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ABSTRACT

The purpose of the present study was to investigate the develop­

ment of the otic placode/vesicle and the concurrent synthesis of an 

associated cell surface coat material (SCM) in the chick embryo. This 

was accomplished by means of precipitation of the glycoconjugate 

constituents of the SCM with cetylpyridinium chloride (CPC) and sub­

sequent observation by scanning electron microscopy (SEM). Cryofix- 

ation and freeze-substitution were utilized to validate the results of 

CPC precipitation. In addition, specific sugar moieties present 

within the SCM were characterized, in part, using fluorescein 

isothiocyanate (FITC)-conjugated lectins.

Embryos utilized for SEM were incubated for 45-56 hours (stages 

12-16), fixed in 2% glutaraldehyde with or without the addition of 

CPC and processed for conventional SEM. Additional embryos were 

cryofixed in liquid nitrogen cooled Freon 22 with or without prior 

aldehyde fixation and freeze-substituted in ethanol. Specimens were 

then warmed to room temperature, critical point dried and observed by 

SEM.

Embryos used for light microscopy (LM) were cryofixed and 

freeze-substituted prior to aldehyde fixation, brought to room temp­

erature and embedded in paraffin. Preselected sections through the 

otic piacode/vesicle were labeled with FITC-conjugated lectins. The 

latter included: concanavalin A (Con A), wheat-germ agglutinin (WGA) 

and soybean agglutinin (SBA).

IX



At 45-48 hours (stage 12) the otic placode appeared as a depres­

sion within the surface ectoderm. By 43-52 hours (stage 13) the placode 

had continued to invaginate and formed a distinct pit. Closure of 

the deepened otic vesicle proceeded between 50-56 hours (stages 15-16) 

as evidenced by alteration in shape and reduction in size of the 

associated aperture.

Embryos of all ages revealed a flocculent precipitate over the 

surface ectoderm which was particularly abundant in association with 

the otic piacode/vesicle when exposed to CPC. Specimens which were 

processed by freeze-substitution yielded a comparable precipitate.

The otic placode/vesicle labeled positively with all lectins, the 

binding affinity of which followed the decreasing order: WGA>Con A>SBA. 

Differences in lectin binding between the surface ectoderm and the otic 

placode/vesicle were not apparent due to the low resolution and diffuse 

label given by fluorescein. The data clearly indicated that otic 

placode invagination was accompanied by the synthesis of copious 

amounts of SCM rich in glycoconjugates.

x



INTRODUCTION

The early development of the Inner ear anlage or otic placode as 

viewed by light microscopy (LM) has been reviewed extensively by 

Romanoff (1960). The first detailed studies of the embryonic otic 

placode by scanning (SEM) and transmission (TEM) electron microscopy 

were presented by Bancroft and Bel lairs (1977) and Meier (1978b), 

respectively.

These investigators reported that the initial indication of otic 

placode morphogenesis in the chick was represented by a thickening of 

the surface ectoderm overlying the developing rhombencephalon at 

approximately 26-29 hours (stage 8 ) of development (Meier, 1978a). At 

33-38 hours (stage 10) the epithelial placode appeared as a shallow 

depression within the surface ectoderm which continued to invaginate to 

form a well defined pit by 48-52 hours (stage 13; Bancroft and Bellairs, 

1977). Between 50-64 hours (stages 14-17) the aperture of the invagin- 

ating otic vesicle (otocyst) closed and the latter separated from the 

overlying surface ectoderm. Alteration in the shape of the developing 

vesicle was first apparent at stage 14 when the aperture became 

pear-shaped. By stage 16 the latter appeared as a narrow elliptical 

opening in the surface ectoderm and by stage 17 it was almost completely 

obliterated. At stage 18 the aperture was no longer visible on the 

surface of the embryo (Bancroft and Bellairs, 1977), however, the otic 

vesicle maintained a duct-like connection to the surface ectoderm for 

up to 104 hours of development (Hamburger and Hamilton, 1951).

Initially, the cells of the otic placode were not readily
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differentiated from those of the adjacent surface ectoderm. However, 

after 23-26 hours (stage 7) the cells forming the otic placode were 

different ultrastructurally from those of the adjacent surface ectoderm. 

The apical surfaces of the cells that comprised the surface ectoderm 

were relatively flat and smooth. In contrast, the cells within the 

placode were elongated, bulged into the surrounding amniotic cavity, and 

possessed numerous blebs and other microappendages at their apical 

surfaces (Bancroft and Bellairs, 1977; Meier, 1978b). The most 

conspicuous appendages project from one cell to another located some 

distance away and contained a prominent discoid expansion midway along 

their length (Meier, 1978b).' These projections resembled midbodies or 

beaded threads which were previously described by Bellairs and Bancroft 

(1975). Similar apical projections were observed in association with 

invaginating epithelia of the neural plate (Bancroft and Bellairs,

1974, 1975; Bellairs and Bancroft, 1975; Waterman, 1975, 1976; Mak,

1978; Schoenwolf, 1982), nasal placodes (Waterman and Meller, 1973; 

Bancroft and Bellairs, 1977), and lens placode (Bancroft and Bellairs, 

19.77; Van Rybroek and Olson, 1979, 1981).

As the cells within epithelial placodes elongated, their cyto­

plasm became populated with a large number of microtubules which 

were oriented parallel to the long axes of the cells (Bancroft and 

Bellairs, 1977; Meier, 1978b). Cellular elongation was thought 

originally to be due to the presence of microtubules (Karfunkel, 1974; 

Piatigorsky, 1975). Recent evidence suggests that this process may 

result from an increase in cell volume in the absence of microtubules 

(Beebe et al., 1979). Subsequent invagination of embryonic epithelia
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appeared to be mediated by microfilaments which were abundant within 

the apical cytoplasm of the cells and were positioned perpendicular to 

their longitudinal axes (Wrenn and Wessels, 1969; Wessels et al., 1971; 

Karfunkel, 1971, 1972). Although it had been postulated that both 

microtubules and microfilaments were involved respectively in elonga­

tion and invagination of epithelial cells (Karfunkel, 1974; Odell et al., 

1981), the exact role of these two organelles has not yet been 

elucidated (Schoenwolf, 1982).

The presence of a carbohydrate-rich cell surface coat material 

(SCM) or glycocalyx is thought to play an important role during 

invagination, adhesion, and fusion of epithelia during morphogenesis.

SCM can be demonstrated by the nonspecific staining of polyanions with 

the cationic stains ruthenium red (Luft, 1971a, b) and alcian blue 

(Scott and Dorling, 1965), or by precipitation with cetylpyridinium 

chloride (CPC; Scott, 1955). More specific characterization of the 

SCM can be accomplished using lectins either radioactively labeled 

(Burk et al., 1979; Lotan, 1979) or conjugated to horseradish peroxidase 

(HRP; Bernhard and Avremeas, 1971), ferritin (Nicholson and Singer,

1971), colloidal gold (Horisberger and Rosset, 1977; Horisberger, 1984), 

biotin (Horisberger and Vonlanthen, 1979; Alroy et al., 1984), 

hemocyanin (Mak, 1978) or fluorescent dyes (Lotan, 1979). The 

cytochemical probes listed above have been used to demonstrate SCM 

associated with apical epithelial surfaces during development of the 

palate (Greene and Kocnhar, 1974; Souchon, 1975; Pratt and Hassell,

1975; Meller and Barton, 1978; Baeckeland et al., 1982; Heinen et 

al., 1982), neural tube (Moran and Rice, 1975; Lee et al ., 1977;
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Lee et al., 1978; Mak, 1973: Sadler, 1978; Silver and Kerns, 1978; 

Rovasio and Monis, 1981; Currie et al., 1984), optic vesicle (Hilfer 

and Yang, 1980; Yang and Hilfer, 1982), nasal folds (Gaare and Langman, 

1977; Smuts, 1977; Burk et al., 1979) and lens vesicle (Van Rybroek 

and Olson, 1981; Olson and Sinning, 1984).

The SCM is implicated to have a role in cellular recognition 

(Moscona, 1974), intercellular adhesion in several in vitro systems 

(Oppenheimer, 1973; Roseman, 1974; Biscoff, 1978) and epithelial 

adhesion and fusion during morphogenesis (Moran and Rice, 1975; Lee 

et al., 1977). The latter was supported by the fact that an increase 

in SCM has been shown to occur prior to fusion of the palatal shelves 

(Greene and Kochhar, 1974; Pratt and Hassel, 1975; Souchon, 1975), 

neural folds (Moran and Rice, 1975; Lee et al., 1977; Lee et al., 1978; 

Sadler, 1978; Silver and Kerns, 1978) and the epithelial margins of 

the lens vesicle (Van Rybroek and Olson, 1981). Once adhesion and 

eventual fusion have occurred there was a dramatic decrease in the 

amount of SCM on the epithelial surface (Moran and Rice, 1975;

Souchon, 1975; Sadler, 1978). Adhesion and the subsequent fusion of 

epithelial surfaces can be inhibited by interfering with SCM synthesis 

through the administration of: 6-diazo-5-oxo-L-norleucine, a glutamine 

antagonist; tunicamycin, an antibiotic that inhibits N-glycosylation 

of glycoproteins; and carrageenan, a food additive that is thought to 

inhibit synthesis of cell surface components. Exposure to these sub­

stances subsequently results in facial clefts (Burk and Sadler, 1983), 

reduced fusion of palatal shelves in vitro (Greene and Pratt, 1977), 

abnormal optic cup formation (Yang and Hilfer, 1982) and neural tube



defects (Rovasio and Monis, 1981).

Lectins are sugar-binding proteins or glycoproteins of non-immune 

origin from plants and animals which agglutinate and/or precipitate 

glycoconjugates. They have been used increasingly to characterize 

the carbohydrate moieties present in the SCM (Sharon and Lis, 1972;

Lis and Sharon, 1973; Nicholson, 1974; Kornfeld and Kornfeld, 1978;

Alroy et al., 1984; Horisberger, 1984). They contain at least two 

sugar-binding sites, the specificity of which is defined in terms of 

the monosaccharide or simple oligosaccharide that inhibits lectin- 

induced reactions using the lowest concentration of sugar (Goldstein 

et al., 1980). A classification system for lectins has been proposed 

by Gallagher (1984) in which two major classes of lectins are defined. 

Class I, or exolectins recognize the complimentary monosaccharide 

located primarily at the non-reducing end of the carbohydrate chain. 

Class II, or endolectins recognize only linear or branched 

oligosaccharide chains. Class I lectins are subdivided into obligate 

or facultative exolectins depending on whether they bind only end-chain 

or end-chain and internal sugars, respectively. Class II lectins are 

likewise subdivided into homotypic or heterotypic endolectins in 

accordance with their binding of homotypic or heterotypic sugar 

sequences.

The common lectins concanavalin A (Con A) from Canavalia ensiformis 

(jack bean), wheat-germ agglutinin (WGA) from Triticum vulgaris and 

soybean agglutinin (SBA) from Glycine max were utilized in the 

present study. The structure and function of these and other lectins 

have been reviewed extensively (Sharon and Lis, 1972; Lis and Sharon,

5
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1973; Nicholson, 1974; Brown and Hunt, 1978; Goldstein and Hayes, 1978; 

Barondes, 1981; Alroy et al., 1984). Concanavalin A, a facultative 

exolectin, is one of the few lectins that is not a glycoprotein since 

it contains no covalently bound sugar (Sharon and Lis, 1972). It is a 

tetramer with a molecular weight of approximately 104,000. It is 

specific for a-D-glucosyl and a-D-manosyl residues. It requires Ca+  ̂

and lvln+2 ions for its activity, the removal of which will destroy its 

binding capacity (So and Goldstein, 1968).

Wheat-germ agglutinin, a homotypic endolectin, is a dimeric 

protein with a molecular weight of 36,000. It has a binding affinity 

for N-acetyl-glucosamine (Glc-Nac) and N-acetyl-neuraminic acid 

(sialic acid). The binding of WGA to these two substances can be 

distinguished by means of charge affinity. Normally, WGA is positively 

charged and will bind to the negatively charged sialic acid and the 

neutral Glc-Nac. However, upon succinylation WGA is negatively charged 

and will bind only to Glc-Nac (Monsigny et al., 1980).

Soybean agglutinin, an obligate exolectin, is a tetrameric 

glycoprotein with a molecular weight of 120,000. It shows binding 

affinity for a-D-galactose and N-acetyl-galactosamine (Gal-Nac; Lis 

et al., 1970; Hammarstrom et al., 1977).

In view of the studies described above concerning the involvement 

of SCM in epithelial placode morphogenesis it seemed appropriate to 

examine the developing otic piacode/vesicle in order to verify a 

similar phenomenon. Specifically, this study will attempt to reveal 

the presence of a carbohydrate-rich surface coat material associated 

with the developing otic piacode/vesicle by means of nonspecific
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precipitation of SCM glycoconjugates with CPC, and by cryopreservation 

and freeze-substitution without prior chemical fixation. All specimens 

will subsequently be observed by means of scanning electron microscopy. 

In addition, the current study will attempt, for the first time, to 

characterize the carbohydrate moieties present within the SCM 

associated with an epithelial placode. The latter will be accomplished 

through binding specific sugar receptor sites with the lectins Con A, 

WGA, and SBA conjugated to fluorescein isothiocyanate (FITC) and 

viewed by epifluorescence microscopy.



MATERIALS AND METHODS

Fertile chicken eggs were incubated in a forced air incubator at 

37°C for 45-56 hours. Eggs were removed from the incubator, opened 

and the contents were emptied into a 70mm petri dish containing warm 

Hank's saline. Embryos were excised and removed from the yolk. 

Following removal of the vitelline membrane and amnion, embryos were 

washed repeatedly in warm Hank's saline and subsequently staged 

according to Hamburger and Hamilton (1951). Embryos representing 

stages 12-16 (45-56 hours) were then processed for either scanning 

electron microscopy (SEM) or light microscopy (LM).

Scanning Electron Microscopy

Embryos utilized for SEM were fixed for 2 hours in cacodylate 

buffered 2% glutaraldehyde (pH 7.4) with or without the addition of 

0.5% cetylpyridinium chloride (CPC; pH 7.2). The latter is a 

quarternary ammonium compound which precipitates poiyanionic sub­

stances, including SCM components, and prevents their extraction 

during fixation (Spicer et al., 1967; Markwald et al., 1978; Van 

Rybroek and Olson, 1981). After rinsing in 0.2M cacodylate buffer, 

embryos were post-fixed in 2l  osmium tetroxide (OSO4 ) in 0.144M 

cacodylate buffer. Subsequent to rinses in 0.144M buffer, embryos 

were dehydrated in a graded series of ethanol and critical point 

dried in liquid CO^ in a Sandri PVT-3 critical point drying 

apparatus.

Additional embryos were placed on aluminum foil strips and

frozen in liquid nitrogen (LN) cooled Freon 22 (Plattner and
8



Bachmann, 1982) with or without prior aldehyde fixation as described 

above. The frozen embryos were placed into liquid scintillation vials 

containing a layer of molecular sieves and 5 ml each of 1% OsO^, and 

100% ethanol and 10 ml of LN. The vials were placed into an ultralow 

freezer set at -60°C for 7 days, then into a standard freezer for 12 

hours and finally into a conventional refrigerator for 6 hours (Markwald, 

personal communication). After rinsing in 100% ethanol in order to 

remove the excess OSO4 , the embryos were critical point dried as 

previously mentioned. All specimens were mounted on aluminum stubs 

with silver paint, coated with gold-palladium (60:40) in a Hummer I 

sputter coater and viewed in a Hitachi S-800 scanning electron 

microscope at 15KV.

Light Microscopy

Embryos used for LM were removed from the egg, rinsed in Hank's 

saline and frozen as described above without prior aldehyde fixation. 

These embryos were placed in liquid scintillation vials containing 

a layer of molecular sieves and 10 ml each of 100% ethanol and LN.

Vials were placed in an ultralow freezer at -60°C for 4-5 days, in a 

conventional freezer for 12 hours and then into a standard refrigerator 

for 6 hours (Markwald, personal communication). Upon removal from the 

refrigerator, the samples were transfered to embedding bags and 

placed in 100% chloroform for 2 hours, followed by 2 changes of 100% 

paraffin. Embryos were then embedded in paraffin-filled beam capsules, 

sectioned at 8um on a Sorval JB-4A microtome, and placed on slides 

that were treated with deglycosylated bovine serum albumin (dBSA) in

9
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phosphate buffered saline (PBS; Glass et al,, 1981).

Lectin Binding

Preselected slides with unstained paraffin tissue sections through 

the developing otic placode or vesicle were deparaffinized and 

rehydrated to dBSA/PBS. Slides were left in this solution for a 

minimum of 15 minutes, and then incubated in fluorescein isothiocyanate 

(FITC)-conjugated lectins (50yg/ml) in PBS containing O.lmM CaC^ for 

20 minutes at the appropriate pH (Table I). Following rinses in PBS, 

slides were coverslipped using glycerol.

Control sections were deparaffinized and held in dBSA/PBS as 

described above. Controls were then incubated in PBS containing the 

inhibitory sugar (PBS/sugar) for each lectin at the appropriate 

pH (Table I) for 20 minutes and subsequently incubated in 50ug/ml 

FITC lectin in PBS/sugar for 20 minutes. Slides were rinsed in PBS/ 

sugar and coverslipped as before. All tissue sections were viewed 

on an Olympus BH2 light microscope equipped with epifluoresence.
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TABLE I

PARAMETERS FOR LECTIN BINDING

LECTIN INHIBITORY SUGAR PH

Con A .3M Methyl-a-D-manoside 6.9

WGA .2M N-acetyl-glucosamine 6.8

SBA .2M N-acetyl-galactosamine 6.8



RESULTS

At 45-48 hours (stage 12) the otic placode was visible as a 

shallow depression within the surface ectoderm overlying the 

developing rhombencephalon (Fig. 1). The cells within the placode 

were smaller in diameter and their cell borders were not as well 

defined as those of the surrounding surface ectoderm (Figs. 2, 3).

With the addition of CPC to the fixative, a flocculent precipitate 

was observed over the surface ectoderm, particularly in association 

with the otic placode (Fig. 4).

By 48-52 hours (stage 13) the placode was more extensively 

invaginated and now may be referred to as the otic pit (Fig. 5).

The precipitate produced with the addition of CPC to the fixative was 

heavier than during the previous stage (Fig. 6). The floor of the 

otic pit revealed cells which had irregularly defined lateral borders, 

and small apical surface areas with numerous blebs and other micro­

appendages (Fig. 7). In embryos treated with CPC, the precipitate 

obscured the floor of the otic pit (Fig. 8 ).

The otic pit continued to invaginate to form the otic vesicle 

by 50-53 hours (stage 14). The aperture of the vesicle was circular 

in shape (Figs. 9, 10). The dense precipitate observed with the 

addition of CPC to the fixative was largely confined to the immediate 

area of the vesicle and was sparsely associated with the surrounding 

surface ectoderm (Figs. 11, 12).

The aperture of the developing otic vesicle was smaller, indicating

that it began to close by 50-55 hours (stage 15). The aperture showed

12
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a sequential alteration in shape, changing from a rounded structure 

(Figs. 13, 14) to one which was oblong or elliptical at the onset of 

epithelial adhesion and fusion (Fig. 15). Tissues fixed in 

glutaraldehyde/CPC revealed a localized precipitate over the area of 

the developing otic vesicle with greater accumulation of precipitate 

on one side (Fig. 16).

The aperture of the deepened otic vesicle at 51-56 hours (stage 

16) of incubation was noticeably smaller than during the previous 

stage (compare Fig. 17 with Figs. 15 and 16). The opening had reduced 

in size from an average diameter of 58ym at stage 14 to an average 

maximum length and width of 50ym x 11pm, respectively, at stage 16.

As in stage 15, the CPC precipitable material was largely localized 

within the developing vesicle with a greater accumulation toward one 

side (Fig. 18).

The differing extent of the CPC precipitate at the epithelial 

margins of the otic vesicle aperture was clearly evident in Figures 

6, 11, 12, 16, 18, and 19. The cells which comprised the adjacent 

normal surface ectoderm were larger in circumference and displayed 

relatively little precipitate. Proceeding to the margins of the 

otic vesicle aperture, the cells became smaller and showed a more 

dense accumulation of CPC precipitable material. The latter was 

increasingly apparent within the lumen of the forming otic vesicle 

where the precipitate completely obscured the apical surfaces of the 

cells (Fig. 19).

Due to the required extensive washing of specimens and the 

nature of the precipitate following fixation in glutaraldehyde/CPC,
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it was possible that the results were artifactually produced. In an 

attempt to validate the above results, a freeze-substitution technique 

was employed (Plattner and Bachmann, 1982; Markwald, personal commun­

ication). Embryos which were pre-fixed in 2% glutaraldehyde and then 

frozen in LN cooled Freon-22 gave identical results to those processed 

conventionally (Fig. 20). With the addition of CPC to the aldehyde 

fixative prior to freezing, a pattern of precipitate very similar to 

that seen previously was observed (compare Fig. 21 with Figs. 6, 11,

16, and 18). Moreover, embryos that were frozen without prior aldehyde 

fixation yielded a precipitate very similar to that seen with 

glutaraldehyde/CPC fixation with or without subsequent 

freeze-substitution (Fig. 22).

In order to specifically characterize the sugar moieties present 

within the SCM, the FITC-conjugated lectins Con A, WGA, and SBA were 

utilized. The binding of the latter to representative paraffin 

embedded sections of early (stages 12-13), middle (stages 14-15) and 

late (stage 16) stages of otic placode/vesicle development are shown 

in Figures 23-31. Sections labeled for Con A binding during early 

vesicle development showed a labeling of the apical surface of the 

epithelium and the associated basal lamina (Fig. 23a). Sections 

labeled for WGA (Fig. 24a) and SBA binding (Fig. 25a) showed similar 

results but with different levels of binding affinity. However, the 

binding of WGA appeared to be more diffuse throughout the thickness 

of the placode epithelium. Control sections showed virtually no 

labeling with the exception of the basal lamina in WGA controls 

(Figs. 23b, 24b, and 25b).
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The results from the middle stage of otic vesicle development 

are shown in Figures 26-28. Labeling was similar to that seen in the 

previous group. The localization of Con A binding to the apical 

surface of the otic vesicle epithelium is evident in Figure 26a.

The binding of WGA (Fig. 27a) continued to be more diffuse than Con A 

and extended throughout the entire thickness of the epithelium. The 

binding of SBA was still relatively low but was more intense than in 

the previous stage (compare Figs. 28a and 25a). Control sections 

yielded results which were similar to those observed previously 

(Figs. 26b, 27b, 28b).

Lectin binding during the late stage of otic vesicle formation 

is shown in Figures 29-31. Although the binding of Con A (Fig. 29a) 

and WGA (Fig. 30a) appeared to show a reduction of binding affinity, 

the results were very similar to the previous stages. Sections 

labeled with SBA (Fig. 31a) revealed increased labeling of the basal 

lamina and the apical epithelial surface when compared to previous 

stages. Control sections showed no labeling above background levels 

(Figs. 29b, 30b, 31b).

The binding of all lectins revealed the presence of a whispy 

material at the apical surface of the otic vesicle epithelium which 

extended into the lumen (Figs. 23a, 24a, 26a, 27a, 29a, 30a, 31a).

The surface ectoderm showed no distinct difference in binding from 

that of the developing vesicle (Figs. 24a, 25a, 31a). The intensity 

of the binding was different for the various lectins, in that WGA>

Con A>SBA. The binding affinity of the tissue for SBA appeared to 

increase during otic vesicle development (compare Figs. 25a, 28a,
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31a), whereas that for Con A and WGA remained constant. The 

basal lamina was labeled in all instances, moreover, the binding 

affinity of WGA to the basal lamina was intense enough to not be 

inhibited at the utilized sugar concentration (Fig. 27b),



DISCUSSION

The overall development of the otic vesicle (otocyst) as reported 

in the current study was similar to that previously described (Bancroft 

and Bellairs, 1977; Meier, 1978b). This morphogenetic process began 

by the establishment of the otic placode, which appeared as a 

localized thickening of the surface ectoderm overlying the developing 

rhombencephalon. As development continued, the otic placode proceeded 

to invaginate and form the otic pit and subsequent otic vesicle. The 

epithelial margins which surround the aperture of the developing otic 

vesicle then approached one another and eventually adhered and fused. 

The vesicle then separated from the overlying surface ectoderm.

The present study demonstrates that the process of epithelial 

invagination was accompanied by an apparent increase in the amount of 

CPC precipitable material located within the lumen of the developing 

otic vesicle. This precipitate was flocculent in appearance, was 

evident as early as 45-48 hours (stage 12) of development, and is 

believed to represent SCM components. A similar precipitate was 

observed following fixation in glutaraldehyde/CPC in association with 

the developing lens vesicle (Van Rybroek and Olson, 1981; Olson and 

Sinning, 1934) and during optic cup formation (Hilfer and Yang, 1980), 

and following alcian blue-lanthanum nitrate staining during amphibian 

gastrulation (Moran and Mouradian, 1975). Similarly, an increase in 

SCM has been observed with the utilization of the cationic stain, 

ruthenium red, associated with the developing palatal shelves 

(Greene and Kochhar, 1974; Souchon, 1975; Meller and Barton, 1978),

17
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neural folds (Mak, 1978; Sadler, 1978; Rovasio and Morn's, 1981), nasal 

folds (Gaare and Langman, 1977) and lens vesicle (Van Rybroek and 

Olson, 1981).

The nature of the nonspecific precipitate seen with glutaraldehyde/ 

CPC fixation could be artifactual. Proteins in the amnionic fluid 

present during fixation, may be precipitated onto the surface ectoderm 

and accumulate within the lumen of the developing otic vesicle. Two 

methods were used to reduce the probability of this occurance. The 

first involved removal of the vitelline membrane and amnion followed 

by extensive washing of the embryo in saline solution prior to fixation. 

This process should rinse away most, if not all, extraneous proteins 

prior to fixation. The second method was to combine the removal of the 

vitelline membrane and amnion with subsequent cryofixation and 

freeze-substitution. The ultimate goal of cryofixation was to fix 

instantly all cell components in their momentary random distribution 

(Plattner and Bachman, 1982; Plattner and Knoll, 1982). The latter 

included glycoproteins and glycolipids of the SCM which were precipi­

tated on the cell surface (Feder and Sidman, 1958). Embryos fixed 

in 2% glutaraldehyde or glutaraldehyde/CPC prior to freezing gave 

results similar to those processed conventionally. This indicates 

that the washing procedure was effective in eliminating any amnionic 

proteins that were present. Since rinsing and manipulation of the 

tissue during cryofixation and freeze-substitution were kept at a 

minimum, there was less chance for artifactual accumulation of 

precipitate within the lumen of the otic vesicle. This was further 

supported by results from embryos that were frozen without prior



19

aldehyde fixation. These specimens showed a precipitation pattern very 

similar to that seen with glutaraldehyde/CPC. Similar results comparing 

CPC precipitation and freeze-substitution have also been reported by 

Kitten et al. (1981).

Lectins have been used increasingly to characterize the 

carbohydrate moieties present within the SCM (Sharon and Lis, 1972;

Lis and Sharon, 1973; Nicholson, 1974; Kornfeld and Kornfeld, 1978;

Alroy et al., 1984; Horisberger, 1984). The data from the current 

study indicate that the SCM associated with the developing otic 

vesicle contains molecules that bind positively with the specific 

lectins used in the study. This is in agreement with similar studies 

involving the SCM associated with the developing neural tube (Mak,

1978; Currie et al., 1984), nasal folds (Smuts, 1977; Burk et al .,

1979), and palate (Pratt and Hassell, 1975; Baeckeland et al., 1982; 

Heinen et al., 1982).

The binding intensity for the different lectins was not identical. 

The pattern of binding affinity revealed that WGA>Con A>SBA. The 

intense affinity of the SCM for WGA would be expected since the 

plasmalemma is known to contain large amounts of sialic acid (Wallach 

and Kamat, 1966). It was not possible in the present study to discern 

the relative intensity of WGA binding with sialic acid, since WGA 

binds similarly to both sialic acid and N-acetyl-D-glucosamine (Glc- 

Nac). The use of succinylated WGA would overcome this problem because 

it will bind only to Glc-Nac. The binding affinity of the tissue 

for Con A, which is specific for a-D-glucose and a-D-manose residues, 

appeared to remain constant during the sequential developmental stages.
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The binding affinity of the tissue for SBA, which is specific for 

galactose and N-acetyl-galactosamine residues, increased as the 

vesicle developed, so that by later stages it matched or slightly 

exceeded that of Con A.

The localization of binding for the lectins is also of interest. 

WGA labeled cells throughout the entire thickness of the placode 

epithelium, whereas the binding of Con A and SBA was limited to the 

apical region of the otic vesicle epithelium. The basal lamina was 

labeled in later stages of development by all three lectins. The 

binding affinity of WGA and SBA to the basal lamina was so intense 

that it remained labeled even in some control sections. Similar 

results of non-inhibited WGA binding has been observed in matrix 

granules during neural crest cell migration (Brauer; personal 

communication).

In the present study, the relative thinness of the surface 

ectoderm combined with the intense positive labeling of the basal 

lamina made it impossible to resolve differences in lectin binding 

between the surface ectoderm and the developing otic vesicle, even 

though previous reports on neural tube formation (Currie et al., 1984) 

and palatogenesis (Pratt and Hassell, 1975; Baeckeland et al., 1982) 

have reported such differences. An explanation for this discrepency 

may be the use of FITC-conjugated lectins in the present study, as 

opposed to a more localized label such as ferritin. In support of 

this is the study by Baeckeland et al. (1982) in which both ferritin 

and FITC-conjugated Con A were utilized. This study reported that a 

localized ferritin-Con A binding pattern was observed similar to that
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seen with ruthenium red staining in the palate (Greene and Pratt, 1974) 

and neural tube (Sadler, 1978). However, when FITC-conjugated Con A 

was used, a diffuse labeling of all epithelial cells was observed. 

Moreover, it was inferred that the differences which were observed 

were, in part, related to the inherent differences between the two 

techniques, in that one dealt with whole palatal shelves 

(ferritin-Con A) while the other invovled sectioned material 

(FITC-Con A).

Results from both lectin binding and CPC precipitation studies 

indicate that both methods identify comparable structures. Both are 

believed to demonstrate carbohydrate moieties, but this has not been 

conclusively shown. However, recent studies have combined CPC precip­

itation with either Con A binding (Grote and Fromme, 1984a; Brauer et 

al., 1985) or silver proteinate staining (Grote and Fromme, 1984b) 

which have demonstrated labeling of the electron dense precipitate, 

which suggests the presence of glycoconjugates.

The increased precipitate seen at one edge of the otic vesicle 

aperture at stages 15 and 16 is interpreted to represent the area of 

active adhesion and fusion of the epithelial margins which surround 

the aperture. This is supported by earlier reports which have shown 

an increase in the SCM prior to and during fusion of the neural folds 

(Moran and Rice, 1975; Lee et al., 1977; Lee et al., 1978; Sadler, 1978; 

Silver and Kerns, 1978) and palatal shelves (Greene and Kochhar, 1974; 

Pratt and Hassell, 1975; Souchon, 1975). This was supported further by 

studies which have used either Con A (Lee et al., 1977) or 

neuraminadase treatment (Heinen et al., 1982), which reduced the amount
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of SCM, and resulted in reduced fusion of the neural folds and palatal 

shelves, respectively. Moreover, inhibitors of glycoconjugate synthesis 

including 6-diazo-5-oxo-L-norleucine, tunicamycin and carrageenan have 

been shown to result in facial clefts (Burk and Sadler, 1983), neural 

tube defects (Rovasio and Monis, 1981), reduced fusion of palatal 

shelves in vitro (Greene and Pratt, 1977) and abnormal optic cup 

formation (Yang and Hilfer, 1982). All of these studies support the 

association of glycoconjugates with epithelial adhesion and fusion.

The present study has confirmed the presence of SCM at the apical 

epithelial surface of the developing otic placode and subsequent otic 

vesicle. This was achieved by the precipitation of SCM components 

with glutaraldehyde/CPC. In an attempt to verify the CPC results, 

additional embryos were processed by cryofixation followed by 

freeze-substitution without prior aldehyde fixation. These embryos 

yielded results similar to those fixed in glutaraldehyde/CPC. Sugar 

moieties within the SCM were characterized, in part, using 

FITC-conjugated lectins. Although all lectins reacted positively 

with the SCM, it was not possible to detect differences between the 

surface ectoderm and the developing otic vesicle due to the limited 

resolution of the technique. It is believed that the use of a more 

discretely localized labeling technique such as ferritin or colloidal 

gold would overcome this problem and yield data with improved resolu­

tion. In turn, any existing differences in lectin binding affinity 

for the otic vesicle epithelium and the surrounding surface ectoderm 

could be readily enhanced.
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LEGEND TO FIGURES
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A - apical surface of otic piacode/vesicle epithelium 

B - entire thickness of otic placode/vesicle epithelium 

LV - lens vesicle 

OP - otic placode/pit 

0V - otic vesicle 

PA - first pharyngeal arch

SE - surface ectoderm
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Fig. 1

Fig. 2

PLATE I

Head region of chick embryo (45-48 hours; stage 12).
The otic placodes (OP) are easily distinguished from the 
surrounding surface ectoderm, x 80.

Invaginating otic placode (45-48 hours; stage 12).
This micrograph represents a higher magnification of the 
embryo in Figure 1. The cells within the otic placode 
(OP) appear smaller than those of the adjacent surface 
ectoderm (SE). x 1,000.
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PLATE II

Fig. 3. Transition zone between the surface ectoderm and otic 
placode (45-48 hours; stage 12). The cells comprising 
the surface ectoderm (SE) are larger, possess a single 
cilium (arrows), and exhibit microvilli along their 
lateral borders (arrowhead). The cells within the otic 
placode (OP) are noticeably smaller and protrude 
extensively from the surface of the embryo, x 1,800.

Fig. 4. G1utaraldehyde/CPC fixation (45-48 hours; stage 12). A 
flocculent precipitate (arrowheads) is seen overlying the 
surface ectoderm (SE); it is particularly abundant over 
the developing otic placode (OP), x 700.
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Fig. 5

Fig- 6

PLATE III

Developing otic pit (48-52 hours; stage 13). At this 
time the otic placode (OP) is more extensively invaginated 
and may be referred to as an otic pit. Note significant 
differences in the size of the cells comprising the surface 
ectoderm (SE) when compared to those of the otic pit. 
x 700.

Invaginating otic placode (48-52 hours; stage 13). The 
addition of CPC to the aldehyde fixative results in a 
heavy flocculent precipitate (arrows) largely confined 
to the forming otic pit (OP) contrasted with the surface 
ectoderm which remains relatively clean, x 1,900.
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PLATE IV

Figs. 7, 8 . Floor of otic pit (48-52 hours; stage 13). The
floor of the otic pit is characterized by cells with 
indistinct lateral borders, possessing numerous blebs 
(arrows) and beaded threads (arrowheads). With the 
addition of CPC to the fixative (Fig. 8 ) the precipi­
tate obscures the floor of the pit. 
x 5,400, Fig. 7; x 5,800, Fig. 8 .
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PLATE V

Fig. 9. Head region of embryo (50-53 hours; stage 14). The forming 
otic vesicle (OV) is more extensively invaginated. The 
head is turned to the right and the lens vesicle (LV) is 
also present, x 80.

Fig. 10. Developing otic vesicle (50-53 hours; stage 14). The otic 
vesicle is deeper than in the previous stage and the 
aperture is rounded in shape, x 675.

Fig. 11. SCM associated with otic vesicle (50-53 hours; stage 14).
The precipitate (arrows) formed with glutaraldehyde/CPC 
is localized to the region of the otic vesicle (OV). The 
surface ectoderm (SE) possesses little SCM as indicated 
by the small amount of precipitate, x 1,400.

Fig. 12. Margin of the otic vesicle aperture (50-53 hours; stage 14). 
The demarcation of CPC precipitatable material is very 
evident. The larger cells of the surface ectoderm (SE) 
show relatively little precipitate. The amount of 
precipitate increases at the margin of the aperture and 
completely obscures the epithelium which lines the lumen 
of the otic vesicle (OV). x 3,800.
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PLATE VI

Fig. 13. Head region (50-55 hours; stage 15). The forming otic 
vesicle (OV) is evident at the same level as the 
developing heart. The developing lens vesicle (LV) is 
evident as is the first pharyngeal arch (PA), x 75.

Fig. 14. Aperture of otic vesicle (50-55 hours; stage 15). The
aperture of the otic vesicle (OV) is beginning to change 
to an elliptical shape. The vesicle has continued to 
invaginate which is apparent since its floor is largely 
hidden from view. The surface ectodermal cells remain 
large and possess microvilli (arrowhead) along their 
lateral borders, x 800.

Fig. 15. Elliptical aperture of otic vesicle (50-55 hours; stage 15).
The aperture is now elliptical in shape, indicating closure 
of the otic vesicle. An area of active fusion of the 
epithelial margins of the aperture is present in the 
upper portion of the figure (arrow), x 1,400.

Fig. 16. Epithelial fusion and associated CPC precipitate (50-55 
hours; stage 15). The addition of CPC to the fixative 
again yields a precipitate that is localized within the 
invaginated vesicle (OV). This material appears heavier 
at one side of the aperture (arrow) which suggests an 
underlying area of adhesion and/or fusion, x 700.
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PLATE VII

Figs. 17, 18. Closure of otic vesicle aperture (51-56 hours;
stage 16). The aperture of the vesicle (OV) is 
increasingly becoming more elliptical indicative of 
continued closure. The surface ectoderm (SE) 
remains comparable to previous stages with micro­
villi along the lateral borders of cells (arrows). 
The addition of CPC to the fixative yields a 
precipitate which is similar to that seen in 
Figure 16 (arrowheads), x 700, Fig. 17; 
x 1,500, Fig. 18.

Fig. 19. CPC and otic vesicle (51-55 hours; stage 16). CPC
precipitates the glycoconjugate components of the 
SCM. The precipitate continues to be far more 
predominant over the otic vesicle (OV) when compared 
to its sparsity in association with the surface 
ectoderm (SE). x 3,300.
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PLATE VIII

Fig. 20. Embryo fixed in glutaraldehyde prior to
freeze-substitution (48-52 hours; stage 13). The surface 
ectoderm (SE) and the otic vesicle (OV) are free of any 
precipitate, x 875.

Fig. 21. Embryo fixed in glutaraldehyde/CPC prior to
freeze-substitution (48-52 hours; stage 13). These 
specimens revealed a precipitate (arrows) similar to 
that seen in embryos processed by conventional methods, 
x 1,200.

Fig. 22. Embryo processed by freeze-substitution (48-52 hours; 
stage 13). Embryos frozen without prior aldehyde 
fixation reveal disimilar amounts of precipitate when 
the otic vesicle (OV) and nearby surface ectoderm are 
compared. This is comparable to specimens fixed in 
glutaraldehyde/CPC. x 2,400.
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PLATE IX

Fig. 23a, b. Con A binding (45-48 hours; stage 12). The binding 
of Con A is limited to the apical surface (A) of 
the placode epithelium and the associated basal lamina 
(arrow). Control sections (23b) show no labeling, 
x 450, Fig. 23a; x 450, Fig. 23b.

Fig. 24a, b. WGA binding (48-52 hours; stage 13). The binding 
of WGA to the developing otic vesicle appears to 
extend throughout the thickness of the epithelium 
(B) and the basal lamina (arrow). The surface 
ectoderm (SE) is also labeled. Control sections 
(Fig. 24b) show faint labeling of only the basal 
lamina, x 450, Fig. 24a; x 450, Fig. 24b.

Fig. 25a, b. SBA binding (48-52 hours; stage 13). The binding 
of SBA to the otic vesicle, like Con A, is limited 
to the apical surface and the basal lamina (arrows). 
Control sections (Fig. 25b) reveal no labeling.
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PLATE X

Fig. 26a, b. Con A binding (50-55 hours; stage 15). The 
localization of binding to the apical surface 
epithelium (A) and basal lamina (arrow) of the 
developing otic vesicle and surface ectoderm (SE) 
is shown. Control sections (Fig. 26b) show no 
binding, x 450, Fig. 2ba; x 450, Fig. 26b.

Fig. 27a, b. WGA binding (50-53 hours; stage 14). The binding
of WGA is similar to that seen in Fig. 24a. Control 
sections show a distinct binding of the basal lamina 
(arrows), x 450, Fig. 27a; x 450, Fig. 27b.

Fig. 28a, b. SBA binding (50-55 hours; stage 15). The binding
affinity of SBA is greater than in Figure 25a. Binding 
is present on the apical surface of the forming 
vesicle and the basal lamina (arrow). Control 
sections show no labeling except slightly within 
the basal lamina (28b). x 450, Fig. 28a; 
x 450, Fig. 28b.

%





PLATE XI

Con A binding (51-56 hours; stage 16). Labeling 
of the surface ectoderm (SE), apical surface of the 
otic vesicle epithelium (A) and basal lamina (arrow) 
is positive. A whispy material present between the 
opposed epithelial margins of the aperture is also 
faintly labeled (open arrow). Control sections (29b) 
are not labeled, x 450, Fig. 29a; x 450, Fig. 29b.

WGA binding (51-56 hours; stage 16). The binding 
of WGA remains throughout the thickness of the 
otic vesicle epithelium and associated basal lamina 
(arrows). A whispy material similar to that in 
Figure 29a is also faintly labeled (open arrow). 
Control sections are void of label except within the 
basal lamina (Fig. 30b). x 450, Fig. 30a; 
x 450, Fig. 30b.

SBA binding (51-56 hours; stage 16). The binding 
pattern of SBA is similar to that seen in Figure 28a, 
but the binding intensity is greater. The surface 
ectoderm (SE) is also labeled. Control sections 
show no binding except within the basal lamina 
(arrow; Fig. 31b). x 450, Fig. 31a; x 450, Fig. 31b.
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