

University of North Dakota UND Scholarly Commons

Theses and Dissertations

Theses, Dissertations, and Senior Projects

5-1-1978

Bighorn Sheep in North Dakota: Population Estimates, Food Habits and Their Biogeochemistry

Steven D. Fairaizl

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation

Fairaizl, Steven D., "Bighorn Sheep in North Dakota: Population Estimates, Food Habits and Their Biogeochemistry" (1978). *Theses and Dissertations*. 2672. https://commons.und.edu/theses/2672

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

BIGHORN SHEEP IN NORTH DAKOTA: POPULATION ESTIMATES, FOOD HABITS AND THEIR BIOGEOCHEMISTRY

by
Steven D. Fairaizl
Bachelor of Science, University of Montana, 1974

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

A Thesis

Grand Forks, North Dakota

May 1978

(Chairman)

Permission

Title Bighorn Sheep in North Dakota: Population Estimates, Food Habits
and their Biogeochemistry
Department Biology
Degree Master of Science
In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the Library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by professor who supervised my thesis work or, in his absence, by the Chairman of the Department or the Dean of the Graduate School. It is understood that any copying or publication or other use of this thesis or part thereof for financia gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.
Signature Steven D. Fairaizl

Date _____24 April 1978

ACKNOWLEDGMENTS

My sincere thanks are due to Dr. Mohan K. Wali for his advice in supervising the research, as well as for his suggestions and editorial comments in the preparation of this thesis. Thanks are also due to Drs. Richard D. Crawford, University of North Dakota, and Leslie M. Klevay of the Human Nutrition Laboratory, Agricultural Research Service-U.S.D.A., for reviewing the manuscript and serving as member of my committee.

I am grateful to Messers. Alden L. Kollman, Elmer J. Finck and Donald L. Batema and Ms. Cassie Benz for their assistance with chemical analysis.

I wish to thank Messers. Jim McKenzie, Jack Samuelson and Chris Grondahl, North Dakota Game and Fish Department, Martin C. Ott, Darryl Cook and Bob Powell, National Park Service, Van Elsbernd, Rich Inman and Darryll Harrisson, U.S. Forest Service, and Mike McKenna and Doug Howie for their assistance in the field. I also thank Robert Nelson, North Dakota Game and Fish Department and Elmer Homelvig for their assistance in aerial surveys, and Dean Williams, North Dakota State University Experiment Station at Dickinson, and Robert Todd. Dickinson State College, for their aid in collection and preparation of plant and animal tissues.

Appreciation is extended to the following ranchers for introducing me to some of the study areas and for allowing me to survey the sheep on their land:

Messers. Tom Adams, Adolf Burkhardt, Melvin Griffin, Jigg's O'Connell, Leo Ray,

Ed Storm, Al Studie, Tom Tescher, Ed Trotter and Muggs Vanvig.

I am especially indebted to Mr. Bill Hickey, Idaho Fish and Game Department, for collection of bighorn sheep tissues from the Salmon River area.

This project was supported by a cooperative agreement between the North Dakota Game and Fish Department and the University of North Dakota, and by Project Reclamation funded by the U.S. Department of the Interior-Bureau of Mines (Grant No. G0264001).

TABLE OF CONTENTS

ACKNO	WLEI	OGMEN	TS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	iv
LIST	OF :	rable	S		•																				•					•			•	vi
LIST	OF I	ILLUS	TRA	ΙΤΑ	ON	S												•	•						•			•	•			•		vii
ABSTR	RACT									•																			•		•			viii
INTRO	DUC'	TION					•																						•			•		1
	Gene Clir Phys	eral	aph	scr •	ip •	ti	Ge		Log	·				:			:	:		:	:		:	:		:		:						1 1 2 2
	Fie:	AND M ld Pr lysis	oce	edu V	re 7eg	s et	cat	·ic	on.		:	:			:	:		:				:		:			:	:				•	•	2 2 4 4
	Popu Life Food Habi Anal	llati His Hab Hab itat Lysis	on tor its of	ES	ti 7eg	ma	ate	es ·	ar	nd •	De	ens		ty •		•										:							•	4 4 5 10 10 15
	Popu	ON . ulati geoch	on	Es		ma	ate	s	ar	nd	De	ens	si	ty			•									•						•		47 47 48
SUMMA	RY F	AND M	ANA	AGE	ME	ΓN	F	ŒC	COM	1ME	ENI	AC	rI(ONS	5		•							•										.49
LITER	RATUI	RE CI	TEI).																														50
APPEN	DICI	ES .																																52

LIST OF TABLES

able					Page
1.	Bighorn sheep recorded during the fall aerial census 1972-1977				6
2.	Bighorn sheep recorded during the spring aerial census 1972-1977				7
3.	Results of the summer bighorn sheep aerial census 1975-1977		•		8
4.	Results of ground survyes, 1975 and 1976				9
5.	Percent plant composition of rumen samples	•			11
6.	Percent plant composition of rumen samples collected during 1975 and 1976				12
7.	Percent plant composition of fecal samples collected during 1976				13
8.	Importance values of species in the communities studied				17
9.	Chemical composition of soil				19
10.	Chemical composition of Agropyron smithii			•	23
11.	Chemical composition of <u>Artemisia</u> cana			•	27
12.	Chemical composition of Yucca glauca				31
13.	Chemical composition of Carex filifolia				34
14.	Mean concentrations of elements in N.D. bighorn sheep tissue samples collected during 1975 and 1976				37
15.	Mean concentrations of elements in Idaho bighorn sheep tissues				38
16.	Location of study areas				A-1
17.	Listing of Bighorn Sheep tag numbers and release sites .			•	A-2
18.	Results of the 1975 and 1976 hunting seasons				A-10
19.	Major food items of Bighorn Sheep in North Dakota				A-12

LIST OF ILLUSTRATIONS

Figur	re	Page
1.	Map of Billings and McKenzie county study areas	3
2.	Mean element concentrations of selected bighorn sheep tissues from Colorado, Idaho and North Dakota	39
3.	Trace element patterns of (a) bone and (b) hair samples from Idaho (dotted line) and North Dakota (solid line)	40
4.	Trace element patterns of (a) liver and (b) skeletal muscle samples from Idaho (dotted line) and North Dakota (solid line)	41
5.	Trace element patterns of (a) lung and (b) kidney samples from Idaho (dotted line) and North Dakota (solid line)	42
6.	Trace element patterns of (a) Idaho horn samples and (b) North Dakota hoof samples	43
7.	Trace element patterns of (a) fecal and (b) rumen samples from Idaho (dotted line) and North Dakota (solid line)	44
8.	Trace element patterns of (a) heart and (b) spleen samples from North Dakota	45
9.	Trace element pattern of skin samples from North Dakota	46

ABSTRACT

Ground and aerial surveys conducted during this study revealed that the population size of bighorn sheep in southwestern North Dakota is between 200-250. The present population began when 18 bighorn sheep from British Columbia were transplanted into an enclosure on Magpie Creek in McKenzie County. All surveys indicated a sex ratio approaching 100:100 with an annual reproductive success of 15-20%. Food habit analysis revealed that approximately 90% of the diet was browse and 10% grass. During spring, fall and winter, the dominant browse species in the diet was winterfat (Eurotia lanata), whereas in the summer buffaloberry (Shepherdia argentea) was the dominant. During fall, summer, and winter, the dominant grass species in the diet was western wheatgrass (Agropyron smithii), but in spring sedges (Carex spp.) were dominant.

Soil and plant samples were collected every month from the study sites during 1976. Tissue samples of bone, hoof, hair, skin, muscle, heart, liver, kidney, lung, spleen, rumen and feces were collected from 24 bighorn sheep during 1975-1976. All soil, plant and tissue samples were analyzed for calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), aluminum (Al), cadmium (Cd), copper (Cu), iron (Fe), lithium (Li), manganese (Mn), nickel (Ni), lead (Pb), strontium (Sr) and zinc (Zn). Analysis of plant and soil samples revealed seasonal fluctuations in the concentrations of all elements. Tissue analysis revealed that, with the exception of Fe, K and Na, all elements had their highest concentrations in the bone and hair. Trace element patterns for North Dakota samples were greatly different than those from other states.

INTRODUCTION

Bighorn sheep, Ovis canadensis auduboni, once were common in the badlands of western North Dakota. Lewis and Clark, Maxmillian, Audubon, and Theodore Roosevelt indicated that large herds of bighorns were found along the Missouri and Little Missouri Rivers (Boldt et al. 1973). By the late 1800's, however, few sheep remained on the Great Plains, and the last known bighorn was killed in 1905 (Murdy 1957). Their extermination has usually been attributed to hunting, heavy homesteading and settlement of the badlands (Bolt et al. 1973).

In 1956, 18 California Bighorns (Ovis canadensis californiana) from British Columbia were transplanted into an enclosure on Magpie Creek in McKenzie County, North Dakota (Murdy 1957). In subsequent years, 14 transplants were made into four other areas in the Badlands (Samuelson 1974). The sheep adapted well and herd has grown to a present population of about 200-250.

In 1960, a range survey was conducted within the Magpie Creek enclosure to determine food preference and habitat utilization (McKenzie 1960). In 1972, an aerial survey was initiated to determine bighorn population trends and distribution (Samuelson 1973). This limited amount of research provided the stimulus for the present project which began in summer 1975. The objectives of this study were to: 1) provide information on vegetation types favored by bighorn sheep, 2) gather data on the population dynamics and biogeochemistry of the species, 3) formulate a management plan, and 4) designate areas in the developing coal regions of western North Dakota that could be reclaimed with plant species preferred by bighorns.

STUDY AREA

GENERAL DESCRIPTION:

North Dakota's bighorn sheep range lies in the Little Missouri National Grasslands in the badlands area, and is under the jurisdiction of the U.S. Forest Service. Observations on the population ecology of the herd were made throughout Billings and McKenzie counties (Fig. 1). Vegetation analysis and sample collection, however, were limited to a selected area in central Billings County approximately 8 km south of Medora. Four topographically different areas, designated Plateau, Sidehill, Flat Top Ridge and Creek Bottom, were chosen as the study areas (Appendix 1).

CLIMATE:

The climate of the study area is semiarid and continental, and is characterized by long, cold winter and short, warm summers. Temperature extremes of 43°C and -44°C have been recorded; monthly averages, however, range from -11°C in January to 22°C in July. Precipitation averages about 38 cm per year with 50% falling in May, June and July. Much of the summer rainfall comes in short, localized thundershowers. Snowfall averages about 75 cm. Winds averaging 16 km per hour through the year usually prevent both deep and uniform snow accumulation. The average frost-free season extends from 20 May to 14 September, a period of 117 days. Killing frosts have been reported as late as 25 June and as early as 9 August (Edwards and Ableiter 1944).

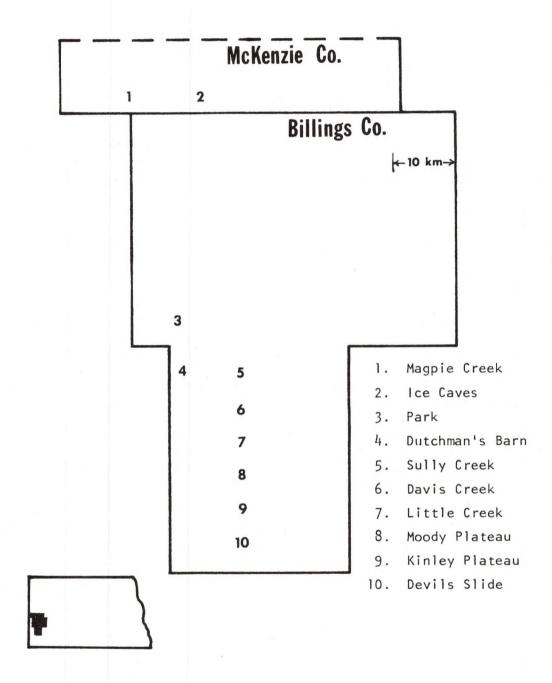


Fig. 1. Map of Billings and McKenzie county study areas.

Prior to 1975, the North Dakota Game and Fish Department conducted a bighorn sheep census as part of the annual fall and spring mule deer survey. Surveys from 1972 to 1977 revealed the presence of bighorns in four of the 17 study areas (Tables 1 and 2). During the summer of 1975, the survey was expanded to include other areas known to have been frequented by bighorns. Six additional study areas resulted in a substantial increase in the number of sheep sighted (Table 3).

Fall and spring surveys produced lower population estimates than the summer survey, and numbers seen on fall surveys have been higher than spring. Lamb counts in the summer and fall have been consistently higher than spring. All surveys indicate a sex ratio approaching 100:100. During this study period, annual reproductive success on an average has been 15-20%; for some herds, however, reproduction has been much lower.

Ground surveys during 1975 and 1976 (Table 4) in the four population centers have revealed the following population figures: Magpie Creek-18 rams, 20 ewes, and 6 lambs; Park-18 rams, 17 ewes and 1 lamb; Dutchman's Barn-29 rams, 28 ewes, 2 yearlings and 8 lambs; Devils Slide-Moody Plateau-27 rams, 39 ewes, 9 yearlings and 10 lambs. In all areas except Devils Slide-Moody Plateau, the sex ratio was approximately 100:100 and the lamb crop was very low.

Although numerous observations were made in all population centers, the Dutchman's Barn area was the only one intensively searched during the study period. These data indicate a population of about 65 bighorns, which were concentrated in an area of approximately $16~\rm{km}^2$.

In an attempt to lower the sex ratio, increase productivity and reduce densities, hunting seasons were held during the falls of 1975 and 1976. Hunter success has been 100% in each of the first two hunting seasons (Appendix III). During the 1975 season, the average size curl was 7/8 and the average age was 6 1/2 years. During the 1976 season, the average size was 3/4 curl and the average age was 5 1/2 years. Of the 24 sheep harvested, 15 were from the Medora area. At the check station, external measurements and weights were taken for all sheep harvested. These data are comparable to those reported by Sugden (1957) for California bighorns from Riske Creek, British Columbia. Furthermore, autopsies, also conducted at the check station, revealed the following parasites: lungworm (Protostrongylus stilesi), fringed tapeworm (Thysanosoma actinioides) and tapeworm (Wyominia tetoni).

LIFE HISTORY:

The rutt began in mid-October when bachelor groups broke up and rams started collecting harems. Rutting activities peaked in mid-November and continued well into December.

The lambing season started in early April and ran through May. The first lamb was observed on 4 April and the last on 20 May. The lambing grounds were isolated buttes with steep precipitous cliffs which have a south or west exposure. Within 12 hours after birth, the ewe moved the lamb to a cave. These caves were usually located near the tops of cliffs or buttes. Lambs remained in the vicinity of these caves for approximately two weeks before leaving to form bands with other ewe lamb groups.

-7-

Table 2. Bighorn sheep recorded during the spring aerial census 1972-1977¹.

			19	972						1973						1974		
Study Area	R ²	Е	Y	L	?	Т	R	E	Y	L	?	Т	R	Е	Y	L	?	T
Dutchman's Barn	0	14	0	0	0	14	0	11	0	0	0	11	2	0	0	0	16	18
Moody Plateau	0	2	0	2	0	4	0	0	0	0	0	0	0	0	0	0	0	0
Devils Slide	0	0	0	0	0	0	2	0	0	0	0	2	8	0	0	0	0	8
Magpie Creek	3	5	0	1	0	9	0	4	1	0	0	5	0	6	0	0	0	6
Total	3	21	0	3	0	27	2	15	1	0	0	18	10	6	0	0	16	32

			19	975						1976						1977		
Study Area	R	E	Y	L	?	Т	R	E	Y	L	?	T	R	E	Y	L	?	Т
Dutchman's Barn	1	12	1	2	0	16	5	13	2	0	0	20	6	1	1	0	0	8
Moody Plateau	0	1	1	0	0	2	0	0	0	0	8	8	0	4	1	0	0	5
Devils Slide	5	0	0	0	0	5	0	3	0	0	0	3	0	4	0	0	0	4
Magpie Creek	3	8	2	1	0	14	4	8	0	0	0	12	5	5	2	0	0	12
Total	9	21	4	3	0	37	9	24	2	0	8	43	11	14	4	0	0	29

Data from Samuelson 1975.

²R-rams; E-ewes; Y-yearlings; L-lambs; ?-unknown; T-total.

-9

Table 4. Results of ground surveys, 1975 and 1976.

			1	.975						1976		
Study Area	R^{\perp}	Е	Y	L	?	Т	R	E	Y	L	?	T
Sully Creek	21	0	0	0	0	21	16	0	0	0	0	16
Dutchman's Barn	11	28	0	2	0	41	7	26	2	6	0	41
Park	18	12	0	1	0	30	14	17	0	0	0	31
Davis Creek	0	0	0	0	0	0	5	0	0	0	0	5
Little Creek	0	4	2	0	0	6	0	11	2	4	0	17
Moody Plateau	14	8	2	7	0	31	0	16	7	8	0	31
Kinley Plateau	1	8	0	0	0	9	5	8	0	2	0	15
Devils Slide	11	0	0	0	0	11	9	4	0	0	0	13
Magpie Creek	8	20	0	2	0	30	7	12	0	4	0	23
Ice Caves	10	0	0	0	0	10	10	0	0	0	0	10
Total	100	80	4	11	0	195	73	94	11	24	0	202

R-rams; E-ewes; Y-yearlings; L-lambs; ?-unknown; T-total.

11-

Table 5. Percent plant composition of rumen samples.

Gras	s	Browse		Forbs		
Genera	%	Genera	%	Genera	90	
Agropyron	5.0	Eurotia	52.1	Astragalus	0.7	
Carex	3.2	Atriplex	13.0	Composite	0.1	
Stipa	1.3	Artemisia	16.1	Phlox	0.1	
Bouteloua	0.3	Yucca	4.9	Unknown Forb	0.1	
Sporobolus	0.1	Chrysothamnus	0.7	¥1.		
Oryzopsis	0.1	Symphoricarpos	0.1			
Bromus	0.1	Kochia	2.5			
Andropogon	0.0					
Total	10.1		89.4		1.0	

Table 6. (continued).

		FORBS	
Genera	1975		1976
	%		%
Astragalus	0.0		1.4
Phlox	0.1		0.0
Unknown	0.0		1.4
Total	0.1		2.8

Table 7. Percent plant composition of fecal samples collected during 1976.

			RASS		
Genera	Winter	Spring	Summer	Fall	
Agropyron	4.6	4.2	3.5	3.1	í
Carex	1.8	28.8	0.0	0.1	
Stipa	2.3	8.3	0.8	0.4	
Andropogon	0.0	0.4	0.0	0.0	
Sporobolus	0.3	0.0	0.0	0.0	
Oryzopsis	0.1	0.0	0.0	0.0	
Poa	0.0	0.3	0.0	0.0	
Bouteloua	0.0	0.5	0.0	0.0	
Bromus	0.0	0.0	0.2	0.0	
Aristida	0.0	0.0	0.3	0.0	
Unknown	0.0	0.0	0.2	0.0	
Total	9.1	40.5	5.0	3.6	

ANALYSIS OF VEGETATION:

Importance value measurements revealed the following grassland communities (Table 8): (1) western wheatgrass (Agropyron smithii) community commonly occurred in creek bottoms, plateau tops and sidehills; (2) communities dominated by western wheatgrass and thread leaf sedge (Carex filifolia), were prevalent on plateaus, sidehills and creek bottoms; (3) communities dominated by western wheatgrass and sweet clover (Melilotus alba), were characteristic of disturbed areas, usually old uranium mines, which have been reclaimed; (4) communities dominated by little bluestem (Andropogon scoparius) and thread leaf sedge were commonly found on rocky ridge tops.

Shrub communities based on importance values were as follows (Table 8):
(1) dwarf sage (Artemisia cana) community commonly found on all topographic features; (2) dwarf sage and green rabbitbrush (Chrysothamnus graveolens) community characteristic of disturbed areas, usually old uranium mines, which have been reclaimed; (3) dwarf sage and rose (Rosa spp.) commonly found in creek bottoms; (4) rocky mountain red cedar (Juniperus scopulorum) and dwarf juniper (Juniperus communis) community found predominantly on north slopes of plateaus and flat top ridges.

BIOGEOCHEMISTRY:

Three replicate soil and plant samples were collected monthly from January through December, 1976 in each study plot. In all four study areas, analysis of western wheatgrass revealed that the highest levels of Ca, Mg, K and Cu occurred during summer, levels of Na, Mn and Zn peaked in spring whereas Al, Cd, Fe, Li, Ni, Pb and Sr peaked in late winter (Table 10). These data indicate seasonal fluctations in the element concentrations of western wheatgrass, dwarf sage (Table 11) and Yucca (Table 12). Unfortunately Carex filifolia samples were not collected during the entire year (Table 13).

On the plateau study area, soil concentrations of all elements except Sr were highest in the winter. In the sidehill and creek bottom soil samples, 6 of the 14 elements peaked in winter and on the flat top ridge 10 of the 14 soil nutrients peaked in winter (Table 9). These data indicate that the highest levels of most elements occurred in late winter.

During the 1975 and 1976 hunting seasons various tissues were collected from each animal and analyzed for the same elements as plants and soils (Table 14). Elemental-tissue accumulations were as follows: Ca-bone, K-heart and skeletal muscle, Mg-bone, Na-bone, Al-skin, Cd-bone, Fe-spleen, Li-bone, Ni-hair, Pb-bone, Sr-bone, Cu-liver, Mn-hair, and Zn-hair. For the following elements concentrations were highest in the bone and next high in the hair: Ca, Mg, Cd, Li, Ni, Pb, Sr and Zn. Skeletal muscle and heart muscle, the two tissues which had the highest concentrations of K, also had the lowest concentrations of Na. The elements Al, Cd, Li, Ni, Pb and Sr appeared to concentrate in either the bone or hair and were very low in other tissues. With the exception of Fe, K and Na, all elements had their highest concentrations in the bone or hair. For all elements except K and Na, the levels in the feces were approximately double those in the rumen samples.

Table 8. Importance values of species in the communities studied.

			Study Areas	
Species	PLATEAU	SIDEHILL	FLAT TOP RIDGE	CREEK BOTTOM
Agropyron smithii	198	170	49	205
Andropogon scoparius		8	97	
Artemisia frigida	20	8	7	
Bouteloua curtipendula		, 9	15	
Bouteloua gracilis		37	7	31
Carex filifolia	50	68	101	64
Lathyrus odoratus			11	
Melilotus alba	32			
Taraxacum officinals			13	

Table 9. Chemical composition of soil.

Month	Ca	Mg — me/10	K	Na	All	Cđ	Cu	Fe	Li ¹ — ppm -	Mn	Ni	Pbl	Sr	Zn
						Platea	u		PP					
January	27.9	13.2	0.58	0.63		0.3	1.1	7.1		29.8	2.7	3.3	2.5	0.6
February	25.2	12.6	0.66	1.64	0.6	0.1	0.2	6.4		29.2	2.0		2.4	0.2
March	22.6	14.9	0.55	2.3		0.1	0.3	6.0		13.0	2.6	1.1	2.0	0.2
April	22.7	11.8	0.59	1.50		0.1	0.4	6.7		22.4	2.3	1.0	2.0	0.3
May	26.5	13.4	0.49	0.45		0.1	0.5	6.1		10.7	0.5	0.3	2.2	0.1
June	26.2	14.1	0.56	0.44		0.2	0.5	7.3		13.3	0.4	0.8	2.1	0.1
July	27.4	13.2	0.63	0.25		0.2	0.5	5.7	*** *** ***	11.7	1.1	0.7	2.2	0.1
August	24.5	15.8	0.48	0.79	0.9	0.2	0.4	7.4		10.6	0.1	0.6	2.6	0.2
September	26.2	15.4	0.44	0.65	0.7	0.1	0.7	7.6		12.8	0.1	0.8	2.9	0.2
October	25.4	14.4	0.49	0.47	0.5	0.1	0.4	7.4		22.3	0.3	0.9	2.4	0.2
November	31.2	17.1	0.43	0.55	0.7	0.1	0.9	7.5		9.6	1.8	1.0	2.3	0.1
December	26.9	13.5	0.42	1.18	1.3	0.1	0.7	14.6		16.3	2.1	0.7	2.2	8.6

 $^{^{1}\}mathrm{Concentrations}$ detected were less than 0.1 ppm.

Table 9 (continued).

Month	Ca	Mg — me/l	00g K	Na	Al	Cđ	Cu	Fe	Li ^l - ppm	Mn	Ni	Pb	Sr	Zn
							Sidehil	.1	PP					
January	55.4	5.9	0.46	0.1	1.8	0.2	0.9	8.7	000 two end end	42.6	2.3	2.0	3.8	0.6
February	47.4	6.4	0.60	0.1	3.2	0.2	0.7	10.2		45.6	2.8	0.9	3.5	0.6
March	54.0	3.8	0.45	0.1	3.8	0.2	0.8	10.1		44.5	3.2	1.8	3.3	0.5
April	58.7	6.3	0.76	0.1	3.0	0.3	1.4	14.0	000 000 000 000	58.4	1.3	2.7	3.8	0.7
May	59.1	4.5	0.48	0.1	2.0	0.3	1.1	12.7	-	40.8	1.8	1.5	3.6	0.5
June	52.0	7.7	0.48	0.2	3.3	0.2	1.2	14.9	0.1	37.5	1.9	1.8	3.6	0.5
July	64.8	6.2	0.66	0.1	1.7	0.2	1.5	11.5		54.1	1.6	2.9	4.1	0.4
August	40.6	7.3	0.51	0.1	5.9	0.2	0.8	13.0		31.6	0.8	1.9	3.7	0.6
September	45.6	5.5	0.66	0.1	4.4	0.2	1.1	15.9		55.2	1.2	2.8	3.7	0.8
October	54.3	5.3	0.66	0.1	4.5	0.2	1.2	5.1		44.2	1.3	2.3	3.5	0.5
November	57.8	9.0	0.94	0.3	5.9	0.2	2.1	17.4	0.1	35.6	2.5	2.6	3.7	0.5
December	41.6	8.1	0.76	0.2	4.8	0.2	1.2	16.6		42.7	2.4	2.5	3.1	1.1

¹ Concentrations detected were less than 0.1 ppm.

Table 10. Chemical composition of Agropyron smithii 1 .

Month	Ca	Mg %	K	Na	Al	cd ²	Cu	Fe ppm	Li ²	Mn	Ni ²	Pb ²	sr ²	Zn
							Platea		30.					
January	0.24	0.08	0.33	31	193	1.0	2.3	210		47	60	2		8
February	0.44	0.08	0.25	35	363	1.7	0.3	392		43	12	3	10	5
March	0.47	0.13	0.73	58	38	1.3	3.0	371		52			1	13
April	0.57	0.12	1.16	59	327	3.3	4.7	292		53				16
May	0.37	0.22	1.65	13	215	1.0	4.5	182		45				2
June	0.48	0.26	1.02	23	133	1.3	4.0	184		44	10			18
July	0.54	0.27	1.17	13	137		3.3	164		40				11
August	0.42	0.24	0.97	31	87	0.7	2.0	210		37			10	13
September	0.47	0.18	0.53	16	410		1.0	367		50			7	6
October	0.44	0.13	0.40	24	220		0.7	200		34	7		3	11
November	0.44	0.14	0.29	28	493	0.3	2.0	480	1.0	42	7			10
December	0.52	0.12	0.24	26	473	1.3	1.3	463		41	3		3	9

 $^{^{1}\}mathrm{All}$ values expressed on a dry weight basis.

 $^{^2}_{\hbox{\ \, Concentrations}}$ detected were less than 0.0 ppm.

-25

Table 10 (continued).

Month	Ca	Mg %	K	Na	Al	cd ²	Cu	Fe — ppm	Li ²	Mn	Ni ²	Pb ²	sr ²	Zn
							Sidehil	.1						
January	0.34	0.10	0.20	02	450	1.7	2.7	420		38	53	2		15
February	0.61	0.09	0.22	79	993	2.3	0.3	673	1.0	47	40	3	3	13
March	0.34	0.08	0.16	103	473	0.3	2.0	437		53			3	18
April	0.69	0.09	0.48	107	617	2.3	3.7	475		43			3	21
May	0.45	0.14	0.71	88	427	1.7	4.3	437		42	5			12
June	0.57	0.20	0.68	201	300	2.7	4.0	426		38	3			27
July	0.43	0.22	0.76	116	260	0.3	1.3	331		34				17
August	0.50	0.16	0.72	330	280	0,7	3.3	333		41			12	16
September	.0.60	0.11	0.26	118	390	0.7	2.0	343		27			7	55
October	0.57	0.08	0.22	24	297		0.7	293		30	7			16
November	. 0.53	0.09	0.24	42	340	2.3	1.7	323	0.3	28	5			16
December	0.45	0.08	0.14	25	433	3.7	1.7	390		37	2			15

¹All values expressed on a dry weight basis.

 $^{^2}_{\hbox{\scriptsize Concentrations}}$ detected were less than 0.1 ppm.

-27-

Table 11. Chemical composition of <u>Artemisia</u> cana¹.

Month	Ca	Mg %	К	Na	Al	cd ²	Cu	Fe pp	Li ²	Mn	Ni ²	Pb ²	sr ²	Zn
							Platea							
January	0.36	0.20	0.82	53	180	2.0	7.7	210	000 000 000	36	50	6HG (MG 6HB	7	13
February	0.46	0.61	0.87	76	293	3.0	4.7	290		33	17	8	15	12
March	0.46	0.17	0.81	83	173	0.7	4.7	223		39	22	3	10	14
April	0.56	0.29	1.78	72	213	0.3	5.9	233		72	20		13	21
May	0.84	0.57	2.90	32	353	3.3	6.3	437	0.7	119	2			18
June	0.79	0.47	1.33	61	167	1.7	5.4	212	0.7	46	3			19
July	1.02	0.45	1.25	29	147		0.8	193		39		600 000 000		13
August	0.49	0.33	1.27	34	170	0.7	4.6	227	900 mm mm	35			20	16
September	0.65	0.30	0.97	25	210	1.3	3.9	207	00 00 m	43	3		16	12
October	0.67	0.33	0.88	59	357	0.3	3.2	293	1.0	48	13	en en en	10	12
November	0.58	0.31	0.86	133	320	2.0	3.7	250	0.3	47	10	GB 625 000	10	11
December	0.64	0.30	0.81	88	293	1.7	3.7	257	0.3	32	7	(000 000 000	18	14

 $^{^{1}}$ All values expressed on a dry weight basis.

 $^{^2}_{\hbox{\scriptsize Concentrations}}$ detected were less than 0.1 ppm.

29-

Table 11 (continued).

Month	Ca	Mg	K	Na	Al	cd ²	Cu	Fe pp	Li ²	Mn	Ni ²	Pb ²	sr ²	Zn
							Sidehil							
January	0.55	0.15	0.82	137	253	0.3	8.3	300		39	13		10	19
February	0.59	0.12	0.84	119	390	0.7	6.3	313		39		7	17	21
March	0.64	0.14	0.92	141	417	1.0	8.3	363	0.7	38	12	10	20	20
April	0.66	0.20	1.65	91	307		10.0	303		35	12		13	31
May	0.96	0.33	2.00	59	303	1.0	12.0	291	0.7	59	3			31
June	0.82	0.25	1.28	35	303	1.3	12.3	287	0.7	32		7		31
July	0.86	0.30	1.28	50	153		3.0	176		36				18
August	0.78	0.26	1.09	38	153	0.3	7.0	237	0.3	45	000 000 000		20	20
September	0.74	0.24	0.97	65	213	0.7	8.0	207	0.7	39	3		20	17
October	0.89	0.27	0.95	72	240	1.3	6.3	240	1.3	32	10		12	21
November	0.75	0.26	0.80	103	323	2.7	6.0	290	1.0	34	2		23	17
December	0.60	0.21	0.88	104	273	2.0	6.0	283	1.0	26	6	3	17	18

 $^{^{1}\!\!}$ All values expressed on a dry weight basis.

² Concentrations detected were less than 0.1 ppm.

-31-

Table 12. Chemical composition of Yucca glauca 1.

Month	Ca	Mg	K	Na	Al	cd^2	Cu ²	Fe	Li ²	Mn	Ni ²	Pb ²	Sr	Zn
		 % 						p	pm —					
							Platea	1						
January	0.79	0.43	0.96	15	60	3	3	170		18	80	10	20	21
February	1.33	0.42	0.56	110	40	3	2	90	1	25	30	15	30	16
March	0.96	0.36	1.08	37	110	2	4	130		27			30	17
April	1.00	0.52	0.67	220	160	1	6	154	1	21	60		10	6
May	1.14	0.57	0.65	1	70	3	1	80	1	21	5		10	2
June	1.17	0.77	1.12	14	100			156		18			10	21
July	0.99	0.62	1.23	24	110	1	5	180		24			40	26
August	1.10	0.69	1.22	280	20	2	5	170		35			20	16
September	1.09	0.78	0.94	33	10	3	1	60		14			30	19
October	1.18	0.53	0.84	7	30	2	1	70	2	19			40	31
November	0.66	0.60	0.74	167	170	3	2	200	1	12	5		20	22
December	1.18	0.69	0.59	110	260	1	2	240	1	23	5		20	15

 $^{^{1}\}mathrm{All}$ values expressed on a dry weight basis.

Table 12 (continued).

Month	Ca	Mg %	K	Na	Al ²	cd ²	Cu ²	Fe — ppm	Li ²	Mn	Ni ²	Pb ²	sr ²	Zn
						S	idehill							
January	1.13	0.23	0.50	49	210	1	4	170	Dec 1000 (000 Free)	30	30	5	40	28
February	1.20	0.19	0.48	34	70	2	3	130	1	34	10	-	50	25
March	1.40	0.35	0.42	53	120	5	3	150	1	55	25		90	2 5
April	1.10	0.42	0.59	240	80		5	61	2	33	50		30	19
May	0.87	0.33	0.80	5	40	2	2	2 6	1	19				30
June	1.75	0.58	1.26	26	10			42		36			30	30
July	0.80	0.51	0.99	740			7	80	3	40			70	23
August	1.25	0.47	1.04	75	20		4	90	1	32			40	19
September	1.38	0.49	0.80	256	10	3	1	80	1	46	10		70	19
October	0.82	0.77	0.93	78	30		2	120		13			20	26
November	1.05	0.45	0.60	24	90		1	90	1	27			30	19
December	1.24	0.60	0.42	700	90	1	2	100	3	45		5	70	18

 $^{^{1}\}mathrm{All}$ values expressed on a dry weight basis.

 $^{^{2}\}mathrm{Concentrations}$ detected were less than 0.1 ppm.

Table 13 (continued).

Month	Ca	Mg	K	Na	Al	Cđ	Cu	Fe	Li ²	Mn	Ni ²	Pb ²	sr ²	Zn
		% —		-				p	pm					
						Flat 7	Top Rid	ge						
April	0.65	0.15	0.58	39	347	2.7	3.0	382		38	7			16
May	0.88	0.14	0.63	14	290	1.3	3.3	331	-	32				24
June	1.11	0.25	0.71	33	730	1.7	1.0	740		33	12			12
July	0.89	0.25	0.89	45	437	1.7	3.3	341		22	3	3		13
August	0.90	0.18	0.77	22	237	0.3	2.3	413		35	5		3	12
September	0.76	0.13	0.35	19	363	0.3	1.3	337		29				14

 $^{^{1}\}mathrm{All}$ values expressed on a dry weight basis.

 $^{^2}_{\hbox{\ \ \, Concentrations}}$ detected were less than 0.1 ppm.

Table 14. Mean concentrations of elements in N.D. bighorn sheep tissue samples collected during 1975 and 1976^{1} .

	Ca	Mg	K	Na	Al	cd ²	Cu	Fe	Li ²	Mn ²	Ni ²	Pb ²	Sr ² Z	Zn
Bone	25.29	0.32	0.05	0.67	21	5	4.9	20	ppm — 1	4.3	11	22	121 82.	, 8
Hoof	0.12	0.03	0.07	0.14	364	ORES DIEGO COMO	2.6	252		5.1	1	and and and	51.	, 1
Hair	0.32	0.10	0.06	0.16	155	3	8.8	1070	1.1	20.3	21		96.	, 5
Skin	0.12	0.04	0.08	0.18	883	3	2.6	509		17.8	8		22.	,9
Skeletal muscle	0.01	0.02	0.23	0.05	4	CHANG BEECH BEECH	2.1	50					 59.	, 8
Heart muscle	0.01	0.02	0.20	0.07	4		4.4	64					16.	.7
Liver	0.01	0.02	0.19	0.11	4		123.1	117		3			34.	, 8
Kidney	0.01	0.02	0.14	0.19	3		4.7	127		1	1	DET 200 THO	25.	, 1
Lung	0.01	0.01	0.18	0.16	5		3.6	197					17.	.1
Spleen	0.02	0.02	0.18	0.09	9		1.4	1600			.1		80.	,9
Rumen	0.24	0.05	0.12	0.23	251	MIC DOS MIC	2.7	146		11	1		6 7.	, 1
Feces	0.59	0.13	0.07	0.07	708		5.1	519		40	2	2	15 19.	,1

 $^{^{1}\}mathrm{All}$ values expressed on a dry weight basis.

 $^{^{2}}_{\mbox{\sc Concentrations}}$ detected were less than 0.1 ppm.

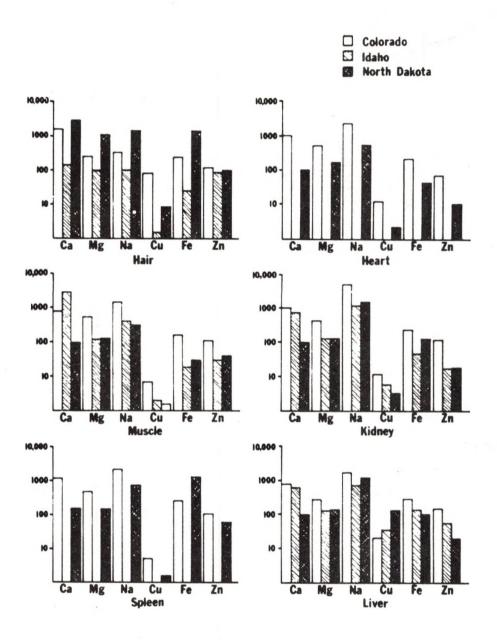


Fig. 2. Mean element concentrations of selected bighorn sheep tissues from Colorado, Idaho and North Dakota.

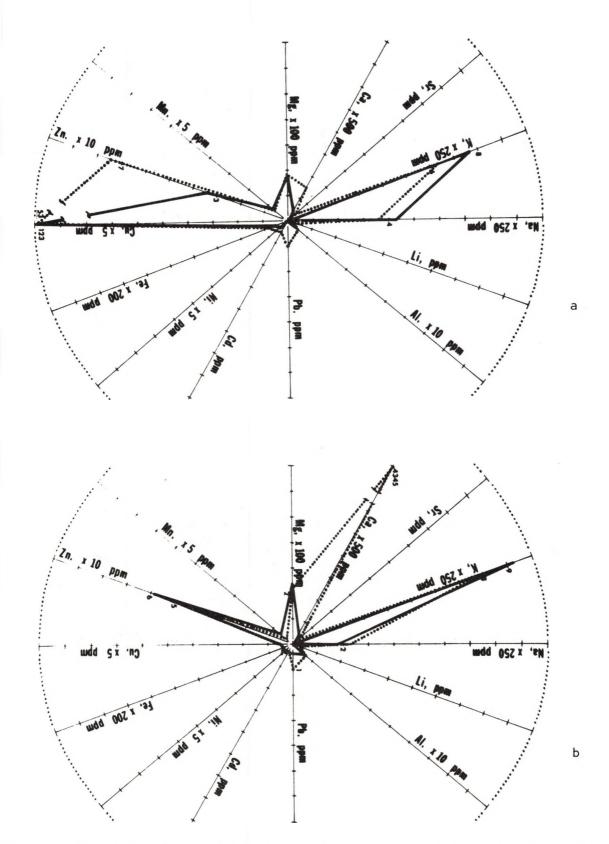


Fig. 4. Trace element patterns of (a) liver and (b) skeletal muscle samples from Idaho (dotted line) and North Dakota (solid line).

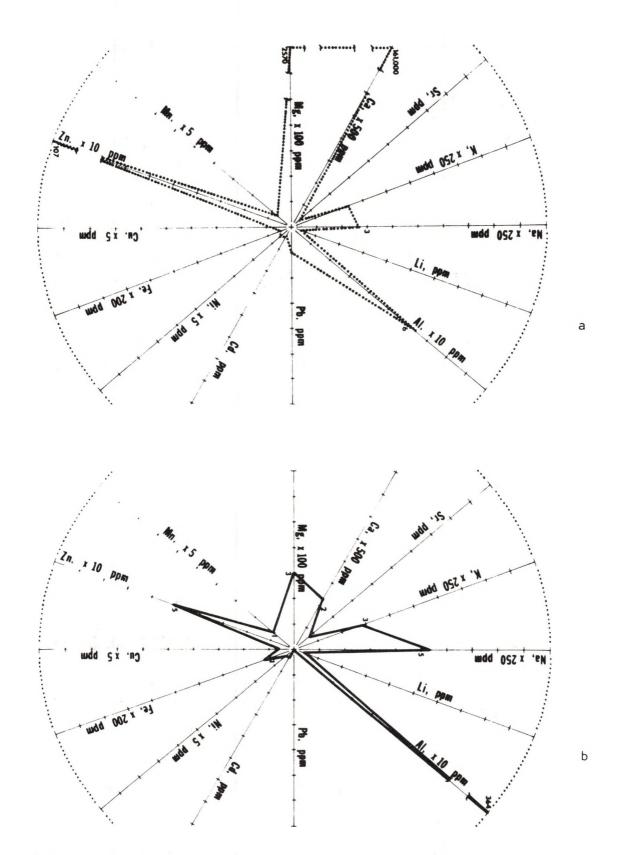


Fig. 6. Trace element patterns of (a) Idaho horn samples and (b) North Dakota hoof samples.

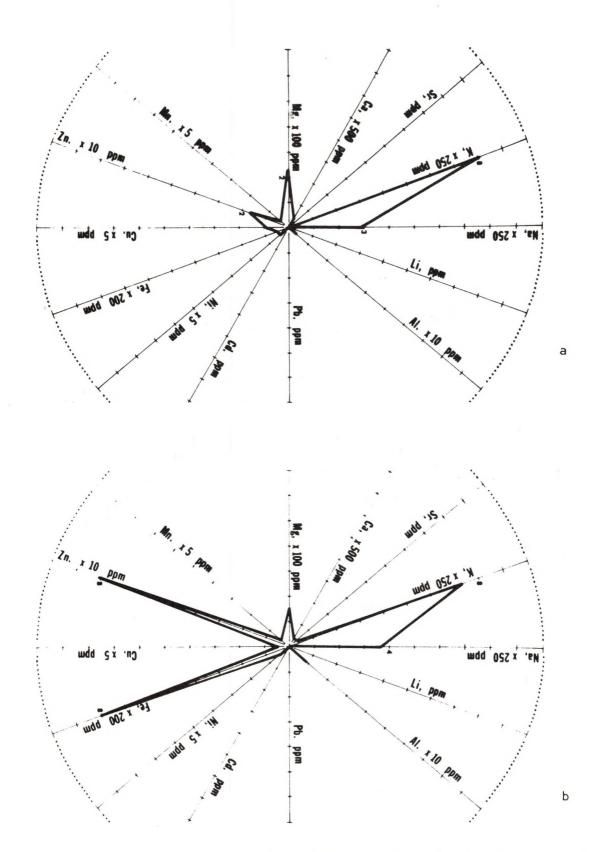


Fig. 8. Trace element patterns of (a) heart muscle and (b) spleen samples from North Dakota.

DISCUSSION

This study dealt with the following aspects of bighorn sheep ecology: (1) population estimates and density; (2) food habits; and (3) biogeochemistry.

POPULATION ESTIMATES AND DENSITY:

Data gathered during this study revealed that the North Dakota herd was characterized by an equal sex ratio, low productivity, and an old age structure. These data indicate that the herd was at best static, due primarily to a low recruitment rate. Three hypotheses were advanced to explain this low reproductive output. First, numerous studies have suggested that equal sex ratios were indicative of ram surpluses, which may lower the reproductive rate through excessive harassment of ewes. Pulling (1945) was the first to suggest that excessive harassment of ewes by rams may cause non-breeding in bighorn sheep. Groves (1947) later found that on the Desert Game Range in Nevada, when sheep congregrated near water holes during dry seasons, ewes were serviced by many rams or harassed until they collapsed from exhaustion. A census of the Gros Ventre River herd in Wyoming by Honess and Frost (1942) revealed a ram: ewe ratio greater than 100:100 and a reproductive rate of less than 20%. Russo (1956) presented data showing a ram: ewe ratio of 137:100 produced fewer lambs than a ratio of 122:100. Smith (1956) working in the heavily hunted Stoddard Creek area in Idaho, found sheep numbers increased from 71 in 1951 to 138 in 1956. Buechner (1960) showed that a ram:ewe ratio of 25:100 resulted in higher productivity than a 100:100 ratio. Hanson (1963) indicated that equal sex ratios often lowered the reproductive output of many birds and mammals. Most authors agree that limited hunting of bighorns would alter the sex ratio and benefit the herd.

Second, since lungworms have been found in bighorn rams in North Dakota, ewes are probably also infected. Additionally, numerous examples of the effects of lungworm infestations on lambs have been well documented (Buechner 1960, Hibler et al. 1972), and this disease may have contributed to the low lamb crop.

Third, DeForge (1976) stated that social stress from overcrowding and the resulting contacts and conflicts with other sheep inhibits reproduction. Although no standards currently exist for evaluation of densities, it is logical to assume that densities are too high when signs of stress, such as harassment, appear. Bighorns in North Dakota were concentrated in population centers and excessive harassment of ewes existed which indicate that densities were too high and stressful conditions existed. These densities have occurred since bighorns do not disperse from release sites (Geist 1967). Steps should be taken to alleviate this problem.

Overcrowding results not only from a lack of migration but also constriction of range due to loss of habitat. Developments such as urbanization (Nelson 1966), overgrazing (Spalding and Bone 1969), recreation and surface mining (Etter 1973) cause losses of habitat and force bighorn sheep to concentrate in small areas. Oil and gas developments in the North Dakota sheep range have resulted in the loss of much habitat and may ultimately cause abandonment of the range by sheep. If oil and gas development must occur, steps should be taken to prevent such development in preferred habitat areas. Furthermore, already

SUMMARY AND MANAGEMENT RECOMMENDATIONS

- 1. An early morning aerial survey in mid-summer be initiated; during the early morning period, the probability of observing bighorns in the open is greater. A mid-summer flight produced higher counts since ewes and lambs had rejoined former groups; lambs were not readily distinguished from yearlings during fall surveys.
- 2. A limited permit hunting season be continued. This will help in lowering sex ratios, increasing productivity and alleviating overcrowding.
- 3. The plateaus be designated preferred areas for bighorn sheep and be exempt from further development. Energy developments destroy habitat and increase human harassment both of which increase stress, thereby lowering the reproductive output.
- 4. Disturbed areas be reclaimed with species of <u>Eurotia</u>, <u>Shepherdia</u>, <u>Artemisia</u> and <u>Atriplex</u>. The diet of bighorn sheep in undisturbed area was composed predominantly of browse. Reclamation attempts should strive to replicate the mosaic of topography and species diversity of the former range.

- Keiss, R.E. 1976. Evaluation of the nutritional requirements of bighorn sheep. Colo. Div. Wildl. Game Res. Rep., W-41-R-25. 25p.
- McKenzie J.V. 1960. Status of bighorn sheep transplant. N.D. Game and Fish Dept., P-R Report W-37-R-6. 9p.
- Murdy, R. 1957. 1956 bighorn sheep transplant. N.D. Game and Fish Dept., P-R Report W-42-D-4. 12p.
- Nelson, M. 1966. Problems of recreational use of game ranges. Trans. Desert Bighorn Council 10:13-20.
- Perkin-Elmer. 1973. Analytical methods for atomic absorption spectrophotometry. Perkin-Elmer Corp., Norwalk, Conn. 569p.
- Pulling, A. von S. 1945. Non-breeding in bighorn sheep. J. Wildl. Manage. 9:155-156.
- Russo, J.R. 1956. The desert bighorn sheep in Arizona. Arizona Game and Fish Department Wildl. Bull. No. 1. 153 p.
- Samuelson, J. 1973. Bighorn population study. N.D. Game and Fish Dept., P-R Report W-67-R-13. 9p.
- W-67-R-14. Bighorn population study. N.D. Game and Fish Dept., P-R Report
- 1975. Bighorn population study. N.D. Game and Fish Dept., P-R Report W-67-R-15. 8p.
- Smith, D.R. 1956. Middle Fork aerial bighorn sheep trean count. Idaho Dept. Fish and Game. 3p.
- Spalding, D.J. and J.N. Bone. 1969. The California bighorn sheep of the south Okanagan Valley, British Columbia. British Columbia Fish and Wildl. Br., Wildl. Manage. Pub. No. 3. 47p.
- Sugden, L.G. 1957. A study of California bighorn sheep (Ovis canadensis californiana) west of the Fraser River, with particular reference to the Churn Creek band. M.S. Thesis, Utah State Univ., Logan. 157p.
- Todd, J.W. and R.M. Hansen. 1973. Plant fragments in the feces of bighorns as indicators of food habits. J. Wildl. Manage. 37:363-366.
- United States Department of Agriculture. 1974. Management prescription for the badlands planning unit. 248p.
- Wali, M.K. and V.J. Krajina. 1973. Vegetation-environment relationships of some sub-boreal spruce zones ecosystems in British Columbia. Vegetatio 26:237-381.
- Welles, R. 1961. How much room does a bighorn need. Trans. Desert Bighorn Council. 5:99-102.

Appendix I

Table 16. Location of study areas.

Study Area	Township	Range	Section
Plateau	T.139N.	R.102W.	Sec. 3
Sidehill	T.139N.	R.102W.	Sec. 9
Flat Top Ridge	T.139N.	R.102W.	Sec. 6
Creek Bottom	T.139N.	R.102W.	Sec. 4

	Bighorn	Sheep Tag	ging Information			
	Date			Ta	g #	
Release site	Trapped	Sex	Age	R-ear	L-ear	Remarks
South Unit Theodore	1-15-59	R	Adult	138	139	Released in the semi-
Roosevelt National Park		R	Adult	143	142	wild conditions of the
(semi-wild) SW_{4}^{1} 33-140-102		R	Adult	161	160	south Park unit.
Billings Co.		R	Yearling	B177	B176	From Magpie Cr. En-
		R	Yearling	в179	B178	closure. B177-B176 and B-179-B178 are ND born.
Total		5				3 adult R 2 yearling R Released 1-15-59
South Unit Theodore	2-17-60	R	Lamb	A188	B188	From Magpie Cr. En-
Roosevelt National Park		R	Adult	153	152	closure to S. Park
Enclosure W 31-141-101		E	Adult	159	158	Unit Encl. A188-B188
Billings Co.		E	Adult	155	154	ND born.
Total		4				2R 2E
South Unit Theodore	2-25-60	R*	Lamb	A190	В190	From Magpie Cr. En-
Roosevelt Park Enclosure		R*	Adult	A191	B191	closure to S. Park
W^{1}_{2} 31-141-101		E	Adult	145	144	Unit Encl. *ND
Billings Co.		E*	Adult	A189	B189	born.
		E	Adult	200B	150	200B Tag replaced lost 151.
Total		5				2R 3E

	Bighorn	Sheep Tag	ging Information	n		
	Date				g#	
Release site	Trapped	Sex	Age	R-ear	L-ear	Remarks
Dutchman's Barn Enclosure	12-5-62	E* E*	Yearling Lamb	224 245	A244 A245	Trapped in S Park Unit Encl. & re-
						leased into Dutch- man's Barn Encl. *ND born.
		2				2E
Devils Slide NW4 8-137-101	12-5-62	R*	Adult (24 mos.)	(A188) (Lost)	в188	Trapped in S Park Encl. & released
Billings County		E*	Yearling	A231	231	to wild on Devils Slide Site. *ND born.
		2				2R released on Devil Slide Site
S. Unit Theodore Roosevelt National Park	12-5-62	R*	Adult (68 mos.)	В177	в176	Trapped in S Park Encl. & released out
(semi-wild)		R*	Adult	A190	B190	side of encl. *ND
		R	(44 mos.) Adult (104+ mos.)	В153	B152	born.
		3				3R released outside Park enclosure

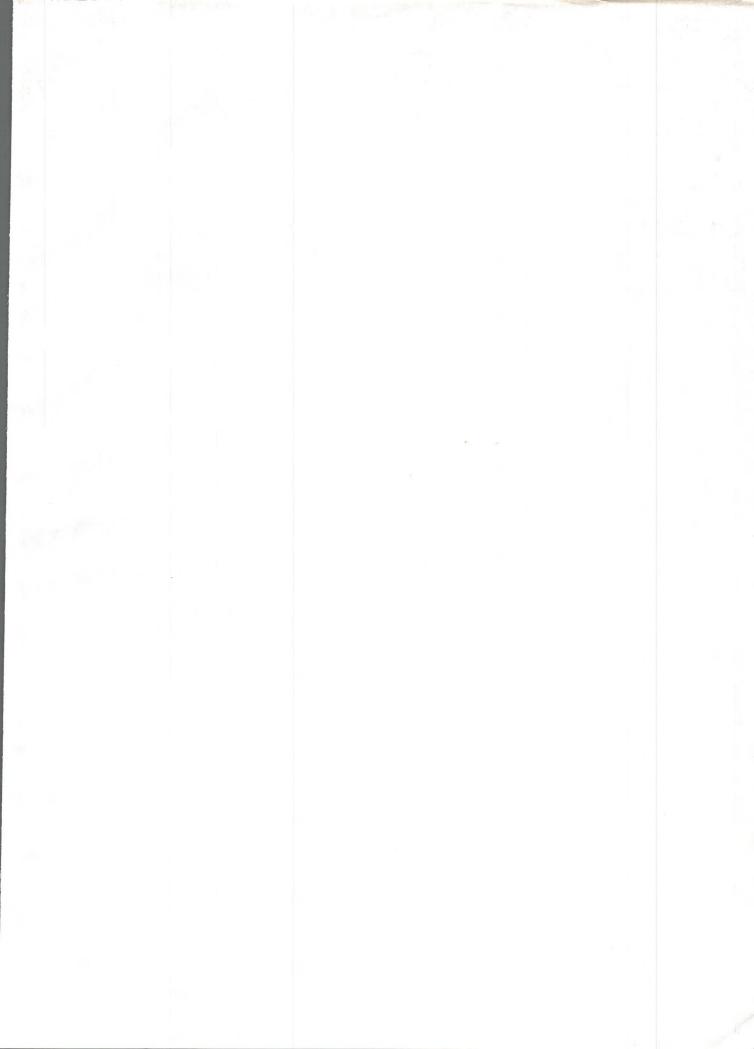

	Bighorn	Sheep Tag	ging Informatio	<u>n</u>		
	Date			Tag #		
Release site	Trapped	Sex	Age	R-ear	L-ear	Remarks
South Unit Theodore	1-15-62	D	7 7 1 +-	120	120	m1
Roosevelt Park	1-15-62	R	Adult	138	139	Trapped & released
		D4	(81 mos.)	377.10	201	back into S Park Unit
Enclosure		R*	Yearling	None	224	Encl. 138-139 appar-
W_{2}^{1} 31-141-101		R*	Adult	B177	B176	ently jumped into en-
Billings Co.			(57 mos.)			closure from semi-
		R*	Adult	A190	B190	wild release (1-15-
			(33 mos.)			59). *ND born.
		E*	Adult	A189	B189	
			(57 mos.)			
		R*	2 yr. old	A188	B188	
			(23 mos.)	(Lost)		
		R	Adult	153	152	
			(93 + mos.)			
		E	Adult	159	158	
			(93+ mos.)			
		E	Adult	155	154	
		_	(93+ mos.)	(Lost)	101	
		E	Adult	200B	150	
		п	(93+ mos.)	2000	130	
			(95+ 1105.)			
Total	1	12				Handled 1-15-62 at
						S Park Unit Encl.
						8R 4E

Table 17 (continued).

	Bighorn	Sheep Tag	ging Information			
	Date			Tag #		
Release site	Trapped	Sex	Age	R-ear	L-ear	Remarks
Magpie Creek Enclosure	1-5-65	E	Adult	в133	N132	Trapped & released in
		E*	(108+ mos.) Lamb	Mana	B168	Magpie Cr. encl.
				None		*ND born.
		E* E*	Lamb Lamb	None	B169	
		_		None	B170	
		R*	Yearling	B171	None	
		7.4	(21 mos.)	7170		
		R*	Yearling	B172	None	4
		E*	Adult	B242	(A342)	
		1- y	(33 mos.)		(Lost)	
Total		7				5E 2R handled during this trapping opera-
						tion at Magpie Cr. Enclosure
Moody Plateau	1-25-66	E	Adult	B174	B144	From Park Encl. into
N= 24-138-102	1 20 00		(142+ mos.)	DI/4	Diai	wild on Moody Plateau
Billings County		E*	Adult	232	233	site 1-26-66. B174
Wild release		п	(105 mos.)	232	233	replaced lost 145.
		E*	Adult	235	173	232-233 same as Al89
		п	(70 mos.)	233	1/5	B189.
			(70 mos.)			L-ear tag 173 added
						1-25-66. *ND born.
Total		3				3E released in wild on Moody Plateau

Table 18 (continued).

Horn Tag Number	Date of Kill	Location of Kill	Hunter	Size of Curl	Age	Whole Weight	Au- topsy Report	Measurements (inches) Total-hindleg-tail- ear
				1976				
15	Nov. 26	Magpie Creek	Dave Baumiller	2/3	4½	179 lbs.	Lungworms & Cestodes in Liver	49-17-3 ¹ ₄ -4 5/8
16	Nov. 27	Sully Creek	Randy Engen	7/8	$7\frac{1}{2}$	170 lbs.	n ·	$56\frac{1}{4} - 15\frac{1}{2} - 3$ $7/8 - 4\frac{1}{2}$
17	Nov. 27	Plumely Draw	Don E lli s	3/4	$5\frac{1}{2}$	195 lbs.	п	64 7/8-16 7/8-5-4 7/8
18	Nov. 28	Sully Creek	John Olson	3/4	$7\frac{1}{2}$	195 lbs.	11	60^{1}_{4} - 17 - 3 3/4 - 4 7/8
19	Nov. 28	Sully Creek	Jean Bullock	3/4	$5\frac{1}{2}$	215 lbs.	n	58½-17-5 3/4-4 7/8
20	Nov. 29	Sully Creek	Paul Nowak	3/4	$6\frac{1}{2}$	185 lbs.	11	$63\frac{1}{4} - 16\frac{1}{4} - 3\frac{1}{2} - 4$ 7/8
21	Nov. 30	Magpie Creek	W.D. Suda	1/2	$3\frac{1}{2}$	175 lbs.	п	$64\frac{1}{2} - 17\frac{1}{2} - 5 1/8 - 5$
22	Dec. 1	Devils Slide	Royal Handegard	3/4	$4\frac{1}{2}$	180 lbs.	n	61 $7/8-16\frac{1}{2}-4\frac{1}{2}-4$ 3/4
23	Dec. 2	Moody Plateau	Gerri Dockter	3/4	$5\frac{1}{2}$	180 lbs.	11	$61-17\frac{1}{4}-4\frac{1}{4}-5\frac{1}{4}$
24	Dec. 4	Kinley Plateau	wes Palmer	7/8	81/2	195 lbs.	n	57 3/4-16 ¹ ₂ -3 3/4-4

