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ABSTRACT 

A lifting body scaled glider to be used as a recovery method for high altitude ballooning 

payloads has been developed at the University of North Dakota. Current recovery techniques for 

balloon payloads consist of monitoring and chasing the payload signal until it can be recovered. 

It is expected that a lifting body glider can reduce the distance for payload recovery and in some 

cases effectively return the payload back to the Ground Station. A preliminary subsonic 

aerodynamic model has been developed using MATLAB and the Vortex Lattice Method (VLM). 

Traditional evaluation techniques typical for calculation of the aerodynamic coefficients are not 

sufficient to predict the flight performance of the glider due to its fuselage lift contribution. Thus, 

two-dimensional panel methods along with the traditional three-dimensional VLM are used in 

conjunction to produce adequate results. The proposed computational model is expected to 

sufficiently estimate the subsonic aerodynamic characteristics of the glider to allow for the 

optimization of the geometry. The calculated loads will be used to design the structure of the 

glider, which is fabricated using composites and the appropriate resin. The glider will be 

integrated with a separately developed navigation system before undergoing a preliminary low 

altitude flight test for verification of the computational model and structural design. The 

aerodynamic coefficients will be compiled into functions which will be used in the MATLAB 

Aerospace Module and Simulink Blockset to create a robust model for simulation studies. The 

model must be developed such that the operator can simulate different flight paths and optimize 

the carrying capacity of the glider to support various payloads used for atmospheric 

experimentation. The resulting simulation will allow the user to analyze and trim the glider for 

various flight configurations depending on the location of the center of mass and the anticipated 

release altitude. For high altitude ballooning students unfamiliar with computational 
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aerodynamics, the simulation model will help the student to visualize how difficult or easy the 

glider would be to control under the current configuration. 
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CHAPTER 1. INTRODUCTION 

1.1 Statement of the Problem 

High altitude ballooning is a popular method to deploy atmospheric experiments to the 

edges of the atmosphere. Current recovery techniques consist of monitoring and chasing the 

payload signal until it can be recovered. Some payloads can drift for hundreds of miles before 

landing, requiring a large amount of time and effort to recover the ballooning payload. Current 

mitigation techniques consist of limiting the time of launch to a window where the weather 

conditions are satisfactory to recover the payload in a somewhat timely manner. However, the 

imposed limitations reduce the amount of experiments that can be completed.  

1.2 Research Objective 

 A scaled lifting body glider was chosen as a proposed aerodynamically suitable design 

for the recovery of high altitude atmospheric payloads. A controlled descent vehicle is desirable 

for this application because it would support a larger number of experiments in the allotted 

timeframe and create a platform for new atmospheric testing. However, the lifting body vehicle 

is not a typical aircraft. Conventional aircraft generate lift from the wings, while lifting bodies 

generate lift from their flattened fuselages. This makes theoretical aerodynamic analysis more 

difficult because traditional evaluation techniques may not be applicable. Thus, a computational 

analysis of the aerodynamic characteristics of the glider was conducted to determine the 

proposed vehicle’s stability and efficiency. The purpose of this research is to demonstrate 

whether a lifting body scaled model is a suitable aerodynamic design that can be used as a 

recovery method for high altitude ballooning payloads. 
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CHAPTER 2. A REVIEW OF THE LITERATURE 

2.1 Previous Research 

 DeLeon [1] conducted a high altitude drop test using a ballistic capsule and high altitude 

balloons. The objectives of this research were to understand the development of a reusable sub-

orbital vehicle, learn about instrumentation, guidance, and recovery procedures, and to test 

experiments in a reduced gravity environment. At the completion of this research, de Leon 

suggested a lifting body configuration to replace the ballistic capsule. The instrumentation and a 

video feed could then be used to glide the vehicle back to the landing area. 

 A subsonic aerodynamic model of the HL-20 lifting body was compiled by Jackson [2] to 

develop a flight simulation using MATLAB and Simulink. Data from wind tunnel testing were 

compiled into polynomial functions which serve as look up tables in Simulink. The data were 

trimmed and linearized in MATLAB/Simulink to create an autopilot glide-to-landing flight 

simulation [3].  

2.2 Lifting Bodies 

 The lifting body, a fixed wing aircraft for which the body produces lift, was a major area 

of research in the 60’s and 70’s as a way to build small lightweight manned spacecraft. These 

spacecraft were designated as a personnel launch system to be complementary to the space 

shuttle. In the event the shuttle was not available, manned access to space would remain 

available. It was believed that the smaller compact vehicle designed specifically for the crew 

only would increase crew safety, as compared to the larger and more complex space shuttle 

which included main propulsion engines and a payload bay. Compared to current ballistic re-

entry techniques, lifting bodies offer the flexibility of a controlled descent and the ability to land 

on any runway. 
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2.3 Vortex Panel Methods 

Lift on a wing is produced due to the pressure differences over the upper and lower 

surfaces. This pressure distribution results in the air on the upper surface flowing inboard toward 

the root, while the air on the lower surface flows outward towards the wing tips. Thus, there is a 

flow around the finite wing having both chordwise and spanwise velocity components. As the 

flows from the upper and lower surfaces join at the trailing edge of the wing, the difference in 

spanwise velocity components will cause the air to roll up into a number of streamwise vortices 

distributed along the span [4]. The small streamwise vortices roll up into two large vortices at the 

wingtips and are visible if condensation is present during flight, shown in Figure 1. 

Figure 1. Wing-tip vortices of the Space Shuttle Orbiter Columbia [4]. 

 The lift force along the span of the wing is related to the strength of the spanwise 

circulation distribution, resulting in both the circulation and lift reducing to zero at the wing tip. 

Mathematical procedures can be used to determine the vortex-strength distribution produced by 

the flow field of a wing, which can be used for the computation of the aerodynamic forces and 

coefficients.  
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The traditional Vortex Lattice Method (VLM) represents the wing by overlaying a grid of 

horseshoe vortices on the mean surface. Each horseshoe vortex induces a velocity at the control 

point at which the velocities can be calculated using the Biot-Savart Law. A boundary condition 

is then applied to the wing such that no flow can go through the wing. Subsequent summation of 

the velocities at the control points produces a set of mathematical equations for the horseshoe 

strengths with respect to the boundary condition. The calculated vortex strengths, which are 

related to the pressure differential over the upper and lower surfaces, are integrated to produce 

the total forces and moments. 

The force acting on a surface in fluid flow is represented by two components. The 

component perpendicular to the surface is the pressure force and the parallel component is the 

shear, or friction, force. The pressure forces acting along the normal surface are composed of the 

static and dynamic pressures. When the surface is at rest, the static and total pressures are equal 

at every point on the surface. When the surface is in motion, the surface creates a flow field in 

the air because the fluid moves around the impenetrable surface. The flow field is highly 

dependent on the geometry of the surface, with the static pressure higher for areas facing the 

wind than for areas parallel to the wind [5]. This phenomenon accounts for the pressure forces on 

the surface. 

The viscous motion of the boundary layer over the surface is the source of the shear 

forces. This is because the velocity of the air closest to the surface is equal to zero, but the 

velocity increases along the normal until the air flow is equivalent to the free stream velocity. 

This microscopic change in velocity creates the boundary layer, which is often very small with 

respect to the dimensions of the lifting surface. The two forces are usually considered separately 

and then combined to form the aerodynamic properties of the surface. The following analysis 
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only considered the pressure forces because they are dominant in the linear domain [5]. Linear 

aerodynamics is the field of aerodynamics which only consists of linear behavior. There are 

limitations, but during takeoff and landing all aircraft will behave linearly. It is useful for this 

analysis because a linear domain assumes low speeds below the stall angle, neglecting 

compressible flow effects. 

A vortex flow is a potential flow where all the streamlines are concentric circles about a 

given point where the velocity at any point along the streamline is constant. The velocities will 

vary from one streamline to another with respect to the distance from a common center. The 

vortex flow is a physically possible incompressible flow, where no mass is produced in the field, 

i.e., ∇ ∙ �⃗�  = 0 at every point, and irrotational, i.e., ∇ × �⃗�  = 0, at every point except the origin [6]. 

At the origin exists a singularity in the field, which is interpreted to be a point vortex which 

induces about it the circular vortex flow. Imagine a line going straight through the page, at the 

singularity point, extending to infinity on either side. This line is a straight vortex filament of 

constant strength Γ. 
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CHAPTER 3. COMPUTATIONAL AERODYNAMIC MODELING 

3.1 Preliminary Aerodynamic Model Development 

 The computational procedure is built up using MATLAB and accessible examples and 

data from existing aircraft. At each step of the process, the developed code is verified against 

published data. The results will be deemed unacceptable if the percent error is above 10%. The 

proposed lifting body glider is solely experimental without any existing flight data or wind 

tunnel testing. Thus, the initial aerodynamic properties will be calculated at a 30-km altitude, 

where the flight is expected to begin, with varying angle of attack (α). A glide angle will be 

determined, and the velocities will be estimated from launch to landing to begin the formation of 

a flight envelope. At each step in the developmental process, or with any changes to the 

MATLAB code, the flight envelope from 30 km is recalculated to ensure the vehicle is being 

developed under the correct flight conditions.  

3.1.1 Implementing the Vortex Lattice Method 

 The velocity field induced by the infinite line vortex can be modeled by integrating finite 

vortex segments. The velocity of the induced field is dictated by the Biot-Savart Law, as seen in 

Equation 1. 

 
𝑑𝑞 =

Γ

4𝜋

𝑑ℓ⃗ × (𝑟 − 𝑟 ′)

|𝑟 − 𝑟 ′|3
 (1) 

Where 𝑟  is the point where the velocity field is induced, 𝑑ℓ⃗  is the vortex vector length, and 𝑟 ′ is 

the location of the infinitesimal segment [7]. The velocity is computed by integrating Equation 1. 

The relationship of the variables is explained in Figure 2. 
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Figure 2. Nomenclature for calculating the induced velocity of a vortex segment [7]. 

Where the perpendicular distance from the line is |ℓ × (̂𝑟 − 𝑟 ′)| = |𝑟 − 𝑟 ′|𝑠𝑖𝑛𝛽 ≡ ℎ. For a 

straight line, Equation 1 is integrated to solve for the induced velocity, 𝑞 , in Equation 2. Figure 3 

shows the corresponding nomenclature for Equation 2. 

Figure 3. Nomenclature for Equation 2 [7]. 

 
𝑞 =

Γ

4𝜋

ℓ̂ × (𝑟 − 𝑟 ′)

|ℓ̂ × (𝑟 − 𝑟 ′)|
2
(𝑐𝑜𝑠𝛽1 − 𝑐𝑜𝑠𝛽2) (2) 

Here, the cosines can be expressed in terms of the position vectors such that (𝑐𝑜𝑠𝛽1 − 𝑐𝑜𝑠𝛽2) =

ℓ̂ ∙ (
𝑟 −𝑟 1

|𝑟 −𝑟 1|
−

𝑟 −𝑟 2

|𝑟 −𝑟 2|
).  

 The VLM sections the mean surface of the wing into an array of panels. Each panel has a 

horseshoe vortex placed on it with the trailing vortices oriented in the x-direction towards the 

trailing edge. The method assumes that the far wake vortices are parallel to the oncoming stream 

because the far vortices have little influence, rather the near vortices are dominant. The bound 

segment vortex is laid along the quarter-line of each panel. This location is found by linearly 

interpolating a quarter of the way from the front edge of the panel. The collocation point, the 

location of the singularity, is similarly found and placed at the three-quarter point by 
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interpolating two-thirds from the midpoint of the previously calculated bound vortex. The 

locations of the relevant points are shown in Figure 4. 

Figure 4. Bound vortex segment and collocation point [7]. 

Once the locations of the bound vortex segments and collocation points for each panel 

have been calculated, the boundary condition that the surface is impermeable is applied to 

calculate the strength, Γ. The boundary condition is enforced by balancing the normal component 

of the free stream with the normal component of the induced velocity on each panel.  Thus, the 

VLM equation becomes 

 ∑(�̂�𝑖 ∙ 𝑞 𝑖𝑗)Γ𝑗 = −𝑞∞(�̂�𝑖 ∙ 𝑖 𝑐𝑜𝑠𝛼 + �̂�𝑖 ∙ 𝑗 𝑠𝑖𝑛𝛼)

𝑛

𝑗=1

 (3) 

where �̂�𝑖is the panel normal and 𝛼 is the angle of attack. The lift is estimated using the Kutta-

Joukowsky theorem shown in Equation 4 [7]. Each bound vortex segment of strength Γ𝑖 and span 

𝑏𝑖 contributes to the total lift force. 

 𝐿 =  𝜌𝑞∞ ∑ Γ𝑖𝑏𝑖

𝑖

 (4) 

 The following equations were used to obtain the drag coefficient [4]. 

 
𝛼𝑖 =

𝐶𝐿

𝜋𝐴𝑅
 (5) 

 
𝐶𝐷𝑖 = 

2𝛼𝑖

𝑣𝑆
∑ Γ𝑖𝑏𝑖

𝑖

 (6) 

 𝐶𝐷 = 𝐶𝐷𝑖 + 𝐶𝐷0 (7) 
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𝐶𝐷0 = ∑
𝐾𝑖𝐶�̅�𝑖

𝑆𝑤𝑒𝑡𝑖

𝑆𝑟𝑒𝑓

𝑁

𝑖=1

 (8) 

Bertin [4] provided an example problem of the VLM which was used for initial 

verification of the MATLAB code. The wing is flat without taper having an aspect ratio of 5 and 

a sweep angle of 45°. The span was sectioned into eight panels, four on either side, for a single 

row of eight horseshoe vortices as shown in Figure 5. Bertin [4] calculates the lift slope to be 

3.443, and the developed VLM calculates it to be 3.4442 resulting in an acceptable error of 

0.035%. 

Figure 5. Planform of the Bertin wing 

Next, the delta wing from Melin’s Tornado program was modeled. The delta wing had no 

dihedral and a sweep angle of 70°. This test was conducted with a freestream velocity value and 

served to verify the boundary condition code. The values calculated for the lift, induced drag, lift 

coefficient, and induced drag coefficient were 339.3491 Newtons, 11.2921 Newtons, 0.1522, and 

0.0051, respectively. Compared to Melin’s values of 339.1732 Newtons, 11.1225 Newtons, 

0.1521, and 0.0050, the percent error was 0.052 %, 1.525 %, 0.045 %, and 1.5164 %, 

respectively. The resulting vortex strength distribution is shown in Figure 6, where the circles 
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represent the midpoints of the vortex segments and the aerodynamic forces are the normal vector 

lines.  

Figure 6. Aerodynamic force vectors acting on the midpoints of the bound vortex segments 

 Once the fundamentals of the code had been verified, the next step was to attempt more 

complex geometry. Since the objective of the project is to design a lifting body, the space shuttle 

was chosen for the initial tests. Boyden and Freeman [8] documented the subsonic characteristics 

of a 0.0165 scale model of the space shuttle orbiter in a wind tunnel. The scale model had a 

double-delta planform with 81° sweep on the main fillet and 45° sweep on the main wing. The 

model had a vertical tail with a rudder which was flared 10° for the basic configuration. The 

model had a reference area of 0.068 m2, a length of 0.54076 m, and a span of 0.39259 m. Figures 

7 through 9 show the computed values against the documented values for the basic configuration 

at Mach 0.3. It is evident from the results that the current methodology is sufficient for low 

angles of attack, between 0 and 10, to effectively estimate the lift coefficient. 



11 

 

Figure 7. Space Shuttle CL vs α 

 It is evident from the results that the current methodology is sufficient for low angles of 

α, between 0° and 10°, to effectively estimate the lift coefficient. However, as α becomes 

negative or is greater than 10°, deviation from the experimental data occurs. The largest error is 

at α equal to -2° and 0° and is greater than 10%. The rest of the data are within the allowable 

10% error.  

Figure 8. Space Shuttle CL vs α including the body flap contribution 

The results with the body flap added to the model, Figure 8, exhibit similar behavior. As 

α approaches 0° and negative values, the data begin to deviate. As with the previous results, the 
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error for α at the values of -2° to 2° exceeds the maximum allowable error while the values of α 

above 2° fall within the acceptable 10 % error. 

The drag coefficient data, plotted in Figure 9, show that the data significantly deviate as α 

increases. After α = 8°, the slope of the curve is drastically different. This is likely due to an 

incorrect estimation of the parasite drag. It is also probable that the drag due to lift from the 

rudder contribution is incorrectly calculated as the α increases. More investigation was needed to 

determine how to properly model deflected control surfaces as the angle of attack for the body 

changes as well as the parasite drag value. It is unlikely that the fundamental VLM code is 

incorrect, because it works very well for simple wings, rather that the geometric modeling of the 

vehicles is causing the deviations.  

Figure 9. Space Shuttle CD vs α 

3.1.2 Adjusting for Two-dimensional Effects 

 Wing sections can also be modeled using panel methods that distribute the sources and 

vortices around the profile rather than along the mean line. The profile is broken up into a chain 

of segments, each of which has a uniform vortex strength distribution [7]. As with the 3D 

method, the unknown vortex strengths are calculated by the boundary conditions of each panel 
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applied at their collocation points. The Kutta-Joukowsky theorem is again used to determine the 

vortex strengths of the panels. 

 A vortex is a source with an imaginary strength, thus the 2D VLM treats the source and 

vortices together. A complex source of strength 𝑄 + 𝑖Γ induces a velocity 𝑤(𝑧) =  
𝑄+𝑖Γ

2𝜋(𝑧−𝑧′)
. 

Integrating this along the segment results in 𝑤(𝑧) =  
ln 𝑧−ln(𝑧−1)

2𝜋
. Setting 𝜁 =

𝑧−𝑧0

𝑧1−𝑧0
, the 

corresponding velocity in the z-plane is shown in Equation 9. 

 

𝑤(𝜁) =  
ln

𝑧 − 𝑧0

𝑧1 − 𝑧0
− ln

𝑧 − 𝑧1

𝑧1 − 𝑧0

2𝜋(𝑧1 − 𝑧0)
 (9) 

 The velocity induced at the collocation point becomes 𝜔𝑖𝑗 ≡ 
ln

𝑧
𝑖
(𝑐)

−𝑧𝑗

𝑑𝑗
− ln

𝑧
𝑖
(𝑐)

−𝑧𝑗−𝑑𝑗

𝑑𝑗

2𝜋𝑑𝑗
 where 

𝑧𝑖
(𝑐)

 is the collocation point and 𝑑𝑗 is the complex length of the panel. The induced velocity is 

subsequently corrected so it is oriented in the proper direction, as seen in Equation 10, where 𝜆𝑖 

is the slope of the panel.  

 
𝜔𝑖𝑖 = |𝜔𝑖𝑖|𝑒

−𝑖(𝜆𝑖−
𝜋
2
)
 (10) 

The 2D VLM equation becomes Equation 11, where ℜ represents the corrected tangential 

component since the panels are traced counterclockwise from the trailing edge. The lift 

coefficient is subsequently calculated with Equation 12. Equations 13 and 14 show calculations 

for Cp and Cd, respectively. 

 

ℜ∑𝑒𝑖𝜆𝑖

𝑛

𝑖=1

(∑𝜔𝑖𝑗𝑄𝑗

𝑛

𝑗=1

+ [∑𝜔𝑖𝑗𝑖

𝑛

𝑗=1

] Γ) = −ℜ𝑞∞{𝑒𝑖(𝜆1−𝛼) + 𝑒𝑖(𝜆𝑛−𝛼)} (11) 

 
𝐶𝑙 =

2Γ

𝑞∞𝑐
 (12) 
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𝐶𝑝 = 1 − (

𝑣

𝑈
)
2

 (13) 

 𝐶𝑑 = ∑−𝐶𝑝,𝑙𝑜𝑤𝑒𝑟𝑠𝑖𝑛𝜆𝑑𝑖 + ∑𝐶𝑝,𝑢𝑝𝑝𝑒𝑟𝑠𝑖𝑛𝜆𝑑𝑖 (14) 

 

The next configuration tested was the HL-20 lifting body. When the traditional VLM 

code was implemented for this geometry the lift coefficient slope was much too high. It was 

believed that the use of the mean line to calculate the aerodynamic forces is insufficient to 

calculate the forces for a lifting body fuselage as well as the blunt trailing edge of the lifting 

body. A 2D VLM was developed to account for the upper and lower surfaces of the lifting body 

rather than using the mean surface. The method was developed from McBain [7] and verified 

using examples from the book. Figure 10 is an image of the velocity field around the NACA 

2412 airfoil at an 8° angle of attack. The calculated lift coefficient was just slightly higher than 

the reported coefficient from the lifting line theory with an error of 4.35 %. 

Figure 10. Velocity field around the NACA 2412 airfoil computed in MATLAB. 

Huffman et. al. [9] conducted subsonic wind tunnel tests on the HL20 vehicle and 

derivative models which had modified bodies. The report documented the body alone 

configurations, i.e., the lifting body without any wings attached, with detailed model dimensions 

at a Mach number of 0.3 and Reynolds number per foot of roughly 1.8 x 106. The HL-20A-1 

model was used to develop the following VLM which is to be used on the blunt-ended lifting 

body fuselage. Due to the blunt trailing edge of the body, it was unclear whether the 2D method 
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would even be suitable for estimating the aerodynamic forces. The 2D method was implemented 

at three cross sections along the span, and then mirrored in the x-plane for a total of 6 cross 

sections. The subsequently calculated force values were summed over the span. The coordinates 

were taken from Solidworks sketches that were created at specific locations along the span. 

Figure 11 shows a sketch of the innermost cross section and the resulting Cp distribution at α = 

0°. The result was compared to XFOIL data calculated for the same set of coordinates, shown in 

Figure 12. The calculated lift coefficient using the VLM was 0.0431, which when compared to 

the XFOIL value of 0. 0408 resulted in an error of 5.66 %. It is likely that this error is due to the 

spacing of the airfoil coordinates in MATLAB and can probably be remedied. 

 

 

 

 

 

 

 

 

 

Figure 11. HL-20-A1 Cp.         Figure 12. HL-20-A1 XFOIL results at M=0.3, Re = 1.8 x 106. 

 The aerodynamic forces were then calculated for an α range of -2° to 20°. Figure 13 

shows the variation of the lift coefficient for the different methods against the experimental data. 

The 2D method accurately estimated the value at α = 0°, but the lift-curve slope was too low. 

Conversely, the 3D method failed to accurately estimate the value at α = 0° and the lift slope was 
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too high. Thus, a weighted average was used to average the two methods, which is shown as the 

VLM line on the plot. The weighted average was the 3D coefficient added to twice the 2D 

coefficient, summed and divided by two. The result is a closely correlating line with the 

maximum error at α = -2°. 

Figure 13. HL-20-A1 variation of 𝐶𝐿 with α 

 Figure 14 shows the HL-20-A1 body alone and full configuration, where the updated 

VLM data include both the two and three-dimensional contributions and the experimental data. It 

was determined that including the two-dimensional characteristics for both the body and wings 

was most accurate. 

NASA 
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Figure 14. HL-20-A1 body alone and with wings. 

3.2 Modeling the Lifting Body Geometry in MATLAB 

3.2.1 Initial Conditions 

After preliminary verification of the computational model was completed, the proposed 

lifting body glider was modeled. In the same fashion as the HL-20-A1, measurements were taken 

by hand and imported into Solidworks to sketch the cross-sectional geometry of the vehicle. The 

coordinates were again scaled and sectioned to 100 points along the x-axis with corresponding 

upper and lower values. The glider has a length of 1 m with a span of 0.8334 meters with a wing 

dihedral of 17.67°. The glider reference values are described in Table 1 and are shown in Figure 

15.  

Reference area, Sref ……………………………………………………………………….  0.2802 m2 

Reference span, bref …………………………………………………………………….... 0.4718 m 

Reference length, dref ……………………………………………………………………. 1.0367 m 

Table 1. Reference values for lifting body glider 
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Figure 15. Lifting body glider. 

The glider was initially tested at an altitude of 30 km, where the balloon was expected to 

pop, with a speed of 0.01 m/s to get an estimate of what the velocity might be at sea level. The 

geometry used in the preliminary VLM was simplified to omit camber, under the assumption the 

methodology could sufficiently estimate the forces without including camber in the three-

dimensional method. Figure 16 is a plot showing the midpoints of the bound vortex segments 

and vortex strengths gamma, Γ, for this configuration. 

 

Figure 16. Aerodynamic force vectors acting on the midpoints of the bound vortex segments. 
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 The glide velocity was determined using the maximum lift over drag (L/D) value and the 

calculated glide angle (θmin) using equations 14 and 15. Equation 16 was used to calculate the 

velocity as the glider descends from the drop height. Figure 17 shows the relationship between 

velocity and altitude as the glider descends. At sea level, the initial velocity at standard 

temperature and pressure (STP) was estimated to be 12-15 m/s for θmin of about -1.5°. 

 
𝑡𝑎𝑛𝜃𝑚𝑖𝑛 =

1

(
𝐿
𝐷)

𝑚𝑎𝑥

 
(14) 

 

𝑣
(
𝐿
𝐷

)
𝑚𝑎𝑥

= (
2

𝜌∞
√

𝐾

𝐶𝐷,0

𝑊

𝑆
)

1
2

 (15) 

 

[𝑣
(
𝐿
𝐷

)
𝑚𝑎𝑥

]
𝑍

= [
(𝜌∞)30𝑘𝑚

(𝜌∞)𝑍
]

1
2

[𝑣
(
𝐿
𝐷

)
𝑚𝑎𝑥

]
30𝑘𝑚

 (16) 

 

Figure 17. Mach as a function of altitude during descent. 

3.2.2 Solidworks Flow Simulation 

 Solidworks has the capability to perform flow simulations of an object within a 3D 

volume and was used as a verification tool for the aerodynamic MATLAB code. The solver can 
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be used to obtain lift, drag, and side force values, among many other relevant features such as 

pressure and velocity distributions. The margin of error is unknown and therefore the data are not 

considered to be an absolutely accurate descriptor of the glider aerodynamics. However, it can be 

used to compare results from different methodologies, i.e., if both MATLAB and Solidworks 

calculate the same result, it is likely to be relatively accurate. Additionally, the reference 

coordinate system in Solidworks Flow Simulation is different from that of the body coordinate 

frame for an aircraft. This caused some error within the calculations that was intuitively adjusted 

to reflect the differences between what was calculated in Solidworks and what is typical for an 

aircraft.  

 The flow simulations were conducted on the 3D model of the glider developed in 

Solidworks under STP at 15 m/s. The glider was rotated about the center of mass through an 

angle of attack and sideslip range using the pattern features in Solidworks. Each simulation used 

an initial mesh density of 6, which has 74 cells in the x-direction, 64 cells in the y-direction, and 

121 cells in the z-direction. The initial mesh is shown in Figure 18. 

 

Figure 18. Initial glider mesh in Solidworks. 
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 In addition to the high-density mesh control, the advanced channel refinement setting was 

initialized so that Solidworks can increase the number of iterations and refine the mesh density 

where needed. This setting improves computation times, rather than having a very dense initial 

setting throughout the computational volume. It is important to note that changing the initial 

mesh settings to higher or lower densities will change the results. However, because there were 

no flight data when the Solidworks Flow Simulations were being conducted, it was unknown 

which mesh settings most accurately modelled the glider aerodynamics. Thus, the decision was 

made due to computation times. With the current mesh settings, the force calculations in three 

directions took 40 minutes to an hour to converge. Adding in the moment calculations took even 

longer to converge. Additionally, halfway through this research the Solidworks license was 

updated and the same settings in 2017 did not yield the same results in 2018. The 2018 results 

were slightly higher than 2017, so when the transition to the new license was made the mesh 

density was reduced so that the data would remain relatively consistent. An image of the glider 

with the calculated streamlines using the flow simulation is shown in Figure 19. 

 

Figure 19. Plot of streamlines calculated in Solidworks Flow Simulation at v = 15 m/s, α = 0°. 

 The primary issue with using Solidworks as a verification method is that Solidworks 

calculates the side force opposite to the typical sign convention causing the side force results to 

be opposite from what they should be. While this is not a particularly serious problem in 

calculating the forces, the difference in reference coordinate systems may lead to large 
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inaccuracies when calculating the moments. The pitching and yaw moments calculated as was 

expected, but the rolling moment flipped slope as α increased. Further investigation into the 

moment calculations revealed inconsistencies in the trends with respect to changing α and β. 

With increasing α, the pitching moment should decrease, not increase as it was in Solidworks. 

The yaw and rolling moment behaviour is better described with changing β but each had 

significant changes with α, which is not to be expected. A center fin was added to the model to 

determine whether it would improve the lateral moments, but instead of stabilizing the rolling 

moment it destabilized it even further, which is completely contrary to aerodynamic design 

standards. At this point it was determined that while Solidworks could effectively estimate the 

forces, in the lift and drag directions at least, that it would not be used for moment verification. 

3.2.3 Developing the Computational Model 

 The first attempt at verifying the MATLAB results to the Solidworks Flow Simulation 

results was unsuccessful because the % error between the sets of data was over 10 %. Upon 

further investigation, it was determined that XFoil better predicted the two-dimensional 

aerodynamic characteristics for the body. It is likely that XFoil is the better prediction method 

because the program required a larger number of coordinates distributed around the profile and is 

therefore more accurate for the glider-specific geometry. A better methodology for the traditional 

VLM was identified as well. It was found by trial and error that including the mean camber line 

of the fuselage improved the accuracy of the force estimation. The best results occurred when 

averaging the values calculated for the fuselage with and without camber for the 3D contribution. 

For this new method, a weighted average was unnecessary, simply taking the average of the 2D 

and 3D contributions proved to be sufficiently accurate. While there is still some uncertainty 

with computational modeling without flight data to act as a baseline, i.e., there are many ways to 
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combine the data to obtain the desired results, it is much more realistic to average the 2D and 3D 

data than to take a weighted average; thus, the updated code was accepted to be more accurate. 

After the computational model was updated to use XFoil and include camber, the % error 

between MATLAB and Solidworks fell below 10%. At this point, an assessment of (L/D)max and 

static longitudinal stability was performed. The initial configuration had an acceptable (L/D)max 

but the pitching moment (Cm) was bordering on becoming unstable, so a −2° incidence angle was 

introduced to the wings. This caused the positive pitching moment to improve, while only 

slightly sacrificing lift. The glide angle and velocity results were recalculated to reflect the 

changes in the code, resulting in a velocity at STP of 15-18 m/s. Figures 20 and 21 show the 

changes to the MATLAB VLM code compared to the Solidworks Flow Simulation data for CL 

and CD, respectively. Figure 22 shows the longitudinal characteristics after the code update. 

Additionally, the stall limit was calculated for the anticipated flight path and is shown in Figure 

23. 

Figure 20. CL changes with code update to include XFOIL and 3D camber. 
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Figure 21. CD changes with code update to include XFOIL and 3D camber. 

 

Figure 22. Changes in longitudinal aerodynamic characteristics between the preliminary (black) 

and updated (blue) VLM code 
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Figure 23. Glide velocity and stall limit. 

 The basic configuration was tested under an angle of attack range from −2° to 20° and an 

angle of sideslip range from −10° to 12° at a velocity of 15 m/s. The computational method was 

subsequently updated to include force measurement in all three axes, using the traditional 

method outlined in Melin [5]. Using this method, the vortex strengths are multiplied by their 

respective panel unit vectors in the x, y, and z array indices and incorporated into the boundary 

condition function. The downwash is separated into its x, y, and z components and multiplied by 

gamma to produce the inwash which is subtracted from the freestream velocity used to calculate 

the boundary condition. It is of note that Melin’s method of incorporating the inwash into the 

force calculations resulted in somewhat more accurate results. The cross product of the gamma 

vectors and oncoming velocity is calculated and multiplied by the density to obtain the force per 

panel. The result is then multiplied by the respective panel normal to determine the force per 

panel in the x, y, and z directions and subsequently summed to obtain the total forces. The three-

dimensional VLM method still did not accurately predict the aerodynamic forces, thus averaging 

between the two and three-dimensional methods was still necessary to bring the force values 

within the allowable error of 10%. XFoil does not predict lateral data, therefore Melin’s method 
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was used to calculate the lateral characteristics of the glider under the assumption it may be more 

accurate, although the 2D contribution is lacking. The computational model fundamental code 

can be found in Appendix A. Figures 24 – 29 plot the Solidworks data against the MATLAB 

data. The moment calculations in Solidworks are assumed to be incorrect, as previously 

mentioned, but are shown in the figures for reference. 

Figure 24. Lift coefficient CL for basic configuration 

(a)  CL vs. α at β = 0° 

(b)  CL vs. β at α = 0° 

α = 0° 

α = 10° 

α = 20° 
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Figure 25. Drag coefficient CD for basic configuration 

 

(a)  CD vs. α at β = 0° 

(b)  CL vs. β at α = 0° 

α = 0° 

α = 10° 

α = 20° 

(a)  CY vs. α at β = 0° 
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Figure 26. Side force coefficient CY for basic configuration  

Figure 27. Pitching moment coefficient Cm for basic configuration 

(b)  CY vs. β at α = 0° 

α = 0° 

α = 10° 

α = 20° 

(b)  Cm vs. β at α = 0° 

(a)  Cm vs. α at β = 0° 

α = 10° 

α = 20° 

α = 0° 
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Figure 28. Yawing moment Cn for basic configuration 

 

(a)  Cn vs. α at β = 0° 

(b)  Cn vs. β at α = 0° 

α = 10° 

α = 0° 

α = 20° 

(a)  Cl vs. α at β = 0° 
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Figure 29. Rolling moment Cl for basic configuration 

It is likely that flight testing may reveal values different than what was predicted, but the 

MATLAB and Solidworks results show reasonable agreement so they were accepted. While the 

force values are within 10% error of the Solidworks data, it is possible the aerodynamic moment 

results will have a higher error due to the unknown 2D contributions for the side force, roll and 

yaw moments. However, the aerodynamic moment coefficients are expected to accurately 

indicate the stability of the glider. The side force and rolling moment coefficients are not 

expected exhibit significant changes with angle of attack and were modelled using a linearly 

fitted line to simplify the flight simulation. The linear fits are plotted in Figures 30 and 31.  

 

Figure 30. CY vs. β for α = -2° to 20° 

(b)  Cl vs. β at α = 0° 

α = 10° 

α = 20° 

α = 0° 
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Figure 31. Cl vs. β for α = -2° to 20° 

The forces used for the simulation were the body forces, FX, FY, and FZ, which were 

found using the wind-to-body transformation matrix. Their calculated values can be found in 

Tables B1 – B4 in Appendix B, as well as the moments. The moment reference point was located 

at 57% of the body length along the x-axis. The aerodynamic forces and moments were 

converted to the nondimensional coefficients using equations 17 – 22.  

 
𝐶𝑋 =

𝐹𝑋

𝑞𝑆𝑟𝑒𝑓
 (17) 

 
𝐶𝑌 =

𝐹𝑌

𝑞𝑆𝑟𝑒𝑓
 (18) 

 
𝐶𝑍 =

𝐹𝑍

𝑞𝑆𝑟𝑒𝑓
 (19) 

 
𝐶𝑙 =

𝑀𝑋

𝑞𝑆𝑟𝑒𝑓𝑏𝑟𝑒𝑓
 (20) 

 
𝐶𝑚 =

𝑀𝑌

𝑞𝑆𝑟𝑒𝑓𝑐̅
 (21) 

 
𝐶𝑛 =

𝑀𝑍

𝑞𝑆𝑟𝑒𝑓𝑏𝑟𝑒𝑓
 (22) 
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 The control surface contributions were calculated by deflecting the appropriate panels in 

the MATLAB computational model. Deflections for symmetric ailerons, differential ailerons, 

and the body flap were computed. The effects of  body flap deflection, δbf, symmetric wing flap 

deflection, δe, and differential wing flap deflection, δa, are shown in Figures 32 – 34, 

respectively. The corresponding values are listed in Tables B5 – B7 in Appendix B, where the 

values are divided by the degree of deflection for incorporation into the Simulink model. 

 

Figure 32. Effect of positive body flap on longitudinal aerodynamic characteristics. 
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Figure 33. Effect of symmetric wing flaps on longitudinal aerodynamic characteristics. 
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(a)  Longitudinal 

Figure 34. Effect of differential wing flaps on aerodynamic characteristics. 
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(b) Lateral 

Figure 34. Concluded. 
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The derivates Clp, Cnp, Cmq, Clr, Cnr were calculated using the method from Melin [5] and are 

shown in Figure 35. 

 

Figure 35. Dynamic derivatives 

3.2.4 Static Stability Analysis 

 Static stability is the initial tendency to return to an equilibrium state after a disturbance 

[10]. The static stability of the glider was analyzed using traditional methods. Longitudinal 

stability was determined using Figure 36. 
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Figure 36. Longitudinal Static Stability 

To be statically stable, the pitching moment curve should have a negative slope. Additionally, 

the pitching moment should have a positive intercept in order to trim at positive angles of attack. 

A statically stable vehicle would also have a negative slope when plotting Cm against CL. As 

shown in Figure 36, the glider meets the static longitudinal stability criteria. Lateral stability was 

determined using Figure 37. 

Figure 37. Lateral Static Stability 
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A positive yawing moment curve indicates the vehicle will return to an equilibrium condition 

after subjected to a yawing disturbance. A negative rolling moment will restore a vehicle if 

disturbed from wings-level attitude [10]. Figure 37 describes static lateral stability. 
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CHAPTER 4. LIFTING BODY GLIDER SIMULINK MODEL 

 As in Jackson [2], the Simulink model uses the conventional build up method of 

calculating the aerodynamic coefficients. These incremental coefficients consist of the basic 

configuration and control surface deflection coefficients. Dynamic derivatives are added to the 

moment coefficients. The Equations 23 – 28 define now the coefficients are built up to determine 

the final result of the configuration at any point in time. 

 𝐶𝑋 = 𝐶𝑋,0(𝛼, 𝛽) + 𝐶𝑋𝛿𝑒
(𝛼)𝛿𝑒 + 𝐶𝑋𝛿𝑎

(𝛼, 𝛽)𝛿𝑎 + 𝐶𝑋𝛿𝑏𝑓
(𝛼)𝛿𝑏𝑓 (23) 

 𝐶𝑌 = 𝐶𝑌𝛽
𝛽 + 𝐶𝑌𝛿𝑎

(𝛼)𝛿𝑎 (24) 

 𝐶𝑍 = 𝐶𝑍,0(𝛼, 𝛽) + 𝐶𝑍𝛿𝑒
(𝛼)𝛿𝑒 + 𝐶𝑍𝛿𝑎

(𝛼, 𝛽)𝛿𝑎 + 𝐶𝑍𝛿𝑏𝑓
(𝛼)𝛿𝑏𝑓 (25) 

 
𝐶𝑙 = 𝐶𝑙𝛽

𝛽 + 𝐶𝑙𝛿𝑎
(𝛼, 𝛽)𝛿𝑎 + 𝐶𝑙𝑝

(𝛼)
𝑝𝑏

2𝑉
+ 𝐶𝑙𝑟

(𝛼)
𝑟𝑏

2𝑉
 (26) 

 
𝐶𝑚 = 𝐶𝑚,0(𝛼, 𝛽) + 𝐶𝑚𝛿𝑒

(𝛼)𝛿𝑒 + 𝐶𝑚𝛿𝑎
(𝛼, 𝛽)𝛿𝑎 + 𝐶𝑚𝛿𝑏𝑓

(𝛼)𝛿𝑎 + 𝐶𝑚𝑞
(𝛼)

𝑞𝑐̅

2𝑉
 (27) 

 
𝐶𝑛 = 𝐶𝑛,0(𝛼, 𝛽) + 𝐶𝑛𝛿𝑎

(𝛼, 𝛽)𝛿𝑎 + 𝐶𝑛𝑝
(𝛼)

𝑝𝑏

2𝑉
+ 𝐶𝑛𝑟

(𝛼)
𝑟𝑏

2𝑉
 (28) 

 

4.1 Preparing the Computational Data 

The force and moment coefficients were compiled into polynomial equations as a 

function of angle of attack and sideslip using the MATLAB Curve Fitting Toolbox. The order of 

the polynomial curve fit depended on the goodness of fit. Figures 38 through 41 show the 

coefficient values obtained using the computational model and their respective polynomial 

function surfaces plotted in three-dimensions. 
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(a) CX vs. α (deg) at β = 0 and CX vs. β (deg) at α = 0 

(b) CX polynomial surface with β (deg) and α (deg) 

Figure 38. Computational model data and polynomial curve fit for axial-force coefficient CX 
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(a) CZ vs. α (deg) at β = 0 and CZ vs. β (deg) at α = 0 

 

 (b) CZ polynomial surface with β (deg) and α (eg) 

Figure 39. Computational model data and polynomial curve fit for normal-force coefficient CZ 
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(a) Cm vs. α (deg) at β = 0 and Cm vs. β (deg) at α = 0 

(b) Cm polynomial surface with β (deg) and α (deg) 

Figure 40. Computational model data and polynomial curve fit for pitch-moment coefficient Cm 
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(a) Cn vs. α (deg) at β = 0 and Cn vs. β (deg) at α = 0 

(b) Cn polynomial surface with β (deg) and α (deg) 

Figure 41. Computational model data and polynomial curve fit for yaw-moment coefficient Cn 

The side force coefficient CY and rolling moment coefficient Cl, shown in Figures 30 and 

31 respectively, were found to be relatively constant with angles of sideslip and attack and were 

therefore modeled as the following linear equation slopes:   
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𝐶𝑌𝛽
= −0.0052 

𝐶𝑙𝛽
= −0.0031 

As shown by Jackson [2], the polynomial functions are compiled into matrix equations. 

Figure 42 shows the general matrix equation used to generate the curve fits for the aerodynamic 

forces CX and CZ and the respective polynomial coefficient matrix. Figure 43 shows the matrix 

equation and polynomial coefficients for the aerodynamic moments Cm and Cn.  

[𝐶𝑋 𝐶𝑍]

= [1 𝛽 𝛼     𝛽2 𝛽𝛼 𝛼2     𝛽3 𝛽2𝛼 𝛽𝛼2    𝛼3 𝛽4 𝛽3𝛼    𝛽2𝛼2 𝛽𝛼3 𝛼4]𝑃𝑓𝑜𝑟𝑐𝑒 

𝑃𝑓𝑜𝑟𝑐𝑒 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−0.0735
0.0015

−2.8385 × 10−6

−5.5346 × 10−5

−2.0720 × 10−6

−2.4048 × 10−5

2.4241 × 10−5

4.0067 × 10−7

−6.8722 × 10−6

3.0895 × 10−8

−7.4749 × 10−7

−1.5307 × 10−8

7.5201 × 10−7

−3.4758 × 10−9

1.3440 × 10−8

0.1099
−0.0542

−1.1477 × 10−6

−0.0004
−4.2415 × 10−6

−4.0494 × 10−5

2.5861 × 10−6

7.2887 × 10−7

8.6972 × 10−6

2.7036 × 10−9

1.3974 × 10−6

−2.7011 × 10−8

−1.1552 × 10−7

−2.9875 × 10−10

2.5136 × 10−9 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 42. Matrix equation and coefficient values for aerodynamic forces CX and CZ 
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[𝐶𝑚 𝐶𝑛]

= [1 𝛽 𝛼     𝛽2 𝛽𝛼 𝛼2     𝛽3 𝛽2𝛼 𝛽𝛼2    𝛼3 𝛽4 𝛽3𝛼    𝛽2𝛼2 𝛽𝛼3 𝛼4]𝑃𝑚𝑜𝑚𝑒𝑛𝑡 

𝑃𝑚𝑜𝑚𝑒𝑛𝑡 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0428
−0.0154
−0.0001
0.0001

2.8335 × 10−5

−5.8270 × 10−5

−4.6754 × 10−6

−1.0153 × 10−7

2.3681 × 10−6

3.4580 × 10−9

6.3430 × 10−9

7.7565 × 10−9

−1.6603 × 10−8

−1.2943 × 10−9

−8.5028 × 10−9

0.0014
−0.0008
0.0014

5.7055 × 10−5

−0.0001
1.5270 × 10−6

3.3091 × 10−7

2.0455 × 10−5

−2.9173 × 10−7

2.0620 × 10−7

−9.1258 × 10−9

−1.1752 × 10−7

−7.9562 × 10−9

−6.9476 × 10−10

−1.8019 × 10−10]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 43. Matrix equation and coefficient values for aerodynamic moments Cm and Cn 

The polynomial functions are used instead of look-up tables to calculate the aerodynamic 

coefficients in the Simulink model. The matrix equations allow substitute values of sideslip and 

angle of attack for all possible configurations within the previously mentioned ranges. The 

resulting matrix is then stored in Simulink and the corresponding coefficient values are 

calculated by linear interpolation. 

4.2 Airframe Model 

 The airframe is assumed to be rigid and have constant mass, center of gravity, and inertia 

because the vehicle is an unpowered glider. The airframe model consists of the equations of 

motion, environmental models, and the calculation of aerodynamic coefficients, forces, and 

moments. 
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The aerodynamic data calculated in the MATLAB computational model are used with Simulink 

blocks to model the airframe. The airframe consists of the Environment, Aerodynamic, and Six 

Degree-of-Freedom Equations of Motion (6DOF EOM) Models shown in Figure 44. 

Figure 44. Simulink Airframe Model 

The Environment Model subsystem contains the WGS84 Gravity Model, COESA 

Atmosphere Model block, Dryden Wind Turbulence Model, Incidence & Airspeed, Rotation 

Angles to Direction Cosine Matrix, and Flat Earth to LLA blocks which are all part of the 

Aerospace Blockset. The WGS84 Gravity Model block outputs the Earth’s gravity at a specific 

location. The COESA Atmosphere Model block outputs the atmospheric values for temperature, 

pressure, density, and speed of sound for a given altitude. Wind turbulence is added to the 

airframe model using the Dryden Wind Turbulence Model (Continuous) block. The Incidence & 

Airspeed block is used to calculate the airspeed from the x and z velocity components in the 

body-fixed coordinate frame. The Rotation Angles to Direction Cosine Matrix block determines 

the direction cosine matrix (DCM) from rotation angles. Geodetic latitude, longitude, and 

altitude is estimated from the flat Earth position using the Flat Earth to LLA block. The 

Environment Model subsystem can be seen in Figure 45. The inputs to the Environment Model 
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are the state attributes of the vehicle, organized in the signal bus State.variable, and the outputs 

are the resulting environmental conditions, organized into the signal bus Environment.variable. 

Figure 45. Environment Model subsystem 

The environment signal bus is an input to the Aerodynamic Model, shown in Figure 46, 

in addition to the state signal bus and actuator signals. The Aerodynamic Model subsystem 

contains the Incidence, Sideslip, & Airspeed, Dynamic Pressure, and Aerodynamic Forces and 

Moments blocks found in the Aerospace Blockset. The Incidence, Sideslip, & Airspeed block  

Figure 46. Aerodynamic Model subsystem 
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calculates incidence, sideslip, and airspeed from velocity components. The calculations 

conducted in this block are summarized in equations 29 – 31. 

 𝛼 = tan−1
𝑤

𝑢
 (29) 

 𝛽 = sin−1
𝑣

𝑉
 (30) 

 𝑉 = √𝑢2 + 𝑣2 + 𝑤2 (31) 

The Dynamic Pressure block computes the dynamic pressure using equation 32. 

 
�̅� =

1

2
𝜌𝑉2 (32) 

The body forces and moments are calculated in the Aerodynamic Forces and Moments block 

using the aerodynamic coefficients, dynamic pressure, center of gravity, and center of pressure. 

The aerodynamic data are stored in the Aerodynamic Coefficients Subsystem, shown in 

Figure 47. This subsystem contains the datum, damping derivative, and actuator increment 

coefficients. The datum coefficients are the aerodynamic coefficients interpolated from 

polynomial functions determined in the computational model. The datum coefficients block 

contents are shown in Figure 48.  
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Figure 47. Aerodynamic Coefficients Subsystem 

Figure 48. Datum Coefficients Block 
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The damping coefficients block is used to calculate the dynamic derivatives and modify 

the moment coefficients to include rotational effects. The contents of the damping coefficient 

block are shown in Figure 49. The damping derivatives were calculated using the method from 

Melin’s Tornado program [5]. A different boundary condition function was used to incorporate a 

perturbed value of α, β, p, q, r, and velocity by 0.0001. The MATLAB function can be found in 

Appendix A. The values used in the Simulink model are p, q, and r, which are calculated from 

the difference between the datum coefficients and the coefficient results from the respective 

perturbed p, q, and r boundary conditions.  

Figure 49. Damping Coefficients Block 

The actuator block shown in Figure 50 contains the polynomial functions relative to the 

contribution of an actuator deflection. To calculate the control surface deflections, the 

computational model was run with a 2° change from the control surfaces nominal position to 

calculate symmetric wing flap deflection, i.e., elevator, differential wing flap deflections, i.e., 

aileron, and body flap deflection. The difference between the results with actuator deflections  
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Figure 50. Actuator Block 

and the datum were calculated to determine the contribution due to control surface deflection per 

degree. As an example of how these measurements are incorporated into the Simulink model, 

Figure 51 shows the elevator contributions. Shown are the longitudinal contributions, for the  

Figure 51. Elevator Block 
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elevator lateral contributions are negligible, as a function of α. Once a value has been 

interpolated from the polynomial function, it is multiplied by the amount of deflection, or the 

number of degrees of deflection.  

The 6DOF EOM block, shown in Figure 52, from the Aerospace Blockset implements 

the Euler angle representation of the equations of motion from the aerodynamic forces and 

moments. The block assumes a body-fixed coordinate frame where the center of gravity of the  

Figure 52. 6DOF EOM Block 

body is the origin and the body is assumed to be rigid. The equations used in this block to 

determine the output state values are shown in equations 33 – 40. 

 
�̅�𝑏 = [

𝐹𝑋

𝐹𝑌

𝐹𝑍

] = 𝑚(�̇̅�𝑏 + �̅� × �̅�𝑏) (33) 

 

𝐴𝑏𝑏 = [

�̇�𝑏

�̇�𝑏

�̇�𝑏

] =
1

𝑚
�̅�𝑏 − �̅� × �̅�𝑏 (34) 

 
𝐴𝑏𝑒 =

1

𝑚
𝐹𝑏 (35) 
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�̅�𝑏 = [

𝑢𝑏

𝑣𝑏

𝑤𝑏

] , �̅� = [
𝑝
𝑞
𝑟
] (36) 

 
�̅�𝑏 = [

𝐿
𝑀
𝑁

] = 𝐼�̇̅� + �̅� × (𝐼�̅�) (37) 

 

𝐼 = [

𝐼𝑥𝑥

−𝐼𝑦𝑥

−𝐼𝑧𝑥

−𝐼𝑥𝑦

𝐼𝑦𝑦

−𝐼𝑧𝑦

−𝐼𝑥𝑧

−𝐼𝑦𝑧

𝐼𝑧𝑧

] (38) 

 

[
𝑝
𝑞
𝑟
] = [

�̇�
0
0

] + [
1
0
0

0
𝑐𝑜𝑠𝜙
−𝑠𝑖𝑛𝜙

0
𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜙

] [
0
�̇�
0
]

+ [
1
0
0

0
𝑐𝑜𝑠𝜙
−𝑠𝑖𝑛𝜙

0
𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜙

] [
𝑐𝑜𝑠𝜃

0
𝑠𝑖𝑛𝜃

0
1
0

−𝑠𝑖𝑛𝜃
0

𝑐𝑜𝑠𝜃
] [

0
0
�̇�

] ≡ 𝐽−1 [

�̇�

�̇�
�̇�

] 

(39) 

 

[

�̇�

�̇�
�̇�

] = 𝐽 [
𝑝
𝑞
𝑟
] = [

1
0
0

𝑠𝑖𝑛𝜙𝑡𝑎𝑛𝜃
𝑐𝑜𝑠𝜙
𝑠𝑖𝑛𝜙

𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜙𝑡𝑎𝑛𝜃
−𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜙

𝑐𝑜𝑠𝜃

] [
𝑝
𝑞
𝑟
] (40) 

 

Here, the forces are in the body fixed frame and the mass is assumed constant. Abb is the 

acceleration of the body with respect to the body reference frame and Abi is with respect to the 

inertial frame. This block considers the flat earth reference frame to be inertial. The inertial 

tensor, I, is with respect to the origin at the center of gravity. The relationship between the 

angular velocity and rate of change of the Euler angles is used to determine the Euler rates. 

These equations were obtained from MathWorks [11]. 

4.3 Dynamic Stability Analysis 

 A dynamic stability analysis was conducted using eigenvalue analysis to determine the 

longitudinal and lateral flying qualities using the airframe modeled in Simulink. MATLAB 

functions were used to linearize and trim the dynamic system modeled in Simulink. Simulink 
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Control Design was used to generate a trimmed operating point and derive a linear state-space 

model. The state-space model is used to compute the longitudinal and lateral flight modes used 

to determine stability. 

 First, a trim condition must be defined as the operating point which the model is to be 

linearized around. The component of the position Xe is set to non-steady state and non-zero 

initial conditions are defined. The output of the MATLAB operspec function used to set the 

initial conditions is shown in Table 2, with the Dryden Wind Turbulence Model states omitted. 

The minimum and maximum control surface deflection values are also specified to be +/– 20°.  

States: Inputs:  Outputs:  

(1.) phi 
  spec:  dx = 0,  initial guess: 0 

(1.) GliderFlightAnalysis/AileronCmd 
  initial guess: 0             

spec:  none 

(2.) theta 
  spec:  dx = 0,  initial guess: -0.34 

(2.) GliderFlightAnalysis/ElevatorCmd 
  initial guess: 0             

spec:  none 

(3.) psi 
  spec:  dx = 0,  initial guess: 0 

(3.) GliderFlightAnalysis/BodyFlapCmd 
  initial guess: 0             

spec:  none 

(4.) p 
  spec:  dx = 0,  initial guess: 0 

 spec:  none 

(5.) q 
  spec:  dx = 0,  initial guess: 0 

 spec:  none 

(6.) r 
  spec:  dx = 0,  initial guess: 0 

 spec:  none 

(7.) Ubody 
  spec:  dx = 0,  initial guess: 15 

 spec:  none 

(8.) Vbody 
  spec:  dx = 0,  initial guess: 0 

 spec:  none 

(9.) Wbody 
  spec:  dx = 0,  initial guess: -0.402 

 spec:  none 

(10.) Xe 
  spec:  dx = 0,  initial guess: 0 

 spec:  none 

(11.) Ye 
  spec:  dx = 0,  initial guess: 0 

 spec:  none 

(12.) Ze 
  spec:  dx = 0,  initial guess: -127 

 spec:  none 

 

Table 2. Operating point specification for the Model GliderFlightAnalysis. 

 
The MATLAB function findop() is used to find an operating point that satisfies the defined trim 

condition constraints. An Operating Point Search Report is generated from the TrimAirframe() 

function and dictates whether the specifications defined were successfully met. The Operating 

Point Search Report can be found in Appendix B. 
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Prior to linearizing the system, a set of linear analysis points are defined. The linio 

function is used to create a linear analysis point for the Simulink model for each of the input 

actuator commands and output states. In the Simulink model, perturbations are applied to the 

actuator input commands and measurements are taken for the output states. Setlinio is then used 

to save the linear analysis points to the Simulink model. The linearize function is used to 

linearize the model around the trimmed flight condition. The full linear system model from 

MATLAB is shown in Figure 53. The full linear system model is decoupled into reduced order 

models for the longitudinal and lateral axes. The longitudinal and lateral state and control vectors 

are shown in Equations 41 and 42, respectively. 

 𝐱 = [𝑢 𝑤 𝑞 𝜃]𝑇 (41) 

 𝜂 = [𝛿𝑒 𝛿𝑏𝑓]  

 𝐱 = [𝑣 𝑝 𝑟 𝜙]𝑇 (42) 

 𝜂 = [𝛿𝑎]  

 

A =  

 phi theta psi p q r Ubody Vbody Wbody 
phi -5.53e-25     -4.085e-24                   0 1 8.586e-07   -0.001341                        0 0 0 
theta 4.085e-24                      0 0 0 1 0.0006404                        0 0 0 
psi 4.125e-22    5.477e-27            0 0 -0.0006404            1 0 0 0 
p -2.169        1.543        -1.05     0.006407            0 0.06961     -0.02374      -0.6896      0.03824 
q 3.302       0.8378        3.043   -3.345e-24      -0.5145   -1.887e-22       0.1618     0.008948      -0.6904 
r 0.2925      -0.3332      0.05132      -0.0133    1.887e-22     -0.01072         0.007977       0.1006      0.01895 
Ubody -0.07425      -0.3196      -0.1032            0 0.01152       -4.124     -0.01342     0.004758      0.02675 
Vbody 0.1866       0.0529     -0.03903     -0.01152            0 -6.622    3.138e-05       -0.027    -5.41e-06 
Wbody 0.6196        1.114        1.385        4.124        6.622            0 -0.02194     0.006898      -0.3341 
Xe -1.689e-11   -5.018e-11    3.441e-11            0 0 0 0.8488      -0.5287    -0.001477 
Ye 0.01046   -5.939e-12        7.801            0 0 0 0.5287       0.8488   -0.0001653 
Ze -4.124       -6.622            0 0 0 0 0.001341   -0.0006404            1 

  
 Xe Ye Ze 
phi 0 0 0 
theta 0 0 0 
psi 0 0 0 
p 0 0 0.003308 
q 0 0 0.001693 
r 0 0 0.0003748 
Ubody 0 0 4.66e-05 
Vbody 0 0 -0.0001302 
Wbody 0 0 0.001175 
Xe 0 0 0 
Ye 0 0 0 
Ze 0 0 0 

 

Figure 53. Full linear system model  
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  B =  

 Aileron Elevator BodyFlap 
phi 0 0 0 
theta 0 0 0 
psi 0 0 0 
p -0.01862            0 0 
q -0.004762     -0.01052     -0.02371 
r 0.002345            0 0 
Ubody -5.551e-05    9.882e-05    3.976e-05 
Vbody -0.000272            0 0 
Wbody -0.0004887     -0.00104    -0.001222 
Xe 0 0 0 
Ye 0 0 0 
Ze 0 0 0 

 
  C =  

 phi theta psi p q r Ubody Vbody Wbody Xe Ye Ze 
phi 1 0 0 0 0 0 0 0 0 0 0 0 
theta 0 1 0 0 0 0 0 0 0 0 0 0 
psi 0 0 1 0 0 0 0 0 0 0 0 0 
p 0 0 0 1 0 0 0 0 0 0 0 0 
q 0 0 0 0 1 0 0 0 0 0 0 0 
r 0 0 0 0 0 1 0 0 0 0 0 0 
Ubody 0 0 0 0 0 0 1 0 0 0 0 0 
Vbody 0 0 0 0 0 0 0 1 0 0 0 0 
Wbody 0 0 0 0 0 0 0 0 1 0 0 0 
Xe 0 0 0 0 0 0 0 0 0 1 0 0 
Ye 0 0 0 0 0 0 0 0 0 0 1 0 
Ze 0 0 0 0 0 0 0 0 0 0 0 1 

  
  D =  

 Aileron Elevator BodyFlap 
phi 0 0 0 
theta 0 0 0 
psi 0 0 0 
p 0            0 0 
q 0     0     0 
r 0            0 0 
Ubody 0    0    0 
Vbody 0            0 0 
Wbody 0     0    0 
Xe 0 0 0 
Ye 0 0 0 
Ze 0 0 0 

  
Continuous-time state-space model. 

 

Figure 53. Full linear system model (concluded) 

4.3.1 Longitudinal Analysis  

 Transfer functions are generated from the longitudinal model for the relevant input and 

outputs. Eigenvalue analysis is used to determine the roots of the transfer functions, where it is 

required that any real root must be negative for the dynamic system to be stable. Longitudinal 

transfer functions are generated from the input elevator to output states q and θ and are shown in 

Equations 43 and 44, respectively. The transfer functions response to a step input are shown in 

Figure 54. 
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𝑞: 

−0.01052 𝑠3 − 0.002922 𝑠2 − 4.138 × 10−5 s − 2.828 × 10−22

𝑠4 + 0.8621 𝑠3 + 3.916 𝑠2 + 0.5643 𝑠 + 0.02337
 (43) 

 
𝜃: 

−0.01052 𝑠2 − 0.002922 s − 4.138 × 10−5 

𝑠4 + 0.8621 𝑠3 + 3.916 𝑠2 + 0.5643 𝑠 + 0.02337
 (44) 

Figure 54. Longitudinal transfer functions response to step input 

 The MATLAB function eig is used to solve for the roots of the state-space longitudinal 

model, which are shown in Equation 45. A pole-zero plot is used to visualize the roots, shown in 

Figure 55. As shown, the real roots of the state-space longitudinal model are negative indicating 

the glider is longitudinally stable.  

 

𝜆𝑙𝑜𝑛𝑔 =

−0.3574 +  1.9174i
−0.3574 –  1.9174i
−0.0736 +  0.0270i
−0.0736 –  0.0270i

 (45) 
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Figure 55. Longitudinal Pole-Zero plot 

 Longitudinal perturbations on an aircraft typically result in two modes of under damped 

oscillatory motion. The short-period mode has a short period and is heavily damped. The long-

period, or phugoid, mode has a much longer period and is more lightly damped [13]. Inherently 

stable aircraft tend to have complex conjugate roots. The imaginary part of the roots is an 

indicator of the frequency of oscillation. The greater of the imaginary root is the short-period 

mode while the lower imaginary root is the long-period, or phugoid mode. The longitudinal 

damping ratio, ζ, and undamped natural frequency, ωn, of each mode can be computed using the 

relationships in Equations 46 and 47 [12].  

 
𝜎𝑠𝑝 = ζ𝑠𝑝 ∗ 𝜔𝑛𝑠𝑝

± 𝑖 ∗ 𝜔𝑛𝑠𝑝
∗ √1 − 𝜁𝑠𝑝

2  (46) 

 
𝜎𝑝ℎ = ζ𝑝ℎ ∗ 𝜔𝑛𝑝ℎ

± 𝑖 ∗ 𝜔𝑛𝑝ℎ
∗ √1 − 𝜁𝑝ℎ

2  (47) 
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Using the computed linear roots, the short-period characteristics are found to be: 

𝜁𝑠𝑝 = 0.1833 

𝜔𝑠𝑝 = 1.9505 

and the long-period, or phugoid, characteristics:  

𝜁𝑝ℎ = 0.9388 

𝜔𝑝ℎ = 0.0784 

Flying qualities are related to the dynamic and control characteristics of the airplane. The 

short- and long-period damping ratios and undamped natural frequencies are used to determine 

how easy or difficult the airplane is to fly [10]. The MIL-F-8785C standard for longitudinal 

flying qualities for long-period oscillations (phugoid) that occur when an aircraft seeks a 

stabilized airspeed following a disturbance is that the oscillations must meet the following 

minimum requirements: 

Level 1: 𝜁𝑝ℎ >= 0.04 

Level 2: 𝜁𝑝ℎ >= 0.0 

Level 3: 𝑇2𝑝ℎ
>= 55 𝑠 

where 𝑇2𝑝ℎ
 is the time-to-double phugoid amplitude [12]. Levels 1-3 correspond to Cooper-

Harper Scale values 1-3.5, 3.5-6.5, and 6.5-9+. Time-to-double amplitude is calculated using 

Equation 48. 
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𝑇2𝑝ℎ

=
𝑙𝑛(2)

−𝜁
𝑝ℎ

∗ 𝜔𝑝ℎ

 𝑠 (48) 

 

𝑇2𝑝ℎ
= −9.4193 𝑠 

Here, the time-to-double amplitude is negative which indicates the value is represents the time-

to-halve the phugoid amplitude, or 𝑇1/2𝑝ℎ
. Thus, with 𝜁𝑝ℎ = 0.9388, the glider meets the Level 1 

criteria of the MIL-F-8785C standard. 

 The short-period-mode flying qualities are determined by upper and lower limits for the 

short-period damping ratio, per the MIL-F-8785C standard. Low damping can cause difficult 

short-period oscillatory response, while high damping can cause slowed response to control 

inputs [12]. The short-period damping ratio limits are: 

Level 1: 0.30 < 𝜁𝑠𝑝 < 2.00 

Level 2: 0.20 < 𝜁𝑠𝑝 < 2.00 

Level 3: 0.15 < 𝜁𝑠𝑝 

With 𝜁𝑠𝑝 = 0.1833, the glider meets the Level 3 criteria of the MIL-F-8785C standard. 

4.3.2 Lateral Analysis  

 Transfer functions are generated from the lateral model for the relevant input and outputs. 

Eigenvalue analysis is used to determine the roots of the transfer functions, where it is required 

that any real root must be negative for the dynamic system to be stable. Lateral transfer functions 

are generated from the input aileron to output states p and φ and are shown in Equations 49 and 

50, respectively. The transfer functions response to a step input are shown in Figure 56. 
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𝑝: 

−0.01862 s3 − 0.0003516 s2 −  0.001692 s −  8.292 × 10−8

s4 +  0.03132 s3 +  2.829 s2 +  0.2467 s +  0.1089
 (49) 

 
𝜙: 

−0.01862 s2 −  0.0003519 s −  0.001692

s4 +  0.03132 s3 +  2.829 s2 +  0.2467 s +  0.1089
 (50) 

Figure 56. Lateral transfer functions response to step input 

 The MATLAB function eig is used to solve for the roots of the state-space lateral model, 

which are shown in Equation 51. A pole-zero plot is used to visualize the roots, shown in Figure 

57. As shown, the real roots of the state-space lateral model not typical results for stable aircraft. 

A laterally stable vehicle will have one complex root and two real roots, indicating the dutch roll, 

spiral, and roll modes. The glider has two complex roots, one positive and one negative, 

indicating the glider is not laterally stable. This is likely be due to the absence of a rudder, large 

side force on the fuselage, or low lateral damping.  
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𝜆𝑙𝑎𝑡 =

0.0289 +  1.6715i
0.0289 −  1.6715i

−0.0445 +  0.1923i
−0.0445 −  0.1923i

 (51) 

Figure 57. Longitudinal Pole-Zero plot 

4.4 Flight Simulation 

 FlightGear is an open source flight simulator which can be fed external flight dynamics 

data [13]. The data computed in the Simulink model are exported to FlightGear where the user 

can visualize the vehicle’s flight path and vehicle dynamics. This is helpful to understand the 

control effectiveness and stability of the model. It is simple enough to set the computational data 

as the flight dynamics source by using the FlightGear Simulink interface.  

4.4.1 FlightGear Aircraft Model Requirements 

 Within the FlightGear program files, aircraft models must be defined in the 

FlightGearRoot/data/Aircraft/ folder and subfolders. Aircraft data are specified in 

\FlightGear\data\Aircraft\model folders. The aircraft model must be linked through a master file 
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named model-set.xml in the model subfolder. Simulink can be set as the flight dynamics model 

source using the command <flight-model>network</flight-model>, as shown in Figure 58.  

Figure 58. Glider model file in FlightGear 

 The aircraft data stored in the model folder along with the 3D geometry model file. 

FlightGear require the 3D geometry to be stored in the aircraft folder in AC3D format. AC3D is 

not an open source program, so Blender was used to define the 3D geometry and export the file 

into an AC3D file format [14]. The model could then be viewed in AC3D to determine the 

locations of the geometry objects. To use a 3D model with FlightGear, each movable surface 

must be defined as an object within the 3D model. The 3D model was imported into Blender 

from SolidWorks, with each control surface already a distinct object within the file. In Blender, 

the objects were assigned names: UpperFlap, LowerFlap, RightAileron, and LeftAileron.  

FlightGear requires the hinge lines be defined with respect to the object center and axis of 

rotation, which is done in AC3D. The coordinate system in FlightGear is different from that used 
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in AC3D. The FlightGear coordinate system forms a right-handed system which is rotated from 

the standard aerospace coordinate system by -180° about the y-axis. The AC3D coordinate 

system is formed by inverting the standard body coordinate axes. A comparison of the two 

coordinate systems is shown in Figure 59 [16].  

Figure 59. FlightGear Coordinate System vs AC3D Coordinate System 

 The hinge line of the control surface objects can be determined by selecting two vertices 

that lie on the hinge line and computing the difference in the x, y, and x directions, this is the 

relative motion vector in the animation axis. The center of the hinge line is calculated by finding 

the midpoint between the two vertices in the x, y, and z directions. These steps are combined to 

obtain the hinge line animation used in FlightGear [17]. An example of the model file is shown 

in Figure 60.  

Figure 60. Hinge line animation for the left aileron 
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4.4.2 Running FlightGear with Simulink Models 

 The Aerospace Blockset in Simulink contains preconfigured blocks that are used with the 

flight simulator interface. Separate Simulink models were created for this purpose, using the 

same airframe subsystem that was previously described. An overview of the simulation model is 

shown in Figure 61. In this model, a joystick is used to fly the glider within the FlightGear  

Figure 61. Lifting Body Glider Joystick Model 

software. The Pilot Joystick block provides a joystick interface within the Simulink environment. 

The joystick maps roll, pitch, yaw, and throttle to channels X, Y, R, and Z, respectively. The Pilot 

subsystem is shown in Figure 62. 

Figure 62. Pilot subsystem 

 The FlightGear subsystem contains the FlightGear Preconfigured 6DoF Animation block 

which connects the Simulink model to the FlightGear flight simulator. This block drives attitude 
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and position values to FlightGear when given longitude (l), latitude (μ), altitude (h), roll (φ), 

pitch (θ), and yaw (Ψ). The FlightGear subsystem is shown in Figure 63. 

Figure 63. FlightGear subsystem 

 FlightGear is initiated from MATLAB/Simulink using the Generate Run Script block. 

The block requests inputs for the FlightGear geometry model name, Airport ID, Runway ID, 

initial altitude, initial heading, offset distance, and offset azimuth values. Once completed, the 

Generate Script button will create a run script and save it to the MATLAB working folder. The 

run script is executed by the command dos('runfg &'). The run script for the glider is shown 

in Figure 64, modified to include a -90° pitch initial condition. A snapshot of the glider during 

the FlightGear simulation is shown in Figure 65. 

Figure 64. FlightGear run script 
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Figure 65. FlightGear simulation snapshot 
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CHAPTER 5. STRUCTURAL DESIGN 

 Upon the initial stability results, 3D models were prepared in Solidworks to be submitted 

for fabrication at the Kennedy Space Center Foam Operations facility. The fabrication models 

were sections of the glider that were to be cut from high density foam and used to make rigid 

molds from fiberglass and epoxy resin. The glider was segmented by the body, wings, and 

control surfaces, with each segment having a top and bottom section. The foam molds are used to 

fabricate rigid molds from fiberglass and epoxy resin. The anticipated loads calculated in 

MATLAB and a safety factor of three was used to size structural components and materials to 

develop the structural design of the vehicle. The load on the ailerons was used to design hinge 

blocks which will be 3D printed to properly form to the wing curvature. The body flap hinge was 

designed using the same method, and all control surfaces are designed to deflect +/- 20°. 

5.1 Preliminary Calculations 

 The loads calculated in the computational model were used to size the skin thickness, 

structural supports, hardware, and mechanical components. The loads used for the structural 

analysis were the maximum computed loads which occurred at the maximum angle of attack in 

the computational model, α = 20°, and the maximum control surface deflection, δ = 20°. The 

computational model was developed to accommodate control surface deflection about a hinge 

line, i.e. the panels of the control surfaces can be oriented to a specified angle. An example of 

this rotation is shown in Figure 66. 
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Figure 66. Panel deflection along hinge line 

 The structural analysis began by determining the resulting shear and bending moments 

from the applied aerodynamic forces. At this time, it was assumed that the wings would be 

attached to the body with a fiberglass and epoxy seam. Thus, the wing and body structures were 

initially analyzed separately. Additionally, because each part consisted of two halves, a seam 

would be present along the midline of each part. The material yield stress, σY, of the fiberglass 

and epoxy together was estimated to be 200 MPa.  

5.1.1 Body and Wings  

 It was initially thought that the fiberglass skin would need to be reinforced with a 

lightweight aluminum frame. The frame was sized using the spanwise loads calculated in the 

computational model. The model geometry can be seen in Figure 67 and the distribution of these 

loads is shown in Figure 68. 

Figure 67. Spanwise model geometry from longitudinal midline 
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Figure 68. Spanwise load distribution 

The shear and moment are determined by applying the equations of equilibrium to each segment. 

If the segment is “cut” as shown in Figure 69, calculation of the resulting shear and bending 

moment is made easier.  

(a) Body     (b) Wing  

Figure 69. Simplification of beam  

The equations of equilibrium can be expressed for regions of concentrated force and moment as 

shown in Equations 52 and 53 [18]. See Figure 70 for the free-body diagram of the segments. 

+↑ ∑𝐹𝑦 = 0; 𝑉 + 𝐹 − (𝑉 + ∆𝑉) = 0 (52) 

↺ +∑𝑀0 = 0; (𝑀 + ∆𝑀) − 𝐹
∆𝑥

2
− (𝑉 + ∆𝑉)∆𝑥 − 𝑀 = 0 (53) 

F1 = 2.0086 N 

F2 = 2.6646 N 

F3 = 2.5293 N 

F4 = 2.0115 N 

F5 = 1.8710 N 

F6 = 1.7670 N 

F7 = 1.6588 N 

F8 = 1.5352 N 

F9 = 1.3842 N 

F10 = 1.1740 N 
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Figure 70. Free-body diagram of beam segment under concentrated load [19]. 

Thus, for the spanwise segments on the body, the equilibrium equations resolve to: 

 ∑𝐹𝑦 = 𝐹𝑦,𝐴 + 𝐹𝑦,𝐹 = 9.214 𝑁  

∑𝑀𝐴 = 𝐹1𝑥1 + 𝐹2𝑥2 + 𝐹3𝑥3 + 𝐹4𝑥4 = 𝐹𝑦,𝐹𝐿 ⟹𝐹𝑦,𝐹 = 4.5857 𝑁  

𝐹𝑦,𝐴 = 4.6282 𝑁  

0 < 𝑥1 < 0.007 𝑚;  ∑𝐹𝑦 = 𝑉𝐵 − 𝐹𝑦,𝐴 = 0 ⟹ 𝑉𝐵 = 𝐹𝑦,𝐴 = 4.6282 𝑁  

 ∑𝑀0 = −𝐹𝑦,𝐴𝑥1 + 𝑀𝐵 = 0 ⟹ 𝑀𝐵 = 𝐹𝑦,𝐴𝑥1 = 0.0324 𝑁𝑚  

0.007 < 𝑥2 < 0.0692 𝑚;  ∑𝐹𝑦 = 𝐹𝑦,𝐴 − 𝐹1 − 𝑉𝐶 = 0 ⇒ 𝑉𝐶 = 𝐹𝑦,𝐴 − 𝐹1 = 2.6196 𝑁  

 ∑𝑀0 = 0 ⟹ 𝑀𝐶 = 𝐹𝑦,𝐴𝑥2 − 𝐹1(𝑥2 − 𝑥1) = 0.1953 𝑁𝑚   

0.0692 < 𝑥3 < 0.1385 𝑚;  ∑𝐹𝑦 = 𝐹𝑦,𝐴 − 𝐹1 − 𝐹2 − 𝑉𝐷 = 0 ⟹ 𝑉𝐷 = 𝐹𝑦,𝐴 − 𝐹1 − 𝐹2 = −0.450 𝑁  

 ∑𝑀0 = 0 ⟹ 𝑀𝐷 = 𝐹𝑦,𝐴𝑥3 − 𝐹1𝑥3 − 𝐹2𝑥3 + 𝐹1𝑥1 + 𝐹2𝑥2 = 0.1922 𝑁 

0.1385 < 𝑥4 < 0.2007 𝑚;  ∑𝐹𝑦 = 0 ⟹ 𝑉𝐸 = 𝐹𝑦,𝐴 − 𝐹1 − 𝐹2 − 𝐹3 = −2.5743 𝑁 

 ∑𝑀0 = 0 ⟹ 𝑀𝐷 =  

𝐹𝑦,𝐴𝑥4 − 𝐹1𝑥4 − 𝐹2𝑥4 − 𝐹3𝑥4 + 𝐹1𝑥1 + 𝐹2𝑥2 + 𝐹3𝑥3 = 0.0309 𝑁𝑚  

0.2007 < 𝑥5 < 0.2077 𝑚;  ∑𝐹𝑦 = 0 ⟹ 𝑉𝐹 = 𝐹𝑦,𝐴 − 𝐹1 − 𝐹2 − 𝐹3 − 𝐹4 = −4.5857 𝑁  

 ∑𝑀0 = 0 ⇒ 𝑀𝐹 = 𝐹𝑦,𝐴𝑥4 − 𝐹1𝑥5 − 𝐹2𝑥5 − 𝐹3𝑥5 − 𝐹4𝑥5 + 𝐹1𝑥1 +

𝐹2𝑥2 + 𝐹3𝑥3 + 𝐹4𝑥4 = −4.04 × 10−6 𝑁𝑚 

Here, the reaction force is represented by R and the length by L. The maximum moment occurs 

when the shear force, V, is equal to zero. From the above calculations, this occurs somewhere 

between x2 and x3 (0.0692 – 0.1385 m). The maximum moment can be estimated at 0.1935 Nm. 
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The shear and bending moments for the wing section are calculated as would be done for a 

cantilever beam and shown below. 

+↑ ∑𝐹𝑦 = 0;  ∑𝐹𝑦 = 𝐹𝑦,𝐴 = 9.3902 cos(18) = 8.9306 𝑁   

↺ +∑𝑀0 = 0;  ∑𝑀𝐴 = (𝐹5𝑥1 + 𝐹6𝑥2 + 𝐹7𝑥3 + 𝐹8𝑥4 + 𝐹9𝑥5 + 𝐹10𝑥6) cos(18) = 1.06 𝑁𝑚   

 The maximum moments are used to size the structural member that would potentially 

make up the aluminum frame. Aluminum 6061-T6 was initially selected and its yield stress, σy, 

is 241 MPa. A factor of safety of 3 was applied in Equation 54 to determine the allowable stress. 

The maximum moment, flexure formula, and section modulus, Equations 55 and 56, are used to 

determine the cross-sectional shape of the beam. 

 𝐹. 𝑆. =
𝜎𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝜎𝑎𝑙𝑙𝑜𝑤
 (54) 

 
𝜎𝑚𝑎𝑥 =

𝑀𝑐

𝐼
 (55) 

 
𝑆 =

𝑀𝑚𝑎𝑥

𝜎𝑎𝑙𝑙𝑜𝑤

 (56) 

 Using the maximum moment of 1.06 Nm, which was calculated for the wing root, the 

beam supporting the load must have a section modulus of 13.20 mm3. The section modulus is 

used to determine the cross-sectional geometry of a beam using the relationship in Equation 57. 

the shear formula in Equation 58 is used to verify the chosen cross-sectional area depending on 

whether the allowable shear stress is exceeded or not. A beam with a hollow ¼-in. by ¼-in. 

rectangular geometry and a thickness of 1/8-in. was chosen for the aluminum frame because it 

had a section modulus of 56.8 mm3, which is sufficiently greater than what was required. The 

area moment of a hollow rectangle formula needed for the calculations is shown in Equation 59. 

 
𝑆𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =

𝐼

𝑐
 (57) 
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𝜏𝑎𝑙𝑙𝑜𝑤 ≥

𝑉𝑚𝑎𝑥𝑄

𝐼𝑡
 (58) 

 
𝐼 =

𝑏𝑑3 − ℎ𝑘3

12
 (59) 

 The skin is assumed to carry the shear stress and some axial stress while stiffeners carry 

the axial stress due to the bending moments and shear forces on the vehicle during flight. The 

maximum bending moment along the length of the wings and lifting body fuselage can be used 

to determine the size and number of stiffeners needed to reinforce the skin and the required skin 

thickness can be calculated with respect to the stiffener design. Preliminary results for the shear 

and bending moment were determined by first simplifying the loads calculated in the 

computational model to a simple beam. Table 3 lists the loads acting on the lifting body. The 

total force on the lifting body fuselage was simplified to a distributed load and the moment 

calculated using Equation 60. The maximum moment along the length of the lifting body 

fuselage is calculated to be 1.775 Nm at half of the vehicle reference length. 

 
Component Vertical Load 

 

 
Lifting Body Fuselage 16.4194 N 

 

 
Wing 9.60 N 

 

 
Elevon 2.469 N 

 

 
Body Flap 4.1662 N 

 

Table 3. Loads acting on vehicle 

 
𝑀𝑚𝑎𝑥 (𝑥 =

𝐿

2
) =

𝑤

2
(𝐿𝑥 − 𝑥2) (60) 

 The cross-sectional geometry was simplified to a circle with a width of 0.31 meters and a 

height of 0.26 meters to solve for a preliminary value of the skin thickness. The stiffeners are 

simplified to concentrations of area that are called booms. Between the booms, the normal stress 
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varies along the segment of skin. This segment of skin can be represented by booms on either 

side such that the same force and moment acting on the skin is acting on the booms. This method 

of analysis allows the assumption that the booms carry the normal stresses and the skin carries 

the shear stress. The normal stress is calculated using Equations 61 and 62. The boom area is 

represented by Equation 63. 

 
𝐼𝑧𝑧 = 𝐼𝑦𝑦 = ∑𝑧𝑖

2𝐵𝑖

𝑛

𝑖=1

 (61) 

 
𝜎𝑥 = (

𝑀𝑦𝐼𝑧𝑧 − 𝑀𝑧𝐼𝑦𝑧

𝐼𝑧𝑧𝐼𝑦𝑦 − 𝐼𝑦𝑧
2 )𝑧 + (

𝑀𝑧𝐼𝑦𝑦 − 𝑀𝑦𝐼𝑦𝑧

𝐼𝑧𝑧𝐼𝑦𝑦 − 𝐼𝑦𝑧
2 )𝑦 (62) 

 
𝐵𝑖 =

𝑡𝐷𝑏

6
(2 +

𝜎2

𝜎1
) +

𝑡𝐷𝑏

6
(2 +

𝜎𝑛

𝜎1
) (63) 

 Equations 61 – 63 are used to solved for the number of stiffeners needed at the location 

of the maximum moment. The location of each stiffener was chosen to be along the seam lines, 

i.e., the places where the rigid molds would have flanges to fasten together. The stiffener area at 

these locations was chosen to be a rectangle of arbitrary height and width of 0.0015 meters and 

0.254 meters, respectively, to represent layers of fiberglass and resin making up the flange. At 

these locations, the seam must be able to amass the total bending moment because the skin is 

ineffective. The net area moment of inertia, Iyy, was computed considering the stiffeners to be 

lumped masses.  

  A preliminary number of four stiffeners was chosen to begin the analysis. Assuming the 

fiberglass and resin composite had a yield stress of 200 MPa, the allowable stress for the design 

was 67 MPa for a safety factor of 3. Equation 62 was used to determine the direct stress in each 

stiffener produced by the bending moments My and Mz using the inertia calculated in Equation 

61. 
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𝑛 = 4: 𝜎𝑎𝑙𝑙𝑜𝑤 =
𝜎𝑦𝑖𝑒𝑙𝑑

3
= 67 𝑀𝑃𝑎   

 𝐵 =
𝑡𝐷𝑏

6
(2 +

𝜎2

𝜎1
) × 2 =

(0.0015 𝑚)(0.224 𝑚)

6
(2 + 0) × 2 = 9.86 × 10−4 𝑚2   

 𝐼𝑦𝑦 = 𝐵𝑧2 = 2(9.86 × 10−4 𝑚2)(0.13)2 = 3.333 × 10−5 𝑚4   

 𝜎𝑥 =
𝑀𝑦

𝐼𝑦𝑦
𝑧 =

1.775 𝑁𝑚

3.333×10−5 𝑚4
(0.13 𝑚) = 6923 

𝑁

𝑚2 = 0.0069 𝑀𝑃𝑎    

The direct stress produced is much smaller than the yield stress of the material. Because the 

result was so much smaller than the yield stress, the minimum skin thickness, tD, was determined 

under maximum load. 

 𝜎𝑦𝑖𝑒𝑙𝑑 = 200 𝑀𝑃𝑎   

 𝐼𝑦𝑦 =
𝑀𝑦

𝜎𝑥𝑥
𝑧 =

1.775 𝑁𝑚

200 𝑀𝑃𝑎
(0.13 𝑚) = 1.1538 × 10−9 𝑚4   

 𝐵1 =
𝐼𝑦𝑦

𝑧2 =
1.1538×10−9 𝑚4

(0.13 𝑚)2
= 6.8269 × 10−8 𝑚2    

𝑛 = 4: 𝐵1 =
𝑡𝐷𝑏

6
(2 +↗0) × 2 ⟹ 𝑡𝐷 =

6𝐵1

2𝑏
=

6(6.8269×10−8 𝑚2)

2(0.224 𝑚)
= 9.143 × 10−7 𝑚   

𝑛 = 2: 𝑡𝐷 = 4.572 × 10−7 𝑚   

The minimum skin thickness is very small, so it was assumed the glider could be structurally 

sound as designed. 

5.1.2 Control Surface Hinges  

 The hinge rods for the elevons and body flap were sized with respect to the torque 

corresponding to the load at maximum deflection. The torque was calculated by multiplying the 

force value by the distance from the hinge to the point where the linkage is fixed to the control 

surface, this was the effective distance. Equation 64 was used to determine the applied torque. 

 𝑀 = 𝐹𝑥 (64) 
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Using the forces calculated in the computational model, in Table 3, the torque on the elevon was 

calculated to be 0.119 Nm for a distance, x, of 0.0120 meters. The torque on the body flap was 

calculated to be 0.3240 Nm for a distance of 0.0195 meters. 

 The moment about the elevon aerodynamic center was calculated using Equation 51 and 

was found to be 0.0247 Nm. Equation 43 was used to determine the section modulus for the 

aluminum hinge rod, where Sreq’d = 3.07e-2 mm3. Both hollow and solid rods were considered, 

and Equations 65 and 66 were used to calculate the area moment of inertia for the solid and 

hollow rods, respectively.  

 
𝐼𝑥𝑥 = 𝐼𝑦𝑦 =

𝜋𝑑4

64
 (65) 

 𝐼𝑥𝑥 = 𝐼𝑦𝑦 =
𝜋

64
(𝑑𝑜𝑢𝑡𝑒𝑟

4 − 𝑑𝑖𝑛𝑛𝑒𝑟
4 ) (66) 

A hollow rod with an outer diameter, d, of ¼-inch was found to have a section modulus of 18.03 

mm3, which is much higher than necessary. Thus, it was assumed a solid rod with the same 

dimensions would also be sufficient.  

The allowable shear stress, τallow, can be calculated from Equation 67 using the torsion 

formula in Equation 68. The allowable shear stress was found to be 40 MPa. 

 

𝜏𝑎𝑙𝑙𝑜𝑤 = √(
𝜎

2
)
2

+ 𝜏2 = √(
𝑀𝑐

2𝐼
)
2

+ (
𝑇𝑐

𝐽
)
2

 (67) 

 
𝜏 =

𝑇𝑐

𝐽
 (68) 

Here, T is the resultant internal torque acting on the cross section and c is the outer radius of the 

shaft. The polar moment of inertia, J, can be calculated using Equation 69 for a solid shaft and 

Equation 70 for a tubular shaft [18]. 
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 𝐽 =
𝜋

2
𝑐4 (69) 

 𝐽 =
𝜋

2
(𝑐𝑜𝑢𝑡𝑒𝑟

4 − 𝑐𝑖𝑛𝑛𝑒𝑟
2 ) (70) 

For a solid shaft, the torsion formula yielded a result of 0.03141 MPa which is much smaller than 

the allowable shear stress. 

5.2 Solidworks Static Structural Analysis 

 The Solidworks model was initially created to model the image shown in Figure 71. The 

Solidworks model was created by importing the three dimensional views onto planes in 

Solidworks. Each plane was bisected at the same location along the x-axis. Points were sketched 

on the outline of the image in the three planes and lofted together to create a 3D solid body. The 

initial geometry was updated during the aerodynamic analysis to have a wider lifting body 

fuselage and a wing incidence of -2°. 

Figure 71. Initial lifting body glider geometry 

Final verification of the structural model was conducted using Solidworks static 

simulations. The computed loads in MATLAB were applied to their respective surfaces in the 

Solidworks model and analyzed. Before the simulations could be conducted, the model was 

updated to have the anticipated structure and geometry. Primarily, the Solidworks model was 
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hollowed out to have a skin thickness of 1.5 mm. Then, the control surfaces were cut from the 

solid body and shaped to be aerodynamically suitable. The elevons were separated from the 

wings by 1 mm and their leading edges rounded to accommodate for the control surface 

deflection. Similarly, the body flap was separated from the solid body and placed a distance from 

the body suitable for deflection without interference in the ± 20° range. The resulting Solidworks 

model is shown in Figure 72. 

Figure 72. Final Solidworks model 

 The wing was analyzed separately from the body due to meshing issues from the complex 

geometry. The wing was fixed at the root, where it would attach to the body, and where there 

were any fasteners and loaded with the anticipated aerodynamic loads which were calculated in 

the computational model. The loads were applied to the lower surfaces of the wing and elevon. 

The elevon was deflected to verify the stress reaction on the hinge. Results from the first 

simulation indicated the aluminum frame might be unnecessary because the maximum stress was 

very low. The results from the initial simulation with the aluminum frame are shown in Figures 

73 – 75. A second simulation was executed without the aluminum frame to determine if the 

fiberglass and epoxy composite was strong enough. The results of that simulation are shown in 

Figures 76 – 78. It is shown that the maximum stress of 3.251 MPa is much lower than the yield 

stress value of 200 MPa and the safety factor for the configuration without the aluminum frame 

was 61. Therefore, the design without the aluminum frame was accepted. 
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Figure 73. Wing with bar stress results 

Figure 74. Wing with bar displacement results 

Figure 75. Wing with bar strain results 



80 

 

Figure 76. Wing without bar stress results 

Figure 77. Wing without bar displacement results 

Figure 78. Wing without bar strain results  
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 The lifting body fuselage was analyzed separately from the wing. It was fixed at the wing 

root and where there were fasteners. Aerodynamic loads calculated using the computational 

model were applied to the lower surfaces of the body and body flap. The body flap was deflected 

to ensure the simulation was accurately calculating the stress distribution. The maximum stress 

was found at the wing root leading edge and was a value of 0.3018 MPa which is much smaller 

than the yield stress of the composite at 200 MPa. The static simulation results for the body are 

shown in Figures 79 – 81. 

Figure 79. Glider body stress results 

Figure 80. Glider body displacement results 
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Figure 81. Glider body strain results 

The hinge blocks were made from 3D printed PLA and were modified throughout the 

simulation process to be more robust. Preliminary designs had the wing hinge blocks at a greater 

distance from each other. Simulations of this configuration identified an issue with the material 

between the hinge blocks having an unwanted reaction at the midpoint. Due to the unwanted 

stress, the hinge blocks on the wing were moved closer together and the issue was mitigated. The 

hinge blocks were solid bodies in Solidworks but are not so on the physical model. 3D printed 

items typically have an outer wall of an arbitrary thickness and an inner mesh that comprises the 

support structure. A compromise between stiffness and weight was assessed and the hinge blocks 

were ultimately designed to have a 2 mm thick shell with a 50% inner mesh. The hinge blocks 

were not analyzed alone but were included in the simulations for the wing and body. During 

these simulations, a large amount of stress was found on the body flap hinge shaft clamping 

collars. To mitigate this, the body flap hinge blocks were designed to house the shaft collars for 

added support. The hinge block designs are shown in Figure 82. 
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Figure 82. Hinge blocks in Solidworks Model 

 A critical component of the structure is the parachute tie down. The anticipated force on 

this component was calculated using Equation 71 where As is the parachute surface area and d is 

the diameter. 

 
𝐹𝐷,𝑝𝑎𝑟𝑎𝑐ℎ𝑢𝑡𝑒 =

1

2
𝜌𝑣2𝐶𝐷𝐴𝑠 (71) 

The initial force when the parachute opens and the glider is moving at maximum velocity, 18m/s, 

was calculated to be 541.7 N. It is possible to solve for the rate at which the glider descends once 

the parachute is deployed, shown in Equation 72. For a parachute area of 1.82 m2, the rate of 

descent was calculated to be 2.153 m/s. This means the parachute must be deployed at an altitude 

greater than 10 meters for the glider to decelerate to a reasonable speed before landing. 

 
𝑣 = √

𝑚𝑔

𝜋𝜌𝐶𝐷𝑑2
 (72) 

 A Solidworks structural analysis was performed on a representation of the tie down 

component attached to the composite material of the lifting body glider. It was necessary to 
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create a representation of the composite material due to the complexities of the curvature of the 

lifting body fuselage making meshing difficult.  The representation for the static simulation is 

shown in Figure 83. 

Figure 83. Parachute tie down Solidworks simulation model 

The rectangular base represents the skin of the glider. The geometrical housing is made of 

fiberglass and resin to help distribute the stress from the tie down. The force is applied to the 

galvanized steel eye nut, which is bolted through to a nut encased in the geometrical housing 

composite. A force of 541.7 N was applied to the top of the eye nut for the simulated maximum 

load. The only fixture to be applied was around the edges of the composite skin. The simulation 

results are shown in Figures 84 – 86. A safety factor of 2.9 was found for this configuration, 

therefore, the tie down design was determined to be acceptable. 

Figure 84. Tie down design stress results 
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Figure 85. Tie down design displacement results 

Figure 86. Tie down design strain results 

 A 3D printed housing was designed for the servo release mechanism. The release 

mechanism consists of a servo connected to a pin which holds a linkage to the high altitude 

balloon chord. The housing is made of two pieces, a lower piece which is load bearing and an 

upper piece that constrains the components to maintain their positions. The lower piece is shown 

in Figure 87. 
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Figure 87. Load bearing piece of release mechanism housing 

 The housing was tested under the maximum weight of the glider, an estimated 6 kg 

multiplied by the maximum value of gravity at 9.81. The flat face was fixed where it was to be 

bolted to the glider and fixed where the servo was bolted through the housing. Results from the 

simulation indicated the greatest stresses were found around the extrusion cut for the servo. Of 

this area, the maximum stress was calculated to be 5.05 MPa while the yield stress of the housing 

was estimated to be 63.5 MPa. This resulted in an acceptable safety factor of 12. An image of the 

stress distribution in the housing is shown in Figure 88. 

Figure 88. Servo release mechanism housing stress results   
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CHAPTER 6. FABRICATION 

6.1 Foam Operations 

 The glider is made of a fiberglass and resin composite which were shaped into the glider 

geometries using high density foam molds. Upon the initial longitudinal stability results, 3D 

models were prepared in Solidworks and submitted for fabrication at the Kennedy Space Center 

Foam Operations facility. The foam operations can be seen in Figures 89 and 90.  

Figure 89. KSC Foam Operations machining  

Figure 90. KSC Foam Operations (elevons and body flap) 

The foam models were sections of the glider that were to be cut from high density foam 

and used to make rigid molds from fiberglass and epoxy resin. The glider was segmented by the 

body, wings, and control surfaces, with each segment having a top and bottom section. The foam 
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molds, shown in Solidworks in Figures 91 and 92, were prepared for the rigid molding by 

sanding and painting the outer surfaces until smooth.  

Figure 91. Solidworks drawing of foam mold body sections (inches) 

Figure 92. Solidworks drawing of foam mold wing and control surface sections (inches) 

 The images above show the segments submitted to the foam operations for carving. Each 

segment was cut along its half line to create a flat “bottom” surface, i.e., something to lay flat 

while the geometry is carved out of the foam blocks. Each foam mold remained separate except 

the bottom of the glider body. This mold in particular had to be cut along its longitudinal midline 

to properly carve out the wing root geometry, working around the curvature of the body. This 
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portion was then glued together at KSC Foam Operations to become one continuous mold of the 

bottom half of the body, shown in Figure 93. 

Figure 93. Bottom half of glider body modeled in high density foam 

6.2 Materials 

 E-glass and polyester molding resin were used to create the glider and rigid molds. The 

foam was mounted to flat surfaces, sanded smooth, and painted a paint gun to create a smooth 

surface prior to making the rigid molds. The painting and sanding procedure was repeated until 

the surfaces had minimal texture. Once the foam parts were sufficiently smooth, a glossy coat of 

paint was applied as an outer coat. The surface was then prepared for molding using a demolding 

agent which would allow for the removal of the composite layers from the mold. A photo of the 

foam molds with the final coat of paint are shown in Figure 94. 

Figure 94. Wing and control surface foam molds painted and prepared for rigid molding 
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 Fasteners used in the fabrication of the glider are predominantly steel with the exception 

of the set screw collars used to secure the hinge rods, which are made of aluminum. The 

housings for the control surface hardware are made of fiberglass and were designed into the 

control surfaces. The control linkage to the body flap is made of steel while the linkages to the 

elevons are nylon. Due to the unique geometry of the glider, rigid linkages to the ailerons would 

prove difficult to install. Thus, flexible nylon linkages were used. A complete bill of materials 

for the glider fabrication is shown in Table 4. 

Component Use 

Fibre Glast Style 120 E-Glass Part/mold fabrication 

Fibre Glast Polyester Molding Resin Part/mold fabrication 

Fibre Glast MEKP (Methyl Ethyl Ketone Peroxide) Curing agent 

1/8" Stainless Steel Precision Shafting Hinge rod 

Aluminum Set Screw Collars Hinge rod fasteners 

Galvanized Steel Eye Nut - for Lifting Parachute tie down 

High-Strength Steel Hex Nut Parachute tie down 

fastener 

18-8 Stainless Steel Hex Nut 6-40 Thread Size Fasteners for internal 

components 

18-8 Stainless Steel Button Head Hex Drive Screw 5-40 Thread Size Hinge block fasteners 

18-8 Stainless Steel Narrow Hex Nut 5-40 Thread Size Hinge block fasteners 

18-8 Stainless Steel Socket Head Screw 5-40 Thread Size Parachute fasteners 

3/4'' High Steel Control Horns w/Nylon Bushing Control surfaces 

Linkage - steel Control surfaces 

Linkage - nylon Control surfaces 

Table 4. Glider bill of materials 
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6.3 Methodology  

6.3.1 Molding Process 

 A series of rigid body molds were made from the foam molds. Demoldant was applied to 

the painted surface in even layers using a paint brush. Once dry, the surface was ready for the 

rigid molding process. The polyester resin was measured out and mixed with the appropriate 

amount of hardener. It was important to quickly apply the mixture because the curing process is 

very fast. Once the resin was applied, a fiberglass sheet was laid on the foam mold. The 

fiberglass was pressed into the resin to fully embed it in the liquid. Once the air bubbles had been 

removed, a second layer of fiberglass was placed on the first such that the weaves were at an 

angle of approximately 45°. The composite took about a day to harden into the rigid molds. An 

image of the body flap rigid mold is shown in Figure 95. 

Figure 95. Rigid mold for the body flap removed from the foam mold 

 The process to create the glider geometry was the same. The rigid molds were prepared 

with the demolding agent. A resin and curing agent mixture was applied to the rigid molds and 

fiberglass was embedded in the liquid to create the final mold used for the glider geometry. The 
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fiberglass sheets were again layered at approximately 45° angles. For the final molds, three 

layers of fiberglass were used such that the skin was about 1.5 mm thick. Figure 96 shows the 

curing composites in the rigid molds for the upper body, door, and wing. 

Figure 96. Final fiberglass mold process 

6.3.2 Assembling the Glider 

The fiberglass components were joined together along their “cut lines” by fiberglass 

seams. The seams were made of the same fiberglass and resin mixture and were about 4 inches 

wide, allowing 2 inches to extend into each component. Initially, three layers of fiberglass and 

resin were installed but after the first flight tests two additional layers were added. Referring 

back to the structural analysis that was performed to determine the size and number of stiffeners, 

the required area of the seams was very small. This meant the seams did not need to be very 

thick. However, the first test caused some damage to the vehicle upon landing and additional 
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seams were added for safe measure. Figure 97 shows the two portions of the bottom half of the 

body after they were joined together. Figure 98 shows the disassembled glider. 

Figure 97. Lower half of body sections joined by seam 

Figure 98. Disassembled glider 

The wings were added to the body using the same seaming method. The SolidWorks 

model was used to design a wing guide that would position the wing at the proper dihedral and 

incidence angle to the body. The wing guides were fabricated using a 3D printer and positioned 

at the appropriate location relative to the wing root for wing installation. The dihedral angle of 
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the wing midline was verified both before and after wing installation, shown in Figure 99. To 

support the resultant stress from the wings, a seam was added around the cross section of the 

lower half of the body at the root of the wing leading edge. 

Figure 99. Wing installation using 3D printed wing guide 

Before the upper and lower components were joined, extrusions were cut for the control 

surface hardware. These extrusions were made to insert the hinge blocks, which would house and 

fix the hinge rods in the necessary locations. Figure 97 shows the extrusions made for the body 

flap hinge blocks and Figure 100 shows those made for the wing hinge blocks.  

Figure 100. Wing extruded cuts for hinge blocks 
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In some cases, the two halves of each component were difficult to line up for the seaming 

process. The most difficult pieces to seam were the upper and lower body parts. It is thought that 

the warping occurred because of how large the parts were and how the unique curvature of the 

body made the molding process difficult. In some areas, there was a centimeter difference 

between the upper and lower cut lines. To mitigate the issue, the upper and lower body pieces 

were seamed in sections using clamps to align the section being seamed. The initial seam 

consisted of two layers, and once the entire upper and lower pieces were joined a continuous 

third layer was added. Figure 101 shows the clamping method for the seaming process. 

Figure 101. Clamping the upper and lower body pieces during the seaming process 

6.3.3 Fiberglass Housings 

 To cut down on weight, some of the housings were made using the fiberglass and resin 

composite. Housings made of fiberglass included those for the wing and body flap servos, hinge 

blocks, and hinge rods. The simplest housings were those for the hinge blocks, which essentially 

consisted of constructing a boundary to fix the hinge blocks along one or two sides. The hinge 
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blocks were bolted into the skin through holes drilled to pass the fasteners through, thus the 

fiberglass housings were designed to prevent small translations of the hinge blocks.  

 The servos were installed in fiberglass housings that were made to accommodate the size 

of the servos. The housings were platforms with extrusions cut on the flat face to house the servo 

body and necessary bolts. These were installed into the glider by created a fiberglass flange on 

either end and using the seaming method to fix the housing to the glider skin. Figure 102 shows a 

housing for one of the wing servos. 

Figure 102. Fiberglass housing for wing servo 

The most complex housing was for the hinge rods. SolidWorks simulations were 

conducted to evaluate the fixture design for each of the control surfaces. Results from these 

simulations indicated that the safety factor fell below the required value if the hinge rods and 

shaft collars were unsupported. Design changes through trial and error revealed that a 2 mm 

thick fiberglass casing would bring the safety factor to the required value of 3. This casing 

needed to cover the hinge rod and support the shaft collars, while still allowing rotation about the 

shaft. The most difficult casing to fabricate was for the hinge rods. A layer of plastic sheeting 

was wrapped around the rods to prevent the rods from touching the fiberglass and resin mixture. 

The fiberglass and resin mixture was wrapped around the plastic covered rod, and a final layer of 
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plastic was wrapped around the composite as it cured. The purpose of the outer plastic layer was 

to compress the composite around the rod as much as possible so it would retain its shape during 

the curing process. Once the casing had cured, the rod was removed and the casing was cut down 

to be installed into the control surfaces. However, the rod was inserted into the casing once again 

while the casing was being installed into the control surfaces to ensure the geometry of the hinge 

line remained intact. Once the hinge rod casing was installed, it was determined that the shaft 

collars function improved if they were epoxied into the control surfaces. Figure 103 shows the 

upper half of an elevon with the hinge rod and casing visible. 

Figure 103. Elevon hinge rod and casing 

6.3.4 Installing the Control Surfaces  

 The control surface molds were modified to accommodate the hinge blocks and hinge 

rods before they could be installed into the glider. SolidWorks simulation results indicated that 

the hinge block locations were important to the structural integrity of the control surfaces. If 

placed too far apart, the wing would incur a bending moment at the leading edge midpoint. To 

ensure the hinge blocks were adequately placed, pdf drawings were made of the SolidWorks 

model and printed out at a 1:1 ratio and used as a guide for the cuts. Reciprocal cuts were made 
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in the wing. Once the cuts were made, fiberglass walls were constructed to close the areas around 

the hinge blocks. The process of building up the fiberglass around the hinge block cuts is shown 

in Figure 104. 

Figure 104. Constructing hinge block housings into the control surfaces 

 The hinge rod casings can also be seen under construction in Figure 104. The fiberglass 

walls were cut down so that the upper and lower halves of the control surfaces would fit together 

without gaps. Extrusions were cut in the control surfaces to accommodate the shaft collars at the 

root and tip. This process included repeatedly installing the hinge rod into the hinge blocks and 

attaching it to the wing to ensure the control surface was at the proper distance from the wing 

and the dihedral remained consistent. The angle of rotation was also tested repeatedly to make 

sure the control surfaces could travel the required distance when installed. When these 

requirements were met, the hinge rod casings and shaft collars were epoxied into the control 

surfaces. The finished product is shown in Figure 105. 

Figure 105. Elevon complete with hinge rod casing and shaft collar 
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A flange was added around the half line edges of each control surface piece to join the 

halves together. Resin was added along the flanges and the two halves were pressed together 

while the resin cured. Once dry, the edges were sanded down and fiberglass spheres were used to 

fill any gaps. The completed control surfaces were fitted with the hinge rod and installed into the 

hinge blocks. The control surface and wing trailing edge were sanded down until the control 

surfaces could rotate freely around hinge rod. Finally in position, the opposite end of the hinge 

blocks were bolted into the wing and secured. 

Control horns were added to the midpoint of the control surfaces to be attached to the 

servos by linkages. The elevons were connected using nylon linkages because of the geometry of 

the wings. These were installed so that the majority of the linkage was inside of the glider. A 

hole was drilled into the wing to pass the nylon linkage through to connect to the control horn on 

the elevon. This can be seen in Figure 106. Similarly, the body flap was connected to the servo 

inside of the glider using a rigid linkage that passed through a hole in the body. 

Figure 106. Elevon nylon linkages 

6.3.5 Instrumentation Platforms 

 Platforms for the internal components were created using the same fiberglass and resin 

mixture to conserve weight. A 3D model of the glider was used to determine the positioning of 
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the internal components. Fiberglass platforms were designed around this positioning. A platform 

designed for the autopilot was designed such that it would be fixed to the estimated center of 

pressure and distribute its mass evenly in the lateral direction. A platform for the parachute was 

designed to elevate the parachute to the necessary height and placed adjacent to the tie down, 

which was fixed at the midpoint of the glider both longitudinally and laterally. A removable 

platform was designed to house the navigation components and was placed at the nose of the 

glider in an attempt to balance the mass distribution. In front of the removable platform, a small 

platform was installed for the pinhole camera that is located in the nose. Figures 107 – 109 

describe the design and location of the instrumentation platforms. 

Figure 107. SolidWorks drawing of the internal components 
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Figure 108. Dimensions of internal components 

Figure 109. Sketch of internal component platforms in glider 

6.3.6 Door Installation  

 The door was installed using quarter turn bolts that fastened the door to the body. In the 

body was a depressed flange that the door would fit into such that the surface of the body was as 

smooth as possible. Both the door and the depressed flange in the body were sanded down to 

make this happen. A hole was cut out of the door above the parachute to allow it to deploy. The 
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section that was cut out was retained and kept to fasten above the parachute in order to maintain 

a continuous surface. Figure 110 shows how the door was bolted into the body of the glider. 

Figure 110. Door bolted into glider 

6.3.7 Painting the Glider 

 Once the fabrication was complete, the glider was painted with gray spray paint. Each 

control surface was painted individually, with care taken to not plug up any holes where 

fasteners would be. Painting the rest of the glider was more challenging. The glider, minus the 

control surfaces and door, was hoisted by wire and hung from a cross beam. Spray paint was 

applied manually at an appropriate distance such that the paint sprayed evenly. Coats of paint 

were applied until the fiberglass could no longer be seen. The color gray was chosen so the glider 

could be seen against a blue or white sky while flying. Figure 111 shows the painted glider 

hanging from the cross beam. 
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Figure 111. Glider during the painting process 
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CHAPTER 7. EXPERIMENTATION  

7.1 Glider Test Assembly 

 The glider was designed to accommodate a navigation system which would be placed on 

the instrumentation platforms. The removable platform would house the majority of the 

components, while a solitary platform at the center of mass is meant for the autopilot. The 

implementation of these platforms were designed around a separately developed navigation 

system, which has been shown in Figure 4. However, for the purposes of initial testing, a 

standard RC aircraft system was installed with some additional components. The primary 

additions to the preliminary instrumentation configuration were cameras located at the nose, in 

the rear, and on the door of the glider. A servo was added to the rear of the glider body to 

function as the release mechanism to disconnect from the high altitude balloon. Table 5 includes 

the components which should remain consistent throughout flight testing. 

Component Use 

HS-5087MH Servo Aileron/elevator 

S9470SV Servo Body flap 

HS-7950TH Servo Release mechanism 

Square camera Reference cameras  

Pinhole camera Nose camera 

Table 5. Standard configuration internal components 

7.2 Flight Test 1 

 For the initial fight test, the primary objective was to test the release mechanism and 

determine if the vehicle could be controlled. Due to the absence of a rudder, being able to 

perform a pull up maneuver was of more interest than executing a stable turn. The navigation 
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components installed for the first test included GPS, a Tracksoar APRS tracker, and a DVR to 

transmit the video from the nose camera. A FlySky FS-iA10 receiver was secured inside of the 

glider to be used with the FlySky FS-i10 radio controller. Figure 112 is a SolidWorks model of 

the instrumentation for the first flight test. 

Figure 112. SolidWorks model of instrumentation for first flight test 

 The flight recorder consisted of a MPU6050 IMU, an Adafruit micro-SD breakout board, 

and an Arduino Uno. Wires were from the receiver were passed through the Arduino before 

terminating at the servos. A code was written on the Arduino to calculate the pulse width 

modulation (PWM) of the signals sent to each of the servos in an attempt to determine the servo 

positions during the flight. The IMU and PWM data would be recorded on an SD card using the 

micro-SD breakout board. The flight recorder system is shown in Figure 113. 
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Figure 113. Data logging system for first flight test 

7.2.1 Methodology 

 The first flight test involved launch from a tethered high altitude balloon. The glider was 

armed on the ground, a process which involved turning on the RC receiver, powering the data 

logging system, and turning on the cameras. Once armed, the glider was attached to a tethered 

high altitude balloon which was raised and lowered using a winch. A pin connecting the release 

mechanism and balloon tether linked the glider with the balloon as it ascended. FAA regulations 

restricted ascent to altitudes 400 feet and above, so the balloon and glider were lifted to 400 feet. 

At 400 feet, the balloon stopped ascending and remained tethered. Figures 114 and 115 show the 

glider tethered to the balloon at the ground station and at altitude, respectively.  

Figure 114.  Tethered glider at ground station 
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Figure 115. Tethered glider at 400 ft. altitude 

 Once the area had been cleared of non-essential personnel, the RC transmitter was 

powered on. Flight was initiated once a signal was sent to a servo to release the glider from the 

balloon. Once within 10 – 20 feet off the ground, a signal was sent to a servo to release the 

parachute. Upon landing, the glider was inspected for damage and the internal components were 

checked to ensure all connections and fixtures were intact. After landing, the balloon was 

retrieved using the winch. 

7.2.2 Flight Conditions and Vehicle Performance 

 The first flight test was conducted on January 12, 2019 at the UND Observatory near 

Emerado, North Dakota. The temperature was recorded to be 23 °F with wind speeds 10 mph or 

less. Two flights were conducted at this time, one after the other. During the first flight, the 

glider was released from the balloon and Dr. de Leon was able to perform a pull up maneuver 

within a few seconds after release. Once the pull up maneuver had been completed however, the 

glider entered a flat spin and stability could not be recovered. The time of flight was much faster 

than anticipated. Preliminary calculations had estimated a time of flight of about 6 seconds, and 

at the time it was thought that this value was simply the time of flight for a falling object rather 

than an aerodynamic vehicle. Unfortunately, it was difficult to stabilize the glider. Had it been 

stabilized, the time of flight may have increased. The time of flight was about 8 – 9 seconds. 
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This was a problem because the parachute did not have enough time to fully deploy. An attempt 

to deploy the parachute was unsuccessful, causing the glider to crash into the ground. Upon 

inspection of the condition of the glider at the landing site, the parachute could be seen outside of 

its canister but remained tightly wound. Although this first landing caused concern for the 

structure of the glider, it remained relatively intact due to it landing flat. Unfortunately, no video 

was captured of the first flight. Figure 116 shows the damage caused by the crash landing after 

the first flight. Small cracks in the paint and putty used to smooth over the wing and body joint 

can be seen. 

Figure 116. Damage from first flight crash landing 

 The glider was flown a second time, after it was determined that the structure was intact. 

This time, the glider was lifted to an altitude of 450 feet. The idea was to allow for more time to 

free fall before attempting a pull up maneuver in order to avoid a flat spin. This did not work out 

as planned. Without control input after release from the balloon, the glider entered an 

uncontrolled roll. Several stabilization attempts were made by executing pull up maneuvers. The 

glider would pitch up to a stable flight path angle only to pitch back down and enter an 

uncontrolled roll once again. Figure shows an uncontrolled roll sequence from the second flight 

during the January flight testing. 
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Figure 117. Uncontrolled roll sequence during second flight during January flight test  

Dr. de Leon attempted to stabilize the glider before landing so it would land flat and 

cause minimal damage. The glider did respond to controls and stabilized a few feet off the 

ground, but unfortunately crashed into a barbed wire fence. The damage to the glider after it 

crashed into the fence was much more substantial and no more flights were attempted. Figures 

118 – blank show the damage caused by the crash into the barbed wire fence. 

Figure 118. Broken linkages on elevon and body flap 
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Figure 119. Broken release mechanism housing 

Figure 120. Damage to datalogging system 

Figure 121. Removable platform displacement 
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Figure 122. Parachute platform damage 

Figure 123. Broken battery housing 

Figure 124. Damage to wing body joint 
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It was known going into the first round of flight testing that the lack of a center fin and 

rudder was going to cause stability and control issues. However, the testing was considered 

successful because the glider was able to be controlled and proved to be longitudinally stable. It 

was determined that the servo release mechanism was sufficient because it effectively removed 

the glider from the balloon chord without issue. Additionally, the instability in roll was 

discovered using the Simulink/FlightGear flight simulation. When the glider was left unpiloted, 

it entered an uncontrolled roll. 

 An important issue was discovered during the test flights as well. Dr. Casler suggested 

the center of mass was too far aft. A mass balance was conducted when back in the lab and the 

center of mass was found to be more than 10 centimeters behind what was calculated from the 

Solidworks model. This was a huge stability issue because the center of mass and center of 

pressure were essentially in the same location.  

7.2.3 Data Analysis 

 The data were retrieved from the SD card and imported to excel. Recorded on the SD 

card were readings from the IMU accelerometer, gyroscope, and magnetometer, in addition to 

the PWM signals for the body flap and elevons servos. The sampling rate was 10 Hz or 10 

samples per second. Raw data alone cannot give much information about the aerodynamic 

properties of the vehicle. Various analysis techniques were used to convert the raw data into a 

usable format. A snapshot of the raw data is shown in Figure 125. 

Figure 125. Raw flight test data 
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7.2.3.1 Estimating Orientation Through Sensor Fusion 

 Sensor fusion is commonly used to combine data from more than one sensor to obtain a 

more reliable state estimation than what can be determined from the individual sensors. In this 

case, the IMU actually consists of three sensors: an accelerometer, gyroscope, and 

magnetometer. The accelerometer records raw acceleration measurements along each x, y, and z 

axis in magnitudes of g, or 9.81 m/s2. A gyroscope records the angular rate of change in each 

axis, also known as the angular rates p, q, and r. The magnetometer records the strength of the 

Earth’s magnetic field and is used to determine heading. Unfortunately, the magnetometer was 

not working and was not included in the sensor fusion; causing a high degree of uncertainty of 

the orientation in yaw. The IMU was intentionally placed in the glider so its x, y, and z axes 

would align with the body axes. It was mounted to the autopilot platform which is located at the 

estimated equilibrium point, negating the need to transfer the data from the instrument axes to 

the body axes.  

 A Kalman filter was used to fuse the raw acceleration and gyro readings to obtain 

estimates of the orientation and angular velocity over time. Within MATLAB, the imufilter 

System object can be used to fuse accelerometer and gyroscope sensor data in order to estimate 

device orientation [20]. The standard Kalman filter models the state vector process, x,  at sample 

time k as linear and recursive, where Ak is the state transition model and wk is the noise vector. 

 𝒙𝑘 = 𝑨𝑘𝒙𝑘−1 + 𝒘𝑘 (73) 

The state process xk is not directly measurable and must be estimated by the measured state zk, 

where Ck is the measurement matrix relating xk to zk with and vk is the noise vector. 

 𝒛𝑘 = 𝑪𝑘𝒙𝑘 + 𝒗𝑘 (74) 
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The noise vectors are assumed to be zero mean white processes, where E[] is the expectation 

operator, and are represented in a symmetric covariance matrix, Q. 

 𝐸[𝒘𝑘] = 𝟎 (75) 

 𝐸[𝒗𝑘] = 𝟎 (76) 

 𝑐𝑜𝑣{𝒘𝑘 , 𝒘𝑗} = 𝐸[𝒘𝑘𝒘𝑗
𝑇] = 𝑸𝑤,𝑘𝛿𝑘𝑗 (77) 

 𝑐𝑜𝑣{𝒗𝑘, 𝒗𝑗} = 𝐸[𝒗𝑘𝒗𝑗
𝑇] = 𝑸𝑣,𝑘𝛿𝑘𝑗 (78) 

 𝑸𝑤,𝑘
𝑇 = {𝐸[𝒘𝑘𝒘𝑘

𝑇]}𝑇 = 𝐸[(𝒘𝑘𝒘𝑘
𝑇)𝑇] = 𝐸[𝒘𝑘𝒘𝑗

𝑇] = 𝑸𝑤,𝑘 (79) 

Kalman filters compute an unbiased a posterori, meaning “from the latter”, estimate �̂�𝑘
+ of the 

underlying state process xk from extrapolation of the previous a posterori estimate �̂�𝑘−1
+ and the 

current measurement zk. The standard Kalman equations are shown in Equations 80 – 84 [18]. A 

linear prediction a priori, meaning “from the earlier”, estimate �̂�𝑘
− is made by applying the linear 

prediction matrix Ak to the previous estimate �̂�𝑘−1
+ .  

 �̂�𝑘
− = 𝑨𝑘�̂�𝑘−1

+  (80) 

The linearly extrapolated a priori error covariance matrix 𝑷𝑘
− is updated using the state model 

matrix Ak and the noise matrix Qw,k. 

 𝑷𝑘
− = 𝑨𝑘𝑷𝑘−1

+ 𝑨𝑘
𝑇 + 𝑸𝑤,𝑘 (81) 

The gain matrix Kk is updated. 

 𝑲𝑘 = 𝑷𝑘
−𝑪𝑘

𝑇(𝑪𝑘𝑷𝑘
−𝑪𝑘

𝑇 + 𝑸𝑣,𝑘)−1 (82) 

The a posteriori estimate �̂�𝑘
+ is computed from the current a priori estimate �̂�𝑘

− and the current 

measurement zk.  

 �̂�𝑘
+ = �̂�𝑘

− + 𝑲𝑘(𝒛𝑘 − 𝑪𝑘�̂�𝑘
−) (83) 

The a posteriori error covariance matrix 𝑷𝑘
+ is updated. 

 𝑷𝑘
+ = (𝑰 − 𝑲𝑘𝑪𝑘)𝑷𝑘

− (84) 
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MATLAB uses a complementary indirect Kalman filter to fuse the gyroscope and 

accelerometer data. The algorithm uses the structure described in [19] and attempts to track the 

errors in orientation, gyroscope offset, and linear acceleration to solve for the final orientation 

and angular velocity. The indirect Kalman filter models the error process, xk, with a recursive 

update instead of tracking orientation directly. Here, xk is a 9-by-1 vector consisting of  

 
𝒙𝑘 = 𝑨𝑘𝒙𝑘−1 + 𝒘𝑘 ⟹ 𝒙𝑘 = [

𝜽𝑘

𝒃𝑘

𝒂𝑘

] = 𝑨𝑘 [
𝜽𝑘−1

𝒃𝑘−1

𝒂𝑘−1

] + 𝒘𝑘 (85) 

θk, a 3-by-1 orientation error vector, bk, a 3-by-1 gyroscope zero rate offset vector, and ak, a 3-

by-1 acceleration error vector. MATLAB corrects the components of the a posteriori vector �̂�𝑘
+ 

by applying the a posteriori error vector.  Therefore, the a priori estimate is zero and Ak is zero 

[18]. The MATLAB algorithm reduces the standard Kalman equations to the following: 

 𝒙𝑘
− = 0 (86) 

 𝑷𝑘
− = 𝑸𝑤,𝑘 (87) 

 𝑲𝑘 = 𝑷𝑘
−𝑪𝑘

𝑇(𝑪𝑘𝑷𝑘
−𝑪𝑘

𝑇 + 𝑸𝑣,𝑘)−1 (88) 

 �̂�𝑘
+ = 𝑲𝑘(𝒛𝑘 − 𝑪𝑘�̂�𝑘

−) (89) 

 𝑷𝑘
+ = (𝑰 − 𝑲𝑘𝑪𝑘)𝑷𝑘

− (90) 

The MATLAB algorithm also contains innovation, or pre-fit residual, yk, and innovation 

covariance, Sk, equations. Figure 126  and the following explanation represent the Kalman filter 

algorithm used in MATLAB [20]. 

 𝒚𝑘 = 𝒛𝑘 − 𝑪𝑘𝒙𝑘
− = 𝒛𝑘 (91) 

 𝑺𝑘 = 𝑹𝑘 + 𝑪𝑘𝑷𝑘
−𝑪𝑘

𝑇 (92) 
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 Figure 126. MATLAB Kalman filter algorithm process [20] 

 The MATLAB algorithm contains four blocks; the Model, Error Model, Kalman 

Equations, and Correct blocks. The Model block consists of the orientation prediction and 

gravity estimate. The orientation is predicted by estimating the angular change from the previous 

value, where N is the decimation factor and fs is the sample rate, shown in Equation 93. The 

result is converted into quaternions as shown in Equation 94. The previous estimate is then 

updated by rotating it by ∆Q. For the first update, the orientation estimate q- is initialized 

assuming that the x-axis points north, shown in Equation 95. 

 
∆𝝋𝑁×3 =

(𝑔𝑦𝑟𝑜𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝑠𝑁×3 − 𝑔𝑦𝑟𝑜𝑂𝑓𝑓𝑠𝑒𝑡1×3)

𝑓𝑠
 (93) 

 ∆𝑸𝑁×1 = 𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛(∆𝝋𝑁×3,
′ 𝑟𝑜𝑡𝑣𝑒𝑐′) (94) 

 
𝒒1×1

− = (𝒒1×1
+ )(∏∆𝑸𝑛

𝑁

𝑛=1

) (95) 

An estimate of the gravity vector is made from the orientation estimate and is the transpose of 

the third column of q-. A redundant estimation of gravity is made from acceleration, shown in 

Equation 96. 

 𝑔𝐴𝑐𝑐𝑒𝑙1×3 = 𝑎𝑐𝑐𝑒𝑙𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝑠1×3 − 𝑙𝑖𝑛𝐴𝑐𝑐𝑒𝑙𝑝𝑟𝑖𝑜𝑟1×3 (96) 
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The Error Model block computes the difference between the gravity estimate in Equation 

96 and the estimate from the gyroscope readings, shown in Equation 97. 

 𝑧 = 𝑔 − 𝑔𝐴𝑐𝑐𝑒𝑙 (97) 

 The Kalman Equations block contains the equations used to output an a posteriori 

estimate, x+. The gravity estimate from the gyroscope, g, and the observation of the error 

process, z, are used to update the Kalman gain and covariance matrices. The Kalman gain is 

applied to an error signal, z, to output x+. Within the observation model, the observed state g1x3 is 

mapped into the true state C3x9. The observation model is constructed as shown in Equation 98, 

where κ is a constant determined by the decimation factor and sample rate. 

 

𝑪3×9 = [

0 𝑔𝑧 −𝑔𝑦

−𝑔𝑧 0 𝑔𝑥

𝑔𝑦 −𝑔𝑥 0

0 −𝜅𝑔𝑧 𝜅𝑔𝑦

𝜅𝑔𝑧 0 −𝜅𝑔𝑥

−𝜅𝑔𝑦 𝜅𝑔𝑥 0

1 0 0
0 1 0
0 0 1

] (98) 

The innovation covariance in the Kalman Equations block is used to track the variability in the 

measurements and is calculated from Equation 99. Here, the covariance of the observation model 

R is calculated using Equation 100 where κ is (decimation factor/sample rate)2, β is the 

gyroscope drift noise, η is the gyroscope noise, λ is the accelerometer noise, and ξ is the linear 

acceleration noise. 

 𝑺3×3 = 𝑹3×3 + (𝑪3×9)(𝑷9×9
− )(𝑪3×9)

𝑇 (99) 

 𝑹3×3 = (𝜆 + 𝜉 + 𝜅(𝛽 + 𝜂))𝑰 (100) 

The error estimate covariance matrix is updated as shown in Equation 101. 

 𝑷9×9
+ = 𝑷9×9

− − (𝑲9×3)(𝑪3×9)(𝑷9×9
− ) (101) 

The a priori error estimate covariance, P-, is set to the value of Q determined in the previous 

iteration. The process noise covariance of the current iteration, Q, is predicted as a function of 

the a posteriori error estimate covariance, P+. Below, v is the linear acceleration decay factor. 
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𝑸 =

[
 
 
 
 
 
 
 
 
𝑃+(1) + 𝜅2𝑃+(31) + 𝛽 + 𝜂

0
0

−𝜅(𝑃+(31) + 𝛽)
0
0
0
0
0

0
𝑃+(11) + 𝜅2𝑃+(41) + 𝛽 + 𝜂

0
0

𝑃+(41) + 𝛽
0
0
0
0

0
0

𝑃+(21) + 𝜅2𝑃+(51) + 𝛽 + 𝜂
0
0

𝑃+(51) + 𝛽
0
0
0

 

−𝜅(𝑃+(31) + 𝛽)
0
0

𝑃+(31) + 𝛽
0
0
0
0
0

0
𝑃+(41) + 𝛽

0
0

𝑃+(41) + 𝛽
0
0
0
0

0
0

𝑃+(51) + 𝛽
0
0

𝑃+(51) + 𝛽
0
0
0

0
0
0
0
0
0

𝑣2𝑃+(61) + 𝜉
0
0

0
0
0
0
0
0
0

𝑣2𝑃+(71) + 𝜉
0

0
0
0
0
0
0
0
0

𝑣2𝑃+(81) + 𝜉]
 
 
 
 
 
 
 
 

 

The Kalman gain is computed as Equation 102 and the posterior error estimate is calculated from 

the Kalman gain and the gravity vector estimation errors shown in Equation 103. 

 𝑲9×3 = (𝑷9×9
− )(𝑪3×9)((𝑺3×3)

𝑇)−1 (102) 

 𝒙9×1 = (𝑲9×3)(𝒛1×3)
𝑇 (103) 

 The Correct block estimates the orientation by multiplying the previous estimation by the 

error, shown in Equation 104. The linear acceleration is updated as shown in Equation 105 and 

the gyroscope offset is estimated using Equation 106. Finally, the angular velocity is updated 

using Equation 107. 

 𝒒+ = 𝒒−𝜽+ (104) 

 𝑙𝑖𝑛𝐴𝑐𝑐𝑒𝑙𝑃𝑟𝑖𝑜𝑟 = (𝑙𝑖𝑛𝐴𝑐𝑐𝑒𝑙𝑃𝑟𝑖𝑜𝑟𝑘−1)𝒘 − 𝒂+ (105) 

 𝑔𝑦𝑟𝑜𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑔𝑦𝑟𝑜𝑂𝑓𝑓𝑠𝑒𝑡𝑘−1 − 𝒃+ (106) 

 
𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦1×3 =

∑𝑔𝑦𝑟𝑜𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝑠
𝑁×3

𝑁
− 𝑔𝑦𝑟𝑜𝑂𝑓𝑓𝑠𝑒𝑡1×3 (107) 

The MATLAB algorithm above was used with the flight data retrieved from the January flight 

tests to fuse the IMU data and estimate the orientation. Figure 127 shows the raw acceleration   
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and gyro data for the second flight along with the estimated orientation. 

(a) Glider arming, ascent, and flight  

(b) Flight 

Figure 127. Accelerometer and gyroscope data plotted with orientation estimate 
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7.2.3.2 Filtering the Data  

 The orientation estimate can be used to determine what angle of attack, α, and sideslip, β, 

to implement in the computation model for data verification. Incidence and sideslip can be found 

using a variety of methods but are most commonly calculated from the components of the 

velocity vector, shown in Equations 108 and 109.  

 𝛼 = tan−1 (
𝑤

𝑢
) (108) 

 𝛽 = sin−1 (
𝑣

𝑉
) (109) 

Unfortunately, the glider was not equipped with an airspeed indicator during the January 

testing. Instead, the incidence and sideslip was reconstructed from the Euler angles. The data 

were imported into Simulink and first converted from rotation angles to a direction cosines 

matrix before being converted to incidence and sideslip angles. The results of the forces 

calculated using the computational model and estimated incidence and sideslip are plotted 

against the estimated forces calculated from the accelerometer of the IMU in Figure 128.  

It can be seen from the figure that the two sets of data do not match. The biggest contrast 

is the smoothness of the IMU data compared to the irregular computational data. Of biggest 

concern is the significant changes in the computational data over very small time intervals. 

Because the IMU data did not exhibit similar trends, it is thought that the error was within the 

reconstruction of the flight rather than the raw data itself. Further investigation revealed the 

primary issue was with the estimation of the incidence and sideslip angles. Without raw data to 

compare, the actual incidence and sideslip angle is essentially unknown because the error cannot 

be determined.  
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Figure 128. IMU vs. Computational Model Aerodynamic Forces 

A second Kalman filter was implemented in order to get a better estimation of the 

incidence and sideslip angles. An extended Kalman filter was used in order to estimate the state 

of a discrete-time nonlinear system. This type of filter was chosen because of the instability of 

the second flight. A traditional Kalman filter relies on the system and measurement functions to 

be linear with respect to the state variables, which may not be the case with this type of vehicle 

and the unstable behavior observed during the flight. The state representation of the system 

model and measurement model is shown in Equations 110 and 111 [20]. The state and 

measurement models are shown in Equation 113 and Equation 114, respectively. The noise 

vectors w and v were obtained using the default noise parameters for the IMU. 

�̇� = 𝑨(𝑡)𝒙(𝑡) + 𝑩(𝑡)𝒖(𝑡) + 𝒘(𝑡) (110) 

𝒛 = 𝑯(𝑡)𝒙(𝑡) + 𝒗(𝑡) (111) 
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𝑋𝑢 =

−(𝐶𝐷𝑢
+ 2𝐶𝐷0

)�̅�𝑆𝑟𝑒𝑓

𝑚𝑢0
 (115) 

 
𝑋𝑤 =

−(𝐶𝐷𝑎
− 𝐶𝐿0

)�̅�𝑆𝑟𝑒𝑓

𝑚𝑢0
 (116) 

 
𝑌𝛽 =

𝐶𝑦𝛽
�̅�𝑆𝑟𝑒𝑓

𝑚
 (117) 

 𝑌𝑣 = 𝑌𝛽𝑢0 (118) 

 
𝑌𝑝 =

𝐶𝑦𝑝
�̅�𝑆𝑟𝑒𝑓𝑏𝑟𝑒𝑓

2𝑚𝑢0
 (119) 

 
𝑌𝑟 =

𝐶𝑦𝑟
�̅�𝑆𝑟𝑒𝑓𝑏𝑟𝑒𝑓

2𝑚𝑢0
 (120) 
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𝑍𝑢 =

−(𝐶𝐿𝑢
+ 2𝐶𝐿0

)�̅�𝑆𝑟𝑒𝑓

𝑚𝑢0
 (121) 

 
𝑍𝑤 =

−(𝐶𝐿𝑎
+ 2𝐶𝐷0

)�̅�𝑆𝑟𝑒𝑓

𝑚𝑢0
 (122) 

 
𝑀𝑢 = 𝐶𝑚𝑢

�̅�𝑆𝑟𝑒𝑓𝑐̅

𝐼𝑦𝑢0
 (123) 

 
𝑀𝑤 = 𝐶𝑚𝑎

�̅�𝑆𝑟𝑒𝑓𝑐̅

𝐼𝑦𝑢0
 (124) 

 
𝑀𝑞 = 𝐶𝑚𝑞

𝑐̅

2𝑢0

�̅�𝑆𝑟𝑒𝑓𝑐̅

𝐼𝑦
 (125) 

 
𝐿𝛽 =

𝐶𝑙𝛽𝑞𝑆𝑏

𝐼𝑥
 (126) 

 𝐿𝑣 = 𝐿𝛽𝑢0 (127) 

 
𝐿𝑝 = 𝐶𝑙𝑝

𝑞𝑆𝑏2

2𝐼𝑥𝑢0
 (128) 

 
𝐿𝑟 = 𝐶𝑙𝑟

𝑞𝑆𝑏2

2𝐼𝑥𝑢0
 (129) 

 
𝑁𝛽 =

𝐶𝑙𝛽𝑞𝑆𝑏

𝐼𝑧
 (130) 

 𝑁𝑣 = 𝑁𝛽𝑢0 (131) 

 
𝑁𝑝 = 𝐶𝑛𝑝

𝑞𝑆𝑏2

2𝐼𝑧𝑢0
 (132) 

 
𝑁𝑟 = 𝐶𝑛𝑟

𝑞𝑆𝑏2

2𝐼𝑧𝑢0
 (133) 

The purpose of this filter was to obtain a better incidence and sideslip angle estimation 

from the IMU data and velocity estimates. Figure 129 displays the implementation of the 

Kalman filter in Simulink. A MATLAB function block creates the state and measurement 

matrices which are fed to an Extended Kalman Filter block containing the additive noise vectors. 
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The estimates are then fed to a MATLAB function which calculates the incidence and sideslip 

angles to be used in the computational model. 

Figure 129. Kalman Filter implementation in Simulink 

The results from second Kalman filter showed improvement, but there were indications 

that the values were still not accurate. This can be seen in Figure 130, where there is a lot of 

noise in the beginning of the flight test. The values smooth out and the estimate improves over 

time, but there is still too much variability to make a reasonable attempt at verification. 

Therefore, it will be necessary to conduct additional flight testing in the future with different 

flight hardware which could more effectively record the flight data. 
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Figure 130. Fz IMU and Extended Kalman Filter (EKF) comparison 

7.2.4 Comparison to Simulink/FlightGear Simulation Data 

 Using FlightGear to visualize the vehicle dynamics is beneficial because as flight 

maneuvers are executed, any signal within the Simulink environment can be recorded. This 

environment was utilized to perform a pull up maneuver during the flight simulation and have 

various signals recorded in an effort to make a comparison to the test flight data. On the first 

attempt, the pull up maneuver was not effective. However, the test flight proved that glider was 

controllable and that the body flap did induce a nose up moment. Further investigation revealed 

the body flap pitching moment was not high enough to redirect the vehicle dynamics from the 

datum aerodynamics.  

 At this point, the De Havilland Beaver joystick model in Simulink/FlightGear was used 

to get an idea of the traditional aerodynamics of the pull up maneuver [23]. While the Beaver 

does not use a body flap in the way the glider does, the objective was to observe the pitching 

moment due to elevator change. Within the Simulink environment, the force, moment, and 
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actuator signals were recorded and a nose up maneuver was performed using the FlightGear 

flight simulator to collect the data. It was observed that the pitching moment due to the actuator 

deflection was around three times the magnitude of the nominal pitching moment.  

 The Preliminary Subsonic Aerodynamic Model for the HL-20 was referenced to 

determine the change in the pitching moment magnitude due to body flap deflection [2]. Again, 

the pitching moment due to control surface deflection was of a magnitude of about two to three 

times greater than the nominal pitching moment. Some trial and error was used to apply a gain to 

the pitching moment coefficient value calculated within Simulink. With a gain of two applied, 

the pitching moment still was not large enough to produce the nose up moment that was 

observed during the flight testing. A gain of three was applied, and the glider was able to execute 

a nose up maneuver very similar to what was observed in the flight testing. Inspection of the 

recorded data revealed the results were very similar. The results are displayed in Figure 131. 

 

Figure 131. Recorded FlightGear data compared to flight test data for pull up maneuver 

 The data were examined such that points where the body flap was being deflected and the 

angle theta was around 0 degrees were identified and are circled in red in Figure 131. Similar 

points were identified within the flight test data and both were plotted against each other for 
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comparison. Of interest is the magnitude of the force in the z-direction, which hovered between 

90 and 100 N within the flight test data. The direction of the force, positive or negative, is of less 

interest because the glider was periodically entering an uncontrolled roll. This caused the sensor 

value to record positive and negative values. The sampling of the data makes it nearly impossible 

to find a clear stretch where no instability was observed, so the comparison mainly looked at the 

magnitudes since the directions were highly irregular between both sets of data.  

 The magnitude of the force in the z-axis recorded in Simulink falls within the same range 

of 90 to 100 N when the body flap is deflected and theta is around 0 degrees. This suggests the 

aerodynamics are adequately modeled to estimate the vehicle dynamics, although the percent 

error will be unknown until more flight data are collected. It is thought that the gain applied to 

the body flap pitching moment coefficient indicates there are contributions in the aerodynamics 

that are not properly incorporated into the computational code. The errors most likely stem from 

the negative camber on the body flap and the blunt body of the fuselage affecting the downwash 

onto the body flap. A more thorough investigation into the 2D aerodynamics should be 

conducted using XFOIL. Additionally, the camber of the body flap must be incorporated into the 

3D VLM. Preliminary work indicated the mean surface of the control surface would be adequate, 

as is traditionally done. However, due to the negative camber on the fuselage and the data 

mismatch, it is thought that the body flap should be modeled using the same method as the 

fuselage rather than using the traditional technique. 
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CHAPTER 8. DISCUSSION AND FUTURE WORK 

 While the aerodynamics of the glider were not verified as an outcome of the flight 

testing, the various methods used during the development exhibit similar results. The 

combination of the different data types suggest the aerodynamics may be adequately modeled, 

but the degree of error will be undefined until comprehensive flight testing is conducted. A 

positive outcome of the flight testing was that the vehicle was controllable which supports future 

test efforts. 

Flight testing of a vehicle of this type is challenging due to restrictions imposed by the 

FAA where it can take months to obtain a flight waiver. Alternatively, low altitude tests which 

don’t require FAA clearance like the one conducted in this analysis present problems of their 

own. A drop height of 400 feet results in a time of flight less than 10 seconds. The amount of 

data gathered in this timeframe is not sufficient to adequately asses the aerodynamics of a 

vehicle. Additionally, a short time of flight prevents the parachute from deploying properly 

which is a risk to the vehicle.  

In the absence of sufficient flight data, further investigation of the computational model 

must be conducted. A second look into the issues with Solidworks Flow Simulation may be 

helpful to understand if any of the issues with the moment calculations and lateral forces can be 

mitigated in order to support future simulations. Additionally, there may be open source CFD 

programs that are more comprehensive and could possibly be used. However, open source 

programs can pose a large learning curve, such as OpenFOAM which requires a Linux platform. 

While it is clear that further development of the computational model is necessary, 

attempting to replicate dynamics of the vehicle without supporting data is challenging. The 

computational model should be developed to include aerodynamic effects such as vortex 
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shedding. However, the unusual geometry of the vehicle make it difficult to be confident that the 

modeling of more complex flows is done accurately. Traditional evaluation techniques would 

include wind tunnel testing which could shed some light on the flow field around the vehicle and 

would be helpful in this case. 

 Future work will include more extensive flight testing of the vehicle to ascertain the 

aerodynamic properties over the flight envelope. Of primary concern should be the lateral 

stability, which has proven difficult to model computationally. Improvements to the lateral 

stability could be accomplished by adding a rudder or wing flaps, although the design is limited 

by the mass balance. Effort must be made to prevent the glider from being too tail-heavy.  

A more robust navigation system will also be used to ensure the flight data will be more 

useful in the analysis. The new navigation system will include an airspeed sensor and a working 

magnetometer. These sensors will aid in the orientation, angle of attack, and sideslip estimate. 

Additionally, the new navigation system will be capable of reading the signals sent to the servos 

so the control surface deflections can be recorded. While the new navigation system is limited in 

range, it is believed that additional flight testing from higher altitudes within range can be 

conducted. 
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CHAPTER 9. CONCLUSIONS 

 A high altitude lifting body glider has been developed and flight tested. The purpose of 

this research is to demonstrate if a lifting body scale model is a suitable aerodynamic design that 

can be used as a recovery method for high altitude ballooning payloads. While the glider has not 

been tested at high altitudes, flight testing has demonstrated that the glider is controllable. The 

aerodynamics of the glider have been verified through various analysis methods, namely CFD 

and flight simulations, although the error with respect to the actual flight characteristics cannot 

definitively be determined. However, due to the qualitative evidence observed during the flight 

tests, there is confidence that the computational aerodynamics within the model do represent the 

general dynamics of the vehicle. 
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APPENDIX A – COMPUTATIONAL MODEL FUNDAMENTAL CODE 

% glider_geo.m 

% glider 3D panel -------------------------------------------------------- 
% first partition geometry  
c_r1 = 958.919/1000; % root chord, m 

c_t1 = 390.065/1000;  
taper1 = c_t1/c_r1; 
s1 = 415.476/2000; % semi-span, m 

b1 = 2 * s1; %span, m 

AR1 = (2 * b1) / (c_r1 + c_t1); 
S1 = 2 * 0.5 * c_r1 * s1; 
cmac1 = (2/3) * c_r1 * ((1 + taper1 + taper1^2) / (1 + taper1)); % ref point 

sweep1 = pi/2 - atan(s1/(c_r1 - c_t1)); % LE sweep angle 

dihedral1 = 0; 
twist1 = 0; 
nchord1 = 8; 
nspan1 = 8; 
S_ref = ((c_t1 + c_r1)/2) * ((b1)/2) * 2; 
AR_ref = ((s1)*2)^2 / S_ref; 
  
% body flap 

c_rb = 77.811/1000; % m  
sb = 378/2000; % m   
bb = sb * 2; 
Sb = c_rb * bb; 
ARb = (bb^2)/Sb; 
  
% meshwing 1st 

 [x, y, z] = meshwing_delta_bodyflap (AR_ref, nchord1, nspan1, sweep1, 0, taper1, 0, s1, c_r1, c_t1, sb, c_rb, alphab); 
 

% second partition  
c_r2 = c_t1 - 0.096276/2; % root chord, m 

c_t2 = 0.096276/2; % tip chord, m 

taper2 = c_t2/c_r2; 
s2 = 264.11/1000; % semi-span, m 

b2 = 2 * s2; %span, m 

AR2 = (2 * b2) / (c_r2 + c_t2); 
S2 = 2 * 0.5 * c_r2 * s2; 
cmac2 = (2/3) * c_r2 * ((1 + taper2 + taper2^2) / (1 + taper2)); % ref point 

sweep2 = pi/2 - atan(s2/(c_r2 - c_t2));  
dihedral2 = 17.67 *(pi/180);  
twist2 = 0; 
nchord2 = 6; 
nspan2 = 12; 
  
S_wref = ((c_t2 + 0.6224) / 2) * ((b1 + b2) / 2) * 2; 
cmac_ref = cmac1*(S1/(S1+S2)) + cmac2*(S2/(S1+S2)) + (1/4*c_rb)*(Sb/(S1+S2)); 

se = s2; % semi-span, m 

bf = se*2; 
 

% meshwing 2nd 

ym2 = linspace(-s2, s2, nspan2 +1); 
le_x2 = (tan (sweep2) * abs (ym2)); % row vector 

le_z2 = tan (dihedral2) * abs (ym2); % row vector 

xi2 = linspace (0, c_r2, nchord2 +1);                   
meanline2 = [xi2.', camber(xi2,0,0)]; %function camber(xi) 

c2 = c_r2 - le_x2; 

A1. MATLAB script glider_geo.m 
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twists2 = 2 * twist2 * abs(ym2); 
dx2 = meanline2 * ([c2; c2] .* [cos(twists2); -sin(twists2)]); 
dz2 = meanline2 * ([c2; c2] .* [sin(twists2); cos(twists2)]); 
dx4 = [0.0032 0.0046 0.0060 0.0074 0.0088 0.0102 0.0116 0.0102 0.0088 0.0074 0.0060 0.0046 0.0032]; 
xx2 = repmat (le_x2, size(xi2.')) + dx2/(c_r2+c_t2/4)+dx4;  
yy2 = repmat (ym2, size(xi2.'));  
zz2 = repmat (le_z2, size(xi2.')) + dz2;  
 

X2 = zeros(nchord2+3, nspan2+1); 
X2 = xx2; 
x3  = X2(7,:) + (c_t2)/2; 
x4 = x3 + (c_t2)/2; 
j = nspan2+ 1; 
    for i = 1:j 
        X2(8,i) = x3(:,i); 
        X2(9,i) = x4(:,i); 
    end 

% replacing with elevon deflection 

x2(:,1) = X2(:,1); 
x2(:,2) = X2(:,2); 
x2(:,3) = X2(:,3); 
x2(:,4) = X2(:,4); 
x2(:,5) = X2(:,5); 
x2(:,6) = X2(:,6); 
x2(:,7) = X2(:,7); 
x2(:,8) = X2(:,7); 
x2(:,9) = X2(:,8); 
x2(:,10) = X2(:,9); 
x2(:,11) = X2(:,10); 
x2(:,12) = X2(:,11); 
x2(:,13) = X2(:,12); 
x2(:,14) = X2(:,13); 
if alphaeL ~=0 

    for i = 1:7 

    x2(8,i) = x2(7,i) + cos(alphaeL/2)*(c_t2/2); 
    x2(9,i) = x2(8,i) + cos(alphaeL/2)*(c_t2/2); 
    end 

end 

if alphaeR ~= 0 

    for i = 7:14 

        x2(8,i) = x2(7,i) + cos(alphaeR/2)*(c_t2/2); 
        x2(9,i) = x2(8,i) + cos(alphaeR/2)*(c_t2/2); 
    end 

end 
  
Y2 = zeros(nchord2+3, nspan2+1); 
Y2 = yy2; 
    for i = 1:j 
        Y2(8,i) = yy2(7,i); 
        Y2(9,i) = yy2(7,i); 
    end 
     
y2(:,1) = Y2(:,1) - s1; 
y2(:,2) = Y2(:,2) - s1; 
y2(:,3) = Y2(:,3) - s1; 
y2(:,4) = Y2(:,4) - s1; 
y2(:,5) = Y2(:,5) - s1; 
y2(:,6) = Y2(:,6) - s1; 

A1. MATLAB script glider_geo.m (continued) 
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y2(:,7) = Y2(:,7) - s1; 
y2(:,8) = Y2(:,7) + s1; 
y2(:,9) = Y2(:,8) + s1; 
y2(:,10) = Y2(:,9) + s1; 
y2(:,11) = Y2(:,10) + s1; 
y2(:,12) = Y2(:,11) + s1; 
y2(:,13) = Y2(:,12) + s1; 
y2(:,14) = Y2(:,13) + s1; 
  
Z2 = zeros(nchord2+3, nspan2+1); 
Z2 = zz2; 
    for i = 1:j 
        Z2(8,i) = zz2(7,i); 
        Z2(9,i) = zz2(7,i); 
    end 
     
z2(:,1) = Z2(:,1); 
z2(:,2) = Z2(:,2); 
z2(:,3) = Z2(:,3); 
z2(:,4) = Z2(:,4); 
z2(:,5) = Z2(:,5); 
z2(:,6) = Z2(:,6); 
z2(:,7) = Z2(:,7); 
z2(:,8) = Z2(:,7); 
z2(:,9) = Z2(:,8); 
z2(:,10) = Z2(:,9); 
z2(:,11) = Z2(:,10); 
z2(:,12) = Z2(:,11); 
z2(:,13) = Z2(:,12); 
z2(:,14) = Z2(:,13); 
if alphaeL ~=0 

    for i = 1:7 

    z2(8,i) = z2(7,i) - sin(alphaeL/2)*(c_t2/2); 
    z2(9,i) = z2(8,i) - sin(alphaeL/2)*(c_t2/2); 
    end 

end 

if alphaeR ~= 0 

    for i = 7:14 

        z2(8,i) = z2(7,i) - sin(alphaeR/2)*(c_t2/2); 
        z2(9,i) = z2(8,i) - sin(alphaeR/2)*(c_t2/2); 
    end 

end 
  

A1. MATLAB script glider_geo.m (concluded) 
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% function meshwing adapted from McBain 2012 

function [x, y, z] = meshwing_delta_bodyflap (AR, nchord, nspan, sweep, dihedral, taper, twist, s, c_r, c_t, sb, c_rb, alphab) % no 
camber 

y = linspace(-s , s , nspan +1); 
yb = linspace(-sb, sb, nspan+1); 
le_x = tan (sweep) * abs (y); % row vector 

le_z = tan (dihedral) * abs (y); % row vector 

xi = linspace (0, c_r, nchord +1); 
xbi = linspace(0, c_rb, 3); 
manualcamber = [0, (0.1137-0.0793)/2, (0.1438-0.1018)/2, (0.1523-0.1121)/2, (0.1443-0.1137)/2, (0.1315-0.1137)/2, ... 
    (0.1336-0.1129)/2, (0.1422-0.1057)/2, (0.1464-0.0921)/2]; 
meanline = [xi.', manualcamber']; %function camber(xi)  
c = c_r - le_x; % chord length distribution for a delta wing  
twists = 2 * twist * abs(y); 
dx = meanline * ([c; c] .* [cos(twists); -sin(twists)]); 
dz = meanline * ([c; c] .* [sin(twists); cos(twists)]); 
x2 = repmat (le_x, size(xi.')) + (1/c_r)*dx; % random multiplier guess and check 

y2 = repmat (y, size(xi.'));  
yb = repmat (yb, size(xbi.')); 
z2 = repmat (le_z, size(xi.')) + dz; 
  
x = zeros(nchord+1, nspan+1); 
x = x2; 
x3  = x(9,:) + cos(alphab)*(c_rb/6); 
x4 = x3 + cos(alphab)*(5*c_rb/6); 
j = nspan+ 1; 
    for i = 1:j 
        x(10,i) = x3(:,i); 
        x(11,i) = x4(:,i); 
    end 

y = zeros(nchord+1, nspan+1); 
y = y2; 
    for i = 1:j 
        y(10,i) = yb(2,i); 
        y(11,i) = yb(3,i); 
    end 

z = zeros(nchord+1, nspan+1); 
z = z2; 
z3 = z(9,:) - sin(alphab)*(c_rb/6); 
z4 = z3 - sin(alphab)*(c_rb*(5/6)); 
    for i = 1:j 
        z(10,i) = z3(:,i); 
        z(11,i) = z4(:,i); 
    end 
  
  
end 
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% function betaloop2 
function [L_bt, D_bt, Y_bt, Mbody_Test, Mwing_Test2,Mbody_Test2, ... 
Mwing_Test3,Mbody_Test3] = BetaLoop2(v, q, qnb, qr, alpha, r, r1, r2, rnb, r1nb, ... 
r2nb, dY, Dwx, Dwy, Dwz, dYnb, dens, w2b, w2nb, w2, Dwx_nb, Dwy_nb, Dwz_nb, rr, ... 
rr1, rr2, Dwxr, Dwyr, Dwzr, com, c_r1, c_t1, dYb_s, dYbnb_s, dYf_s, dYr, rTe, ... 
Cm_xf, s1) 
% beta loop -------------------------------------------------------------- 
i = 1; 
for beta = -10:2:12 
%alpha = 0; 
rhs_b(:,i) = boundarycondition(v, q, alpha * (pi/180), beta * (pi/180), r, r1, r2); 
gamma_s_b(:,i) = w2b \ -rhs_b(:,i); 
rhsnb_b(:,i) = boundarycondition(v, qnb, alpha * (pi/180), beta * (pi/180), rnb, r1nb, r2nb); 
gamma_snb_b(:,i) = w2nb \ -rhsnb_b(:,i); 
i = i+1; 
end 
% resolving the gammas  
[gammab_s_b, dYb_s_b, gammaf_s_b, dYf_s_b] = resolve_gammab(gamma_s_b, dY); 
[Dwxb_b, Dwyb_b, Dwzb_b] = resolve_IW(Dwx, Dwy, Dwz); 
[Dwxbf_b, Dwybf_b, Dwzbf_b] = resolve_IWf(Dwx, Dwy, Dwz); 
nr1b_s_b = sqrt(sum(dYb_s_b.^2,2)); 
norb_s_b = dYb_s_b ./ nr1b_s_b; 
nr1b_sf_b = sqrt(sum(dYf_s_b.^2,2)); 
norb_sf_b = dYf_s_b ./ nr1b_sf_b; 
[gammabnb_s_b, dYbnb_s_b] = resolve_gammanb(gamma_snb_b, dYnb); 
[Dwxb_nb_b, Dwyb_nb_b, Dwzb_nb_b] = resolve_IW(Dwx_nb, Dwy_nb, Dwz_nb); 
nr1nb_s_b = sqrt(sum(dYbnb_s_b.^2,2)); 
nornb_s_b = dYbnb_s_b ./ nr1nb_s_b; 
i = 1; 
%alpha = 0; 
for beta = -10:2:12 
[b_force2t_bb(:,:,i), Fpann_Bb(:,:,i)] = gam_components_body2(norb_s_b, gammab_s_b(:,i), (alpha) * (pi/180), beta * (pi/180), 
v, dens, ... 
    nr1b_s_b, -Dwxb_b, -Dwyb_b, -Dwzb_b); 
[b_force2t_bbNOT(:,:,i), Fpann_BbUSE(:,:,i)] = gam_components_body2(norb_s_b, -gammab_s_b(:,i), (alpha) * (pi/180),... 
    beta * (pi/180), v, dens, nr1b_s_b, -Dwxb_b, Dwyb_b, -Dwzb_b); 
[nb_force2t_bb(:,:,i), Fpann_NBb(:,:,i)] = gam_components_body2(nornb_s_b, gammabnb_s_b(:,i), (alpha) * (pi/180), beta * 
(pi/180), v, ... 
    dens, nr1nb_s_b, -Dwxb_nb_b, -Dwyb_nb_b, -Dwzb_nb_b); 
[nb_force2t_bbNOT(:,:,i), Fpann_NBbUSE(:,:,i)] = gam_components_body2(nornb_s_b, -gammabnb_s_b(:,i), (alpha) * (pi/180), 
beta * (pi/180), v, ... 
    dens, nr1nb_s_b, Dwxb_nb_b, Dwyb_nb_b, Dwzb_nb_b); 
[bf_force2t_bb(:,:,i), Fpann_BFb(:,:,i)] = gam_components_body2(norb_sf_b, gammaf_s_b(:,i), (alpha) * (pi/180), beta * 
(pi/180), v, dens, ... 
    nr1b_sf_b, -Dwxbf_b, -Dwybf_b, -Dwzbf_b); 
[bf_force2t_bbNOT(:,:,i), Fpann_BFbUSE(:,:,i)] = gam_components_body2(norb_sf_b, -gammaf_s_b(:,i), (alpha) * (pi/180), beta 
* (pi/180), v, dens, ... 
    nr1b_sf_b, Dwxbf_b, Dwybf_b, Dwzbf_b); 
BodyToWind=[cos(beta*(pi/180))*cos(alpha*(pi/180)), sin(beta*(pi/180)), cos(beta*(pi/180))*sin(alpha*(pi/180));... 
                 cos(alpha*(pi/180))*sin(beta*(pi/180)), cos(beta*(pi/180)), -sin(beta*(pi/180))*sin(alpha*(pi/180));... 
                  -sin(alpha*(pi/180)),                        0,                       cos(alpha*(pi/180))]; 
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B_force2t_bb(:,:,i) = permute(b_force2t_bb(:,:,i), [2,1,3]);         
NB_force2t_bb(:,:,i) = permute(nb_force2t_bb(:,:,i), [2,1,3]);  
BF_force2t_bb(:,:,i) = permute(bf_force2t_bb(:,:,i), [2,1,3]);  
BtoW_b2t_bb(i,:)= BodyToWind*(B_force2t_bb(:,:,i)); 
BtoW_nb2t_bb(i,:)= BodyToWind*(NB_force2t_bb(:,:,i)); 
BtoW_bf2t_bb(i,:)= BodyToWind*(BF_force2t_bb(:,:,i)); 
i = i+1; 
end 
Lb_bt = BtoW_b2t_bb(:,3)'; 
Lnb_bt = BtoW_nb2t_bb(:,3)'; 
Lbf_bt = BtoW_bf2t_bb(:,3)'; 
Db_bt = BtoW_b2t_bb(:,1)'; 
Dnb_bt = BtoW_nb2t_bb(:,1)'; 
Dbf_bt = BtoW_bf2t_bb(:,1)'; 
Cb_bt = (BtoW_b2t_bb(:,2)'); 
Cnb_bt = (BtoW_nb2t_bb(:,2)'); 
Cbf_bt = (BtoW_bf2t_bb(:,2)'); 
% moments ---------------------------------------------------------------- 
refpt2 = [com*c_r1 - 0.0017,0,0.084]; % wing apex pnt i.e. panel plot beginning coordinate 
refptbf2 = [c_r1-(com*c_r1)- 0.0017,0,0.084]; 
[Brteb, BFrteb] = resolve_rb(r1(:,:), r2(:,:)); 
[NBrte] = resolve_rnb(r1nb(:,:), r2nb(:,:)); 
  
c4b2 = Brteb - (ones(size(dYb_s(:,1))) .* refpt2); 
c4nb2 = NBrte - (ones(size(dYbnb_s(:,1))) .* refpt2); 
c4bf2 = BFrteb - (ones(size(dYf_s(:,1))) .* refptbf2); 
i = 1; 
for beta = -10:2:12 
WindToBody2 = [cos(beta*(pi/180))*cos(alpha*(pi/180)), -cos(alpha*(pi/180))*sin(beta*(pi/180)), -sin(alpha*(pi/180));... 
                 sin(beta*(pi/180)),                        cos(beta*(pi/180)),                         0;... 
              cos(beta*(pi/180))*sin(alpha*(pi/180)), -sin(beta*(pi/180))*sin(alpha*(pi/180)), -cos(alpha*(pi/180))]; 
          Fpann_Bb2(:,:,i) = permute(Fpann_Bb(:,:,i), [2,1,3]); 
          Fpann_Bb3(:,:,i) = WindToBody2*Fpann_Bb2(:,:,i); 
          Fpann_Bb4(:,:,i) = permute(Fpann_Bb3(:,:,i), [2,1,3]); 
            
          Fpann_NBb2(:,:,i) = permute(Fpann_NBb(:,:,i), [2,1,3]); 
          Fpann_NBb3(:,:,i) = WindToBody2*Fpann_NBb2(:,:,i); 
          Fpann_NBb4(:,:,i) = permute(Fpann_NBb3(:,:,i), [2,1,3]); 
           
          Fpann_BFb2(:,:,i) = permute(Fpann_BFb(:,:,i), [2,1,3]); 
          Fpann_BFb3(:,:,i) = WindToBody2*Fpann_BFb2(:,:,i); 
          Fpann_BFb4(:,:,i) = permute(Fpann_BFb3(:,:,i), [2,1,3]); 
i = i+1; 
end 
if sum(Fpann_Bb4(:,1,:)) > 0 
      Fpann_Bb4(:,1,:) = (Fpann_Bb4(:,1,:))*-1; 
end 
if sum(Fpann_NBb4(:,1,:)) > 0 
      Fpann_NBb4(:,1,:) = (Fpann_Bb4(:,1,:))*-1; 
end 
if sum(Fpann_BFb4(:,1,:)) > 0 
      Fpann_BFb4(:,1,:) = (Fpann_BFb4(:,1,:))*-1; 
end 
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if sum(Fpann_BFb(:,1,:)) < 0 
    Fpann_BFb4(:,1,:) = (Fpann_BFb4(:,1,:))*-1; 
end 
     
for i = 1:12 
M_body(:,:,i) = cross(c4b2, Fpann_Bb(:,:,i)); 
MbodySum(:,:,i) = cross(sum(c4b2,1), sum(Fpann_Bb(:,:,i),1)); 
M_nocbody(:,:,i) = cross(c4nb2, Fpann_NBb(:,:,i)); 
M_bodyflap(:,:,i) = cross(c4bf2, Fpann_BFb(:,:,i)); 
 
M_bodytestBb(:,:,i) = cross(c4b2,Fpann_Bb4(:,:,i)); 
M_bodytestNBb(:,:,i) = cross(c4nb2,Fpann_NBb4(:,:,i)); 
M_bodytestBFb(:,:,i) = cross(c4bf2,Fpann_BFb4(:,:,i)); 
end 
 
MbodytestB = squeeze(sum(M_body,1));  
MbodytestNB = squeeze(sum(M_nocbody,1)); 
MbodytestBF = squeeze(sum(M_bodyflap,1)); 
Mbody_Test = (MbodytestB + MbodytestNB)./2 + MbodytestBF; 
Mbody_Test2 = ( squeeze(sum(M_bodytestBb,1)) + squeeze(sum(M_bodytestNBb,1)) )./2 + squeeze(sum(M_bodytestBFb,1)); 
  
% ------------------------------------------------------------------------ 
% wing 
dyr = rr2(:,:) - rr1(:,:); 
dYr = dyr'; 
nr1w = sqrt(sum(dYr.^2,2)); 
norw = dYr ./ nr1w; 
i = 1; 
for beta = -10:2:12 
Alpha = alpha - 2; 
rhsr_b(:,i) = boundarycondition(v, qr, (alpha - 2) * (pi/180), beta * (pi/180), rr, rr1, rr2); 
gamr_s_b(:,i) = w2 \ -rhsr_b(:,i); 
[w_force_b(:,:,i), Fpann_Wb(:,:,i)] = gam_components_wing2(norw, gamr_s_b(:,i), (alpha-2) * (pi/180), beta * (pi/180), ... 
    v, dens, nr1w, -Dwxr, -Dwyr, -Dwzr); 
BodyToWind2=[cos(beta*(pi/180))*cos((alpha - 2)*(pi/180)),sin(beta*(pi/180)),cos(beta*(pi/180))*sin((alpha - 2)*(pi/180));... 
           cos((alpha - 2)*(pi/180))*sin(beta*(pi/180)),cos(beta*(pi/180)),-sin(beta*(pi/180))*sin((alpha - 2)*(pi/180));... 
                  -sin((alpha - 2)*(pi/180)),                        0,                       cos((alpha - 2)*(pi/180))]; 
W_force_b(:,:,i) = permute(w_force_b(:,:,i), [2,1,3]);  
BtoW_w_b(i,:)= BodyToWind2*(W_force_b(:,:,i)); 
FZw_b(:,i) = w_force_b(:,3,i); 
FYw_b(:,i) = w_force_b(:,2,i); 
FXw_b(:,i) = w_force_b(:,1,i); 
i = i+1; 
end 
Lwing_bt = BtoW_w_b(:,3)';  
Dwing_bt = -BtoW_w_b(:,1)'; % correction factor...?? 
Cwing_bt = (BtoW_w_b(:,2)'); 
  
L_bt = (Lwing_bt) + (Lb_bt + Lnb_bt)/2 + Lbf_bt; 
D_bt = Dwing_bt + (Db_bt + Dnb_bt)/2+ Dbf_bt; 
Y_bt = (Cwing_bt + Cb_bt + Cnb_bt + Cbf_bt); 
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% moments ---------------------------------------------------------------- 
rte = (rr1(:,:) + rr2(:,:))./2; 
rTe = rte'; 
refptw2 = [(com*c_r1)-0.0017,-s1,0.082]; % (c_r1 - c_t1)- 
refptw3 = [(com*c_r1)-0.0017,s1,0.082]; 
c4w2 = rTe; 
for i = 1:48 
c4w2(i,:) = rTe(i,:) - (ones(size(dYr(i,1))) .* refptw2); 
end 
for i = 57:104 
c4w2(i,:) = rTe(i,:) - (ones(size(dYr(i,1))) .* refptw3); 
end 
for i = 49:58 
c4w2(i,:) = 0; 
end 
  
i = 1; 
for beta = -10:2:12 
WindToBody2 = [cos(beta*(pi/180))*cos(alpha*(pi/180)), -cos(alpha*(pi/180))*sin(beta*(pi/180)), -sin(alpha*(pi/180));... 
                 sin(beta*(pi/180)),                        cos(beta*(pi/180)),                         0;... 
              cos(beta*(pi/180))*sin(alpha*(pi/180)), -sin(beta*(pi/180))*sin(alpha*(pi/180)), -cos(alpha*(pi/180))]; 
          Fpann_Wb_2(:,:,i) = permute(Fpann_Wb(:,:,i), [2,1,3]); 
          Fpann_Wb_3(:,:,i) = WindToBody2*Fpann_Wb_2(:,:,i); 
          Fpann_Wb_4(:,:,i) = permute(Fpann_Wb_3(:,:,i), [2,1,3]); 
i = i+1; 
end 
if sum(Fpann_Wb_4(:,1,:)) > 0 
      Fpann_Wb_4(:,1,:) = (Fpann_Wb_4(:,1,:))*-1; 
end 
squeeze(sum(Fpann_Wb_4)) 
  
for i = 1:12 
M_wing3(:,:,i) = cross(c4w2, Fpann_Wb_4(:,:,i)); 
end 
Mwing_Test2 = squeeze(sum(M_wing3));  
 

A3. MATLAB function betaloop2.m (concluded) 

%calculating freestream normal at collocation point 

function BC = boundarycondition(v, q, alpha, beta, r ,r1 ,r2) 

%calculating normals 

 [aa bb cc] = size(q); 
n = cross(r(:,:) - r1(:,:), r(:,:) - r2(:,:));  
n1 = sqrt(sum(n.^2)); 
no = n ./ n1;  
V = v .* [cos(alpha) * cos(beta) -cos(alpha) * sin(beta) sin(alpha)]; 
v_inf = V .* ones(bb,1); 
bc1 = sum( no' .* v_inf,2); %steady state boundary condition  
BC = -bc1; 
end 

 

A4. MATLAB function boundarycondition.m 
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% adapted from Melin 
function [forceb, Fpan] = gam_components_body2(no, gamma, alpha, beta, v, dens, nr, Dwx, Dwy, Dwz) 
G1 = no(:,1).*gamma;  
G2 = no(:,2).*gamma;  
G3 = no(:,3).*gamma;  
G(:,1) = G1; 
G(:,2) = G2; 
G(:,3) = G3; 
IW(:,1)=Dwx*gamma;  
IW(:,2)=Dwy*gamma;  
IW(:,3)=Dwz*gamma;  
wind = v .* [cos(alpha) * cos(beta) -cos(alpha) * sin(beta) sin(alpha)] .* ones(size(gamma)); 
wind = wind - IW; 
Fppan = dens * cross(wind,G); 
% force per panel 
Fpan(:,1) = Fppan(:,1).* nr;  
Fpan(:,2) = Fppan(:,2).* nr;  
Fpan(:,3) = Fppan(:,3).* nr; 
forceb = sum(Fpan,1); 
end 

A5. MATLAB function gam_components_body2.m 

% gamma components function 
function [force, Fpan2] = gam_components_wing2(nor, gam, alpha, beta, v, dens, nr1, Dwxr, Dwyr, Dwzr) 
G1r = nor(:,1).*gam;  
G2r = nor(:,2).*gam;  
G3r = nor(:,3).*gam;  
Gr(:,1) = G1r; 
Gr(:,2) = G2r; 
Gr(:,3) = G3r; 
IW(:,1)=Dwxr*gam;  
IW(:,2)=Dwyr*gam; 
IW(:,3)=Dwzr*gam;  
windr = v .* [cos(alpha) * cos(beta) -cos(alpha) * sin(beta) sin(alpha)] .* ones(size(gam)); 
windr = windr - IW; 
Fppan = dens .* cross(windr,Gr); 
 % force per panel 
Fpan(:,1) = Fppan(:,1).* nr1;  
Fpan(:,2) = Fppan(:,2).* nr1;  
Fpan(:,3) = Fppan(:,3).* nr1;  
for i = 49:56 
    Fpan(i,:) = 0; 
end 
Fpan2 = Fpan; 
force = sum(Fpan2,1); 
end 

A6. MATLAB function gam_components_wing2.m 
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% adapted from Melin, calculating derivatives from perturbation delta  
function BC2 = boundarycondition2(v, q, alpha, beta, r ,r1 ,r2, P, Q, R, com) 
%calculating normals 
delta = 0.0001; % from Melin 
rte = (r1(:,:) + r2(:,:))./2; 
rTe = rte'; 
[aa bb cc] = size(q); 
n = cross(r(:,:) - r1(:,:), r(:,:) - r2(:,:));  
n1 = sqrt(sum(n.^2)); 
no = n ./ n1;  
V = v .* [cos(alpha) * cos(beta) -cos(alpha) * sin(beta) sin(alpha)]; 
v_inf = V .* ones(bb,1); 
% adding in roll, pitch, and yaw rates and rotation 
for i = 1:bb 
Rot(i,:) = cross((rTe(bb,:) - com),[P Q R]); 
end 
V_inf = v_inf + Rot; 
bc1 = sum( no' .* V_inf,2); %steady state boundary condition  
BC2(:,1) = -bc1; 
  
% alpha derivative column 
alpha = alpha + delta; 
V = v .* [cos(alpha) * cos(beta) -cos(alpha) * sin(beta) sin(alpha)]; 
v_inf = V .* ones(bb,1); 
for i = 1:bb 
Rot(i,:) = cross((rTe(bb,:) - com),[P Q R]); 
end 
V_inf = v_inf + Rot; 
bc1 = sum( no' .* V_inf,2);  
BC2(:,2) = -bc1; 
alpha = alpha - delta; 
  
% beta derivative column 
beta = beta + delta; 
V = v .* [cos(alpha) * cos(beta) -cos(alpha) * sin(beta) sin(alpha)]; 
v_inf = V .* ones(bb,1); 
for i = 1:bb 
Rot(i,:) = cross((rTe(bb,:) - com),[P Q R]); 
end 
V_inf = v_inf + Rot; 
bc1 = sum( no' .* V_inf,2);  
BC2(:,3) = -bc1; 
beta = beta - delta; 
  
% roll rate, p, derivative column 
P = P + delta; 
V = v .* [cos(alpha) * cos(beta) -cos(alpha) * sin(beta) sin(alpha)]; 
v_inf = V .* ones(bb,1); 
for i = 1:bb 
Rot(i,:) = cross((rTe(bb,:) - com),[P Q R]); 
end 
V_inf = v_inf + Rot; 
bc1 = sum( no' .* V_inf,2);  
BC2(:,4) = -bc1; 
P = P - delta; 
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% pitch rate, q, derivative column 
Q = Q + delta; 
V = v .* [cos(alpha) * cos(beta) -cos(alpha) * sin(beta) sin(alpha)]; 
v_inf = V .* ones(bb,1); 
for i = 1:bb 
Rot(i,:) = cross((rTe(bb,:) - com),[P Q R]); 
end 
V_inf = v_inf + Rot; 
bc1 = sum( no' .* V_inf,2);  
BC2(:,5) = -bc1; 
Q = Q - delta; 
  
% yaw rate, r, derivative column 
R = R + delta; 
V = v .* [cos(alpha) * cos(beta) -cos(alpha) * sin(beta) sin(alpha)]; 
v_inf = V .* ones(bb,1); 
for i = 1:bb 
Rot(i,:) = cross((rTe(bb,:) - com),[P Q R]); 
end 
V_inf = v_inf + Rot; 
bc1 = sum( no' .* V_inf,2);  
BC2(:,6) = -bc1; 
R = R - delta; 
  
% velocity, u, derivative column 
%v = v + delta; 
V = (v+delta) .* [cos(alpha) * cos(beta) -cos(alpha) * sin(beta) sin(alpha)]; 
v_inf = V .* ones(bb,1); 
for i = 1:bb 
Rot(i,:) = cross((rTe(bb,:) - com),[P Q R]); 
end 
V_inf = v_inf + Rot; 
bc1 = sum( no' .* V_inf,2);  
BC2(:,7) = -bc1; 
%v = v - delta; 
end 

A7. MATLAB function boundarycondition2.m (concluded) 
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% glider for Simulink  
% aerolib for blocks 
% constants -------------------------------------------------------------- 
deg2rad = pi/180;    
  
% configuration ---------------------------------------------------------- 
S_ref = 0.2802;            % Reference area [m^2] 
d_ref = 1.0367;            % Reference length [m] 
b_ref = 0.4718;            % Reference Span [m] 
massBody = 6;               % Mass of Body [Kg]              
mass = massBody; 
len_veh = 0.9589;               % Vehicle Length 
x_ref = 0.5639;             % Reference point from nose 
x_cg = 0.5517;            % Center of Gravity (Full) 
Ixx = 1/8*mass*(S_ref/pi); 
Iyy = 1/3*mass*(d_ref/2)^2; 
Izz = Iyy; 
Inertia = diag([Ixx Iyy Izz]); 
  
% initial conditions ----------------------------------------------------- 
alpha_0 = 0.0268*-1; % glide angle, rad 
alpha0 = alpha_0; 
Vmw =  15*[cos(alpha_0);0;sin(alpha_0)]; % Velocity in Body Axes  
pm_0 = [0;0;0]; % Initial angular rates (rad/sec) 
xme_0 = [0; 0; -127]; % Initial Position  
Euler_0 = [0; -0.3137+alpha_0; 0];  
LongLat0 = [-122.3896; 37.6272]; % from hl20 example 
Xme_ref = 0; 
  
% aerodynamic coefficients ----------------------------------------------- 
% basic >>               
alpha_vecs = al; 
beta_vecs = be; 
[bev,alv] = meshgrid(beta_vecs, alpha_vecs); 
Be = bev(:); Al = alv(:); 
% calculating look up tables >> CX = -CA, CZ = -CN, CY = CY 
PolyBasicForces = [CX_coeff_New', CZ_coeff_New']; 
temp = [ones(length(Al),1) Be Al Be.^2 Be.*Al Al.^2 Be.^3 Be.^2.*Al Be.*Al.^2 Al.^3 Be.^4 Be.^3.*Al Be.^2.*Al.^2 ... 
    Be.*Al.^3 Al.^4] * PolyBasicForces; 
CX_0 = reshape(temp(:,1),length(alpha_vecs),length(beta_vecs));  
CZ_0 = reshape(temp(:,2),length(alpha_vecs),length(beta_vecs));  
  
PolyBasicMoments = [Cm_coeff_New', Cn_coeff_New']; 
temp = [ones(length(Al),1) Be Al Be.^2 Be.*Al Al.^2 Be.^3 Be.^2.*Al Be.*Al.^2 Al.^3 Be.^4 Be.^3.*Al Be.^2.*Al.^2 ... 
    Be.*Al.^3 Al.^4] * PolyBasicMoments; 
Cm_0 = reshape(temp(:,1),length(alpha_vecs),length(beta_vecs));  
Cn_0 = reshape(temp(:,2),length(alpha_vecs),length(beta_vecs)); 
  
% Side force and roll stability derivatives 
CY_Beta = -0.0103/2; % per degree 
Cl_Beta = -0.0031;  
   
 
 
 

A8. MATLAB script SimlnkGlider.m 
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% Positive Body Flap >> 
polyCoeffBFp = [CX_delBFp_coeff2', Cm_delBFp_coeff2', CZ_delBFp_coeff2']; 
temp = [al'.^4 al'.^3 al'.^2 al'.^1 ones(length(alpha_vecs),1)] * polyCoeffBFp;  
CX_dbfp = temp(:,1); 
Cm_dbfp = temp(:,2); 
CZ_dbfp = temp(:,3); 
  
  
% Symmetric Wing Flaps >> elevator 
polyCoeffE = [CX_delE_coeff2', Cm_delE_coeff2', CZ_delE_coeff2']; 
temp = [al'.^4 al'.^3 al'.^2 al'.^1 ones(length(alpha_vecs),1)] * polyCoeffE;  
CX_de = temp(:,1); 
Cm_de = temp(:,2); 
CZ_de = temp(:,3); 
  
% Differential Wing Flaps >> aileron 
polyCoeffA = [CX_delA_coeff2', Cm_delA_coeff2', CZ_delA_coeff2', Cn_delA_coeff2', CY_delA_coeff2', Cl_delA_coeff2']; 
temp = [al'.^4 al'.^3 al'.^2 al'.^1 ones(length(alpha_vecs),1)] * polyCoeffA;  
CX_da = temp(:,1); 
Cm_da = temp(:,2); 
CZ_da = temp(:,3); 
Cn_da = temp(:,6); 
CY_da = temp(:,5); 
Cl_da = temp(:,4); 
 
% adding in the beta contributions >> 
polyCoeffAb = [CX_delAb_coeff', Cm_delAb_coeff', CZ_delAb_coeff', Cn_delAb_coeff', CY_delAb_coeff', Cl_delAb_coeff']; 
temp = [ones(length(Al),1) Be Al Be.^2 Be.*Al Al.^2 Be.^3 Be.^2.*Al Be.*Al.^2 Al.^3 Be.^4 Be.^3.*Al Be.^2.*Al.^2 ... 
    Be.*Al.^3 Al.^4] * polyCoeffAb;  
CX_dab = reshape(temp(:,1),length(alpha_vecs),length(beta_vecs)); 
Cm_dab = reshape(temp(:,2),length(alpha_vecs),length(beta_vecs)); 
CZ_dab = reshape(temp(:,3),length(alpha_vecs),length(beta_vecs)); 
Cn_dab = reshape(temp(:,4),length(alpha_vecs),length(beta_vecs)); 
CY_dab = reshape(temp(:,5),length(alpha_vecs),length(beta_vecs)); 
Cl_dab = reshape(temp(:,6),length(alpha_vecs),length(beta_vecs)); 
  
% Damping Coefficients (per rad/sec) >> 
alpha_vec_damp = -2:2:20; 
Cm_q = Cmq; 
Cl_p = Clp; 
Cn_p = Cnp; 
Cl_r = Clr; 
Cn_r = Cnr; 

A8. MATLAB script SimlnkGlider.m (concluded) 
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APPENDIX B – DATA TABLES 

Table B1. CX for basic configuration 

   CX,0 for β°    

α° -10 -8 -6 -4 -2 0 

-2 -0.0775 -0.0774 -0.0773 -0.0772 -0.0771 -0.0771 

0 -0.0758 -0.0750 -0.0744 -0.0739 -0.0736 -0.0736 

2 -0.0731 -0.0719 -0.0709 -0.0702 -0.0698 -0.0696 

4 -0.0726 -0.0712 -0.0700 -0.0692 -0.0687 -0.0685 

6 -0.0656 -0.0643 -0.0632 -0.0624 -0.0619 -0.0617 

8 -0.0578 -0.0567 -0.0559 -0.0552 -0.0548 -0.0547 

10 -0.0484 -0.0478 -0.0474 -0.0470 -0.0468 -0.0468 

12 -0.0370 -0.0372 -0.0373 -0.0374 -0.0374 -0.0375 

14 -0.0232 -0.0244 -0.0252 -0.0258 -0.0262 -0.0263 

16 -0.0069 -0.0092 -0.0109 -0.0122 -0.0129 -0.0132 

18 0.0092 0.0056 0.0028 0.0009 -0.0002 -0.0006 

20 0.0224 0.0174 0.0136 0.0108 0.0092 0.0086 

 

   CX,0 for β°    

α° 2 4 6 8 10 12 

-2 -0.0771 -0.0772 -0.0773 -0.0774 -0.0775 -0.0776 

0 -0.0737 -0.0739 -0.0744 -0.0750 -0.0758 -0.0767 

2 -0.0698 -0.0702 -0.0709 -0.0719 -0.0731 -0.0745 

4 -0.0687 -0.0692 -0.0700 -0.0712 -0.0726 -0.0742 

6 -0.0619 -0.0624 -0.0632 -0.0643 -0.0656 -0.0672 

8 -0.0548 -0.0552 -0.0559 -0.0567 -0.0578 -0.0590 

10 -0.0468 -0.0470 -0.0474 -0.0479 -0.0484 -0.0490 

12 -0.0374 -0.0374 -0.0373 -0.0372 -0.0370 -0.0367 

14 -0.0262 -0.0259 -0.0253 -0.0244 -0.0232 -0.0218 

16 -0.0130 -0.0122 -0.0110 -0.0092 -0.0069 -0.0041 

18 -0.0002 0.0009 0.0028 0.0056 0.0091 0.0135 

20 0.0092 0.0108 0.0136 0.0174 0.0223 0.0283 
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Table B2. CZ for basic configuration 

   CZ,0 for β°    

α° -10 -8 -6 -4 -2 0 

-2 0.2124 0.2143 0.2158 0.2169 0.2175 0.2178 

0 0.1045 0.1059 0.1070 0.1079 0.1083 0.1085 

2 -0.0048 -0.0038 -0.0031 -0.0026 -0.0023 -0.0022 

4 -0.1158 -0.1154 -0.1151 -0.1149 -0.1147 -0.1147 

6 -0.2260 -0.2262 -0.2263 -0.2264 -0.2264 -0.2264 

8 -0.3366 -0.3373 -0.3379 -0.3382 -0.3385 -0.3386 

10 -0.4612 -0.4626 -0.4636 -0.4643 -0.4647 -0.4649 

12 -0.5737 -0.5756 -0.5770 -0.5780 -0.5787 -0.5789 

14 -0.6686 -0.6709 -0.6727 -0.6739 -0.6747 -0.6749 

16 -0.7597 -0.7623 -0.7644 -0.7658 -0.7667 -0.7670 

18 -0.8401 -0.8429 -0.8452 -0.8467 -0.8477 -0.8480 

20 -0.9016 -0.9045 -0.9068 -0.9085 -0.9094 -0.9098 

 

   CZ,0 for β°    

α° 2 4 6 8 10 12 

-2 0.2175 0.2169 0.2158 0.2143 0.2124 0.2101 

0 0.1083 0.1079 0.1070 0.1059 0.1045 0.1027 

2 -0.0023 -0.0026 -0.0031 -0.0038 -0.0048 -0.0059 

4 -0.1147 -0.1149 -0.1151 -0.1154 -0.1158 -0.1163 

6 -0.2264 -0.2264 -0.2263 -0.2262 -0.2260 -0.2258 

8 -0.3385 -0.3382 -0.3379 -0.3373 -0.3366 -0.3357 

10 -0.4647 -0.4643 -0.4636 -0.4626 -0.4612 -0.4596 

12 -0.5787 -0.5780 -0.5770 -0.5756 -0.5737 -0.5714 

14 -0.6747 -0.6739 -0.6727 -0.6709 -0.6686 -0.6659 

16 -0.7667 -0.7658 -0.7644 -0.7623 -0.7597 -0.7565 

18 -0.8477 -0.8467 -0.8452 -0.8429 -0.8401 -0.8366 

20 -0.9094 -0.9085 -0.9068 -0.9045 -0.9016 -0.8980 
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Table B3. Cm for basic configuration 

   Cm,0 for β°    

α° -10 -8 -6 -4 -2 0 

-2 0.0696 0.0716 0.0731 0.0739 0.0744 0.0744 

0 0.0380 0.0399 0.0414 0.0422 0.0428 0.0428 

2 0.0075 0.0094 0.0109 0.0117 0.0123 0.0125 

4 -0.0220 -0.0201 -0.0187 -0.0178 -0.0172 -0.0169 

6 -0.0508 -0.0491 -0.0476 -0.0468 -0.0460 -0.0457 

8 -0.0793 -0.0775 -0.0761 -0.0752 -0.0744 -0.0740 

10 -0.1074 -0.1057 -0.1043 -0.1034 -0.1025 -0.1020 

12 -0.1356 -0.1339 -0.1324 -0.1315 -0.1305 -0.1299 

14 -0.1639 -0.1623 -0.1608 -0.1598 -0.1588 -0.1581 

16 -0.1927 -0.1910 -0.1895 -0.1885 -0.1874 -0.1866 

18 -0.2220 -0.2204 -0.2189 -0.2178 -0.2166 -0.2157 

20 -0.2521 -0.2505 -0.2490 -0.2478 -0.2466 -0.2455 

 

   Cm,0 for β°    

α° 2 4 6 8 10 12 

-2 0.0738 0.0727 0.0711 0.0689 0.0663 0.0631 

0 0.0424 0.0415 0.0400 0.0382 0.0358 0.0330 

2 0.0121 0.0114 0.0102 0.0085 0.0065 0.0039 

4 -0.0171 -0.0177 -0.0187 -0.0201 -0.0219 -0.0241 

6 -0.0458 -0.0462 -0.0470 -0.0481 -0.0497 -0.0516 

8 -0.0739 -0.0742 -0.0748 -0.0757 -0.0770 -0.0786 

10 -0.1018 -0.1019 -0.1023 -0.1030 -0.1040 -0.1053 

12 -0.1296 -0.1296 -0.1298 -0.1302 -0.1310 -0.1321 

14 -0.1576 -0.1574 -0.1574 -0.1577 -0.1581 -0.1589 

16 -0.1860 -0.1856 -0.1854 -0.1854 -0.1857 -0.1862 

18 -0.2149 -0.2144 -0.2140 -0.2138 -0.2137 -0.2140 

20 -0.2446 -0.2439 -0.2433 -0.2429 -0.2426 -0.2425 
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Table B4. Cn for basic configuration 

   Cn,0 for β°    

α° -10 -8 -6 -4 -2 0 

-2 -0.0155 -0.0117 -0.0079 -0.0041 -0.0003 0.0034 

0 -0.0133 -0.0103 -0.0073 -0.0044 -0.0014 0.0014 

2 -0.0120 -0.0095 -0.0071 -0.0047 -0.0023 6.720e-06 

4 -0.0119 -0.0096 -0.0074 -0.0053 -0.0031 -0.0009 

6 -0.0130 -0.0106 -0.0083 -0.0060 -0.0037 -0.0015 

8 -0.0149 -0.0122 -0.0095 -0.0068 -0.0041 -0.0015 

10 -0.0178 -0.0144 -0.0110 -0.0076 -0.0043 -0.0010 

12 -0.0216 -0.0172 -0.0128 -0.0085 -0.0043 -0.0001 

14 -0.0262 -0.0205 -0.0150 -0.0095 -0.0040 0.0012 

16 -0.0315 -0.0244 -0.0174 -0.0105 -0.0036 0.0032 

18 -0.0376 -0.0288 -0.0201 -0.0114 -0.0029 0.0056 

20 -0.0443 -0.0336 -0.0230 -0.0124 -0.0019 0.0084 

 

   Cn,0 for β°    

α° 2 4 6 8 10 12 

-2 0.0072 0.0110 0.0149 0.0188 0.0227 0.0268 

0 0.0044 0.0074 0.0104 0.0135 0.0166 0.0198 

2 0.0023 0.0047 0.0072 0.0096 0.0122 0.0148 

4 0.0012 0.0033 0.0055 0.0077 0.0100 0.0123 

6 0.0007 0.0029 0.0052 0.0075 0.0098 0.0122 

8 0.0010 0.0036 0.0063 0.0089 0.0116 0.0143 

10 0.0021 0.0054 0.0086 0.0119 0.0152 0.0185 

12 0.0040 0.0082 0.0123 0.0165 0.0207 0.0249 

14 0.0066 0.0120 0.0173 0.0226 0.0279 0.0333 

16 0.0100 0.0167 0.0235 0.0302 0.0369 0.0437 

18 0.0140 0.0224 0.0308 0.0392 0.0476 0.0559 

20 0.0188 0.0291 0.0393 0.0495 0.0597 0.0699 
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Table B5. Incremental force and moment coefficients per degree of deflection of body flap 

α° CXδbf
 Cmδbf

 CZδbf
 

-2 0.0220 -0.4011 -0.2425 

0 0.0208 -0.4056 -0.2452 

2 0.0197 -0.4091 -0.2472 

4 0.0190 -0.4116 -0.2487 

6 0.0185 -0.4131 -0.2496 

8 0.0183 -0.4136 -0.2499 

10 0.0185 -0.4131 -0.2496 

12 0.0189 -0.4116 -0.2487 

14 0.0196 -0.4091 -0.2472 

16 0.0206 -0.4056 -0.2452 

18 0.0219 -0.4012 -0.2425 

20 0.0234 -0.3958 -0.2393 

 

 

Table B6. Incremental force and moment coefficients per degree of deflection of elevon 

α° CXδe
 Cmδe

 CZδe
 

-2 0.0152 -0.2117 -0.1872 

0 0.0139 -0.2140 -0.1889 

2 0.0129 -0.2158 -0.1903 

4 0.0121 -0.2171 -0.1912 

6 0.0116 -0.2179 -0.1916 

8 0.0115 -0.2182 -0.1915 

10 0.0116 -0.2179 -0.1910 

12 0.0121 -0.2171 -0.1901 

14 0.0129 -0.2158 -0.1886 

16 0.0139 -0.2140 -0.1868 

18 0.0152 -0.2117 -0.1844 

20 0.0168 -0.2090 -0.1817 
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Table B7. Incremental force and moment coefficients per degree of deflection of aileron 

α° CXδa
 Cmδa

 CZδa
 Cnδa

 CYδa
 Clδa

 

-2 -0.0063 -0.0959 -0.1108 -0.0375 0.0352 0.0446 

0 -0.0049 -0.0965 -0.1108 -0.0360 0.0355 0.0441 

2 -0.0032 -0.0965 -0.1108 -0.0349 0.0358 0.0435 

4 -0.0011 -0.0965 -0.1105 -0.0338 0.0358 0.0426 

6 0.0014 -0.0962 -0.1100 -0.0323 0.0355 0.0421 

8 0.0037 -0.0956 -0.1091 -0.0312 0.0349 0.0409 

10 0.0066 -0.0951 -0.1080 -0.0297 0.0340 0.0401 

12 0.0095 -0.0939 -0.1065 -0.0286 0.0329 0.0389 

14 0.0126 -0.0928 -0.1048 -0.0275 0.0317 0.0378 

16 0.0155 -0.0913 -0.1028 -0.0263 0.0303 0.0366 

18 0.0183 -0.0896 -0.1008 -0.0252 0.0286 0.0352 

20 0.0212 -0.0879 -0.0985 -0.0243 0.0266 0.0340 
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APPENDIX C – SUPPLEMENTARY INFORMATION 

Operating point search report: 
--------------------------------- 

 
 Operating point search report for the Model GliderFlightAnalysis. 
 (Time-Varying Components Evaluated at time t=0) 

 
Operating point specifications were successfully met. 
States:  

---------- 
(1.) phi 

      x:      -0.00064      dx:     -2.16e-22 (0) 
(2.) theta 
      x:      -0.00134      dx:      4.12e-22 (0) 

(3.) psi 
      x:         0.557      dx:     -4.08e-24 (0) 
(4.) p 

      x:     -2.16e-22      dx:      -1.7e-14 (0) 
(5.) q 

      x:      4.12e-22      dx:      1.16e-11 (0) 
(6.) r 
      x:     -3.82e-24      dx:        -2e-15 (0) 

(7.) Ubody 
      x:          6.62      dx:      1.93e-14 (0) 
(8.) Vbody 

      x:         -4.12      dx:      -1.4e-14 (0) 
(9.) Wbody 

      x:       -0.0115      dx:     -2.76e-13 (0) 
(10.) Xe 
      x:     -3.05e-14      dx:           7.8 

(11.) Ye 
      x:     -1.57e-13      dx:     -4.58e-13 (0) 
(12.) Ze 

      x:          -127      dx:      4.29e-14 (0) 
(13.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 

(+q +r))/Filters on angular rates/Hpgw/pgw_p 
      x:         0.797      dx:        -0.414 
      x:             0      dx:             0 

(14.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 
(+q +r))/Filters on angular rates/Hqgw/qgw_p 
      x:          1.57      dx:         -1.09 

      x:             0      dx:             0 
(15.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 

(+q +r))/Filters on angular rates/Hrgw/rgw_p 
      x:          1.18      dx:          -1.1 
      x:             0      dx:             0 

(16.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 
(+q +r))/Filters on velocities/Hugw(s)/ug_p 
      x:          1.91      dx:       -0.0453 

      x:             0      dx:             0 
(17.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 

(+q +r))/Filters on velocities/Hvgw(s)/vg_p1 
      x:             0      dx:             0 
      x:             0      dx:             0 

 
 
 
 

Figure C1. Operating Point Search Report  
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(18.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 
(+q +r))/Filters on velocities/Hvgw(s)/vgw_p2 

      x:          -1.4      dx:        0.0333 
      x:             0      dx:             0 

(19.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 
(+q +r))/Filters on velocities/Hwgw(s)/wg_p1 
      x:      2.01e-15      dx:     -1.05e-16 

      x:     -4.98e-16      dx:      6.18e-18 
(20.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 
(+q +r))/Filters on velocities/Hwgw(s)/wg_p2 

      x:         -2.27      dx:         0.118 
      x:             0      dx:      4.52e-18 

 
Inputs:  
---------- 

(1.) GliderFlightAnalysis/AileronCmd 
      u:         0.334    [-0.349 0.349] 
(2.) GliderFlightAnalysis/ElevatorCmd 

      u:        0.0841    [-0.349 0.349] 
(3.) GliderFlightAnalysis/BodyFlapCmd 

      u:        -0.289    [-0.314 0.384] 
 
Outputs:  

---------- 
(1.) GliderFlightAnalysis/StatesOut 
      y:     -3.05e-14    [-Inf Inf] 

      y:     -1.57e-13    [-Inf Inf] 
      y:          -127    [-Inf Inf] 

      y:      -0.00064    [-Inf Inf] 
      y:      -0.00134    [-Inf Inf] 
      y:         0.557    [-Inf Inf] 

      y:          6.62    [-Inf Inf] 
      y:         -4.12    [-Inf Inf] 
      y:       -0.0115    [-Inf Inf] 

      y:     -2.16e-22    [-Inf Inf] 
      y:      4.12e-22    [-Inf Inf] 

      y:     -3.82e-24    [-Inf Inf] 
      y:      -1.7e-14    [-Inf Inf] 
      y:      1.16e-11    [-Inf Inf] 

      y:        -2e-15    [-Inf Inf] 
      y:      1.93e-14    [-Inf Inf] 
      y:      -1.4e-14    [-Inf Inf] 

      y:     -2.76e-13    [-Inf Inf] 
 

 Operating point for the Model GliderFlightAnalysis. 
 (Time-Varying Components Evaluated at time t=0) 
 

States:  
---------- 
(1.) phi 

      x: -0.00064      
(2.) theta 

      x: -0.00134      
(3.) psi 
      x: 0.557         

(4.) p 
      x: -2.16e-22     

 
 
 

Figure C1. Operating Point Search Report (continued) 
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(5.) q 
      x: 4.12e-22      

(6.) r 
      x: -3.82e-24     

 (7.) Ubody 
      x: 6.62          
(8.) Vbody 

      x: -4.12         
(9.) Wbody 
      x: -0.0115       

(10.) Xe 
      x: -3.05e-14     

(11.) Ye 
      x: -1.57e-13     
(12.) Ze 

      x: -127          
(13.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 
(+q +r))/Filters on angular rates/Hpgw/pgw_p 

      x: 0.797         
      x: 0             

(14.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 
(+q +r))/Filters on angular rates/Hqgw/qgw_p 
      x: 1.57          

      x: 0             
(15.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 
(+q +r))/Filters on angular rates/Hrgw/rgw_p 

      x: 1.18          
      x: 0             

(16.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 
(+q +r))/Filters on velocities/Hugw(s)/ug_p 
      x: 1.91          

      x: 0             
(17.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 
(+q +r))/Filters on velocities/Hvgw(s)/vg_p1 

      x: 0             
      x: 0             

(18.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 
(+q +r))/Filters on velocities/Hvgw(s)/vgw_p2 
      x: -1.4          

      x: 0             
(19.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 
(+q +r))/Filters on velocities/Hwgw(s)/wg_p1 

      x: 2.01e-15      
      x: -4.98e-16     

(20.) GliderFlightAnalysis/Environment Model/Dryden Wind Turbulence Model  (Continuous 
(+q +r))/Filters on velocities/Hwgw(s)/wg_p2 
      x: -2.27         

      x: 0             
 
Inputs:  

---------- 
(1.) GliderFlightAnalysis/AileronCmd 

      u: 0.334         
(2.) GliderFlightAnalysis/ElevatorCmd 
      u: 0.0841        

(3.) GliderFlightAnalysis/BodyFlapCmd 
      u: -0.289        

Figure C1. Operating Point Search Report (concluded) 
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