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ABSTRACT 

 

 

The required change in velocity for a satellite to change inclination has prompted studies of 

efficient orbital transfers. Modeling the motion of a spacecraft by including the gravitational forces 

associated with the Sun, Earth, and Moon has historically proven effective in obtaining new 

scientific knowledge. In modeling the motion of satellites, the circular restricted three body 

problem (CR3BP) demonstrates the interactions from two primary bodies and a satellite. The 

dynamics created about the equilibrium points within the CR3BP can be used to construct low-

energy transfers. The invariant manifolds of the libration point orbits (LPO) can be used to create 

an orbit using a weak stable boundary (WSB) to approach a coplanar Lagrange point. Following 

the use of two distinct libration point orbits a satellite can adjust for a return at a greater difference 

of inclination compared to a one impulse maneuver. On approach to the second Lagrange point, 

the satellite follows a horizontal Lyapunov orbit to use another maneuver placing the satellite in a 

vertical Lyapunov orbit. Following the vertical Lyapunov orbit the weak unstable boundary is used 

for a return toward Earth at a different inclination. Given the trajectory created, a 90-degree 

inclination change has been developed. The maneuver cost is compared to a Hohmann transfer and 

bi-elliptic transfer for a decrease in fuel as well as an increase in the time of flight. An analysis of 

the periodic orbital transfer created in this research is performed, as well as other orbits from 

associated research articles suggest that a significant amount of velocity savings can be achieved. 

Continuing with the use of such constructed trajectories, a brief investigation on to financial and 

environmental impacts are also reviewed. The result of this study demonstrates the utility of 

periodic orbital transfers and their importance in mission design for plane change maneuvers.
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1. INTRODUCTION 

Traditionally orbital transfers, such as a Hohmann transfer or patched-conic transfer, need high 

fuel consumptions for large velocity maneuvers. Optimization of orbits are designed to consume 

the least amount of fuel, for the least amount of velocity possible. With optimizing fuel usage, the 

trade-off is between time and velocity. Different studies that model the trade-offs between different 

methods can provide options in mission design. An investigation into the NASA Genesis mission 

and the rescue of AsiaSat-3/HGS-1 aids in the understanding of periodic orbit trajectories. 

In August 2001 the NASA Genesis sample return mission was designed to collect isotopes 

from solar winds (Williams, 2002). The trajectory designed for the mission was one in which the 

spacecraft experienced a low energy injection toward a Halo orbit around the first Lagrange point. 

After completing several revolutions around the first Lagrange point the spacecraft proceeded with 

a Halo orbit around the second Lagrange point. The Genesis satellite trajectory demonstrates the 

successful use of periodic orbits in mission design and implementation. Furthermore, AsiaSat-

3/HGS-1 in 1998 underwent an Apollo-style free-return trajectory to adjust inclination of 40 

degrees (Ocampo, 2005). Edward Belbruno had also proposed a low-energy transfer that would 

have adjusted the inclination by 50 degrees. Although the ballistic capture method developed by 

Edward Belbruno was not used, his trajectory design lead to the use of the moon to rescue the 

satellite. The orbital maneuver of AsiaSat-3/HGS-1 allowed for the satellite to be repurposed as 

PAS 22 and continued to operate to the date of July 2002.  

A periodic orbit trajectory like the one used by NASA’s Genesis mission, the proposed 

maneuver for the rescue of AsiaSat-3/HGS-1, and designs created by further studies are 

advantageous for mission planning and satellite rescue missions. The CR3BP can be used to 

recreate the Genesis mission and the AsiaSat-3/HGS-1 transfer. CR3BP further enables the 

analysis of periodic orbit trajectories for mission use and can provide a general understanding of 

motion around the Lagrange points. Davis, Anderson, & Born (2011) proposed a trajectory design 

using periodic orbit transfers to change inclination and continued analysis with maneuvers around 

the LPO for a subset of inclinations. Expanding on the use of periodic orbit transfers to change 

inclination with an additional maneuver at the LPO, a transfer involving both horizontal and 

vertical Lyapunov orbits is investigated. The results allow for contingency planning involving 

changes with inclination and flexibility for mission design.  
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1.1  Inclination Change 

Inclination changes require large amounts of velocity change and are most often avoided to 

conserve fuel. A graph calculating the velocities needed for an inclination change with all other 

orbital parameters kept constant can provide a visualization of the challenge of plane change 

maneuvers. Equation 1.1 is used to calculate inclination change and the graph from figure 1-1 

provides a visual representation of the cost of velocity change as inclination changes. Given an 

initial orbit at LEO (6556 km) and a final orbit at LEO the change in velocity required for a 90-

degree plane change would approximately be about 11.02 km/s. Similarly, given an initial orbit at 

LEO and a final orbit at GEO (42,164 km) the change in velocity required for a 90-degree plane 

change would approximately be about 4.34 km/s.  

∆𝑣 = 2𝑣 ∗ sin(
∆𝑖

2
)                                                       (1.1) 

 

Figure 1-1 Change of Inclination vs. Change of Velocity 

 

As a result of the velocities required for a plane change maneuver a common approach is for 

the launch vehicle to inject a spacecraft into a transfer optimal for the designed mission orbit. A 

consequence of using the launch vehicle to assist in the plane change maneuver is that the transfer 

trajectories are typically like that of the launch site.  When considering the bi-elliptical transfer 

which is typically more economical compared to the Hohmann transfer, the bi-elliptical method is 

only more effective when the ratio of the initial orbital radius over the final orbital radius is greater 

than 15.58. When considering the bi-elliptical transfer the intermediate transfer is typically limited 

due to miscalculations caused by gravitational forces from other objects like the Moon or the Sun. 
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With the amount of velocity required for a change in inclination other methods for decreasing the 

amount of velocity required for a transfer are desirable. 

1.2 The Circular Restricted Three-Body Problem 

The motion of n-body masses in three-dimensional space only being acted upon by 

gravitational forces can be described by Newton’s universal law of gravitational motion. One 

subset of the n-body problem, n =2, is known as the two-body problem, which describes the motion 

of one mass about another. The two-body problem of motion has been proven to have a closed 

form analytical solution. However, when introducing an additional third body to the problem of 

motion, the general three-body problem has no closed form analytical solution.  

The complexities of the three-body problem are due to having nine different spatial coordinate 

components, a set of three for each object each with a different set for velocity. Given the different 

potential movements within the three-body problem there are 18 degrees of freedom. From the 

general equation of the three-body problem a set of 10 independent algebraic integrals can be 

derived. The equations being three for classical conservation of linear momentum for position and 

velocity, position and energy, and three for angular momentum. In 1912 Sundman found a 

complete solution for the three-body problem given in terms of a power series expression. 

However, his method converges very slowly and cannot be used for any practical application 

(Musielak, E., & Quarles, 2015). Given the nature of the three-body problem, deriving the 

acceleration with various position and velocity vectors through numerical analysis does provide a 

method of determining the orbit of a desired object. 

To reduce the complexities of the general three-body problem a set of assumptions can be used 

to simplify the problem. The CR3BP makes two assumptions to form a simplified model. First, 

the primary and secondary bodies move in circular motion about the center of mass which lies 

between both primary bodies. Second, the third body being the satellite is assumed to have 

infinitesimal mass compared to both primary bodies. In the CR3BP the third body is described 

relative to a rotating reference frame determined by the motion of both primaries. However, even 

with simplifying assumptions, the CR3BP is still not solvable in a closed form. Given the CR3BP, 

equations of motion can be derived to describe the motion of the object of interest with an initial 

set of position and velocity vectors. Within the model, approximate analytical solutions are 

available for motion around the equilibrium points. Using numerical solutions for the equilibrium 
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points, motion about the equilibrium points and about the system can provide information about 

motion of the object of interest. The solutions derived from the model can be further explored 

thereby leading to a multitude of discoveries demonstrating new types of orbital trajectories for a 

variety of different missions. 

1.3  Mission Scenario 

In this section an attempt is made to provide an example potential mission use for the orbital 

maneuver designed in this research. This section does not provide applicational use but rather 

focuses on what this maneuver would entail if used in a mission. The benefit of the orbit maneuver 

being described in this research is with the amount of fuel needed for a thrust to achieve a large 

inclination change. Factors not taken into consideration in this section, but later discussed include 

the space environment, communications issues, and other factors beyond the direct use of the 

maneuver. In this section a satellite named Satellite A is used as the example spacecraft that is 

completing the maneuver within a fictitious scenario to demonstrate usability in real conditions as 

a simplified example. 

In this scenario Satellite A has a mission that requires operations at LEO that would follow an 

inclination of 0 degrees with a mass of 4600 kg. To keep economic costs for the satellite down the 

cheapest available launch is chosen. In 2013 the published price for a such an endeavor was $56.5 

million through SpaceX (Belfiore, 2013). The cost example provided was considered the cheapest 

known example. SpaceX has three typical operating launch facilities, those three being Cape 

Canaveral Air Force Base, Vandenberg Air Force Base, and Kennedy Space Center. Satellite A’s 

mission design is to orbit about the equator making Kennedy Space Center and Cape Canaveral 

Air Force Base both viable options for launch location. Having multiple choices for launch 

locations could provide some flexibility with schedule. With projects that involve the use of 

satellites and launch dates for a specific launch site, it would not be uncommon for launch windows 

to be extended well into the future. Depending on how far into the future a launch is scheduled, 

planning time for development can become impacted. If a launch window is unavailable for an 

extended period, maintaining personnel could be a cost factor and drive design and development 

schedules beyond reasonability. If options are available for a launch site, time constraints could be 

less of an impact. However, launch windows and schedule impacts are difficult to quantify as 

development time scales are not published. If the given launch inclination for LEO is relativity 

low (less than 57 degrees) then either Cape Canaveral or Kennedy Space Center would be 
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preferred. Satellite A in this scenario is set to launch on a Falcon 9 Rocket at Kennedy Space 

Center, Florida. The latitude and longitude place the site near the equator and the Atlantic Ocean. 

The location provides an advance in speed due to the Earth’s rotation. After the mission duration 

time is complete several options are available for Satellite A. One option that can be explored is 

re-purposing Satellite A provided it has the necessary payload instruments and capacity for the bus 

to maintain the new desired orbit.  

Satellite A after having conducted a complete mission is now being re-purposed for GEO with 

a new inclination of 22 degrees. As noted from section 1.1 inclination change maneuvers are 

typically avoided due to the high cost of fuel. In this scenario to start with an inclination of 0 

degrees and move to an inclination of 22 degrees the cost would be approximately 1.17 km/s in 

addition to the change from LEO to GEO of about 3.94 km/s for an approximate total of 5.114 

km/s. As a cost estimate LEO near the equator starts off with about 1.5 km/s with about $10000 

for a pound of material getting from launch to orbit. To maintain an orbit at LEO a constant 

velocity of approximately 7.797 km/s is required and at GEO an approximate velocity of about 

3.07 km/s is required, which would mean that any unnecessary thrusts could shorten the lifespan 

of a satellite.  

Satellite A, now in LEO with an inclination of 0 degrees can either take a classic maneuver 

with the cost of 5.114 km/s Δv or undergo a fuel-efficient maneuver. The fuel-efficient maneuver 

described in this research is that of a satellite using invariant manifolds and LPOs. The use of 

periodic orbits has shown that a plane change maneuver can be achieved without the costs of 

undergoing such a maneuver. In section 3.2 a periodic transfer of one LPO is examined. Using the 

method described in section 3.2 the maneuver was originally designed to determine end state 

inclination for a given set of initial conditions. Given a point along the orbit of Satellite A with a 

potential thrust of 4.415 to 4.45 km/s allows for varying time of flight results that end the maneuver 

in GEO. Given the previously mentioned maneuver the required thrust would be 4.415 km/s with 

a time of flight of approximately 388 days. The savings compared to a traditional plane change 

maneuver for percent difference is less than 15% when comparing results calculated at GEO. As 

the difference of inclination continues to increase, the percent difference continues to go in favor 

of the fuel-efficient maneuver. As the inclination difference continues to increase from the initial 

orbit to the final orbit the fuel savings continue to increase up to a maximum difference of 71.6 

degrees. 
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Based on the previous scenario a change in the desired end state inclination to 90 degrees is 

now presented with the same launch location and initial inclination of 0 degrees. The change of 

end state inclination now requires the satellite to perform a 90-degree plane change maneuver 

resulting in a polar orbit. Based on the calculations from section 1.1 a required approximate 

velocity of 4.35 km/s for the inclination is necessary in addition to the 3.94 km/s needed for transfer 

to GEO for the desired end state. Using the maneuver just mentioned it is not possible based on 

the original research where the maximum change of inclination the maneuver can provide is 

approximately 71.6 degrees of difference. To further increase the potential for change of 

inclination an additional maneuver is made at the LPO to follow a different LPO for a return to 

Earth. In this research the results demonstrate that Satellite A would conduct an initial thrust of 

about 3.2 km/s near Earth, at the LPO another thrust of about 1.56 km/s, and finally a thrust of 

about 0.2 km/s circularizing the orbit about the Earth. The total thrust for the maneuver is 

approximately 5.076 km/s which would provide a percent difference of approximately 48% 

compared to a traditional plane change. Although such difference may not directly yield savings 

they could be the difference between a mission being possible or not. This maneuver being a multi-

thrust maneuver does create the potential for added risk and the need for correction should Satellite 

A veer off path. From the contingency study for the ISEE-3 satellite, the mission used created a 

set of contingency thrusts to correct for additional perturbations or other factors. With the 

development of the maneuver, created contingency thrusts would also be created if used for a real 

mission. Figure 1-2 and 1-3 provide a trace of the trajectory with potential additional thrust points 

to ensure success.  

 

 

 

 

 

 

 

Figure 1-2 Contingency Maneuver for 

Lyapunov Orbit (2-Dimensional View) 

         Figure 1-3 Trajectory of full Orbital    

……Maneuver ( 3-Dimensional View) 
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Figure 1-3 was created prior to being generated within the model and subject to change in 

appearance. As Satellite A returns from the maneuver a final thrust will place Satellite A in the 

final polar orbit. Contingency maneuvers are calculated based on the current position and velocity 

and determining the difference as needed for an additional thrust providing orbital correction. The 

beginning and end results can be realized in a classic two-body model after having gone under a 

maneuver with the three-body model. Also, due to the three-body model not being complete with 

all the potential forces acting on Satellite A additional corrections to thrust would need to be taken 

to account for such perturbations. The designed orbital maneuver adds more to the time of flight 

and slightly increases the required amount of thrust to further increase the maximum amount of 

inclination change achievable. The example provided is one of many that could be loosely fitted 

for the maneuver created. Additional usage and savings could also apply to retrograde orbits. More 

common uses typically include rescue and salvage or missions that take advantage of the trajectory 

being implemented. As different orbital techniques are created for various situations more options 

exist to assist orbital analysts and guidance navigation and control engineers. 

1.4  Previous Contributors  

When studying orbital motion Newton’s second law and his universal law of gravitational 

motion is a typical starting point. In 1687, Sir Isaac Newton published his mathematical finding in 

the Principia, which contained the dynamical analysis for the three-body problem. Continuing 

Newton’s work, in 1767 Euler had proposed a special form of the general three-body problem 

where three bodies of finite mass were placed along a straight line suitable for initial conditions. 

The third body within the system is assumed to be infinitesimal, thereby introducing the “restricted 

three-body problem” (Musielak, E., & Quarles, 2015). The proposed setup would have the line of 

both primary bodies rotate about the center of mass leading to periodic motion of all three bodies. 

The Lagrange solution to the restricted three-body problem proved two corresponding orientated 

triangular regions of stability. Overall, there are five identified equilibrium solutions known as the 

Lagrange points. Poincaré’s developed several qualitative methods to study periodic orbits, while 

demonstrating non-integrability of the three-body problem. His work on the existence of periodic 

solutions led to the beginning of modern dynamical systems theory (Musielak, E., & Quarles, 

2015).  
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1.4.1  Libration Point Orbits and Manifolds 

Continuing the contributions of Poincaré’s work on the existence of periodic orbits within the 

three-body problem, further advancements have demonstrated a wide family of orbits. Among the 

contributions for studying periodic orbits, characterization using Lyapunov exponents describe 

trajectories in phase space converging on to stable and unstable manifolds (Musielak, E., & 

Quarles, 2015). Given the restricted three body model, the work of Farquhar and Kamel computed 

a family of Halo orbits permanently formed from the perspective of Earth about the Lagrange 

points (Breakwell, Brown, & V., 1979). The work of Breakwell and Brown in 1979 concluded 

numerically that orbits near the Lagrange points grow larger and have shorter periods as they 

approach the second primary body (Breakwell, Brown, & V., 1979). In 1972, Farquhar and Kamel 

used the Lindstedt-Poincaré method and computerized algebraic manipulation to form analytical 

solutions for quasi-periodic orbits. Their research was focused on use of a communications relay 

satellite that would take advantage of the collinear libration point orbits. As a result of their 

research they confirmed the existence of large Halo orbits for both the L1 and L2 Lagrange points 

with any mass parameter µ: 0 < µ ≤ 0.5 (Farquhar & Kamel, 1972). Howell’s research continued 

from Farquhar and Kamel’s with the existence of Halo orbits near all three collinear libration 

points of varying size differences. In her research most orbits decreased in period as they approach 

the nearest mass, with stable orbits roughly halfway between libration points (Howell, 1983). As 

the behavior of Lissajous orbits continued to become well-defined, further research focused on a 

wide range of topics to further describe such dynamic motion and its potential applications. 

With the dynamical motion created by the CR3PB and motion about the colinear Lagrange 

points, the use of manifolds and heteroclinic connections have become a major topic of discussion. 

In the research of Gómez and Masdemont a transfer between L1 and L2 with a heteroclinic orbit 

with no maneuver is demonstrated. The result of the research was a methodology to compute 

various orbits of joining libration point orbits (Gomez & Masdemont, 2000). With the continued 

use of modeling, Hénon’s research extends the number of periodic solutions to include seven new 

families of periodic orbits. Previous limitations were due to computer limitations in 1996 which 

were overcome by 2002. Overall, there exist an infinite number of families of periodic orbits and 

for those numerically computed each presented show instability (Henon, 2002). With heteroclinic 

connections mapped out within a system continued research from Gómez and Masdemont with 

the addition of Lo, Marsden, Koon, and Ross a framework of connections can be constructed to 
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act as a transport mechanism. Their research constructed numerous ways of using stable and 

unstable manifolds to and from different libration point orbits requiring no maneuvering (Gomez, 

et al., 2004). Further analysis of the behavior of trajectories into periodic orbits by Nakamiya, 

Scheeres, Yamakawa, and Yoshikawa demonstrate behavior about the Hill’s region. Through their 

numerical results the manifolds from periapsis to Lyapunov and Halo orbits can intersect the 

surface of any planet in the solar system given changes with the Jacobi integral (Nakamiya, 

Scheeres, Yamakawa, & Yoshikawa, 2008). The dynamics about libration point orbits have shown 

great utility moving from one primary body to another or about a system. They also can 

demonstrate a great usefulness in fuel efficient transfers to increase inclination.   

In 2003, Villac and Scheeres studied three-body forces to create large inclination changes 

based on the geometries of the CR3BP. Previous analysis of plane change maneuvers had been 

constructed from the two-body problem. One example provided by Villac and Scheeres was that 

of the J2 perturbations, which refers to third-body forces acting on a satellite provide a change in 

orbital parameters as a change of distance between the two primary bodies and their gravitational 

forces (Villac & Scheeres, 2003). Their research provided analysis on highly eccentric transfers 

acted upon by the secondary primary body and how such forces would create a plane change. Their 

research demonstrated a 25% fuel savings compared to a one-impulse maneuver greater than 60 

degrees. Villac and Scheeres furthered their research by finding an analytical estimated limit of 

optimality. One-impulse maneuver plane changes are less expensive for inclination changes 

greater than 45 degrees compared to traditional methods (Villac & Scheeres, 2009). In 2010, 

Davis, Anderson, Scheeres, and Born developed a technique known as the bounding sphere to 

understand different gravitational effects caused by the second primary body (Davis, Anderson, 

Scheeres, & Born, 2010). The idea behind the bounded sphere is to develop an optimized path for 

a plane change maneuver for a desired inclination. Their research continued with constructing 

optimal transfers between unstable periodic orbits of different energies. With a satellite using a 

different final periodic orbit from the initial periodic orbit primer vector theory could be used to 

better determine the most optimal path compared to their bounded sphere method (Davis, 

Anderson, Scheeres, & Born, 2011). The bounded sphere is a region of different manifolds 

intersection paths to determine an optimal path. The primer vector theory as used in their research 

adjusts an initial and final coastal arc and a transition for the most optimal path, implementing a 

two-impulse maneuver. Davis, Anderson, and Born continued their research with an orbital 
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maneuver to demonstrate a maneuver from LEO to GEO using invariant manifolds to provide a 

plane change without a plane change maneuver (Davis, Anderson, & Born, 2011).  Throughout all 

the research conducted, the overall result was that with the use of invariant manifolds and libration 

point orbits 40 – 70% fuel savings can be achieved compared to a Hohmann transfer. 

1.4.2 Application in Mission Design 

A NASA technical note in 1971 purposed the use of a Halo orbit for a relay satellite for lunar 

communications (Farquhar, 1971). The communications satellite proposed would perform an 

orbital maneuver to take advantage of a trajectory that would lead directly into a Halo orbit. 

Unfortunately, this method was not selected. Later, in 1996 Barden, Howell and Lo generated 

trajectories for the Suess-Urey mission with the three-body problem using stable and unstable 

manifolds, which differed from traditional trajectory design being rooted in the two-body problem 

and conics (Barden, Howell, & Lo, 1996). The Suess-Urey mission was to collect solar wind 

particles for the duration of two years, other similar missions that would take advantage of periodic 

orbits prior to Barden, Howell and Lo’s analysis were ISEE-3, WIND, SOHO, and ACE. As 

advancements in technology continued to develop, the use of computers for analysis also helped 

further the development of periodic orbits in mission design.  

With applicational use to missions such as Genesis and low energy Earth to Moon transfers 

Koon, Lo, Marsden, and Ross developed heteroclinic connections between libration point orbits 

using modeling and simulation. Heteroclinic orbits describe the path in phase space in which two 

different libration point orbits can be joined together. The discovery of heteroclinic connections 

provide a fast channel of transport between interior and exterior Hill’s regions that can be exploited 

by spacecraft to explore vast regions of space around a planetary body (Koon, Lo, Marsden, & 

Ross, 1999). In 2001, Paffenroth and Dichmann used the software tool AUTO to model families 

of periodic orbits (Paffenroth, Doedel, & Dichmann, 2001). The AUTO2000 software is an open 

source program that computes bifurcation diagrams with a wide range of applicational use beyond 

the CR3BP. Gómez and Masdemont showed that the invariant manifold structures of the collinear 

libration points have different types of motion inside the manifold and outside the manifold 

(Gomez, et al., 2001). Their work was focused around the potential for mission use of a Petit Grand 

Tour of the Jovian moon system with a numerical algorithm that can be used for any three-body 

system. In 2004, Chow, Gralla, and Kasdin constructed a LEO constellation design using the L1 
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Lagrange point to deploy multiple satellite while implementing a plane change. Their research 

displayed the use of Lissajous orbits about the L1 Lagrange point with a minimal change in velocity 

for each satellite. The mission design that was developed however did not take into consideration 

cost related issues due to radiation and communication gaps. Overall, the cost savings for using a 

Lissajous orbit from LEO is approximately 38% (Nakamiya, Scheeres, Yamakawa, & Yoshikawa, 

2008). In 2008, a study conducted by Sucarrat demonstrated the use of libration point orbits and 

transfer trajectories from LEO to GEO. With the Earth acting as the second primary body the 

dynamics of the manifold act as an assist with a low-cost velocity change that approaches the 

equilibrium points (Sucarrat & Soler, 2009). The work presented in this research continues to 

further the use of plane change maneuvers with the use of the L2 Lagrange point with a trajectory 

from LEO to GEO with a result of having a different inclination.  

1.5  Current Work 

For application use of efficient fuel transfers for plane change maneuvers, the initial design 

begins with the CR3BP for the Sun-Earth/Moon system. A first-order linear approximation for a 

small amplitude Halo orbit near the L2 Lagrange point is used to obtain a Lyapunov vertical and 

horizontal orbit. In addition to the family of orbits obtained a one impulse maneuver is created 

from LEO to demonstrate a plane change maneuver. The orbital design takes advantage of 

invariant manifolds providing a change of inclination. Furthermore, the use of a horizontal and 

vertical Lyapunov orbit relate to an additional maneuver to demonstrate a fuel-efficient method 

for a 90-degree plane change. A brief review of retrograde orbits is also studied with the 

constructed method. Measurements of optimality are briefly reviewed with bounding spheres and 

primer vector theory. Finally, fuel efficiency is compared with traditional inclination transfer 

methods and results with previous research.  

The libration point orbits are conducive to plane change maneuvers as the geometries of the 

system create large inclination changes. With an initial impulse a satellite will follow a weak stable 

boundary out to a libration point orbit and return to the initial primary body following a weak 

unstable boundary, while having undergone a plane change. In previous research a variety of 

different Halo orbits were chosen for various resulting inclination changes with a single impulse. 

This research will use a two impulse maneuver to further increase the change of inclination. To 

decrease the scope of this research the use of Lyapunov horizontal and vertical orbits are used to 
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demonstrate large inclinations changes and retrograde changes. For the two impulse maneuver 

patch points are selected and increase time of flight is incurred. Fuel efficiency and time of flight 

are viewed as the primary factors of consideration of trajectory design. The solutions developed 

are not only compared to other transfer methods but also other factors that can impact the mission 

use. Factors reviewed include cost savings with fuel, launch locations and launch schedules. 

Negative impactors taken into consideration include communication gaps and radiation impacts. 

Orbits are modeled with a python script modified from a trans-lunar injection script (Baines, Hew, 

& Toyama). Additional modeling is created with MATLAB provided by Orbital Mechanics for 

Engineering students (Curtis, 2020). Finally, all the results from the trajectories formed will be 

compared to different overall mission costs to determine overall effectiveness. 

1.6  Overview 

In chapter 2, a discussion for the model chosen is provided along with derivation of the equations. 

The CR3BP differential equations are formulated along with the Jacobi constant. A method of 

computation for the collinear equilibrium points within the system is included. First-order 

analytical approximations are summarized for Lyapunov orbits about the first and second collinear 

equilibrium points and the state transition matrix is defined. Methods of correcting periodic orbits 

for variations along the path are described and invariant manifold theory is introduced. 

 

In chapter 3, a reconstruction of the trans-lunar trajectory and results are used to test a python 

model with the research results of (Baines, Hew, & Toyama). Changes within the model are in the 

form of initial conditions along with an expansion into three dimensions for the CR3BP. Many 

different orbits from the Lyapunov family are represented in the vicinity of the L2 equilibrium 

point. A recreation of a single impulse maneuver using a Lyapunov orbit is demonstrated to 

compare with the results of Davis et al. (2011). A brief review on transfer methods to connect two 

impulse maneuvers with a bounding sphere and primer vector theory are also described. Orbits 

with characteristics that support a two impulse maneuver are derived to provide large inclination 

changes. Criteria for evaluation include fuel efficiency and time of flight for the developed 

trajectory. A brief trajectory design of retrograde orbits is reviewed to determine capability and 

cost savings. 
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In chapter 4, the advantages of the maneuver constructed from the previous chapter is analyzed for 

overall efficiency. Additionally, a brief review of rescue and salvage missions is conducted to 

demonstrate the current use for low energy transfers. To further develop the constructed orbits for 

potential mission use, a review of environmental conditions is also conducted. Negative impacts 

to using the trajectory designed such as communication gaps and impacts of radiation are 

discussed. Finally, other economic and mission benefits are analyzed to determine the overall 

feasibility. 

  

Finally, in chapter 5 the conclusion of the research provides a summary and result with overall 

efficiency savings, time of flight and mission effectiveness. A discussion of future work is 

provided for continued advancements in the research that has been presented. 
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2. BACKGROUND 

Traditional methods of orbital maneuvers are constructed with two body conics. However, the 

two-body method does not describe the full motion within a system as an object is being perturbed 

by multiple bodies. A conics model does not provide any notion or modeling capability for near 

equilibrium points. In a system describing the motion of three bodies one being infinitesimal in 

mass compared to the other two bodies a set of differential equations can be used to describe the 

motion taken by the object of interest. Methods of modeling n – bodies (where n is greater than 2) 

are more complex compared to a two-body problem or conic approach in that no closed form 

solution exists. Despite the CR3BP not having a closed form, numerical integration yields 

unexpected solutions for a variety of periodic orbits in the vicinity of the primary bodies without 

orbiting either one with an infinite variety of orbital trajectories. The motion of a satellite within 

the CR3BP can be modeled from the differential equations formulated. The method of determining 

position and velocity along a trajectory path within the conducted research is numerically 

computed with a Runge-Kutta numerical method. The equilibrium points in this system are easily 

computed. The Jacobi constant relates position to velocity at any given point as a conserved 

quantity for the system and can be used to derive numerous solutions. A linear approximation is 

derived from an understanding of the Lagrange points and corrected for a nonlinear system. The 

state transition matrix is introduced with a method for future variations along a given path. Finally, 

a brief introduction into invariant manifold theory is provided.  

2.1 The Circular Restricted Three-Body Problem 

The general three body problem is formed by creating a model based on the notion that there 

are only three bodies, all three bodies are treated as a point mass, and the only interactive force 

within the system is caused by gravity. The position of a first body (denoted as P3 with a mass of 

m3) relative to two other bodies (denoted as P1 with mass m1 and P2 with mass m2 respectively) is 

depicted in Figure 2-1 in the inertial reference frame of motion in a free body diagram. To describe 

the motion in which P3 is governed within the system Newton’s Law of Gravitational Motion 

provides the differential equation, 

𝑚3
𝑑2𝑟3

𝑑𝑡2 =−
𝐺𝑚3𝑚1

‖𝑟13‖3 𝑟13 −
𝐺𝑚3𝑚2

‖𝑟23‖3 𝑟23              (2.1) 

where G is the universal gravitational constant 6.674x10-20 km3 kg-1 s-2. From equation (2.1), 𝑟13 

and 𝑟23 are the relative positions of P3 with respect to P1 and P2. 
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Figure 2-1 Three-Body Problem Inertial Reference Frame 

 

The CR3BP is considered restricted in that one body is smaller compared to the other two. The 

mass is restricted such that m1 > m2 >> m3. This implies that m3 is infinitesimal and cannot impact 

the motion of m1 or m2. For the model being conducted this assumption is acceptable in that a 

satellite is not going to have a meaningful impact on the Sun or the Earth/Moon as a combined 

mass. A second restriction onto the CR3BP is that the orbits of the two primary bodies are circular 

about the center of mass or barycenter. To determine if the Sun-Earth/Moon model is a valid setup 

it is important to check the circularity of the orbit. Earth’s eccentricity (e) about the sun is 0.0162, 

thus assuming e = 0 is relatively realistic. A final check of the assumptions made is to compare the 

masses and mass ratio value of m1 and m2 to ensure that the mass of the first and second primary 

bodies are such that m1 > m2 and that the mass ratio follows µ: 0 < µ ≤ 0.5. Using a system where 

the first primary mass is the Sun and the second primary mass is the Earth/Moon the mass ratio 

for the system is µ = 3.04x10-6. With two primary bodies orbiting around a barycenter Figure 2-1 

can be redefined such that P1 and P2 are fixed along an axis with a rotating reference frame as 

depicted in Figure 2-2 free body diagram. 
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Figure 2-2 Restricted Three-Body Problem Rotating Reference Frame  

 

Equation 2.1 can be generalized by introducing characteristic quantities of length and time. The 

characteristic length 𝑙 is the sum of the vectors r1 and r2 such that 

𝑙∗ =‖�̅�1‖ +‖�̅�2‖          (2.2) 

The characteristic time 𝑡 is computed as 

𝑡∗ =√
𝑙∗3

𝐺𝑀𝑡𝑜𝑡𝑎𝑙
           (2.3) 

With the motion of P2 about P1 being assumed to be circular, the characteristic length remains 

constant. Using equations (2.2) and (2.3) with the mass ratio, 

µ =
𝑚2

𝑚1+𝑚2
            (2.4) 

equation (2.1) becomes 

𝑑2𝑟3

𝑑𝜏2 =−
1−µ

‖𝑟13‖3 𝑟13 −
µ

‖𝑟23‖3 𝑟23        (2.5) 

where 

𝑟3 =
𝑟3

𝑙∗
= 𝑥�̂� + 𝑦�̂� + 𝑧�̂�           (2.6) 

𝑟13 =
𝑟13

𝑙∗
= (𝑥 + µ)�̂� + 𝑦�̂� + 𝑧�̂�          (2.7)  

𝑟23 =
𝑟23

𝑙∗
= (𝑥 − (1 + µ))�̂� + 𝑦�̂� + 𝑧�̂�          (2.8) 

and the non-dimensional time is represented as, 

𝜏 =
𝑡

𝑡∗
              (2.9) 
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Equation (2.5) can be expanded kinematically. The motion of P3 can be described in relation to the 

barycenter of the system in the rotating reference frame. The rotating reference frame must be 

taken into consideration as derivatives are taken. Using the kinematic transport theorem, the 

rotating frame can be expressed as 

 𝐼
𝑑𝑝𝜔

𝑑𝑡
= 𝐼

𝑑𝑝

𝑑𝑡
+ 𝜔 ⨯ 𝑝           (2.10) 

Using the transport theorem for a second time the kinematics of motion for the rotating reference 

frame become 

�̈⃑� = (�̈� − 2𝑦 − 𝑥) + (�̈� + 2�̇� − 𝑦) + �̈��̇�        (2.11) 

The time derivatives within equation (2.11) are represented differentially with respect to τ. Given 

the expressions (2.6) – (2.11) the vector equation from (2.5) can be rewritten in scalar form as 

�̈� − 2�̇� − 𝑥 = −
(1−µ)(𝑥+µ)

‖𝑟13‖3 −
µ(𝑥−(1−µ))

‖𝑟23‖3        (2.12) 

�̈� − 2�̇� − 𝑦 = −
(1−µ)𝑦

‖𝑟13‖3 −
µ𝑦

‖𝑟23‖3        (2.13) 

�̈� = −
(1−µ)𝑧

‖𝑟13‖3 −
µ𝑧

‖𝑟23‖3        (2.14) 

Equations (2.12)-(2.14) describes the motion of the third body in the rotating frame within the 

CR3BP. These equations are non-linear due to the denominator on the right-hand side of the 

expressed equations. Another observation is that the x and y axis are coupled and cannot be 

separated or solved independently from each other. The z-axis is uncoupled meaning that if only 

planar motion is provided the resulting trajectory will remain planar. The planar circular restricted 

three body problem (PCR3BP) only considers the x and y axis as a simplification to the CR3BP 

by setting z axis position and velocity equal to zero. The PCR3BP is common throughout literature 

and often referenced as the CR3BP. Also, given that the only force within the model is caused by 

gravity and that gravity is a conservative force, it can be written as the gradient of a potential, Ω. 

The gradient of a potential can be expressed as 

�⃑� = −∇𝛺                (2.15) 

Given the defined rotating reference frame from the CR3BP the pseudo-potential Ω* can be 

expressed as 

𝛺∗ =
1−µ

‖𝑟13‖3 +
µ

‖𝑟23‖3 +
𝑥2+𝑦2

2
               (2.16) 

With the pseudo-potential the equations of motion for the CR3BP can be expressed as 

�̈� = 2�̇� + 𝛺𝑥∗              (2.17) 
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�̈� = 2�̇� + 𝛺𝑦∗              (2.18) 

�̈� = 𝛺𝑧∗               (2.19) 

2.2 Equilibrium Points 

Within the CR3BP the only force within the system is gravity from each primary body. The 

point of which the forces of gravity are equal for both bodies create equilibrium points. From the 

motion of the second primary body orbiting the first primary body five equilibrium points are in 

constant position to both main bodies. The equilibrium points are defined as a point in which all 

time derivatives of position are zero in the rotating reference frame. The system equilibrium points 

are also called the Lagrange points or libration points. The Lagrange points are determined from 

equations (2.16)-(2.19). Within the equations of motion setting all acceleration and velocity to zero 

the following relationships yield the constant equilibrium solutions as 

0 = 𝑥 −
(1−µ)(𝑥+µ)

‖𝑟13‖3 −
µ(𝑥−(1−µ))

‖𝑟23‖3 =𝛺𝑥∗             (2.20) 

 0 = 𝑦 −
(1−µ)𝑦

‖𝑟13‖3 −
µ𝑦

‖𝑟23‖3 = 𝛺𝑦∗                        (2.21) 

0 = −
(1−µ)𝑧

‖𝑟13‖3 −
µ𝑧

‖𝑟23‖3 = 𝛺𝑧∗                  (2.22) 

Given the scope of the research conducted the focus of determining Lagrange points is centered 

around the collinear Lagrange points. The three equilibrium points, i.e. L1, L2, and L3, are 

computed by defining y = 0 and z = 0 in equations (2.20)-(2.22). The form of the resulting equation 

is 

0 = 𝑥 −
(1−µ)(𝑥+µ)

(𝑥+µ)3
−

µ(𝑥−(1−µ))

(𝑥−1+µ)3
                  (2.23) 

and provides the positions for the L1, L2, and L3 equilibrium points along the x-axis. Table 2-1 and 

figure 2-2 summarize the values for the collinear Lagrange points. 

 

Table 2-1 Locating the Collinear Lagrange Points µ = 3.04x10-6 

Lagrange Point Location 

L1 0.9899897 

L2 1.0100741 

L3 -1.0000043 
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Figure 2-3 Collinear Equilibrium Points in the CR3BP 

 

2.3 Numerical Computation Runge-Kutta Method 

In the 20th century German mathematicians Carl Runge and Martin Kutta formulated the 

Runge-Kutta method. These iterative methods of numerical analysis are commonly used in 

computational physics. These methods are closely related to the Taylor series expansion without 

differentiation. Of the numerous Runge-Kutta methods and techniques, for this given body of 

research the Runge-Kutta 4th order is selected to provide numerical solutions. The 4th order method 

is used to solve ordinary differential equations (ODE). The general formula for the Runge-Kutta 

4th order method is 

𝑘1 = 𝑑𝑡 ∙ 𝑔[𝑡𝑖 , 𝑓𝑖]                   (2.24) 

𝑘2 = 𝑑𝑡 ∙ 𝑔[𝑡𝑖 +
𝑑𝑡

2
, 𝑓𝑖 +

𝑘1

2
]                 (2.25) 

𝑘3 = 𝑑𝑡 ∙ 𝑔[𝑡𝑖 +
𝑑𝑡

2
, 𝑓𝑖 +

𝑘2

2
]                 (2.26) 

𝑘4 = 𝑑𝑡 ∙ 𝑔[𝑡𝑖 + 𝑑𝑡, 𝑓𝑖 + 𝑘3]                   (2.27) 

𝑓𝑖 = 𝑓𝑖 +
𝑘1

6
+

𝑘2

3
+

𝑘3

3
+

𝑘4

6
                 (2.28) 

This approach only solves the first order ODEs within the system. However, this method completes 

four evaluations for every step on the right-hand side of the equation of the ODEs. From the above 

method k1 is a whole step whereas k2 and k3 are half steps that are evaluated by the midpoint with 

k4 trailing from the final point. The Runge-Kutta method of numerical computation is also used in 

programs such as STK and other orbital simulators. 

When using methods of numerical analysis, it is critical to test the accuracy of the method for 

the given system and to optimize the size of the integration. One technique to test accuracy for a 
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method is to loop through several step sizes and compare the numerical results to an analytical 

solution. With graphing, the numerical results can be observed using trajectories created over 

several step sizes allowing for a visual check to determine changes in a path for a particles motion. 

A backwards compatibility test is conducted by randomly selecting initial conditions at some point 

in time and integrating backwards to see how the trajectory of a particle is affected. The ending 

conditions created from integrating backwards are then used as the initial conditions and integrated 

forward in time. Both paths of integration can be compared by observing how they change with 

respect to different step sizes of time.  

2.4 Constructing Libration Point Orbits 

The dynamics of the three-body problem allow for the introduction of libration point orbits. 

With the CR3BP being a simplified version of the three-body problem libration point orbits are 

still capable of being demonstrated within the model. With the ability to demonstrate libration 

point orbits a wide variety of orbital trajectories can be developed and tested for efficiency. The 

use of the Jacobi constant for different trajectories relates the object of interest’s position and 

velocity to unique solutions and forbidden regions. Given a set of initial conditions different 

families of libration point orbits can be created. For the scope of the research conducted a method 

of creating horizontal and vertical Lyapunov orbits is constructed.  

2.4.1  Jacobi Constant and Forbidden Regions 

With the CR3BP the Jacobi constant is the only known conserved quantity. As conserved 

quantity the Jacobi constant can act as a numerical value for the system and trajectory taken. From 

equation (2.12)-(2.14) and (2.16) when multiplied each by their perspective velocities and added 

together the result formulates the following equation 

�̇��̈� +  �̇��̈� +  �̇��̈� = 𝛺𝑥∗�̇� + 𝛺𝑦∗�̇� +𝛺𝑧∗�̇�           (2.29) 

When expanding the right-hand side of the equation 

�̇��̈� +  �̇��̈� +  �̇��̈� = 
𝛿𝛺∗

𝛿𝑥

𝑑𝑥

𝑑𝜏
+

𝛿𝛺∗

𝛿𝑦

𝑑𝑦

𝑑𝜏
+

𝛿𝛺∗

𝛿𝑧

𝑑𝑧

𝑑𝜏
       (2.30) 

both sides can be integrated by the non-dimensional time. The result of integrating both sides of 

the equation provide the following equations 

1

2
(�̇�2 + �̇�2 + �̇�2) = 𝛺∗ − 𝐶       (2.31) 

𝐶 = 2𝛺∗ − 𝑉3          (2.32) 
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In equation (2.32) C is the Jacobi constant and V is the magnitude of the velocity. Mapping the 

Jacobi constant to Sun-Earth/Moon model figure 2-4 outlines different regions in which a third 

object can be present for a given velocity.  

  

Figure 2-4 Jacobi Contour Sun-Earth/Moon (x – y View) 

 

From figure 2-4 for a given value of the Jacobi constant the curves of zero velocity are 

represented by the different color outlined shapes. These boundaries cannot be crossed by a 

secondary mass moving within the allowable region that is only moving under the influence of 

gravity from both primary bodies. As the Jacobi constant decreases the region between the two 

primary bodies increase. This area is known as the Hill’s region. As the Hill’s region grows the 

secondary mass can now move between or transfer in orbit from one primary to another. When 

adjusting the Jacobi constant, the L1 point opens first followed by the L2 and finally the L3. At 

different states of lower Jacobi constant values there are still forbidden regions around the L4 and 

L5 regions before the forbidden region is completely gone as the Jacobi constant decreases. When 
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creating orbits that take advantage of the equilibrium points the Jacobi constant can also provide a 

limit for size of the libration point orbit. 

2.4.2  Linear Approximation for Lyapunov Orbits 

A first-order linear analytical approximation of motion for the collinear libration point orbits 

are derived with respect to the equilibrium points. From the equations of motion (2.16) and 

(2.20)-(2.22) an initial step is to set a point some distance away from the equilibrium points. The 

initial setup for a point away from the equilibrium point is demonstrated with the following 

equations 

𝜉 = 𝑥 − 𝑥𝑒𝑞                  2.33 

ƞ = 𝑦 − 𝑦𝑒𝑞                  2.34 

𝜁 = 𝑧 − 𝑧𝑒𝑞                  2.35 

The points ξ, ƞ, and ζ are relative variations to the equilibrium points from the numerical values 

of xeq, yeq, and zeq. To form linearized equations a first order Taylor series expansion is taken 

from equations (2.33)-(2.35) with the equations of motion to provide the following results 

 �̈� − 2ƞ̇ = 𝛺𝑥𝑥𝜉 + 𝛺𝑥𝑦ƞ +𝛺𝑥𝑧𝜁         (2.36) 

ƞ̈ + 2�̇� = 𝛺𝑥𝑦𝜉 + 𝛺𝑦𝑦ƞ +𝛺𝑦𝑧𝜁        (2.37) 

𝜁̈ = 𝛺𝑥𝑧𝜉 + 𝛺𝑦𝑧ƞ +𝛺𝑧𝑧𝜁          (2.38) 

The equation (2.16) describes the pseudo-potential Ω* with all the following being the different 

second order partial derivatives 

𝛺𝑥𝑥 = 1 −
1−µ

‖𝑟13‖3
−

µ

‖𝑟23‖3
+

3(1−µ)(𝑥+µ)2

‖𝑟13‖5
+

3µ(𝑥−1+µ)2

‖𝑟23‖5
      (2.39) 

𝛺𝑦𝑦 = 1 −
1−µ

‖𝑟13‖3
−

µ

‖𝑟23‖3
+

3(1−µ)𝑦2

‖𝑟13‖5
+

3µ𝑦2

‖𝑟23‖5
       (2.40) 

𝛺𝑧𝑧 = −
1−µ

‖𝑟13‖3
−

µ

‖𝑟23‖3
+

3(1−µ)𝑧2

‖𝑟13‖5
+

3µ𝑧2

‖𝑟23‖5
         (2.41) 

𝛺𝑥𝑦 = 𝛺𝑦𝑥 =
3(1−µ)(𝑥+µ)𝑦

‖𝑟13‖5
+

3µ(𝑥−1+µ)𝑦

‖𝑟23‖5
       (2.42) 

𝛺𝑥𝑧 = 𝛺𝑥𝑧 =
3(1−µ)(𝑥+µ)𝑧

‖𝑟13‖5
+

3µ(𝑥−1+µ)𝑧

‖𝑟23‖5
      (2.43) 

𝛺𝑦𝑧 = 𝛺𝑧𝑦 =
3(1−µ)𝑦𝑧

‖𝑟13‖5 +
3µ𝑦𝑧

‖𝑟23‖5          (2.44) 

With the focus of the analytical results being for collinear equilibrium points zeq = 0 and yeq = 0 

making Ωxz = Ωyz = Ωxy = 0, Ωzz < 0, and Ωyy < 0. Therefore equations (2.36)-(2.38) simplify to 
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�̈� − 2ƞ̇ = 𝛺𝑥𝑥𝜉          (2.45) 

ƞ̈ + 2�̇� = 𝛺𝑦𝑦ƞ                             (2.46) 

𝜁̈ = 𝛺𝑧𝑧𝜁             (2.47) 

Once again with the created equations of motion equations (2.45) and (2.46) are coupled and 

equation (2.47) is independent. The general solution for equation (2.47) is 

𝜁 = 𝐶1 cos(𝜏𝑣) +𝐶2 sin(𝜏𝑣)                 (2.48) 

Where C1 and C2 are constants. Given that a linear system has been created equations (2.45)-(2.47) 

can be represented in matrix format 

�̇� = 𝐴�⃑�           (2.49) 

With the matrix format from equation (2.49) and the z component being uncoupled  

𝐴 =  [

0 0
0 0


1 0
0 1

𝛺𝑥𝑥 𝛺𝑥𝑦

𝛺𝑥𝑦 𝛺𝑦𝑦

0 2
−2 0

]          (2.50) 

The eigenvalues of the matrix of equation (2.50)  

𝜆4 + (4 − 𝛺𝑥𝑥 − 𝛺𝑦𝑦)𝜆2 + (𝛺𝑥𝑥𝛺𝑦𝑦 −𝛺𝑥𝑦𝛺𝑦𝑥) = 0     (2.51) 

Equation (2.51) expressed in a quadratic equation  

𝛬2 + 2𝛽1𝛬 − 𝛽2
2 = 0         (2.52) 

where 

𝛽1 = 2 −
𝛺𝑥𝑥+𝛺𝑦𝑦

2
          (2.53) 

𝛽2
2 =−𝛺𝑥𝑥𝛺𝑦𝑦 +𝛺𝑥𝑦𝛺𝑦𝑥        (2.54) 

𝜆1,2 =±√𝛬1          (2.55) 

𝜆3,4 =±√𝛬2          (2.56) 

The results of λ represent the eigenvalues for equations (2.45)-(2.47) and the general solution for 

ξ and ƞ are 

ξ = ∑ 𝐴𝑖𝑒
𝜆𝑖𝜏4

𝑖=1          (2.57) 

ƞ = ∑ 𝐵𝑖𝑒
𝜆𝑖𝜏4

𝑖=1          (2.58) 

The values of A and B are dependent on each other as constants. Substituting equations (2.57) and 

(2.58) into equations (2.45) and (2.46) perspectivity providing the relationship of A and B to be 

 𝐵𝑖 =
𝜆𝑖+𝛺𝑥𝑥

2𝜆𝑖
𝐴𝑖           (2.59) 
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Equations (2.57) and (2.58) are with respect to τ and substituted into equation (2.59) while 

evaluated at an initial point τ = 0, then  

ξ0 =∑ 𝐴𝑖
4
𝑖=1                      (2.60) 

ξ̇0 =∑ 𝐴𝑖𝜆𝑖
4
𝑖=1                     (2.61) 

ƞ0 =∑
𝜆𝑖−𝛺𝑥𝑥

2𝜆𝑖
𝐴𝑖

4
𝑖=1                     (2.60) 

ƞ̇0 =∑
𝜆𝑖−𝛺𝑥𝑥

2𝜆𝑖
𝐴𝑖𝜆𝑖

4
𝑖=1                    (2.61) 

From equation (2.52) when evaluating the collinear equilibrium points where all points along the  

y-axis are equal to zero the results form equations (2.53) and (2.54). Simplifying the form of 

equation (2.52) the results provide one positive, negative, and two purely imaginary answers. This 

means that all the collinear equilibrium points are unstable saddle points. Therefore, if A1 and A2 

correspond to the stable and unstable points then at a certain point A1 = A2 = 0, where ξ, ƞ, and ζ 

can be expressed as 

 𝜉 = 𝜉0 cos(𝑠𝜏) +
ƞ0

𝛽3
sin(𝑠𝜏)                 2.62 

ƞ = ƞ0 cos(𝑠𝜏) + 𝜉0𝛽3sin(𝑠𝜏)                 2.63 

𝜁 = 𝜁0 cos(𝑣𝜏) +
𝜁0

𝑣
sin(𝑠𝜏)                 2.64 

From equations (2.62)-(2.64) s and 𝛽3 are 

𝑠 = √𝛽1 + (𝛽1
2 + 𝛽2

2)
1

2⁄                      (2.65) 

𝛽3 =
𝑠2−𝛺𝑥𝑥

2𝑠
           (2.66) 

The period of motion for the above equations is 2π over s. Also, s and v numerically are relativity 

close in value suggesting that the motion being modeled is quasi-periodic. The quasi-periodic 

motion in a dynamical system is an orbit that contains a finite number of rotations about a point. 

From equations (2.62)-(2.64) further simplification can be made for conditions of quasi-periodic 

orbits. Making the conditions specified by an amplitude Aξ in the ξ and Aƞ in the ƞ direction 

equations (2.62)-(2.64) become 

𝜉 = −Aξ cos(𝑠𝜏 + 𝜑)                           2.67 

ƞ = Aξ𝛽3 sin(𝑠𝜏 + 𝜑)                             2.68 

𝜁 = 𝐴𝜁sin(𝑣𝜏 + 𝜓)                             2.69 
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With the motion of interest being horizontal Lyapunov orbits, equations (2.64) and (2.69) are 

not needed, however stated for completeness. When modeling equations (2.67) and (2.68) a 

libration point orbit can be created within a linear system. Figure 2-5 is the resulting motion when 

using equations (2.67) and (2.68). Measurements of amplitude pertain to the maximum distance 

from the equilibrium point with respect to a given axis to quantify the size of a libration point orbit.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5 Linear Approximation for the L2 Horizontal Lyapunov Orbit 

 

Figure 2-5 is a linear approximation imposed onto the system. Although the linear 

approximation is a decent starting point further adjustment is required to obtain a Lyapunov orbit 

within the CR3BP system. 

2.4.3 Non-Linear Correction 

Developing an analytical approximation provides insight to different aspects of the system. In 

figure 2-5 an analytical linear approximation for a Lyapunov orbit was created and imposed onto 

the CR3BP model. In the previous section the collinear equilibrium points were determined to be 

saddle points. Also, a first method of creating orbits using motion from the dynamics of the three 

or more bodies was created. However, the equations of motion (2.12)-(2.14) show that the model 

is non-linear. Figure 2-6 is the same linearized approximation generated within the non-linear 

system model. With the equations of motion different methods can be created for correcting the 

initial conditions which will provide the desired trajectory. To further develop the modeling of 
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orbits (Grebow, 2006) created an analytical correction process to adjust for the non-linearity within 

the model. Another approach to correcting for the non-linearities for the system is a shooting 

scheme.   

  

 

 

 

 

 

 

 

 

 

 

Figure 2-6 Linear Approximation Mapped with Non-linear System 

 

A common task within dynamics in determining a trajectory is getting an object from point A 

to point B. Unfortunately, like most real dynamic problems like the CR3BP there is no closed form 

solution and it requires the use of numerical methods. In numerical analysis a shooting scheme is 

a method for solving the desired end state. Using the equation for Newton’s Method generalized 

for multiple dimensions instead of a single variable and changing the division of vectors into 

multiplication of the inverse equation (2.70) is formed.   

𝑿𝑛+1 =𝑿𝑛 − 𝑓′(𝑿𝑛)−1𝑓(𝑿𝑛)            (2.70) 

where 𝑓′(𝑿𝑛) is a matrix of partial derivatives of the function with respect to the variables defined 

by equation (2.71). 

𝑓′ =

[
 
 
 
 
 

𝛿𝑓1(𝑡𝑓)

𝛿𝑥1(0)

𝛿𝑓2(𝑡𝑓)

𝛿𝑥1(0)

𝛿𝑓1(𝑡𝑓)

𝛿𝑥2(0)

𝛿𝑓2(𝑡𝑓)

𝛿𝑥2(0)

…
…

𝛿𝑓1(𝑡𝑓)

𝛿𝑥𝑛(0)

𝛿𝑓2(𝑡𝑓)

𝛿𝑥𝑛(0)

⋮ ⋮ ⋱ ⋮
𝛿𝑓𝑚(𝑡𝑓)

𝛿𝑥1(0)

𝛿𝑓𝑚(𝑡𝑓)

𝛿𝑥2(0)
⋯

𝛿𝑓𝑚(𝑡𝑓)

𝛿𝑥𝑛(0) ]
 
 
 
 
 

         (2.71) 
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When given an input of xo with the point that is desired xd if no correction is done the result will 

be xf due to the nonlinearities in the model. The initial states can act as a function of f(xo) = xf  

which will have some error with respect to xd. To drive the difference from the calculated end 

point and the desired end point Newton’s Method is used. With the described method a trajectory 

from point A to point B can be generated with the general form of Newton’s Method. Initial 

conditions for the dynamics of the CR3BP are represented as  

𝑥 =  [𝑥0, 𝑦0, 𝑧0, 𝑣𝑥0
, 𝑣𝑦0

, 𝑣𝑧0
]         (2.72) 

Given the above method and the initial condition an iterative approach is created to achieve the 

intended trajectory. Figure 2-7 shows a graphical representation of the iterative approach taken to 

form the Lyapunov orbit. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7 Iterative Non-linear Correction for the L2 Horizontal Lyapunov Orbit 

 

After successfully creating a Lyapunov orbit about the L2 equilibrium point the constructed 

method can be used to create an entire family of Lyapunov orbits. The demonstrated approach in 

this research is also used for creating vertical Lyapunov orbits as well. A natural extension of the 

work conducted would include Lissajous, Halo, Axial, and other orbits with the addition of motion 

within the z-axis from equation (2.50) state-transition matrix. In table 2-2 the family of Lyapunov 

orbits is provided with the initial conditions for a system in which µ = 3.04x10-6 and all other 

parameters from equation (2.72) set to zero. From table 2-2 a graphical representation of the 

Lyapunov orbit family is created in figure 2-8. 
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Table 2-2 Initial Conditions for L2 Lyapunov Orbits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8 Linear Approximation for the L2 Horizontal Lyapunov Orbit 

x  �̇� 

1.010574 -0.003433 

1.010874 -0.005674 

1.011574 -0.011650 

1.011874 -0.014585 

1.012074 -0.016614 

1.012274 -0.018600 

1.012474 -0.020421 

1.012674 -0.022004 

1.012874 -0.023337 

1.013074 -0.024454 

1.013274 -0.025411 

1.013474 -0.026240 

1.013674 -0.026973 

1.013874 -0.027632 

1.014074 -0.028235 

1.014274 -0.028793 
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2.5 Brief introduction to Invariant Manifold Theory  

In dynamical system theory models like the CR3BP, phase space is a space in which all 

possible states of a system are represented. Within a given subspace the center, stable, and unstable 

areas in phase space are useful in obtaining various trajectories. The phase space offers information 

about a model regarding the characteristics of flow. Viewing a model in phase space is often used 

for analyzing the original system in a simpler manner. However, there is no general way to 

construct such mapping. The invariant manifolds associated with unstable and stable subspaces 

for different periodic and quasi-periodic solutions are viewed in phase space for designing toward 

and away from various orbits. 

For a periodic orbit any point along the path can be represented by one six-element state vector 

in the form of equation (2.72) along the path. Given a point along the path the state vector can be 

represented in matrix format like section 2.4.2 with analysis of the eigenvalues like equation 

(2.56). For a given eigen structure if a periodic orbit has both an unstable and stable mode than the 

eigenvalues can be used to develop linear approximations to an unstable Wu and stable Ws 

subspace. For a point in which Wu and Ws subspaces exist globally within the system unstable and 

stable manifold can be created. The notation from (Grebow, 2006), with the globally constructed 

manifold, �̂�𝑖
𝑊𝑢represents a six-dimensional vector that leads to the unstable mode of the periodic 

or quasi-periodic orbit. The vector representation can be decomposed into three-dimensional 

components for position �⃑⃑�𝑖
𝑊𝑢 and velocity �⃑⃑�𝑖

𝑊𝑢 as follows, 

�̂�𝑖
𝑊𝑢 ={

�⃑⃑�𝑖
𝑊𝑢

�⃑⃑�𝑖
𝑊𝑢

}                 (2.73) 

The unstable direction for the constructed vector is represented as  

�⃑�𝑖
𝑊𝑢 =

�̂�𝑖
𝑊𝑢

|�⃑⃑�
𝑖
𝑊𝑢|

               (2.74) 

A small perturbation or in the case of the research conducted an initial thrust in the unstable 

direction �⃑�𝑖
𝑊𝑢 a satellite will leave the local region heading toward the reference solution. The flow 

in the unstable direction is represented by, 

{
𝛿�⃑⃑�𝑖

𝑊𝑢

𝛿�⃑⃑�𝑖
𝑊𝑢

} = 𝑑 ∙ �⃑�𝑖
𝑊𝑢         (2.75) 
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In equation (2.75) for the research conducted d is the ΔV provided by the satellite to start the 

desired orbital maneuver. Analytically, the stable manifold is constructed the same way as the 

unstable manifold only leading the satellite back to the originating region. The use of these time 

invariant manifolds is beneficial in that due to the dynamics of the system less force is required to 

initiate a maneuver compared to other methods. Figure 2-9 graphically represents different 

unstable trajectories to towards a libration point orbit. 

 

 

Figure 2-9 Unstable Trajectories Toward a Lyapunov Orbit 
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3. GENERATING LARGE INCLINATION ORBITAL MANEUVERS 

To understand the body of research conducted by other authors different orbital trajectories 

have been collated together. The methods of capture dynamics and the use of the Moon was first 

introduced by Belbruno (2004) which acts as a starting point with a brief discussion of his research. 

Continuing the use of the moon to further develop the concepts of capture dynamics Baines et al. 

(2018) provides a full method of calculations with a python script for modeling. In understanding 

the model used, alterations to the equations of motion and initial conditions provide the necessary 

capability to develop trajectories that are explored in the research of Davis et al. (2011). As a 

natural extension of the work conducted an orbital maneuver is created with both horizontal and 

vertical Lyapunov orbits to create a large inclination change. With the use of different unstable 

and stable boundary trajectories an orbit ending in retrograde motion is briefly explored. Finally, 

a comparison of efficiency is conducted with a Hohman transfer maneuver.      

3.1 Exploring Capture Dynamics and Chaotic Motion 

With a brief overview of Belbruno’s (2004) research a study of motion using manifolds and 

the general motion of the CR3BP is formed. In determining periodicity τ = ώ/ω, where ω is the 

orbit about P2 and ώ is the orbit about P1, describes the motion by P3 about the system. When τ is 

a positive number P3 is in resonance for the value of τ  and when τ is irrational the orbital motion 

is quasi-periodic. Figure 3-1 is a precessing elliptical motion of P3 about both primary bodies. As 

τ varies on a set of irrational numbers a family of quasi-periodic orbits is formed. 

 

 

 

 

 

 

 

 

 

Figure 3-1 P3 Precessing Motion 
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As mentioned in section 2.4.2  the collinear equilibrium points can be thought of geometrically 

as a saddle point. Due the geometry of the space around the saddle point there exists a local smooth 

stable and unstable manifold tangent to the equilibrium point. The notion of a local stable and 

unstable point is viewed as a case of the stable manifold theorem. With the existence of local 

manifolds, the notion of global manifolds is a natural extension of the local case. In section 2.5 a 

decomposition of the global manifold within the system is formed. The stable boundary is 

considered motion moving toward the primary body, while the unstable motion is considered 

motion moving away. The motion of P3 at the point in space where unstable and stable coincide 

then move away from the primary body again in a cyclic motion is called a homoclinic loop. An 

example of a homoclinic loop is the trajectory from the NASA Genesis mission as the satellite 

crossed in and out of the different libration point orbits. 

Continuing a brief study of Belbruno’s research, W is defined with respect to the motion about 

the primary bodies P1 or P2. For the purpose of the research conducted W is an expression in a P2 

centered rotating motion. For W to be well defined the Jacobi constant C needs to be well known. 

The motion of W can be considered as a radial line from P2 following the trajectory toward the L2 

equilibrium point. When considering the motion of W as described, the motion should satisfy the 

following requirements: 

• The initial velocity vector describing the trajectory for P3 is normal to the line of motion 

and points in a retrograde direction. 

• The motion of P3 is such that it has negative or zero Keplerian energy with respect to P2.  

• The eccentricity of P3 being an ellipse is fixed along the line of motion, then varies along 

the line of motion. 

In modeling the motion of P3 the trajectory starts on an oscillating ellipse and is assumed to 

start at periapsis. The motion is considered stable when after leaving the line of motion P3 makes 

a full cycle about P2 without making a full cycle about P1 and returns toward the originating point. 

Therefore, the motion of P3 is unstable for motion away from P2 and makes a cycle about P1. 

Motion where P3 is leaving along the line of motion corresponds to ballistic capture, whereas the 

motion of P3 moving away from P2 corresponds to ballistic escape. Given the system model for 

the CR3BP a numerical result demonstrates at a finite distance along the line of motion, lengths 
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shorter than the finite distance are stable and lengths greater than the finite distance are unstable. 

The finite point along the line of motion having an effect of stability means that W is a two-

dimensional value based on position and velocity, which is known as the weak stability boundary. 

The set of W can be represented by the Jacobi constant and the trajectory along the line of motion. 

The research conducted by Baines et al. (2018) demonstrates the trajectory required for a ballistic 

capture by the Moon and is the foundation for the modeling created in the research conducted.   

3.2  Test Case 1: The Original Model & Changes for Desired Maneuvers 

The research by Baines et al. (2018) provides a C program and Python script to recreate the 

entirety of the work conducted. For the purpose of all the research conducted in current effort the 

Python script was chosen due to the ability to make rapid changes with quick execution. The 

compromise with using Python over C is with increase run time processing. Additionally, some of 

the logic used in the creation of the research conducted can be found with the MATLAB scripts 

provide by Curtis (2014). Before rewriting sections of code developed and using the model for the 

desired research, an important test is to recreate the research the code was intended to be used for. 

Just as the previous authors have provided their supporting code, in Appendix A the code used for 

the research conducted can be found. In the following section a comparison of results is conducted 

with an analysis of what the results mean for the model in general.   

As an initial test of the Python script used the parameter for ΔV was set to zero and the height 

was changed with different variable distances about the surface of the earth. Although in the 

CR3BP the bodies are treated as point masses, a minimum distance from the central point can be 

created to ensure different orbital trajectories do not cross below a body’s surface. Reviewing the 

results generated from the model the orbital period for a circular orbit can be found using equation 

(3.1) where Earth is the central body being orbited.  

𝑃3 = 2𝜋√
𝑟23

3

1−µ
                          (3.1) 

As anticipated with the CR3BP, variations of the model, and as mentioned in the results of Baines 

et al. (2018) the trajectories of motion demonstrate that circular orbits are obtained from the 

completion of one cycle of the model. As the distance of P3 increases from the nearest primary 

body less and less of a complete cycle can be formed. The results reveal that the P3 exhibits changes 

in velocity due to perturbing forces from the second primary body. In figure 3-2 the influence of 
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the Moon increases with the increase in height. On the left side of the figure are images created 

compared to the images on the right from the research of Baines et al. (2018). The two images on 

the left are of P3 at LEO and GEO (6556 km and 42164 km). The heights of LEO and GEO above 

the Earth’s surface were chosen to later compare with the work of Davis et al. (2011). One 

important note with the images is that to make LEO and GEO visible the scale for the different 

images were adjusted. The differences in orbital period of P3 about the system can be compared to 

Kepler’s 3rd law. A key result from using the script is that a 0.633% error with position and velocity 

is found over time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 P3 Orbital Period Comparison. Adapted from “The Restricted Three Body Problem 

Trans-Lunar Injection” by Baines, T., Hew, Y. J., & Toyama, S. (n.d.). Page 8, figure 2: Orbital 

Trajectories at various locations with Moon located out of the frame. 
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Next, testing various conditions of the step size taken with the numerical analysis will provide 

what level of accuracy is required to achieve the expected results. Through various testing 

observations of how the path changes demonstrate the effects of different step sizes to assist in 

determining the optimal numerical value. When N = 1000000 with an i5 6-core 64-bit processor 

and 8 Gig of RAM memory errors will occur, creating errors that prevent calculations to complete. 

With figure 3-3 on the left N = 100000 and to the right N varies demonstrating the different 

intervals of N with error within integration calculation. The right side of figure 3-3 is to compare 

the results of Baines et al. (2018). The left side of figure 3-3 demonstrates that with the hardware 

limitation the research conducted can be competed with N set to 100000.  

 

 

 

 

  

 

 

 

 

 

Figure 3-3 Trajectory Differences with N Slices Comparison. “The Restricted Three Body 

Problem Trans-Lunar Injection” by Baines, T., Hew, Y. J., & Toyama, S. (n.d.). Page 7, figure 1: 

The plot shows the trajectory of the given z at various time steps. You can see as N increase our 

values begin to coverage to their true values. You can see that values N > 10000 nearly overlap 

one another which suggest the optimal time step. The dot and circle correspond to the Earth and 

it’s “radius” while the black dot is the moon and it’s “radius”. 
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As a final review and test of the Python script used, various initial conditions of the trans-lunar 

injection transfer are tested by Baines et al. (2018) and created by No, Tae Soo, et al. (2012) are 

used as a final metric for comparison of results. From equation (2.72) any change will create 

different overall outcomes each diverging from each other.  

In the case of the PCR3BP the three initial conditions that need to be considered are the ejection 

velocity (ΔV), the radius from the point mass (height above the Earth’s surface), and the angle in 

in which the trajectory was initiated. Using the PCR3BP greatly simplifies the dynamics and 

allows for a greater focus on the x-y plane. In section 3.2.2 more details on the differences between 

the PCR3BP and the CR3BP are provided. As an initial demonstration the difference in trajectories 

of ±0.01% and ±5% with figure 3-4 change of ejection velocity. The results on the left are 

generated and compared to the results of the right generated from Baines et al. (2018). From the 

model any decrease with ejection velocity would result in the secondary body falling back toward 

the originating primary body. 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 Transfer Trajectories Change with Various Ejection Velocities. “The Restricted Three 

Body Problem Trans-Lunar Injection” by Baines, T., Hew, Y. J., & Toyama, S. (n.d.). Page 10, 

figure 4: shows the 1% change in ejection velocity, figure 5: show the 10% in ejection velocity. 
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Furthermore, the model also demonstrates that when P3 has too much of an ejection velocity 

the trajectory is unaffected by either primary bodies and becomes unbounded. The trajectory of 

the unbounded secondary mass spirals out. The added ejection velocity was a 5% increase to 

required velocity for a ballistic lunar capture. It is important to note that the Python script is 

modeling motion with the rotating reference frame giving the spiral appearance. Figure 3-5 shows 

a spiraling out unbounded secondary mass. Figure 3-5 is like figure 3-4, both being a comparison 

of generated work on the left and that of other research conducted with the Python script on the 

right.  

 

 

 

 

 

 

 

 

Figure 3-5 Transfer Trajectories with Ejection Velocities. “The Restricted Three Body Problem 

Trans-Lunar Injection” by Baines, T., Hew, Y. J., & Toyama, S. (n.d.). Page 10, figure 6: Spiral 

Feature that occurs when the velocity is to great and because unbound from the system. Spiral 

feature is due the rotating frame of reference. 

 

Using the CR3BP equations of motion with numerical analysis a list of the sets for equation 

(2.72) is formed. The full list of position and velocity over time describes the trajectory an object 

takes based on the gravitational influence of the primary bodies. The Python script is written in 

such way to store the full list of position and velocity vectors to provide graphical results. Another 

set of graphs that can be created is the change of velocity over time. In figure 3-6 graphical results 

of position vs time and velocity vs time graphical results provide further insight into the dynamics 

of the system model. From figure 3-6 there is a greater change in the x-axis compared to the y-axis 
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because of the initial change in velocity’s proximity to the Earth as a point mass. Due to the object 

of interest being near the point mass representing Earth more velocity is required in the x-axis than 

on the y-axis. Over time differences in the x-y axis become more apparent. From figure 3-6 the 

velocity in the y-axis for  the object of interest moves with increased velocity away from Earth 

until the velocity becomes zero. The object of interest continues to decrease in velocity because of 

the Moon’s gravitational attraction. One important note with the model is that when approaching 

a point mass a sharp increase in position and velocity occurs with a surface impact. The velocity 

vs time graphs also provide an initial point where the object of interest is in a stable orbit or 

unstable orbit. The zero-crossing point for velocity vs time can provide an initial region for the 

weak stability boundary for a given set of initial conditions. Although much can be derived from 

the velocity vs time graphs, only the position graphs are used for the rest of the research conducted.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6 Position vs Time and Velocity vs Time. “The Restricted Three Body Problem Trans-

Lunar Injection” by Baines, T., Hew, Y. J., & Toyama, S. (n.d.). Page 11, figure 8: position x 

and y as a function of time of the direct transfer trajectory. Figure 9: Dimensionless time and 

velocity plot for Direct Transfer Lunar Injection. 
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3.2.1  Adjusting the Equations of Motion and Numerical Method 

In section 3.2 the results demonstrated a successful recreation of the data for the Python scripts 

original implementation. Before modifying the script, it is important to understand the different 

components that the script is constructed from. From section 2.1 the PCR3BP is commonly 

referenced as the CR3BP. Using the PCR3BP is useful when only considering the motion in the 

x-y plane. With the z-axis being uncoupled from the x-y plane there is no impact to solutions 

derived from the PCR3BP and they can be treated as a special case of the CR3BP in which position 

and velocity equal zero in the z-axis. If the assumption is to always have the z-axis provide no 

input into the system, then the equation in the z-axis is often not part of the model. For the 

constructed model the equations of motion are represented as a function. With the addition of the 

equation of motion in the z-axis the PCR3BP becomes the CR3BP 

𝑎 =  �̇�𝑧                                    (3.1) 

𝑣𝑧 =−(1 − µ)
z

√(𝑥+µ)2+𝑦2+𝑧2

3 − µ
z

√(𝑥−1+µ)2+𝑦2+𝑧2

3             (3.2) 

With the addition of the z-axis equation of motion further additions to implement the change in 

motion will need to include a change with calculations within the numerical analysis and initial 

conditions.  

With the numerical analysis portion of the model, the Runge Kutta 4th order method of 

calculations for any given axis are the same. Logically it would make sense that the method of 

calculation does not impact the result rather only the equations of motions determine the outcome. 

From equation (2.24) - (2.28) the formula for the Runge Kutta method is described and the 

resulting impact onto the model is present in Appendix A. Finally, the last change to the model 

that is required to implement motion in three dimensions is the change with initial conditions. 

However, based on the overall review of section 3.2 it is important to not just select a random point 

in space rather a point in which motion can be examined with a known outcome. No, Tae Soo, et 

al. (2012) examine a circular orbit around the first primary body within the PCR3BP. In 

understanding the initial conditions, a new set of initial conditions can be derived to ensure that 

the changes to the model are correct.  
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3.2.2  Earth-Moon Design Transfers 

With a continued understanding of dynamical systems and optimized trajectories the research 

conducted by No, Tae Soo, et al. (2012) examines two different types of orbits for efficiency. The 

nature of their research was to determine an efficient orbit to the Moon for both fuel and time. The 

two trajectories studied are a spiral and direct departure from various low Earth orbits. The direct 

departure trajectory is that of figure 3-3 and the spiral departure is not constructed in this research. 

The spiral departure is created with more of a continuous velocity change with evaluating the 

altitude gradually. The gradual change in altitude is accomplished with alterations to the equations 

of motion with an added parameter. To avoid unnecessary changes to the model the spiral departure 

was not generated. The result of the research demonstrated that it is advantageous to use both an 

impulse maneuver and continuous thrust to decrease the time of flight and save on fuel usage. A 

ballistic capture method would ultimately save on fuel usage however the cost with time can result 

in tens of hundreds of days.  

In the trajectory design implemented the object of interest was starting around P1. However, 

for the modeling for the research conducted the object of interest’s initial position is near P2. 

Changing initial conductions from P1 to P2 requires changes to both position and velocity. For a 

circular orbit about P1 the velocity can be defined as, 

𝑣𝑃1
=√

1−𝜇

𝑟𝑃1

                  (3.3) 

Where 𝑟𝑃1
is the distance with respect to P1. Position for an object about P1 is offset by µ the mass 

ratio. For a circular orbit about P2 the velocity can be defined as, 

𝑣𝑃1
=√

𝜇

𝑟𝑃2

                  (3.4) 

Where 𝑟𝑃2
is the distance with respect to P2. Position for an object about P2 is offset by ( µ - 1 ) with 

µ being the mass ratio again. The difference with position and velocity are caused by the design 

of the model where both primary bodies are moving about the barycenter. Because they are in a 

fixed position everything else within the model moves.  

Another change from the model used from No, Tae Soo et al. (2012) and Baines et al. (2018) 

is that both research efforts used the PCR3BP for setup of initial conditions. In the original 
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implementation of the Python model the only two inputs into the system were angle of position 

and added velocity with respect to the second primary body. Restricting the inputs to angle of 

position and change in velocity is achievable because of the two-dimensional nature of the model. 

When adding a third dimension a different system for generating initial conditions is required to 

account for the added dimension. Of course, with either the PCR3BP or CR3BP initial conditions 

can be provided by explicitly defining each value from equation (2.72). However, such a method 

would  require constant derivation. In the original model initial conditions are based on polar 

coordinates with respect from the first primary body. Given an angle (θ) and change in velocity 

(Δv) the inputs are  changed by, 

𝑣 = 𝑣𝑃1
+∆𝑣                   (3.5) 

𝑥 = 𝑟 cos(θ) − 𝜇                 (3.6) 

𝑦 = 𝑟 sin(θ)                  (3.7) 

𝑣𝑥 = −1𝑣 sin(θ)  + y               (3.8) 

𝑣𝑦 = 𝑣 cos(θ)  - x               (3.9) 

The result from the use of equations (3.5) – (3.9) provide initial conditions in the form of equation 

(2.72). The advantage of creating initial conditions in the manner presented is in providing a 

method to test expected and model created results. Figure 3-7 demonstrates that when given a 

height above P1 with no Δv a circular orbit is achieved. 
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Figure 3-7 Test of Initial Conditions 

With the original form of the model being in two dimensions using polar coordinates a natural 

extension for three dimensions would be to use spherical coordinates. Additional inputs for the 

model include angle with respect to the z-axis being ϕ. The added parameter and an orbit being 

centered around P2 changes equations (3.5) – (3.9) as follows 

𝑣 = 𝑣𝑃2
+∆𝑣                 (3.10) 

𝑥 = 𝑟 cos(θ) cos(ϕ) + 1 − 𝜇              (3.11) 

𝑦 = 𝑟 sin(θ) cos(ϕ)               (3.12) 

𝑦 = 𝑟sin(ϕ)                   (3.13) 

𝑣𝑥 = −𝑣 cos(ϕ) θ̇ sin(𝜃) + 𝑣ϕ̇sin(ϕ) cos(θ)          (3.14) 

𝑣𝑦 = 𝑣 cos(ϕ) θ̇ cos(𝜃) + 𝑣ϕ̇sin(ϕ) sin(𝜃) + 1 − 𝜇         (3.15) 

𝑣𝑧 =−𝑣ϕ̇ cos(ϕ)              (3.16) 

The results from the use of equations (3.10) – (3.16) provide initial conditions in the form of 

equation (2.72) for the updated model. Figure 3-8 demonstrates that when given a height above P2 

with no Δv a circular orbit is achieved 3 dimensionally. 
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Figure 3-8 Three-Dimensional Adjustment for Initial Conditions 

 

Figure 3-8 is a display of the xy-axis, xz-axis, and yz-axis mapped three-dimensionally. The center 

of all three spheres is the point mass of P2 in the model. As the altitude increases perturbations 

from P1 increase causing the final position not to meet with the initial position. With the three-

dimensional initial conditions fully composed more complicated orbits can be demonstrated.  

In section 2.5 a brief introduction to invariant manifolds equation (2.75) provides the initial 

starting point for analytically defining the weak stability boundary for the L2 equilibrium point. 

Given a Jacobi constant and a restricted set of initial conditions for position a corresponding set of 

velocity conditions can be derived. With proximity to the second primary body an initial Δv is 

required and is denoted as d in equation (2.75). The derivation of the full set of initial conditions 

from equation (2.72) and Δv required is possible because the Jacobi constant is a conservative 

quantity in the CR3BP.  The resulting conditions can then be compared to the trajectory of interest. 

In section 2.4.3, the table 2-2 and figure 2-8 demonstrate a set of values in the form of equation 

(2.72) showing a Lyapunov family. The set of formulated conditions for a given Lyapunov orbit 

with equation (2.32) from section 2.4.1 provides a Jacobi constant. With the set of initial and final 

conditions the shooting scheme is used to correct for slight variances to adjust for the 

approximation used. The same method of constructing a path from P2 to the libration point can 

also be used to construct the return toward P2 for a desired end orbit. In the research conducted the 
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desired initial state and end state are LEO and GEO perspectivity to measure differences in 

inclination.   

In the next section inclination changes using Lissajous orbits are derived from the previously 

mentioned method described using Jacobi constants and amplitudes in the z-axis. For different 

libration point orbits the amplitude is the maximum and minimum separation from the libration 

point for a given axis. The amplitude can be used with the first order analytical approach from 

equations (2.67) – (2.69). With the z-axis uncoupled from the xy-axis the Lyapunov orbits formed 

in section 2.4.3 along with the approximation equation for the z-axis act as an initial set of 

Lissajous orbits prior to slight corrections from the nonlinearities of the system model. Due to the 

conditions being an approximation, corrections are required for a desired trajectory. When 

adjusting the LPO a continuous check of amplitude ensures an approximate result matching 

Lissajous orbits as mentioned in the research conducted by Davis et al. (2011). With a set of 

Lissajous orbits the use of invariant manifolds is constructed with a set of initial conditions at LEO 

with an added Δv. Without a set of initial conditions near Earth, several orbits can be created to 

satisfy the resultant trajectory from the work of Davis et al. (2011) due to not considering all the 

same variable and variances with Δv to follow the manifold. Their research outlines the use of 

Lissajous orbits to create large inclination changes and provides insight to the limitations of the 

proposed method in this research. Section 3.3 is not necessarily a recreation of the work for Davis 

et al. (2011), rather the focus of the section is to demonstrate the method used for creating a 

maneuver resulting with a plane change without the cost of a plane change. 

3.3  Test Case 2: Orbital Transfers from LEO using Invariant Manifolds 

The purpose of this study is to develop a large inclination change using two distinct libration 

point orbits. The research conducted by Davis et al. (2011) demonstrates the ability to create a 

large inclination using a single LPO. As a natural extension of their research the goal of this 

research is to use two LPOs to increase the change of inclination. The system model chosen for 

their research and this research is the Sun, Earth and Moon where the Earth and Moon are treated 

as a singular point mass. In section 2.1 a test of the system model demonstrated that the model 

conducted works within the confines of the CR3BP. The designed orbital maneuver is for the 

object of interest (a satellite) to initiate thrust in such a manner that inserts the satellite onto a stable 

manifold trajectory toward an L2 LPO. The satellite would travel about the LPO to follow the 
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unstable manifold due to quasi-periodic motion. The unstable manifold would then be used to 

insert the satellite to the intended final orbit having caused a change with inclination. The 

gravitational dynamics involved from the described maneuver creates a plane change maneuver 

without the cost of such a transfer. The maneuver constructed is considered a low-energy efficient 

transfer that can be compared with the fuel cost of a Hohmann transfer. Section 3.4 further 

discusses the difference between an optimal transfer vs an efficient transfer with the maneuver that 

was created. As part of this study the benefits of the constructed maneuver as well as the 

consequences are explored.   

Reconstructing similar orbits from the Davis et al. (2011) research, the approach from section 

2.4.2 is taken starting with the creation of the LPO. From their research table 3-1 provides three 

different orbits that resemble the amplitude in the z-axis (Az) with the corresponding Jacobi 

constant. 

Table 3-1 Amplitude in the z-axis vs Jacobi Constant with µ = 3.04x10-6 

Az (km)  Jacobi Constant 

301 3.0008 

613 3.0007 

798 3.0006 

 

Table results from table 3-1 can be compared with L2 Halo orbits to approximate the LPO used 

in the described transfer. Using the same methodology that created the Lyapunov orbits, table 3-2 

and figure 3-9 provide resultant Halo orbits for the Sun-Earth/Moon system. With the resultant 

orbits given the Jacobi constant is a conservative value a point along the Halo orbit can be used to 

cross compare a calculated Jacobi constant with table 3-1. Equation (2.32) provides how to 

calculate the Jacobi constant. The table and figure below are rough approximations of the Northern 

Halo orbits created in the work of Davis et al. (2011). 
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Table 3-2 Initial Conditions for L2 Halo Orbit 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9 Set of L2 Halo Orbits 

 

As additional check to ensure the orbits are comparable to previous research the z-axis amplitude 

with the values from table 3-1 are re-calculated. As mentioned in section 2.4.2 the measured 

amplitude can be taken by the maximum and minimum differences from the LPO and calculated 

with equation (3.17). 

𝐴𝑧 =
|𝑍𝑚𝑎𝑥|+|𝑍𝑚𝑖𝑛|

2
                          (3.17) 

With the creation of the LPO the next step is to reconstruct the initial conditions that were used 

to create the desired orbital trajectory. Given an orbit starting at LEO and a known Jacobi constant 

a set of initial conditions can be constructed. Variances in the Δv can be caused by differences 

within the model, the constructed orbit, the path taken, initial conditions and more. However, the 

x z  �̇� 

1.011724 0.00228 -0.014430 

1.011874 0.00406 -0.018706 

1.012474 0.00414 -0.023246 
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greatest cause for different results is from the initial state vectors. Table 3-3 provides the thrust 

required to initiate the maneuver with relation to the Jacobi constant. 

Table 3-3 Δv vs Jacobi Constant for Designed Transfer Orbit 

Total Velocity (km/s) Jacobi Constant 

3.552 3.0008 

4.147 3.0007 

4.433 3.0006 

 

 

An additional cost in velocity that is calculated for within this research is the cost of adjusting to 

maintain the final desired orbit. The additional cost results are provided in table 3-5 accounting for 

return to a circular GEO.  

The information from table 3-2 provides an approximate trajectory for the designed LPO and 

with the additional information from table 3-3 a full maneuver is created. Figure 3-10 is the set of 

orbital maneuvers designed to achieve an inclination change with the use of invariant manifolds 

and LPOs. The figure 3-10 contains three different approximate trajectory paths to account for a 

wide spread of orbits created, without creating each orbit from the work of Davis et al. (2011). An 

analysis of the created orbits provides three main metrics of value such as time of flight, change 

of velocity, and inclination change. The defined metrics then allow for a comparison with other 

orbits to determine efficiency. Additionally, disadvantages and limitations can be examined with 

the desired orbital maneuver.  
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Figure 3-10 Three-Dimensional Adjustment for Initial Conditions 

 

In creating the orbital trajectories for the maneuver, the metric that can be obtained directly 

from running the system model is time of flight. Using the equation (2.3) for the characteristic 

time to time conversion results provides time of flight which is given in table 3-4. Table 3-4 is a 

comparison for time of flight and the Jacobi constant. This method of finding time of flight does 

not attempt to optimize time for the given maneuver in any way such as differentially correcting 

the manifold trajectories. Rather, time of flight is the time given in the system model to integrate 

over, determining the different data points. Time of flight may have differed from the original 

research with initial conditions and other factors that might have been included in the original 

model. The model created in this research is only constructed from the equations of motion of the 

CR3BP with given accuracy as mentioned in 3.2. 

.  
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Table 3-4 Time of Flight vs Jacobi Constant for Designed Transfer Orbit 

Time of Flight 

(days) 

Jacobi Constant 

365 3.0008 

387 3.0007 

386 3.0006 

 

The overall cost of velocity or Δv that is used for the orbital maneuver is the thrust to depart 

from LEO and the thrust to enter a final circularized orbit. The departing Δv from LEO is derived 

from the initial conditions for position and velocity to enter the invariant manifold. The thrust 

needed to enter a final circularized orbit is derived from the difference in velocity from the 

maneuver to the required velocity for a specific position. The specific position is determined to 

achieve an end state orbit. Similarly, with time of flight no optimization is conducted to determine 

a way to decrease for the ending Δv of the maneuver. Table 3-5 is the total cost of velocity in 

comparison to the Jacobi constant. The costs of velocity differ other research for many different 

reasons. A few reasons are that the model is sensitive to initial conditions, lacks accounting for 

perturbing forces, and any adjustments beyond the equations of motion for the CR3BP. The 

velocities in the table will get a spacecraft from LEO to account for the thrust needed to circularize 

at GEO. 

Table 3-5 Δv vs Jacobi Constant for Designed Transfer Orbit. 

Δv km/s Jacobi Constant 

4.15 3.0008 

4.39 3.0007 

4.58 3.0006 

 

The final desired metric, inclination is different compared to time of flight and total Δv in that 

post model simulation further calculations are needed. In the CR3BP the primary and the 

secondary masses are on the same plane orbiting around the barycenter of the system. However, 

the angle in which the Earth is tilted is not zero degrees to the solar plane. Due to the Earth’s tilt 
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changes in inclination from the model do not directly correspond to inclination from the 

perspective of Earth. To correct for the difference of Earth’s tilt with respect to the orbital plane a 

coordinate transformation is required. Using the CR3BP with the Sun-Earth/Moon system for the 

designed maneuver the change in inclination ( Δi ) in table 3-6 is with respect to the orbital plane.  

Due to differences in the previous tables for time of flight and change in velocity propagation into 

change of inclination also causes results to differ from the original research. The main impact to 

the differences with inclination is a difference of inclination. Given the conditions are only 

approximations of similar orbital trajectories it is expected for the results to be different compared 

to the expected values. 

Table 3-6 Δi vs Jacobi Constant for Designed Transfer Orbit 

Change of Inclination 

(rounded) 

Jacobi Constant 

15 3.0008 

24 3.0007 

44 3.0006 

 

Based on the values of this table although a maneuver from LEO to GEO with a plane change 

provides an advantage, this does not seem to hold from LEO to LEO orbits. Additionally, given 

the maneuvers the need to apply another thrust of velocity to circularize the orbit changes the 

inclination for a wider range of results that would require further exploration. At the point of 

circularizing the orbit it would not be difficult to achieve different results from table 3-6 with 

similar velocities from table 3-5. Although this method does not have a direct advantage compared 

to a plane change maneuver it is still worth investigating the use of multiple LPOs to determine if 

such change provides better results.  

The CR3BP motion can also be considered in the ecliptic coordinate system. Given an initial 

position and final position transformation into the equatorial coordinate system provides how the 

maneuver increases inclination with Earth’s tilt. With the results of table 3-6 the Δi is the same in 

both coordinate systems. However, for any mission design or comparison to other maneuvers 

equatorial coordinates is preferred. 
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[

𝑥𝑒𝑞𝑢𝑎𝑡𝑜𝑟𝑖𝑖𝑎𝑙

𝑦𝑒𝑞𝑢𝑎𝑡𝑜𝑟𝑖𝑖𝑎𝑙

𝑧𝑒𝑞𝑢𝑎𝑡𝑜𝑟𝑖𝑖𝑎𝑙

] =  [
1 0 0
0 0.9171 0.3987
0 −0.3987 0.9171

] ∙ [

𝑥𝑒𝑐𝑙𝑖𝑝𝑡𝑖𝑐

𝑦𝑒𝑐𝑙𝑖𝑝𝑡𝑖𝑐

𝑧𝑒𝑐𝑙𝑖𝑝𝑡𝑖𝑐

]          (3.18) 

With the position of the satellite in an equatorial orbit a final step to fully appreciate the 

changes to an orbit that would be described with the initial conditions and another orbit described 

to the final condition a final transformation from spherical coordinates to the six classical orbital 

elements is performed. The MATLAB script provided by (Curtis, 2014) provides the classical 

orbital elements (coe) when given the position vector and velocity vector. In addition, the vectors 

as inputs to the coe script, µ is the value between the Earth and a satellite. The script was used 

without modifications or changes from http://booksite.elservier.com/9780080977478/ with 

chapter 4.4 Orbital elements and state vectors by (Curtis, 2014) providing a full and detailed 

explanation of the transformation with an example. Table 3-7 encompasses the results containing 

the initial and final coe, Δi, Δv, and TOF.  

For table 3-7 the classical orbital elements are represented of the final orbits. The initial orbits 

for all three are as follows: 

a: 6556 km2/s    i: 38o, 48o, 68o   Ω: 0o 

e: 0.0    ω: 0o      θ: 205o, 225o,265o 

 

Table 3-7 Resulting Data from Orbital Maneuver 

 

Classical Orbital Elements Δi Δv  TOF 

a: 185 a: 42164 15° 415 km/s 365 years 

i: 15o, 25o, 68o i: 0 24° 4.39 km/s 387 years 

Ω: 0, e: 0, ω: 0, θ: 0 Ω: 0, e: 0, ω: 0, θ: 0 44° 4.58 km/s 386 years 

 

 

The resultant information from the table above differs from the research of Davis et al. (2011) 

which can be attributed to several factors. The orbital design ultimately ended up different with 

lower amounts of velocity and larger time of flight. Further research would need to be conducted 

to determine the extent of the differences that are beyond the scope of the desired research. Based 
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on the result obtained from Davis et al. (2011) the maximum Az of 800,000 with a Δi of 71.6° 

provided a savings of 3.62 km/s and a cost of approximately 388 days. Limitations to this maneuver 

are further explored in section 3.5.3 Results and Comparison.   

3.4  Optimality vs Efficiency 

In section 3.3 and in this research conducted, both maneuvers are considered efficient orbits in 

that fuel is conserved in comparison to traditional methods. Efficient methods seek to improve 

transfers by decreasing a quantity of interest (e.g. fuel or time). This research is also considered a 

preliminary study as it is an initial investigation into the use of multiple LPOs within a maneuver, 

whereas an optimal method seeks to create the best solution for a given type of maneuver. The 

work of Koon et al. 2000, Gómez and Masdemont 2000, Gómez et al. 2004 created theoretical 

zero cost transfers using unstable manifolds that asymptotically approach a stable manifold on a 

second orbit. With the following sections a brief review is taken into two different methods, one 

that can increase efficiency and another to optimize specific connecting maneuvers. In section 

3.4.1 the bounding spheres method is explored to create further efficiencies for a maneuver of 

different unstable manifold energies. While in section 3.4.2 the primer vector theory is applied to 

a transfer to determine the optimal trajectory for a given maneuver. As interest for different fuel-

efficient methods continue to grow the use of invariant manifolds with LPOs will provide unique 

options for mission design.  

3.4.1  Bounding Spheres 

With the work of Davis et al. (2010), a technique to construct transfers between unstable 

periodic orbits with different energies was formed. Within the given technique using invariant 

manifolds, trajectories to depart one unstable periodic orbit is connected to another orbit. The 

research conducted is of interest because it connects the unstable boundary of one LPO to the 

stable boundary of another LPO. The methods produced act as a natural extension of the work of 

Davis et al. (2011), if the six different applied pairs of orbits were also constructed to determine 

inclination change. Using an impulse maneuver, a region of space is studied to determine a more 

efficient transfer. This region is known as a bounding sphere. The bounding sphere is centered on 

the second primary body within the system with a radius less than the sphere of influence. The 

region for the bounding sphere is set where the gravitational effects of the second primary body 

dominate to allow for a measure of angular momentum vectors between the point of unstable and 

stable manifolds. The location is adjustable within the sphere of influence for the second primary 
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body to limit the number of manifold trajectories. With further analysis varying locations for the 

bounding sphere can be selected. The constructed maneuver measures difference in Δv compared 

to the use with and without the derived techniques. As mentioned with this maneuver being a 

natural extension of the work of Davis et al. (2010) this can also be applied to the maneuver 

constructed in section 3.5.1 as well. 

The CR3BP model contains an infinite number of trajectories with varying invariant manifolds 

and methods to determine individual manifolds to develop a low-cost transfer. The concept of the 

bounding sphere is like a planar Poincaré section map. Within the bounded sphere the unstable 

manifold of the first orbit and the stable manifold of the second orbit are integrated in time to show 

points of intersection. Appendix B contains a figure that further demonstrates the bounding sphere 

as referenced from Davis et al. (2010). Although the figure in Appendix B is demonstrated for a 

heteroclinic connection of the L1 and L2 Halo orbits the same concept can be applied to just the L2 

point of varying Halo orbits for departure and return. The cost to perform a maneuver within a 

manifold can be quite high. However, the bounding sphere technique uses a bridging trajectory 

where time is propagating forward to link two different orbits. The overall method could represent 

a substantial improvement compared a method of direct transfer. As a future study to the research 

conducted the bounding sphere can help to develop an orbit more efficient than the one composed 

in section 3.5.1. Additionally, once further studies of efficiency are explored another method to 

explore for optimizing a maneuver would be to employ the use of primer vector theory with 

connecting orbits. 

3.4.2  Primer Vector Theory 

In a different set of research conducted by Davis et al. (2011) a method was conducted to create 

optimal transfers between unstable periodic orbits with different energies. With a focus on the 

bridging trajectory connecting the unstable and stable boundary, primer vector theory is applied to 

determine the optimal maneuver. Primer vector theory was first developed by Lawden (1963) 

establishing the necessary conditions for an optimal maneuver. Howell and Hiday-Johnson (1994) 

developed a method to select departing and arriving Halo orbits connected with a Lissajous 

trajectory, this maneuver is employed with the use of primer vector theory. In the previous section 

the bounding sphere was used to determine a more efficient maneuver between two orbits of an 

LPO however the transfers method is not considered optimized. Continuing with research into 
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efficiency and optimization the primer vector theory is employed to further lower the cost of fuel 

to achieve an optimal maneuver. The method employed is constructed of a coastal arc along the 

initial orbital trajectory with a second coastal arc along the final orbital trajectory and the interior 

impulse. The conditions for an optimal impulse trajectory in terms of primer vectors are as follows: 

• The primer vector is continuous with a continuous first derivative. 

• The primer vector satisfies the following equation: 

�̈� = 𝐺𝑟𝑝 +𝐺𝑣�̇�                  (3.19) 

where Gr and Gv are the partial derivatives of g with respect to position and velocity. 

Section  2.4.2 provides details for the matrix setup and equations (2.39)-(2.44) are 

the equations for each partial derivative.   

• The primer vector is a unit vector aligned to the optimal thrust direction for an impulse 

maneuver. 

• The magnitude of the primer vector is equal to unity at the optimal impulse and has a value 

of less than unity at all other instances. 

• At all interior impulses �̇� = 0, and derivatives of the primer vector with the primer are 

orthogonal to the energy of the maneuver. 

Within a given trajectory of two coastal arcs and an impulse, the values of �̇�𝑜 and �̇�𝑓 are the initial 

and final points known as the terminals. The resulting values of the terminals determine different 

outcomes of adjustment to either coastal arc for optimization. Further studies with the maneuver 

created in section 3.5.1 will need to be conducted with the primer vector theory to create the lowest 

possible Δv for a transfer with a set number of maneuvers. Transfer costs could potentially 

decrease more with multiple loops with a drawback of increasing time of flight seven to eleven-

fold depending on the maneuver implemented. When creating an optimal or efficient maneuver 

for mission design, limitations for time and fuel should be considered. 

3.5  Orbital Construction 

In section 3.2 the first case tested the CR3BP model under the research conditions it was 

developed for, followed by modifications for the intended use of this research. After having 

finished modifications, the second test case used the model to create maneuvers involving a single 
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LPO to measure inclination change in section 3.3. As a continuation of the research for inclination 

change with an LPO the proposed maneuver in section 3.5.1 seeks to use two different LPOs or 

transfers between unstable periodic orbits with different energies.  

An understanding of the bifurcation associated with axial orbits yields knowledge about the 

geometry and intersection of invariant manifolds connected to both vertical and horizontal 

Lyapunov orbits. Bifurcation theory is the study of topological structures such as differential 

equations as exhibited in the CR3BP equations of motion. Bifurcation occurs when a small smooth 

change in the parameter values (e.g. position and velocity) of the system cause a topological 

change. The changing behavior in LPOs allow for the connection of other LPO’s. In section 3.3 

the use of Halo orbits and bifurcation with Lyapunov orbits demonstrated a large inclination 

change. In the following section the use of Axial orbits and bifurcation with vertical and horizontal 

Lyapunov orbits are designed to create a larger plane change using two LPOs. Using a horizontal 

Lyapunov orbit an Axial orbit is used to create a bridge connection to the vertical Lyapunov orbit. 

The use of one LPO’s unstable boundary is connected to the stable boundary of another LPO.   

3.5.1  Construction of Orbit 

In constructing a maneuver of two different LPOs to take advantage of the different stable and 

unstable boundaries the method described patches the different orbits and maneuvers together. 

This research is constructed from the combination of all that material that has been covered from 

the previous sections. The goal of the constructed maneuver to achieve a 90o plane change without 

the cost of a plane change maneuver. The maneuver is to also achieve a greater extent of 

inclinations beyond the limits of section 3.3. As a continuation of the material covered the 

maneuver created the same modeling being the Sun, Earth and Moon with the Earth and Moon 

treated as a singular point mass is used. The created maneuver will enable the use of mission 

designs for a satellite to initiate a thrust to follow the unstable manifold toward the L2 Lyapunov 

LPO.  The satellite will be traveling about the LPO to initiate an impulse maneuver. The impulse 

maneuver will take advantage of bifurcation from the horizontal Lyapunov orbit with an Axial 

orbit. The portion of the Axial orbit the satellite follows leads into a vertical Lyapunov orbit. The 

impulse maneuver following a portion of an Axial orbit acts as a bridge between the two different 

LPOs. After entering the vertical Lyapunov orbit the satellite will return to the second primary 

body with the invariant manifold traveling back along the stable boundary.1 The designed method 
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takes advantage of different aspects of the dynamic system model to achieve a savings in fuel 

usage with the known cost of increase time of flight.   

In table 3-8 and 3-9 the conditions for a Lyapunov horizontal and vertical orbit are provided 

as the two distinct LPOs the satellite is intended to travel. Figure 3-11 and 3-12 provide the 

mapping of the family of orbits associated to the table from 3-8 and 3-9. 

 

Table 3-8 Initial Conditions for L2 

Horizontal Orbits 

Table 3-9 Initial Conditions for 

L2 Horizontal Orbits 

 
 

x  �̇� 

1.010574 -0.003433 

1.011574 -0.011650 

1.012074 -0.016614 

1.012474 -0.020421 

1.012874 -0.023337 

1.013274 -0.025411 

1.013674 -0.026973 

1.014074 -0.028235 

1.014274 -0.028793 

 

x  �̇� �̇� 

1.007635 -0.0106398 -0.03081 

1.008035 -0.0106008 -0.02821 

1.008435 -0.0105708 -0.02591 

1.008835 -0.0106578 -0.02381 

1.009235 -0.0107378 -0.02171 

1.009635 -0.0111528 -0.02367 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-11 Set of L2 Horizontal Lyapunov Orbits 
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Figure 3-12 Set of L2 Vertical Lyapunov Orbits 

 

With the initial and final LPO mapped in figure 3-11 and 3-12 the next step to construct the 

desired maneuver is forming a bridging impulse maneuver that allows for connecting the two 

LPOs. The family of Axial orbits have two distinct bifurcations with the Lyapunov horizontal and 

vertical families. The Axial orbits can be used as a way of changing from one Lyapunov type to 

another. The table 3.10 contains different initial positions that form the different Axial orbits that 

could be used for more complex maneuvers changing from different horizontal to vertical 

Lyapunov orbits.    
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Table 3-10 Initial Conditions for L2 Axial Orbits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13 Set of Axial Orbits 

 

The information from table 3-8, 3-9 and 3-10 provides the trajectory design for the maneuver 

set out to be created. For the purposes of this maneuver the horizontal Lyapunov orbit is chosen in 

connection to the vertical Lyapunov orbit to have at least one point in common. The common point 

between the two LPOs is used to transfer between the different LPOs with the change of velocity 

to change paths.  Figure 3-14 is a combination of previous figures 3-10 and 3-11 to show the 

overall maneuver taken with the two different LPOs. The set of maneuvers designed is to achieve 

an inclination with the use of  invariant manifolds and LPOs. Table 3-11 provides the amount of 

Δv is used for each of the different parts that make up the constructed maneuver. With the Jacobi 

x �̇� �̇� 

1.007635 0.013963 0 

1.007635 0.012664  0.00811 

1.007635 0.008525  0.01600 

1.007635 0.006873  0.01800 

1.007635 -0.007457  0.02811 

1.007635 -0.0106298  0.03081 
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constant and Δv of the different maneuvers, selecting a point within the orbit enables the ability to 

derive the invariant manifold that is used to achieve the first LPO as part of the maneuver. Creating 

the invariant manifold further defines the maneuver with the ability to set out initial conditions. 

The initial conditions are designed with a starting point at LEO with a thrust to initiate the desired 

designed trajectory. Within the figure 3-14 three different trajectory paths are chosen to account 

for a spread of various orbits that could be created, like that which was done in section 3.3. With 

the given orbits, the cost of velocity that is calculated includes adjustments for maintaining the 

final desired orbit (i.e. thrust needed to return to a stable orbit). As in section 3.3 an analysis of the 

created orbits provides three main metrics of value such as time of flight, cost of velocity, and 

inclination change. The metrics then allow for a comparison with section 3.3 as well as other orbits 

to determine efficiency.  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-14 Multiple LPO Maneuver (With Multiple Impulse Points) 
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Table 3-11 Δv at different points along the maneuver from Figure 3-14 

Δv km/s Maneuver 

3.222 Unstable Manifold 

0.622 Vertical Lyapunov 

0.030 Impulse from Vertical 

1.202 Circularizing Orbit 

 

The results have demonstrated a significant savings compared to a traditional transfer method 

in fuel efficiency. However, further research will need to be conducted as the final return to GEO 

is not using a manifold and only the initial thrust starting the maneuver is using the invariant 

manifold. The maneuver back to GEO is conducted with an impulse for a direct approach to the 

desired location. Given the direct approach taken, further savings in thrust can be realized with the 

use of the manifold on the return. It should also be noted that by adding the impulse maneuver at 

the vertical Lyapunov orbit a less efficient maneuver is presented. Also, when determining which 

vertical Lyapunov orbit just like the research conducted by Davis et al. (2011) it should be noted 

that only a subset of the vertical family can provide a cost savings for return to GEO whereas a 

selected vertical orbit beyond the subset can be more costly in return. The total from table 3-11 

demonstrates for the selected vertical and horizontal Lyapunov orbit a Δv of approximately 5.076 

km/s is used whereas the Hohmann transfer requires a total Δv of 8.29 km/s. The total Δv was 

determined by adding the different parts of the maneuver as seen with different colors in figure 3-

14. The method of determining the total Δv was such because the maneuver was constructed of 

multiple impulse burns. When comparing the two different amounts to fuel used a 48% percent 

difference is realized.  The fuel savings from Davis et al. (2011)  was able to realize a 40% -70% 

difference and to realize the same level of savings with the method conducted both departing and 

returning manifolds would need to be used. During the calculations for velocity it was also 

discovered that the model has a 0.02 km/s second error from expected results. 
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Once again, time of flight is directly from running the system model from the created orbital 

trajectories. Given that this maneuver was patched together from two different LPOs the time from 

separated parts patched together provides the total time of flight. Using the equation (2.3) for the 

characteristic time conversion the results for time of flight are given with table 3-12. Table 3-12 is 

a comparison of time of flight and the Jacobi constant. Just as in the maneuver created in section 

3.3 the created maneuver does not attempt to optimize the orbital trajectory. Further attempts to 

increase efficiency or optimize are left for future research such as differentially correcting the 

manifold trajectories or with potential studies as suggested in sections 3.4.1 and 3.4.2. The time of 

flight is solely determined by the system model as number points integrated over, determining the 

different data points. Using the same method of time of flight as in section 3.3 allows for a 

comparison based on the same measurements. 

Table 3-12 Time of Flight for Designed Transfer Orbit 

Time (unitless) Time  Maneuver 

6.5 377.82 days Horizontal Lyapunov 

5.5 319.69 days Vertical Lyapunov 

12 1.91 years Total Maneuver 

 

From table 3-12 following the full path of the LPOs may take more time than needed for the 

maneuver, rather than at the point of intersection between the LPO to us the manifolds for the 

maneuver. The suggested maneuver is by no means optimized to converse time, but rather 

demonstrates the savings in Δv. 

Similarly, the overall cost of velocity or Δv that is used for the orbital maneuver is the thrust 

to depart from LEO and the thrust to enter a final circularized orbit. The departing Δv from LEO 

is derived from the initial conditions for position and velocity to enter the invariant manifold. The 

calculated results are altered based on corrections for the model to achieve the maneuver. The 

thrust needed to enter a final circularized orbit is derived in the same manner as in section 3.3. 

Position and velocity are selected by first approach from the stable manifold. Extending the time 

of flight for a second or third orbit also has the potential for decreasing Δv however that is saved 

for a future study. Similarly, with time of flight no optimization is conducted to determine a way 
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to decrease for the ending Δv of the maneuver. Time of flight and Δv are determined the same way 

as in section 3.3 to allow for a comparison between the two methods. Table 3-11 is the cost of 

velocity in comparison to the Jacobi constant. Finally, inclination is designed to be 90 degrees 

from the initial position.  

In equation (3.18) the equation is used to take the initial conditions and ending points and 

transform them into coordinates centered with the Earth and Earth’s tilt. Using the MATLAB script 

that was created by Curtis (2014), the information in table 3-11 is transformed into the information 

present in table 3-13. With all the information that has been gathered from this section table 3-13 

is a coalited set of results providing initial and final coes for the three different orbits demonstrated 

in this research. Table 3-13 encompasses the results containing the initial and final coe, Δi, Δv, 

and TOF.  

Table 3-13 Resulting Data from Orbital Maneuver . 

Classical Orbital Elements Δi Δv  TOF 

a: 6556 a: 42164 90° 5.076 km/s 1.91 years 

i: -23.5 i: 66.5    

Ω: 0, e: 0, ω: 0, θ: 0 Ω: 0, e: 0, ω: 0, θ: 0    

 

The resultant information from the table above with use of two LPOs the Δi of  90° has a 

savings percent difference of 48% for a time of flight of approximately 1.91 years. Limitations to 

this maneuver are further explored in section 3.5.3 Results and Comparison.   

3.5.2  Retrograde Motion & Rendezvous Missions Explored 

In section 3.3 and 3.5.1 the CR3BP was noted to be in an ecliptic coordinate system with the 

rotation of model based on rotating around the barycenter of the system. This means that an 

inclination of zero, like the starting point of the maneuver conducted, is at an inclination of -23.5 

degrees. The resulting maneuver then leads to an ending inclination of 66.5 degrees, a prograde 

orbit. Given that the model of motion is with respect to the barycenter of the system and not to the 

rotation of the second primary body, orbits of retrograde motion are possible. In this section a brief 

investigation is done on the capability of performing various inclination changes with little to no 

cost difference in thrust. The retrograde orbit of a satellite is defined as motion opposite to the spin 
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of the Earth. Understanding what this maneuver can provide for retrograde orbits is of interest due 

to cost inclination change involved.   

With the maneuver conducted in section 3.5.1 the invariant manifold leads the satellite into the 

desired orbit. A slight change of impulse from section 3.5.1 on the stable boundary return will 

cause the satellite to have motion in the opposite direction with respect to the barycenter. That is 

the ending orbit created in section 3.5.1 can result in an orbit rotating with or opposite to that of 

the perspective of object on the surface of Earth. The maneuver started with an ecliptic inclination 

of zero degrees following a horizontal Lyapunov orbit. With the return to Earth being through a 

vertical Lyapunov orbit the result is a 90-degree shift in the ecliptic plane. When viewing the Earth 

in the equatorial plane this same inclination will now appear as an inclination of 66.5-degrees. The 

orbital maneuver created was accomplished with a horizontal and vertical Lyapunov orbit. 

However, that does not mean that the similar orbit can’t be done with Halo orbits to provide 

different end state inclination changes as a satellite starts on one Halo orbit and transfers to another 

before the return to Earth. 

The use of interchanging maneuvers between different LPOs has additional benefits for a wide 

variety of research. One topic of interest being rendezvous with temporarily captured near Earth 

asteroids could greatly benefit from the advantages of interchanging between different LPOs to 

better align with different asteroid paths. The research conducted by Breisford, Chyba, Haberkorn, 

and Patterson (2015) constructs the use of a Halo orbit as a station keeping location for the TCO 

2006 RH120. Limitations of TCO trajectories beyond 2006 RH120 when in the vicinity of a lagrange 

point can be overcome when using the lagrange point as a station keeping location and using LPO’s 

to follow objects of interest. Their work conducted outlines a very specific type of mission whereas 

the suggestion here would be to use different LPOs to expand beyond the original mission after 

completion. The use of LPOs to change orbital trajectory are often used like in the example mission 

from section 1.3 Mission Scenario to provide additional purpose to assets that are already in space 

to provide further use.     

From equation (1.1) calculation for an inclination change of 180° without any other parameter 

change, the change in velocity required is twice the velocity to maintain the current orbit. In 

comparison the maneuver from section 3.5.1 requires a velocity change of 7.679 km/s from LEO 

to GEO. This brief investigation of retrograde orbits would suggest that the use of invariant 
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manifolds could be used to significantly decrease the cost in velocity required for such maneuvers. 

Further investigation should be conducted for a wide range of different inclinations to determine 

the limitations of the created maneuver. Additionally, mission design for a retrograde orbit with 

the maneuver from section 3.5.1 would be subject to the conditions mentioned in section 4 that 

could limit applicational use. 

3.5.3  Results and Comparison  

In section 3.3 and in section 3.5.1 the velocities required for the mentioned maneuvers are 

impulse changes from LEO. Being an impulse change the velocities of both orbits start at a stable 

LEO velocity and end at GEO. As a comparison equations (3.20) and (3.21) are the numerical 

results for escape velocity and velocity at LEO. 

𝑣𝑒𝑠𝑐𝑎𝑝𝑒 =√
2𝐺𝑀

𝑟
=√

(2∗398600)

(6378𝑘𝑚+185𝑘𝑚)
= 11.02𝑘𝑚/𝑠    (3.20) 

𝑣𝐿𝐸𝑂 =√
𝐺𝑀

𝑟
=√

398600

(6378𝑘𝑚+185𝑘𝑚)
= 7.79𝑘𝑚/𝑠    (3.21) 

The change in velocity from section 3.3 provides a maximum inclination change of 71.6° and 

change of velocity of 4.44 km/s with the research of Davis et al. (2011) stating that this method is 

a lower cost compared to a Hohmann transfer. The conducted maneuver has an inclination change 

limit that would require a Hohmann transfer or the use of a different impulse maneuver for larger 

inclination changes. The maneuver conducted would suggest that the use of different Halo orbits 

or as constructed the use of horizontal and vertical Lyapunov orbits can overcome such a 

limitation. As suggested by the work of Davis et al. (2011) the use of multiple LPOs does indeed 

yield further cost savings for large inclination changes.  

The maneuver created in section 3.5.1 is designed to demonstrate a 90° inclination change with 

the use LPOs and invariant manifolds. A continuation of research into various orbits would need 

to be conducted to determine if an upper limit exists or if the use of any correct two inclinations 

can provide any desired inclination change with low thrust costs. If an upper limit of inclination 

exists for the maneuver created in section 3.5.1 a different method would be required for 

inclination changes beyond a such limit. Given the limited scope of the research conducted the 

inclination change demonstrated requires a change of velocity of 5.076 km/s. With the change of 

inclination and velocity a comparison is made with the Hohmann transfer method.  
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Using equation (1.1) the required velocity for an inclination change of 71.6° is approximately 

1.82 km/s and for a 90° inclination a velocity of approximately 3.29 km/s. As a measure of how 

much a 90° inclination costs the velocity required is greater than the velocity need to escape Earth. 

That is if the inclination change was occurring at LEO a 90-degree change is twice the velocity 

needed to maintain orbital velocity whereas the velocity to escape Earth is 11.02 km/s. This method 

is based on two body conics only taking into consideration the primary body and the satellite. The 

Hohmann transfer method is also considered the most efficient for time with the cost in velocity. 

In addition to the efficiency of time because this maneuver occurs close to the primary body Earth 

satellites do not incur environmental conditions mentioned in section 4. Separate from the use of 

the Hohmann transfers another method often used is the bi-elliptical transfer method. 

The bi-elliptic transfer method consists of two half elliptic orbits. The Hohmann transfer 

maneuver has an elliptic orbit between the desired initial and final orbits whereas the bi-elliptic 

orbit has an elliptic orbit that extends beyond the final orbit. With the bi-elliptical orbit, the further 

out the elliptic orbit the more potential savings in change of velocity. Just like the Hohmann 

transfer the bi-elliptic transfer is also based on two body problem conics and does not take into 

consideration perturbations from other bodies. As the distance from the primary body increases 

the more this method is prone to error. The advantage the bi-elliptical transfer has over the 

Hohmann transfer is that for rf/ri greater than 15.58 the transfer can save on fuel. In addition to fuel 

savings for a radius ratio greater than 15.58 if the intermediate maneuver point is at an extended 

distance than ratios between 11.94 < rf/ri < 15.58 can also be more economical. With this study 

focused around the initial orbit being LEO and the final orbit being GEO the ratio of r2/r1 ≈ 6.42, 

and therefore, a bi-elliptic transfer would not be advantageous. Figure 3-17 provides a visual 

depiction of the difference with efficiency between the two orbits.  
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Figure 3-15 Traditional Transfer Methods. ”Bielliptic transfers comparison.svg” by Meithan 

Created 1 December 2016. Image take from 

https://commons.wikimedia.org/wiki/File:Bielliptic_transfers_comparison.svg 

Given the results of the research conducted and the review of the Hohmann transfer and bi-

elliptic transfer method, each maneuver has advantages and disadvantages for different amounts 

of inclination changes. The maneuver in section 3.3 had a minimum inclination change of 

approximately 7.8° and a maximum of approximately 71.6°. Transfers less than 7.8° are not 

feasible with a signal LPO and when introducing a second LPO further research would need to be 

conducted to determine the full change in velocity required. Given the research that has been 

conducted a preliminary analysis would suggest that small inclination changes would not be 

efficient with the maneuver conducted in section 3.5.1. For small inclination changes for an orbit 

at LEO the Hohmann transfer method is still the most efficient. For inclination changes that are 

between 7.8° and 71.6° the work conducted by Davis et al. (2011) is the most efficient for fuel. 

Finally, for an inclination change of 90° the constructed method in 3.5.1 using two LPOs is more 

efficient than a Hohmann transfer. A future investigation for testing efficiency would be to ensure 

that inclinations between 71.6° and 90° and for transfers greater than 90° is more efficient 

compared to a Hohmann transfer and potential limits with the constructed transfer. Although these 

transfers are more efficient in change in velocity both methods using LPOs do drastically increase 

time of flight to complete a transfer maneuver.  
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4.   ENVIRONMENTAL CONDITIONS AND POTENTIAL APPLICATIONAL USE  

It is the intent of the research conducted to create an impulse maneuver designed for large 

inclination changes as a cost savings technique beyond rescue or salvage. The impulse maneuver 

created in section 3.5.1 compares Δv and time of flight with respect to inclination change. In 

studies of efficiency and optimization of orbital maneuvers the general results are provided with 

Δv and time flight within the conclusion. Further analysis is left to mission design, should a 

maneuver be used. Past research with the focus of mission design is typically focused around a 

mission such as the NASA Genesis mission, Suess-Urey mission or others as examples from 

section 1.2.2. The reason a general mission design is often not covered is due to the changes in the 

specifics of different missions and parameters.  

To understand different potential uses of the maneuver created, a more general mission design 

is reviewed instead of the use of a specific mission. This research seeks to review the general 

concepts of mission designs for the impulse maneuver created to understand the benefits and 

consequences. Looking at mission design will allow for greater understanding as to what these 

types of impulse maneuvers can provide. From the concluding research time of flight is only 

compared to time of the start of the maneuver to the end. However, another aspect of time 

measurement that could impact a mission is the time involved with scheduling a launch site, launch 

windows, and then a maneuver to achieve the desired position and velocity. It is common for  

mission designs of satellites to be launched from a site that would provide a similar inclination to 

the desired mission due to how expense inclination changes can be. Also, with the measurement 

of Δv a review is conducted to understand associated benefits as well.  

The benefits of a given maneuver when talking about efficiency can potentially have greater 

application and use when considering differences at the beginning of planning. In addition to 

providing more options in planning, impulse maneuvers are also reviewed from an economical 

perspective to determine cost vs benefits. To limit the scope within this section the generalized 

orbits are restricted to those common for LEO mission types with a comparison to typical design. 

This section conducts a mission design review with the impulse maneuver to understand effects of 

inclination changes, and overall efficiency. A brief review of past usage with rescue and salvage 

missions will provide an understanding as to why these types of maneuvers have been typically 

restricted to such cases. 
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4.1 Rescue and Salvage Missions  

The technique for ballistic capture was developed in 1987 using WSB transfers. Though the 

initial design of the transfer was for electric propulsion for the low quantities of thrust a secondary 

use was in the form of applications requiring fuel saving. The first use of ballistic capture into 

lunar orbit was in 1991 with the Japanese spacecraft Hiten. The spacecraft released a small orbiter 

named Hagoromo which had a transmitter failure preventing communications and control for 

orbital corrections. The Hiten Spacecraft mission objectives consisted of measurement of cosmic 

dust between the Earth and the Moon along with testing different maneuvering, insertion, and 

breaking techniques. The orbital maneuver consisted of ten lunar swing-by experiments and an 

areo-braking experiment with Earth’s atmosphere. The impulse maneuver created saved about 

25% in the Δv required for lunar capture and increased time of flight by about 90 days (Belbruno, 

Carrico, 2000). The maneuver was created in a similar fashion as from the maneuver created in 

this research in that first the designed orbit was generated followed by the impulse required to 

achieve the resultant maneuver. The modeling software for the Hiten Spacecraft maneuver used 

was STK/Astrogator to demonstrate the full realization of the maneuver with the desired outcome. 

The use of the maneuver was successful, and the mission was salvaged completing all mission 

objectives. 

In section 1 of the Introduction the AsiaSat-3/HGS-1 is considered a rescue mission due to 

having to correct for a fourth stage thrust execution failure.  The satellite’s thrust failure resulted 

in an unstable orbit with an inclination of 51.6o and an eccentricity of 0.73 instead of the intended 

geostationary orbit (Ocampo, 2005). AsiaSat-1 required an additional Δv of 2.42 km/s to correct 

for the mistake. To avoid complete loss of capability Asia Satellite Communications Ltd. sought 

non-standard transfer methods to best achieve a stable orbit. Edward Belbruno had devised an 

impulse maneuver using the WSB and capture dynamics with the moon to achieve an inclination 

of 12.5o. Another maneuver created was a lunar flyby orbit to allow for an inclination adjustment 

on the free return. The lunar flyby orbit was chosen providing an inclination of 8o and after many 

years in orbit 0o. The impulse designed by Edward Belbruno was not selected due to TOF, 

continuous communication, and the ability in keeping guidance and control. AsiaSat-1 was known 

as a success with lasting a total 4 years in orbit. Even with the overall success of the mission the 

two different mission designs and reasons provided for selection demonstrate why one method 

would be more advantageous for operational use.  
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The first technique for lunar capture with WSB was created in 1987 with the first applicational 

use in 1991. This four-year turnaround time from creation to operational use was due to the need 

for rescue and salvage for a mission asset. With an increased number of satellites and modeling 

capabilities the creation of different maneuvers will allow for orbital designs that best fit different 

situations even if such techniques are considered non-standard. Non-standard techniques become 

a viable option when standard techniques are no longer possible, and risk is acceptable to avoid 

complete mission failure. The main advantage with the different methods that are derived from the 

three-body problem over two-body problem conics is with fuel savings. Many of the different 

methods mentioned have also shown that using gravitational forces over thrust increases TOF. In 

addition to increased TOF other disadvantages for such maneuvers consist of continuous 

communication and the ability to maintain guidance, navigation, and control. Separate from  the 

disadvantages mentioned in both use cases additional concerns are reviewed in sections 4.2 and 

4.3 for operations starting and ending in LEO. Despite the most common use of non-standard 

transfer methods with rescue and salvage there have been several satellite missions that have also 

used such maneuvers due to matching mission objectives. 

In addition to rescue and salvage use other missions that have used a similarly designed orbit 

as section 3.5.1 is the NASA Genesis mission as described in section 1. The satellite’s objective 

was to collect solar isotopes following multiple loops of an L1 LPO in the Sun-Earth/Moon system 

continuing with a homoclinic loop to return to Earth. The trajectory selected best fits the unique 

mission design to achieve the intended objectives. In the case of the Genesis mission standard 

maneuvers or an orbit around a primary body would not have collected as much particles or 

dramatically increased cost to the mission. In the case of Genesis, the selected trajectory was used 

not for fuel savings or TOF but rather to increase the payload collection capabilities. A key 

uniqueness of the mission was that only a single deterministic maneuver was required to insert the 

spacecraft into the designed Lissajous and Halo orbits. The cost for the Genesis mission was about 

264 million dollars and although no direct comparison can be made to another mission, the fuel 

savings would potentially contribute to a decrease in total cost or increase in mission life. The 

Genesis mission is often a commonly referred mission based on similarities with maneuver 

techniques using LPOs and the potential advantages that could be provided for different mission 

types. The mission was launched in February 2001 with a duration of over 15 years however a 

much earlier orbital mission example can be found with the ISEE-3.  
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In 1978 the NASA International Sun-Earth Explorer -3 (ISEE-3) was launched to measure 

solar wind from a Halo orbit about a L1 LPO. The orbital design was set to maximize the payload 

collection capabilities just like the Genesis mission. The maneuver used was constructed in such a 

way to achieve mission success despite the poor engine performance with a variety of contingency 

planning possible throughout the trajectory. ISEE-3 was able to avoid a cold start thrust and lunar 

gravity assist by adjusting the maneuver to be completed with a three-impulse strategy. The first 

impulse maneuver would be to get the satellite to enter an LPO, the second burn would be to 

transfer the trajectory to a Halo orbit, with the final burn on the return. Within the contingency 

plans the added Δv is proportional to thrust needed to correct the trajectory. The original launch 

date for the satellite was July 23rd, which was changed to August 12th. This affected planning 

because the position of the moon changed as well. The difference in the moon’s position changes 

the perturbations experienced by the satellite entering the LPO (Computer Sciences Corp., 1979). 

In section 3.5.1 the position of the Earth/Moon are treated as a point mass not accounting for 

perturbation changes from varying positions of the Moon within its orbit. The mission design of 

ISEE-3 would suggest similar contingency planning would be required for the maneuver created 

in section 3.5.1. 

Although the original purpose of ballistic capture and the use of WSB transfers were developed 

for low thrust missions the fuel saving potential was almost immediately recognized. As an 

immediate implementation of these impulse maneuvers rescue and salvage missions have 

demonstrated an additional use. The Hiten Spacecraft mission modeling has led to wide variety of 

different maneuvers using WSB transfers and LPOs. However, some disadvantages that have been 

noted include increased TOF and communication issues depending on the mission. With missions 

that seek to use WSB transfers and LPOs like Genesis and ISEE-3 the use of traditional methods 

would create a disadvantage in achieving success. Additionally, with different orbital designs that 

have been created in a wide variety of research the use of contingency planning would still need 

to be created to ensure corrections due to perturbations from other forces. This preliminary use in 

mission planning would require contingencies like the once created for the ISEE-3 satellite. The 

corrections would help account for simplifications within the model and additional gravitational 

forces that would create error. Correcting for errors by creating contingency maneuvers would 

require specifics given a launch window and other parameters of a mission. Separate from 
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contingency maneuvers any use of the impulse maneuver created in section 3.5.1 would also need 

to account mission design changes.  

4.2 Mission Design for Low Earth Orbit  

This preliminary study being focused on LEOs requires satellite mission design to take into 

consideration factors such as environmental conditions, lifetime, and communication. The initial 

conditions for impulse maneuvers in section 3 started at an altitude of 185 kms and at such altitudes 

Earth’s atmosphere affects satellites in two ways. Roughly below 600 km Earth’s atmosphere 

affects satellites with drag and atomic oxygen. The effects of drag onto a satellite can shorten 

orbital lifetime and atomic oxygen can degrade surface areas. The amount of drag that is exerted 

can be altered with aerodynamics that are beyond the scope of this study. Additionally, the effects 

of drag can vary with atmospheric changes from solar activity and over time without correcting 

for such changes can create loss of altitude for satellites. Another effect that can negatively  impact 

a satellite’s orbit if not accounted for is atomic oxygen. Atomic oxygen is created in the upper 

atmosphere from radiation and charged particles from the splitting of O2. The resulting oxidation 

combines with the metal components of the satellite causing rust which will degrade exposed 

materials like payload equipment. Issues with atomic oxygen can be mostly overcome with 

material structure which further increases complexities with aerodynamics beyond the scope of 

this research. From the two atmospheric conditions mentioned a slight adjustment would need to 

be accounted for with Δv or the ability to apply corrections to create and maintain a given orbit. 

Within the upper layers of Earth’s atmosphere and beyond other environmental conditions that 

become problematic are conditions such as out-gassing, cold welding, and heat transfer. The 

conditions of out-gassing are caused from material usage that could contain pockets of trapped air 

and burst when exposed to the vacuum of space. Out-gassing however is not typically a problem 

with solutions including careful selection of material, molecular coating, and heat testing. Another 

problem with the vacuum of space is cold welding caused by mechanical parts that have little 

separation between them. Depending on mechanical design and mission needs some moving parts 

are unavoidable and carefully selecting material can help, however cold welding may not be 

completely avoidable. With the vacuum environment of space, the primary method of heat transfer 

is radiation. Radiation acts as a dispersion of heat for energy loss during transfer from one 

component to another. Heat transfer is not typically an issue for orbital maneuvers however when 
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spacecraft failures occur impacted systems can limit what corrective maneuvers are possible. Other 

forms of radiation separate from Earth’s influence and internal to the satellite can create potential 

issues as well as impacting fuel usage that may not be described with the model used in section 3.   

4.2.1  Environmental Conditions 

In addition to the radiation previously mentioned additional concerns include the effects of 

radiation from charged particles. As a spacecraft or satellite gets further into space a dangerous 

aspect of the environment is in the form of charged particles. Charged particles within the region 

of interest can expect radiation from solar winds and flares, and cosmic rays as the satellite extends 

beyond the magnetic shielding from Earth. The charged particles regardless of their origin 

negatively impact a satellite through charging, sputtering, single-event upsets, and total dose 

effect. Each of the negative impacts affect a satellite in different ways that need to be accounted 

for in mission planning and development.  

The first negative effect caused by charged particles mentioned is charging, a condition when 

different components of the satellite store different amounts of electric charge. The charge is built 

up when impacted or traveling through concentrated areas of charged particles. As a charge builds 

up within different components at different rates an electrical discharge occurs, potentially 

damaging electronic systems. The stronger the electric field the more frequent discharges with 

larger pulses for potential damage. The electrical discharge may not necessarily occur immediately 

and may be considered unpredictable as to when during flight damage happens. To minimize the 

damage from charging mission often avoid maneuvers during solar activity. With any given point 

in the impulse maneuver subject to damage from this form of charged particles the ability to correct 

along the trajectory becomes vital for success.   

Second, sputtering is caused by the intense speed in which the particles are traveling as they 

impact the surface of the satellite. The collision of charged particles will recoil in a variety of 

different directions after binding with a satellite’s surface causing those atoms to be ejected. The 

average number of atoms ejected from satellite or spacecraft is known as the “sputtering yield” 

which can impact orientation of thrust and instrumentation (Plumes, Boyd, Falkf, 2001).  Over the 

duration of a mission sputtering can create extensive surface damage impacting different 

component’s performance and functionality. In the event of a large concentrated quantity of 

charged particles, a satellite would alter course to avoid damage making this form of damage 
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primarily from the accumulation over time. Similar course corrective maneuvers are employed as 

the primary method to avoid this type of environmental hazard.  

Another negative effect caused by charged particles is a phenomenon known as a single-event 

upset. Single-event upsets are caused by charged particles impacting hardware creating bits within 

the software to change. The changing state within the software can created incorrect messaging 

between different components causing unintended changes to system operations. This form of 

radiation damage can be decreased with error correcting coding methods and physical protection 

against radiation damage. The physical hardware for satellites can be carefully selected for 

radiation protect and shielding can be added. Different forms of radiation protection for hardware 

components vary with radiation hardening techniques to radiation tolerant hardware. The impact 

this form of radiation could potentially have a satellite misinterpret a trajectory as correct, create 

thrust in a wrong direction, or even prevent response from Earth to make corrections.     

Finally, the impact of charged particles onto a satellite over time can create an effect known as 

total dose. A total dose is caused by long term exposure to radiation to computer hardware 

components. The damage that is created by a total dose effect is different compared to the single-

event upsets in that physical hardware is damaged instead of software. As different hardware 

components are exposed over time degradation to devices can create device failure. Carefully 

choosing what material hardware is made of can decrease the risk. Within the development stage 

of missions, different systems are tested for a variety of conditions. Depending on the amount of 

radiation exposure, performance curves can help to provide a level of expectation of a satellite’s 

capability. Due to this effect being caused from long term expose to radiation this would potentially 

limit the duration of a mission and a satellite’s usefulness. The effects of a total dose with an 

impulse maneuver are beyond the scope of this research, however, performing a maneuver  under 

these conditions would be considered risky depending on the failed system or decrease in 

performance.  

In understanding a few of the different space environment hazards the brief review conducted 

provides some important factors to consider with mission planning. The tracking of space weather 

is important to avoid extreme radiation damage caused by solar flares or other events. Like the 

mission design from ISEE-3 the development of contingency maneuvers for trajectory corrections 

need to be planned. Finally, when developing a mission for the space environment at increasing 
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distances from Earth more damage is likely to occur. Careful selection of materials can help 

decrease the potential damage from radiation for deep space impulse maneuvers. 

4.3 Overall Efficiency 

In section 4.2 the brief study presents a few of the different environmental hazards of what 

could be expected at the L2 LPO. The impulse maneuver created is compared with equation 1.1 

method of transfer for efficiency. The radiation hazards from section 4.2 are more of a concern 

with the impulse maneuver created compared to a satellite that might be better protected being 

close enough to Earth. The hazards from the space environment along with the benefits of fuel 

savings and flexibility in launch window are used to compare the two different types of maneuvers. 

However regardless of the approach taken solar weather and timing would still need to be taken 

under consideration to avoid hazardous conditions. Given the stated differences between 

maneuvers that stay at LEO and an orbit that would travel into deep space a comparison of 

economics, costs, and mission design is briefly covered to assist with determining efficiency. 

This research seeks to use different analogues missions to determine the economic costs of a 

traditional LEO satellite maneuver compared to an impulse maneuver as described in this research. 

For traditional LEO satellites, planning and costs are typically associated to launch site which will 

prevent the need for a large inclination change. Due to the planning involved having a direct cost 

analysis will not be possible. However, an assumption of this research will be that the launch sites 

are specifically chosen for minimal inclination maneuvering. Additionally, the cost for different 

launch sites and insurance are not publicly provided. With the different missions that are used for 

comparing the different type of fuel used and thrust efficiency are also not accessible for 

comparison. General information about specific engines with different types of fuel can be 

computed. However varying costs would be difficult to compare back to the total costs of missions. 

The main determination within this study will be based on the overall cost or estimated cost from 

mission class type of previous analogous missions, and how long different missions have lasted.   

Another aspect to consider for efficiency are differences with mission planning. A spacecraft 

can be broken into two main parts, these parts being the bus and the payload. Typically, the payload 

is specific to the intent of the mission being achieved and not desirable to change for differences 

of maneuvers. Additionally, there could be a case in which material or mission design from the 

payload would support deep space maneuvers regardless of the design of the bus. However, the 
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planning and development of a bus can change to achieve the needed trajectory. This study will 

consider differences in material, risks, and possible contingencies. The overall efficiency will then 

be based on both economic costs and mission planning.  

4.3.1  Economic Efficiency 

Two analogous missions chosen to use a comparison with the type of impulse maneuver 

created within the research are ISEE-3 and the NASA Genesis mission. ISEE-3 mission was to 

conduct a survey of the Earth’s magnetosphere and the study of two comets. The satellite was 

launched in 1978 and lost in 2014. As an explorer class mission, the cost are limited to $200 million 

and in 2014 the satellite was repurposed with new flight hardware with funds raised of $159.5 

thousand. The NASA Genesis mission was a sample return mission for solar wind particles 

designed specifically for the trajectory of LPOs. The mission was launched in 2001 and the return 

capsule landed in 2004 successfully. The satellite cost was $264 million with a 1 to 3-year mission. 

With both missions described each had a payload design specifically designed to take advantage 

of the orbital motion about an LPO. During the mentioned missions, communication disruptions 

were an inherent risk as the satellites traveled further away from Earth with different objects 

blocking transmissions. Within the total cost of the missions the cost of fuel is determined based 

on the needs of the mission. With traditional research into impulse maneuvers like in section 3.5.1 

fuel cost saving can lead directly into overall cost savings or allocation of resources in other aspects 

of the a given project.  

To avoid the specifics of the different missions connected to different types of LEO satellite 

missions the following satellites were selected; Aura and Sentinel-5 Precursor. Both chosen 

satellites have an inclination change of 98o and support scientific missions. Regardless of the orbit 

design the mission payload supports is the highest cost impact onto a satellite. The Aura mission 

was a satellite designed to study the ozone layer, air quality and climate over the duration of its 

operation. The satellite launched in 2004 with an expected decommissioning in 2023 is still 

providing scientific data. The Aura mission cost was $785 million with an expected mission 

duration of 19-years. The Sentinel-5 Precursor satellite is a European scientific mission to monitor 

air pollution through several different instruments. The satellite was launched in 2017 and is 

currently still in operational use. The mission cost of the satellite was about $49.5 million with an 

expected duration of about 7-years. Given the two LEO satellites cost ranges are significantly large 
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with varying missions at the same inclination. Additionally, the Δv for an inclination is not a dollar 

cost amount and cannot be directly defined given both satellites launched from a site to provide 

the desired inclination, those sites being Vandenberg Air Force Base and Plesetsk Cosmodrome 

Russia respectively. Given the calculation conducted with equation 1.1 an inclination change 

would have consumed approximately half the Δv of the velocity of their orbit, costing a 

considerable amount of fuel altering the overall costs. 

Comparing deep space missions like Genesis and ISEE-3 to missions that stayed in LEO like 

the Aura and Sentinel-5 Precursor are used to provide cost differences. For the missions that are 

considered deep space their costs seem to be near if not over $200 million. In some of the cases 

traditional LEO satellite missions seem to approximately range from $50 - $800 million. Given 

the range of cost for each mission fuel usage does not appear to be the largest factor. Each satellite 

had specific mission objectives that all differ from each other and some were constructed by 

different entities making a direct comparison for cost impossible. The mission types under 

comparison are all scientific and are often designed for a level of flight worthiness for 

environmental conditions. Other cost drivers that could not be directly compared, are if any 

potential difference exist with payload for radiation protection, or contributions from the launch 

vehicle to achieve initial orbit or a parking orbit. From an economic cost the use of traditional 

methods appears no different from an overall perspective compared to a deep space impulse 

maneuver. With costs not providing a direct result of which type of maneuver is more efficient 

other factors such as risk, time of flight, and potential usage need to be taken under consideration.   

4.4 Environmental and Design Concluding Remarks 

An efficient transfer orbit is determined by improving a parameter for a given transfer. 

Although studies of efficient transfer orbits demonstrate savings in Δv another question to ask is 

if such maneuvers are also efficient on a global scale for a mission. In evaluating overall efficiency, 

the harmful effects of radiation are reviewed to understand potential impacts. With radiation, risks 

can be mitigated by monitoring solar weather and timing of missions, selection of material 

components for shielding, and designing software to handle error. Additionally, with the hazards 

of radiation contingency orbits in case of component failure better ensure success of the maneuver. 

The idea of the contingency maneuvers with the conducted research is based on the mission design 

created from ISEE-3 in the event a potential issue. Separate from radiation at altitudes of LEO 
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atmospheric conditions can also impact satellites causing the need for slight orbital corrections 

because of friction. Once again, like radiation, the atmospheric effects also create the need for 

careful selection of material for component design. From the previous section in determining cost 

between the two different maneuvers no difference was determined. Costs for specific components 

and for various other aspects are not openly shared. In addition to cost determination issues the 

time spent for mission planning and development is also not shared. Mission information is often 

provided from the time of launch and onward. With no discernable difference in cost, efficiency 

of transfer orbits is further reviewed with time of flight and risk. Time of flight is typically 

extended for low fuel maneuvers and risks with using LPOs can also bring communication issues 

as objects can come between a satellite the further in space a satellite goes. For cost differences 

between maneuvers using LPOs to be the same as maneuvers that stay in LEO potentially means 

one of three outcomes. For no cost savings to be realized between the two different maneuvers the 

fuel savings is the same as protective measures, cost savings are being utilized in other aspects of 

the system design, or cost benefits are not being utilized. The Δv efficient transfer orbits are clearly 

advantageous compared to traditional methods when in need for rescue and salvage, or when such 

a maneuver directly benefits mission objectives.   
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5. Conclusion 

5.1 Summary of Results 

The problem of inclination change maneuvers as described in section 1 is that they are typically 

avoided due to their cost in Δv. With the research conducted and other associated research different 

methods have been developed to provide initial cost savings possibilities. The mission scenario 

created from section 1.3 was used as an example use case for the maneuver created in section 3.5.1. 

With the overall research being conducted the goal was to seek a more efficient transfer using a 

vertical and horizontal Lyapunov orbit and compare the results to a Hohmann transfer. When 

developing a model of the CR3BP different aspects that needed to be taken into consideration 

included equilibrium points, method of numerical analysis for computing the model data, and the 

use of linear approximations of different potential desired trajectories. Solutions were created 

using analytical approximation in the vicinity of the L2 equilibrium point to provide a strategy for 

numerical computation of the horizontal Lyapunov family. Additionally, the brief introduction of 

invariant manifold theory provides a description for a method to use the manifold in the formulated 

trajectory. The combination of the topics covered provide general foundation on the components 

behind different trajectories being modeled with the CR3BP. 

The first test case successfully recreated the work of by Baines et al. (2018) demonstrates the 

functionality of the CR3BP within a Python script. After successfully creating the same results 

further changes to the model were created to expand the model to cover the z-axis and 

modifications for the change in coordinates. The modifications further allowed for approximate 

like trajectories for Davis et al. (2011). The second test case successfully provided inclination 

changes more efficient compared to the traditional Hohmann transfer. Creating a maneuver with 

the stable manifold to the LPO and the unstable manifold to achieve GEO was vital to creating a 

maneuver with two LPOs to further increase inclination. The use of a 90o plane change 

demonstrates the capability for other orbits of different inclinations to be possible. The 

combination of Baines et al. (2018) and Davis et al. (2011) provided the ability for the proposed 

orbit to be created. While testing the Python script and making changes it was noted that velocity 

has an error of 0.02 km/s. The error is caused by the step size of the system to allow the computer 

to run the model due to limitations in system memory. The differences in results from Davis et al. 

(2011) are primarily from not knowing the research’s original state vector as input into the system. 

Given that the results are similar it would prove that their method does indeed meet the claim 
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mentioned and has the possibility to be extended for wider range of orbital maneuvers. Another 

issue with the model regarding error is that model is sensitive to the millimeter level of precision. 

Having a millimeter level of precision is inherently wrong for a system that should only 

realistically be precise to meters. The reason for the error in precision is due to the incredibly small 

mass ratio. From section 2 it was noted that the mass ratio of the system must be µ: 0 < µ ≤ 0.5. 

However, the closer to zero the model the more numerical values are needed to produce similar 

like orbits. In the Earth-Moon system an L2 Lyapunov orbit requires a level of precision in meters 

which seems to be due the mass ratio µ = 0.0121505856 compared to Sun-Earth/Moon system 

which is four orders of magnitude differences. This type of error would need further investigation 

if there is a negative impact of the numerical results. With creating trajectories within the model, 

a certain level of precision is required to achieve expected results increasing the difficulty in 

determining the correct values. 

A new method was presented that was constructed from a transfer trajectory between orbits of 

LEO and GEO for an inclination change of 90o. The invariant manifold from the horizontal 

Lyapunov orbit was used for the L2 location in the Sun-Earth/Moon system. The trajectory departs 

the initial orbit on a stable manifold and returns with a direct thrust to GEO. The gravitational 

effects realized act in such a way that the 90o inclination change creates this efficient maneuver. 

The transfer cost was compared to a Hohmann transfer performed from LEO to GEO with the 

same inclination change. The total Δv to transfer from LEO to GEO with the use of a horizontal 

and vertical Lyapunov orbit was 5.076 km/s. Overall, approximately 48% savings was realized 

using the method created with a potential for more savings to be realized. This maneuver is 

specifically constructed for a 90o inclination change which is a greater change of inclination to the 

use of a single LPO. For small inclination changes of about 8.75o or less the Hohmann transfer 

will produce the least amount of cost for Δv. For an inclination change greater than 8.75o up to 

71.6o a single LPO can save on Δv. The use of two LPOs has shown that a 90o inclination change 

is achievable to be more efficient for total Δv. As mentioned in the mission scenario and in section 

3.5.2  this method has the potential to provide significant fuel and cost savings to missions that 

would have similar situations. The drawback to these efficient methods using the manifold 

trajectory and two different LPOs is with an increase in time of flight. With studies that involve 

saving fuel, time is typically the cost. In the case of this maneuver a total approximate time is close 
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to 2 years. While constructing the maneuver in section 3.5.1 many different and important 

continuations have presented themselves, some of which are captured in the next section. 

5.2 Recommendation for Future Research 

As a preliminary study there are many different possible routes to continue exploring the ideas 

presented in this document. The research set out to analyze a specific transfer that departs from 

LEO on a stable manifold trajectory to use two different LPOs and arrive at GEO. The return path 

to GEO from the vertical Lyapunov orbit is a direct transfer which is inefficient. A natural 

continuation to this research is to continue the maneuver with the unstable manifold being used on 

the return trajectory. The use of the stable manifold was the original intent of this research but due 

to time constraints and complexity of the maneuver that was not achieved. With the use of the 

unstable manifold for the trajectory return the maneuver created has the potential to have the same 

level of cost savings as the Davis et al. (2011) research of 40 – 70%. Currently the method 

developed has a savings of 48% which has potential to increase with further efficiencies and 

optimization. After using the unstable manifold to further refine this maneuver the techniques 

mention in section 3.4.1 and 3.4.2 can be introduced to add even further cost savings.  

The scope of this research was limited to the use of a horizontal and vertical Lyapunov orbit 

for a specific 90o change of inclination at the L2 point. However, given the use of any two distinct 

Halo orbits another investigation worth studying is the use of different combinations of Halo orbits 

to provide a wide range of large inclination changes. In addition to the use of multiple distinct 

Halo orbits the use of L1 and L2 equilibrium points can be explored to see if they yield the same 

benefits. Given the 48% increase in efficiency with the maneuver created in this research and the 

work of Davis et al. (2011) for missions that do not have a time constraint this method of transfer 

could provide several advantages. In section 4 the negative impacts from the use of the described 

maneuver provide potential differences in the space environment. A full realization of the potential 

cost savings and mission design cannot be realized as information on mission specifics such as 

length of time under production is not often common publicly shared. A study of different Halo 

orbits at both the L1 and L2 is valuable in potentially determining a limit for this kind of maneuver 

with a change of inclination and to the full extent of what inclinations are achievable.  

Finally, given the advancements of technology this research was able to be conducted on a 

personal computer with modeling done in Python. This means that the research conducted in this 

document can be recreated on most computers. However, one of the difficult aspects of the 
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research conducted was the calculations outside of Python to determine an approximate solution 

to then refine the solution within the model to achieve a certain trajectory. Numerically 

determining solutions followed by correcting for nonlinearities of the model is time consuming 

and still has a manual process involved. With the use of graphical processing units (GPUs) there 

exist a potential for a computer to run through a wide range of outcomes given different state 

vectors. A model that could efficiently take advantage of the GPU ability to compute multiple sets 

of state vectors would enable the study of the different orbits that could be used for varying mass 

ratios. Creating a GPU based model of computing different outcomes for different state vectors 

would rapidly increase calculations and solutions for all the different quasi-periodic, or periodic 

orbits. Beyond the three ideas of future work mentioned already there are several different ways 

that this research can continue both mentioned throughout this document and beyond. A greater 

understanding of the motion about our system would be beneficial beyond the scope of this 

research as such information could be invaluable to wide range of mission designs.    
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Appendix A 

Appendix A contains the Python code from the (Baines, Hew, & Toyama) research with added 

alterations to support the research conducted. This script is known to operate with Intel i7 CPU, 

and 8 GB RAM.  

import time 

import numpy as np 

import matplotlib.pyplot as plt 

start_time = time.time() 

 

# This script runs our three-body problem using python 

def func(ieq, r, theta, dtheta, phi, dphi, mu, dv): 

    # This function sets the initial conditions given an object orbiting P2 

    v_e = np.sqrt(mu/r) 

    v = v_e + dv 

    # numerical error fix for each if statement 

    if ieq == 1:  # calculate initial x 

        if abs(r*np.cos(theta)*np.cos(phi)) < 1e-16: 

            return 1 - mu 

        else: 

            return r*np.cos(theta)*np.cos(phi) + 1 - mu 

    if ieq == 2:  # calculate initial y 

        if abs(r*np.cos(phi)*np.sin(theta)) < 1e-16: 

            return 0.0 

        else: 

            return r*np.cos(phi)*np.sin(theta) 

    if ieq == 5:  # calculates initial z 

        if abs(r*np.sin(phi)) < 1e-16: 

            return 0.0 

        else: 

            return r*np.sin(phi) 

 

    if ieq == 3:  # calculates initial vx 

        vx_p1 = -v*np.cos(phi)*dtheta*np.sin(theta) 

        vx_p2 = v*dphi*np.sin(phi)*np.cos(theta) 

        return vx_p1+vx_p2  # - 2eq 

 

    if ieq == 4:  # calculates initial vy 

        vy_p1 = v*np.cos(phi)*dtheta*np.cos(theta) 

        vy_p2 = v*dphi*np.sin(phi)*np.sin(theta) 

        return vy_p1 + vy_p2 + 1 - mu 

 

    if ieq == 6:  # calculates initial vz 

        if abs(-1*v*dphi*np.cos(phi)) < 1e-16: 

            return 0.0 

        else: 

            return -1*v*dphi*np.cos(phi) 

 

 

def RHS(ieq, t, x, y, z, u_x, u_y, u_z, mu): 

    """make new parameters to simplify typing inputs""" 

    A = (x+mu) 

    B = (x-1.0+mu) 

    c = 2.0 

    C = (1.0-mu) 
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    r1 = ((A**2)+(y**2)+(z**2))**(3.0/2.0) 

    r2 = ((B**2)+(y**2)+(z**2))**(3.0/2.0) 

    """defining equations in order: x , vx, y, vy""" 

    if ieq == 1: 

        return u_x 

    if ieq == 2: 

        return (c*u_y)+x-((A*C)/r1)-((B*mu)/r2) 

    if ieq == 3: 

        return u_y 

    if ieq == 4: 

        return (-1.0*c*u_x)+(y*(1-(C/r1)-(mu/r2))) 

    if ieq == 5: 

        return u_z 

    if ieq == 6: 

        return (-C * (z / r1)) - (mu * (z / r2)) 

 

 

"""Define System Parameters""" 

Dv = 0  

h = 1000 

 

theta_orb = 0*(np.pi/180)  # covert degrees to radians 226.81 

phi_orb = 0*(np.pi/180)   # covert degrees to radians 

jacobi_constant = 0 

tau = 0.002 

 

m1 = 1.989E30  # mass of sun 

m2 = 7.348E22 + 5.972E24  # mass of earth/moon 

M = m1 + m2  # total mass of the system 

mu_i = m2/M  # order of unity for dimensional form 

p1_pos = -mu_i 

p2_pos = 1 - mu_i 

g_const = 6.674E-20 

d = 149.6E6  # distance from Sun to Earth 

R_Earth = 6371/d  # radius of Earth 

R_Sun = 695510/d 

t_char = np.sqrt(d**3 / (g_const * m1)) 

Dv = Dv*t_char / d 

H = h/d  # choose height above radius of primary body 

r_orb = R_Earth+H 

v_e = np.sqrt(mu_i/r_orb) + Dv 

 

dtheta_orb = v_e/r_orb 

dphi_orb = 0 

# relationship between dtheta and dphi 

# (r*dtheta)^2 = v^2 - (r*sin(theta)*dphi)^2 

# (r*sin(theta)*dphi)^2 = v^2 - (r*dtheta)^2 

 

x = func(1, r_orb, theta_orb, dtheta_orb, phi_orb, dphi_orb, mu_i, Dv) 

y = func(2, r_orb, theta_orb, dtheta_orb, phi_orb, dphi_orb, mu_i, Dv) 

z = func(5, r_orb, theta_orb, dtheta_orb, phi_orb, dphi_orb, mu_i, Dv) 

 

vx = func(3, r_orb, theta_orb, dtheta_orb, phi_orb, dphi_orb, mu_i, Dv) + y 

vy = func(4, r_orb, theta_orb, dtheta_orb, phi_orb, dphi_orb, mu_i, Dv) - x 

vz = func(6, r_orb, theta_orb, dtheta_orb, phi_orb, dphi_orb, mu_i, Dv) 

 

"""Define list to append values of from RK4""" 
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t_list = [0.0] 

x_list = [x] 

y_list = [y] 

z_list = [z] 

vx_list = [vx] 

vy_list = [vy] 

vz_list = [vz] 

"""Define initial conditions for RK4 numerical calculation""" 

t_i = 0.0 

x_i = x 

y_i = y 

z_i = z 

u_xi = vx 

u_yi = vy 

u_zi = vz 

# Note that changing the N size impacts backwards traceability and 

# lower numbers will lead to larger integration errors 

N = 1000000  # minimal acceptable performance N = 1000000 

step = 1/N  # step size 

x = np.linspace(-10.0, 10.0, 3000) 

y = np.linspace(-10.0, 10.0, 3000) 

X, Y = np.meshgrid(x, y) 

# This is to save the data generated for further analysis by other scripts 

str = r"C:\Users\Desktop\data" 

str2 = r"\position.txt" 

path = str + str2 

text_file = open(path, "a") 

 

"""Run RK4""" 

while t_i <= tau: 

    # /*Calculate all K1 values: first step*/ 

    K1_x = step*RHS(1, t_i, x_i, y_i, z_i, u_xi, u_yi, u_zi, mu_i) 

    K1_y = step*RHS(3, t_i, x_i, y_i, z_i, u_xi, u_yi, u_zi, mu_i) 

    K1_z = step*RHS(5, t_i, x_i, y_i, z_i, u_xi, u_yi, u_zi, mu_i) 

    K1_ux = step*RHS(2, t_i, x_i, y_i, z_i, u_xi, u_yi, u_zi, mu_i) 

    K1_uy = step*RHS(4, t_i, x_i, y_i, z_i, u_xi, u_yi, u_zi, mu_i) 

    K1_uz = step*RHS(6, t_i, x_i, y_i, z_i, u_xi, u_yi, u_zi, mu_i) 

    """/*Calculate all K2 values: half step*/""" 

    K2_x = step*RHS(1, t_i + step/2, x_i + K1_x/2, y_i + K1_y/2, 

                    z_i + K1_z/2, u_xi + K1_ux/2, 

                    u_yi + K1_uy/2, u_zi + K1_uz/2, mu_i) 

    K2_y = step*RHS(3, t_i + step/2, x_i + K1_x/2, y_i + K1_y/2, 

                    z_i + K1_z/2, u_xi + K1_ux/2, 

                    u_yi + K1_uy/2, u_zi + K1_uz/2, mu_i) 

    K2_z = step*RHS(5, t_i + step/2, x_i + K1_x/2, y_i + K1_y/2, 

                    z_i + K1_z/2, u_xi + K1_ux/2, 

                    u_yi + K1_uy/2, u_zi + K1_uz/2, mu_i) 

    K2_ux = step*RHS(2, t_i + step/2, x_i + K1_x/2, y_i + K1_y/2, 

                     z_i + K1_z/2, u_xi + K1_ux/2, 

                     u_yi + K1_uy/2, u_zi + K1_uz/2, mu_i) 

    K2_uy = step*RHS(4, t_i + step/2, x_i + K1_x/2, y_i + K1_y/2, 

                     z_i + K1_z/2, u_xi + K1_ux/2, 

                     u_yi + K1_uy/2, u_zi + K1_uz/2, mu_i) 

    K2_uz = step*RHS(6, t_i + step/2, x_i + K1_x/2, y_i + K1_y/2, 

                     z_i + K1_z/2, u_xi + K1_ux/2, 

                     u_yi + K1_uy/2, u_zi + K1_uz/2, mu_i) 

    """/*Calculate all K3 values : half steps*/""" 
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    K3_x = step*RHS(1, t_i + step/2, x_i + K2_x/2, y_i + K2_y/2, 

                    z_i + K2_z/2, u_xi + K2_ux/2, 

                    u_yi + K2_uy/2, u_zi + K2_uz/2, mu_i) 

    K3_y = step*RHS(3, t_i + step/2, x_i + K2_x/2, y_i + K2_y/2, 

                    z_i + K2_z/2, u_xi + K2_ux/2, 

                    u_yi + K2_uy/2, u_zi + K2_uz/2, mu_i) 

    K3_z = step*RHS(5, t_i + step/2, x_i + K2_x/2, y_i + K2_y/2, 

                    z_i + K2_z/2, u_xi + K2_ux/2, 

                    u_yi + K2_uy/2, u_zi + K2_uz/2, mu_i) 

    K3_ux = step*RHS(2, t_i + step/2, x_i + K2_x/2, y_i + K2_y/2, 

                     z_i + K2_z/2, u_xi + K2_ux/2, 

                     u_yi + K2_uy/2, u_zi + K2_uz/2, mu_i) 

    K3_uy = step*RHS(4, t_i + step/2, x_i + K2_x/2, y_i + K2_y/2, 

                     z_i + K2_z/2, u_xi + K2_ux/2, 

                     u_yi + K2_uy/2, u_zi + K2_uz/2, mu_i) 

    K3_uz = step*RHS(6, t_i + step/2, x_i + K2_x/2, y_i + K2_y/2, 

                     z_i + K2_z/2, u_xi + K2_ux/2, 

                     u_yi + K2_uy/2, u_zi + K2_uz/2, mu_i) 

    """/*Calculate all K4 values: full step*/""" 

    K4_x = step*RHS(1, t_i + step, x_i + K3_x, y_i + K3_y, 

                    z_i + K3_z, u_xi + K3_ux, u_yi + K3_uy, u_zi + K3_uz,  

  mu_i) 

    K4_y = step*RHS(3, t_i + step, x_i + K3_x, y_i + K3_y, 

                    z_i + K3_z, u_xi + K3_ux, u_yi + K3_uy, u_zi + K3_uz,  

                    mu_i) 

    K4_z = step*RHS(5, t_i + step, x_i + K3_x, y_i + K3_y, 

                    z_i + K3_z, u_xi + K3_ux, u_yi + K3_uy, u_zi + K3_uz,  

                    mu_i) 

    K4_ux = step*RHS(2, t_i + step, x_i + K3_x, y_i + K3_y, 

                     z_i + K3_z, u_xi + K3_ux, u_yi + K3_uy, 

                     u_zi + K3_uz, mu_i) 

    K4_uy = step*RHS(4, t_i + step, x_i + K3_x, y_i + K3_y, 

                     z_i + K3_z, u_xi + K3_ux, u_yi + K3_uy, 

                     u_zi + K3_uz, mu_i) 

    K4_uz = step*RHS(6, t_i + step, x_i + K3_x, y_i + K3_y, 

                     z_i + K3_z, u_xi + K3_ux, u_yi + K3_uy, 

                     u_zi + K3_uz, mu_i) 

    """/*Update conditions*/""" 

    t_i += step 

    x_i += ((K1_x + K4_x)/6) + ((K2_x + K3_x)/3) 

    u_xi += ((K1_ux + K4_ux)/6) + ((K2_ux + K3_ux)/3) 

    y_i += ((K1_y + K4_y)/6) + ((K2_y + K3_y)/3) 

    u_yi += ((K1_uy + K4_uy)/6) + ((K4_uy + K3_uy)/3) 

    z_i += ((K1_z + K4_z)/6) + ((K2_z + K3_z)/3) 

    u_zi += ((K1_uz + K4_uz)/6) + ((K4_uz + K3_uz)/3) 

    """/*Append to values to list*/""" 

    t_list.append(t_i) 

    x_list.append(x_i) 

    y_list.append(y_i) 

    z_list.append(z_i) 

    vx_list.append(u_xi) 

    vy_list.append(u_yi) 

    vz_list.append(u_zi) 

 

text_file.write("%s\n" % x_list) 

text_file.write("%s\n" % y_list) 

text_file.write("%s\n" % z_list) 
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"""Convert List into array""" 

Time = np.vstack(np.array(t_list))  # time array 

x_array = np.vstack(np.array(x_list)) 

y_array = np.vstack(np.array(y_list)) 

z_array = np.vstack(np.array(z_list)) 

vx_array = np.vstack(np.array(vx_list)) 

vy_array = np.vstack(np.array(vy_list)) 

vz_array = np.vstack(np.array(vz_list)) 

XY = np.append(x_array, y_array, axis=1)  # positions array 

XYZ = np.append(XY, z_array, axis=1)  # positions array 

VXY = np.append(vx_array, vy_array, axis=1)  # velocities array 

VXYZ = np.append(VXY, vz_array, axis=1)  # velocities array 

Data = np.append(Time, (np.append(XYZ, VXYZ, axis=1)), axis=1)  # data 

 

"""Parameter Coordinates to be plotted""" 

t_val = Data[:, 0]  # select all time values 

x_val = Data[:, 1]  # select all x values 

y_val = Data[:, 2]  # select all y values 

z_val = Data[:, 3]  # select all z values 

vx_val = Data[:, 4]  # select all velocity-x values 

vy_val = Data[:, 5]  # select all velocity-y values 

vz_val = Data[:, 6]  # select all velocity-z values 

 

leo = R_Earth + (185/d) 

phi = np.linspace(0, 2*np.pi, 100)  # generate values for plot 

leo1 = leo*np.cos(phi) + 1 - mu_i 

leo2 = leo*np.sin(phi) 

 

geo = R_Earth + ((42164 - 6371)/d) 

geo3 = geo*np.cos(phi) + 1 - mu_i 

geo4 = geo*np.sin(phi) 

 

sol_r1 = R_Sun*np.cos(phi) - mu_i 

sol_r2 = R_Sun*np.sin(phi) 

 

''' Graph: Transfer Maneuver ''' 

 

plt.title("Transfer Maneuver") 

plt.xlabel("x (non-dimensional)") 

plt.ylabel("y (non-dimensional)") 

plt.plot(x_val, y_val, 'k--')  # plot x y phase space 

plt.plot([p1_pos], [0], marker='o', markersize=3, color='orange')  # Sun 

plt.plot([p2_pos], [0], marker='o', markersize=3, color='blue')  # Earth/Moon 

plt.plot(0, 0, 'rx')  # center of mass of earth-moon system 

plt.plot(leo1, leo2, 'g-') 

plt.plot(geo3, geo4, 'y-') 

plt.plot(sol_r1, sol_r2, 'r-') 

plt.show() 

 

# print time that it takes to run code 

print("My program took", time.time() - start_time, "to run") 
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Appendix B 

In section 3.4.1 the research of Scheeres, Davis, Anderson, & Born, 2010 bounding sphere is 

reviewed to provide a method of increased efficiency. Appendix B contains an image from their 

research to provide a visual aid in understanding bounding spheres. The direct use of their research 

with the impulse maneuver created is left to future research to be conducted. 

 

Scheeres, D. J., Davis, K. E., Anderson, R. L., & Born, G. H. (2010, June 5). The use of invariant 

manifolds for transfers between unstable periodic orbits of different energies. Retrieved 

December 30, 2019, from 

https://www.academia.edu/22450737/The_use_of_invariant_manifolds_for_transfers_between_u

nstable_periodic_orbits_of_different_energies. 
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