrieve observations from the MPL in the near-surface layer. Fine-tuning of 

the LDR and CR algorithms is also required to improve their performance. For example, 

the development of instrument-specific values for LDR will likely help to improve the 
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performance of the individual algorithms, since the same values were applied to 

observations from both the MPL and HSRL in this study. This type of alteration may bring 

more confidence in estimated BLSN depths. Additionally, the depth estimations may be 

compared to inversion heights determined by atmospheric soundings, as it is hypothesized 

that BLSN is limited to the surface inversion layer (Mahesh et al. 2003; Palm et al. 2018b). 

Further, ground truth verification would be invaluable in assessing the performance 

of the developed algorithms. Large-scale field campaigns allowing for the direct 

observation of BLSN plumes with height would allow for direct comparisons with 

algorithm results, and a truthful understanding of the validity of the detection and depth 

estimations provided. Also, human observations of BLSN made near to the site of the 

instruments would be valuable to help validate BLSN occurrence. 

Further investigation is needed to determine the relationships between BLSN 

occurrence and depth and the environment it occurs in. The complex terrain at McMurdo 

Station likely complicates the relationships between environmental variables, such as wind 

speed, and the properties of the plume. Studying the process in a flat, isolated environment 

would likely help to clarify whether or not such relationships exist. 

Finally, this work can also be used by the modelling community to verify simulations 

of the process and its impacts. Having both detection and an estimation of depth can help 

to assess the impact of BLSN on the regional climate, allowing for improved estimations 

of sublimation and radiative properties, as well as impacts on the regional surface mass 

balance of ice surfaces. 
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APPENDIX A: List of Instrumentation at the AMF2 

Table 16. Instruments deployed to McMurdo Station (adapted from Lubin et al. 2015). 

Instrument Name Quantities Measured 

X-band and Ka-band scanning 

ARM cloud radar (SACR) 

Cloud particle co-polar and cross-polar radar reflectivity, Doppler 

velocity, linear depolarization ratio, differential reflectivity 

Scanning W- band ARM cloud 

radar (SWACR) 

Cloud particleradar reflectivity, Doppler power spectrum 

Ka-band ARM zenith radar 

(KAZR) 

Cloud particle Doppler moments (reflectivity, vertical velocity, 

spectral width) at high (30 m) range resolution 

Atmospheric emitted radiance 

interferometer (AERI) 

Absolute thermal infrared spectral radiance emitted by the 

atmosphere down to the instrument 

High spectral resolution lidar 

(HSRL) 

Aerosol optical depth, volume backscatter, cross section, cloud 

and aerosol depolarization 

Micropulse lidar (MPL) Altitude of cloud layers 

Vaisala ceilometer (VCEIL) Attenuated backscatter coefficient, cloud base height 

Beam-steerable radar wind profiler 

(BSRWP) 

Wind and virtual temperature profiles 

Parsivel optical disdrometer 

(PARSIVEL) 

Precipitation particle size distribution and fall speed 

CCN counter (CCN) Cloud condensation nuclei as function of supersaturation 

Condensation particle counter 

(CPC) 

Total aerosol particle concentration down to diameter 10 nm 

Hygroscopic tandem differential 

mobility analyzer (HTDMA) 

Aerosol size, mass, or number distribution as function of RH 

Ambient nephelometer (NEPH 

AMB) 

Aerosol light scattering coefficient at ambient RH 

Dry nephelometer (NEPH DRY) Dry aerosol light scattering coefficient 

Ozone (O3) Ozone concentration 

Particle soot absorption photometer 

(PSAP) 

Optical transmittance of aerosol particlesAe 

Aerosol filter sampling (AER 

FLTR) 

Aerosol chemical composition 

Upward-looking precision spectral 

pyranometer (SKYRAD PSP) 

Downwelling total shortwave irradiance 
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Instrument Name Quantities Measured 

Upward-looking Eppley model 8-

48 diffuse pyranometer (SKYRAD 

8-48) 

Downwelling diffuse shortwave irradiance 

Upward-looking precision infrared 

radiometer (SKYRAD PIR) 

Downwelling longwave irradiance 

Upward-looking Infrared 

thermometer (SKYRAD IRT) 

Sky equivalent blackbody temperature 

Downward-looking precision 

spectral pyranometer (GRNDRAD 

PSP) 

Upwelling shortwave radiation reflected by surface 

Downward-looking precision 

infrared radiometer (GRNDRAD 

PIR) 

Upwelling longwave radiation emitted by surface 

Downward-looking Infrared 

thermometer (GRNDRAD IRT) 

Surface equivalent blackbody temperature 

Cimel sunphotometer (CSPHOT) Multispectral direct solar irradiances 

Multifilter rotating shadowband 

radiometer (MFRSR) 

Direct normal, diffuse horizontal, and total horizontal irradiances 

at six standard wavelengths 

Analytical Spectral Devices 

FieldSpec Pro shortwave 

spectroradiometer (ASD) 

Downwelling spectral shortwave irradiance 350−2200 nm 

Eddy correlation flux measurement 

system (ECOR) 

Surface turbulent fluxes of momentum, sensible heat, latent heat, 

and carbon dioxide 

Total sky imager (TSI) Cloud fraction 

Vaisala present weather detector 

(PWD) 

Visibility, precipitation detection 

Hotplate total precipitation sensor 

(TPS) 

Precipitation amount 

G-band vapor radiometer (GVRP) High-time-resolution water vapor and temperature profiling, and 

column-integrated liquid water and water vapor 

Microwave radiometer, two channel 

(MWR, 2C) 

Column-integrated liquid water and water vapor 

Balloon-borne sounding system 

(SONDE) 

Vertical profiles of T, P, RH, wind speed and direction 

Meteorological instrumentation at 

AMF (MET) 

Near-surface (2 m) T, P, RH, wind speed and direction 

Local meteorology at top of aerosol 

observing system (AOS) stack 

(AOS MET) 

Wind speed, direction, T, RH, P 
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