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ABSTRACT 

Due to their exceptional properties, rare earth elements (REEs) are critical to technological 

innovation in renewable energy production, electronics, health care, and national defense. They 

make up key components for many applications in the above areas. Many countries rely upon 

rare earth element imports. The high demand for rare earth elements has led to the development 

of alternative methods for exploration and capture. Coal has been labeled a viable potential 

source of rare earth elements and yttrium (REY).  Statistical evaluation of REY concentrations 

and the properties of various coal samples is critical for successful characterization.  

The USGS COALQUAL database Version 3.0 is an industry standard database for coal 

research that contains 7658 non-weathered, full-bed coal samples from the United States. 5485 

of these samples contain a full spectrum of REY concentrations. The data quality in the 

COALQUAL database will be analyzed to ensure that the data is reliable, and characteristics will 

be analyzed using conventional statistical methodology. This methodology includes accounting 

for samples with REY concentrations below the lowest limits of detection. Mean concentrations 

for each REY will be adjusted to fit a distribution of mean REY concentrations from the National 

Coal Resources Data System (NCRDS) normalized by the Upper Continental Crust standard 

dataset of REY mean concentrations. All samples are classified as unpromising or promising 

using total rare earth oxide concentration and the ratio of critical REYs to excess REYs called 

the outlook coefficient.  

Machine learning is a powerful tool that can utilize data to classify new data points added 

to a database based on data attributes. A machine learning model was developed to use existing 

data from the COALQUAL database to train and test algorithms to classify coal samples as 



 ix 

unpromising or promising based on the samples ASTM ash percentage. The 5485 adjusted coal 

samples from the COALQUAL database were used and subjected to synthetic minority over-

sampling technique (SMOTE) to eliminate label bias, and imputing methods were used to format 

the data for computational purposes. The adjusted coal samples were tested amongst various 

machine learning algorithms for the best performance. Accuracy and the number of false 

positives were the key performance indicators used to test each algorithm. The k-nearest 

neighbors (KNN) algorithm emerged as the best performer with 92% accuracy and 2% false 

positives. A brief economic analysis is included to justify using the model to save costs 

associated with obtaining trace element concentrations from laboratory analysis. 

Recommendations are given with details on how to utilize this research for future endeavors.  
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CHAPTER 1: INTRODUCTION 

The global outlook on rare earth element supply is precarious. Due to growth in 

technology and the demand for such, the world supply of these essential elements is dwindling. 

Dedicated mining for rare earth elements has proven to be uneconomical in most areas of the 

world, but alternative extraction ideas have been considered. One of which is to extract rare earth 

elements from coal. Extensive research has been conducted that suggests that rare earth elements 

from coal can be a viable supplement to the global supply of rare earth elements.  

 Growing investment in the science of rare earth element extraction from coal has led to 

innovation in the areas of exploration, characterization, processing, and refining. One of the most 

important research areas in characterization. It is important to understand whether coal from a 

particular geological and geographical nature will yield significant returns in terms of rare earth 

element content. The consequences of poor characterization is wasteful spending and inadequate 

supply recovery.  

 Due to growing technological capabilities, machine learning has been a tool that many 

researchers are turning to in order to provide fast, low cost solutions to complex problems. Given 

reliable and numerous data points, machine learning algorithms can learn from the data and 

provide powerful insights.  

 The purpose of this work is to utilize machine learning algorithms to create a useful 

model that aims to classify coal samples as promising or unpromising in terms of their rare earth 

element concentration and economic outlook. The goal is ultimately to lower the cost and time 

associated with using analytical techniques to measure the rare earth element concentrations of 

coal samples collected for research purposes. 
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CHAPTER 2:  LITERATURE REVIEW 

The following chapter provides background information on rare earth elements, how they 

relate to coal, and how statistical analysis and machine learning have the potential to add value to 

research pertaining finding significant rare earth element concentrations in coal. Additional 

information can be located in Appendix A. 

2.1. Background on Rare Earth Elements 

Rare earth elements (REE) are a group of elements characterized by having atomic numbers 

57 – 71. They are comprised of the lanthanide series (lanthanum (La), cerium (Ce), 

praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), 

gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), 

ytterbium (Yb), and lutetium (Lu)). The other REEs are scandium (Sc) and yttrium (Y) which 

can be considered REEs due their similar properties. See Fig. 1 for the locations of REEs on the 

periodic table. The term REE is used variably in literature, so a scope needs to be defined. This 

research only includes the lanthanides and Y in the list of REEs. Lanthanides + Y is referred to 

as REY. Yttrium is associated with lanthanides due to its ionic radius being very similar, and its 

ionic charge is the same as Ho. Because of this, yttrium is often placed between Dy and Ho in 

standardized REY charts. 

It is not exactly true that rare earth elements are “rare,” but rather they are uniformly 

distributed throughout the earth’s crust. Therefore, it is “rare” to find REYs concentrated in one 

place. The origins of the nomenclature begin with their discovery in the 18th century. When they 

were discovered along with types of oxides labeled “earths,” the elements were deemed to be 

rather uncommon.  
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 Figure 1. REEs denoted by red boxes [1, 2, 3, 4, 5, 6]. 

2.2. Properties of REYs 

The physical, chemical, and metallurgic activity of REYs is dictated by their electron 

configuration. The common electron configuration shared by all REYs is a trivalent oxidation 

state. Sm, Eu, and Y are able to obtain divalent oxidation states, and Ce, Pr, and Tb are able to 

obtain tetravalent oxidation states. The lanthanides all have the same valence electron 

configuration 5d6s2 while Y has a valence electron configuration 4d5s2.   

 An extraordinary property of lanthanides is with increasing molecular weight, ionic 

radius decreases. This is called lanthanide contraction. This applies only to lanthanides that 

obtain the trivalent oxidation state. The contraction is due to the 5s and 5p orbitals entering into 



 4 

the 4f subshell. This means the 4f orbital is unprotected from increasing nuclear charge. With 

poor shielding, the positively charged nucleus has a larger affinity to the electrons towing them. 

The result is as the atomic number increases the ionic radius decreases. Lanthanide contraction 

allows lanthanide separation techniques to work. Basicity is the key property used in separation 

techniques. As basicity decreases, hardness, density, and melting point will increase with 

molecular weight increasing [7].  

 The physical properties of lanthanides vary amongst each element unlike their chemical 

properties. In Fig. 2, the melting points of each element are plotted with respect to molecular 

weight, and the transition of crystal structures of each REY are also displayed. 

 

 Figure 2. Transition temperature plotted against atomic number specifying melting 

temperatures and transformations of crystal structures [8]. 
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Vapor pressure and boiling point also vary amongst REYs. This can be attributed to the differing 

oxidation states that affect crystalline structure and magnetic properties.   

 Rare earth magnets are among the strongest magnets in known existence. Due to their 

extraordinary magnetic properties, some lanthanides are extremely valuable in creating 

permanent magnet configurations. The cause of these properties lies in the number of unpaired 4f 

electrons. With increasing lanthanide atomic number, a 4f electron is added incrementally and a 

magnetic moment is created due to electron spin. Additional electrons align parallel until the 4f 

level is filled at Gd.  After Gd, the newly added electrons align antiparallel until Lu is reached 

and no magnetic moment is created due to all electrons being paired.  REYs consisting of all 

paired electrons have weak magnetic properties. REYs with unpaired 4f electrons are highly 

magnetic and make up the largest cluster of magnetic metals amongst known elements.   

 REYs are extremely reactive with all acids except hydrofluoric acid and produce 

hydrogen gas as a byproduct. They are normally ionic and act as strong reducers. In the presence 

of water, lanthanides will release hydrogen gas at a temperature dependent rate. They react with 

hydrogen gas to produce REYH2. In the presence of strong hydrides, REYs produce REYH3. 

REYs can react with organic molecules yielding organic complexes. The most researched and 

critical categories of REYs are halides, hydrides, and oxides. 

2.3. REY Applications   

REYs have been labeled as “chemical vitamins” due to having the quality of producing 

astonishingly different properties when reacted with different materials. With their unique 

chemical and physical properties, the REYs allow technology to work functionally with lower 

weight, energy consumption, and emissions and can improve efficiency, size, speed, structural 

and thermal integrity, and performance [9, 10]. NETL data shows that catalysts embody the largest 
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amount of application in the United States.  Areas of the market that are dependent on products 

manufactured using REYs include military technology, health care, electronics, transportation, 

lighting, communication and audio devices [10]. Fig. 3 shows various applications for REEs. 

Prices shown are for 2008 and can experience significant fluctuations. Fig. 4 displays application 

percentages in the United States versus the world and details more specific REE applications.  

 

 Figure 3. REEs and their uses with price per kilogram on an oxide basis [11] 
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\  

 Figure 4. REE Application Percentages in the United States versus the World and more 

specific REE applications [10] 
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2.4. REY Geology 
 

As mentioned previously, REYs are considered “rare,” due to their presence in the 

Earth’s crust rarely being concentrated; therefore, economically viable opportunities are difficult 

to identify. REY occurrence is strongly related to geological circumstance. Because REYs are 

hard to separate chemically, they often appear together in various mineral forms. There are 200 

identified minerals where REYs are found [12], and six particular minerals that are the most 

successful in terms commercial production [13]. They are Bastnasite [(Ce,La)(CO3)F], Monazite 

[(Ce,La)PO4], Xenotime [YPO4], Loparite [(Ce,Na,Ca)(Ti,Nb)O3], Apatite 

[(Ca,REE,Sr,Na,K)3Ca2(PO4)3(F,OH)], and Ion-adsorption clays. Bastnasite, Monazite, and 

Xenotime make up most of the world’s known reserves ~ 95% [14]. There are two major 

classifications of REY deposits: magmatic deposits and sedimentary deposits. These deposits can 

be broken down into mineral types. Magmatic deposits consist of carbonitite, perlalkaline, and 

pegmatitic minerals.  Sedimentary deposits consist of residual, placer, phosphorite, phosphate, 

ion-adsorption clays, coal and associate minerals [15]. These deposits are described more in-

depth in Appendix A [16]. 

2.5. REY Criticality  

The criticality of REYs have recently been characterized in terms of supply risk and the 

effect of supply reduction or significance to a combination of technologies and applications. A 

critical materials assessment was recently completed by the United States Department of Energy 

(DOE) where each REY was evaluated based on five year and fifteen year outlooks [17]. A 

visualization how REYs were assessed is displayed in Fig. 5 for both outlooks. The criticality 

was assessed based on their associations to clean energy and their supply risk.  REY clean 

energy importance can be broken down and weighted by clean energy demand (75%) and 
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limitations in sustainability (25%). Supply risk can be broken down and weighted by basic 

availability (40%), producer diversity (20%), political, regulatory, and social factors (20%), 

competing technology demand (10%), and codependence on other markets (10%). From this 

analysis, Nd, Eu, Tb, Dy, Y, and Er are considered critical REYs [10]. Dy is considered the most 

critical REY in both time scenarios.  Seredin (2010) also categorized REY criticality based on 

IMCOA market evaluations. REYs can be broken down into categories based on Seredin’s 

research: critical (Nd, Eu, Tb, Dy, Y, and Er), uncritical (La, Pr, Sm, and Gd), and excess (Ce, 

Ho, Tm, Yb, and Lu) [18].  

  

 

Figure 5. U.S. Department of Energy 2011 critical materials assessment for clean energy 

for short and medium terms [17] 
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For simplicity, Seredin’s REY categories will be used in the rest of this document to describe 

REY criticality. Based on these evaluations, it is fair to say that REYs are some of the most 

important of mineral commodities in the United States and the rest of the world.   

2.6. Global Outlook of REYs 

It is estimated that China possesses 30% - 50% of all global REY reserves [19, 20]. This 

is consistent with China being the dominant country in terms of global REY supply, totaling 83% 

in 2016. In 2010, China’s global supply contribution was about 95% [19]. This was not always 

the case as the United States controlled the global market in first half of the 20th century. Fig. 6 

shows a history of REY production comparing the U.S., China, and the rest of the world 

throughout the 20th century. In the 1980’s, China began to dominate the market for a number of 

reasons including inexpensive human capital and less severe environmental regulations. In 2002, 

the last remaining rare earth element mine in the United States, Mountain Pass, closed. It has 

since been reopened and is currently owned by stakeholders from the U.S. and China. In 2005, 

long-term unstable production rates incentivized China to enact export quotas on REYs that 

benefit domestic supply chains and created a global monopoly for China. A Chinese REY 

embargo against Japan catalyzed speculative supply fears for western countries and caused high 

significant global price surge for REYs. As a result, China assigned export quotas for local and 

foreign REY exporting businesses. China was forced to change their export policies after a 

World Trade Organization (WTO) dispute amongst the European Union (EU), Japan, and the 

United States. Because of relational disputes in the global REY market, stability is fragile [20].   
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Figure 6. Rare earth element production through 2016 [21] 

The potential for instability in the global REY market has catalyzed the need for several 

countries to begin looking into domestic exploration, mining, and production opportunities.  A 

few of the top REY producers outside of China are Australia, the U.S., Russia, Myanmar, and 

India. With the reopening of Mountain Pass mine and the increases in mining and production 

active globally, the global production of REEs in 2018 was 170000 MT.  China is still the largest 

producer at 120000 MT (~71%).  Australia is the second largest producer with 20000 MT 

(~12%), the U.S. is the third largest producer with 15000 MT (~9%).  The rest of the global 

market makes up the remaining 8% of the produced REEs [22].  

Another factor that contributes to global outlook instability in REY supply stems from 

REY over-production in China.  88% of Chinese REY exports come from three domestic mining 

provinces: Baotou, Sichuan and Jiangxi.  83% of China’s REY reserves are located at the Bayan 

Obo mine in the Baotou province.  This is the world’s largest reserve of REYs.  REYs are 

produced at the Bayan Obo mine as a byproduct of iron ore mining.  The chemical composition 

of the ore mined there is Fe-REE-Nb.  From a global outlook perspective, Bayan Obo is where a 

vast majority of the world’s heavy REY supply is generated [23].  Experts are predicting that this 
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reserve will be heavy REY depleted by 2025 which suggests that there will be global instability 

in the supply of HREYs in the near future [24]. Fig. 7 shows the geographic spread of major 

REE mining operations throughout the globe. 

 

Figure 7. Global REE mines, exploration projects and other resources [20] 

2.7. REYs in Coal and Coal Byproducts 

It is previously mentioned in this text that REY concentration can be enriched in some 

coals and sediments to a greater degree than that of the Earth’s crust. Total REY content > 0.1% 

has been found in some coal seams and basins which is considered high in concentration. Coal 

resources have not been utilized because conventional methods of mining ore deposits containing 

REYs was deemed sufficient in terms of supplying the global market. As discussed in the 

previous section, global demand for REYs is increasing while supply is in danger of drastically 

waning.  
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Seredin and Finkelman (2008) suggest that REYs can be concentrated in coal at many 

formation phases from early peat stages to anthracite stages. Coal processes can be divided into 

syngenetic, diagenetic, and epigenetic processes. Syngenetic processes take place during the peat 

accumulation phase. Diagenetic occurs after the peat burial phase and during the coalification 

steps. Epigenetic processes take place after coal has been compacted and solidified, and this 

process is stratified on an age basis (lignite, subbituminous, bituminous, etc.). There are many 

different ways in which REYs are transported into coals. Surface and ground water are the main 

transport methods in which REYs enter coals. Trace REYs can leach out of ore deposits or 

volcanic ash material as a means of surface water transport. Ground water in coal basins 

typically have large concentrations of trace elements and through percolation these trace 

elements will move through coal ranks to a rank with low permeation. Typically, the higher the 

coal rank the less permeable it is. Volcanic or cosmic impact events can distribute REYs 

geographically and wind can displace particulates from these events. Polygenic transport 

phenomena can cause spikes in REY accumulations. This is generally a side effect of ore-

forming processes that take place throughout coal forming phases [25].  

 Three geological conditions are responsible for creating coals containing REYs during 

the formation of coal basins. Tuffaceous type coals are formed primarily as a result of volcanic 

activity.  Tuffaceous REY enrichments are accompanied by high concentrations of hafnium (Hf) 

and zirconium (Zr) and have less Eu than normalized crustal abundances. Minerals that typically 

form in tuffaceous type coals are zircon, phosphate contain minerals such as apatite and 

monazite, and aluminophosphates such as crandallite, Infiltration type coals are typically formed 

from epigenetic percolation transportation of REYs into coal basins where they are adsorbed into 

organic matrices. This is more common in upper sediment layers and lower rank coal. 
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Exfiltration type coals are created as a result of the flow of sedimentary hydrothermal solutions 

or deep-water solutions to coal basins at the peat accumulation step. Generally, the organic 

matrix of coals at this stage can readily absorb trace metals [25].  

Seredin and Dai (2012) grouped REYs into light (LREY - La, Ce, Pr, Nd, and Sm), 

medium (MREY - Eu, Gd, Tb, Dy, and Y), and heavy (HREY - Ho, Er, Tm, Yb, and Lu) 

categories based on molecular weight [26]. The authors’ research shows that coals with LREYs 

are formed based on tuffaceous or infiltrational mechanisms. Acidic water activity in coal basins 

and high adsorption properties of the organic matrix in coals are consistent with MREYs [27, 

28]. Circulation of marine water, alkaline terrestrial water, and volcanogenic water with high 

concentrations of HREYs in coal basins are responsible for coals with HREYs [29]. Due to the 

variety of different enrichment conditions for the three different coal categories, REY 

distributions in coal are highly variable.   

2.8. Occurrence of REYs in Coal 

There are three main groupings shown by numerous studies that describes the presence of 

REYs in coal.  One of these groupings is syngenetic minerals from tuffaceous and terrigeneous 

type formations. These minerals are mostly monazite, apatite, zircon, and xenotime. Diagenetic 

and epigenetic minerals make up the other mineral grouping, and it is made up of 

aluminophosphates, sulfates, water-bearing phosphates, oxides, carbonates, and 

fluorocarbonates. Organic compounds are the third grouping that can house REYs in coal. 

Literature indicates that REYs will be present in both organic and mineral forms in most coals 

[26]. The concentrations of REYs in both forms are variable and will depend on numerous 

features including the environment, coal rank, etc. Typically, LREYs are most commonly found 

in the minerals in coal. Minerals can be readily collected from the clay sections of coal and in the 
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partings, margins, or seams. Coals with high concentrations of REYs often have a large amount 

of its REY content present in the organic matrix. This is common in lignite and subbituminous 

coals with low ash content. It is commonly observed that there is direct correlation between ash 

yield and REY concentration in light specific gravity fractions [30, 31, 32, 33, 34, 35, 36, 37]. 

This empirical evidence is validated by experimental research regarding REY adsorption in coals 

[38, 39]. It follows that MREYs and HREYs are more commonly associated with the organic 

matrix of coal due to LREYs being more associated with the mineral content of coal. Seredin and 

Shpirt(1999) [28] showed that 50% of the REY concentration were found in the organics of coal 

samples and of that 50% the majority of REYs found were MREYs with direct experimentation. 

Robert Finkelman’s (1993) [40] research found that HREYs were also associated more with the 

organic matrix of coal rather than minerals. 

2.9. Machine Learning Overview 

Machine learning is the study of utilizing statistical methods and algorithms to give 

computers the ability to perform without being explicitly programmed. It is a subcategory in the 

field of artificial intelligence because it allows computers to learn given data input, identify 

patterns in data, and make decisions based on the data.  All of this is accomplished with a 

minimum amount of human involvement. Because of growing technological capabilities, 

machine learning has experienced a boom in popularity in recent years.  New and innovative 

machine learning algorithms and software that utilizes these algorithms are being developed at a 

rapid rate to meet the demand for applicable capabilities.   

 There are two main types of machine learning algorithms. Algorithms that learn given 

labeled independent variables called features and labeled dependent variables called targets or 

labels are called supervised learning algorithms. Examples of this are regression, classification, 
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decision tree algorithms, and neural networks. There are also algorithms that utilize unlabeled 

datasets and recognize patterns and connections within it. These are called unsupervised learning 

algorithms. Examples of this are clustering, anomaly detection, neural network, and latent 

variable model algorithms.   

 One of the main concepts in machine learning is splitting a dataset into a portion of data 

that will be used to train algorithms and a portion of the data that will be used to test algorithm 

performance. Depending on how large the dataset is, the user will want to split a dataset into 

training data and testing data into particular portions. Training data will make up the majority of 

the original dataset and testing data will always be in the minority. A machine learning algorithm 

is fitted to the training dataset and then the test dataset is plugged into the trained algorithm. The 

results from the tested algorithm are then subjected to performance testing and validation testing 

to determine how well the algorithm works. 

 Feature engineering is also an important aspect of machine learning. Attributes need to be 

at least somewhat correlated to targets or classes. Generally, the more correlation, the better. 

Uncorrelated data creates noise in machine learning algorithms, and noise creates bias in the 

model. In the next section, more details will be covered regarding how noise affects specific 

machine learning algorithms. Attributes that have no relation to the given target need to be 

expunged from the machine learning algorithm to prevent this. The user can iteratively select 

different combinations and ratios of features in order to obtain the best performing algorithm. In 

some cases, features need to be standardized in order to be useful in various algorithms. If 

multiple attributes are used in a machine learning algorithm, it is likely that they will need to be 

standardized because it is likely that the attributes vary by measurement and order of magnitude. 

Sometimes there are inequalities in the size of attribute vectors given a selected group of 
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attributes used for machine learning. This is most often due to missing values in the dataset. 

Imputing is a method utilized to fill in the blanks in attribute vectors, making computation 

possible. Often there are no missing values in a dataset, but in classification problems there 

might be extreme bias in a training set for a particular class. There are methods to handle this 

issue by adding values to features that will create more equal class distributions in the training 

data. One such method will be covered in the methods section of this paper. For most instances, 

data is not in the correct format to be computed. The data must be cleaned in order for it to be 

suitable for computation. This is can mean that data types might need to be changed, or 0’s need 

to be changed to null values.  There is also a major difference in how numerical values and non-

numerical values are computed. Numerical values are computed given they have the correct data 

type, but categorical values need to be encoded for computation. For example, if there is a class 

set that is labeled “yes” or “no”, those entries need to be converted to 1’s for yes and 0’s for no.  

2.10. Machine Learning Algorithms 

This work is focused on a category of supervised learning called classification 

algorithms. Also called classifiers, these algorithms essentially recognize patterns.  Classifiers 

place instances into categories called classes based on the features from a dataset that are fed into 

the algorithm. Classifiers are trained with features from the training dataset where their 

association to the algorithm’s classes is already known. The classic application example where 

this type of algorithm is used is a spam filter. Known spam email data attributes are feed into an 

algorithm, and it learns from those examples. There are many different types of classifiers, but 

this research will be focused five particular algorithms: k-nearest neighbors, logistic regression, 

decision tree classifiers (CART), random forest, and the Adaboost algorithm.   
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To visualize a dataset, let a dataset have p features and n observations. Below is a matrix 

of the features in the dataset: 

 
𝑋 = 	$

1 ⋯ 𝑥!"
⋮ ⋱ ⋮
1 ⋯ 𝑥#"

* Eq.1 

where xij denotes the jth feature for the ith observation. From this definition, xi can be shown as: 

 
𝑥$ =	+

1
⋮
𝑥$"
, Eq.2 

This is the representation for a dataset that will be used for the rest of this work. 

2.10.1. K-Nearest Neighbors 

 K-nearest neighbors is a machine learning algorithm that uses the entire dataset to test the 

algorithm. Algorithms that learn as such are called “lazy learners [41].” A dataset should not be 

split into training sets and test sets when dealing with k-nearest neighbors. There is no actual 

learning involved when using this algorithm. When new data is tested, it is added directly to the 

original dataset and then the updated dataset is fitted to the algorithm. The model assumes that 

things that are similar are spatially close. The way the model does this is quite simple. The 

algorithm makes predictions for new observations by looking through the fitted dataset for the k 

most similar observations called neighbors and defines the class for those k observations. For k-

nearest neighbors, k is the only hyperparameter. The classifier is based on the nearest neighbor 

density estimator in Eq. 3 [42]. Let x be from population G, it follows that P(x|G) ≈ (proportion 

of observations in the neighborhood around x) / (neighborhood volume). The population that 

relates to the largest value of Eq. 3 is used to classify x.  

 𝑃(𝐺$)𝑃(𝑥|𝐺$)
∑ 𝑃3𝐺%4𝑃(𝑥|𝐺%)%

, 𝑖 = 1,… , 𝑘. Eq.3 
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Hyperparameter tuning techniques should be used to determine the value of k.  It is important to 

note that k-nearest neighbors is a nonparametric statistical method. It does not assume any 

statistical distribution of data. k-nearest neighbors works very well with a small number of input 

features, but struggles when the number of features becomes very large. The number of input 

features is the number of dimensions in j-dimensional space.  With increasing dimensionality, 

there is increasing volume in j-dimensional space and k-nearest neighbor’s performance is based 

on proximity. When there are a large number of dimensions, similar observations can be far 

away from one another which defies the notion of similarity and proximity being directly related. 

This property is sometimes called the “curse of dimensionality. [43]” 

2.10.2. Logistic Regression 

 A logistic regression classifier, also referred to as logit regression, is a statistical method 

that utilizes a basic logistic function to predict whether an observation belongs to a certain class 

or not. If the probability is estimated to be larger than 50% then the observation belongs to one 

class and if the estimated probability is below 50% it belongs to another class. The logistic 

function or sigmoid function was developed by statisticians to explain population growth models 

[44]. It has an S-shaped curve that maps any value between 0 and 1, but those limits are never 

met. 

 𝑔(𝑥) = 	
1

(1 +	𝑒&') Eq.4 

The sigmoid function in Eq. 4 is extremely important in not only logistic regression but in many 

other forms of machine learning, particularly neural networks.  
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 Figure 8. The graph of the sigmoid function [45] 

From Fig. 8 it is apparent that g(x) approaches 1 as x approaches ¥ and g(x) approaches 0 as x 

approaches -¥. This means that the range of g(x) is between 0 and 1, but g(x) never reaches 

either boundary.  

Logistic regression is mapped by an equation similar to linear regression. Input values, x, 

are plugged into a formula that is weighted by coefficients represented as b. 

 
𝛽 = 	 +

𝛽(
⋮
𝛽"
, Eq.5 

 Let h(xi) be the estimation of the ith observation called the hypothesis. 

 ℎ(𝑥$) = 	𝛽)𝑥$ Eq.6 

Logistic regression uses the sigmoid function with respect to the hypothesis to make 

classifications.   

 𝑔(ℎ(𝑥$)) = 	
1

(1 +	𝑒&*('!))
 Eq.7 
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The outputs of a logistic regression equation are numbers between 0 and 1.  In order convert 

these numbers to classes, conditional probabilities are created. Let 𝑦@ be the predicted class 

resulting from observations plugged into Eq. 7. 

 
𝑦@ = A

0,																		𝑔3ℎ(𝑥$)4 < 0.5 = ℎ(𝑥$)
1, 𝑔3ℎ(𝑥$)4 ≥ 0.5 = 1 − 	ℎ(𝑥$)

 Eq.8 

 The logistic regression classifier is trained using maximum likelihood of parameters to 

estimate b values. Likelihood is the probability that the training data supports possible b values.  

Let yi be the target for each observation in the training data.  

 
𝐿(b) = 	H𝑃(𝑦$|𝑥$; 𝛽)

#

$-!

=	H[ℎ(𝑥$)].![1 − ℎ(𝑥$)]!&.!
#

$-!

 Eq.9 

L(b) can be more easily calculated by taking the logarithm of the function.   

 
log[𝐿(b)] = 	O𝑦$ log[ℎ(𝑥$)] + (1 − 𝑦$)log	[1 − ℎ(𝑥$)]

#

$-!

	 Eq.10 

 Logistic Regression’s cost function is the inverse of the logarithm of the likelihood function. A 

cost function is a function that, given test data, will measure the performance of a machine 

learning algorithm. Cost functions represent the error between predicted values from the training 

set and the test values as a number. The goal of logistic regression’s cost function is to minimize 

the error associated with estimating the value of b [46].  

 
𝐽(𝛽) = 	O−𝑦$ log[ℎ(𝑥$)] − (1 − 𝑦$)log	[1 − ℎ(𝑥$)

#

$-!

 Eq.11 

 Logistic Regression is the most widely used binomial classifier. It does not require much 

computational power and is easily understood. A very important positive to using logistic 

regression is that features do not have to be standardized, and no hyperparameters require tuning. 

As with linear regression, logistic regression performs better when uncorrelated features are 
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removed from the training data. The major disadvantage associated with logistic regression is 

that the input data must be linear because the hypothesis is linear. Because logistic regression is a 

rather simple classifier, it can be outperformed by much more complex algorithms. Due to its 

simplicity, it is a good algorithm to develop a baseline for using more complex algorithm [47]. 

2.10.3. Decision Tree Classifiers 

 Decision Trees are powerful algorithms capable of processing complex datasets. The 

anatomy of tree is used to visualize how the decision tree classification algorithm works. The 

first step of the algorithm is to visualize the entire training set as the “roots.”  Individual 

observations in the dataset are the “branches,” and classes are the “leaves.” 

 The official name for this algorithm is Classification and Regression Tree (CART). This 

basic mechanism of the algorithm is that initially the training set is split into two subgroups using 

a single attribute, f, and a threshold, tf. The algorithm then looks for the values of f and tf that 

produces the purest subgroups.  Eq. 12 describes the cost function associated with minimizing 

the CART algorithm.  

 𝐽3f, 𝑡f4 = 	
𝑚/

𝑚 𝐼/ +	
𝑚0

𝑚 𝐼0 Eq.12 

Il and Ir are the impurities associated with the left and the right subgroups, and ml and mr are 

representative of the observations in the left and the right subgroups. The total number of 

instances in the training set is m.  Once the training set is split in two, the resulting subgroups are 

split in two, and this process is repeated recursively until a pre-determined maximum depth is 

reached or convergence is reached in terms of minimizing impurity. The algorithm can be 

described as “greedy” because it checks for the best split at each level, and it does not consider 

other levels in the tree. This usually leads to reasonably good results but does not guaranteed the 

best results [48].   



 23 

 The metric of most concern in a CART algorithm is the measure of impurity for each 

split, and the two most popular methods of measuring impurity are the Gini index and entropy. 

The Gini index aims to measure the probability of a randomly chosen observation being 

mislabeled in the training set. Eq. 13 describes this criterion. The Gini index has a range from 0 

to 1.  If all instances belong to a specific class, then the Gini index is 0.  The Gini index would be 

1 if instances are randomly distributed throughout different classes. If the Gini index is 0.5 then 

instances are equally distributed in some of the classes.  

 
𝐺𝐼 = 1 −	O(𝑝$)1

#

$-!

 Eq.13 

The entropy measure of impurity measures the degree of uncertainty at each depth in the tree 

classifier. The aim is to reduce the amount of disorder beginning at the root node to the leaf 

nodes. This is described in Eq. 14. 

 
𝐸 = 	O−𝑝$𝑙𝑜𝑔1𝑝$

#

$-!

 Eq.14 

If all observations in a node are associated with the same class, then entropy is 0. There is 

maximum entropy when there is uniformity in the class distribution [49].  

 Generally, decision trees are advantageous because they require less preprocessing of 

features and they are inherently designed to handle complex datasets.  This means that they do 

not require data to be of a specific distribution or that data need to be standardized. It is also 

important to note that missing data is not a problem for decision trees.  The model is easy to 

visualize because of the tree description, and the it is not mathematically intensive.  This allows 

it to be easily explained to non-experts.  

 With complexity comes larger computational demand. Depending on the dataset, decision 

tree classifiers can require a massive amount of computational power to compute solutions in a 
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timely manner. This is because the algorithm trains all features on each instance at each node.  It 

also follows from this notion of complexity that a small change to the training set can vastly 

change the computed results [50].  

2.10.4. Random Forest 

 Random Forest is a bootstrap aggregation method where a collection of decision tree 

classifiers is assembled, and then majority voting determines the best classifiers. It is amongst 

the most popular machine learning algorithms because it is easy to train and tune, and it displays 

superior performance [51]. Bootstrapping is a resampling technique used to estimate statistics of 

a population where sampling is conducted with replacement. Bootstrap aggregation, also referred 

to as bagging, is an ensemble machine learning technique that uses many weak models and 

combines them to make predictions and selects the best prediction. Ensemble methods are 

machine learning techniques that train multiple models by using the same algorithm. Bagging 

has a distinct advantage over conventional machine learning techniques because it combines 

many weak learners to outperform a singular strong learner. These types of algorithms are 

known for reducing overfitting tendencies by reducing the overall variance in a model which 

increases accuracy [52].  

 Random forest is made up of a large amount of decision trees. Every tree in the ensemble 

produces a prediction and the most predicted class dominates. Random forest increases 

randomness in the model as more trees are produced. The algorithm looks for the optimum 

feature amongst a random sampling of features instead of looking for the strongest feature in the 

node split step. The randomness generated by this approach creates a stronger model [53]. 

The random forest algorithm is elegantly simple. Fig. 9 and 10 displays the full random 

forest algorithm visually. The first step is to select samples at random from a training set. Then a 
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decision tree is built for each sample and prediction is made for each decision tree. Each 

predicted result is voted on and the predicted result with the most votes is the final prediction. 

Majority voting is carried out by making comparisons between the predicted results and a test 

result. If the test result is different than the predicted result then the predicted result does not 

receive a vote, and if they match then it receives a vote.  

 

Figure 9. Random forest algorithm visualization [53] 



 26 

 

Figure 10. The flow of predictions in random forest [53] 

There are many advantages to random forest.  It has all the advantages that a decision tree 

would have except it handles complexity better because it is an ensemble algorithm (many weak 

models are combined to create a powerful prediction). Random forest creates an unbiased 

estimate of the general error as trees grow and reduces variance drastically. This can be effective 

at combating the bias-variance tradeoff. There is an observed disadvantage with this technique. 

With very noisy data, overfitting tends to occur. This is because random forest is really good at 

estimating with weak learners. If there is low correlation between features and classes, then the 

algorithm will learn based on uncorrelated features which creates model bias [54].   

2.10.5. Adaboost 

Adaboost is the final machine learning algorithm utilized in this work. It stands for 

adaptive boosting and, like random forest, is an ensemble method. Boosting handles low 

performance better than bagging algorithms [55]. Remember that bagging is essentially 
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bootstrapping a training set and fitting a decision tree to each bootstrapped sample, and then 

combining the trees and voting to select a potentially powerful classifier. Boosting is very 

similar, but decision trees are created using data from previously created decision trees. Boosting 

does not use bootstrapping. Every tree is fitted to an adapted version of the original training 

dataset [52].   

Each boosting step in the algorithm creates data modifications by assigning weights, a, to 

every training instance. In the beginning all weights are equal to the inverse of the sample size 

and thus trained in usual fashion. Each instance is trained iteratively after this and weights are 

modified individually. The classifier is retrained for each successive weighted observation. 

Weights are increased if their associated instance was classified incorrectly and decreased if they 

are classified correctly. It follows that instances that are hard to classify receive larger weights 

[56]. See Fig. 11 below for a graphic explanation of adaboost. 

 

Figure 11. Adaboost algorithm visualization [57] 
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Adaboost essentially has the same strengths and weaknesses as bagging techniques like 

random forest. It can be very powerful when dealing with weak learners, but if there is too much 

noise in the training set, the algorithm has a tendency to overfit. This tendency to overfit is 

embedded in the fact that adaboost strengthens weak learners by assigning increasing weights to 

them until the classify correctly. If there is no correlation between features and classes then every 

instance will be over-trained and therefore subject to bias [58].   

2.11. USGS COALQUAL Database 

 The USGS COALQUAL database version 3.0 was published in 2015 and provides the 

user access to 7658 coal samples from the United States. These coal samples are considered dry 

whole coal samples which means they are sampled directly from their environment without 

being processed. The database has 4 different tables when exported from the USGS website: 

Sample Description, Proximates, Oxides, and Trace Elements. When combined into one table, 

there are 279 features that describe each of the 7658 coal samples. Some of the information in 

the features is missing for certain samples. There are data qualifiers associated with the 

measurement data from the Proximates, Oxides, and Trace Elements tables. Data qualifiers are 

attributes that describe data measurements; therefore, for each data measurement there will be a 

data qualifier associated with it. For purposes of this research, the only data qualifier that is 

considered is the “L” (less than) data qualifier. This indicates that the measurement taken is less 

than the detection limits of the analytical testing equipment or technique used [59]. This is 

important to consider when conducting statistical analysis and utilizing machine learning 

algorithms. There are two types of data in the COALQUAL, measurements in the form of 

numerical data called floats and text descriptions in the form a categorical data called texts.  It is 
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important to distinguish between the two because computations are dependent on datatypes. For 

example, text data cannot be added to a float.  

2.12. Software Overview  

Software and programming play a crucial role in this work. The four tables from the 

COALQUAL database are exported from the USGS website to a .csv file. This file stands for 

“comma separated values and means that all data is separated by commas and rows are ended 

with a semicolon. The .csv files are then converted to SQL tables. SQL stands for “Structured 

Query Language.” SQL is the most popular language and tool to manage relational databases.  A 

relational database is a grouping of tables where data can be queried or manipulated in various 

ways without having to change any data in the tables. MySQL is an open-source platform used to 

manage SQL projects, and is the platform used in this work. A python-SQL connector is used to 

merge MySQL with Python 3.8.  Python is a general, object-oriented, high-level programming 

language. It was utilized for this project because it is easy to use and learn, and there are open-

source, well-developed libraries to manage data and machine learning that are programmed 

specifically in python. Python was accessed through Anaconda platform which is an open-source 

package software that provides many useful libraries and programs that utilize python. All 

python syntax was written and processed in Jupyter Lab, an interactive development 

environment, accessed in the Anaconda platform.  
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CHAPTER 3:  METHODS 

The following chapter provides the methodical approach used in the statistical analysis 

used to account for variance and bias in the COALQUAL database and how machine learning 

algorithms are processed in python. Additional information can be located in Appendix A. 

3.1. Exploratory Data Analysis 

When first examining a dataset, it is important to have a holistic approach. Specific 

insights can be targeted from general insights. Exploratory Data Analysis (EDA) allows the user 

to get a big picture visualization of a dataset in order to target specific features for further insight. 

Since the end goal of the research is to classify coal samples as promising or unpromising, it is 

important to establish the criteria for a coal sample to be promising or unpromising. In order to 

do so, the concentrations of the 15 REYs were analyzed for key statistical parameters. Table 1 

shows these parameters for each REY.   

Table 1. Summary statistics of all REY concentrations measured in parts per million 

(ppm) for the COALQUAL database 
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It is interesting to note that Ce is has the highest mean in the dataset amongst other REY 

concentrations, and Lu has the lowest mean. Ce is considered the most abundant REY and Lu is 

the heaviest of the REYs. Standard deviation is a measure of the magnitude of the variance in a 

dataset. Ce has the highest standard deviation and Tm has the lowest.  Tm is known as one of the 

rarest of the REYs, and its low standard deviation is indicative that there is not a lot of variance 

in the amount of Tm found in each sample.  Since the mean of Tm is the second lowest, this 

indicates that small concentrations of Tm are being found in each sample at around the same 

concentration for each sample. It is important to note that each REY in this dataset has close to 

the same number of entries. This does not align with literature, where there is a large degree of 

variation between number of Ce and number of Tm samples recorded. The original dataset is not 

representative of this since Tm does not have the smallest number of samples or the smallest 

mean. There is evidence to suggest that the database is biased toward the rarer REYs. Outlier 

analysis like this is very important in the EDA process.  

A potential source of variance and bias in the dataset comes from data with L qualifiers 

(samples below detection limits with the values reports as the lower detection limit). Below in 

Table 2 are summary statistics of all the data in COALQUAL without L qualifiers in terms of 

REY concentration. 
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Table 2. Summary statistics of all REY concentrations without L qualifiers in the 

COALQUAL database. 

 

After eliminating L qualifiers from the dataset, it is apparent that the dataset changes rather 

significantly. Pr, Dy, Ho, Er, and Tm all show significant decrease in sample size, meaning that 

those particular REYs are mostly comprised of data with L qualifiers. There are also various 

changes in mean concentrations and sample deviations associated with eliminating data with L 

qualifiers, most notably a decrease in both for Tb, Ho, and Lu. Those REY parameters are 

hypersensitive to changes in L qualifier data.   

 If possible, it is always good to compare dataset to standard reference datasets that have 

been studied extensively. The National Coal Resources Data System (NCRDS) dataset collected 

by Robert Finkelman is widely considered the standard reference dataset for REY 

concentrations. It has been well-researched and widely referenced [60]. Below in Table 3 are 

some summary statistics of the NCRDS dataset found in literature. 
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Table 3. Summary statistics of the NCRDS database [61] 

 

It is apparent that the data more closely resembles that of the COALQUAL database 

without L qualifiers. The most notable similarity is the in the number of samples associated with 

Pr, Dy, Ho, Er, and Tm.  In the original dataset there is no significant difference between the 

number of samples for each REY, but in the dataset with no L qualifiers and the NCRDS dataset 

there are less samples for these particular REYs. This aligns with literature regarding the rarity of 

REYs.  

 To further evaluate data quality, it is good practice to normalize data with a standard 

dataset for REY concentrations.  Essentially what normalization does is allow the user to 

compare features in a dataset to established measures and visualize differences. For this work, 

the Upper Continental Crust (UCC) dataset, seen in Table 4, is used to normalize the three 

datasets above. 
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Table 4. The UCC mean REY concentration standard dataset [62] 

REY 
Mean 
(ppm) 

Y 22 
La 30 
Ce 64 
Pr 7.1 
Nd 26 
Sm 4.5 
Eu 0.88 
Gd 3.8 
Tb 0.64 
Dy 3.5 
Ho 0.8 
Er 2.3 

Tm 0.33 
Yb 2.2 
Lu 0.32 

 

When the normalized REY distributions are plotted, a smooth curve indicates reliability 

in the dataset whereas zig-zag fluctuations indicate unreliability. Figure 12 shows the REY 

distributions of each dataset normalized by the UCC. 
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Figure 12. UCC normalized mean REY concentrations from the COALQUAL database 

and NCRDS database. 

From the plot above, the normalized NCRDS distribution shows a very smooth curvature 

indicating reliability. This aligns with the NCRDS reputation as the standard reference for REY 

concentrations amongst researchers and scholars. The COALQUAL database with L qualifiers 

has some definite points of unreliability. The REYs associated with unreliability are Pr, Gd, Tb, 

Dy, Ho, Tm, and Lu. Most of these are REYs with a large portion of L qualifiers associated with 

them.  The extremity of the L qualifier effect is dampened when samples with L qualifiers are 

eliminated, but that distribution is not even close to as reliable as the NCRDS distribution is. 

Therefore, it is reasonable to conclude that there is an unreliable quality associated with the 

COALQUAL database.  

3.2. The Major Source of Unreliability in the COALQUAL Database 
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There are several factors that can affect the reliability of the data in the COALQUAL 

database. Instrumentation and analysis techniques have a large role in measuring concentrations 

of REYs in samples. Sophistication of technique and technology is often correlated with 

accuracy in measurement. Data in the COALQUAL database is measured using three techniques: 

ESA-1, ESA-2, and INAA.  ESA stands for Emission Spectrographic Analysis. ESA-1 is a semi-

quantitative 6-step emission spectrographic analysis measures the concentration of trace 

elements in a sample on an ash-basis in ppm.  ESA-2 is also semi-quantitative but can be 

described as an automatic plate reading computer-assisted emission spectrographic analysis. 

INAA stands for Instrumental Neutron Activation Analysis and is the only purely quantitative 

approach out of the three. Each technique has a unique limit of detection (LOD). Generally, the 

lower the LOD, the higher the precision and accuracy [60]. Each REY in the COALQUAL 

database uses two of these methods to measure concentration depending on when the test was 

conducted and where the test was conducted. A REY was either measured by a combination of 

ESA-1 and ESA-2 for various samples or ESA-2 and INAA.  The semi-quantitative techniques 

use a combination of coefficients and confidence intervals to account for error. Because these 

techniques rely on statistical computation for results, they are not as reliable as INAA (). INAA 

also has lower inherent detection limits than ESA-1 and ESA-2.  Therefore, it can be concluded 

that INAA is more accurate than ESA-2 and even more accurate than ESA-1.  

 One potential cause of the large portion of data with L qualifiers associated with certain 

REYs is explained by the Oddo-Harkins effect. This principle states that as elements become 

heavier, they tend to sink to lower depths in the Earth’s crust and therefore are found in lower 

crustal abundances. Due to the Oddo-Harkins effect, heavier REYs are typically present in lower 

concentrations, often below the LODs and therefore have large amounts of data with L qualifiers. 
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This could be an explanation as to why the number of samples changes drastically for the 

HREYs (Dy, Ho, Er, Tm, and Lu) when samples with L qualifiers are removed from the original 

dataset [62].  

Table 5. Percentage of samples below detection limit (BDL) or above detection limit 

(ADL) for each analysis technique for each REY.  

  Analysis Technique 
  ESA-1 ESA-2 INAA 
REY BDL ADL BDL ADL BDL ADL 
Y 0.3 32.2 0 67.5 - - 
La - - 7.4 16 0 76.6 
Ce - - 8.5 7.4 0.1 84 
Pr 8.1 0.5 75 16.4 - - 
Nd 9.1 5.1 18.5 67.3 - - 
Sm - - 8.1 1.7 0.5 89.7 
Eu - - 6 3.1 0.3 90.6 
Gd 7.4 1.1 62.8 28.7 - - 
Tb - - 9.1 0 4.1 86.8 
Dy 7.8 0.8 79.4 12 - - 
Ho 8.4 0.1 85.3 6.2 - - 
Er 8 0.5 72.9 18.6 - - 
Tm 8.5 0 90.8 0.7 - - 
Yb - - 0.1 29.7 0.5 69.7 
Lu - - 9.1 0.1 2.4 88.4 

 

Table 5 shows that data for Y, Pr, Nd, Gd, Dy, Ho, Er, and Tm were measured by ESA-1 

and ESA-2, and La, Ce, Sm, Eu, Tb, Yb, and Lu were measured by ESA-2 and INAA. For data 

measured by ESA-1 and ESA-2, most of the ESA-2 samples were BDL. Pr, Gd, Dy, Ho, Er, Tm 

were all subjected to unreliability from Fig. 12, and also exhibit the highest percentages of BDL. 

Given that the ESA techniques are the least reliable and there are a great number of samples that 

are BDL it is easy to see that unreliability stems from L qualifier data. Most of the REYs tested 

by ESA-2 and INAA have a large portion of their concentrations measured by INAA and are 
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ADL, due in part to the lower detection limits of the INAA. These REYs had the least amount of 

data with L qualifiers and is therefore more reliable.  

3.3. Correcting for Data with L Qualifiers and Addressing Sample Bias 

It is clear that data with L qualifiers is the main source of unreliability in the 

COALQUAL database. This needs to be mitigated in order to continue statistical analysis and for 

machine learning purposes. One way to do this is to change the value of the coefficient 

associated with the L qualifier. As discussed earlier, when a value has a L qualifier associated 

with it, it is multiplied by a value of 0.7. The reasoning behind doing so is based on research 

performed by Connor et al. (1976). The research suggests that multiplying reported LODs by any 

coefficient between 0 and 1 has negligible consequences to statistics except when data with L 

qualifiers makes up a significant portion of samples associated with a REY [63]. For Pr, Gd, Dy, 

Ho, Er, and Tm, more than 70% of concentration data has an L qualifier.  This means that for 

these REYs, too much of the data is below the LOD. One way to mitigate this is to assign a new 

coefficient or weight to each sample with an L qualifier. This has been done for the 

COALQUAL database in research performed by Lin et al. Lin et al. assigned each REY 

concentration with an L qualifier a new coefficient called the qualifier factor, Q [60]. Each 

concentration with an L qualifier was multiplied by a potential qualifier factor from 0 to 1 by 0.1 

intervals (i.e. 0, 0.1, 0.2, …, 1). This yields 11 groups of mean concentrations for each REY. 

Then the mean, standard deviation, and relative standard deviation (RSD) of the groups was 

calculated for each REY. Based on those observations, a qualifier factor was chosen for each 

REY in order to create a smooth curve for the distributed means of each normalized REY 

concentration. However, qualifier factors were not chosen to align with the NCRDS directly with 

the data.  In fact, the distribution given by Lin et al. is not as smooth as the NCRDS and 
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therefore is subjected to more unreliability. In this work, weights will be given to each REY 

concentration and the same methodology will be used to visualize the effects of the weights 

given.  The major adjustment will be that weights will be calculated to fit the NCRDS 

distribution as closely as possible. The reason this is change is being made is because the 

NCRDS mean concentration data for REYs is the most researched and well documented work in 

this area. Speculative data should be held to that standard as a benchmark for further research 

until more reliable data is captured.  

 For each REY concentration, a new weight will be assigned to it simply called the L 

weight (W). The same range of W’s are assigned to each REY concentration as Lin’s work. The 

mean, standard deviation, and relative standard deviation are called in the same manner. The 

effects of which are shown below in Fig. 13. 

 

 Figure 13. The effect of various values of W on the REY mean concentration distribution 
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 Figure 14. RSD percentage for each REY and specified REY groupings 

The RSD percentage is the ratio of the standard deviation to the mean of a population.  It 

is a good measure of variance for each REY or REY grouping. Fig. 14 shows that HREYs are 

more affected by the values of W than MREYs or LREYs.  This is likely due to their naturally 

lower concentration relative to the lighter REYs as discussed earlier, i.e. the Otto-Harkins effect. 

The COALQUAL database has a lot of HREY samples that are below LOD.  Fig. 15 shows this 

representation with respect to RSD.  
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Figure 15. The effect that percent of L data for each REY has on each respective RSD.  

Based on the relationship in Fig. 15, the standardized variance of Pr, Gd, Dy, Ho, Er, and 

Tm is strongly correlated with an increase in the percentage of data with an L qualifier. If the 

ratio of the mean of concentrations with an L qualifier to the ratio of the mean of concentrations 

without an L qualifier is observed in relation to RSD, a similar effect is observed. See Fig. 16 

below. 

 



 42 

 

Figure 16. The effect that the ratio of mean concentrations with L qualifiers to mean 

concentrations without L qualifiers for each REY has on each respective RSD.  

 When this relationship is viewed, the same outliers emerge. This is evidence to suggest 

that weighting each sample with an L qualifier with a specified weight for each REY is a viable 

option for standardizing the REY distribution with the NCRDS REY mean concentration 

distribution. This process is done iteratively, selecting different weights for each REY and 

observing how the distribution changes. Weights were chosen that aligned the distribution with 

the NCRDS distribution.  The result is seen below in Fig. 17. 
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Figure 17. The results of assigning each specified values of W to each REY 

This distribution more closely aligns with the NCRDS distribution and is therefore more 

reliable. The values of W and error percentage calculated by taking the difference between the 

original and adjusted means of each REY by the adjusted mean of the TREY concentration is 

given in Table 6 below.
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Table 6. Selected values of W for each REY and calculated error percentage 

 

 These W values are much different than the values of the L qualifier. Table 6 shows the 

relationship of those W values and the effects they have on REY mean concentrations. As 

mentioned previously the value of the L qualifier is 0.7 in the COALQUAL database. As 

predicted, the error percentage associated with each REY mean concentration is not significant.  

The most error present with these L weights are in the Total REY (TREY) category.  There is a 

34.5% difference between the original and adjusted concentrations. The TREY percent error for 

the work of Lin et al was 24.5%, and therefore, there is significant difference between the 

qualifier factors from Lin et al. and the L weights calculated in this work.  

 The subject of bias in relation to coal in the United States needs to be addressed. Sample 

bias can be defined as 

Element W

REY 
Original 

Means

REY 
Adjusted 

Means Error %
Y 0.7 8.9 8.7 0.3
La 0.5 11.7 10.7 1.7
Ce 0.4 24 20.1 6.5
Pr 0.11 10.2 2.4 12.9
Nd 0.2 12.3 9.3 5
Sm 0.2 2.5 1.8 1.2
Eu 0.7 0.4 0.4 0
Gd 0.5 2.9 1.8 1.8
Tb 0.07 1.2 0.4 1.3
Dy 0.5 3.1 1.9 2
Ho 0.3 1 0.4 1
Er 0.7 1.2 1 0.3

Tm 0.19 0.6 0.2 0.7
Yb 0.7 1 1 0
Lu 0.05 0.4 0.2 0.3

LREY 60.7 44.3 27.2
MREY 16.5 13.2 5.5
HREY 4.3 2.8 2.5
TREY 81.5 60.3 35.2



 45 

 

𝑆𝑎𝑚𝑝𝑙𝑒	𝐵𝑖𝑎𝑠	 =
\	 (𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑎𝑙	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑓𝑟𝑜𝑚	𝑎	𝑠𝑡𝑎𝑡𝑒)
(𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑎𝑙	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑖𝑛	𝐶𝑂𝐴𝐿𝑄𝑈𝐴𝐿)j

k 𝐶𝑜𝑎𝑙	𝑟𝑒𝑠𝑒𝑟𝑣𝑒	𝑖𝑛	𝑎	𝑠𝑡𝑎𝑡𝑒
𝑇ℎ𝑒	𝑡𝑜𝑡𝑎𝑙	𝑟𝑒𝑠𝑒𝑟𝑣𝑒	𝑖𝑛	𝑡ℎ𝑒	𝑈𝑆	m

 Eq.15 

 

The coal reserve data is obtained from the EIA (2017) [64]. In Figure 18, the Sample Bias of 

REY can be seen for each respective state. 

 

 Figure 18. Sample Bias for each REY in each state. 

From the visualization, most states are oversampled, especially Georgia, Idaho, Alabama, North 

Carolina, and Utah. Illinois is severely under-sampled along with Missouri, Wyoming, and 

Texas. It will be important to keep this sample bias in mind as this work proceeds. Bias in the 
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COALQUAL database is almost certainly due to most mining activity at the time of collection 

being dedicated in the Appalachian region of the United States. 

3.4 Classifying Coal Samples as Promising or Unpromising 

 It is apparent from utilizing L weights to smooth out COALQUAL’s normalized mean 

REY concentration distribution, that the adjusted COALQUAL data can be further used to 

reliably classify coal samples from geographical and geological categories. Unequal sample size 

must be addressed, then COALQUAL must be broken down in geographical and geological 

categories, and criteria for classification must be established. 

 One factor that is of great significance is sample size for each REY concentration. For 

further calculation, only samples with complete REY profiles need to be considered. For each 

REY, there are some samples with some missing data. The standard approach to addressing this 

problem is to eliminate all samples with missing REY concentrations and compare to the 

distribution with missing samples to verify the reliability of each. When missing values are 

removed, the sample size is reduced to 5485 samples. First, L weights are going to be eliminated 

in this process so a comparison must be made between the original means of REY concentrations 

and the adjusted means with L weights added.  Table 7 shows this comparison. 
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Table 7. Original and adjusted means for each REY and percentage of samples with L 

weights for the equal sample size. 

 

From comparing Table 7 with Table 6, there is no large difference between the original 

and adjusted means for each REY when samples with missing data are removed. The distribution 

for each REY can be seen in Fig. 19. There is no large difference between the distribution with 

missing values and the distribution without missing values.  
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Figure 19. Normalized distributions of the unequal sample size and the equal 

sample size.  

Next, all samples in COALQUAL must be organized into geographical and geological 

categories.  Coal provinces, regions, states, rank, and geological age were chosen as the 

categories that would yield the most insight. To view the results for categories involving 

the original samples view Tables 8, 10, 12, 14, and 16. To view the results for categories 

involving the adjusted samples view Tables 9, 11, 13, 15, and 17. 
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Table 8. Coal provinces with original samples. 

 

  

Table 9. Coal provinces with adjusted samples. 

 

 Table 10. Coal Regions with original samples. 

 

 Table 11. Coal Regions with adjusted samples. 
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Table 12. States with original samples 

 

 Table 13. States with adjusted samples 

 

 Table 14. Coal ranks with original samples 
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 Table 15. Coal ranks with adjusted samples 

 

  Table 16. Geological Age with original samples 

  

  Table 17. Geological Age with adjusted samples 

 

   

Based on research from Seredin (Seredin and Dai, 2012), there are two main criteria that 

are used to classify coal samples in terms of their REY promise. The first is total rare earth oxide 

(TREO) concentration on an ash basis. Coal samples in the COALQUAL database have trace 

element concentrations on a whole coal basis. This must be converted to an ash basis by Eq. 16. 

 𝑅𝐸𝑌234 =	
𝑅𝐸𝑌567/

p𝐷𝑟𝑦	𝐴𝑠ℎ	%100 s
 Eq.16 
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For coal sample classification purposes, the REY concentration for each REY of each sample 

must be converted to an ash basis, and then converted to rare earth oxide (REO) concentration 

for each sample. These REY concentrations on an ash basis must be converted for each REY and 

then summed to calculate the TREO concentration.  

 𝑅𝐸𝑂	𝑝𝑝𝑚, 𝑎𝑠ℎ	𝑏𝑎𝑠𝑖𝑠 = 𝑅𝐸𝑌	𝑝𝑝𝑚, 𝑎𝑠ℎ	𝑏𝑎𝑠𝑖𝑠 ∗ p
2 ∗ 𝑅𝐸𝑌	𝑀𝑊 + 3 ∗ 𝑂	𝑀𝑊

2 ∗ 𝑅𝐸𝑌	𝑀𝑊 s 
 

Eq.17 

The criterion for a promising sample is a TREO ash basis concentration of 1000 ppm or 

greater. The next criterion is the outlook coefficient (Coutl). Coutl is the ratio of critical REY 

concentration to excess REY concentration for each sample. A Coutl < 0.7 is considered 

unpromising and a Coutl ≥ 0.7 is promising. Both criteria must be met for a sample to be 

considered promising; otherwise the sample is considered to be unpromising [65]. Original and 

adjusted samples are plotted with the result shown in Fig. 20. Table 18 shows percentages of 

original and adjusted samples that are promising for ranks, coal provinces, coal regions, and 

states. Figs. 21, 22, and 23 show the probabilities of uncovering promising samples amongst all 

coal samples collected in the COALQUAL database for ranks, coal regions, and states 

respectively. To show how these Fig. 20 translates geographically, in Fig. 24, promising and 

unpromising coal samples are plotted on a map of the U.S. and the intensity of the color of each 

respective class is based on the magnitude of the TREO concentration of each sample.  
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Figure 20. Unpromising and promising samples from COALQUAL based on TREO and 

Coutl. 
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Table 18. Percentages of original and adjusted samples that are promising 

 

  

 



 55 

Figure 21. Probabilities of finding promising samples amongst coal ranks in 

COALQUAL 

 

 Figure 22. Probabilities of finding promising samples amongst coal regions in 

COALQUAL 

 

Figure 23. Probabilities of finding promising samples amongst states in COALQUAL 
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Figure 24. Map of the United States showing locations and concentration density of 

unpromising and promising coal samples 

3.5 Feature selection for machine learning purposes 

For the application purposes of this work, very few features need to be used in the 

machine learning algorithms. These features need to be easy to measure and obtain either from 

field collection or in the lab. All features were compared to each other in a correlation matrix to 

determine their relationships to each other. The features that are the most correlated to REY 

concentrations will be most useful in terms of classification because the classes are based on 

REY concentrations. The Pearson correlation coefficient (R) is defined in Eq. 18 where x is the 

value of one variable and y is the value of the other variable [42]. R needs to be calculated for 
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each attribute with respect to REYs. A R ≥ 0.5 shows that two attributes are significantly 

positively correlated.  

 
𝑅 = 	

∑ (𝑥$ − 𝑥̅)(𝑦$ − 𝑦z)#
$-!

{∑ (𝑥$ − 𝑥̅)1#
$-! {∑ (𝑦$ − 𝑦z)1#

$-!
=

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋, 𝑌)

{𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋)𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑌)
 Eq.18 

Table 19. Attributes from COALQUAL that correlate most to REY concentrations 

 

From the Pearson correlation results in Table 19, ash percentage stands out as good option for a 

feature that correlates to REY concentrations.  Trace element concentrations such as for Re, Al, 

Si, Ni, Au, U, and Mb have good correlations as well, but are not good choices for the machine 

learning model because measuring trace element concentrations is a more extensive laboratory 

analysis than measuring ash percentages requiring more time and financial resources.  



 58 

 

Figure 25. Mean TREY concentration with respect to mean dry ash percentage 

Fig. 25 shows that as TREY concentration increases, ash percentage increases. Because of this 

relationship, it follows that in the COALQUAL database, REYs are associated primarily with the 

inorganic matrix of coal.  This probably represented more in this dataset because it is skewed 

toward bituminous coals characterized larger inorganic matrices.  

 Pearson correlation is the preferred way to determine the best attributes for machine 

learning; however, there are many ways to do this.  Another way of doing this is by using the 

feature importance application that is a by-product of the random forest algorithm in python’s 

scikit-learn library.  After a training set is fit to a random forest model, it can determine the most 

important features utilized in fitting the model. This is a fairly reliable way of determining which 

variables are the most important for machine learning purposes.  Based on a training set 
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consisting of 80% of the samples from COALQUAL that have complete REY profiles, the 

following features are the most important. 

 

Figure 25. Random forest feature importance for COAQUAL database samples with 

complete REY profiles 

Random forest feature importance, shown in Fig. 25, supports the results shown from taking 

Pearson correlation coefficient calculations. All ash related metrics are near the top in terms of 

feature importance.  

 There are no other features in the COALQUAL database that meet the profile of being 

useful in terms of the goals of the machine learning model besides ash-based attributes. Trace 

element concentrations require analysis techniques that require time and financial resources. 

Also, if trace element concentrations were used then it renders this machine learning model 

irrelevant because coal samples could directly have their REY concentrations analyzed and 

traditional analysis could be conducted. Field-based metrics would be great to have for the 

machine learning model, but there were too many samples with missing values in terms of 

various locational information (i.e. coal region, province, field, mine, etc.).  Geological 
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information would have been wonderful to have as well, but the same problem missing values 

problem is present. Proximate analysis measurements are good to use for this model because 

they are numerical data types that more easily and more commonly measured in the lab than 

trace element concentrations.  However, with the exception of ash, no other proximate showed 

promising correlation to REY concentrations. Ash metrics are easily fit to machine learning 

algorithms and will provide a readily available low-cost feature to add to the dataset if more 

samples are provided. Standard ash percent will be used as the only feature in the machine 

learning model because that ash metric is the measured using the American Society for Testing 

and Materials International (ASTM) standard for measuring ash content in coal samples. This is 

the international standard for ash measurement and is therefore more commonly used. GS Ash 

percent and concentration are measured using the USGS standard which is used less in practice. 

Having only one feature may seem too simplistic, but as discussed earlier some algorithms 

perform better given fewer features to classify on. This model is designed to be a tool to save 

time and money in regard to testing and analyzing coal samples for their REY concentration. As 

long as the model performs fairly reliably and minimizes false positives, the model is useful. 

Given more feature collection from coal samples, more features can be added to the model. More 

comprehensive analysis needs to be conducted on coal samples.  This will yield a larger and 

more robust dataset that can be feed into machine learning algorithms. This methodology will be 

discussed later.  

3.6 Machine Learning and Feature Preprocessing 

The first step in preparing the data for machine learning purposes is to encode the 

samples determined to be promising or unpromising as a binomial. Adjusted unpromising and 

promising samples from the COALQUAL database with complete REY profiles are assigned a 
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class of 0 and 1 respectively. Then this dataset containing 5485 samples is randomly split into a 

training set and a test set. 80% of samples are assigned to the training set and 20% are assigned 

to the test using a stratified method. This way the test set has the same proportion of class values 

as the training set. Upon doing so, it is obvious that there are a lot of more unpromising samples 

and promising samples in both sets.  This bias must be accounted for in order for any given 

machine learning algorithm to classify the samples correctly. Synthetic Minority Over-Sampling 

Technique (SMOTE) is an algorithm that over-samples the minority class by implanting 

synthetic examples to each sample with the minority class along the line segments joining any/all 

of the minority class nearest neighbors, k. Based on how much over-sampling is conducted, 

neighbors from the k nearest neighbors are randomly selected. The synthetic samples are created 

by calculating the difference between the sample feature under consideration and its nearest 

neighbor in data space. The difference is multiplied by a random number between 0 and 1 and it 

is added to the considered sample feature [66]. The full algorithm is detailed in Fig. 26. SMOTE 

will create enough synthetic samples to even up the number of class values in a dataset. When 

the original distribution of data is compared to the new distribution with synthetic samples, not 

much difference is observed.  The next step in the preprocessing phase is to impute the data so 

there are no missing values in the dataset. Imputing replaces missing values with the median for 

each respective feature. Since standard ash percent is the only feature used, the median for 

standard ash percent in all samples in the test set is used to fill in any missing values for standard 

ash percent. With the training and test sets having no missing values and having added synthetic 

samples to account for class bias, and both datasets containing standard ash percent as the only 

feature and unpromising and promising classifications for each sample, the datasets are ready for 

machine learning implementation.  
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Figure 26. The SMOTE pseudo-algorithm [67] 
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3.7 Machine Learning Algorithm Implementation 

The five machine learning algorithms trained and tested in this work are k-nearest 

neighbors, logistic regression, CART decision tree classifier, random forest, and adaboost 

classifier. The two major performance measures that each algorithm is tested on is classification 

accuracy and percentage of false positives. 

3.7.1 k-Nearest Neighbors 

The only hyperparameter that needed to be tuned for k-nearest neighbors is k, number of 

nearest neighbors in the majority of the voting process. In order to tune this parameter, possible 

values of k from 1 to 100 were iteratively tested to the fitted algorithm. As mentioned previously, 

there is no need to “train” the algorithm. The entire dataset is used for classification purposes. 

 The main performance indicator used to evaluate the algorithm was accuracy, which is 

the ratio of correct classifications to total classifications. Accuracy was measured for all values 

of k from 1 to 100, and a k = 40 showed a near peak in accuracy with a zig zag relationship 

between accuracy and k value throughout all possible values of k. A visualization of the results 

are shown in Fig. 27. Mean squared error (MSE) was chosen as the parameter to eliminate 

misclassification error related to k. The optimal k value would minimize MSE. A display of this 

is shown in Fig. 28. A k ≥ 40 did not show significant decrease in MSE and therefore k = 40 was 
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chosen as the optimal k value. 

 

 Figure 27. Accuracy versus possible k values 

 

 Figure 28. MSE vs possible k values 

The algorithm performed very well. K-nearest neighbors performed with an accuracy of 

about 92% and only about 2% false positives. See Fig. 30 for all performance metrics. The 
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confusion matrix is a very useful tool to define classification error. A diagram explaining the 

confusion matrix is shown in Fig. 29. 

 

 Figure 29. Diagram of a confusion matrix [68] 

 

 Figure 30. Performance results of k-nearest neighbors’ algorithm 

There were only 152 false positives out of 10032 samples which equates to a percentage of about 

2%. 
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3.7.2 Logistic Regression 

For logistic regression, the main parameter that must be tuned is C, the inverse 

regularization parameter. The regularization parameter, 𝜆, is added to the cost function in order 

to account for weighting in the algorithm. 𝜆 is proportional to the magnitude of the sum of the 

weights in the cost function. C is a penalty term added to the cost function to discourage 

overfitting [69].  

 In order to determine the proper value of C, the gridsearchcv function is utilized in 

sklearn. This function exhaustively searches for parameters that will maximize algorithm 

performance after the algorithm is fitted to a dataset [70]. Gridsearchcv runs five cross 

validations of the desired algorithm and uses a specified range for any given parameters that 

need to be tested.  The function aims to maximize accuracy. Given that C is the inverse of a term 

in the cost function, the optimal C will minimize the cost function.  Fig. 31 shows the optimal C 

value after tuning. With a minimized cost function, and a maximized accuracy, the best result is 

chosen. 

 

Figure 31. Optimal C value and best accuracy with the COALQUAL database fitted to 

the logistic regression algorithm 
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 The optimal C = 0.052 yields an accuracy of about 67% utilizing the training data. The 

chosen C parameter must be subjected to the test data after being trained.   

 

 Figure 32. Confusion matrix and classification report for logistic regression 

When the test set is processed by the algorithm, the accuracy decreases to 64%. The percent of 

false positives is about 33%. All performance results are shown in Fig. 32.  

3.7.3 CART Decision Tree Classifier 

The CART decision tree classifier has many hyperparameters to tune. The maximum 

depth or the maximum levels of the tree, the minimum number of samples required to split a 

node, the minimum number of samples required at each leaf node, how the weights are 

associated with the classes, the function used to measure split quality, the way the tree splits at 

each node, and whether or not the data should be presorted before beginning the algorithm all 

need to tuned to the best possible outcome that minimizes cost and increases accuracy.   
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 Figure 32. Hyperparameters that need to be tuned for the CART algorithm 

 

 Figure 33. Randomized search procedure for selecting optimal hyperparameters 

The sci-kit learn function, RandomizedSearchCV, is used to tune hyperparameters for this 

algorithm as well as other decision tree classifiers. It is faster at processing larger combinations 

of hyperparameters than gridsearchcv [71]. This process is shown in Figs 32, 33, and 34.  

 

 Figure 34. Best parameters for the COALQUAL database fitted to the CART algorithm 
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Using the best parameters, the algorithm is trained and tested. The results from the test are 

below. 

 

 Figure 35. Confusion matrix and classification report for CART algorithm 

Fig. 35 shows that accuracy is 76% and about 20% of classifications were false positives. 

3.7.4 Random Forest 

Since random forest is an ensemble method using decision tree classifiers, its application 

is conducted very similarly to CART’s. There are a couple of different hyperparameters that 

need to be tuned for ensemble learning purposes. This process is detailed in Figs 36, 37, and 38 

below.  
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 Figure 36. Hyperparameters that need to be tuned for the random forest algorithm 

The main difference in hyperparameters is the number of trees in the random forest or the 

number of estimators used in the ensemble.  

 

Figure 37. Randomized search procedure for selecting optimal hyperparameters for 

random forest algorithm 

 

Figure 38. Best parameters for the COALQUAL database fitted to the random forest 

algorithm 
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The optimum number of trees for the COALQUAL database is 1400 in the random forest 

algorithm with a depth of 60 nodes.  

 

 Figure 39. Confusion matrix and classification report for random forest algorithm 

Fig. 39 shows that accuracy is 79% and about 16% of classifications are false positives for the 

random forest algorithm. 

3.7.5 Adaboost 

Like random forest, adaboost is an ensemble algorithm and it follows a process of tuning 

that is very similar to random forest. The process is detailed in Figs. 40, 41, and 42. 

 

 Figure 40. Hyperparameters that need to be tuned for the adaboost algorithm 
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Figure 41. Randomized search procedure for selecting optimal hyperparameters for the 

adaboost algorithm 

 

 Figure 42. Best parameters for the COALQUAL database fitted to the adaboost algorithm 

 

Figure 43. Confusion matrix and classification report for the adaboost algorithm 

See Fig. 43. The accuracy for adaboost is 76% and about 19% of classifications are false 

positives for the adaboost algorithm. 
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CHAPTER 4:  RESULTS 

The main objective of this work was to create a machine learning model that would be 

useful in classifying coal samples as promising or unpromising in terms of their REY 

concentrations and economic outlook.  This model would be useful because it would act as a 

filter for coal samples and would eliminate samples with low likelihood of being promising from 

the pool of samples that would be promising.  Having to test fewer samples would reduce cost 

and time associated with analytically measuring trace element concentrations. 

 The machine learning algorithms tested were k-nearest neighbors, logistic regression, the 

CART decision tree classifier, random forest, and adaboost. Table 20 below shows the 

performance results for all machine learning algorithms tested. 

Table 20. Performance results for all machine learning algorithms. 

Performance Results 

Machine Learning Algorithm 
Accuracy 
(%) 

False Positive 
(%) 

k-nearest neighbors 92 2 
logistic regression 64 33 
CART decision tree 76 20 
random forest 79 16 
adaboost 76 19 

 

  Each model was tested based on the accuracy associated in with classification, and the 

percentage of false positives that each model classified.  According to the results obtain from 

testing, k-nearest neighbors outperformed all of the other algorithms.  With an accuracy score of 

about 92% and about 2% false positives, this algorithm outperformed all other algorithms 

significantly. 
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 There are several reasons k-nearest neighbors likely outperformed all other algorithms. 

One of the primary reasons is that k-nearest neighbors performs very well when very few 

features are used. As mentioned previously, with increasing dimensionality, data points increase 

their distance from one another which lowers the performance of the algorithm. This k-nearest 

neighbors model only has one feature inputted into it and therefore does not have to work as hard 

to create discrete neighborhoods for accurate classification. For most models, the more data 

instances inputted into a machine learning algorithm, the more accurate the algorithm will 

perform in terms of classification.  With k-nearest neighbors, the dataset does not need to be split 

into a training and test set because it is a “lazy learner” (the target function is approximated 

locally). Lazy learners have the ability to solve a multitude of computations and deal with 

fluctuations in the domain of the problem, simultaneously. All instances can be entered into the 

algorithm and the more unbiased instances that are placed into the algorithm, the better it will 

perform. Since there are a total of 10032 real and synthetic samples from SMOTE utilized in the 

machine learning algorithms, there are quite a bit of samples that k-nearest neighbors can utilize. 

The other machine learning algorithms split the dataset into a training and test set, 80% and 20% 

respectively. This means that when they are tested, they only test 1097 samples which lowers 

performance.   

 Logistic regression was the worst performer primarily because logistic regression is very 

much a parametric statistical learning method. It is dependent on the inputted data being linear, 

otherwise the algorithm does not perform accurately.  Both the random forest and adaboost 

algorithms performed decent. If more features would have been added to those algorithms they 

would have performed better. Due to not having many important features without missing data 

and the need to simplify the model in terms of the number of features, decision tree classifiers 
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and ensemble learning algorithms will not perform as well as they potentially could. This is will 

be addressed in the conclusion.  

CHAPTER 5: CONCLUSION 

The results show that machine learning models can definitely provide benefit in reducing 

cost and time in testing coal samples for REY concentrations. All machine learning algorithms 

were able to classify coal samples at an accuracy of over 60 percent and a percentage of false 

positives below 35 percent. The best of these algorithms performed exceptionally well, 92% 

accurate classifications with 2% false positives. This is was accomplished using a dataset that 

was not collected for the purposes of machine learning. This methodology is extremely effective 

if reliable data is used. In practice, the data quality utilized in this work could be improved. First 

of all, assumptions about coal samples have to be made in order for this particular model and 

methodology to be useful in terms of reliable classification. Soil from anywhere on the surface of 

the Earth could be combusted and an ash content could be used in this machine learning model 

that could yield a promising result. Obviously, this is not representative of reality. In order for 

samples to be used in this particular model, they must come from a location where, historically, 

promising coal samples have been discovered. The model can still be useful in terms of further 

researching coal samples from areas of known promise, but in terms of exploration, this limits 

the usefulness of the model. The methodology should be changed in accordance to further usage 

if exploration is part of the project scope. 

5.1 Recommendations 

Research groups across the country have been researching coal samples for the purposes 

of REY exploration and extraction. The methodology presented in this thesis could be extremely 

useful if data collection is structured correctly. When collecting samples from the field for 
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classification purposes, ample field data must also be collected to give the most powerful results 

in terms of classification. It is recommended that geological information such as stratigraphic 

formation, coal group, coal bed, the relationship between non-coal material and the coal bed, 

depth from the surface of the earth to the top of the sample, thickness of the sample, the sample’s 

geological age, seam, rank, and other geological information be recorded for each sample. 

Completeness in capturing geological information as well as locational information will give the 

best results in terms of classification. If 5000 coal samples with complete geological, locational, 

proximate, and REY trace element concentration features are collected, then the five machine 

learning algorithms can be utilized in the same methodology is as in this work. Categorical data 

will need to be encoded, but every other step will be the same. The major difference is that the 

user can include a collection of features in the machine learning algorithms instead of focusing 

on just ash content. Having a combination of reliable features without missing data will provide 

better classification power rather than simply using ash content. For example, ensemble methods 

perform best given a large number of features because they perform better with randomness. 

Having a large number of samples with a wide array of features without missing data points is 

the most important factor in machine learning success. After the algorithms are trained using the 

REY concentrations measured for each sample, then new samples with complete geological, 

locational, and proximate data can be utilized without measuring REY concentrations to 

accurately classify coal samples. Promising samples can then be analyzed against all the features 

collected to discover exploration insights.  

From a cost and time standpoint, the model has the potential to be very useful. For INAA 

analysis, each sample costs $340 [72]. The majority of samples tested will be unpromising and 

therefore will not need to be tested, but most samples collected from the field will likely be 
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unpromising. If arbitrarily, 1000 samples are collected, and 100 are promising and 900 are 

unpromising; the model could potentially save upwards of $300,000 from testing fewer samples 

for trace element concentrations. 
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CHAPTER 9: APPENDIX A 
 

 

Table A-1. REY-bearing mineral deposits classification table [16]. 
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