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ABSTRACT 

Automated systems (e.g., self-driving cars, autopilot) can reduce an operator’s (i.e., 

driver, pilot, baggage screener) task engagement, which can result in mind wandering, 

distraction, and loss of concentration. Consequently, unfavorable performance outcomes, 

such as missed critical signals and slow responses to emergency events, can occur. 

Because automation reverts the operator to a “visual monitoring” role, the oculomotor 

accommodative-vergence responses (the oculomotor responses that maintain a single 

focused image on the retina) may play a vital role in human-automation interactions. 

Prior research has shown that individuals with deficits in the accommodative-vergence 

responses can exhibit inattentive symptoms (e.g., poor concentration) characteristic of 

attention-deficit/hyperactivity disorder (ADHD) while performing prolonged close work 

(e.g., reading). Given the behavioral symptoms present in those experiencing 

accommodative-vergence stress, automated systems may exacerbate these negative 

effects. The current study examined the effects of accommodative-vergence stress in 

combination with automation on aspects of operator task engagement. Participants (N = 

95) under accommodative-vergence stress wearing -2.0 diopter lenses or normal viewing 

conditions completed a 40 min flight simulation task either with or without automation. 

Physiological dependent measures included electroencephalographic (EEG) parietal-

occipital alpha power spectral density (PSD), an EEG multivariate metric of engagement, 

and pupil diameter. Self-report measures of task engagement, cognitive fatigue, and
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visual fatigue symptoms were also collected along with oculomotor measurements 

(accommodation and convergence) and flight simulation task performance. Multivariate 

analyses indicated that the application of -2.0 diopter lenses did not significantly alter 

oculomotor measurements or subjective reports of visual fatigue. Oculomotor stress 

modestly affected task performance and tended to result in increased EEG measures of 

engagement, while subsequently increasing feelings of fatigue, potentially indicating a 

compensatory effort response. Participants performing the simulation with automation 

exhibited significantly lower task engagement, as indicated by greater parietal-occipital 

alpha PSD, less multivariate EEG engagement, smaller pupil diameter, and lower self-

reported engagement. Overall, oculomotor stress and automation did not interact 

synergistically to affect task engagement and associated performance outcomes. 

Automation and time on task were the main determinants of task engagement. These 

results underscore the negative effects automation can have on underlying operator 

cognitive states and the associated need to carefully design automation to combat reduced 

task engagement. Applications for system design and the use of EEG in augmented 

cognition systems involving automation are discussed. 
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CHAPTER I 

INTRODUCTION  

As computer technology continuously advances, automated systems are becoming 

more common in several domains. Today, automation can be found in areas including 

aviation (Mouloua, et al., 2000), automobiles (Merat & Lee, 2012), and maritime 

operations (Sauer et al., 2002). Automated systems complete tasks that would otherwise 

be performed by a human operator (i.e., pilot, driver; Parasuraman & Riley, 1997) and 

subsequently can reduce the amount of cognitive workload a human operator experiences 

(de Winter et al., 2014; Onnasch, et al., 2014; Saxby et al., 2013). By extension, the 

operator is then free to perform other tasks and increase his or her work efficiency. While 

the purpose of an automated system is to perform a function that would otherwise be 

completed by a human operator, automated systems typically do not completely supplant 

the human operator (Parasuraman & Riley, 1997). Rather, automation changes the human 

operator’s role, from one of active system control to supervisory monitoring and 

vigilance (Parasuraman et al., 2000). For example, the Federal Aviation Administration is 

currently integrating a series of technologies called NexGen into the U.S. airspace 

system. Many of these technologies incorporate automated functions for air traffic 

controllers, such as automated aircraft sequencing, which relays separation vectors and 

speeds to aircraft automatically with only the supervision of the controller (Strybel et al., 

2016). In daily life, several automobiles now include automated lane control and
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adaptive cruise control systems to aid with lateral and longitudinal control of the vehicle, 

respectively (Merat & Lee, 2012).  

 Despite the positive effects automation may have on human performance in terms 

of decreasing workload and increasing efficiency (de Winter et al., 2014), automated 

systems can impose a host of negative effects on operators (Parasuraman & Riley, 1997). 

For instance, operators may begin to rely heavily on automated systems and use them in 

inappropriate situations (e.g., emergencies). Additionally, operators may overestimate the 

reliability of automation and place too much trust in the system (Parasuraman et al., 

1993). Therefore, a significant amount of research over the last three decades has been 

geared towards designing automated systems that avoid these negative outcomes 

(Endsley, 2017).  

However, one issue that still faces human system engineers is the loss of task 

engagement that can accompany the use of automated systems for prolonged periods of 

time. Since automated systems shift human operators from active control to visually 

monitoring the system, the ability to remain actively engaged is an important feature 

when considering operator performance effectiveness with the implementation of 

automated systems (Saxby et al., 2013). Moreover, researchers in the human factors 

community are still searching for innovative ways to uphold task engagement in 

situations involving automated systems (Gouraud et al., 2018; May & Baldwin, 2009). 

Because a majority of the information an operator receives is in the visual modality, the 

operator’s oculomotor system may be an important physiological variable that modulates 

task engagement and subsequent performance outcomes when considering human-
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automation interactions. Specifically, individuals with oculomotor deficits may be more 

prone to losing task engagement while interacting with automated systems. Indeed, as 

will be discussed, research findings suggest that oculomotor pathologies may induce 

symptoms similar to attention-deficit/hyperactivity disorder (e.g., Borsting et al., 2005). 

Therefore, one way in which to improve human-automation interactions may be through 

augmentation of an operator’s oculomotor system to buffer against task disengagement.  

The overall purpose of this study was to determine the extent to which an 

operator’s oculomotor system interacts with system automation to affect task engagement 

and performance outcomes. The literature to justify this study will be reviewed in the 

following manner. First, the literature on the effects of automation on task engagement is 

presented. Second, an overview of oculomotor functioning is given along with an 

examination of studies showing links between these deficits and sustained attention. 

Third, a review of the physiological correlates of visual processing and task engagement 

is given. Finally, the literature review will provide a theoretical framework for the effects 

of oculomotor functioning on task engagement.  

Task Engagement – Overview  

Operator Functional States 

 Measuring and classifying operator functional states (OFS) is integral for initial 

system design and system evaluation (Research and Technology Organization, 2004). An 

operator’s functional state is a psychophysiological condition of the operator that 

modulates performance outcomes. That is, psychological and physiological processes 

work in tandem to allow the operator to meet task requirements (Gaillard & Kramer, 
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2000; Research and Technology Organization, 2004). Examples of OFS constructs are 

cognitive workload, cognitive fatigue, and task engagement. OFS constructs are usually 

inferred by using a triad of measurements including subjective measures, 

psychophysiological measures, and performance-based measures (Research and 

Technology Organization, 2004). Each measure has its own set of advantages and 

disadvantages. For example, subjective measures are easy to implement but do not allow 

researchers to monitor the operator in real time (Gaillard & Kramer, 2000). In contrast, 

psychophysiological measures are more cumbersome to implement but allow the operator 

to be monitored during task performance (Parasuraman, 2015). In an ideal situation, all 

three measures are used together to ascertain an operator’s functional state.   

OFS assessment plays a vital role in initial system design. Systems that human 

operators interact with should be designed in such a way as to minimize the probability of 

the system exceeding the physical, perceptual, and cognitive capabilities of the human 

operator. If systems can be designed in such a way as to optimize the functional state of 

the operator, then performance and safety outcomes can be maximized (Endsley, 2017). 

For example, OFS assessment can be used during the development and testing phases of 

flight systems that allow pilots to fly in degraded visual environments. In a series of 

studies, military researchers utilized subjective, physiological, and performance-based 

metrics to determine the optimum configuration of an integrated cueing package (haptic, 

visual, and auditory cueing) used for flight in degraded visual environments (Feltman et 

al., 2018; Feltman, et al., 2019; McAtee et al., 2017). The results of these studies helped 

make recommendations for improving the cueing package. Here, the focus is on the 
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functional state of task engagement since it has salient implications for human-

automation interactions.  

Task Engagement 

 Task engagement is a multifaceted OFS construct involving aspects of energy, 

motivation, and concentration (Matthews et al., 2002). High task engagement implies that 

the operator is actively orientated towards a task (Hockey et al., 2009) and directing 

cognitive resources to process task-related stimuli efficiently (Berka et al., 2007; 

Kamzanova et al., 2011). A loss of task engagement puts the operator at risk for mind 

wandering, distractibility, and increased feelings of cognitive fatigue (Matthews et al., 

2013). Moreover, operators in a disengaged state are likely to withdraw from the task and 

become reluctant to apply effort when needed to perform more difficult tasks (Matthews 

et al., 2002). Combined, these behaviors may result in sub-optimal performance (i.e.,  

relying on heuristics, speed-accuracy tradeoffs, increased reaction times, and missed 

critical signals) when continuous monitoring of a system is required or when the operator 

needs to regain manual control of the system. Indeed, a meta-analysis by Onnasch et al. 

(2014) showed that as an automated system assists with higher cognitive processes 

carried out by the operator (i.e., decision making), performance deteriorates more so than 

when automation assists with lower cognitive processes (i.e., stimulus perception) when 

operators must regain manual control from an automated system.  

 Task engagement has been measured both subjectively and physiologically. 

Moreover, certain performance decrements, such as missed critical signals and increased 

reaction times, are typically used to indicate a loss of task engagement. Matthews et al. 
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(2002) developed the widely used Dundee Stress State Questionnaire (DSSQ), which 

measures three operator states, including task engagement. Examples of items relating to 

task engagement are, “I feel alert,” “I was committed to attaining my performance goals,” 

and “I felt active.” In the initial validation of the DSSQ, Matthews and colleagues found 

that the task engagement scale was sensitive to qualitatively different tasks that are 

associated with sustained attention, such as visual and auditory vigilance tasks. Later, 

Helton (2004) and Helton and Näswall (2015) shortened the DSSQ to form the Short 

Stress State Questionnaire (SSSQ) using a subset of items from the DSSQ.  

At the physiological level, researchers have commonly used methods such as 

electroencephalography (EEG; Berka et al., 2007) and cerebral blood flow velocity 

(Matthews et al., 2010) to index task engagement. Several studies have shown that both 

physiological and subjective task engagement change during the performance of 

vigilance tasks (Berka et al., 2007; Matthews et al., 2002; Matthews et al., 2014).  

The following section reviews pertinent literature on how these measures have 

been used to explore the effects system automation on operator task engagement.   

The Effects of Automation on Task Engagement  

 Because system automation shifts the role of the operator from manual control to 

supervisory monitoring (Harris et al., 1995), the effects of automation on task 

engagement are important when considering human-automation interactions (Helton et 

al., 2009). Several studies have shown that operators using automated systems for 

prolonged periods of time exhibit significant reductions in task engagement. In a two-part 

study, Saxby et al. (2013) explored the effects of automobile automation on subjective 
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task engagement and performance. In part one, participants performed a simulated drive 

under one of three automation conditions: standard manual control, manual control with 

high crosswinds, or fully automated. In the fully automated condition, both lateral and 

longitudinal control of the vehicle were automated, and the driver simply had to perform 

a basic system monitoring reaction time task consisting of a low number of targets. 

Participants were also randomly assigned to perform the drive for either 10, 30, or 50 

min. Participants rated their level of task engagement using the DSSQ (Matthews et al., 

2002) before and after the driving session. Results from part one indicated that 

participants in the fully automated condition driving for 50 min reported the greatest 

decline in task engagement. In part two of the study, Saxby and colleagues introduced an 

emergency event at the end of the drive to evaluate the effects of automation on driving 

performance. During the final 5 min of the drive, automation was disengaged, and an 

unexpected vehicle pulled out in front of the participant’s vehicle. Results from part two 

indicated that participants in the fully automated drive had slower breaking and steering 

reaction times as well as more collisions with the unexpected van compared to 

participants who performed the drive manually. Moreover, task engagement was 

significantly lower in the automation group compared to the manual control group. It 

should be noted that these results were obtained even after participants in the automated 

condition regained manual control for 30 s prior to the emergency event.  

 In a similar driving simulator study, Neubauer et al. (2012) assigned participants 

to one of two driving conditions to complete a 35 min drive. In one condition, 

participants had the option to engage vehicle automation for 5 min intervals. In the other 
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condition, participants did not have access to automation. During the last 5 min of the 

drive, automation was disabled and the drivers were required to respond to an unexpected 

road hazard. The researchers found that drivers who were given the option to automate 

the vehicle reported significantly lower task engagement than participants who did not 

use automation. Moreover, drivers who used automation had slower steering reaction 

times in response to the unexpected road hazard. Another driving study by Greenlee and 

colleagues (2018) found that participant hazard detection rates decreased and reaction 

times slowed over the course of a 40 min automated simulated drive. Participants in this 

study also reported high ratings of task difficulty and increased feelings of distress.  

 Additionally, research in our laboratory has demonstrated parallel findings to 

those discussed above (Bernhardt, 2018; Bernhardt, Poltavski, Petros, & Ferraro, 2019). 

Participants were randomly assigned to perform a flight simulation task under one of 

three conditions for 50 min: manual control, automation with a high target rate paced task 

(one target every 10 s), or fully automated with low target rate (one target every 4-7 min). 

Subjective measures and electrophysiological (EEG) measures of task engagement were 

obtained. Overall, subjective task engagement decreased from pre to post simulation for 

all conditions. This decline in subjective task engagement was also accompanied by 

linear decreases in EEG markers of engagement across the 50 min simulation. However, 

the decline in both subjective and EEG engagement was the most severe for participants 

performing the simulation with automation and the low target rate monitoring task. In 

contrast to previous driving studies, we did not find any evidence of automation affecting 

performance.  
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Together, the above reviewed studies support the notion that automated systems 

can jeopardize task engagement and compromise subsequent performance. Because 

automation places operators in a supervisory monitoring role, vigilance is an important 

component of applied research on human-automation interactions (Warm et al., 2008). 

Vigilance and Task Engagement  

Vigilance can be found in a wide variety of professions such as industrial quality 

control, long distance driving, baggage inspection, and unmanned aerial vehicle 

operations (Warm et al., 2008). Maintaining vigilance requires operators sustain and 

focus their attention to respond to stimuli over an extended period of time, typically in 

situations involving more non-target stimuli than target stimuli (Davis & Parasuraman, 

1982). Hence, operators are sustaining vigil while monitoring automated systems for 

potential critical failures or situations to intervene. This is a concept consistently echoed 

in human-automation interaction research (Greenlee et al., 2018; Parasuraman, 2015; 

Warm et al., 2008).  

Studies using basic vigilance paradigms have reported declines in task 

engagement over time. For example, Matthews et al. (2010) had participants perform two 

different vigilance tasks, one relying on sensory processing and one relying on working 

memory. The sensory processing task required participants to monitor a simulated air 

traffic control display and determine when two aircraft (represented by grey lines) were 

on a collision course. The working memory vigilance task required participants to solve 

three simultaneously presented letter addition problems (e.g., R + 2, B + 3, K + 1 = T, E, 

L), hold the solution in working memory while reversing the solution, and determine if 
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the solution was presented in a sequence of six letters following the initial string of 

letters. The researchers found that self-reported task engagement and cerebral blood flow 

velocity (an index of cognitive resources) significantly decreased across both tasks. These 

two measures also correlated with reduced vigilance performance, leading the researchers 

to conclude that task engagement is an important underlying construct that supports 

vigilance and that a loss of engagement reflects a reduction in cognitive-energetic 

resources. In another study, Helton and colleagues (2009) found similar results showing 

that self-ratings of task engagement were positively correlated with signal detection 

performance while participants completed an abbreviated vigilance task. Moreover, 

several studies employing structural equation modeling have shown that task engagement 

mediates the relationship between external stressors and overall vigilance performance 

(Helton et al., 2009; Matthews et al., 2014; Matthews et al., 2017), further supporting the 

importance of task engagement as a psychological construct vital for vigilance 

performance.  

Another line of evidence relating task engagement to automation and vigilance 

comes from successful attempts to utilize brain measures to drive augmented cognition 

systems. Augmented cognition involves using physiological measures taken from an 

operator to dynamically alter the operator’s control system (Prinzel et al., 2003). For 

example, adaptive automation relies on determining the operator’s current state (i.e., 

overload or underload; disengaged or engaged) and dynamically alters the automation of 

a system to optimize operator performance. In the case of task engagement, if an operator 

becomes disengaged from a task, the adaptive automation system reduces the amount of 
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automation to reengage the operator. In one study, Freeman et al. (2004) used an EEG 

metric of task engagement to automatically alter the size of a distractor grid while 

participants performed a visual search vigilance task. Results showed that when the EEG 

engagement metric was paired with a negative feedback loop (i.e., increased EEG 

engagement index caused the number of distractor letters to decrease), the vigilance 

decrement was not observed. In another study, Freeman et al. (1999) used the same EEG 

engagement index as Freeman et al. (2004) to drive adaptive automation while 

participants performed a manual compensatory tracking task. The tracking task could 

either be in automatic or manual mode and was adaptively controlled by the level of EEG 

engagement. Under negative feedback conditions (i.e., automation was disengaged when 

the engagement index was low), the adaptive automation system using the EEG 

engagement index resulted in superior performance compared to positive feedback or 

control conditions. Overall, the results of studies using adaptive automation systems 

articulate how assessing operator task engagement during task performance can be used 

to optimize performance. Moreover, these studies support the notion that automation and 

task engagement are intertwined.  

In summary, past research has shown that automation can jeopardize task 

engagement and lead to suboptimal performance outcomes when operators must remain 

vigilant and monitor automated systems. Therefore, understanding potential operator 

characteristics that may further provoke the loss of task engagement over extended 

automated system use is vital for ensuring safety. Given that much of the information a 

human operator obtains while monitoring a system is in the visual modality, deficiencies 
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in the oculomotor system may be an important physiological variable that modulates task 

engagement and thus affects ultimate performance outcomes. Currently, however, no 

studies have examined how the oculomotor system affects task engagement in work 

environments involving automated systems. The following section reviews the literature 

regarding the oculomotor accommodative and convergence responses (two responses 

vital for close work) as well as the effects of oculomotor deficits on overt cognitive 

performance outcomes. Then, the physiological relationship between task engagement 

and the oculomotor system is reviewed to illustrate how task engagement and visual 

processing may relate.  

Oculomotor Near Reflex Triad, Task Engagement, and Behavior  

Near Reflex Triad 

 The near reflex triad consists of three vital responses that allow an individual to 

properly form visual images for neural transduction: accommodation, binocular 

convergence, and pupil constriction/dilation (Edgar, 2007; Purves et al., 2012). The 

accommodative response is responsible for maintaining a focused image on the retina as 

individuals view targets at various distances (Purves et al., 2012). A crystalline lens in the 

eye changes in optical power to create a clear image on the retina. Small fibers called 

zonule fibers attach radially to the crystalline lens and connect to ciliary muscles 

surrounding the lens. When viewing a near object, the ciliary muscles contract, which 

reduces the tension in the zonule fibers and results in less tension on the lens. This 

reduced tension makes the lens more rounded in shape to focus the near image on the 

retina. The opposite process holds for far objects. Accommodation is primarily driven via 



13 

 

a negative feedback loop with the perception of image blur (Bharadwaj & Candy, 2014). 

The convergence response is responsible for maintaining a single, fused image and is 

driven by image disparity cues (Bharadwaj & Candy, 2014). The eyes either converge or 

diverge to reduce image disparity as an object changes distance. These eye movements 

are controlled by a group of muscles surrounding the eye called the extraocular muscles, 

specifically the medial rectus and lateral rectus muscles control converging and diverging 

movements, respectively (Demer et al., 2003). Finally, pupillary constriction occurs to 

sharpen the image. Here, the focus is on the accommodative and vergence responses.  

 Accommodation and convergence are coupled physiologically. As the eyes 

accommodate, they also converge and as the eyes converge, they also accommodate 

(American Optometric Association, 2011). It is this synchrony of responses that produces 

functional images for neural transduction. Deficits in this coupled response can result 

from several etiological factors including head trauma, neurodegenerative diseases 

(Arnoldi & Reynolds, 2007), or inadequate visual system development during infancy 

(Bharadwaj & Candy, 2009). Case studies using neurological patients have linked proper 

accommodative-vergence responses with the cerebellum. For example, Kawasaki et al. 

(1993) found that a patient with a lesion to the cerebellum had difficulty focusing on 

objects at near and far distances. Specifically, the patient had a large cyst on the 

cerebellum that resulted in a slowed accommodative response. After removal of the cyst, 

accommodative response times returned to normal. Moreover, lesions to the cerebellum 

have been shown to impair slow vergence movements and divergent eye movement 

velocities compared to healthy controls (Sander et al., 2009). Other than the cerebellum, 
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neuroimaging studies indicate that other cortical areas including the right superior 

temporal sulcus, inferior temporal gyrus, and extrastriate cortex (Richer et al., 2004) are 

involved in the accommodative-vergence response in addition to several subcortical 

structures (i.e., nucleus reticularis tegementi pontis, superior colliculi).  

 When deficits occur in the accommodative/and or vergence responses, individuals 

can experience inattentive behavioral symptoms in addition to visual discomfort resulting 

from prolonged accommodative-vergence stress. Because the oculomotor system plays a 

vital role in operator performance while monitoring automated systems, deficits in 

oculomotor responses may result in suboptimal cognitive states (i.e., task engagement) 

that ultimately influence safety outcomes by impacting behavior.  

Accommodative-vergence Deficits and Behavior 

 The most common disorders of the accommodative and vergence responses 

include accommodative insufficiency (AI) and convergence insufficiency (CI). AI is a 

sensory motor disorder characterized by an inability to focus or maintain focus on a near 

target, while CI is a sensory motor anomaly linked to deficits in the ability to attain 

and/or sustain accurate eye convergence at a near target (American Optometric 

Association, 2011; Marran et al., 2006). AI and CI often present with similar symptoms 

including image blur, headache, asthenopia, diplopia, and poor concentration while 

performing near work (American Optometric Association, 2011; Daum, 1983; Daum, 

1984; Hinkley et al., 2016). According to the American Optometric Association (2011), 

individuals with these deficits must expend more effort to resolve image disparity and 
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blur cues, which can result in increased feelings of fatigue or eye strain during sustained 

near work (e.g., reading), leading to increased accommodative-vergence stress over time.   

Trends in the literature have shown associations between vergence and/or 

accommodative deficits and ADHD symptomology. Specifically, researchers have 

reported that AI and CI are associated with symptoms similar to attention-

deficit/hyperactivity disorder (ADHD). Early research suggested a three-fold greater 

incidence of ADHD among children with CI (Granet et al., 2005). Borsting et al. (2005) 

found that children with accommodative dysfunction or CI had a significantly higher 

frequency of behaviors associated with ADHD and associated learning problems. Similar 

results were obtained by Rouse and colleagues (2009). The researchers had the parents of 

children with ADHD and CI, no ADHD and CI, and normal binocular vision (NBV) 

without ADHD complete a survey asking about their child’s problems in school relating 

to academic work. Compared to children with CI and no ADHD diagnosis and NBV 

controls, children with CI and ADHD were rated by their parents has having greater 

difficulties in school during the past month. Moreover, Redondo et al. (2018) reported 

that children with ADHD generally exhibited a reduced accommodative response 

compared to controls across accommodative targets presented at 500, 40, and 20 cm 

during a 90 s fixation task.  

Symptoms of AI have also been shown to be related to academic performance in 

college students. Chase et al. (2009) used the Conlon Visual Discomfort Survey (CVDS; 

Conlon et al., 1999), a measure of symptoms associated with AI, to predict self-reported 

academic problems and objective measures of the accommodative response. Results 
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indicated that the CVDS accounted for 62% of the variability in academic problems 

associated with grades, homework, and reading. Moreover, the CVDS was associated (r = 

.47) with increased accommodative lag for stimuli at high accommodative demands (5+ 

diopters) and could classify students with AI with 75% sensitivity and 80% specificity 

when a cutoff total score of 27 was used. This study illustrates that symptoms of 

oculomotor deficits in populations other than children relate to academic problems that 

are potentially associated with compromised sustained attention.  

Poltavski et al. (2012) provided experimental support for the link between 

accommodative-vergence stress and inattentive symptoms characteristic of ADHD by 

decoupling the accommodative and vergences responses with -2.0 diopter (D) lenses. 

Minus 2.0 D lenses induce a blur cue and impose a higher accommodative demand, thus 

inducing accommodative stress over time (Bharadwaj & Candy, 2009). Poltavski and 

colleagues had participants with normal binocular vision and no history of ADHD 

perform the Connors Continuous Performance Test (CPT; a sustained visual attention 

task used in part to diagnose ADHD) under accommodative stress with -2.0 D lenses and 

under no accommodative stress on two separate occasions. Compared to the non-stressed 

condition, the stress condition resulted in significantly reduced CPT performance (i.e., 

more commission errors and worse target detection). This reduced performance was 

accompanied by increased accommodative lag, indicating a worse accommodative 

response. Additionally, greater accommodative lag predicted an increased probability of 

clinical ADHD diagnosis according to CPT measures used to diagnose ADHD. However, 

in a later study, Poltavski et al. (2016) did not find evidence for -2.0 D lenses modulating 
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sustained attention performance. Participants were assigned to either a high or low CI 

symptomology group based on total Convergence Insufficiency Symptom Survey Scores 

(CISS). Both groups performed the Connors CPT with -2.0 D lenses and under normal 

viewing conditions. While the high symptom group performed significantly worse on the 

CPT, -2.0 D lenses did not affect CPT performance in either group.  

More recently, Daniel and Kapoula (2019) had healthy participants perform a 

Stroop test under normal viewing conditions, a 16Δ base-out prism condition, and a -2.5 

D lens condition. The base-out prism condition stressed the accommodative-vergence 

response through increased image disparity cues. The Stroop test had three levels of 

difficulty requiring greater inhibition and cognitive processing at each successive level. 

The researchers also recorded participant eye movements. Results indicated that 

participants under the stress conditions exhibited a greater Stroop effect at the most 

difficult level of the Stroop task. Moreover, participants in the prism condition also 

exhibited greater saccadic drift compared to the lens and control conditions. Congruent 

with these results, Daniel and Kapoula (2017) found that college students with 

symptomatic CI exhibited a greater interference effect on the Stroop task than controls. 

In a more applied setting, Vera et al. (2016) explored changes in the 

accommodative response during a simulated drive. The researchers measured 

accommodative lag (a measure of the accommodative response) with an autorefractor 

before and after participants performed a 2 hr monotonous drive under fully rested 

conditions. The researchers also collected subjective measures of cognitive fatigue before 

and after the drive. After the drive, accommodative lag increased from pre to post drive, 
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with corresponding increases in fatigue ratings. These results indicate that reductions in 

the accommodative response likely accompany changes in operator cognitive states, 

specifically fatigue-related constructs.  

In combination, these studies indicate that accommodative-vergence stress may 

play an important role in modulating performance outcomes during tasks requiring 

sustained task engagement. Because automated systems rely on visual monitoring and 

jeopardize operator task engagement from the outset, operators experiencing 

accommodative-vergence stress may be more likely to experience task disengagement 

and negative performance outcomes. Evidence from neuroimaging and eye-tracking 

studies further support this premise.  

Physiological Correlates of Visual Processing and Task Engagement 

 Several cortical areas involved with visual processing are also involved with 

sustained attention and attentional control. Neuroimaging studies have shown that 

vigilance tasks activate diverse cortical networks, including mainly right-lateralized 

fronto-parietal regions (Coull et al., 1998; Paus et al., 1997), left prefrontal cortex (Kim 

et al., 2017), and the cerebellum (Buckner, 2013). Moreover, studies using transcranial 

direct current stimulation have shown that stimulating the left dorsolateral prefrontal 

cortex (McKinley et al., 2013; Nelson et al., 2014) or the right posterior parietal cortex 

(Li et al., 2015; Roe et al., 2016) can mitigate declines in vigilance performance. 

Coincidently, several of these areas, including the cerebellum, parietal cortex, and frontal 

cortex, also correspond to areas activated during the visual accommodative-vergence 

processes (Alkan et al., 2011; Daniel & Kapoula, 2019; Just & Varma, 2007; Richter et 
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al., 2004). Therefore, when accommodative-vergence stress is present, these cortical 

areas may be competing for cognitive resources with those responsible for upholding 

vigilance (Daniel & Kapoula, 2019; Just & Varma, 2007; Poltavski et al., 2012).  

Within the human factors and vision science literatures, there are parallel findings 

regarding visual perception, task engagement/vigilance, automation, and EEG 

oscillations. EEG has been used extensively to measure operator cognitive states (Berka 

et al., 2007; Bernhardt, 2018; Bernhardt, Poltavski, Petros, & Ferraro, 2019; Borghini et 

al., 2014; Caldwell et al., 2002; Gevins & Smith, 2007). Recently, our research team 

(Bernhardt, Poltavski, Petros, & Ferraro, 2019) demonstrated that a multivariate EEG 

marker of task engagement (Berka et al., 2007) was significantly lower for participants 

performing a flight simulation task under automation compared to manual control, 

indicating that changes in task engagement resulting from automation can be tracked at 

the level of cortical activation.  

The EEG alpha oscillation (8-13 Hz) has been shown to strongly relate to task 

disengagement and cognitive fatigue onset. A review by Borghini et al. (2014) examined 

EEG studies from the driving and aviation domains to ascertain specific EEG patterns 

associated with task engagement and the development of cognitive fatigue. Across these 

studies, the authors concluded that increases in alpha power spectral density (PSD) at 

posterior-midline brain regions (i.e., parietal-occipital) indicates the development of task 

disengagement and cognitive fatigue. Using a basic vigilance task paradigm, Kamzanova 

et al. (2014) found that alpha power, specifically in the lower frequency (8–11 Hz), 

significantly increased during a simulated air traffic control vigilance task and 
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corresponded with a decrease in vigilance performance (i.e., reduced number of signals 

detected and increased reaction times). However, these authors averaged alpha PSD 

across all scalp locations, not just posterior regions. Furthermore, the alpha oscillation 

has been also shown to relate to subjective task engagement. Fairclough and Venables 

(2006) had participants perform a generalized flight simulation task consisting of three 

subtasks (tracking, system monitoring, and resource management) for 80 min. Participant 

EEG and subjective task engagement ratings were recorded. Results indicated that during 

the last half of the task, alpha power negatively predicted task engagement. That is, the 

greater alpha power participants exhibited, the lower their self-reported task engagement. 

A line of studies in the applied sector have also demonstrated that changing the degree of 

system automation with a negative feedback loop based on operator alpha PSD can help 

uphold task performance and engagement (e.g., Freeman et al., 2004; Freeman et al., 

1999; Prinzel et al., 2003).  

Correspondingly, increases in posterior brain region alpha power also accompany 

reduced visual processing efficiency. For example, van Dijk et al. (2008) had participants 

determine if the level of gray contrast differed between two superimposed disks presented 

on a computer screen. The researchers recorded EEG alpha power prior to stimulus onset. 

Results indicated that increased alpha power in the parietal-occipital sulcus prior to the 

onset of stimuli corresponded to worse stimulus discrimination. A similar study 

conducted by Macdonald et al. (2011) found that pre-stimulus alpha power in the parieto-

occipital region was negatively associated with performance on a rapid visual stimulus 

detection task and participant ratings of attention. The authors concluded that alpha 
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power over this region may be a useful metric for monitoring operator task engagement. 

Other researchers (Hanslmayr et al., 2005; Romei et al., 2008; Willeford et al., 2013) 

have reported similar results using visual attention tasks. From these studies, researchers 

have suggested that increased alpha power in posterior brain regions (including the visual 

cortex) reflects “cortical idling” and reduced visual stimulus processing efficiency (Lange 

et al., 2013).  

Overall, remaining actively engaged in a task and maintaining visual processing 

efficiency likely share similar cortical areas and EEG activation patterns in the alpha 

bandwidth. That is, reduction in task engagement and visual processing are both 

accompanied by increases in posterior brain region alpha power. With the above 

reviewed literature, it is predicted that individuals experiencing accommodative-vergence 

stress and automated conditions would exhibit more posterior brain region alpha power, 

indicating reductions in both task engagement and visual processing efficiency with 

corresponding declines in performance. Given this connection, it is likely that 

accommodative-vergence stress and system automation act in a synergistic manner to 

modulate operator functional states. 

Eye-tracking and Task Engagement  

In addition to EEG, eye-tracking has been used to infer task engagement in 

participants while performing extended vigilance tasks. One metric derived from eye-

tracking devices that researchers have proposed to quantify task engagement is pupil 

diameter, due to the relationship between the locus coeruleus-norepinephrine system and 

task engagement (Gilzenrat et al., 2010; Murphy et al., 2014). Specifically, the release of 
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norepinephrine from the locus coeruleus modulates task engagement via changes in 

output modes, mainly phasic and tonic modes, with the latter associated with increased 

task engagement (Aston-Jones & Cohen, 2005). Hopstaken, van der Linden, Kompier, 

and Bakker (2016) used pupil diameter in conjunction with self-report task engagement 

and the P3 event related potential (ERP) to measure task engagement while participants 

performed a 2 hr long vigilance task. Additionally, the researchers introduced a 

motivation manipulation at the end of the task as a means to reengage participants. 

Results indicated that pupil diameter linearly decreased during the vigilance task. 

Moreover, this decrease in pupil diameter was accompanied by reduced ratings of task 

engagement, decreased performance (increased reaction times, decreased signal 

detection), and reduced P3 ERP amplitude. After the motivation manipulation, these 

patterns of responses were reversed, indicating that manipulations tied to task 

engagement show predictable physiological patterns. An earlier study by the same 

research team (Hostaken et al., 2015) found that stimulus-evoked pupil diameter 

decreased while participants performed a memory task for 2 hr. Together, these studies 

support the use of pupil diameter as a potential marker of task engagement.  

Other eye-tracking metrics have been shown to be sensitive to the vigilance 

decrement. For example, Bodala et al. (2016) found that saccade amplitude and velocity 

decreased while blink rate increased when participants exhibited the vigilance decrement 

during a target detection task. Increased mind wandering has also been shown to be 

associated with fewer, but longer fixations compared to when participants are actively 

engaged in viewing a scene (Krasich et al., 2018). Additionally, advanced modeling 
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techniques using eye-tracking metrics have been shown to classify an operator’s state of 

engagement. Marshall (2007) used machine learning algorithms to classify task 

engagement while participants performed a basic laboratory task or driving task. 

Specifically, linear discriminant function analysis and neural networks were used to 

classify the engagement state of participants with the use of seven continuously recorded 

eye-tracking metrics (e.g., blink rates, saccades, divergence). Marshall found that task 

conditions eliciting cognitive states could be classified using combinations of eye-

tracking metrics with classification rates ranging from 69% to 92%. 

 Eye-tracking parameters have also been shown to be changed in scenarios 

involving automation. Driving simulator studies have demonstrated that when more 

automation is used, drivers tend to shift their gaze away from road areas needed to 

maintain an engaged driving state (i.e., lane boundaries, speedometer; Carsten et al., 

2012; Merat et al., 2014; Navarro et al., 2016; Telpaz et al., 2015). In the aviation setting, 

researchers have found that pilots direct fewer gazes towards automated systems over 

time, leading to inadequate monitoring of the automated system and potential 

performance decrements (Sarter et al., 2007). 

 Overall, there is evidence to support that efficient visual processing and vigilance 

share similar cortical areas and neurophysiological responses. Specifically, reduced 

visual processing efficiency and reduced task engagement are both associated with 

increases in posterior brain region EEG alpha power. Furthermore, eye-tracking studies 

have also shown that changes in ocular parameters accompany alterations in task 

engagement over time. Not only do these studies support the link between visual 



24 

 

processing and task engagement, but they also imply that the effects of visual system 

stress may compromise an operator’s ability to remain actively engaged in a task. The 

theoretical justification for this claim relies on the distribution and utilization of 

information processing resources. 

Theoretical Justification  

 The literature reviewed above points to a link between the oculomotor system, 

task engagement, and vigilance performance. Specifically, oculomotor stress may hamper 

the ability for individuals to remain engaged in a task, resulting in diminished 

performance on tasks requiring sustained engagement. Moreover, because automated 

systems reduce task engagement from the outset, individuals under oculomotor stress 

while using automated systems are more likely to exhibit greater declines in task 

engagement and thus vigilance performance.  

One theory of the decline in vigilance performance is resource theory (Kahneman, 

1973). Resource theory holds that individuals have a limited supply of cognitive-

energetic resources to devote to performing a task at any given time (Wickens, 2002, 

2008). Cognitive resources refer to information-processing units or assets that are used to 

carry out a cognitive task (Kramer & Weber, 2000) and stem from early capacity theories 

of attention (Broadbent, 197; Kahneman, 1973). Resource theory relies on a supply-

demand relationship, that is, as a task demands more resources, the operator must supply 

those resources to meet demands. When the operator is unable to meet the resource 

demands, performance is predicted to decline. Advances in functional neuroimaging have 

made it possible to quantify cognitive resource deployment in real-time during the 
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performance of a task (Parasuraman, 2015). For example, fMRI studies have shown 

cortical activation in predominantly prefrontal regions of the brain as a result of tasks 

demanding more resources (i.e., as task difficulty increases; Parasuraman & Caggiano, 

2005; Vohn et al., 2007; Warm et al., 2008). In the case of vigilance, cognitive resources 

are depleted and not restored over time ultimately leading to a decline in vigilance 

performance (i.e., the vigilance decrement; Warm et al., 2008).  

The argument proposed here linking oculomotor stress, task engagement, 

automation, and vigilance is the following sequence: (1) monitoring an automated system 

reduces task engagement from the outset, (2) task engagement plays an integral part of 

maintaining vigilance performance and affects performance when operators must regain 

manual control of the system, and (3) oculomotor stress acts as a stressor and diverts 

cognitive resources to continuously resolve image blur/disparity cues, resulting in fewer 

resources available for processing task stimuli (i.e., remaining engaged). More broadly, 

oculomotor stress “siphons-off” cognitive resources that individuals would otherwise use 

to be actively engaged in a task, resulting in worse performance outcomes and reduced 

task engagement.  

The literature reviewed above indicates that automation does compromise task 

engagement (e.g., Freeman et al., 1999; Neubauer et al., 2012; Saxby et al., 2013). 

Moreover, the reviewed studies indicate that declines in task engagement are associated 

with subsequent declines in vigilance performance (e.g., Matthews et al., 2010). Point 3 

regarding the divergence of cognitive resource hinges on the resource theory of vigilance 
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and how stressors modulate cognitive resource availability. The following studies are 

used to illustrate this point.   

In a review of vigilance studies, Warm and colleagues (2008) articulated that 

maintaining vigilance is stressful and requires the utilization of cognitive resources. Not 

only does vigilance performance result in a loss of task engagement, but studies have also 

shown that individuals experience negative changes in mood, specifically, increases in 

distress over time (Matthews et al., 2002; Matthews et al., 2013). Moreover, gross motor 

activity tends to increase during vigilance performance, indicating an overt stress 

response (Galinsky et al., 1993). The resource account of vigilance holds that a decline in 

vigilance performance over time is the result of a depletion of cognitive resource that 

cannot be replenished during task performance (Warm et al., 2008). Several authors (e.g., 

Helton & Warm, 2008; Parasuraman, 2015; Smit et al., 2004; Warm et al., 2008) have 

argued this position and supported their reasoning using neuroimaging studies. Cerebral 

blood flow velocity has been suggested to be a measure of cognitive resource allocation 

(Parasuraman, 2015; Parasuraman & Caggiano, 2005). Thus, if reduced vigilance is due 

to a reduction in cognitive resources, a decline in a cerebral hemodynamic response is 

expected to occur.  

Indeed, several studies have shown that over the course of vigilance performance, 

cerebral blood flow velocity, particularly in the right hemisphere, slows with 

corresponding reductions in vigilance performance (Matthews et al., 2010; Schnittger et 

al., 1997; Shaw et al., 2009). One specific prediction made by resource theory regarding 

vigilance performance is that when individuals are given reliable cues as to when a 
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critical signal is to occur, the vigilance decrement should be erased and cerebral blood 

flow velocity should remain constant. Hitchcock et al. (2003) found support for this 

prediction. Participants performed a simulated air traffic control vigilance task with 

differing amounts of critical signal cue reliability (100%, 80%, 40%, and no cue). 

Participant cerebral blood flow velocity was monitored with transcranial Doppler 

sonography (TDC). Results indicated that performance remained high in the 100% cue 

reliability condition but declined with less reliable cues. Moreover, cerebral blood flow 

velocity mirrored the performance results, with blood flow velocities remaining stable for 

the 100% reliability condition and declining with less reliable cues. These results support 

the notion that actively performing vigilance tasks reduces cognitive resource 

availability. In a later study, Matthews et al. (2010) found that subjective task 

engagement was significantly correlated with cerebral blood flow velocity and vigilance 

performance, further supporting the link between task engagement and cognitive resource 

deployment.  

Substantial support for the hypothesized sequence comes from Matthews et al. 

(2017). Matthews and colleagues used structural equation modeling to test the causal 

paths between a stressor, task engagement, and vigilance performance. In Matthews et 

al.’s study, the stressor was the common cold. Participants either with or without a cold 

performed a letter discrimination vigilance task and rated their level of task engagement 

before and after the task. Results indicated that task engagement directly impacted 

vigilance performance and mediated the effect of the common cold on vigilance 

performance. The authors concluded that stressors, like the common cold, reduce 
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cognitive resource availability as evidenced by a reduction in task engagement. Thus, 

with the current line of thinking, task engagement would be predicted to be the lowest 

with the synergistic effects of automation and oculomotor stress.  

Together, these finding indicate a potential link between task engagement and 

cognitive resource availability. Moreover, the findings of Matthews and colleagues 

(2017) further suggest that stressors reduce cognitive resource availability for individuals 

to remain actively engaged in a task. Thus, under conditions of oculomotor stress, the 

availability of cognitive resources for active task engagement is reduced, resulting in 

declines in engagement and subsequent performance due to the continuous utilization of 

cognitive resources to resolve image blur and/or disparity cues (Daniel & Kapoula, 2019; 

Poltavski et al., 2012). Because automation reduces task engagement from the outset, the 

introduction of oculomotor stress may further compromise task engagement and 

performance.  

Preliminary Data 

 Recently, we have found evidence for the link between task engagement and 

oculomotor stress. In a preliminary study, Bernhardt and Poltavski (in press) examined 

the relationship between oculomotor discomfort, task engagement, cognitive fatigue, and 

task performance under different levels of task automation. Participants performed a 62 

min flight simulation task under one of three conditions: highly automated, manual 

control, or partially automated with a paced vigilance task. Participants reported 

oculomotor discomfort symptoms prior to completing the task with the Convergence 

Insufficiency Symptom Survey (CISS). Self-report measures of task engagement and 
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fatigue were collected pre and post simulation. EEG data were also recorded during the 

simulation. Three important results were found: (1) oculomotor discomfort symptoms 

were positively related to ratings of cognitive fatigue (i.e., participants with more 

symptoms tended to report more cognitive fatigue), (2) oculomotor discomfort was 

negatively related to self-reported task engagement, and (3) oculomotor discomfort was 

positively associated with fast-alpha power (10-13 Hz) in the parietal-occipital region 

during the final 10 min of the task for those completing simulations with automation, 

indicating less task engagement. Oculomotor symptoms were not related to task 

performance. This preliminary study provided initial evidence for the link between 

oculomotor stress and indicators of task engagement in automated environments. The 

current study seeks to build upon these initial results by including experimental controls, 

manipulations of oculomotor stress, and additional eye-tracking measures.  

The Current Study 

The overall objective of the current study was to determine the extent to which 

accommodative-vergence stress and system automation interact to affect sustained task 

engagement and cognitive performance. To accomplish this, accommodative-vergence 

stress was experimentally manipulated with -2.0 D lenses. Participants under no 

accommodative-vergence stress or accommodative-vergence stress with -2.0 D lenses 

were randomly assigned to complete a 40 min flight simulation task either with or 

without automation. Task engagement was measured with EEG, eye-tracking, and self-

report measures. Additionally, oculomotor measurements were taken prior to and after 
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the simulation to quantify changes in oculomotor responses over time. The current study 

tested four hypotheses:  

Hypothesis 1: Participants under accommodative-vergence stress will report 

significantly more severe symptoms of visual fatigue and exhibit reductions in 

accommodative and vergence responses than non-stressed participants.  

Hypothesis 2: Accommodative-vergence stress and automation will interact, such 

that participants under stress and using automation will be significantly less engaged in 

the task than the other conditions, as operationalized by increased parieto-occipital alpha 

power, reduced multivariate EEG engagement (see Dependent Variables section), smaller 

pupil diameter, higher ratings of cognitive fatigue, and lower ratings of task engagement.  

Hypothesis 3: Accommodative-vergence stress and automation will interact, such 

that participants under accommodative-vergence stress and using automation will exhibit 

the greatest decrement in simulator performance compared to the other conditions when 

required to regain manual control of the system.  

Hypothesis 4: The effects of accommodative-vergence stress on outcomes 

measures will be time dependent, such that over increased time on task, accommodative-

vergence stress will accrue and lead to greater visual fatigue, reduced engagement, 

increased fatigue, and worse task performance (i.e., the above effects are time-

dependent). 

Innovation 

 There is a dearth in the literature regarding how human-automation interactions 

are modulated by physiological variables, specifically the visual system. Currently, the 
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role of oculomotor health in affecting cognitive performance has only been investigated 

within the limited scope of ADHD etiology (e.g., Borsting et al., 2005; Hinkley et al., 

2016). Investigations in the human factors literature have also been limited in scope by 

examining only characteristics like operator illness, trust in automation, and time on task 

in relation to the effects automation has on operator engagement and performance 

outcomes (Balfe et al., 2018; Matthews et al., 2017; Saxby et al., 2013). This study is 

innovative in that it suggests a potential bottom up approach for improving human-

automation interactions. That is, by limiting accommodative-vergence stress, human 

operators may be able to maintain task engagement longer in working conditions 

involving automation and sustained attention. In understanding how oculomotor stress 

affects task engagement, potential interventions can be devised to improve safety 

outcomes.  
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CHAPTER II 

METHOD 

Participants  

 In total, 110 (41 women and 69 men) undergraduate students from the University 

of North Dakota participated in this study. After excluding participants for having ADHD 

(n = 1), not performing their assigned condition correctly (n = 12), and leaving before the 

study ended (n = 2), a final usable sample of 95 was obtained (37 men and 58 women). 

Participant ages ranged from 18 to 35 years (M = 19.31, SD = 2.07). A small proportion 

of individuals (n = 8) reported flight experience, with total flight hours ranging from 15-

78 hours (M = 44.74, SD = 22.22). All participants had 20/20 or corrected to 20/20 vision 

with no self-reported visual abnormalities including convergence insufficiency, 

accommodative insufficiency, partial blindness, amblyopia, or strabismus. Seventeen 

participants reported a history of concussion, with no incidences occurring within the past 

6 months. Moreover, no participants reported having a history of severe head trauma 

(excluding concussion), brain injury, cerebrovascular events, or seizures.  

Exclusionary criteria 

To reduce variability in outcome measures, individuals with the following 

conditions were excluded: current or past ADHD diagnosis (Tucha et al., 2017), current 

prescription stimulant use (Turner et al., 2014), tobacco users (Shoaib & Bizarro, 2005), 

lazy eye (amblyopia and/or strabismus), worse than 20/20 corrected
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vision, accommodative insufficiency, convergence insufficiency (Poltavski et al., 2012, 

2016), partial blindness, a concussion within the past six months (Brett et al., 2018), 

history of severe head trauma, brain injury, or seizures. These conditions were evaluated 

via a self-report demographics questionnaire. 

Design  

 This study followed a 2 (Stress: stress, non-stressed) x 2 (Automation: on, off) x 2 

(Time: pre, post) mixed factorial design, with time serving as the within-subjects factor. 

Continuous EEG measurements of task engagement, including parietal-occipital midline 

(POz) alpha power and a multivariate index of task engagement, were recorded while 

participants performed a 40 min flight simulation task either with or without automated 

features under accommodative-vergence stress or under normal viewing conditions. 

Moreover, continuous pupil diameter measurements supplemented EEG measures of task 

engagement. Measures of the accommodative and vergence responses were taken before 

and after the flight simulation task. Pre and post self-report measures included task 

engagement, cognitive fatigue, and visual fatigue. 

Materials 

Simulation and Automation Conditions  

The Multi-Attribute Task Battery-II (MATB; Santiago-Espada et al., 2011) was 

used as the experimental task for this study. MATB is a low-fidelity, computerized flight 

simulation task developed by the National Aeronautics and Space Administration 

(NASA) to mimic the types of cognitive tasks pilots typically perform during flight. The 

MATB interface is displayed in Figure 1. Three simultaneously occurring subtasks 
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included within the MATB were used for this study: system monitoring, tracking, and 

communications. These subtasks can be automated to varying degrees. The MATB 

requires a joystick, keyboard, speakers, and a mouse to complete. The MATB was chosen 

because the subtask automation parameters are customizable and it has been used in 

several human factors studies involving task engagement, automation, cognitive fatigue, 

and/or workload (e.g., Caldwell et al., 2004; Caldwell & Ramspott, 1998; Fairclough & 

Venables, 2006; Freeman et al., 1999; Fournier et al., 1999; Wilson et al., 2007). 

Additionally, the MATB has been rated as a face-valid simulation for aviation tasks 

(Caldwell & Ramspott, 1998) and was designed for non-aviators as well (Santiago-

Espada et al., 2011). The following describes the MATB subtasks.  

 

Figure 1. A screenshot of the Multi-Attribute Task Battery-II Display (Santiago-Espada 

et al., 2011). Subtasks are as follows: system monitoring (upper left), tracking (upper 

center), communications (lower left), resource management (lower center).  
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 System Monitoring. The system monitoring subtask (Figure 1 upper left) 

requires participants to monitor two dials and four gauges for state changes. A normal 

system state consists of a green left dial, colorless right dial, and center oscillating 

gauges. Any deviations from this normal state requires the participant to respond with the 

appropriate key on the keyboard to return the system to stasis. The F1, F2, F3, and F4 

keys on a standard keyboard spatially correspond to the four oscillating scales. The F5 

and F6 keys correspond to the left and right dials, respectively. Changes in system 

monitoring parameters are independent of one another. That is, a gauge and a dial can be 

in a non-normal status at the same time, and a response to one does not affect the other. 

Performance for this task is measured by throughput (number of hits divided by mean hit 

response time). Higher throughput indicates better performance.  

 Tracking. The tracking subtask (Figure 1 upper center) is a compensatory 

tracking task that requires participants to maintain a circular reticle in the center of a 

square fixed between the intersection of two crosshairs using a joystick. The MATB 

program introduces random reticle movement with the use of a 4:3 horizontal-to-vertical 

sine wave function at either a low, medium, or high rate according to manufacturer. The 

tracking task has two modes: auto and manual. When in the auto mode, the crosshairs and 

circular reticle are grayed out and an “auto” indicator light is illuminated, indicating that 

no response is needed. This subtask simulates the flight controls of an aircraft. The 

outcome measure is root-mean-square deviations from the center pixel. Higher root-

mean-square deviations indicate worse performance.  
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 Communications. The communications subtask (Figure 1 lower left) simulates 

pilots responding to air traffic control commands. During this subtask, participants hear 

several simulated air traffic control radio calls. Radio calls begin with a call sign. 

Participants are assigned the call sign “NASA-504” and only respond to radio calls 

hailing this call sign. The radio calls then instruct participants to tune one of four 

simulated radios to a specific six-digit frequency. For example, a radio call hailing the 

participant may state, “NASA five zero four, NASA five zero four, tune your COMM 

one radio to frequency one one eight point one two five.” The participant would then use 

the mouse, select the appropriate radio, and dial in the frequency by clicking on arrow 

tabs next to the radio frequency that control the radio frequency numbers. The purpose of 

this subtask is to emulate the working memory demands experienced by pilots. 

Performance for this task is measured by throughput (number of hits divided by mean 

response time to hits).  

 Simulation Parameters and Manipulations. The two levels of the automation 

independent variable were as follows. In the automation on condition, the tracking and 

communications tasks were fully automated. The system monitoring subtask was semi-

automated. For the tracking task, the “auto mode” was turned on. For the 

communications task, participants were told that all radio calls would be handled by an 

automated system that automatically changes the radio frequencies (in reality the 

frequencies do not change). The system monitoring task required participants to make 

one response every 4-7 min to maintain some level of task engagement (Saxby et al., 

2013). Participants were told that as long as the left green light is illuminated, they did 
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not need to make a response to other events. However, if the green light is off, this 

corresponds to an automation failure and they had press the appropriate key on the 

keyboard to return the system back to normal.  

In the automation off condition, participants were required to perform all three 

subtasks without automation. Subtask parameters for this condition were set to induce a 

moderate amount of cognitive load to simulate a normal working state. System 

monitoring events occurred 10 times per minute, the tracking task was set to a medium 

refresh rate, and the communications task required a response from the participant 5 

times per minute. This condition has been validated in prior work (Smith et al., 2001). 

Both conditions were 30 min long.  

Simulation Performance Evaluations. To standardize performance across the 

automation manipulation, participants completed a performance evaluation before and 

after their respective 30 min MATB simulations (i.e., with automation present or not 

present). Figure 2 depicts the stimulation sequence. These performance evaluations were 

5 min long and required participants to respond to a high cognitive load scenario different 

from their respective experimental conditions (van der Linden, 2011). Performance 

evaluations were identical across the automation conditions. All three subtasks were set 

to their highest difficulty to simulate a high workload emergency situation 

(communications task = 10 events/min, system monitoring = 20 events/min, tracking 

refresh rate = high; Smith et al., 2001). Participants in the automation condition had a 30 

s buffer to regain manual control of all the subtasks before performance was recorded. 

This procedure has been used by researchers to standardize performance across different 
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degrees of automation (Bernhardt, 2018; Navarro et al., 2016; Saxby et al., 2013) and to 

simulate automation to manual control transitions.  

 

 

 

 

 

 

 

 

Figure 2. The MATB testing sequence.  

MATB performance outcomes included metrics from the three subtasks during 

performance evaluations. For the systems monitoring and communications tasks, 

performance was quantified with throughput (correct hits divided by mean reaction time 

for correct hits). Tracking task performance was measured in root-mean-square 

deviations from the center pixel point of the crosshairs in pixels. These metrics have been 

used in previous studies using the MATB (e.g., Founier et al., 1999; Wilson et al., 2007).  

EEG Measurement  

EEG indices of task engagement were measured with the Advanced Brain 

Monitoring (ABM) B-Alert X-10 EEG system (ABM, 2009). This system incorporates a 

validated multivariate measure of task engagement (Berka et al., 2007) and has been 

rated as a highly ergonomic system (Hairston et al., 2014). The X-10 is a wireless, 

Bluetooth enabled EEG device consisting of nine electrodes placed according to the 

Automation Condition (Automation On vs. Off) Performance 

evaluation 

Performance 

evaluation 

5 min 5 min 30 min 

Start End 
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international 10-20 system (F3, Fz, F4, C3, Cz, C4, P3, POz, P4). The X-10 also 

incorporates algorithms to remove artifacts from the EEG signal, including eye blinks 

and electromyography (ABM 2009). For each 1 s epoch of data, power spectral density 

(PSD) is automatically computed by the software for four standard bandwidths using the 

Fast Fourier transformation after signal decontamination. Four bandwidths are outputted 

by the system: delta (1-2 Hz), theta (3-7 Hz), alpha, (8-13 Hz), and beta (13-29 Hz). Data 

are sampled at 256 Hz and filtered with 50, 60, 100, and 120 Hz notch filters as well as a 

Low Pass FIR filter during data collection prior to PSD computation.  

For the proposed study, relative alpha PSD at site POz (parietal occipital midline) 

was used as the primary measure of task engagement (Macdonald et al., 2011). Relative 

alpha power was computed by dividing the summed alpha PSD from 8-13 Hz by summed 

PSD from 1-40 Hz. Additionally, the X-10 system incorporates a multivariate metric of 

task engagement, which was used as a second measure of task engagement. This metric 

uses an algorithm developed by Berka et al. (2007) that utilizes absolute and relative PSD 

values from multiple PSD bandwidth ranges from differential sites FzPOz and CzPOz in 

a four class quadradic discriminant function to classify individuals as being in a sleep 

onset, distracted, low engaged, or high engaged state. The classification model is 

individualized to each participant during the performance of three neurocognitive 

benchmark tasks performed prior to recordings (3-choice vigilance task, visual 

psychomotor vigilance task, and auditory psychomotor vigilance task). During data 

acquisition, the individualized models produce posterior probabilities (ranging from 0.0-

1.0) of the participant being in either a sleep onset, distracted, low engaged, or high 
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engaged state. For this study, the high engagement posterior probability was used for ease 

of interpretation (i.e., higher probabilities indicate more engagement). This metric has 

been shown to correspond to reductions in vigilance performance (Berka et al., 2007) as 

well as differentiate manual from automated control simulations (Bernhardt et al., 2019).  

Eye-tracking 

Eye-tracking was recorded with the Tobii X2-60 eye tracker (60 Hz sampling 

rate). The X2-60 is a display-mounted eye-tracker that uses infrared light to capture eye 

movements as well as pupil diameter. For this study, the X2-60 was mounted directly 

below the computer monitor. Before recordings, the system is calibrated with a nine-point 

calibration routine requiring the participant to follow a red circle along nine points on the 

screen. Participants sit at a normal working distance (approximately 40-60 cm) from the 

screen for proper recordings. The system provides data quality codes in the data stream to 

indicate epochs in which both eyes are reliably detected. Only epochs in which both eyes 

can be reliably determined were used. Pupil diameter was used as a measure of task 

engagement, which has been shown to correspond to declines in vigilance performance 

(Hopstaken et al., 2016). Two-dimensional density plots were also generated using the X-

axis and Y-axis coordinates of the participants’ eyes to determine which subtasks they 

focused overt attention during performance evaluations.  

Accommodative and Convergence Measurements  

To measure changes in the accommodative and vergence responses, participants 

completed three standard optometric tests before and after the MATB. To measure 

accommodative amplitude, Donders’ pushup method was used. Donders’ pushup method 
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is commonly used to diagnose accommodative deficits (Burns et al., 2014). Participants 

binocularly viewed a target containing a row of letters that is brought closer to the eye 

using a Royal Air Force rule until sustained blur is reported by the participant. The target 

was then pulled away from the participant, and the participant reported when a clear 

image formed again. Blur and recovery distances were recorded. This procedure was 

repeated three times. The average break point was subtracted from the average recovery 

point to obtain a difference score.  

Convergence was measured with near-point of convergence (NPC) and near-point 

of fixation disparity (NPFD). NPC is measured in a similar way to accommodative 

amplitude using a RAF rule. Instead of letters, the stimulus is a vertical line. Participants 

viewed this target binocularly as it is moved closer to their eyes. Participants reported 

when diplopia occurred and this distance is recorded as the NPC. The researcher then 

pulled the target away from the participants and the point at which a fused image 

(recovery) occurred is reported. The procedure is repeated three times and the recovery-

break distance is taken. NPFD also measures convergence but has been shown to be more 

sensitive than NPC in identifying convergence deficits (Lederer et al., 2015). Participants 

wore polarized vectograph glasses while binocularly viewing a target placed on a card 

that was slid closer to the participant’s eyes using a Bernell Rule. The participant was 

instructed to focus on the letter E centered on the card and report when the vertical lines 

begin to move out of alignment, at which point the distance from the participant’s eyes 

was recorded. The target was then receded from the participant and the recovery point 
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was reported and recorded. This procedure was repeated three times and the average 

recovery-break distance was recorded.  

Self-report Dependent Measures 

In addition to the physiological dependent measures, self-report measures of task 

engagement, cognitive fatigue, and visual fatigue were collected.  

Short Stress State Questionnaire. The Short Stress State Questionnaire (SSSQ; 

Helton, 2004) is a shortened version of the commonly used Dundee Stress State 

Questionnaire (DSSQ; Matthews et al., 2002) and measures the constructs of task 

engagement, worry, and distress. For this study, only the task engagement scale was used 

as an outcome measure. The SSSQ includes 24-items, eight of which load onto the task 

engagement scale, that are administered pre and post task completion. The pre-task 

version has participants rate how they felt during the past 10 min. The post-task version 

has participants rate how they felt during the task. Both pre and post-task engagement 

scales have good internal reliability (α = .80 and .84, respectively; Helton & Näswall, 

2015). Three experimental items were added to the scale: happy, joyful, and bored. The 

first two items were used to combat potential affective bias in the scale. The last item was 

added to attempt to augment the task engagement scale. The SSSQ was selected because 

it is a shorted version of the DSSQ, which has been shown to negatively correlate with 

EEG alpha power (Fairclough & Venables, 2006). The SSSQ task engagement subscale 

has also been shown to be sensitive to automation manipulations (Bernhardt, 2018; 

Navarro et al., 2016; Saxby et al., 2013).  
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Samn-Perelli Fatigue Scale. The Samn-Perelli Fatigue Scale (Samn & Perelli, 

1982) was used to measure cognitive fatigue. A measure of cognitive fatigue was 

included because cognitive fatigue often accompanies a loss of task engagement 

(Matthews et al., 2002). This scale consists of a single item asking participants to rate 

their current level of fatigue from 1 (fully alert, wide awake) to 7 (completely exhausted, 

unable to function effectively). The Samn-Perelli Fatigue Scale correlates with flight 

hours for pilots performing long-haul flights (r = .52; Samn & Perelli, 1982) and 

corresponds with decreased vigilance performance (Petrilli et al., 2006). This scale was 

presented pre and post MATB.  

Visual Fatigue Symptom Scales. Visual fatigue symptoms were evaluated with 

the visual fatigue symptom scales developed by Sheedy et al. (2003) to determine the 

strength of the -2.0 D lens manipulation. These scales were administered pre and post 

MATB. Nine, 100 mm visual analogue scales correspond to one of nine symptoms: 

burning, ache, strain, irritation, tearing, blurred vision, double vision, dryness, and 

headache. Scale anchors are 0 (none) and 100 (severe) with the descriptors mild, modest, 

and bad located at each quartile. Principal components analysis of the scales revealed two 

distinct components: external symptoms and internal symptoms (Sheedy et al., 2003). 

External symptoms consist of burning, irritation, dryness, and tearing (α = .87). Internal 

symptoms consist of strain, headache, ache, double vision, and blur (α = .82).  

Potential Covariates 

Trait daytime sleepiness, existing symptoms of accommodative and convergence 

insufficiency, and age may have impacted findings. Individuals with higher tendencies 
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toward being sleepy during the day may be more prone to task disengagement (Johnson 

et al., 2001). Trait daytime sleepiness was measured with the Epworth Sleepiness Scale 

(ESS; Johns, 1992). The ESS consists of eight items asking participants to rate their 

chances of dozing off during everyday activities (e.g., riding in a car, reading a book) 

from 0 (would never doze) to 3 (high chance of dozing). The ESS has good internal (α = 

.88) and test-retest reliability (r = .82; Johns, 1992).  

The Convergence Insufficiency Symptom Survey (CISS; Borsting, Rouse, & De 

Land, 1999) was used to measure existing symptoms of convergence insufficiency. The 

CISS is a 15-item questionnaire that asks participants to rate how often they experience 

symptoms of convergence insufficiency on a scale of 0 (never) to 4 (always). The CISS 

has been shown to be both a valid and reliable tool for identifying convergence 

insufficiency (α = .96), with scores greater than or equal to 21 reliably identifying 

individuals with convergence insufficiency (Rouse et al., 2004).  

The Barkley Adult ADHD Rating Scale-IV (BAARS; Barkley, 2011) was used to 

evaluate existing symptoms of ADHD. The BAARS consists of 27 items that correspond 

to clinical symptoms of ADHD. These 27 items load on to four factors: inattention (9 

items), hyperactivity (5 items), impulsivity (4 items), and sluggish cognitive tempo (9 

items). Participants rate how often they experience symptoms on a scale from 1 (never or 

rarely) to 4 (very often). Items are summed to create a total score (α = .91, Barkley, 

2011). Higher scores indicate greater ADHD symptom severity. Age was also explored as 

a covariate since the crystalline lens of the eye tends to thicken with age resulting in 

presbyopia (Purves et al., 2012).  
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Summary of Measures 

Table 1 summarizes the dependent variables and covariates that were used this 

study along with their respective constructs and measurement times.  

Table 1 

Dependent Variables and Covariates 

Type Outcome Measure Construct Measurement Time 

Performance  

1. System monitoring throughput 

2. Tracking root-mean-square 

deviations 

3. Communications throughput 

1-3. Cognitive 

performance   Pre/post 50 min 

MATB condition 

    

EEG 

1. POz alpha relative power 

spectral density 

2. Multivariate task engagement 

metric 

1-2. Task 

engagement  Continuous during 

MATB 

    

Eye-tracking 1. Pupil diameter 
1. Task engagement Continuous during 

MATB  

    

Self-report 

1. Short Stress State 

Questionnaire 

2. Samn-Perelli Fatigue Scale 

3. Visual fatigue symptom scales 

1. Task engagement  

2. Cognitive fatigue 

3. Visual fatigue 

symptoms 

Pre/post MATB 

    

Oculomotor 

1. Accommodative recovery-

break distance (Donders’ 

method) 

2. Convergence (NPC, NPFD) 

recovery-break distances 

1. Accommodative 

functioning 

2. Convergence 

functioning 

Pre/post MATB 

    

Covariates 

1. CISS total scores 

2.ESS Total Scores 

3. BAARS total scores 

4. Age 

1. Existing symptoms 

of AI & CI 

2. Trait daytime 

sleepiness 

3. Symptoms of 

ADHD 

Pre MATB 
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Procedure 

 Participants came to the laboratory for one visit and were instructed to not 

consume caffeine (Olson et al., 2010) 2 hr or alcohol (Jongen et al., 2016) 8 hr prior to 

their visits as these substances have been shown to affect vigilance. After providing 

informed consent, participants completed a demographics questionnaire to verify 

eligibility criteria. Next, baseline measures of accommodation (Donders’ pushup method) 

and convergence (NPC and NPFD) were taken. After these measures, the research 

assistant administered the ESS, CISS, BAARS, and pre-task versions of the Samn-Perelli 

Fatigue Scale, SSSQ, and visual fatigue symptom scales.  

 The research assistant then applied the B-Alert X-10 EEG system to the 

participant’s scalp and checked electrode impedances. Any electrode impedances 

exceeding 80 kΩ were adjusted as per the manufacture’s recommendation (ABM, 2009). 

After EEG application, participants performed three neurocognitive benchmark tasks to 

individualize the discriminant function coefficients used in ABM’s multivariate EEG 

engagement metric. These tasks include a three-choice vigilance task, visual psychomotor 

vigilance task, and auditory psychomotor vigilance task. The three tasks are included in 

the B-Alert Live EEG acquisition software.  

 Next, participants watched a brief instructional video (provided by NASA) on 

how to complete the MATB. After the video, the Tobii X2-60 was calibrated and 

participants completed a 15 min MATB practice session facilitated by a research 

assistant. During the practice session, participants practiced the subtasks individually for 

3 min each. During the last 6 min of the practice session, participants performed all three 
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subtasks to practice the performance evaluations. During both the MATB instructional 

video and the practice session, EEG and eye tracking data were collected to obtain a 

comprehensive baseline for EEG and pupil diameter values. This baseline was 

recommended by Fishel et al. (2007) in order to obtain a large enough sample of a 

physiological response to avoid bias in detecting changes in cognitive states. After the 

MATB practice session, the Tobii X2-60 eye-tracker was calibrated again prior to the 

testing session.  

 Before completing their MATB testing session, participants were randomly 

assigned to one of four conditions: Automation off without stress (n = 24), automation off 

with stress (n = 23), automation on without stress (n = 25), or automation on with stress 

(n = 23). In the stressed condition, participants wore -2.0 D lenses to induce 

accommodative-vergence stress. This manipulation has been used to induce 

accommodative-vergence stress in previous studies (e.g., Daniel & Kapoula, 2019; 

Poltavski et al., 2012; Poltavski et al., 2016). In the non-stressed condition, participants 

completed the MATB under normal viewing conditions. Participants with previous flight 

experience were approximately evenly distributed among the experimental conditions 

(Automation off without stress = 1, automation off with stress = 2, automation on without 

stress = 3, automation on with stress = 2).  

 Once participants were assigned to their experimental conditions, the research 

assistant briefed the participant on their assigned automation condition and informed the 

subject that auditory cues will direct them when to perform the MATB subtasks. After 

this briefing, the 40 min MATB testing session commenced following a performance 
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evaluation (5 min), automation condition (30 min), performance evaluation (5 min) 

sequence (see Figure 2). EEG and eye-tracking data were recorded continuously during 

the MATB with markers inputted into the data streams to section off data for analysis 

(i.e., performance evaluations separate from the 30 min automation conditions). Once 

participants completed the testing session, post accommodative and vergence 

measurements were taken with the -2.0 D lenses removed if applicable. Finally, 

participants completed post-task versions of the SSSQ, Samn-Perelli Fatigue Scale, and 

visual fatigue symptom scales.  

Data Reduction and Analysis 

 EEG and eye-tracking data were sectioned off during testing using markers 

inputted by a research assistant at the following times: at the commencement of the 

MATB testing session, after the first performance evaluation, every 5 min during the 

assigned automation condition yielding six intervals, before the last performance 

evaluation, and after the last MATB performance evaluation. EEG and eye-tracking were 

aggregated across segments using 5% trimmed means to reduce the effects of extreme 

values for the two performance evaluations and each 5 min interval between performance 

evaluations. Only epochs of EEG and eye-tracking data for which signal quality was 

deemed acceptable (absence of artifacts as indicated by B-Alert EEG software or 

indications of both eyes reliably detected by Tobii Studio eye-tracking software) were 

used in analyses. Each epoch of EEG and eye-tracking data during the testing session was 

baseline adjusted using Z-scores, with means and standard deviations for each participant 

derived from their baseline recordings. Specifically, for each participant, the mean value 
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from the baseline recording was subtracted from each value in the testing session and 

divided by the baseline session standard deviation. Negative values indicate decreases 

relative to baseline and positive values indicate increases from baseline. Custom made 

batch processing scripts programmed using R (R Core Team, 2019) efficiently 

aggregated the data.  

Bivariate correlations between covariate measures and dependent variables were 

computed. Covariates that significantly correlated with outcome measures were entered 

in the final model. Four, 2 (Stress: non-stressed, stressed) x 2 (Automation: on, off) 

between-subjects ANOVAs were used to ensure group equality on covariate measures 

(ESS, age, CISS, BAARS).  

 R (R Core Team, 2019) and SPSS (IBM Corp, 2015) were used to analyze data. 

Research hypotheses were addressed with three, 2 (Stress: non-stressed, stressed) x 2 

(Automation: on, off) x 2 (Time: pre, post) doubly multivariate mixed analysis of 

covariances (MANCOVAs). Time served as the within-subjects factor. If covariates did 

not significantly correlate with outcome measures or contribute significantly to model fit, 

multivariate analysis of variance (MANOVA) was conducted. Potential covariates 

included trait daytime sleepiness (ESS total score), self-report symptoms of ADHD (total 

BAARS score), symptoms of convergence insufficiency (total CISS score), and age. The 

doubly multivariate nature of these tests determined differences in means on linear 

combinations of dependent variables representing underlying dimensions between the 

four groups, as well as any effect of time, while removing the variance associated with 

potential covariates for between-subjects factors.  
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 Statistical assumptions for MANCOVA/MANOVA were assessed prior to 

computing main analyses according to the procedure advocated by Tabachnick and Fidell 

(2007). Univariate outliers were identified using a critical Z-score cutoff of 3.29 (α = 

.001). Multivariate outliers were identified using Mahalanobis distances with a cutoff 

equal to a χ2 value with degrees of freedom equal to the number of dependent variables 

using the mahalanobis_distance() function from the rstatix package (Kassambra, 2020). 

Univariate and multivariate normality were assessed using Shapiro-Wilk and Henze-

Zikkler tests, respectively, using the mvn() function in the MVN package (Korkmaz et al., 

2014). Bartlett’s test was used to assess if the correlations between dependent variables 

were sufficient to warrant multivariate grouping. Finally, Box’s test was used to assess 

homogeneity of covariance matrices. Bartlett’s and Box’s tests were assessed within the 

SPSS MANOVA function. 

 Three MACOVA/MANOVAs were computed on the prior premise that certain 

groups of dependent variables would correlate more so than others and represent systems 

of variables (Huberty & Morris, 1989). Field et al. (2012) recommended entering 

dependent variables according to theoretical reasoning rather than simultaneously into 

one multivariate analysis. One MACOVA/MANOVA with accommodation, convergence 

measures (NPC, NPFD), and visual fatigue symptoms as dependent variables addressed 

hypothesis 1.  

One MANCOVA/MAOVA with EEG POz alpha power, the multivariate EEG 

engagement index, pupil diameter, SSSQ engagement scores, and Samn-Perelli Fatigue 

Scale scores entered as dependent variables addressed hypothesis 2. EEG data from the 
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first and the last 5 min of the assigned automation condition were used for this analysis as 

we have previously shown the effects of oculomotor discomfort on EEG measures to be 

present during the latter portions of a simulation (Bernhardt & Poltavski, in press).  

One MANCOVA/MANOVA with MATB communications task throughput, 

system monitoring task throughput, and tracking task root-mean-square deviations 

addressed hypothesis 3. The general hypothesis regarding the effects of time (hypothesis 

4) was addressed in all three multivariate analyses.  

 Significant multivariate analyses were followed by both univariate Roy-

Bargmann stepdown tests for the individual dependent variables and descriptive 

discriminant analysis (DDA; Barton et al., 2016) as recommended by Field et al. (2012) 

and Tabachnick and Fidell (2007). Univariate tests provided information on which groups 

differ on single dependent variable for each effect, while DDA provided information on 

how groups differ based on a linear combination of related dependent variables that 

represent underlying dimensions. DDA accounts for the multivariate nature of the 

omnibus analysis and is considered more appropriate than univariate ANOVAs (Barton et 

al., 2016). Univariate step-down tests were calculated using the SPSS STEPDOWN 

command within the MANOVA function. DDAs were calculated using the candisc() 

function from the candisc package in R (Friendly & Fox, 2017). If a significant 

multivariate effect was a between-subjects factor, outcome measures were averaged 

across the time points and these averages were used as predictors in the DDA. DDAs for 

the main effect of time were not computed as the correlations between timepoints cannot 

be accounted for in current R and SPSS syntax (Lix & Sajobi, 2010). For any interactions 
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involving time, DDA was computed at each level of time with the between-subjects 

factors as dependent variables (Barton et al., 2016; de Coster et al., 2005). 

Three supplementary multilevel linear models were computed on the outcome 

measures of EEG POz alpha power, the multivariate EEG index, and pupil diameter. 

Time served as a continuous predictor. These models allowed for a more finite analysis 

of continuous physiological measures over time and clarified hypothesis 4. Multilevel 

linear models are preferred over the standard mixed ANOVA approach because a 

covariance structure between repeated (3+ times) measurement times can be specified 

(Field et al., 2012). An autoregressive 1 (AR1) covariance structure was predicted to fit 

the EEG and eye-tracking measures over time. Moreover, random slopes and intercepts 

can be included in the model as well to better account for individual trajectories. Models 

were specified in a step-up fashion and used maximum likelihood parameter estimation to 

facilitate model comparisons (West et al., 2015). Models were computed using the lme() 

function from the nlme package (Pinheiro et al., 2019) in R. 

Statistical significance for all analyses was set at α < .05 unless corrected to 

protect from Type I errors during follow-up analyses. In cases with multiple follow-up 

tests, the Bonferroni correction was used.  
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CHAPTER III 

RESULTS 

Preliminary Analyses 

Covariates: ESS, CISS, BAARS, Age  

Descriptive statistics for the ESS, CISS, BAARS, and age are displayed in Table 

2. Four 2 (Automation: on, off) x 2 (Stress: non-stressed, stressed) factorial ANOVAs 

were used to evaluate group equivalence on the five covariate measures. No main effects 

of Automation or Stress were significant, nor was the interaction between automation and 

stress (all p-values > .05), indicating that the four groups were roughly equivalent on 

potential covariate measures. Significant correlations were found between three covariate 

measures. ESS and CISS scores were positively correlated, r(93) = 0.39, p < .001. 

Furthermore, ESS and BARRS scores, r(93) = 0.20, p = .048, and CISS and BAARS 

scores, r(93) = 0.37, p < .001, significantly correlated. That is, participants reporting 

higher symptoms of CI generally reported greater daytime sleepiness and more severe 

symptoms of ADHD. Similarly, higher ADHD symptom scores corresponded to 

generally greater daytime sleepiness. Age did not significantly correlate with any of the 

other covariates.  
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Table 2  

Descriptive Statistics for Covariate Measures by Automation and Oculomotor Stress 

 Automation 

 Off  On 

 Stressed  

(n = 23) 

 Non-stressed 

(n = 24) 

 Stressed  

(n = 23) 

 Non-stressed  

(n = 25) 

 M SD  M SD  M SD  M SD 

ESS 5.96 3.39  6.33 2.26  7.33 3.09  7.80 3.63 

CISS 14.35 8.78  15.51 10.27  11.03 6.22  15.85 8.24 

BAARS 25.22 4.22  24.30 3.64  24.02 3.04  25.52 3.62 

Age 18.91 0.85  19.63 2.04  19.22 1.28  19.92 3.45 

 

Main Analyses 

MATB Performance 

 Three participants were excluded from MATB performance analyses for not 

performing the two performance evaluations correctly. Dependent variables included 

communications task throughput, system monitoring task throughput, and tracking task 

root-mean-square deviations from the center. Descriptive statistics for these variables are 

displayed in Table A1 in Appendix A. No univariate outliers using a Z-score cutoff of ± 

3.26 (α = .001) were detected. Likewise, no multivariate outliers were detected using a 

Mahalanobis distance cutoff of 16.27 (α = .001). Within each cell of the design, the 

univariate and multivariate distributions were approximately normal (all p-values > .05) 

after all variables were natural log transformed to correct for positive skewness. Finally, 

Box’s test was not significant at the α = .001 level, indicating that the assumption of 

homogeneity of covariances was tenable (p = .005), and Bartlett’s test was significant (p 

< .001), indicating sufficient correlation between the variables for a multivariate analysis.  
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 Table 3 displays correlations between the covariates and MATB dependent 

variables as well as and the intercorrelations between the MATB dependent variables. 

None of the covariate measures were significantly related to the MATB measures; 

therefore, these covariates were omitted from the multivariate analysis. Additionally, 

moderate correlations were found between the different MATB subtask performance 

measures, indicating the absence of collinearity.  

Table 3 

Correlations between Covariate Measures and MATB Performance 

 ESS CISS BAARS Age 1. 2. 3. 4. 5. 6. 

1. COMM E1  -.03 -.01 .08 -.11 -      

2. COMM E2  -.06 -.03 .14 -.02 .74** -     

3. Tracking E1  -.03  .13 .03 -.05 -.15 -.16 -    

4. Tracking E2  .01  .10 .10 -.01 -.15 -.17 .82** -   

5. SYSM E1 -.13 -.15 -.07 -.03  .26*  .22* -.50** -.57** -  

6. SYSM E2 -.11 -.03 .08 -.06 .16 .19 -.34** -.47** .74** - 

Note. E1 = first performance evaluation, E2 = second performance evaluation. 

**p < .001, *p < .05. 

 Results of the 2 x 2 x 2 doubly multivariate MANOVA are displayed in Table 4. 

The main effect of Time and the Stress by Time interaction were significant. These 

effects were qualified by a significant three-way interaction between Automation, Stress, 

and Time. Roy-Bargman stepdown F-tests for the three-way interaction revealed a 

significant effect for communications task throughput, F(1, 86) = 7.43, p = .008, ηp
2 = 

.09. Initial analysis of the main effect of Time revealed that throughput generally 

increased from pre to post test, indicating a slight learning effect with the MATB. Within 

each level of time and stress, post-hoc comparisons revealed that in the automation on 

condition, participants in the non-stressed condition exhibited an increase in throughput, 
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while those in the stressed condition did not. However, in the automation off condition, 

this pattern was reversed. Thus, in the automated condition, the learning effect for 

participants under oculomotor stress was diminished compared to participants not under 

stress.  

DDA was then carried out for the three-way interaction at each level of Time 

using the three MATB metrics as predictors. Coefficients and centroids for the two 

discriminant functions are displayed in Table B1 in Appendix B. Figure 3 summarizes the 

results of the DDA. During the first performance evaluation, reduced communications 

task throughput, increased tracking RMSD, and increased system monitoring throughput 

characterized the stressed group in the automation on condition. This pattern was 

reversed in the automation off condition. However, during the second performance 

evaluation, participants in the stressed condition were characterized by reduced 

communications and system task throughput but better tracking task performance (note 

that lower RMSD values indicate better performance). This effect during the second 

performance evaluation appears to not depend on whether participants performed the 

MATB with or without automation. Overall, the large, negative contribution of tracking 

task RMSD to the discriminant variate during the second performance evaluation 

potentially indicates the propensity for participants under oculomotor stress to improve 

tracking task performance at the expense of speed and accuracy on the communications 

and system monitoring task after the accumulation of oculomotor stress.  
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Table 4 

Multivariate Effects for MATB Performance 

 V F p ηp
2 

Time .57 37.61 < .001 .57 

Automation .003 0.11 .954 .003 

Stress .07 2.01 .118 .07 

Automation x Stress .03 0.84 .474 .03 

Stress x Time .09 2.89 .040 .09 

Automation x Time .05 1.40 .250 .05 

Automation x Stress x Time .09 2.77 .046 .09 

Note. Degrees of freedom = 3, 86. 

 

 

 

 

 

 

 

 

 

Figure 3. Descriptive Discriminant Analysis Discriminant Scores and Standardized     

Structure Coefficients for the Stress x Automation x Time Interactive Effect on MATB 

Performance. The first performance evaluation is on the left and the second on the right. 

Boxplots indicate group centroid distributions and the arrow diagrams display the 

standardized structure coefficients. COMM = Communications task throughput, TRACK 

= Tracking task root-mean-square deviations, SYSM = System monitoring throughput.  
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Visual Measures 

 Visual measures included accommodation, NPC, NPFD, and self-report visual 

fatigue symptoms. Initial univariate analysis of these variables revealed significant 

deviations from normality. Square root transformations for these variables were used to 

achieve approximately normal distributions within each cell of the design. Descriptive 

statistics for these variables are displayed in Table A2 in Appendix A. NPC and NPFD 

were highly correlated (r = .71) and measure the same construct. Therefore, only NPFD 

was used in the analysis to avoid redundancy. One multivariate outlier was identified 

using a Mahalanobis distance cutoff of 16.27 (α = .001). Inspection of this case revealed 

that the participant did not understand the directions for the NPFD test. This observation 

was removed from analyses. Finally, Box’s test was not significant (p = .001) and 

Bartlett’s test was significant (p < .001).  

Correlations between the covariates and visual dependent variables as well as the 

intercorrelations between the MATB dependent variables are displayed in Table 5. CISS 

scores positively correlated with visual fatigue scores both before and after the MATB. 

BAARS scores also correlated with visual fatigue symptoms but only before the MATB. 

Intercorrelations between the ocular measures were moderate. 
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Table 5 

Correlations between Covariate Measures and Visual Measures 

 ESS CISS BAARS Age 1. 2. 3. 4. 5. 6. 

1. AA T1  .04 -.15 -.06 .03 -      
2. AA T2  .04 -.07 .02 .09 .55*** -     
3. NPFD T1  .01 -.03 -.05 -.09 .46*** .50*** -    
4. NPFD T2 -.08 -.05 .12 .03 .25* .34*** .62*** -   
5. VFS T1 -.10 .40*** .32** .06 -.03 .11 .07 .06 -  
6. VFS T2 -.01 .29** .13 -.04 -.21* -.07 -.07 -.14 .51*** - 

Note. T1 = Time 1 (pre MATB), T2 = Time 2 (post MATB) 

***p < .001, **p < .01, *p < .05  

Initially, CISS scores and BAARS scores were entered into the MANCOVA 

model as covariates. However, the addition of these covariates did not affect the 

statistical significance of any of the tests. Therefore, the covariates were omitted. Table 6 

displays the doubly multivariate MANOVA results for the visual measures. Time and 

Automation separately affected the linear composite of the visual measures. For the main 

effect of Time, Roy-Bargman stepdown F-tests showed that subjective visual fatigue 

symptoms significantly increased from pre (M = 4.60, SD = 3.75) to post MATB (M = 

9.75, SD = 5.23), F(1, 90) = 114.01, p < .001, ηp
2 = .56. No significant stepdown F-tests 

were found for the main effect of Automation. Thus, this effect was not explored further 

at the univariate level.  
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Table 6 

Multivariate Effects for Visual Measures 

 

 

 

 

 

Note. Degrees of freedom = 3, 88. 

 

DDA for the main effect of Automation revealed that NPFD recovery-break 

distance was the most important variable for discriminating the automation on and 

automaton off conditions. Group centroids for the automation off and automation on 

groups derived from the discriminant variate were -0.33 and .33, respectively. Table B2 

in Appendix B numerically displays the discriminant coefficients. Figure 4 below 

pictorially displays the group centroids and associated standardized structure coefficients. 

Overall, accommodation made little contribution to the multivariate composite. Greater 

NPFD recovery-break and less severe visual fatigue scores characterized the automation 

condition.  

 V F p ηp
2 

Time .56 37.53 < .001 .56 

Automation .10 3.43 .020 .10 

Stress .04 1.34 .265 .04 

Automation x Stress .02 0.70 .555 .02 

Stress x Time .02 0.73 .539 .02 

Automation x Time .03 0.80 .499 .03 

Automation x Stress x Time .08 2.70 .050 .08 
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Figure 4. Descriptive discriminant analysis for the main effect of automation on visual 

measures. NPFD = Near-Point Fixation Disparity. VFS = Visual Fatigue Symptoms. 

Task Engagement 

 The task engagement system of variables consisted of Sman-Perelli Fatigue Scale 

ratings, SSSQ Engagement scores, pupil diameter, composite EEG engagement metric, 

and POz alpha PSD. The experimental item (bored) added to the SSSQ was first analyzed 

to determine its effect on scale reliability. With the new item included, reliability of the 

pre (Chronbach’s α = .79) and post scales (Chronbach’s α = .81) were similar to if the 

item was not included (α = .79 and .83, respectively). This item also had the lowest 

correlation with the composite score at .44 (pre) and .36 (post). Moreover, inclusion of 

the item did not affect any of the following analyses. Therefore, the scale was computed 

an analyzed as originally published by Helton (2004). 
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Initial analysis for univariate outliers revealed one participant had a Z-score 

exceeding ± 3.29 for POz alpha PSD. Analysis of the participant’s EEG data quality 

revealed excessive artifacts in the POz channel that were not removed by the artifact 

detection algorithm. Therefore, this participant was removed the analysis. No 

multivariate outliers were identified using Mahalanobis distances with a cutoff value of 

20.51 (α = .001). Multivariate normality for all cells of the design was met except for one 

(automation off and non-stressed at 25-30 minute interval). Because only one of these 

distributions was not multivariate normal, the analysis proceeded without transformation 

of variables. Box’s test was also not significant (p = .001) and Bartlett’s test was 

significant (p < .001).  

Bivariate correlations between the possible covariate measures and engagement 

outcomes at each time point are displayed in Table 7. Notably, the CISS negatively 

correlated with SSSQ engagement at both time points and positively correlated with 

Samn-Perelli fatigue scale scores at both time points. That is, participants reporting more 

severe CI symptoms tended to report being less engaged and more fatigued overall. 

Moreover, CISS scores positively correlated with pupil diameter during the last 5 min of 

the MATB. Only one significant correlation between EEG and pupil diameter was found, 

with the EEG engagement metric positively correlating with pupil diameter during the 

last 5 min of the MATB condition. In general, correlations between outcome measures 

were low.  
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As with the visual measures, the inclusion of CISS and BAARS scores did not 

change the results of significance tests. Therefore, the covariates were omitted from the 

final model. MANOVA results for the engagement system of variables are displayed in 

Table 8. Significant main effects for Time, Automation, and Stress were found. Follow-

up Roy-Bargman stepdown univariate ANOVAs for the main effect of Time revealed that 

POz alpha PSD [F(1, 81) = 15.11, p < .001, ηp
2 = .16] and Samn-Perelli Fatigue Scale 

scores [F(1, 77) = 11.63, p = .001, ηp
2 = .33] significantly increased from Time 1 to Time 

2 (note that higher Samn-Perelli Fatigue Scale scores indicate greater fatigue). 

Additionally, pupil diameter significantly decreased from Time 1 to Time 2, F(1, 78) = 

28.24, p < .001, ηp
2 = .33.   

 For the main effect of Automation, POz alpha PSD was significantly higher when 

automation was on compared to off, F(1, 81) = 8.95, p = .004, ηp
2 = .10. Finally, for the 

main effect of Stress, pupil diameter was significantly smaller for the stressed group 

compared to the non-stressed group, F(1, 78) = 7.55, p = .007, ηp
2 = .07.  

Table 8 

Multivariate Effects for Engagement Measures 

 V F p ηp
2 

Time .48 14.44 < .001 .48 

Automation .16 2.84 .021 .16 

Stress .14 2.59 .032 .14 

Automation x Stress .04 0.59 .711 .04 

Stress x Time .03 0.42 .836 .03 

Automation x Time .03 0.51 .768 .03 

Automation x Stress x Time .01 0.17 .974 .01 

Note. Degrees of freedom = 5, 77.  
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 DDA was used to clarify the multivariate main effects of Automation and Stress. 

Figure 5 displays the distribution of discriminant scores and associated standardized 

structure coefficients (see Table A3 in Appendix A for a table of values). For the main 

effect of Stress, centroids for the non-stressed and stressed groups were -0.37 and 0.43, 

respectively. Pupil diameter and the EEG engagement metric were the most important for 

differentiating the groups. Less alpha PSD, smaller pupil diameter, greater EEG 

engagement, greater subjective engagement, and greater fatigue tended to characterize the 

stressed group. For the main effect of Automation, the standardized coefficients showed 

that POz alpha PSD contributed the most to discriminating the automation on group from 

the automation off group. Centroids for the automation on and automation off groups 

were -0.42 and 0.41, respectively. Overall, more alpha PSD, less EEG engagement, 

smaller pupil diameter, less subjective engagement, and less fatigue characterized the 

automation on group. 
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Figure 5. Descriptive discriminant analysis for the main effects of Stress (top) and 

Automation (bottom) on task engagement measures. Boxplots of discriminant scores are 

displayed on the left. Standardized structure coefficients for the discriminant variate are 

opposite right of the boxplots.  

Multilevel Linear Modeling 

Three multilevel linear models were computed for alpha PSD, the EEG 

multivariate engagement metric, and pupil diameter. Models were specified in a step-up 

fashion in the following way adding to each successive step: null model, random 

intercept for subjects, effect of Time, random slope for Time, effect of Automation, Time 

by Automation interaction, effect of Stress, Stress by Time interaction, Stress by 

Automation interaction, Time by Automation by Stress interaction. Log likelihood tests 

were used to determine whether each successive step significantly improved model fit. In 
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all models, the use of an AR1 covariance matrix and covariates did not significantly 

improve model fit.  

POz Alpha PSD 

  Initial modeling showed that the addition of a random intercept for each subject 

significantly improved model fit, χ2(3) = 275.52, p < .001. Moreover, the addition of 

Time, χ2(4) = 24.05, p < .001, and the random slope for Time, χ2(6) = 66.82, p < .001, 

significantly improved model fit. The main effect of Automation, χ2(7) = 8.94, p = .003, 

and the Automation by Time interaction, χ2(8) = 4.00, p = .047, also improved model fit. 

No effects for Stress were found. Figure 6 compares the slopes of the automation on and 

automation off conditions over the course of the MATB. Participants in the automation 

on condition (b = .06, SE = .02, 95% CI = [0.02, 0.10]) exhibited a steeper increase in 

POz alpha PSD over time compared to participants in the automation off condition (b = 

0.01, SE = .01, 95% CI = [-0.001, 0.04]).  
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Figure 6. The interactive effect of Automation condition and Time on POz alpha PSD. 

Shaded regions indicate 95% confidence intervals and points indicate raw observations. 

EEG Engagement Metric 

 The inclusion of random intercepts for each subject significantly improved model 

fit for the EEG engagement metric, χ2(3) = 344.96, p < .001. The addition of Time as a 

predictor, χ2(4) = 16.50, p < .001, and the random slope for Time, χ2(6) = 31.95, p < .001, 

also significantly improved model fit. Finally, the main effect of Automation was 

significant, χ2(7) = 15.42, p < .001. The slope for the effect of Time was negative (b = -

0.01, SE = .004, p = .002, 95% CI = [-0.02, -0.01]), indicating that engagement tended to 



69 

 

decrease during the MATB simulation. Furthermore, examination of the group means for 

the main effect of automation showed that the automation on group (M = -0.18, SD = 

0.24) exhibited significantly less engagement than the automation off group (M = -0.03, 

SD = 0.20), mirroring the results of the multivariate analysis. No effects of Stress nor any 

interactions were significant. 

Pupil Diameter 

 The model for pupil diameter was significantly improved with the addition of a 

random intercept for each participant, χ2(3) = 436.88, p < .001. The effect of Time, χ2(4) 

= 84.68, p < .001, and the random slope for Time, χ2(6) = 81.58, p < .001 also improved 

model fit. Finally, the main effect Automation, χ2(7) = 4.73, p = .030, and the main effect 

of Stress, χ2(8) = 6.94, p = .008, significantly improved model fit. The overall negative 

slope for the effect of Time indicated that pupil diameter tended to decrease during the 

MATB simulation, b = -0.08, SE = .01, p < .001, 95% CI = [-0.11, -0.06]. Pupil diameter 

was smaller in the automation on group (M = -1.01, SD = 0.79) compared to the 

automation off group (M = -0.69, SD = 0.55). Additionally, pupil diameter tended to be 

smaller in the stressed (M = -1.03, SD = 0.69) compared to the non-stressed (M = -0.69, 

SD = 0.67) group. These findings support the multivariate analyses.  

Supplementary Fixation Plots 

 To augment the MATB performance findings, the X and Y coordinates from each 

participant’s eyes were extracted from the eye-tracking data stream and plotted using a 

two-dimensional density plot (see Figure 7). The coordinates were split by the 

Automation and Stress conditions as well as Time (first performance evaluation vs. 



70 

 

second performance evaluation). The three subtasks are outlined in red rectangles and 

spatially map to the MATB display. The percentage of fixation points located within the 

subtask’s area located next to the rectangle. Because of the 60 Hz sampling rate of the 

eye-tracker and the large sample size, changes in density are difficult to observe. 

However, from these plots, it is evident that participants prioritized the tracking task 

across all conditions, with 38-48% of fixations occurring within the task area. From the 

first performance evaluation to the second performance evaluation, participants in all 

conditions tended to shift fixations to the tracking task and reduce fixations on the system 

monitoring and communications tasks. There were small differences between the groups 

in terms of tracking task fixations. Participants in both stressed groups tended to have 

about 5-8% more fixations on the tracking task compared to the automation off non-

stressed group. Participants in the automation on non-stressed group tended to be more 

similar to the stressed groups in terms of shifting fixations. It is interesting to note the 

small cluster of fixations in the lower right corner of the screen. These fixations indicate 

the checking of the computer clock. The stressed automation on group tended to check 

the time substantially less than the other conditions during the second performance 

evaluation. This may indicate the propensity for participants in the stressed automation 

group to direct more visual attention to the task instead of exploring their environment 

(Hopstaken et al., 2015). 
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CHAPTER IV 

DISCUSSION 

 As automation continues to be implemented into a variety of user systems, 

uncovering variables that may compromise the operator’s performance and cognitive 

state is essential to improving safety. Although automated systems may reduce cognitive 

workload, human operators are also prone to several negative effects, such as 

overreliance on the system (Parasuraman & Manzey, 2010), loss of situation awareness 

(Onnasch et al., 2014), and a reduction in task engagement leading to a loss of vigilant 

monitoring (Saxby et al., 2013). Human factors case studies examining accidents caused 

in part due to human error with an automated system (BEA, 2012; Wakabayashi, 2018) 

highlight the continued need to determine the extent to which certain operator 

characteristics compromise performance while automation systems are in use. Therefore, 

finding innovative ways to enhancing human performance by leveraging knowledge of 

these characteristics could improve safety outcomes with automated systems (May & 

Baldwin, 2009). 

The purpose of this study was to determine if artificially induced accommodative-

vergence stress and system automation interact to compromise task engagement and 

performance. Participants performed a 40 min flight simulation task either with or 

without automated features and either under accommodative-vergence stress or normal 

vision. EEG, eye-tracking, subjective ratings, oculomotor measures, and task 
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performance metrics were collected from participants. Overall, the interactive hypothesis 

between automation and accommodative-vergence stress was not supported. Specifically, 

it was predicted that participants under accommodative-vergence stress who performed 

the simulation with automated features would exhibit the largest decrement in task 

engagement over the course of the simulation. However, the effects reported here were 

mostly isolated to main effects of automation and time on task, rather than oculomotor 

stress modulating the effects of automation. The results regarding each hypothesis are 

discussed in turn followed by a general discussion, practical implications, limitations, and 

future research.  

Hypothesis 1: Participants under accommodative-vergence stress will report more 

severe symptoms of visual fatigue and exhibit reductions in accommodative and 

vergence responses than non-stressed participants.  

 Participants under accommodative-vergence stress did not experience an increase 

in visual fatigue symptoms or reduced oculomotor functioning. However, time on task 

and automation did affect visual measures. Specifically, from pre to post MATB, visual 

fatigue symptoms increased regardless of stress condition. This finding is consistent 

within the human factors literature reporting that visual fatigue tends to increase over 

time as operators use computer systems (Proctor & Van Zandt, 2018; Saito et al., 2000; 

Tribley et al., 2011). Moreover, DDA analysis of automation multivariate main effect 

revealed that those in the automation condition tended to experience less visual fatigue 

symptoms but greater reductions in the convergence response.  
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 Prior research has shown that extended driving (2 hrs) decreases intraocular 

pressure and increases accommodative lag (Vera et al., 2016). No studies, however, have 

examined how automation affects oculomotor responses over time. Literature using basic 

laboratory tasks involving sustained attention has shown that accommodative lag 

increases under conditions of accommodative stress (Poltavski et al., 2012). In the current 

study, accommodation was relatively unaffected by the three independent variables. One 

explanation for this is the technique used to measure accommodation. In other studies 

that reported changes in accommodation, either due to stress or to time on task, an 

autorefractor was used to measure accommodative lag (e.g., Daniel & Kapoula, 2017). 

Autorefractors are high precision instruments that can measure small changes in 

accommodation continuously over time. In contrast, the current study utilized a manual 

rule technique at pre and post time periods after the accommodative stressor was 

removed from the participant. Importantly, the manual rule technique is a subjective 

method in that participants report break and recovery distances, while the autorefractor is 

an objective measure of accommodation. Therefore, the method used in this study was 

likely not sensitive enough to detect subtle changes in accommodation. Moreover, 

accommodation could not be tracked in real-time, further limiting the precision of this 

measurement technique.  

 Automation also had a significant multivariate effect on the visual parameters. 

Using DDA, accommodation contributed very little to the differentiation between the 

automation on group and the automation off group, while NPFD and visual fatigue 

symptoms contributed the most to the multivariate composite. Increased recovery-break 
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distance and reduced visual fatigue symptoms tended to characterize the automation on 

group. Because automation and extended time on task tend to reduce visual scanning 

behavior (Navarro et al., 2016) and increase accommodative lag (Vera et al., 2016), 

participants may have experienced greater convergence demand from continuously 

shifting focus back to the appropriate accommodative demand. With greater 

accommodative lag, greater divergence requirements could have been placed on the 

participants causing the rotation of the eyes inward to correct for the mismatched 

accommodative and convergence demand, fatiguing the muscles responsible for 

convergence (i.e., medial rectus and lateral rectus) in the process. In turn, NPFD 

recovery-break distances would have been longer. However, although convergence might 

be mildly strained when operators utilize automated systems, the global effect on visual 

symptoms, such as blurred vision and headache may not have been severe enough to 

manifest as overt symptoms, which would have increased Visual Fatigue Symptom scale 

scores. Furthermore, the relatively short duration of the MATB simulation likely did not 

produce severe enough visual fatigue symptoms for the effect of stress to be significant. 

The robust visual system of young, healthy participants also could have contributed to 

this lack of effect.  

 Overall, the application of -2.0 D lenses did not significantly affect oculomotor 

measurements or increase visual fatigue symptoms. Time and automation affected these 

measures, with visual fatigue generally increasing from pre to post MATB and 

automation generally resulting in less visual fatigue but greater NPFD recovery-break 

distances. The increased NPFD recovery-break distances in the automation group 
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indicates greater visual fatigue. Because the NPFD recovery-break distances indicate the 

resilience of the convergence response, greater recovery-break distances indicate a longer 

duration for returning the target to center within Panum’s fusional area (Lederer et al., 

2015). Therefore, the task characteristics that modulate cognitive activity may 

subsequently affect the convergence response.  

Hypothesis 2: Accommodative-vergence stress and automation will interact, such 

that participants under stress and using automation will be significantly less 

engaged in the task than the other conditions, as operationalized by increased 

parieto-occipital alpha power, reduced multivariate EEG engagement, smaller pupil 

diameter, higher ratings of cognitive fatigue, and lower ratings of task engagement. 

 The main hypothesis of this study surrounded the synergistic effect of automation 

and accommodative-vergence stress on measures of task engagement. Automation, with 

the addition of accommodative-vergence stress, was predicted to produce the largest 

decrease in task engagement metrics. The multivariate model revealed significant main 

effects of stress and automation but no interaction. Therefore, the central hypothesis that 

oculomotor stress and system automation interact to decrease task engagement was not 

supported. However, the main effects of stress and automation present interesting results 

worthy of further examination.  

 First, univariate follow-up tests for the main effect of stress showed that pupil 

diameter was significantly smaller in the stressed group compared to the non-stressed 

group. Pupil diameter has been shown to decrease under extended vigilance and 

correspond to the vigilance decrement, likely via changes in norepinephrine (Hopstaken 
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et al., 2016). Additionally, the two muscles that control pupil diameter, the sphincter 

pupillae and the dilator pupillae, are controlled by the parasympathetic and sympathetic 

nervous system, respectively (McDougal & Gamlin, 2015). Studies in the human factors 

literature have shown that pupil diameter increases with increased mental demands and 

corresponding sympathetic activation (Borghini et al., 2014; Bernhardt, Poltavski, Petros, 

Ferraro, Jorgenson, et al., 2019; Marinescu et al., 2018; Orlandi & Brooks, 2018). 

Moreover, studies have shown greater parasympathetic activation during vigilance tasks 

using cardiac and skin conductance responses (e.g., Oken et al., 2006; Pattyn et al., 

2008). Therefore, participants in the stressed condition could have experienced greater 

parasympathetic activation consistent with reductions in arousal. This univariate effect 

suggests reduced task engagement for those under oculomotor stress. The effects -2.0 D 

lenses could have also been influenced by the near-triad of responses for binocular vision. 

When transitioning from far to near stimuli, the eyes converge inwards, the lens thickens, 

and the pupils constrict. With the addition of -2.0 D lenses, the added blur cue may have 

induced pupil constriction in stressed participants. Likely, the loss of engagement and the 

effects of the near-triad response share variance. However, if -2.0 D lenses affected the 

construct of engagement, an interaction between stress and automation would have likely 

occurred, with smaller pupil diameter in the automation and stressed condition. 

Therefore, the effects of -2.0 D lenses were likely driven in large part by pupil 

constriction from the near-triad response to an increased accommodative demand.  

 Within the multivariate context, however, a different picture emerged. Similar to 

the univariate analyses, pupil diameter was the most useful in separating the stressed 
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group from the non-stressed group. In contrast to the prediction that engagement would 

be less in the stressed group, follow-up DDA for the multivariate main effect of stress 

showed that subjective ratings of task engagement and fatigue were positively related to 

the multivariate composite (note that the group centroid for the stressed group was 

positive). Moreover, the EEG engagement metric was also positively associated with the 

composite variable. Thus, from the multivariate findings, oculomotor stress affected task 

engagement in the direction opposite to what was hypothesized. Moreover, POz alpha 

PSD contributed very little to the discriminant variate. Previous literature has shown that 

reductions in task engagement and visual processing efficiency correspond to increases in 

posterior alpha power (e.g., Borghini et al., 2014; Macdonald et al., 2011; van Dijk et al., 

2008). Here, the application of -2.0 D lenses was predicted to increase alpha PSD relative 

to the non-stressed group. However, POz alpha PSD made little contribution to the 

discrimination between stressed and non-stressed participants. One explanation for this 

lack of effect could be that the sample consisted of young, healthy participants and a 

relatively mild application of stress was applied. As with the null findings regarding 

visual measures and the application of stress, participants may have been able to 

successfully adapt to the stress. It should be noted that only one participant complained of 

adverse effects (headache) due to the -2.0 D lenses. All other participants reported being 

able to adapt to the lenses without difficulty. The use of clinical populations, such as 

those with diagnosed CI or AI, may have produced different results. These individuals 

would likely experience compounded oculomotor stress due to a reduced capacity to 

adapt to the added accommodative demand (Lederer et al., 2015). Moreover, actual 
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operational conditions involve several other stressors like sleep deprivation, 

environmental stress, and high-pressure situations. For example, airline pilots have been 

found to report being routinely fatigued during flights (Caldwell, 2005; Jackson & Earl, 

2006) and military pilots often perform missions during reverse shift hours (Caldwell & 

Gilreath, 2001). In real world operational scenarios, accommodative-vergence stress may 

play a greater role in affecting cognitive states and performance outcomes because of 

stressors already present (Hockey, 1998).  

Another explanation concerns the type of task participants performed. In this 

study, a multifaceted flight simulation task was used. Other researchers reporting 

decrements in cognitive performance using -2.0 D lenses had participants perform 

computer tasks requiring fixed locations on a screen. For example, Poltavski et al. (2012) 

had participants perform the Connor’s Continuous Performance Test (CPT). During the 

CPT, letters are sequentially presented in the center of the screen requiring participants to 

fixate on a single point for the duration of the task. This fixation on a single point could 

have led to more accommodative and convergence strain. In contrast, the MATB is a 

more dynamic environment requiring participants to continually make saccadic eye 

movements to accomplish tasks. Continually shifting the eyes may have reduced the 

strenuous effects on accommodation and convergence. Moreover, participants could have 

also shifted their distance from the screen to offset the effects of the -2.0 D lenses, despite 

being instructed to remain static.  

Finally, the increased EEG engagement metric coupled with increased ratings of 

fatigue and engagement may point to a compensatory response for stressed participants. 
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A recent study showed that novice air traffic controllers exhibited higher levels of the 

EEG engagement metric (the same used in the current study) compared to experienced 

controllers while maintaining similar performance (Bernhardt, Poltavski, Petros, Ferraro, 

Jorgenson, et al., 2019). Johnson et al. (2001) reported similar results with novice versus 

expert shooters. Furthermore, studies using cerebral hemodynamic measures have shown 

that cortical activation tends to attenuate in experts compared to novices (Ayaz et al., 

2012). These findings point to a compensatory mechanism for less experienced 

individuals to maintain performance via the implementation of additional cognitive 

resources (Hockey et al., 1997). In the current study, rather than exhibiting reduced 

engagement, participants may have had to increase cognitive resource implementation to 

sustain performance, which likely manifested as increases in cortical activity (see General 

Discussion below).  

 The effects of automation on task engagement metrics were less equivocal and 

conformed with previous research. DDA for the main effect of automation suggested that 

POz alpha PSD was the most important variable for discriminating the automation on 

group from the automation off group, followed by the multivariate EEG engagement 

metric. Furthermore, subjective engagement ratings tended to be lower and pupil 

diameter was generally smaller for the automation on group compared to the automation 

off group. These findings are consistent with previous human factors studies examining 

the effects of automation on metrics of task engagement (Freeman et al., 2004; Neubauer 

et al., 2012; Saxby et al., 2013). Therefore, the pattern of physiological responses 

observed in the composite discriminant scores affirm that automation does indeed 
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compromise the underlying cognitive states of operators, which are essential for 

upholding concentration and motivation to actively engage in a task (Matthews et al., 

2002). Several authors have suggested that automation creates a state of downward-

regulated effort leading to withdrawal from the task (Desmond & Hancock, 2001; 

Hobstaken et al., 2015; Saxby et al., 2013). In driving (Desmond & Matthews, 1997; 

Saxby et al., 2013) and air traffic control (Desmond & Hoyes, 1996) studies, researchers 

have shown that participants often exhibit worse performance during easy situations 

compared to more difficult situations, indicating a mismatch between the task demands 

and effort employed for underload situations. This led Desmond and Hancock (2001) to 

propose that declines in performance due to automation are the result of a condition 

called passive fatigue. Passive fatigue results when operators make little to no overt 

psychomotor adjustments. In this study, participants in the automation condition made 

few responses to the system monitoring tasks. Therefore, the low task engagement found 

in this study could have been the result of the development of passive fatigue. Indeed, the 

EEG results found here mirror those found in a previous study investigating the effects of 

passive fatigue on physiological indicators of task engagement (Bernhardt, 2018).  

Furthermore, multilevel linear models showed that over the course of the 

simulation, those in the automation on condition exhibited a steeper increase in POz 

alpha power than those in the automation off condition (see Figure 6). Therefore, the 

multilevel linear modeling approach assisted in clarifying the effects of automation and 

time on task. It is also important to note that no effects of stress were found, indicating 

that the increase in POz alpha power over time varied as a function of automation and not 
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stress. This further refutes the initial hypothesis that stress and automation would 

accentuate the increase in POz alpha power.  

The multilevel liner models for the EEG engagement metric showed no 

significant interactive effects. However, the main effects for automation and time 

supported the multivariate analysis. The differences between the patterns observed with 

POz alpha power and the EEG engagement metric likely stem from the computation of 

the EEG engagement metric. This metric incorporates absolute and relative PSD values 

from several channels on the scalp and is individualized using participant performance on 

a set of cognitive benchmark tasks. A four-class quadratic discriminant function is then 

used to classify each epoch of data as either high engagement, low engagement, 

distraction, or sleep onset. Thus, this metric is a posterior probability of group assignment 

based on the linear combination of several different EEG frequencies and channels 

thought to be related to task engagement (Berka et al., 2007). For this study, alpha power 

was computed at only the POz electrode. Therefore, the engagement metric computed by 

the EEG system likely contained signal shared with other cognitive processes (e.g., 

working memory demands) and may not be a “pure measure” of task engagement since 

several scalp locations and frequencies are used. Moreover, the generalization from the 

simple cognitive tasks used to individualize the discriminant coefficients also may also 

account for the slight differences between raw POz alpha power and the system’s EEG 

engagement metric. Thus, using only a single posterior EEG channel may be sufficient to 

determine changes in engagement states over the course of systems incorporating 

automation.  
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Overall, automation compromised participant engagement; however, the 

application of oculomotor stress did not accentuate the effects of automation. Instead, 

oculomotor stress acted independently of automation and time in the direction opposite 

hypothesized.   

Hypothesis 3: Accommodative-vergence stress and automation will interact, such 

that participants under accommodative-vergence stress and using automation will 

exhibit the greatest decrement in simulator performance compared to the other 

conditions, as evidenced by increased reaction times and reduced simulation 

accuracy when required to regain manual control of the system.  

 In association with changes in measure of engagement and vision-related 

parameters, it was predicted that participants under accommodative-vergence stress and 

using automation would exhibit the greatest decline in task performance. Past research 

has shown that returning from manual control after using automation can lead to a 

reduction in performance. For example, Saxby et al. (2013) found that drivers who 

utilized full longitudinal and lateral control automation in a driving simulator exhibited 

worse driving performance (e.g., lane control, avoiding hazards) when regaining control 

back from automation. Moreover, studies using basic cognitive tasks reported declines in 

performance when individuals perform the task with artificial oculomotor stress (Daniel 

& Kapoula, 2017, 2019; Poltavski et al., 2012). The performance results found in this 

study partially support the synergistic hypothesis and previous research. 

 Multivariate tests showed that the interaction between time, automation, and 

stress significantly impacted the synthetic composite MATB performance variable. 
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Interpretation of the three-way interaction at the univariate level showed that 

communications task performance improved overall; however, this improvement was less 

pronounced for participants in the automation condition under accommodative stress. 

However, the multivariate DDA for this interaction revealed a more finite pattern. During 

the first performance evaluation, participants in the automation on and stressed condition 

were characterized by worse communications and tracking task performance but better 

system monitoring performance. However, during the second performance evaluation, 

participants under oculomotor stress, regardless of automation condition, were 

characterized by worse communications and system monitoring task performance and 

better tracking task performance. This shift potentially indicates a change in cognitive 

strategy under oculomotor stress. Specifically, participants in the stressed condition may 

have opted to uphold tracking task performance at the expense of system monitoring and 

communications task performance. The MATB tracking task requires consistent 

monitoring and oculomotor tracking in order to maintain adequate performance. Under 

oculomotor stress, participants may have sacrificed the other tasks in order to conserve 

limited cognitive resources by narrowing attention to the tracking task, which is centered 

on the screen. Researchers have shown that under conditions of stress, operators may 

uphold overall task performance but may adopt subtle suboptimal performance strategies, 

such as speed accuracy tradeoffs (Hockey, 1997, 2011; Hockey et al., 1998). Over time, 

these suboptimal strategies may result in more systemic decline in performance and 

compromise safety (Hockey, 1997).  
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 The pattern of performance results described above fits with predictions made by 

the compensatory control model (CCM; Hockey, 1997). The CCM holds that human 

operators, while operating under stress (e.g., high workload, fatigue, etc.), allocate effort 

in one of two ways: (1) task goals and performance can be upheld but at the expense of 

increased effort and physiological activation, or (2) effort is conserved and performance 

goals are lowered. Hockey (1997) asserted that changes in performance are likely to 

appear in the form of “latent decrements” or subtle changes in task efficiency when 

operators choose to implement more effort. Indeed, the multivariate analysis conducted 

here revealed latent performance changes instead of gross changes in MATB 

performance at the univariate level. In this study, all three subtasks negatively correlated 

with the composite (note lower tracking task RMSD values indicate better performance) 

and the stressed group had a positive group centroid. According to Hockey (1997), this 

change may represent a “subsidiary task failure” characterized by “selective impairment 

of lower priority task components” (p. 84). Since the tracking task is located centrally, 

stressed participants may have assigned more priority to this task and off-loaded the 

communications and systems monitoring tasks. However, the fixation plots in Figure 7 

show that both stressed and non-stressed participants tended to increase their fixation 

points on the tracking task. However, both stressed groups had 5-8% more fixations on 

the tracking task compared to the automation off + non-stressed group. Although slight, 

the resulting changes in performance strategy may have been due to changes in covert 

attention rather than overt attention (Wickens & McCarley, 2008).  
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 The physiological results also support the prediction made by the CCM. Using 

DDA, participants in the stressed group generally showed elevated levels of EEG 

engagement, less alpha PSD, greater subjective engagement, and higher levels of fatigue. 

Hockey (1997, 1998) proposed that when operators counteract stress, the implementation 

of more effort results in a physiological cost. Here, the cost was seen in terms of greater 

cortical activation with corresponding increases in subjective feelings of fatigue.  

 Overall, the MATB performance results point to a slight tradeoff in performance 

strategy for participants under oculomotor stress. Rather than exhibiting large declines in 

performance, latent decrements were observed at the multivariate level.  

Hypothesis 4: The effects of accommodative-vergence stress on outcome measures 

will be time dependent, such that over increased time on task, accommodative-

vergence stress will accrue and lead to greater visual fatigue, reduced engagement, 

increased fatigue, and worse task performance (i.e., the above effects are time-

dependent). 

 Hypothesis 4 concerns the accumulation of oculomotor stress over time, leading 

to time-dependent effects on measures of task engagement, performance, and oculomotor 

parameters. The results of this study provide limited support for the accumulation of 

oculomotor stress over time affecting outcome measures. It was expected that the 

application of -2.0 D lenses would significantly modulate the effects of time on task. That 

is, declines in task performance, engagement, and visual parameters would be more 

drastic for those under stress than those not under stress.   
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 Time was a significant main effect in all analyses but only interacted with stress 

for MATB performance, partially supporting hypothesis 4. Furthermore, the change in 

performance appeared to be mostly due to a tradeoff in cognitive strategy. Therefore, it 

seems that the accumulation of oculomotor stress over time only modestly affected 

performance outcomes and did not affect visual parameters or task engagement.  

 Multilevel linear models showed significant effects for time on task consistent 

with the literature on alpha power (Zhao et al., 2012), pupil diameter (Hopstaken et al., 

2015, 2016), and the EEG engagement metric (Berka et al., 2007) during vigilance 

performance. In the current study, POz alpha power linearly increased and pupil diameter 

decreased over the course of the MATB simulation. Additionally, the EEG engagement 

metric decreased during the scenario. As previously mentioned, the increase in alpha PSD 

more so for the automation group potentially indicates a compromised cognitive state for 

handling emergency situations for operators utilizing excessive automation. 

General Discussion 

 Overall, oculomotor stress and automation moderately changed task performance 

strategies, separately affected task engagement, and had little effect on visual fatigue 

symptoms and measurements. As discussed in the introduction, the theoretical 

justification for automation and oculomotor stress synergistically affecting task 

engagement stems from the “siphoning away” of cognitive resources that would 

otherwise be used to remain actively engaged in a task, resulting in reduced task 

engagement overall. Matthews et al. (2017) demonstrated this effect in participants 

infected with the common cold. The researchers used structural equation modeling to 
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understand the relationships between the common cold, self-reported task engagement, 

and vigilance performance. Results showed that the effect of the common cold on 

vigilance performance was fully mediated by a loss of task engagement, leading the 

researchers to conclude that de-arousing stressors, like infections, result in a loss of 

cognitive resources. The authors also postulated several physiological mechanisms that 

may be responsible for this effect, including immunological changes, changes in 

neurotransmitter function, or the indirect effect of sleep loss. In the current study, the 

application of oculomotor stress was expected to have a similar effect, with the added 

prediction that automation would exacerbate the loss of cognitive resources and reduce 

task engagement and performance. However, contrary to this prediction, participants 

under oculomotor stress demonstrated a stress response pattern that aligns more with the 

Compensatory Control Model (CCM; Hockey, 1997). Specifically, cortical and 

subjective indications of task engagement tended to be greater for stressed participants 

compared to non-stressed participants.  

 When operators perform tasks under stress, either environmental, cognitive, or 

physiological, upholding task performance goals despite this stress comes at a 

physiological cost from the implementation of compensatory effort (Hockey 1997, 

Hockey, 2011). According to Hockey (1997), operators can either uphold performance 

with the implementation of increased effort at the cost of increased physiological 

activation and latent performance decrements or reduce performance goals and conserve 

effort. Hockey (1998) found that sleep deprived participants rated their effort 

implementation on a complex space environment monitoring task as higher than non-
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sleep deprived participants. Sleep deprived participants also exhibited latent performance 

decrements in the form of worse performance on subsidiary tasks. Moreover, studies 

comparing novice operators to experienced operators have found increased cortical 

activation in novice operators (Bernhardt, Poltavski, Petros, Ferraro, Jorgenson, et al., 

2019; Johnson et al., 2001), indicating the physiological cost for performing at a level 

similar to their more experienced counterparts. Therefore, within the context of the 

current study, the CCM predicts that participants would exhibit greater physiological 

costs, latent performance decrements, and increased fatigue under oculomotor stress if 

task goals are upheld. The multivariate pattern observed in the analysis of engagement 

measures suggest that oculomotor stress resulted in a compensatory effort response. That 

is, those in the stressed condition had more cortical activation, higher ratings of task 

engagement, and higher ratings of fatigue. Rather than showing the result of declines in 

resource depletion, the multivariate analysis of EEG POz alpha power and the task 

engagement metric may have actually revealed the real-time process of resource 

depletion resulting from the implementation of effort. However, it should be noted that 

multilevel linear models did not reveal any effects for stress, indicating the multivariate 

nature of task engagement and potential resource depletion effects.  

 One way to determine if the compensatory response interpretation has merit is to 

use functional imaging techniques, such as functional near-infrared spectroscopy 

(fNIRS). fNIRS measures cerebral hemodynamics by detecting changes in oxygenated 

and deoxygenated hemoglobin using near-infrared light (Irani et al., 2007). Increased 

cognitive resource allocation is associated with increases in deoxygenated hemoglobin 
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(Ayaz et al., 2012). Therefore, if oculomotor stress elicits a compensatory effort response 

as predicted by the CCM, the application of -2.0 D lenses would increase the 

concentration of oxygenated hemoglobin, particularly in the visual cortex (Just & Varma, 

2007). The current EEG results point to a depletion of cognitive resources, but fNRIS 

measurement would provide a more direct measurement of resource utilization due to the 

strong relationship between cerebral hemodynamics and cognitive resource utilization 

(Warm et al., 2008).  

 The argument could also be made that measures of cognitive workload, not 

measures of task engagement, would index resource depletion with the implementation of 

stress. However, studies using EEG in experienced and non-experienced operators have 

shown that EEG multivariate measures of task engagement, not workload, differentiate 

operators with differing levels of experience (Bernhardt, Poltavski, Petros, Ferraro, 

Jorgenson, et al., 2019; Johnson et al., 2001). Berka et al. (2007) asserted that EEG 

metrics of task engagement reflect the pool of the demands for sensory processing and 

attentional resources, while EEG metrics of workload generally reflect working memory 

demands. Indeed, in a study of air traffic controllers, our laboratory showed that the EEG 

engagement metric used in this study varied as a function of air traffic controller 

experience, not as a function of task difficulty (Bernhardt, Poltavski, Petros, Ferraro, 

Jorgenson, et al., 2019). Correspondingly, an EEG metric of workload varied as a 

function of task difficulty but not as a function of air traffic controller experience. 

Similarly, Stevens et al. (2007) found that an EEG measure of workload increased as the 

difficulty of a problem-solving task increased but did not decrease in skilled participants. 
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Therefore, it appears that EEG measures of task engagement and workload measure 

distinct aspects. Specifically, EEG engagement seems to measure the availability of 

resources at the level of the operator, while EEG workload measures reflect global 

demands imposed by the task. The multivariate analysis results of EEG metrics in this 

study support these past studies.  

Practical Implications 

 Although the effects of oculomotor stress were limited, the negative effects of 

automation on measures of task engagement present a potential safety hazard for 

operators. System designs should be aware of the detrimental effects automation has on 

the underlying cognitive states of operators. While overall task performance may be 

preserved, the subtle changes in cognitive states may compromise the operator’s ability to 

perform in high workload situations where automation cannot be utilized. In operational 

settings with added stressors, non-optimal cognitive states can lead to unsafe actions 

(May & Baldwin, 2009). Therefore, the results presented in the current study highlight 

the importance of including psychophysiological indices during system evaluation. The 

field of neuroergonomics utilizes brain-based measurements in order to better understand 

neurocognitive mechanisms surrounding operator work (Parasuraman, 2015). One 

problem with neuroergonomic techniques is that they typically involve many electrodes 

or sensors placed on the scalp. This limits the fieldability of such technologies in 

operational conditions (A. Kelley, personal communication, December 11, 2019). For 

example, the EEG engagement metric used in this study requires several EEG channels to 

compute the posterior probabilities of the individual being in a highly engaged state, 
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making using this EEG system not practical for operators in the field. However, this 

study revealed that POz alpha power may be a suitable single channel candidate for 

providing the most non-invasive information regarding the engagement state of an 

operator over time, especially when automation is in use. A single electrode system 

provides more flexibility for integration into wearable headgear that can be used outside 

of laboratory settings (Oie et al., 2012). When paired with advanced machine learning 

algorithms, single EEG electrode recordings may be able to adequately classify operator 

states online during data collection to a degree similar to algorithms that incorporate 

multiple electrodes.    

Furthermore, automated systems should be designed to include suitable counter 

measures to combat declines in task engagement. Certain interventions may include task 

switching, environmental lighting changes, or adaptive automation (May & Baldwin, 

2009). Additionally, if oculomotor stress does increase cognitive resource consumption, 

optimization of the operator’s cognitive state could be achieved through biomedical 

performance enhancement techniques, such as non-invasive brain stimulation. It is 

thought that brain stimulation techniques increase the availability of cognitive resources 

(McIntire et al., 2014). Therefore, increasing the availability of cognitive resources may 

alleviate a narrow resource bandwidth associated with increased resource allocation. This 

technique may then be used to enhance resource allocation in conditions of stress for 

operators in high-risk situations like special forces operators. However, safety 

considerations and the long-term effects of brain stimulation are still a concern for 

applying the technique in operational conditions (Feltman et al., 2019).  
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In addition to applications in operational environments, the results of the current 

study may also have applications in education. For example, the current study showed 

that participants under oculomotor stress may exhibit increased cortical activation 

consistent with the implementation of more cognitive resources. Therefore, students with 

oculomotor deficits may be implementing more effort to sustain classroom performance 

relative to their peers, potentially resulting in changes in performance strategy (e.g., 

fixating on portions of assignments or tests) or eventual burnout. Screening for 

accommodative and convergence insufficiency at all student age groups may be useful to 

for improving academic outcomes (Chase et al., 2009). 

Limitations and Future Research 

 One limitation to this study is that oculomotor measures were taken using non-

precision instrumentation. As previously mentioned, an autorefractor would have been 

ideal for measuring changes in accommodation. Therefore, there was likely considerable 

measurement error despite three measurements being taken each time. This likely 

contributed to the null findings regarding changes in oculomotor measurements.  

Another limitation to the current study was the relatively short MATB duration. 

In operational environments, such as unmanned aerial vehicle missions, operators could 

be expected to perform tasks for more than eight hours. With only a 40 min session, 

oculomotor stress may not have been able to accrue significantly over time. Since no 

other studies have applied -2.0 D lenses to individuals for longer than about 15 min, the 

shorter duration was necessary to protect participants from significant discomfort. 

However, the results of this study indicate that participants with healthy oculomotor 
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responses may be resilient to oculomotor stress when performing multifaceted cognitive 

tasks. Specifically, participants experienced increased visual fatigue symptoms regardless 

of whether they were in the stressed condition or not. Moreover, only one participant 

complained of significant symptoms of visual fatigue. The MATB simulation also lacks 

the fidelity of a true operational environment. For example, scenery changes while 

driving or flying may also change a participant’s level of task engagement. Thus, changes 

in engagement may not have reflected what would be experienced in an operational 

environment. Despite this low fidelity, the results found in the current study support and 

extend previous research on automated systems (e.g., Saxby et al., 2013). 

The amount of oculomotor stress applied to participants also may have not been 

severe enough to elicit significant changes in cognitive states due to stress over time. 

Although Poltavski et al. (2012) found meaningful performance decrements with -2.0 D 

lenses, the performance changes found in this study were modest. Daniel and Kapoula 

(2019) used -2.5 D lenses, which may have contributed to reliable declines in 

performance. Relatedly, the current study did not incorporate different methods of 

oculomotor stress, such as base-out prisms, which decouple accommodation and 

convergence through manipulation of the convergence response. Indeed, Daniel and 

Kapoula (2019) found the greatest declines in cognitive performance on a Stroop test 

using base-out prisms, particularly in more difficult conditions.  

The timing for when participants responded to the self-report measures may have 

also influenced outcomes. Rather than responding to the self-report measures right after 

their assigned experimental MATB condition, participants responded after completing the 
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last performance evaluation. Because this performance evaluation was consistent across 

all groups, this performance evaluation may have reduced the between groups variability 

by slightly increasing task engagement for the automation on groups.  

Finally, the participants used in this study limit the generalizability of the findings 

to operators such as pilots, baggage screeners, and other operators. Operators in the field 

experience additional stressors that are difficult to replicate in a laboratory environment 

(e.g., high-stakes performance pressure, complex decision making). Future research 

should examine how oculomotor stress affects operators in their working environments.  

Future research should also begin to explore specific mechanisms for upholding 

task engagement while automated systems are in use. For example, brain stimulation 

methods may be explored as a method for optimizing cognitive states for operators using 

automation for extended periods of time. McIntire et al. (2014) showed that anodal 

transcranial direct current stimulation (tDCS) applied to frontal cortical regions 

attenuated the vigilance decrement. However, no studies have examined how tDCS 

modulates underlying cognitive states that support vigilance with automated systems. In 

the current study, the use of automation was associated with lower task engagement as 

measured at the level of cortical activity, pupillometry, and subjective ratings. Using 

tDCS in conjunction with these measurement methods may give better insight into how 

tDCS may be a viable method for enhancing performance with automated systems. In 

conjunction, incorporating cerebral hemodynamic measurement techniques, such as 

fNIRS, could determine how the cerebral hemodynamic response changes with the 

application oculomotor stress. Future research should explore the fit between predictions 
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made by the CCM regarding oculomotor stress using fNRIS recordings taken from the 

visual cortex.  

Additionally, future research should explore how task characteristics and 

oculomotor stress interact. As previously mentioned, previous studies exploring the 

effects of oculomotor stress on cognitive performance used tasks that required a sustained 

gaze at a single foveal point (e.g., Poltavski et al., 2012; 2016). In contrast, the MATB 

required participants to continually scan the interface in order to maintain performance. 

An experimental design incorporating stimuli presented at both foveal and peripheral 

locations would help clarify the relationship between task characteristics and oculomotor 

stress.  

Conclusion 

 This study provided initial data on the effects of oculomotor stress on the 

construct of task engagement. Oculomotor stress generally increased cortical indicators 

of task engagement, while also increasing subjective ratings of fatigue. Furthermore, 

oculomotor stress combined with system automation did not significantly reduce task 

engagement. Although the effects of oculomotor stress were slightly equivocal, 

automation reliably compromised task engagement at both a subjective and physiological 

level. This study reinforces the notion that automation compromises optimal task 

engagement; however, the addition of oculomotor stress does not appear to exacerbate 

these effects.  
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APPENDIX A 

DESCRIPTIVE STATISTICS 

 

Table A1 

Descriptive Statistics for MATB Performance Measures by Automation, Stress, and Time 

 Automation 

 Off  On 

 Non-Stressed 

(n = 24)  

 Stressed  

(n = 23) 

 Non-Stressed 

(n = 23) 

 Stressed 

(n = 22) 

 M SD  M SD  M SD  M SD 

COMM Throughput            

   Time 1 0.59 0.51  0.37 0.60  0.60 0.67  0.49 0.62 

   Time 2 0.61 0.59  0.71 0.57  0.85 0.62  0.57 0.46 

Tracking RMSD            

   Time 1 3.91 0.28  3.75 0.22  3.80 0.24  3.79 0.19 

   Time 2 3.77 0.25  3.61 0.23  3.71 0.19  3.69 0.22 

SYSM Throughput            

   Time 1 2.21 0.27  2.31 0.32  2.22 0.27  2.28 0.33 

   Time 2 2.40 0.25  2.42 0.32  2.48 0.32  2.39 0.31 

Note. Values displayed are natural log transformed. COMM = Communications task, SYSM 

= System monitoring task, Time 1 = first performance evaluation, Time 2 = second 

performance evaluation. 
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Table A2 

Descriptive Statistics for Visual Measures by Automation, Stress, and Time 

 Automation 

 Off  On 

 Non-Stressed 

(n = 24)  

 Stressed  

(n = 23) 

 Non-Stressed 

(n = 24) 

 Stressed 

(n = 23) 

 M SD  M SD  M SD  M SD 

VFS            

   Time 1 5.39 4.12  5.49 3.66  4.03 3.60  3.48 3.52 

   Time 2 10.07 5.42  10.88 5.48  8.31 4.73  9.73 5.36 

NPFD            

   Time 1 1.68 0.35  1.62 0.40  1.90 0.36  1.76 0.45 

   Time 2 1.70 0.41  1.45 0.31  1.76 0.31  1.78 0.49 

Accommodation            

   Time 1 1.41 0.32  1.36 0.27  1.59 0.26  1.46 0.29 

   Time 2 1.47 0.32  1.38 0.24  1.55 0.36  1.40 0.35 

Note. Value displayed are square root transformed. VFS = Visual fatigue symptoms, NPFD = 

Near-point fixation disparity, Time 1 = pre MATB, Time 2 = post MATB. 
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Table A3 

Descriptive Statistics for Engagement Measures by Automation, Stress, and Time 

 Automation 

 Off  On 

 Non-Stressed 

(n = 24)  

 Stressed  

(n = 19) 

 Non-Stressed 

(n = 22) 

 Stressed 

(n = 20) 

 M SD  M SD  M SD  M SD 

POz Alpha PSDa            

   Time 1 0.00 0.25  -0.17 0.59  0.13 0.48  0.17 0.34 

   Time 2 0.26 0.60  -0.04 0.49  0.42 0.66  0.51 0.67 

EEG Engagementa            

   Time 1 -0.04 0.29  0.02 0.15  -0.15 0.15  -0.06 0.20 

   Time 2 -0.08 0.23  -0.03 0.18  -0.21 0.26  -0.13 0.37 

Pupil Diametera            

   Time 1 -0.35 0.46  -0.65 0.57  -0.43 0.51  -0.74 0.62 

   Time 2 -0.66 0.53  -1.00 0.56  -0.96 0.97  -1.22 0.70 

SSSQ Engagementb            

   Time 1 3.69 0.47  3.62 0.64  3.67 0.53  3.68 0.54 

   Time 2 3.49 0.55  3.64 0.54  3.49 0.64  3.64 0.70 

Samn-Perellib            

   Time 1 2.50 0.88  2.58 1.22  2.45 0.91  2.45 0.94 

   Time 2 3.38 1.64  3.37 1.21  3.23 0.97  3.35 1.04 

Note. SSSQ = Short State Stress Questionnaire, Samn-Perelli = Samn-Perelli Fatigue Scale. 

aTime 1 = measurement taken during the first 5 min of simulation condition; Time 2 = 

measurement taken during the last 5 min of simulation condition. 

bTime 1 = measurement taken pre-MATB; Time 2 = measurement taken post-MATB   
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APPENDIX B 

COEFFICIENTS FOR DESCRIPTIVE DESCRIMINANT ANALYSES 

Table B1. 

Descriptive Discriminant Analysis Coefficients for the Automation x Stress x Time 

Interaction Effect on MATB Performance Measures 

 First Performance Eval.  Second Performance Eval. 

 b β Structure  b β Structure 

COMM -0.83 -0.50 -0.45  -1.08 -0.61 -0.61 

TRACK 4.07 0.96 0.67  -3.64 -0.81 -0.35 

SYSM 260 0.78 0.15  -2.54 -0.76 -0.47 

 Centroids  Centroids 

Auto off +  

Non-Stressed 0.22   -0.13 

Auto on +  

Non-Stressed -0.23   -0.37 

Auto off + 

 Stressed 0.02   0.28 

Auto on +  

Stressed -0.01   0.23 

Note. COMM = Communications task throughput, TRACK = tracking task root-mean-

square deviation, SYSM = system monitoring throughput.  

 

 

 

 

 



130 

 

Table B2.  

Descriptive Discriminant Analysis Coefficients for the Effect of Automation on Visual 

Measures 

 b β Structure 

Accommodative recovery-break 0.06 0.02 0.54 

Visual Fatigue Symptoms -0.16 -0.61 -0.63 

NPFD recovery-break 2.19 0.79 0.80 

Note. NPFD = near-point fixation disparity. 

 

Table B3.  

Descriptive Discriminant Analysis Coefficients for the Main Effects of Automation and 

Stress on Engagement Measures 

 Automation  Stress 

 b β Structure  b β Structure 

POz Alpha PSD 1.68 0.73 0.79  -0.42 -0.19 -0.22 

EEG Engagement Metric -2.37 -0.49 -0.62  3.08 0.66 0.42 

Pupil Diameter -0.53 -0.30 -0.41  -1.59 -0.88 -0.72 

SSSQ Engagement -0.57 -0.27 -0.03  0.88 0.41 0.17 

Samn-Perelli Fatigue Scale 0.38 0.35 0.12  0.46 0.43 0.06 

Note. SSSQ = Short Stress State Questionnaire. 
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