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ABSTRACT

The purpose of this experiment was to characterize cardiovascular 

responses in sk e le ta l tissue 15 minutes and 16 hours following reversible 

hemorrhagic hypotension and to validate a quantitative method for 

measuring blood flow rates in marrow and bone.

Cardiac output and regional blood flow determinations were made 

using the radioactive microsphere technique. Microspheres (15 u dia) 

were in jected  into unanesthetized rabbits via a chronically implanted 

left atrial catheter. Blood flow and cardiac output measurements were 

made by in jecting individual microsphere isotopes, each with a different 

label (®^Sr, 5 1 c r  Gr l ^ C e ) ,  at three specified time intervals: first, as 

a pretreatment control value; second, 15 minutes following a standard

ized non-fatal hemorrhage (20 ml blood/kg body wt); and third, 16 hours 

post-hemorrhage.

Results of four standard validations used to test reliability  of the 

microsphere method as  applied in this study showed c lo se  correlation be

tween blood flow and microsphere distribution.

On the day of the experiment both central ear arteries were cannu- 

lated. One catheter was used for blood pressure and heart rate record

ings. The other v e s s e l  provided arterial blood for PCO2 , PO2 , pH and

hematocrit measurements and also  served as the site  for co llec tio n  of 

free-flowing reference samples used to ca lcu late cardiac output.

ix



Each animal was sacrificed  immediately following the third isotope 

in jection and the heart, both kidneys, spleen and both femurs (marrow 

and bone separated) were removed, weighed fresh and ashed overnight 

at 550° C. Every tissue contained three isotopes, each  representing a 

flow rate measurement during one of the time periods. D issolved soft 

t issue samples and bone ash were counted and appropriate equations 

used to ca lcu la te  percentage distribution of cardiac output, blood flow 

and tissue res is ta n ce  for each time interval.

Fifteen minutes after hemorrhage there was a significant decrease in 

cardiac output, blood pressure, arterial pCC>2 ; while hematocrit and 

heart rate were significantly increased. These changes were accom

panied by significantly  reduced blood flows to the heart, kidney, spleen, 

whole bone, marrow and osseou s tissue with corresponding res istan ce  

in creases in a ll  t issu es  except the heart. Spleen, whole bone, marrow 

and osseou s tissue received a decreased percentage distribution of car

diac output while there was an increased percentage going to the heart. 

Renal flow fractions remained unchanged.

Sixteen hours following hemorrhage cardiac output, heart rate and 

arterial pCC>2 returned to normal while pC>2 increased and hematocrit 

decreased. Arterial pH was unchanged at both post-hemorrhage measure

ments. Heart and marrow blood flows were significantly increased and 

kidney flow rates continued to be lower than control valu es . Perfusion 

of whole bone, spleen and osseous tissue returned to pretreatment lev e ls .

x



Tissue res is ta n ce  decreased in the heart, spleen, whole bone and mar

row but remained elevated in the renal vascular bed. O sseous tissue 

res istan ce  decreased but not significantly . Percentage distribution of 

cardiac output increased in the heart, whole bone and marrow and de

creased in the kidney while the spleen and osseous tissue values 

returned to normal.

Normal hemodynamic properties of bone showed parallel blood 

supplies to marrow and osseou s tissue with higher vascular res istan ce  

in the latter. It was estimated that total sk eleta l t issue plus marrow 

received 16% of resting cardiac output.

The response 15 minutes post-hemorrhage demonstrated the charac

teristic  d ecrease  in regional blood perfusion with a relative preservation 

of flow to the heart. There was a uniform reduction of blood flow within 

the femur giving no evidence of preferential shunting away from osseous 

tissue in favor of marrow.

Sixteen hours after hemorrhage blood flow to the various soft t i s 

sues reflected continuation of a stress  state where both vasodilatory 

metabolic and vasoconstrictive  neurohumoral factors were s t i l l  operative. 

A se lec tiv e  blood flow increase not seen in surrounding osseou s tissue 

was observed in marrow. The response seen in marrow may be a prepara

tory mechanism for the increased metabolism asso cia ted  with erythro

poietic and reticuloendothelial activation and may represent a direct 

vasoproliferative e ffe c t  of erythropoietin on marrow vasculature.



LITERATURE REVIEW

Introduction

Bone is  a highly specialized form of connective tissue and it is the 

most complex of a ll  body building materials. Its unique physical and 

chem ical ch aracter is tics  are reflected in the diversity of its  functions. 

First, and probably the most obvious function of osseou s tissue is  in 

providing structural support and protection for bodily organs. The 

arrangement of co llagen  fibers and mineral crysta ls  makes bone aptly 

suited to this function. Although three times lighter, bone has the ten

s ile  strength of c a s t  iron with greater flexibility  allowing for absorption 

of sudden impacts. For most humans, strength and unity of the skeletal 

system is  maintained throughout life . Growth and remodeling occur in 

response to m echanical stress  and are influenced by various hormones.

A second major function of the skeletal system is in mineral homeo

s ta s is .  Bone is an important component for maintaining the magnesium, 

calcium, hydrogen ion, sodium and phosphate concentrations of blood 

within narrow lim its. Here again, the structural features of bone, esp e

c ia lly  the relationship between collagen and mineral, are c r itica l factors 

determining mineral availability . It has been estimated that the total 

surface area of the bone crysta ls  in an averaged size  human skeleton 

exceed s 100 acre s .

1
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Contained in the bone crystal are two storage pools of calcium in

timately involved with mineral hom eostasis. The first is  called  "e x 

changeable bone" and it is  a readily available source of calcium which 

can rapidly respond to changes in plasma calcium equilibrium by simple 

membrane transfer of calcium. The second pool, which comprises the 

largest percentage, is  called "non-exchangeable" or "deep bone" and it 

can be mobilized with time in response to hormonal or pathologic stimu

lation.

Both of the major physiological functions of bone are dependent 

upon an adequate blood supply and any alteration in blood flow can d is

rupt these normal p ro cesses . Knowledge concerning the adequacy of 

the vascular supply of bone and bone marrow under normal and pathologi

ca l  conditions is  incomplete. The quantitative measure of bone blood 

flow is  remarkably difficult because of the involved vascular pattern and 

the rigidity of the t issu e . The design and application of methodologies 

dealing with this sub ject has provided a stimulating challenge for many 

students of bone physiology.

In d iscu ss io n s  of bone circulation, the long bones of the extremities 

( i . e . ,  femur and tibia) are the generally used model. These bones repre

sent a b as ic  component of the sk eleta l system and their size  and 

a c c e ss ib il i ty  make them more suitable for study.

The present investigation involves the quantitative measurement of 

bone blood flow and its  response to reversible hemorrhagic shock. The
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following review will cover b asic  physiological and anatomical asp ects  

of bone circulation including the different methodologies used for 

measuring bone blood flow. The circulatory dynamics of the growing 

skeleton represents an entire study in itself , therefore only the c ircu la

tion of mature bone w ill be considered here. For detailed accounts of 

the developmental asp ects  of bone hemodynamics see Brookes (1) and 

Trueta (2). Included in this d iscu ssion  will also be a short summary of 

the general response to reversible hemorrhagic shock.

Anatomy of Bone Blood Flow

A b asic  step in studying the physiology of blood flow is an anatomi

c a l  description of the vascular distribution within an organ or t issue.

The technique used in many organs, including skeleta l t issu e , involves 

the vascular infiltration of a contrast medium such as India ink or barium 

sulfate which can  then be visualized within the arterial system. Based 

on such methods, the following description of bone blood flow can be 

made. A pictorial description is  represented in Figure 1.

Regardless of sp ec ies , long bones have three main sources of blood 

supply: 1) the nutrient v e s s e ls  (usually one or two) which branch from 

the main limb artery and enter the diaphysis through a nutrient foramen,

2) the multiple metaphyseal arteries which supply proximal and d ista l 

ends, and 3) the periosteal v e s s e ls  which run transversely to the long 

ax is  of bone (3). Arterial and venous distributions generally run together.
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A central vein drains nutrient arterial channels and parts of the diaphy

seal cortex. In metaphyseal regions, veins normally accompany the 

local supplying artery.

Upon entering the diaphysis the nutrient artery immediately divides 

into ascending and descending limbs, each directed toward a corres

ponding metaphysis. Both divisions give off radially oriented branches 

which pierce the cortex. Terminal ends of ascending and descending 

branches help supply blood to the ends of the bones and anastomose 

freely with metaphyseal v e s s e ls  (4, 5, 6). These anastom oses are impor

tant because they permit metaphyseal arteries to sustain inadequate 

medullary circulation when the nutrient artery has been ruptured by frac

ture or surgery (7, 8).

The role of periosteal and marrow v e s s e ls  in supplying cortica l bone 

is controversial. Most workers agree that cortex vasculature is joined 

to both periosteal and endosteal v e s s e ls ,  with more numerous and larger 

v e s s e ls  coming from the latter (9). Branemark (10) showed that cap il

laries leaving marrow arterioles dip into Haversian can als  and swing 

back into the marrow emptying into collecting  sinusoids. C apillaries 

from marrow arterioles also drain directly into marrow sinusoids. This 

scheme provides separate flows to marrow and cortex from the nutrient 

artery. Recently De Bruyn ed aL (11) observed few direct connections 

between marrow arterioles and sinusoids but centripetally  oriented osteal 

v e s s e ls  of marrow origin supplied the main drainage into the sinusoidal
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network. Marrow was described as a portal system where sinus blood 

had already passed through diaphyseal cortex from both marrow and 

periosteal arterio les . Brookes £ t  al. (12) argue that cortica l blood does 

not come from the periosteum but strictly  from marrow sources. Flow 

direction is  entirely centrifugal, exiting through cortical cap illa r ies . 

Trueta (2) supports the concept of a dual blood supply to bone cortex, 

each with a different function. The outflowing nutrient-marrow system 

would be responsible for erythropoiesis, while the inflowing periosteal- 

cortical circu lation would be more c lo se ly  tied with o steo g en esis  and 

mineral metabolism.

Medullary reaming and periosteal stripping have been used to destroy 

the corresponding blood supply to bone in order to a s s e s s  its  relative 

contribution. Using these methods Macnab (13) stated that cortica l 

flow comes almost totally from branches of the nutrient artery.

Rhinelander (14), Trueta (15), and others (16,4) concluded that nutrient 

v e s s e ls  supply o n e-h alf  to two-thirds of the cortex, the remainder coming 

from periosteal sources.

Despite apparent contradictions regarding anatomic asp e cts  of bone 

blood supply, one concept remains consistent throughout: bone is  a 

highly vascular tissue with abundant anastomoses which provide a po

tential reserve supply in case  of injury to one of the main afferent

sources.
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Methods for and Results of Bone Blood Flow Measurement

Numerous attempts have been made to a s s e s s  the quantitative 

asp ects  of bone blood flow. The following section summarizes the 

methods and results  from numerous investigations of bone blood flow 

during widely different physiologic and pathologic conditions.

It has often been stated that mature bone, because of its insignifi

cant metabolic needs, requires a very small vascular supply. Early 

measurements of bone blood flow tended to support this concept. How

ever, Rasmussen and Bordier (17) have described recent studies showing 

that mature bone is  m etabolically active with a blood flow rate much 

higher than previously assumed. Circulation through bone equals or 

exceeds that of resting sk e le ta l muscle (18). This relatively high flow 

rate is thought to be related to bone's homeostatic function in mineral 

balance (19).

In ideal situations blood flow to a tissue can be measured directly 

by using flowmeters or collecting the venous effluent. Bone does not 

readily lend i t s e l f  to this type of measurement because of the multi

plicity of arterial and venous channels. Because of this, almost a ll  a t

tempts to measure bone blood flow have involved indirect methods; 

however, a few studies have utilized direct means. Drinker et a l. (20) 

in 1922 devised a method of perfusion by cannulating nutrient v e s s e ls  

and collecting  the venous outflow. Blood flow ranged from 2 to 60 ml/min 

under varying conditions. Cumming (21) measured marrow flow through
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the rabbit femur by co llecting  blood from the nutrient vein and estimated 

a mean flow rate o f 51 m l/m in/100 g. He observed a wide variation 

which he thought due to age and marrow activ ity . Hypoxia and hyper

capnia increased flow while epinephrine and norepinephrine decreased 

flow. Based on an estimated total body weight, marrow blood flow was 

calculated to be 7 .6%  of the resting cardiac output (22). Post and 

Shoemaker (23) studied relative changes in blood flow to the canine 

femur by cannulating both upper and lower venous efflux system s. They 

concluded that nutrient v e s s e ls  were not as important as ep iphyseal- 

metaphyseal v e s s e ls  in draining blood from the femur. Shim and 

Patterson (24) used the direct method of venous cannulation to study con

trol factors in bone blood flow. They reported a reactive hyperemia after 

femoral artery o cclu sio n  and concluded bone circulation was controlled 

by neural, hormonal and metabolic factors at both lo ca l and system ic 

lev e ls .

Blood flow to bone can also be studied by methods which rely on 

certain  blood flow dependent parameters such as temperature or intra

medullary pressure. Larsen (25), while studying diaphyseal necrosis in 

1938, was first to measure intramedullary pressure by inserting a water 

manometer into the femoral diaphysis of dogs. He reported normal values 

of 3 0 to 40 mm Hg. Stein ej: a l. (26) observed rhythmical fluctuations in 

marrow pressure synchronous with respiratory phases. They also noted 

a significantly  higher pressure within the diaphysis compared to the
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epiphysis. Azuma (27) reported a similar pressure differential between 

epiphysis and diaphysis in mature dogs indicating a vascular barrier. 

However, Cuthbertson et al. (28) showed that when the nutrient artery 

was ligated, there was only a transient drop in diaphyseal pressure 

suggesting co lla tera l c irculation from metaphyseal v e s s e ls .  This 

apparent discrepancy was further studied by Cuthbertson ejt a l. (29) and 

they did not find a consistent difference between epiphyseal and diaphy

seal pressures in adult dogs when measured over an extended period. It 

appears that the manner and degree of union of arterial fie lds on either 

side of the epiphyseal scar is variable but is  sufficient to maintain mar

row flow after nutrient artery ligation.

In a ll  of the above studies it was assumed that marrow pressure was 

related to blood flow but there was some doubt as to the validity of this 

assumption (30). However, in a series of studies, Shaw (31 ,32) showed 

good correlation between relative blood flow through marrow and marrow 

pressure. He used a heated thermocouple to measure blood flow while 

simultaneously recording intramedullary pressure. In jections of epin

ephrine, norepinephrine, acetylcholine, pituitrin and hexamethonium all 

produced a fa ll  in pressure and blood flow, while histamine increased 

both. Valderrama and Trueta (33), using the same heated thermocouple 

technique, studied the relationship between muscle movement and bone 

circulation and stated that muscle action greatly influences direction and

distribution of blood flow within bone. Thus muscle action during hind 

limb movement could alter flow and pressure within marrow. The heated
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thermocouple method of measuring blood flow with the simultaneous 

recording of marrow pressure has recently been used to study the e ffects  

of compression and decompression on bone blood flow (34, 35). During 

compression marrow pressure and flow fe ll  while the e f fe c ts  were 

reversed during decompression.

M ichelsen (36, 3 7) has recently made a detailed study of bone mar

row hemodynamics. Blood was infused into the nutrient artery at known 

rates and perfusion pressures while both intramedullary venous pressure 

and bone marrow pressure were recorded. At normal perfusion pressures 

flow ranged from 10 to 120 m l/m in/100 g of wet marrow. His results 

showed that bone marrow has both an arterial and venous res is tan ce  and 

the relative contribution of these two systems to total outflow varies 

with perfusion pressure.

Within the last  year a new method has been introduced to study bone 

marrow pressures utilizing a miniature implantable pressure transducer 

(38). Normal bone marrow pressure and medullary venous pressure were 

found to be nearly equal at about 17% of the system ic blood pressure.

In this preparation, the primary determinant of marrow pressure was 

thought to be osseo u s venous resistan ce  located at or near the points of 

exit from the marrow cavity. These studies show that the arterial v e s 

se ls  within marrow are responsive to vasoactive chem icals  and can alter 

res is tan ce  to flow while the venous res istan ce  v e s s e ls ,  which are also 

vasoactive, are located within bone. In conclusion, it can be stated
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that the major concensus of the previous studies was that the circulatory 

dynamics of bone marrow are anatomically and functionally interconnec

ted with the surrounding osseous tissue.

It should be emphasized that there are certain  important limitations 

in the previously described studies. Although valuable for measurement 

of qualitative changes, litt le  accurate quantitative data are obtainable 

with these techniques. Because of this it was deemed desirable to 

develop a method which could give reliable quantitative information on 

bone blood flow. Introduction of the isotope clearance technique uti

lizing the Fick principle (total exchange/arterial-venous difference) has 

produced extensive resu lts  from a number of investigations.

Frederickson et a l. (39) measured blood flow to rat. bone using a 

bone-seeking isotope (^^Ca). The authors reported values for rat femur 

ranging from 10 to 30 m l/m in/100 g wet weight. The validity of the 

clearance method as an indication of osseous blood flow depends on 

the bone having co n sisten t effic iency in taking up isotope from blood 

passing through it. Validation studies performed by various authors have 

shown incomplete extraction of bone-seeking isotopes. One group (40) 

found extraction ratios for ®^Sr and ^ C a  to be 43 and 55%, respectively . 

Tibial flows averaged 7. 7 m l/m in/100 g in young dogs and 5 .6  m l/m in/ 

100 g in mature anim als. Copp and Shim (41) found an extraction ratio 

of 76% for ®^Sr in jected into the tibial artery of dogs and suggested that 

arteriovenous shunting might cause the lower extraction rate. Mean flow
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rates were reported at 10 ml/min/100 g. Kane (18) fe e ls  a more likely 

explanation is  that the k inetics  of exchange of these isotopes between 

bone and blood is  slow relative to the rate of their inflow. He suggests 

the calculated values from these studies could be corrected by dividing 

the isotope c learance by the extraction ratios giving flow rates c lo se  to 

13 m l/m in/100 g.. Ray et al. (42) used ^ C a  and 8f>Sr clearance rates 

corrected for incomplete extraction and found the mean flow to canine 

femur was 8. 22 ± 0. 46 m l/m in/100 g.

Strontium-85 (43) and ®^Rb (44) clearance have been used to study 

the e f fe c ts  of denervation on bone blood flow. A 5 to 45% increase was 

seen on the treated side and was considered the result of decreased 

sympathetic tone in the hind limb. Semb (45) used the isotope clearance 

technique to show that blood flow to bone d ecreases in itia lly  following 

hind limb immobilization compared to the normal contralateral tibia 

(25 m l/m in/100 g). Flow reached and exceeded normal after a week and 

was linked to an increased co llateral return of blood from marrow and 

osseou s v e s s e ls  compensatory to the loss  of the "m uscle pump".

Shim e t  a l. (46) using clearance techniques provided quantitative 

data on contributions of blood supplied by the different arterial systems 

of long bones. The nutrient artery contributed 46% of the normal supply 

of the entire rabbit femur (9 .60  ± 0 .4 7  m l/m in/100 g) and at leas t  71% of 

the shaft including the marrow. Thirty-seven and 33% of the total inflow 

of upper and lower epiphysis respectively  came from the nutrient artery.
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This group also  studied circulation through different regions in long 

bones (47). The average rates of blood flow of the femoral head, tro

chanter, diaphysis and condyle regions were 18, 10, 7 and 12 m l/m in/ 

100 g, resp ectively .

Sim and Kelly (48) demonstrated a c lo se  relationship between 

remodeling and osseo u s blood flow as indirectly determined by ^ S r  

c learan ce . The results suggested a powerful metabolic factor regulating 

flow according to the t issu es  need for nutrients. Using the same tech

niques, Laurnen and Kelly (49) studied blood flow ch aracter is tics  in 

healing fractures. They showed an increased circulation rate the first 

day following fracture which reached a maximum of 6 times normal at 

2 weeks. Kane and Grim (50) measured hind limb blood flow simul

taneously in dogs using ^ K  and ^^Rb clearance and by venous outflow 

co llection . The distribution of flow was also determined by a radio

active g lass  microsphere method. Potassium-42 clearance and the 

microsphere method agreed within 10% while the c learance was

somewhat higher. Perfusion rates for canine femur were 1 2 -1 8  m l/m in/ 

100 g.

Van Dyke e t  a l .  (51) estimated skeletal blood flow from clearance 

measurements o f 1°F, assuming complete extraction by bone. They c a l 

culated total sk e le ta l flow in rats to be 2 .4  ml/min, which represents a 

minimum value because of the possibility  of incomplete extraction. 

Recently W octton (52) has compared this technique with the distribution
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of 5^C r-labeled  microparticles (40-50 u dia) in the rabbit femur and 

found good comparisons between the two. The results showed that about 

40% of the afferent blood flow to the rabbit femur flows through a cap il

lary bed in the marrow before reaching bone mineral.

Arteriole blockade has been previously used by Brookes (53) to 

study cardiac output distribution in the rat. Ion-exchange resin  particles 

labeled with ^ F e  (3 0 -70  u dia) were used with flow rates to the total rat 

skeleton recorded at 27. 55 ± 0. 96% of the cardiac output.

Chromium-51-tagged red blood c e l ls  have also been used in quanti

tative bone blood flow studies (54). The method involves measurement 

of the amount of ^ C r - la b e le d  RBC's delivered to bone. Perfusion rate is 

determined by measuring the concentration of tagged c e l ls  in bone from 

the time they first flow into bone until equilibrium is  reached. Using 

this method the rabbit tibia averaged 16 m l/m in/100 g. Brookes (55) 

used this method to ca lcu late  flow to compact and cancellous bone and 

bone marrow. The results show that cancellous flow in the metaphysis 

had the highest flow rates followed c lo se ly  by marrow then cortica l bone. 

The differences in hemodynamics observed suggested differing local 

vascular factors present within the osseous circulation.

Tissue washout of radioactive iodoantipyrine has recently been used 

to study bone circulation (56-59). Blood flow to cortical bone in canine 

tibia was 0. 76 m l/m in/100 g with marrow flow being four times as great. 

About 70% of the total perfusion volume of the nutrient artery went to
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diaphyseal cortex and varied directly with perfusion rate. It was also 

found that blood flow and mineral deposition in fractured bone are c lo se ly  

related and the main control mechanisms for mineral deposition under 

these conditions is  blood flow and not a change in co rtica l  bone cap il

lary permeability.

The many problems and assumptions asso ciated  with use of the pre

vious techniques led to the development of more reliable methods. The 

relatively new method for measuring regional blood flow using radioac- 

tively labeled microspheres has provided a mechanism for studying flow 

to small or u n a cce ss ib le  regions. The size , composition and specific  

gravity of the new carbonized microspheres are more uniform than the 

labeled microparticles.mentioned previously. Within the c ircu lation  the 

spheres behave similar to red blood c e l ls  and are trapped by capillary 

beds in proportion to blood flow (60-66). This technique provides an 

excellen t means for studying bone blood flow since it is  independent of 

the metabolic activ ity  of bone.

Boelkins _et a l .  (67) utilized the microsphere technique and reported 

values for the tibia and femur blood flow in egg-laying ch ick en s. The 

relatively high flow rates in this sp ec ies  was thought to re f lec t  the im

portance of the skeleton as a source of eggshell calcium. In another 

recent study, Boelkins _et aj.. (68) showed rapid blood flow changes in 

the avian skeleton asso cia ted  with plasma calcium alterations after

in jection of parathyroid hormone. A decreased flow was asso ciated  with 

the hypocalcem ic phase, while the flows increased during the hypercal-
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cernic response to parathyroid hormone. These results emphasize the 

importance of blood flow in mobilizing mineral stores from bone. Lunde 

and M ichelsen (69) used 15 u diameter microspheres labeled with ®^Sr 

to measure flow rates in the rabbit femur. Cortical diaphyseal bone 

averaged 1 .0  ± 0 .7  m l/m in/100 g while mean marrow flow was 25. 0 ± 

1 4 .6  m l/m in/100 g. Maloney _et al. (70) utilized microspheres to study 

the relative changes in bone marrow perfusion after nutrient artery liga

tion and marrow regeneration. Their findings confirmed the presence of 

a highly e ffectiv e  co lla tera l circulation to the medullary cavity  and that 

marrow regeneration is  associated  with an increased blood flow.

Physiological C haracteris tics  of Bone Blood Flow

The accumulated data indicate that bone blood flow is  controlled by 

neural, hormonal and metabolic factors. Sympathetic nerve stimulation 

d ecreases  bone perfusion by local arterial vasoconstriction . This 

response is a lso  seen following in jection of endogenous vasopressor 

hormones. Both parasympathetic nerve stimulation and in jected  a ce ty l

choline lower bone blood flow largely by decreasing system ic blood 

pressure.

Various metabolic factors including acid metabolites, pH, PCO2  and 

PO2  influence blood flow to bone. It must be remembered that the long 

bone is  an organ system composed of cortical bone, can ce llo u s bone and 

marrow. Each component has its  own metabolic requirement which is 

reflected in the differing flow rates . The c lo se  adjustment of blood flow
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to the various energy-dependent ac tiv ities  v/ithin bone emphasize the 

importance of a metabolic factor coupling flow to tissue nee.ds.

It appears blood flow to bone is quite rapid for a tissue composed 

of relatively few c e l l s .  This puzzling fact may be explained when one 

considers the possibly  important relationship between blood flow and 

bone mineral hom eostasis . Parathyroid hormone, which is  known to 

stimulate mineral mobilization from bone, also may influence bone blood 

flow (68). Future research may reveal that the many factors controlling 

blood mineral lev e ls  a lso  affect bone blood flow.

Hemorrhagic Shock

Circulatory shock means a decreased cardiac output to a point where 

t issu es  do not receive an adequate blood supply. Anything which reduces 

venous return, such as diminished blood volume, decreased vasomotor 

tone or increased system ic resistance , can result in shock. Hemorrhage 

is  probably the most common cause of hypovolemic shock. If shock is 

severe enough to cause deterioration of the circulatory system then a 

state of progressive or uncompensated shock begins and death ensues. 

There are, however, several basic  mechanisms which attempt to return 

cardiac output and arterial pressure to normal lev e ls .  These include 

(1) the baroreceptor reflex which stimulates the sympathetic nervous 

system; (2) a central nervous system ischem ic response which cau ses  

an even more powerful sympathetic stimulation; (3) reverse s tress  relaxa

tion property of vascular smooth muscle which allows v e s s e ls  to contract
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resulting in better filling of the circulation; and (4) various compensatory 

mechanisms that return blood volume back toward normal including in

creased fluid retention by the kidney, increasing absorption of fluid by 

the gastrointestinal tract, absorption of fluid from in terstit ia l  spaces of 

the body, and increased thirst and salt craving.

There has been a volume of literature published which describes 

regional blood flow changes during the above described hemorrhagic 

conditions. Much of the data variability on responses in various c ircu 

latory beds a r ise s  from differences in experimental design, sp ec ies , and 

depth and type of anesthesia  (71). Perhaps the most reproducible results 

are an increased fraction of cardiac output to heart, brain and liver 

during hypotension, demonstrating se lectiv e  preservation of flow to vital 

organs (72-74). The initial response to hemorrhage in other t issu es  is  

thought to be related to the degree of alpha-adrenergic innervation. 

Greater numbers of alpha-type receptors means greater vasoconstriction  

and hence flow reduction. However, this model does not always hold, 

for superimposed upon these neuronal e ffec ts  are hormonal and local 

metabolic factors which demonstrate variable potencies within different

regions of the vascu lar tree.



STATEMENT OF THE PROBLEM

Estim ates of total skeleta l blood flow have been as high as 25 per

cent of resting cardiac output with approximately one-third of this sup

plying the bone marrow. Relatively little  is  known of the circulatory 

dynamics of this highly vascular organ system in response to hemorrhagic 

hypotension. Blood flow to marrow becomes increasingly important in 

periods of anemia or blood loss  because of its  hematopoietic function. 

Furthermore, it  is  not known if the high bone-blood perfusion rate a s s o 

ciated with active hematopoiesis is  sp ecific  for marrow tissu e  or involves 

an increased flow through the surrounding bone. Separating marrow and 

osseou s flow rates has been difficult due to lack of an appropriate 

method.

The purpose of this investigation was two-fold. First, to es tab lish  

a valid, quantitative method for separating marrow and bone blood flow. 

Second, to u tilize  this method to compare hemodynamic changes in bone 

versus marrow following mild hemorrhagic shock in unanesthetized 

rabbits.
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MATERIALS AND METHODS

Animals

White New Zealand rabbits (Qryctolacjus cuniculus) weighing 2 .9  -  

3. 7 kg were used in all experiments. The animals were raised in a 

germ-free isolated environment and purchased from Broken Pine Rabbitry 

(Chelsea, Alabama). Each animal was housed in an individual cage with 

a c c e s s  to food and water ad libitum.

Experimental Protocol -  Overview

The purpose of this study was to characterize cardiovascular chan

ges in bone and bone marrow following reversible hemorrhagic hypotension 

using the radioactive microsphere technique of regional blood flow 

measurement. Microspheres (15 u dia) were in jected into unanesthetized 

rabbits via a chronically implanted left atrial catheter. Individual micro

sphere isotopes, each with a different label, were in jected at three time 

intervals. First, as a control value; second, 15 minutes following a 

standardized, non-fatal hemorrhage; and third, 16 hours post-hemorrhage. 

Cardiac output, blood pressure, heart rate, blood gas, blood pH and 

hematocrit values were a ll  measured at the time of each microsphere 

in jection . Each animal was sacrificed immediately following the third 

isotope in jection  and the heart, both kidneys, spleen and both femurs 

(marrow and bone separated) were removed and prepared for counting.
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Blood flow, percentage distribution of cardiac output and tissu e r e s is 

tance were calcu lated  for each time period. Because a ll three determina

tions were made in the same rabbit, additional groups of animals corres

ponding to the second and third measurements were eliminated.

Surgical Preparations

A previously reported technique of chronic left atrial catheterization 

for in jection  of microspheres was used (75). Briefly, animals were 

weighed and anesthetized with sodium pentobarbital (3 0 mg/kg) via a 

marginal ear vein. The trachea was intubated orally and respiration was 

maintained mechanically (Harvard Apparatus Respiratory Model 661) at 

30 strokes/m in and 65 c c /s tro k e .  The left thorax was shaved, washed 

and draped for sterile  surgery. A 3 -4  cm vertical incision  was made 

between the third and fourth ribs directly over the heart. Thoracic and 

intercostal m uscles were carefully separated and a se lf-reta in ing  retrac

tor was placed between the ribs to expose the heart. The pericardial 

sac was cut and the atria gently grasped with non-crushing forceps while 

a small in c is ion  was made in the appendage tip. A 25-3 0 cm long poly

vinyl catheter (0. 03 cm ID) fitted with a small terminal cuff was inserted 

through the atrial opening and secured to the atrial muscle with a stay 

suture (4-0 Ethiflex). The forceps were released and the catheter tie 

was checked for oozing of blood. After removing the retractor, the ribs 

were brought together using 2 -0  chromic suture and the muscle layers

were closed with 3 -0  silk . A dorsal neck incis ion  was then made and a



12-gau ge  needle  inserted  to guide the ca th e te r  su bcu taneously  from the

chest  exit  to the neck for exteriorization. Final closing of chest  and 

neck (3-0 silk) incis ions was followed by removal of the endotracheal 

tube and an intramuscular in jection of procaine penicill in (150, 000 units). 

The exteriorized catheter was flushed with heparinized saline (500 u n i ts /  

ml) and a small plugged needle was inserted to prevent back-f low. The 

animals were allowed to recover for 4 -1 2  days.

On the day of the experiment the animal was placed in a moderately 

restrict ive plexig lass  restrainer and both ear arteries were dissected  out 

under local anesthes ia  (Lidocaine). A 15-20  cm long polyethylene 

catheter (PE-50) was inserted and secured into each artery.

Blood Pressure and Heart Rate Measurement

Blood pressure and heart rate were monitored via the right ear artery 

catheter which was connected to a P23A Statham pressure transducer. All 

tracings were recorded on a Grass Model 7C Polygraph. Mean blood 

pressure was determined directly by jacking the blood pressure pre-amp 

into a second channel calibrated for mean pressure display.

Blood Gas, pH and Hematocrit Measurement

Arterial blood was sampled from the left ear artery catheter using a

1 .0  cc  syringe and immediately analyzed (IL pH/Blood Gas Analyzer, 

Model 313) for pH, pC0 2 , and p02 .  A portion of the arterial s'ample was
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placed In heparinized capillary tubes, spun down (Clay-Adams Micro 

Hematocrit Centrifuge) and hematocrit values read on a micro-hemato 

reader (Clay-Adams).

Hemorrhage

The shock model used in this study was adapted from previousl 

reported designs (76, 77) based on withdrawal of a constant  fraction 

the total blood volume. Homeostatic mechanisms controlling flow r 

justments which occur during reversible hemorrhagic shock were all 

to operate without outside interference ( i . e . ,  maintenance of const  

hypotension or reinfusion of shed blood).

Blood from an ear artery was continuously withdrawn at the rat 

1 .91  ml/min (Harvard Apparatus Pump, Model 901) until 20 ml/kg body 

weight was co l lec ted .  Bleeding time ranged between 3 0 and 45 minutes 

depending upon animal weight. This amount of blood loss  roughly corres

ponds to 3 8 % of total blood volume in rabbits (78, 79).

Radioactive Microspheres 

Isotopes

Radioactive microspheres, 15 ± 5 u in diameter were purchased 

from the Nuclear Products Division of 3M Company, St. Paul, Minnesota.  

Microspheres were suspended in 20 ml of sterile 20% dextran. Isotopes 

used and their respective specif ic  ac t iv i t ies  were cerium-141 ( ^ * C e ) ,



25

10 mCi/g; chromium-51 ( ^ C r ) ,  30 mCi/g; and strontium-85 (®^Sr),

10 mCi/g.

To reduce random errors in distribution to an individual tissue at 

least  400 microspheres should be present within that tissue (64). Es t i 

mation of the number of spheres can be made based on tissue activity if 

the counts per sphere are known.

Estimation of counts/sphere

A small aliquot (0. 05 uCi) of each microsphere isotope was 

diluted in 20 ml of 10% dextran containing 0.5% Tween-80.  After vigorous 

shaking on a vortex mixer, 0. 05 ml of this solution was drawn into a

1 . 0  cc  plastic  syringe and spotted on the margin of millimeter graph 

paper. Using a g lass  slide for streaking, the microspheres were spread 

across  a small segment of the graph paper. In this way, between 200 

and 400 microspheres could be deposited on one square centimeter (err/) 

and eas i ly  visualized under a dissecting microscope. For each isotope

9
the number of  microspheres present on three -  one cm areas was counted 

in triplicate and averaged. The radioactivity of these paper squares was 

then counted and the counts per minute (CPM) divided by the number of 

spheres giving CPM/sphere as follows: 85sr, 3 3  CPM/sphere; 5^Cr,

12 CPM/sphere; and ^ * C e ,  30 CPM/sphere. A half- l i fe  plot was made 

for each isotope so that the CPM/sphere could be determined at any time.

Inject ion procedure

The stock in jection vial was vigorously shaken on a vortex 

mixer for 3 0 seconds.  An aliquot of microspheres was drawn into a
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1 . 0  cc  plastic  syringe and further agitated by moving the spheres back 

and forth through two 1 .0  cc  syringes connected via a 3-way stopcock.

The microspheres were then transferred to a small volume (2 cc) g lass  

inject ion vial fi lled nearly to the top with saline; a small air bubble was 

retained to fac i l i ta te  mixing.

The in jection vial had 22- and 18-gauge s ta in less  s tee l  barrels 

epoxyed into the top. The left atrial catheter was connected to the 22-  

gauge hub via a polyvinyl catheter (0.03 cm ID) with two 3-way stop

cocks  in between. The 18-gauge hub was connected via a polyvinyl 

catheter (0. 04 cm ID) to a 10 cc  syringe filled with 0 .9% sal ine at 37° C.

Just prior to in jection the vial was counted for total radioactivity.  

At the time of in jection the vial was agitated on a vortex mixer for 3 0 

seconds, inverted and constantly shaken while approximately 8  ml of the 

warm saline was in jected through the vial flushing the microspheres into 

the heart. The in jection lasted about 60 seconds and was followed by a 

1 ml 37°  C sal ine flush from the 3-way in the left atrial  catheter.  Blood 

pressure and heart rate were monitored continuously during the isotope 

injection. The in jection vial was then counted again to determine 

residual microsphere activity which was subtracted from pre-inject ion 

activity to give total injected counts.  This value was used in the e s t i 

mation of cardiac output.

Cardiac output and blood flow determinations

Cardiac output and regional blood flow were determined using 

the microsphere reference sample technique (6 6 , 80, 81). The method is
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based upon the fact that cardiac output (CO) equals a reference sample 

flow rate (F) multiplied by the ratio of total injected counts (D)/reference 

sample counts (d): CO =  F (ml/min) x D/d. Fractional distribution of 

cardiac output to an organ equals d ' /D  where d' represents total tissue 

counts. Blood flow (BF) to individual tissues can then be calculated as 

follows: BF =  CO x d ' /D .

In the present experiments reference samples were obtained by 

col lecting blood from the free-flowing left ear artery. Average reference 

sample co l lec t ion  time was 1 .5  minutes and commenced approximately 

5 seconds before and finished approximately 3 0 seconds after injection 

of microspheres. Blood was col lected and weighed (Mettler Model 

PN121Q Balance) in three tared plastic via ls .  Reference flow rates 

(ml/min) were calculated by dividing collect ion time (min) into total 

blood weight (corrected for specif ic  gravity). To permit settling of micro

spheres into a point source for counting, blood samples were hemolyzed 

by adding 1 c c  deionized water and centrifuged for 1 0  minutes at 

2000 RPM. Cardiac output was then calculated as given above and, 

following t issue counting, percentage distribution of cardiac output and 

tissue blood flows were then calculated.

Sample preparation

Following the 16 hour post-hemorrhage blood flow and cardiac 

output measurements, the animal was sacrificed with an overdose of 

pentobarbital. After checking the atrial catheter for correct placement,
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the heart, spleen, both kidneys and both hind limbs were immediately 

removed. Both femurs were cleaned of surrounding soft tissue and cut 

longitudinally using a small rotary saw (Drernel Model 300).  The marrow 

was then manually scraped from the diaphysis.  All t issues  were weighed 

fresh (Mettler H64 Analytical Balance) in tared crucibles and ashed over

night at 550° G in a muffle furnace (Blue M C o . ) .  The residual ash was 

weighed and dissolved in 4 -7  ml of 2 . 0  N HC1. This made it possible to 

transfer the largest organ into one or two small counting via ls ,  even when 

the ash residue was not completely dissolved. The counting vials  con

sisted of disposable plastic  tubes ( 12 x 75 mm, Falcon #2063)  which 

were placed in plastic scintillat ion via ls  fitted with an adapter cap 

(Packard Instrument Co. #6000152) .

Ashed bone was ground to a fine powder and placed directly into 

multiple counting via ls .  Each vial was loaded with exactly  0. 5 g of ash 

to maintain consis tent  counting geometry.

Counting procedures

All radioactivity was counted in a Packard Model 5986 Auto- 

Gamma Scintil la t ion Spectrometer. This instrument is equipped with a 

1024-channel pulse height analyzer permitting isolation of an energy 

range within a given spectra.  The entire energy spectra of an isotope 

and any areas of interest can also be visualized directly from a TV 

monitor which allows easy  adjustment of proper window settings for

isotope separation. The counter was connected to a tape c a s s e t t e /  

printer (Texas Instruments, Silent 700) for hard copy data printout.
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Total in jection vial, residual in jection vial and blood sample 

activ it ies  were counted with an open window setting of 1 - 1 0 0 0  kev. 

Counting times were normally 5, 20 and 100 seconds, respectively .  All 

t issue samples were counted for 500 seconds.

Each t issue sample contained three isotopes representing 

measurements made at the three specified time intervals.  It was n e c e s 

sary therefore to quantify the amount of each isotope present for ca lcu 

lation of blood flow and percentage distribution of cardiac output. To do 

this, the method of measuring and separating nuclides,  previously pub

lished by Rudolph and Heymann (60), was used. Because none of the 

three isotopes used in this study had any appreciable activity above its 

major peak (Figure 2), calculation of relative amounts of each nuclide in 

mixtures was greatly simplified.

A pure sample of each isotope was initially counted with an 

open window of 1 -1000  kev. Next, the pure samples were recounted with 

the appropriate sample kev energy windows set as  follows: ^f>Sr, 4 7 3 -  

575 kev; SlQr, 288-355  kev; and ^ ^ C e ,  125-180  kev. Knowing the 

total activity of each isotope, sample peak-to-tota l  window ratios could 

then be calculated for all  three window settings. Using this information 

the activity of each isotope could be determined. In the example given 

(Table 1), 4 5 .41%  of total ^ S r  activity fa l ls  within its peak energy 

channels with no contamination from other isotopes.  Therefore, when 

counting mixed isotopes,  the activity in channels 4 7 3 -575  is multiplied
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by the corresponding peak-to-total ratio ( l / .  4541) giving total 8 5sr 

counts.  Activity for 51Cr was derived similarly with subtraction of 85sr 

counts appearing in the ^iQr window. This calculation was again used 

for ^ ^ C e ,  the only difference being that two subtractions were n e ce s 

sary for ®^Sr and ^ -C r  spillover into ^ l Q e peak channels.  The count

ing equations are also summarized in Table 1.

In using the microsphere method it is necessary to make correc

tions for different sample heights and geometries to minimize errors in 

counting (82). In the present study, three different counting geometries 

were used as explained below.

Blood samples represented point sources where al l  activity 

(microspheres) was located on the bottom of the vial.  Problems a s s o c i a 

ted with nuclide separation were not encountered because each blood 

sample usually contained only one isotope and was counted with an open 

window (1 - 1 0 0 0  kev).

Ashing at 550° C destroys microspheres resulting in a homo

geneous distribution of isotope throughout the sample. Because counting 

geometries of the liquid soft tissue samples and solid bone ash samples 

were different, it was necessary  to formulate different se ts  of counting 

equations for each .

Soft tissue standards were prepared by grinding a representative 

organ (i. e . ,  kidney) into a semj-liquid with a mortar and pestle  and 

dividing it into three samples. Microsphcres were added and mixed so



TABLE 1

CALCULATION OF COUNTING EQUATIONS

Iso to pe
Window Settings (key)

1 - 1 0 0 0 4 7 3 -5 7 5  A 288-355  B 125-180  C

85Sr 84369a 38312 4157 8127
4 5 .41% 4. 93% 9.63%

51Cr 7837 ___ b 4908 873
62. 63% 11.14%

141Ce 43863 ___ b ___ b 29980
6 8 .35%

All values represent counts/min 
k No counts above background

Total 8 0  Sr activity = 2. 202A

Total SlQr activity = 1 . 597B -  2 . 202A(0. 049)
0 .626

= 1 . 597B -  0 . 173A

Total 14 l Ce  activity = 1 .4 6 3 C  -  (1 .597B -  0. 173A)0. I l l  -  2. 202A(0. 093)
0 .6 8 4

=  1 .4 6 3 C  -  0. 282A -  0. 260B
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that each sample contained a different isotope. Standards were ashed, 

prepared as described for soft t issues and counted. The counting equa

tions were then calculated as just  described. To establ ish  equations for 

bone ash, aliquots of each microsphere isotope were added to samples of 

previously ashed bone and thoroughly mixed. Each sample was then 

counted as previously described and the equations calculated.

The position of the sample in relation to the counting crystal 

was also a c r i t ica l  feature. Sample heights for the two tissue geometries 

(dissolved samples and ash) were initially set using standards and re

mained constant  throughout the experiment. Optimal counting rates were 

determined by adjusting the sample level knob on the instrument and 

observing the count rate.  The established heights were 0. 5 cm for d is

solved samples and 1 .5  cm for ash samples.

Validation Studies

Two different approaches were used to validate the assumption that 

microspheres were evenly mixed with blood and distributed to t issues  in 

direct proportion to flow following left  atrial in jection.

In two anesthetized rabbits with chronically implanted left  atrial 

catheters each central ear artery and both tibial arter ies were cannulated 

(PE-50) for reference sample col lect ions .  Multiple cardiac output deter

minations were made utilizing free-flowing ear and tibial v e s s e l s .  

Estimates were made with each micro sphere isotope under high and low

cardiac output s ituations . Comparison of cardiac output values based on
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different reference s i tes  was used as evidence for adequate mixing and 

uniform distribution. Reference samples were collected and cardiac out

put calculated as  previously described.

In the second validation experiment al l  three microsphere isotopes 

(8 SSr, SlCr,  ^-*-Ce) were combined in a single in jection vial and in je c 

ted simultaneously into the left atria of a conscious rabbit. The animal 

was sacrificed, multiple t issues  removed and counted, and flow rates 

calculated for each isotope. Theoretically, flow rates should be iden

tical and the results demonstrated excel lent  agreement within the different 

organs.

Any errors in the counting equations were randomized by rotating the 

in jection sequence of the three isotopes in each experiment.

Stat is t ics

The experimental design of  this study allowed paired-sample testing 

to be used for data analys is .  Changes in cardiac output, blood pressure, 

blood gases  and pH, heart rate and hematocrit were measured with the 

paired-sample t - t e s t .  Percentage of cardiac output, distribution, blood 

flow and tissue res is tance  were considered non-parametric data (skewed 

distributions and unequal variances);  therefore, changes were a ss e s s e d  

using the Wilcoxon paired-sample test  (83). All sample s ta t i s t i c s  were 

done on a Wang 700 Series Advanced Programming Calculator.



RESULTS

Validation of Microsphere Technique

Basic  to the microsphere technique is the assumption that complete 

mixing of spheres occurs in the left ventricle and distribution is propor

tional to blood flow. The four verification methods used here showed 

this assumption was valid.

The first technique used to demonstrate adequate mixing was to 

measure cardiac output based on the reference samples obtained from 

sampling points anterior and posterior to the heart. Estimates of  cardiac 

output (Table 2) based on simultaneously col lected reference samples 

containing microspheres from free-flowing ear and tibial arteries were 

not signif icantly different. The second validation technique involved 

comparison of blood flow to paired organs. Analyses of blood flow be

tween right and left  kidney and right and left  femur gave correlation 

coeff ic ients  of 0. 921 (P < 0. 001) and 0. 918 (P < 0. 001), respectively 

(Figures 3 and 4).  The third technique involved comparing a measured 

flow rate with one calculated on the basis  of a second reference sample. 

A highly significant  correlation was found (r =  0. 942, P < 0. 001) when 

measured tibial artery blood flow rates were compared with the corres

ponding blood flow values calculated on the bas is  of microspheres 

sampled from a free-flowing ear artery (Figure 5). The fourth technique
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involved correlating blood flow rates estimated by simultaneous inject ion 

of all three microsphere isotopes. Comparison of blood flow rate e s t i 

mates from different t issues yielded the following correlation coeff ic ients :  

8 5 S r v s 5 1 Cr, 0. 997; 85Sr vs 1 4 1 Ce, 0. 999; and 51Cr vs 1 4 1 Ce, 0. 996. 

All values were significant at the 0. 001 level.  These data indicate ade

quate mixing of microspheres with a strong relationship between distr i

bution and blood flow.

Number of Microspheres in Samples

To reduce random distribution error it is  imperative to in ject  adequate 

numbers of spheres so that a minimum of 400 microspheres lodge in each 

tissue (64). The mean and standard deviation of total in jected micro

spheres for each measurement was 403, 449 ± 151, 706. The tissue con

taining the lowest  number of  spheres was always marrow. Estimates 

(mean ± SD) for total number of microspheres present in marrow during 

the control, 15 min post-hemorrhage, and 16 hrs post-hemorrhage periods 

were as  follows: 621 ± 195, 571 ± 330 and 1032 ± 425, respectively .

Cardiovascular and Blood Gas Parameters

Cardiovascular and blood gas parameters are summarized in Table 3. 

Fifteen minutes after hemorrhage cardiac output, mean blood pressure, 

PCO2 , and hematocrit  a ll  decreased significantly (P < 0 .0 1 ) .  Heart rate 

was the only parameter that increased significantly (P < 0. 05). Blood

PO2  and pH did not change.



30

Sixteen hours post-hemorrhage mean blood pressure (P < 0 .0 5 )  and 

hematocrit (P < 0. 01) remained significantly decreased.  Arterial pC>2 

showed a slight but significant (P < 0 .05)  increase over control levels .  

Cardiac output and heart rate returned to control levels  and blood CO2  

and pH were unchanged.

Percentage Distribution of Cardiac Output

Table 4 gives the percentage cardiac output distribution data which 

is  graphically represented in Figure 6 . Distribution of cardiac output to 

whole bone (P < 0. 01), o sseou s  tissue (P < 0. 01), marrow (P < 0. 01) 

and spleen (P < 0. 05) significantly decreased 15 minutes after bleeding. 

There was a slight but significant (P < 0 .05)  increase to the heart. 

Distribution to the kidney decreased slightly but not significantly.

The 16 hour post-hemorrhage measurement revealed significant 

increase in cardiac output distribution to whole bone (P < 0. 05), marrow 

(P < 0. 01) and heart (P < 0. 05). The kidney showed an opposite reaction 

with a significant drop from control levels  (P < 0. 01). Spleen and 

osseous  t issu es  both returned to control values.

Tissue Blood Flow

Tissue blood flows (ml/min/lOO g) are summarized in Table 5 and 

graphically represented in Figure 7. All t issues had significantly de

creased flow rates 15 minutes following hemorrhage (P values between 

0 .0 5  and 0 .0 1 ) .  After 16 hours there was a significant increase  in blood
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flow to the heart (P < 0. 05) and marrow (P < 0. 01) while blood flow to 

kidney remained significantly reduced (P < 0. 01). Blood flow to spleen, 

whole bone and osseous  tissue returned to pre-hemorrhage values .

The percentage of whole bone blood flow going to marrow and osseous  

tissue is described in Figure 8 . Sixteen hours after hemorrhage there was 

a significant increase  (P < 0 .01)  in the percentage of whole bone blood 

flow going to marrow.

Tissue Resis tance

Local tissue res is tance  data is presented in Table 6  and Figure 9. 

Initial  responses to hemorrhage in kidney (P < 0. 01), spleen (P < 0. 05), 

whole bone (P < 0. 01), marrow (P < 0 .05)  and osseous tissue (P < 0. 01) 

were signif icant  increases  in res is tance to flow. Only the heart showed 

no change in res is tan ce .  This reaction reversed i tse l f  16 hrs post

hemorrhage when r e s is ta n ce s  in the heart (P < 0. 05), spleen (P < 0. 05), 

whole bone (P < 0. 05) and marrow (P < 0. 01) decreased signif icantly.

Renal res is tance ,  however, remained significantly elevated (P < 0. 05).

Control Studies

Table 7 shows relative blood flow changes in non-hemorrhaged ani

mals injected with micro spheres at identical time intervals used in the 

experimental protocol. These data agree with previous reports on 

physiological reactions of multiple microsphere in ject ions (61, 84). 

Although the values showed considerable variability with time, no con-
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sistent  changes, which might indicate a microsphere ef fect ,  were ob

served. Also, the changes were not consistent  with those observed 

after hemorrhage. Since each animal served as its own control in the 

hemorrhage studies,  more control animals were not run.



TABLE 2

CARDIAC OUTPUT BASED ON MULTIPLE REFERENCE SAMPLES

Reference Sample S i te 3

Iso to pe Right Ear Artery Left Ear Artery Right Tibial Artery Left Tibial Artery

85Sr 311b 322 349 318

141Ce 308 ___c 318 304

85Sr 250 23 8 266 243

1 4 l Ce 231 203 2 2 2 2 1 2

Mean ± S. D. 266 ± 47 279 ± 50

a All samples col lected from free-flowing catheters 
k Cardiac output in ml/min 
c Sample lost due to inadequate blood flow
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TABLE 3

CARDIOVASCULAR AND BLOOD GAS PARAMETERS BEFORE AND AFTER HEMORRHAGE

Control 15 Min Post-Hem 16 Hrs Post-Hem

Cardiac Output (ml/min/kg) 165 ± 24a 93 ± 1 0 * * 158 ± 36

Blood Pressure (mm Hg) 91 ± 1 2 b 58 ± 1 0 * * 69 ± 9* *

Heart Rate (beats/min) 281 ± 19 316 ± 3 0* 290 ± 17

Blood p 0 2 87. 2 ± 8 . 1 9 3 .9 ± 6 . 9 9 2 .8 ± 7*

Blood p C 0 2 2 8 .6 ± 3 . 4 2 1 .4 ± 5 . 5 * * 2 8 .4 ± 4 . 3

Blood pH 7 .5 7  ± 0 . 0 2 7 .5 5  ± 0. 03 7 .5 8  ± 0. 03

Hematocrit 35 ± 4 27 ± 2 * * 2 1 2 * *

a Mean ± S .D .
b Each value represents six  determinations

* P < 0. 05 based on comparisons with control values  using paired t - t e s t
* *  P < 0. 01



TABLE 4

PERCENTAGE DISTRIBUTION OF CARDIAC OUTPUT BEFORE AND AFTER HEMORRHAGE9

N Control 15 Min Post-Hem 16 Hrs Post-Hem

Heart 6 Mean
Range

3 . 2
2 . 5  -  4 . 2

4 . 3 *
2 .8  -  6 . 5

5 . 2 *
3 . 6  - 6 . 7

Kidney 1 2 Mean
Range

8 . 8

4 . 7  -  1 3 .0
6 . 9

4 . 5  -  1 1 .2
5 . 3 * *  

3 . 4  -  6 . 4

Spleen 6 Mean
Range

2 .7
1 .3  -  3 . 8

0. 7*
0 .3  -  1 .9

3 . 2
2 . 2  - 4 . 8

Whole Bone 1 2 Mean
Range

0. 52
0 .3 4  -  0 .6 6

0 . 3 7 * *
0. 26 -  0 .4 8

0 . 6 3 *
0 .3 3  -  0 .8 6

Marrow 1 2 Mean
Range

0. 14
0 .0 1  -  0. 19

0 . 1 1 *
0 .0 6  -  0. 17

0. 2 4 * *  
0. 09 -  0 .3 3

Osseous Tissue 1 2 Mean
Range

0 .3 8
0. 21 -  0 .5 6

0 . 2 6 * *  
0 .1 6  -  0 .4 4

0 .3 9
0 .3 0  -  0 .53

a Equals fraction of total in jected counts found in each organ

*  P < 0 . 05 b ased  on com parisons with control v a lu es  using the W ilco x o n  p aired-sam p le  tes t
* *  P < 0. 01



TABLE 5

TISSUE BLOOD FLOW (M L /M IN /100  G) BEFORE AND AFTER HEMORRHAGE3

N Control 15 Min Post-Hem 16 Hrs Post-Hem

Heart 6 Mean 194 153* 285*
Range 148 -  260 92 -  255 189 -  325

Kidney 1 2 Mean 387 1 7 3 ** 2 2 0 * *
Range 233 -  451 95 -  253 132 -  312

Spleen 5 Mean 774 94* 810
Range 352 -  1181 62 -  225 625 -  966

Whole Bone 1 2 Mean 28. 5 1 1 . 4 * 3 2 .6
Range 1 3 . 8 -  3 9 . 7 7 . 8  -  13 .6 9 .6  -  5 1 .2

Marrow 1 2 Mean 29. 7 1 3 . 7 * * 4 8 . 2 * *
Range 22. 3 -  36.  7 8 . 0 -  20 .3 1 8 . 0 -  77 .3

Osseous Tissue 1 2 Mean 2 1 . 6 8 . 4 * * 2 0 . 6

Range 8 . 6  -  3 0 .6 4 . 7 -  12 .3 9 .6  -  3 0 . 0

a Blood Flow = % Distribution CO x  CO
Organ Weight

*  P < 0. 05 based  on com parisons w ith control v a lu e s  u sin g  the W ilco x o n  p aired -sam p le  te s t
* *  P < 0. 01



TABLE 6

TISSUE RESISTANCE/100 G TISSUE BEFORE AND AFTER HEMORRHAGE3

N Control 15 Min Post-Hem 16 Hrs Post-Hem

Heart 6 Mean 0 .4 7 0 .4 9 0. 24*
Range 0 .3 8  -  0 .63 0 .2 5  -  0. 93 0. 18 -  0 .3 4

Kidney 1 2 Mean 0. 23 0. 4 0 * * 0 . 3 2 *
Range 0. 19 -  0 .3 2 0 . 1 9 -  0 . 6 9 0. 19 -  0 .4 9

Spleen 5 Mean 0. 14 0. 96* 0 . 08*
Range 0 .0 6  -  0 . 28 0 . 2 0 -  1 . 18 0 . 06 -  0 . 1 2

Whole Bone 1 2 Mean 3 . 7 2 5 . 2 5 * * 2 . 6 1 *
Range 1 . 8 9  -  6 . 94 3 . 3 7 -  7 . 0 0 1 .4 6  -  6 . 7 8

Marrow 1 2 Mean 3. 16 4. 99* 1 . 7 2 * *
Range 2 . 0 4  -  4.  56 2 . 8 4  -  9.  23 0. 71 -  3 . 6 0

Osseous Tissue 1 2 Mean 5 . 3 4 8 . 1 0 * * 3 . 5 9
Range 2 . 6 8  -  11 . 75 4 . 6 8  -  11. 63 1 . 6 8  -  6 . 7 8

a Resis tance = Mean Blood Pressure 
Blood Flow /M in/100  G

*  P < 0. 05 based  on com parisons w ith contro l v a lu e s  using  the W ilco x o n  paired -sam p le  te s t
* *  P < 0 . 01
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TABLE 7

TISSUE BLOOD FLOW IN CONTROL ANIMALS

Tissue First Estimate3  Second Estimate*3 Third Estimate0

Heart 1 0 0 97 80

Kidney 1 0 0 147 90

Spleen 1 0 0 1 1 1 61

Whole Bone 1 0 0 1 0 2 84

Osseous Tissue 1 0 0 98 73

Marrow 1 0 0 118 129

Total Output 1 0 0 82 81

For comparison, changes are expressed as a percentage

Control value
k Corresponds to 15 minute post-hemorrhage value 
0  Corresponds to 16 hour post-hemorrhage value



54

°/o of Control Value

Kidney

H e a rt

Spleen

W ho le
Bone

M a rro w

O sseous
T issue

□  ■
CD CJ1
” 3 = r.cn q
" 0  Tlo ocn cnCt ct

noQct
“ 3o

X
CD
3o
” 3

=rcnCQ
CD

I
CD
3o
™3 
” 3 ITcn

CQ
CD

C
AR

D
IAC

 O
U

TPU
T D

ISTR
IBU

TIO
N



56

°/o of Control Value

Kidney

H e a rt

Spleen

W hole
Bone

M a rro w

O sseous
T issue

□  □

-j
0)
-o0 cn c-r
1
CD
3o
“ 3
“ 3IXm

CD
CD

CJl

T)0 cncl-1
I
CD
3o-i
~3zr
CD

CD
CD

nODcf“3o

TISSU
E BLO

O
D

 FLO
W

 (M
L

/M
IN

/1OOGR)



°/o
 o

f 
W

ho
le

 B
on

e 
B

lo
od

 F
lo

w
 C

M
I/M

in
)

58

| | M a rro w

Post- Post- 
Hemorrhage Hemorrhage



60

°/o of Control Value—i cncn o cn cno o o CD CD
Kidney

A V

H e a rt

Spleen 2 £

W hole
Bone

M a rro w

O sseous
T issue

□  □
CD CJ1
"3cn
T)0cnC-t1
I
CD
3o“3
“ 3=rQ)

CQ
CD

noQrt
“ 3o

T)0 cncf1
I
CD
3o
” 3
“ 3rr
03

CQ
CD

TISSU
E R

ESISTAN
C

E



DISCUSSION

The purpose of this investigation was to apply the microsphere 

technique to measurement of  bone and marrow blood flow before and 

after hemorrhagic hypotension. In the following discuss ion  five major 

topics will  be covered: first, validation of the microsphere technique 

and its application to bone studies; second, hemodynamics of the normal 

bone; third, the general cardiovascular response to hemorrhage; fourth, 

the specif ic  e f fec ts  of hemorrhage on bone and marrow blood flow; and 

fifth, possible mechanisms to explain the response. Since previous 

studies have dealt in detail  with the general response to hemorrhage in 

the rabbit, the major emphasis will  be on changes in bone and marrow.

Validation of the Microsphere Technique and Application to Bone

The skeleton is  a large tissue mass weighing some 10 to 12 kg in the 

average sized human. The metabolic activity and vascular  supply of this 

organ are greater than usually assumed (85). Enveloped within the skele

ton is bone marrow which functions as  both a reticuloendothelial  and 

hematopoietic organ (8 6 ) and occupies a total tissue volume equal to the 

liver (87). Thus, skeletal blood flow supplies the nutritional needs of 

the active c e l l s  in both osseous  tissue and marrow while also serving as 

a transport vehic le  for bone mineral turnover. The major dif ficult ies have 

been separating and quantitating bone and marrow blood flow due to the

61



62

lack of an appropriate method. The radioactive microsphere technique 

seems ideally suited for studying relatively inaccess ib le  areas such as 

bone and marrow.

There are several advantages to the microsphere method as applied 

in the present study for measurement of bone blood flow. The technique 

is  eas i ly  used in conscious animals and multiple blood flow measure

ments are possible  without apparent ef fects  on cardiovascular function. 

Theoretical assumptions regarding unstable blood-tissue interchange of 

isotopes or diffusible indicators used in many bone blood flow studies 

are not necessary .  The microsphere method also allows separate flow 

measurements to bone and marrow which is  not possible with other tech

niques.

One potential problem could be the presence of large numbers of 

operating arterio-venous shunts. These shunts permit microspheres to 

bypass areas where they normally would trap resulting in underestimated 

flow rates .  It has been reported that a significant number of 15 u dia

meter microspheres are shunted through the rabbit hind limb, but this 

has been largely attributed to arterio-venous anastomoses in skele tal 

muscle (88). Based on anatomical observations of marrow microvascu

lature (10, 89) and previous studies using microspheres in bone (50, 69) ,  

it was concluded that nearly all  of the blood in bone and marrow flowed 

through v e s s e l s  of capillary dimensions and that extraction of micro

spheres was essen t ia l ly  complete. Thus, it appears that microspheres 

are suitable for studying bone blood flow.
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The microsphere technique has undergone repeated validation pro

cedures (8 8 , 90-92)  and has been used extensively  in the rabbit (61, 72, 

8 8 , 93, 94).  However, it is standard procedure to determine whether 

adequate mixing and uniform distribution occur under the conditions of a 

particular experiment. From this study there were several p ieces of data 

which ref lect  uniform mixing and distribution of microspheres. There 

was agreement of cardiac output values estimated from multiple reference 

samples taken at distant s ites  (Table 2). Also, calculated versus actual 

estimates of flow showed excel lent  agreement (Figure 5). Simultaneous 

in jection of all  three microsphere isotopes provided highly comparable 

flow rate es timates to multiple t issues .  Finally, flow rates  to paired 

organs, the kidneys and femurs, were not significantly different 

(Figures 3 and 4).

In dealing with a t issue such as bone, which has relatively low flow 

rates,  it is  imperative that adequate numbers of microspheres become 

trapped in the tissue (64). Thus, es timates of counts/sphere were made 

and total numbers of microspheres in each tissue were calculated and 

total in jected microspheres adjusted appropriately. In this way, there 

were always a minimum of 4 00 microspheres in bone and marrow samples.  

The above precautions increased the precision and rel iabil ity of the

results presented in this study.
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Hemodynamics in Normal Bone

Results from this study provide data on normal circulatory hemodyna

mics of bone in unanesthetized rabbits.  On a weight b as is  marrow perfu

sion is greater than bone, but actual flow rates to marrow (0. 71 ml/min) 

were about 37% of flow to the surrounding osseous  tissue (1. 94 ml/min). 

Vascular res is tance  in cortical  and cancellous bone was greater than in 

marrow (see Table 8 ), possibly due to the unusually long length of corti

ca l  capil lar ies  (1). The res is tance  data also show that the vascular beds 

of marrow and surrounding bone are in parallel.  This assumption is  based 

on applying the res is tance  data to standard formulas which differentiate 

series  versus parallel  flow patterns (95). This information supports pre

vious anatomical (10) and physiological (58) evidence for separate blood 

supplies to marrow and bone. Assuming that femoral bone represents 

1/25 of the entire skele tal mass (42), it was calculated that approxi

mately 12.5% of cardiac output is distributed to the o sseous  portion of 

the total skeleton. Based on similar calculations,  assuming marrow 

equals roughly 1 .7% of the body weight in rabbits (96), the fractional 

flow distribution to total marrow tissue is about 3 .6%  of cardiac output. 

Thus blood flow to the skeletal system including marrow represents 

roughly 16% of cardiac output. This is comparable to flow fractions 

going to both kidneys.

Comparison of blood flow data reported here with that in the li tera

ture can be done, however, variation should be expected. Values from
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previous bone blood flow studies show marked variability due to different 

techniques, type and plane of anesthesia ,  and the extent of surgical 

intervention. Also, some studies do not separate marrow flow from 

osseous flow. Flow rates reported here are based on conscious animals 

with limited surgical intervention. Table 9 summarizes previous reports 

of bone and marrow blood’ flow. Marrow flow rates of 29 ml/min/lOO g 

obtained here fa l l  well  within the reported range for this t issue .  Es t i 

mates of bone blood flow appear to be generally higher than previous 

reports. This may ref lect  a greater sensitivity of osseous  v e s s e l s  to the 

ef fects  of anesthesia .  It seems likely that the blood flow values for 

marrow and bone reported here are accurate and reasonable for the unanes

thetized rabbit.

In addition, cardiac output and regional flows to other t issues  were 

in general agreement with previously reported values (61, 80, 8 8 , 94).

This gives further support to the validity of bone and marrow estimates.

Cardiovascular Response to Hemorrhage

Hemorrhage hypotension se ts  into motion a train of compensatory 

adjustments within the cardiovascular system designed to maintain t i s 

sue perfusion rates .  Initial circulatory changes involve stimulation of 

neuronal and humoral induced vasoconstr ict ion which does not develop 

uniformly in all t i ssues  but ac ts  to shunt blood toward certain vital or

gans. The results  of the present study vividly demonstrate this imme

diate response pattern to acute blood loss .



PREVIOUSLY PUBLISHED BLOOD FLOW RATES TO MARROW AND OSSEOUS TISSUE (ML/MIN/l 00 G) 

Marrow Osseous Tissue Whole Bone______ Investigator_________Species_____ Method & Conditions

TABLE 8

25 ± 14 .6  
femur

1 .0  ± 0. 7 
cortical  diaphysis

Lunde & Michelsen 
1970 (69)

rabbit 15 u m icrospheres-anes-  
thesia and surgery

1 0  -  1 2 0 Michelsen 
1968 (37)

rabbit perfusion technique-anes
thesia and surgery

41 ±  18 Cumming & Nutt 
1962 (22)

rabbit venous effluent co l lect ion  
anesthesia  and surgery

3 .1
tibia

0 .76
cortical diaphysis

Kelly 
1973 (58)

dog I- labeled  4-iodoantipyrine 
washout anesthesia  and 
surgery

29
femur

17
cortical diaphsis

Brookes 
1967 (55)

rat S^Cr-tagged RBC's-  
anesthesia

12-18
femur

Kane & Grim 
1969 (50)

dog 42 k and 8 6 ^ 5  c learance 
unanesthetized and no 
surgery

8 . 22 ± 0 .4 6  
femur

Ray, Kawabata & Galante 
1967 (42)

dog 8 ^Cr and 4 5 c a c learance 
anesthesia  and surgery

2 9 . 7 ±  5 . 7 2 1 .6  ± 8 . 4  
cortical and

28. 5±9. 0 Syftestad
1976

rabbit 15 u microspheres-unanes- 
thetized and no surgery

cancellous
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The initial  (15 min post-hemorrhage) observed fall  in cardiac output 

was greater than the reduction in blood pressure indicating that sympa

thetic ref lexes  are geared more at maintaining blood pressure than cardiac 

output (95). A corresponding drop in hematocrit is  consistent  with the 

rapid hemodilution reported in rabbits (79). The elevated pC>2 (not stat i

st ical ly  significant) seen 15 minutes post-hemorrhage most l ikely resul

ted from a stimulated respiratory rate as evidenced by the significant 

fa ll  in blood pCC^. These data are consis tent  with a respiratory com

pensation of mild metabolic acidosis known to occur during hemorr

hage (97).

The observed tachycardia was possibly due to a massive reflex sym

pathetic discharge occurring immediately following hemorrhage. These 

ref lexes cause dilation of the coronary vasculature which is also known 

to have powerful auto regulatory potential during hypoxia (98). Although 

actual perfusion rates in the heart decreased 15 minutes post-hemorrhage, 

the increased fraction of cardiac output indicated an attempt to preserve 

myocardial blood flow. The above two mechanisms undoubtedly contri

buted to this relative preservation of coronary blood flow following the 

acute hypotensive c r is is  in the present study.

The striking vasoconstr ic t ion and reduced flow to the spleen are 

predictable,  based on the abundant supply of alpha-type adrenergic 

receptors within this t issue.  Changes in renal flows and res is tance  agree 

well with a previous report where a similar amount of blood was
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removed (99). The reduced flow was attributed to a synergism of sympa

thetic nerve activity and humoral e f fects  including those of the adrenal 

cortex.

Changes in the status of the circulatory system 16 hours following 

bleeding ref lect  continuing compensatory reactions initiated in the early 

post-hemorrhagic period. Spontaneous restoration of blood volume is 

indicated by a return of cardiac output to near normal levels  with the 

observed peripheral vasodilation tending to delay the rise  in arterial 

blood pressure (100). An increase  in plasma volume compensated for the 

depleted red c e l l  volume as evidenced by the further reduction in hema

tocrit (101). The decrease in renal blood flow may have contributed to 

this blood volume recovery by reducing urine formation, thus conserving 

body fluids (99). The reason for an increase  in arterial p 0 2 is  not known.

Isovolemic anemia can influence cardiac output and t issue res is tance 

(102), but the mechanisms responsible for regional blood flow changes 

seen in this study seem unlikely to be due to a single physical deter

minant such as a fall  in blood v iscos i ty  (103). Blood flow in the spleen 

returned to normal but cardiac perfusion increased to 147% of the control 

value 16 hours post-hemorrhage. This pattern is consistent  with the 

concept that increasing metabolic and functional demands lead to varying 

degrees of active dilation from accumulated metabolites and may be of 

particular importance in the heart during recovery from hypotension.

Additional detai ls  on mechanisms involved in the redistribution of cardiac
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output in the various soft t issues  following hemorrhagic shock are exten

sively covered in recent reviews by Zweifach (104) and Thai et a l . (105).

Effect of Hemorrhage on Bone and Marrow Blood Flow

Details  concerning circulatory changes occurring in bone and marrow 

following hemorrhage have been largely overlooked. Several studies 

have shown decreases  in relative flow and increases  in res is tance  in 

whole bone or marrow following blood loss  (106-108).  These experi

ments provided no quantitative data and no distinction was made between 

marrow and bone blood flows. They suggested that circulat ion in marrow 

undergoes active vasoconstr ict ion during hemorrhagic shock. Results 

presented here support this view for both marrow and bone. Fifteen 

minutes post-hemorrhage the marrow flow dropped to 46% of control 

values while flow to osseous  t issue decreased to 3 9% of the pre

hemorrhage level .

Bosch (109) has made a detailed study of calc ium-45 plasma c lear 

ance in canine tibia and postulated that cort ical  capi l lar ies  are solely 

in series with marrow res istance v e s s e l s .  Any increase in res is tance  

shunts more blood through marrow with a smaller flow into cortical 

nutrient capi l lar ies .  Therefore, during vasoconstrict ion, as occurs 

following hemorrhage, more of the total femur flow should be directed 

away from bone into marrow. Data presented here do not support this 

hypothesis.  In the present study marrow received 3 2% of total femur 

blood flow under normal conditions. Immediately after hemorrhage, this
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percentage did not change indicating that reduction in flow to osseous 

t issue and marrow were proportionally the same. It appears that the 

complex anatomical and functional arrangement of res is tance  v e s s e l s  

respond to hemorrhage in such a way as to preserve the normal flow 

distribution within bone and marrow immediately following vasoconstr ic 

tion. This situation may change several hours post-hemorrhage.

There is an established relationship between increased bone blood 

flow and active hematopoiesis in marrow. Michelsen (110) found a 

significant increase in marrow flow a week after phenylhydrazine induced 

anemia. Several related studies (111-113) have shown a striking simi

larity between blood flow and distribution of red marrow in the skeleton 

but no dis tinction could be made between flows in marrow and osseous 

t issue .  The rate of blood flow to bone was thought to be important in 

proliferation of hemoglobin synthesizing marrow. It was further implied 

that hematopoietic stimulating factors produced in bone may be carried 

directly to marrow via the bone-bone marrow portal v e s s e l s .  Of funda

mental importance to these considerations is whether the high bone blood 

perfusion rate associa ted  with active marrow is  simply a ref lection of 

active blood flow in the marrow cavity or involves increased flow rates 

to osseous  t issue .  In the present study the marked increase in marrow 

flow 16 hours after hemorrhage was not seen in the surrounding bone 

(Table 5). Consis tent  with this was a signif icant  increase  in the percen

tage of total femur blood flow going to marrow (Figure 8) indicating a
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se lect ive vascular  effect  in this tissue.  This gives evidence that in 

certain situations marrow and osseous  tissue may have separate control 

mechanisms. The importance of the marrow response is further empha

sized by comparing the magnitude of the blood flow change to that seen 

in the heart (Figure 7). There is actually a greater percentage increase 

in marrow flow 16 hours post-hemorrhage than in myocardium.

In looking at whole bone data (bone + marrow) the importance of 

separating the two components becomes apparent (Table 5). When marrow 

flow was separated from whole bone the significant increase  in blood 

flow 16 hours post-hemorrhage was obvious. However, the ef fec t  was 

masked in the whole bone data by the large flow to o sseou s  tissue which 

did not change. Thus, it is  c r i t ica l  to separate these two components to 

accurately a s s e s s  s i tes  and mechanisms by which factors can influence 

total bone blood flow.

Prior to describing a possible mechanism for the observed response, 

the control experiments should be mentioned. The control data (Table 7) 

indicate that neither restraint, the micro spheres,  nor the particular i s o 

tope used account for the observed changes in blood flow. Although there 

were changes in some tissues with time, they were not consis tent  with 

the changes following hemorrhage. Changes in cardiac output due to 

restraint are consistent  with a previous report (61).

A possible  explanation for the changes caused by hemorrhage may 

involve the glycoprotein hormone erythropoietin produced by the kidney
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which can directly stimulate red ce l l  production in bone (114, 115). The 

magnitude of erythropoietin re lease  is  dependent upon the severity of 

renal hypoxia (116-118) .  A 50% reduction in kidney blood flow following 

hemorrhage as  seen  in this study is known to result in peak erythropoietin 

titres 12 to 24 hours later (119).

Although erythropoietin was not measured directly,  the observed 

increase in marrow perfusion rates 16 hours post-hemorrhage may have 

been related to the reported vasoproliferative ef fec ts  of increased c ircu

lating erythropoietin. Greater numbers of arterioles and dilation of sinu

soids in bone marrow and spleen following bleeding or direct erythro

poietin in ject ion have been documented (120, 121).

Hypoxia alone can cause dilation of v e s s e l s  resulting in increased 

blood flow; however, it has been shown that bone marrow oxygen levels  

do not change significantly following hemorrhage (122, 123). The 

increased vascularization has been observed even in the absence  of 

active erythrocyte production, suggesting the increased blood flow was 

possibly a preliminary step to erythropoiesis (124). Associated with 

increased erythro poie s is  is a parallel ret iculoendothelial  activation in 

marrow which may be important in defense against circulat ing endotoxin 

following acute blood loss  (125,.126).

Thus, the increased perfusion of marrow 16 hours after hemorrhage 

may have been stimulated by a direct vascular ef fec t  of erythropoietin 

to help meet the metabolic demands of erythropoiesis and reticuloendo

thelial activation.  This reaction provides optimal environments for red
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blood c e l l  proliferation and host defense stimulation which are both 

necessary homeostatic mechanisms in recovery from hemorrhagic hypo

tension.



SUMMARY AND CONCLUSIONS

1. Cardiovascular responses in skele tal tissue following reversible 

hemorrhagic hypotension were studied using the radioactive micro

sphere technique of regional blood flow measurement.

2. Individual microsphere isotopes, each with a different label,  were 

in jected at three time intervals:  first , as a control value; second,

15 minutes following a standardized, non-fatal hemorrhage; and 

third, 16 hours post-hemorrhage.

3. Values for blood pressure, heart rate, blood gas and pH, hematocrit, 

cardiac output, blood flow, percentage distribution of cardiac output 

and tissue res is tan ce  were calculated for each time period.

4. Results of four standard validations used to test  reliabili ty  of the 

microsphere method as applied in this study showred c lo s e  correla

tion between blood flow and microsphere distribution.

5. Fifteen minutes after hemorrhage cardiac output, blood pressure, 

arterial pCC>2 and hematocrit decreased and heart rate increased.  

Blood flows to heart, kidney, spleen, whole bone, marrow and 

o sseous  t issue decreased with corresponding res is tan ce  increases 

in al l  t i ssu es  except the heart. Spleen, whole bone, marrow and 

o sseous  t issue received a decreased percentage distribution of 

cardiac output while the percentage going to the heart increased.

74



75

6 . Sixteen hours following hemorrhage pO£ increased and hematocrit 

decreased. Heart and marrow blood flows increased and kidney flow 

rates remained low. Tissue res is tance decreased in the heart, 

spleen, whole bone and marrow but remained elevated in the kidney. 

Percentage distribution of cardiac output increased in the heart, 

whole bone and marrow and decreased in the kidney.

7. Normal hemodynamic properties of bone showed parallel blood sup

plies to marrow and osseous  tissue with higher vascular res is tance 

in the latter.  It was estimated that total skeletal  t issue plus mar

row received 16% of resting cardiac output.

8 . The response 15 minutes post-hemorrhage demonstrated characteris t ic  

de cre ases  in regional blood perfusion with relative preservation of 

myocardium. There was a uniform reduction of blood flow within

the femur giving no evidence of preferential shunting away from 

o sseous  tissue in favor of marrow.

9. Sixteen hours after hemorrhage there was an increase  in blood flow 

to marrow but not surrounding osseous tissue.  Blood flow to the 

various soft t i ssu es  reflected continuation of a stress  state where 

both vasodilatory metabolic and vasoconstrictor neurohumoral factors 

were s t i l l  operative.

10. The vascular  response in marrow may represent a direct vasoprol i-  

ferative e f fec t  of erythropoietin in preparation for hematopoietic and

reticuloendothelial  activation.
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