
University of North Dakota University of North Dakota

UND Scholarly Commons UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

8-1-1978

Design of a Microprocessor Based Real Time Digital Controller Design of a Microprocessor Based Real Time Digital Controller

Venkatachalam Garimella

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation Recommended Citation
Garimella, Venkatachalam, "Design of a Microprocessor Based Real Time Digital Controller" (1978).
Theses and Dissertations. 2665.
https://commons.und.edu/theses/2665

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND
Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator
of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/2665
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2665?utm_source=commons.und.edu%2Ftheses%2F2665&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu

DESIGN OF A MICROPROCESSOR EASED
REAL TIME DIGITAL CONTROLLER

BY
Venkatachalam Garimella

Doctor of Philosophy, Ohio University, 1977

A Thesis

Submitted to the Graduate Faculty
: . ■ . . / ■ . ■ V, •' >. * • ■ _

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science
- j •; V ■ ■ - / : ■ :' ■

Grand Forks, North Dakota

August
1978

This Thesis submitted by Venkatachalam Garimella in partial fulfillment
of the requirements for the Degree of Master of Science from the University
of North Dakota is hereby approved by the Faculty Advisory Committee under
whom the work has been done.

(Chairman)

ii

I- .rmission

Title: DESIGN OF A MICROPROCESSOR EASED REAL TIME DIGITAL CONTROLLER

Department: ELECTRICAL ENGINEERING

Degree: MASTER OF SCIENCE

In presenting this Thesis in partial fulfillment of the
requirements for a graduate degree from the University of North
Dakota, I agree that the Library of this University shall make
it freely available for inspection. I further agree that per­
mission for extensive copying for scholarly purposes may be
granted by the professor who supervised my thesis work or, in
his absence, by the Chairman of the Department or the Dean of
the Graduate school. It is understood that any copying or
publication or other use of this thesis, or part thereof for
financial gain shall not be allowed without my written per­
mission. It is also understood that due recognition shall be
given to me and to the University of North Dakota in any
scholarly use which may be made of any material in my thesis.

iii

ACKNOWLEDGEMENT

The author is deeply indepted to his advisor, Dr. William A. Bares

for not only suggesting rhis problem but also for his constant help and

encouragement during this work. Also the author would like to thank

Mr. Mark E. Holle for many fruitful discussions and Mrs. Beverly Winchester

for typing this Thesis.

X

iv

TABLE OF CONTENT’S

Chapter I

INTRODUCTION... 1

DEFINITION OF TERMS..3

CLASSIFICATION OF CONTROLLER.. 5

ANALOG VERSUS DIGITAL CONTROLLERS.. 6

Chapter II

CONTROLLER DESIGN.. 8

MT CRO COMPUTER.................................... 8

ANALOG TO DIGITAL CONVERTER.. 13

DIGITAL TO ANALOG CONVERTER..14

INTERFACING AND CONTROL CIRCUIT DESCRIPTION.......... 14

SOFTWARE................................... 19
' ■ ■ I . - , , . • ' ' ; • .1;vV'f1 '■

SOFTWARE ORGANIZATION... 21

START UP ROUTINE.. 24

INTERRUPT ROUTINE.. .28

DIFFERENCE ROUTINE.......... 31

INTEGRATION ROUTINE... 33

PROPORTIONAL ROUTINE........... 35

SUMMING ROUTINE... 37

MULTIPLY AND COMPLEMENT ROUTINE.....37

OUTPUT SET POINT ROUTINE................. 40

TYPING ROUTINE.............. 40

PLANT SIMULATOR... 44

Chapter III

RESULTS AND DISCUSSION............ 46

PROPORTIONAL MODE................. 48

v

INTEGRAL MODE 50

PROPORTIONAL PLUS INTEGRAL- MODE.....

PROPORTIONAL-INTEGRAL-DIFFERENCE MODE

SUMMARY AND CONCLUSIONS.............

APPENDIX I...........................

LISTING OF PROGRAMS..................

APPENDIX II..........................

INSTRUCTIONS TO OPERATE THE SYSTEM. ..

REFERENCES...........................

53

56

56

59

73

73

80

vi

LIST OF TABLES

(1) POSSIBLE CONFIGURATIONS OF PROGRAMMABLE PERIPHERAL INTERFACE-----11

(2) POLES OF EQUATION (9)-- 48

(3) POLES OF EQUATION (12)------- 52

(4) POLES OF EQUATION (13), K VARYING-------------------------------- 53

(5) POLES OF EQUATION (13) , K VARYING-------------------------------- 53P
(6) POLES OF EQUATION (14)-- 56

vii

LIST OF FIGURES

(1) (a) BLOCK DIAGRAM OF OPEN LOOP CONTROL SYSTEM....................2

(b) BLOCK DIAGRAM OF CLOSED LOOP CONTROL SYSTEM..................2
(2) BLOCK DIAGRAM OF A CLOSED LOOP CONTROL SYSTEM............. 4
(3) ORGANIZATION OF PROMPT 80..9

(4) BLOCK DIAGRAM OF INTERFACE AND CONTROL CIRCUIT................. 15

(5) CIRCUIT DIAGRAM OF INTERFACE AND CONTROL CIRCUIT................16
(6) TIMING DIAGRAM.... ... 18
(7) SOFTWARE ORGANIZATION....... 22
(8) FLOW CHART FOR START UP ROUTINE................................ 25

(9) FLOW CHART OF THE INTERRUPT ROUTINE............................. 29

(10) FLOW CHART OF THE DIFFERENCE ROUTINE............ .32

(11) FLOW CHART OF INTEGRATION ROUTINE............................... 34
(12) FLOW CHART OF PROPORTIONAL ROUTINE.............................. 36

(13) FLOW CHART OF SUMMING ROUTINE..................... 38
(14) FLOW CHART OF MULTIPLY AND COMPLEMENT ROUTINE.................... 39
(15) FLOW CHART OF OUTPUT SET POINT ROUTINE...... 41

(16) FLOW CHART OF TYPING ROUTINE.....................................42
(17) SECOND ORDER PLANT SIMULATOR................................... 45

(18) PLANT POLES AND CLOSED LOOP POLES FOR PROPORTIONAL MODE..........47

(19) PROPORTIONAL MODE...49

(20) INTEGRAL MODE.. 51

(21) PROPORTIONAL INTEGRAL MODE (constant K^)............ 54

(22) PROPORTIONAL INTEGRAL MODE (constant Kj)........................ 55
(23) PROPORTIONAL-INTEGRAL-DIFFERENCE MODE...................... 57
(24) SKETCH OF PROMPT 80 FRONT PANEL.................. 74
(25) (a) COMPONENT LAYOUT......... 77

(b) PIN OUT OF A/D AND D/A CARDS AND INTER CONNECTIONS.........79
viii

ABSTRACT

With the availability of microcomputers it is now possible to design

low cost digital controllers. In the present work the design of a micro­

processor based real time digital controller is presented. The micro­

computer used was an 8080 based PROMPT 80. The necessary hardware to

interface this computer with a 'plant' was designed and tested. The

software for the controller was written such that it can be operated In

Proportional, Proportional-Integral and Proportional-Integral-Difference

modes. With minor changes in the programs the controller can be operated

in Integral, Integral-Difference and Proportional-Difference modes. The.

necessary modifications are indicated. The controller performance was

tested using a second order plant simulator. The results obtained were

compared with the calculated values and it was found that the controller

wa° performing as expected. A complete listing of programs and instructions

to operate the controller are given*.

ix

CHAPTER I

INTRODUCTION

Automatic control systems are finding increasing use in the present

day technology. The range of applications which require control systems

are large and increasing with advances in science and technology. Thus

it is necessary to continually develop new systems and improve the old

systems as the demand for automatic control systems increases. Further­

more, as new components are developed, it may be possible to design systems

which were previously discarded either as not feasible or too expensive.

For example, with the availability of microcomputers it is now possible to

design relatively inexpensive automatic digital control systems. In the

present, work a microprocessor based real time digital controller was de­

veloped. Sven though all control problems are not the same, certain common

general principles do exist and hence it is possible to develop a reasonably

versatile system which can be used in different applications.

The basic objective of a control system is to ’control' the process

variable in a prescribed manner by the actuating signal [1,2], For example,

consider a controller in the home heating system. The overall function of

cue controller is to maintain the temperature at tie value set by the user.

For this, the 'controller' senses the room temperature (process variable PV).

compares it with the required temperature (set point SP) and generates the

necessary signal (actuating signal MV) to turn on or turn off the heater.
Another example of a control system is the human being himself. Suppose a

person is trying to reach for an object, the movement of the hand is controlled

by the brain. Here the brain is the controller and provides the activating
signals to the muscles of the arm and hand.

Control systems can be divided into two broad categories as open loop

and closed loop systems. Fig. la and lb are block diagrams of open loop and

ACTUATING
SIGNAL :'e)

CONTROLLER CONTROLLED
PROCESS

CONTROLLED

VARIABLE

Fig. la

BLOCK DIAGRAM OF OPEN LOOP CONTROL SYSTEM

CONTROLLER MV
CONTROLLED

PROCESS CONTROLLED

VARIABLE

PV

Fig. '.b

BLOCK DIAGRAM OF CLOSED LOOP CONTROL SYSTEM

-2-

-3

closed loop control systems respectively. For an open loop control system,

the actuating signal is independent of the controlled variable. In the

second example, given above, if the person tried to reach for the object
with eyes closed, the 'system' becomes an open loop system. However, if

he reaches for the object with his eyes open the distance between the

object and the hand is 'fed back' to the brain and the actuating signal

to the arm and hand thus depends on the controlled variable, the distance

between the hand and the object. This is an example of a closed loop system.

Open loop control systems are used only in a few cases. In general most

of the control systems are of the closed loop type.

DEFINITION OF TERMS

Before proceeding further some of the terms used in control systems

will be defined. Fig. 2 is a. block diagram of a closed loop control system.

(If this looks very similar to fig. lb the similarity is not a coincidence).

A plant can be as simple as a furnace or as complicated as a large

industrial processing plant. Ogata [2] defines a plant as "..piece of equip­

ment, perhaps just a set of machine parts, functioning together, the purpose

of which is to perform a particular operation....". A process variable is the

output of a plant, for example, position of a shaft. The feedback element

produces some quantity (say voltage) usable by the error detector in some

way related to the process variable. Set point is the desired value of the

process variable. Error is the difference between the process variable

and the set point. The controller is a device or devices interconnected

such that, it operates on the error signal to generate the necessary signal

to control the 'plant'. This signal is called the manipulated variable.

Fig. 2
BLOCK. DIAGRAM OK A CLOSED LOOP CONTROL SYSTEM

-5-

CI ASSIFICAXION OF CONTROLLERS

Most common automatic controllers can be classifiei according to their

control action as [2]:

(1) Two position or ON-OFF controllers

(2) Proportional (P) controllers
(3) Integral (I) controllers

(4) Proportional-Integral (PI) controllers

(5) Proportional-Derivative (PD) controllers

(6) Proportional-Integral-Derivative (PID) controllers

In a two position control system the actuating element has two positions,

generally, ON or OFF. [Even though such a system can easily be implemented,

in the present work it has not been done because it can be implemented with

less complex controllers]. In a proportional mode (Proportional controller)

the manipulated variable, MV, is related to the error, e, by

MV (t) = K e (t) (1)

where K is a constant called proportional gain constant.

In a controller with integral control action, the manipulated variable

is changed at a rate proportional to the error signal i.e

dMV(t) Kj e(t)
dt

(2a)

or MV(t) = K-£ 11 e(t) dt
o

(2b)

Kj is called Integral gain constant.
For a derivative controller

MV(t) = Kd de(t) dt
(3)

(4)

is the derivative gain constant.

For a Proportional-Derivative controller

MV(t) - K e(t) + KL de(t)
P dt

and for Proportional-Integral-Derivative controller

MV(t) = K e(t) + de(t) + K 1 e(t)p T)__ i q dt (5)

[Since differentiation in a digital system is achieved by taking the dif­

ference between two samples, in this thesis the derivative mode is referred

to as 'Difference mode" and as the difference gain constant].

ANALOG VERSUS DIGITAL CONTROLLERS

It is possible to use both analog circuits and digital circuits to

achieve the desired control action. Analog controllers represent variables

by continuous physical quantities whereas digital systems operate on dis­

crete numbers. Analog controllers can operate satisfactorily in situations

where there is no decision making. Since they use continuous quantities

there are no errors introduced by the controller itself, but a digital system

(discrete values) does introduce errors. However, it is not a very severe

restriction since this can be reduced to an acceptable limit by increasing

the number of digits used in computations. The advantages of a digital con­

troller are that they can perform complex computations very accurately at

high speeds nd they are less susceptable to drift and temperature variations

compared to an analog controller. Digital controllers are very versatile,
simply by changin the software, the operation being performed can be changed.

For example in this present system, the mode of operation can be changed

from Proportional to PID mode by changing one number as opposed to complete

rewiring of the analog controller.

-7-

In the past one of the main objections to a digital controller has been

their high cost compared to analog controllers and hence, when digital com­

puters were used for controlling plants, one large central computer was used

to perform most of the tasks. With the availability of relatively inexpensive

microprocessors and advances in design and manufacture of Analog to Digital

and Digital to Analog converters, it is now possible to design digital con­

trollers at a cost comparable to that of analog controllers. Furthermore,

with the large scale integration techniques, the power consumption and phys­

ical size of integrated circuits is rapidly decreasing. The microcomputer

can function independently or under the control of a central computer. It

is possible to delegate some of the responsibility to the microcomputer based

controllers, thus freeing the central computer for other uses.

The main objective of the present study is to design a versatile, micro­

processor based real time digital controller. This is a real time controller

since the digital computations of the manipulated variable change almost in­

stantaneously when the process variable changes. The design of the controller

(both software and the hardware) is discussed in chapter II. The performance

of the controller was tested using a second order plant simulator and the

results obtained are discussed in chanter III. A complete listing of the

hand assembled programs is given in appendix I. Step by Step instructions

to operate the. controller are given in appendix II.

CHAPTER II

CONTROLLER DESIGN

It was indicated in the previous chapter that the present work deals

with the design of a microprocessor based digital controller. In this

chapter the design of the hardware and software of the controller will be

presented. First the major components of the controller will be described.

Secondly a description of the hardware will be given and the third part

will deal with the software. Finally a second order plant simulator, which

was used to test the performance of the controller, will be discussed.

The controller consists of an Analog to Digital (A/D) converter,

Digital to Analog converter (D/A) a microcomputer and various other com­

ponents t.0 interface the controller to the simulator and vice versa. In

the present context the word "hardware" implies the circuitry to achieve

the interfacing of the microcomputer with the plant simulator. Since the

microcomputer chosen dictates the choice of all the components that com­

prise the controller, it will be discussed first.

MICROCOMPUTER

The microcomputer used in this work is an 8080 microprocessor based

'PROMPT 80', manufactured by the Intel Corporation. This microcomputer was

chosen for several important reasons. The PROMPT 80 is readily available

and hence will enable one to proceed with the design of the controller. It

has a "Monitor" Program which is sufficiently versatile, a feature very con­

venient for developing and testing the software. The 8080, an 8 bit pro­
cessor, used by the PROMPT 80 is a versatile microprocessor with a reason­

ably good instruction set. [3,4]. Fig. 3 shows the general organization of

this computer.
The most important component of the computer is its central processing

-8-

so.1

Fig. 3

ORGANIZATION OF PROMPT *0

-10-

unit (8080). The central processing unit (CPU) communicates with memory

and the Input/Output interfaces.
The program counter is 16 bits long, hence up to 65k bytes of memory

can be addressed. (Ik Byte is 1024 locations and a byte consists of 8 bi­

nary bits). PROMPT 80 has 4k read only memory (ROM) and Ik Read/Write

Memory (RAM). Of the 4k. ROM, 3k is used by the Monitor programs. The Ik

RAM is available for the user programs. There are serial and parallel In­

put/Output (I/O) Ports. The serial I/O Port was used with a Teletype.

The Parallel I/O functions are implemented using Programable Peripheral

Interfaces (PPI). There are two PPI's (PPI1 and PPI2), of which one (PPI1)

is used by the machine and not accessable by the user. The other PPI (PP12)

is connected to a 50 pin connector. Using PPI2 as Parallel (1/0) Ports one

can establish communication between the computer and the 'outside world*.

The PPI2 consists of 3 Parallel Ports, of 8 bits each, called E8, E9 and EA.

These can be configured, via Software, as shown in Table 1. (The details

of how to achieve a particular configuration will be discussed later). It

was determined that defining E8 as an Output Port, E9 as an Input Port and

bits 7-4 of Port EA as Output and 3-0 as Input is most convenient for the

present work (Configuration 4).

Another important feature of the PROMPT 80 is the Monitor Program.

This program is in ROM (hence permanent). It is possible to enter data and

instructions using a hexadecimal key board. Besides the 8080 instruction

set one can use several functions such as reading a teletype tape, etc. Also
using the Monitor various register contents can be displayed on seven segment

displays located on the PROMPT 80 front panel. A partial list of some of

the useful instructions (Particular to PROMPT 80) are given below:

11

TABLE 1

CONFIGURATION PORT E8 PORT E9 PORT EA

Bits 7-0 Bits 7-0 Bits 7-4 Bits 3-0
1 OUTPUT OUTPUT OUTPUT OUTPUT
2 OUTPUT OUTPUT OUTPUT INPUT
3 OUTPUT INPUT OUTPUT OUTPUT
4 OUTPUT INPUT OUTPUT INPUT

5 OUTPUT STROBED OUTPUT Bits 2, L,0 are STROBES
6 OUTPUT STROBED INPUT

• * . -‘‘i 4 ' ;

i*y-w t '• •
■ V- ' . V.

■ - ■ •

. <-0 V

i ■■■■■ • ' T '

* • • ’*'**•"X - j; - i ’• '■ •. -•••

-12-

(a) DISPLAY/MODIFY MEMORY

(b) SINGLE STEP

(c) PREVIOUS/CLEAR ENTRY

(d) EXECUTE/END

(e) NEXT

(f) SCROLL REGISTER DISPLAY

(g) GO
(h) EXAMINE/MODIFY REGISTER

(i) SYSTEM RESET

(j) MONITOR INTERRUPT

(k) USER INTERRUPT

(l) CREATE HEXADECIMAL TAPE

(m) READ TAPE FROM TTY

Some of these instructions and their usage will e discussed when de­

scribing how to use this system. (See appendix II)

The 8080 CPU can accept an external interrupt. When an interrupt occurs,

the Monitor Program determines the source of interrupt (System reset, Monitor

interrupt, Keyboard interrupt or User interrupt) and depending on the type

of interrupt, the program counter contents wi.ll be modified. For example, when

a user interrupt occurs the program counter will be changed to RAM hex location

3C02 and the instructions from that loc tion onwards will be executed. The

utility of this feature comes from the fact that if the CPU is not required

to continuously service a particular unit (i.e in non-dedicated applications)

it is possible to use the time between requests for performing other functions

(background mode). In this design the background programs were written such
that, normally data from a buffer will be typed on a teletype. When an user

-13-

interrupt occurs the I/O Porv.s will be serviced and the typing will resume.

Thus between data points the CPU will be performing other useful functions.

[One can replace the typing routine with any other routine. In fact for

testing purpose a DO NOTHING loop was used instead of the typing routine].

There is a protection against spurious prises triggering the ’ c-^errupt.

This is achieved by means of a circuit which, after an interrupt occurs,

will wait for approximately 5 milli-seconds and check to see if the interrupt

request is still there. Thus triggering by noise etc. can be avoided.

Phis feature limits the frequency of interrupts. However, for the present

implication this does not p: se a serious problem.

Even though an attempt has been made to discuss some of the important

eatures of the microcomputer, one should recognize that this is by no means

complete or adequate description. A more detailed discussion of the 8080

i icroprocessor in general and the PROMPT 80 in particular can be found in

1 he references [3,4,5].

; NALQG TO DIGITAL CONVERTER

The analog to digital converter (A/D) used is a Monolithic CMOS 8700

/D manufactured by the Teiedyne Semiconductor Corporation. This is an 8

)it A/D converter and is available as a single, self contained 24 pin dual

inline package. It required only a few passive support components, voltage

or current: reference and power supplies. Being a single IC package, compact­

ness, high stability and low drift are some of its major advantages. The

Analog to Digital conversion is parformed by incremental charge balancing

technique. An amplifier integrates the sum of the unknown analog current
and pulses of reference current and the number of pulses needed to maintain

the amplifier summing point near zero volts is counted. [6] This ccunc

is then latched into an 8 bit binary word. By adjusting R^n (see fig. 5) one
can vary the voltage required to get an output of FF. It can be operated in

-14-

strobed or free running modes. With a maximum of approximately 800 conver-

sicns/sec (free running) it is more than adequate for the present applicatio

As mentioned in the previous section since the PROMPT 80 cannot be inter­
rupted more than once in approximately 5 milli-seconds the A/D was used in
strobed mode. A frequency of 100 Hz was chosen for this purpose. It is

an 8 bit A/D and hence directly compatible with the PROMPT 80. Last but

not the least reason for choosing this A/D is its relatively low cost.

n.

DIGITAL TO ANALOG CONVERTER
The Digital to Analog (D/A) Converter used is a DATEL DAC - 98BIR.

The complete D/A system was developed in this department previously. De­

tailed drawings and circuit description are available in the department

[7]. There are two input latches which are connected to the D/A. The

input latches are enabled by the presence of a logical ’1' on STR. SEL

input on the D/A circuit. When the STR. SEL makes a transistion to ’O'

the data is latched and transferred to the D/A converter. The main reasons

for using this D/A converter are it is an 8 bit D/A and readily available.

INTERFACING AND CONTROL CIRCUIT DESCRIPTION

The complete circuit diagram and block diagram of the interfacing and
controlling circuits are shown in Figs. 4,5. One element consists of a 100

Hz oscillator made with a 555 timing circuit. The frequency of this oscillator

and hence the data sample rate can be varied to suit the particular require­

ments. However, since the PROMPT 80 can not accept interrupt pulses fast­

er than once in 5 milli-seconds there is an upper limit of 200 Hz on the

frequency of this oscillator. There is no lower limit imposed by the control­

ler as such. Some such limitation will come from the 'plant*. The output of

the oscillator provides the initiate conversion pulses to the A/D. At the

end of conversion the A/D generates an 'END OF CONVERSION' signal which in
turn triggers a monostable which generates an 'INTERRUPT' signal. This signal

IMUiI SAMPLE RATE
OSCILLATOR

?iS. 4
BLOCK DIAGRAM OF INTERFAC-: AND CONTROL CIRCUIT

ONI

24
23

HEATH
ADD

'} O
21

0 / A
1

2 0

19
0

18 STR 13
SEL 14

PROMPT cu
PARALLEL I/O PORTS
(50 PIX COMMECTOR)

TO USER INTERRUPT

rip. 5
CIRCUIT DIAGRAM OP INTERFACE AMD CONlAuL viRCLii

<

-17-

(transition from 5v to Ov and 5 milli-seconds wide) shorts the 'USR INTE'

switch thus creating a condition which is similar to pressing the 'USR INTE'

switch. At this point PROMPT 80 Monitor sets the program counter to 3C02.

The 'Interrupt Routine' starts from this location. Hence execution of the

interrupt routine will be initiated. When the data processing is complete

the output appears as an 8 bit number via Port E8. A negative going pulse

will be generated, using the software, and appears as bit 4 of Port EA.

This pulse triggers the 'LATCH ENABLE' monostable and the data will be

latched into the D/A converter.
Even though the oscillator is free running the initiate conversion

pulses are cor*”..''lied by the computer by means of a 'NOR' gate. One input

to this 'NOR' gate comes from bit 4 of Port EA. When System Reset is

pressed, due to a special feature of the PROMPT 80, this bit goes high thus

terminating the initiate conversion pulses. This control will be released

by lowering the bit 4 of Port EA which is done using software. The main

reason for incorporating this feature is that when changes in constants

or program etc. are desired the interrupt pulses must be stopped. To avoid

excessive loading of the computer Input/Output gates, non-inverting buffers

(7407?s) were used. [It was mentioned earlier that the PPI2 was configured

as Port E8 for Output, Port E9 for Input, bits 7-4 of Port EA as Outputs

and bits 3-0 of Port EA as Inputs. A 7409 (Quad dual input 'AND' gates)

integrated circuit was installed in socket A9 of the PROMPT 80 by the author.

This change has been shown in the circuit diagrams of PROMPT 80 reference
manuals 7,3. Depending on the configuration of the ports used, it may be

necessary to change the gates A7 through All in the PROMPT 80. The necessary

modifications are listed in the PROMPT 80 'HARDWARE' manual [5]].
Fig. 6 is an approximate timing diagram of the interfacing and control

OSCILUTOR

INITIATE CONVERSION

f END OF CONVERSION
1
«
1* -

9

: —

INTERRUPT

LATCH ENABLE

Fig. 6

TIMING DIAGRAM

iihis figure shows only the sequence of events but r.ot their exact timing

relation. See text for explanation].

-18-

19-

circ.uit. The reason for calling it an approximate timing diagram will be
clear shortly. The oscillator frequency is 100 Hz. 'Thus Tj = 10msec.

’INITIATE CONVERSION’ pulse occurs at the rising edge of the oscillator

pulse. The A/D, after digitizing the input generates the ’END OF CONVERSION’

pulse. T2, the time between the ’INITIATE CONVERSION’ to ’END OF CONVERSION’

depends on the magnitude of the input. This is one reason why the timing

diagram of fig. 6 is approximate. The ’END OF CONVERSION’ pulse triggers

the interrupt monostable to generate ’INTERRUPT’ signal. This is 5msec

wide to meet the requirement of the PROMPT 80 as discussed previously.

Once the Computer has been interrupted it will manipulate the data and the

final results will be output via port E8 and the latch enable monostable

will be triggered. Again the time, T^, between ’INITIATE CONVERSION’ to

’LATCH ENABLE’ Signal depends on the magnitude of the input and the Control­

ler mode of operation. Thus this diagram gives only the sequence of events

occuring rather than exact time relation between them.

SOFTWARE

Software for the controller is written to be flexible as far as possible.

This feature will be clear as the description is fully presented. The rou­

tines were divided into individual ’modules’. This is particularly impor­

tant to follow the programs and debug them. Even though, as presented here

it may not be possible to operate each program individually, with a few

modifications they can be tested separately. As the description continues

some such modifications will be suggested.
First a general flow chart will be presented and then individual

programs will be discussed in detail using flow charts. Actual (assembled)

programs will be presented in appendix I. Also an example of how to operate

the system will be presented in appendix II.

-20-

The major routines written are listed telow. They are:

(1) Start Up routine

(2) interrupt routine
(3) Difference routine

(4) Integration routine

(5) Proportional routine

(6) Multiply and Complement routine

(7) Summing routine

(8) Output Set Point routine

(9) Typing routine

Before discussing the general flow chart, it is necessary to identify several

one and two type ’registers’. These are memory locations reserved for the.

explicit use of various routines. They are listed below and the memory

locations reserved for them are shown in parenthesis (these are hexadecimal

addresses).

(1) SET POINT (3CE1) One byte

(2) kd (3CE2) One byte (Difference gain)

(3) *1 (3CE3) One byte (Integral gain)

(4) KP (3CE4) One byte (Proportional gain)

(5) MC (3CE5) One byte (Mode code)

(6) TEMP. STORE (3CE6) One byte (Temporary Data Storage)

(7) PREVIOUS DATA (3CE7) One byte (Data of Immediate Sample)

(8) DIFF OUT (3CEP,JCE9) Two bytes (Difference routine output)

(9) INTG OUT (3UEA,3CEB) Two bytes (Integration routine output)

(10) PROP OUT (3CEC,3CED) Two bytes (Proportional routine output)

(11) DIFF CONTR (3CEE) One byte (Difference counter)

(12) OUT BUFF (3CEF,3CF0) Two bytes (Output buffer)

-21-

(13) BUFF CONTR (3D00) One byte (Data buffer length counter)

(14) BUFF PTR (3D01,3D02) Two bytes (Data buffer pointer)

(15) DATA BUFF (3D03,3D67) 100 bytes (Data buffer).
These locations i.e. 3CE0 to 3CF0 and 3D00 to 3D67 are reserved for the use

of all the routines and cannot be changed without modifying most or all

the programs.

SOFTWARE ORGANIZATION

Fig. 7 is a flow chart of the Software organization. When starting

toa System for the first time or if the program has to be stopped to enter/

modify various constants and restarted, the * Start Up’ routine must be ex­

ecuted. This enables the operator to initialize various buffers, counter,

pointers and PPI's. It is assumed that before executing the Start Up rou­

tine all the necessary constants (SET POINT, KD,Kj,Kp,MC, e^c-) have been

loaded into the respective registers. This can be done using the hexadecimal

key board.
The Start Up routine after initializing all the necessary registers etc.

will enter the background mode (e.g. Typing routine). Thus, between inter­

rupts the computer execute the background mode programs. For the purposes

of testing and explanation, the Typing routine has been replaced by a DO

NOTHING loop fan IDLE mode). In this mode the program will enter an unending

loop. This can be changed by altering a 'JUMP' address. Details of how to

do this and the actual Start Up routine will be discussed later.

When an interrupt occurs, all the working registers will be stored in

the stack by the interrupt routine. [The 'STACK' is memory locations 3F50
to 3F90 reserved, in this program, for storing the register contents etc.].

The output of A/D converter will be read via input port E9 and stored in 7TEMP
STORE'. If the data buffer (DATA BUFF) is not full, data will be scored in

it also.

Roturn to Background mode
Fig. 7

softw a r e organ i z a t i o n

-22-

-23-

The Mode code (MC) will be checked to deter line the mode of operation

and the program will exit to the appropriate routine. The Proportional,

Integral and Difference modes were written such that they will store their

results in a corresponding 16 bit output buffer (PROP OUT etc.). When the

calculations are complete, the Summing routine will add the results from

the three buffers and store the sum in OUT BUFF, the output buffer. The
Output routine (part of the interrupt routine) will output the high order

8 bits of the OUT BUFF to Port E8, (which is connected to the D/A) and

triggers the 'LATCH ENABLE' monostable, next all the working registers und

program counter will be loaded from the Stack and the background mode continues.

Another important feature of the software organization is the Mode

code. The Mode code (MC) will have one of three values 0, 1 and 2. The

user has to enter the Mode code before executing the Start Up routine. The

Controller will operate in Proportional (P) mode if MC = 0, Proportional-

Integral mode (PI) if MC = 1 and Proportional-Integral-Difference mode (PID)

if MC = 2. This is achieved by cascading the Difference, Integral and Pro­

portional routines, i.e., if first the program enters the Difference routine,

then on completing this, it will enter the Integral routine and then execute

the Proportional routine. Thus if MC = 0 only the Proportional routine will

be executed and with MC = 1 first Integral and then Proportional routine

will be executed for PI mode of operation. Finally for MC =2 the Difference,

Integral and Proportional modes will be executed in that order giving PID

mods of operation. It is possible to execute the Integration routine alone

and the necessary modification of this routine will be suggested later.

-24-

START UP ROUTINE

As the name implies this routine has to be executed to start the system

for the first time or to restart after stopping the system using the system

reset (SYS. RST) switch. As mentioned before the SYS. RST does not conserve

the stack or save the register contents. The purpose of the Start Up routine

is to clear various buffers, initialize PPI's and to enable the 'INITIATE

CONVERSION' pulses. The Start Up routine, starting and ending addresses are

3DCA and 3DFD respectively.

Fig. 8 is the flow chart of the Start Up routine. First the differ­

ence counter (DIFF CONTR), 3CDD, is cleared. [The Difference routine gives

output once every N Samples for reasons discussed in the DIFFERENCE ROUTINE

(P). The Difference counter counts the number of samples and is reset to

zero after N samples.].

The Buffer length counter, BUFF CONTR location (3D00) , is cleared to

enable storage of data in the data buffer (See INTERRUPT ROUTINE). Next

PREVIOUS DATA (3CE7). DIFF OUT (3CE8,3CD9), INTG OUT (3CEA,3CEB), PROP

OUT (3CEC,3CED) and OUT BUFF (3CEF,3CF0) registers are cleared. Of these

the INTG OUT register needs particular attention. The INTG OUT register

will be required in PI or PID modes. When the system is at zero initial

condition and one wishes to "move" it to a new set point the INTG OUT reg­

ister must be cleared. The reason for this is, in the Integration routine

new results are added to the previous ones where as in Proportional and

Difference routines the respective register contents will be replaced with
new results. One situation where the INTG OUT must not be cleared is when

the SET POINT has to be changed. In this case if the INTG OUT is not clear­
ed the change from one set point to the ^ther will be 'smooth'. On the other

hand if the INTG OUT is cleared the system will first return to zero and then

Fig. 8

FLOW CHART FOR START UP ROUTINE

-25-

-26-

move to the new set point- If the smoother transistion is required the

Start Up routine has to be entered at 3DEB (See appendix II). Normally

the Start Up routine will be executed from 3DCAc

Another function of the Start Up routine is to initialize PPI's. To

configure PPI2 such that port E8 is Output port, E9 Input port and bits

7-4 of port EA Outputs, control word 83^ must be loaded in port EB. [4]

In PROMPT 80, bits 7-4 of Port EA are gated off. To enable these

lines the following steps must be followed. First initialize PPI1 [Out­

put 70jj to Port E6] and then output FD^ to Port E6. This enables the

bits 7-4 of Port EA and they can be used as output bits.

The 'INITIATE CONVERSION' pulses will be enabled by outputting 80H

to port EA. This will put a 'low' on bit 4 of port EA. This is one -input

to the 'NOR' gate and since the other input is oscillator pulses, when bit

4 goes low the Initiate Conversion pulse will occur. In the actual program

(see appendix I) the order in which various quantities are output to the

PPI's may seem different. To clarify this, part of the program is shown

below.

ADDRESS DATA OR
INSTRUCTION

MNEMONIC COMMENT

(1) 3DEF 3E 70 MVI A, 70h ;L0AD A REGISTER WITH 70-

(2) 3DF1 D3 E6 OUT E6 ;OUTPUT 70R TO PORT E6
;THIS INITIALIZES PPI1.

(3) 3DF3 3E 80 MVI A, 00 o w ;L0AD A REGISTER WITH 80,

(4) 3DF5 D3 EA OUT EA ;OUTPUT 80h TO PORT EA

(5) 3DF7 3E FD MVI A, fdh ;L0AD FDr TO A REGISTER

(6) 3DF9 D3 E6 OUT E6 ;OUTPUT FDh TO PORT E6

V -27-

In the above, the instructions (1) and (2) initialize PPI1. 80^

will be output to port EA by executing (3) and (4). However, Pin (27)

on the 50 pin connector will still be high. Finally executing the instruct­

ions (5) and (6) will enable the 'INITIATE CONVERSION* pulses.

This completes the tasks of the Start Up routine and the program

can now enter background mode. The last instruction of the Start Up

routine is shown below.

LABEL ADDRESS INSTRUCTION MNEMONIC COMMENT

LOOP 3DFB 3C FB 3D JMP LOOP JUMP TO LOOP

In this instruction C3 is the hex code for jump and 3DFB is hexa­

decimal jump address (This is a 3 byte instruction and low order address

bytes must come first; thus, the instruction written as C3 FB 3D means

jump to address 3DFE). Since this instruction starts and ends at 3DFB,

this is an unending loop and is referred to in this thesis as a ’DO

NOTHING' loop. Thus the background mode is simply this loop. If the ad­

dress 3DFB is replaced with the starting address of another routine, the

new routine will become the background mode. For example if the data from

the DATA BUFF has to be typed on the teletype this instruction has to be

modified as C3 E) 3D since the Typing routine starts at 3DE) (Notice the

low address appears first in the instruction).

-28-

INTERRUPT ROUTINE

When PROMPT 80 acknowledges a user interrupt, the Monitor will set

the program counter to 3C02. Hence the interrupt routine starts at 3C02.

The main functions of the interrupt routine are (1) to store the return ad­

dress and register contents of the routine that was interrupted so that after

servicing the interrupt the computer can resume the original (background
mode) program, (2) store data, (3) determine the Controller's mode of op­

eration and exit to the proper routine, (4) when the calculations are com­

plete, output the results, (5) restore working registers and program

counter and return to background mode.

Flow chart for the interrupt routine is shown in Fig. 9. In

order to facilitate the resumption of the background mode program the

Monitor saves the program counter in the stack. The working registers

are saved in the 'Stack' by the interrupt routine. The next step is to

read the incoming data (Output of A/D) via port E8. This data x-d.ll be

stored immediately in TEMP STORE (3CE6).

The buffer length counter (BUFF CONTR, 3D00) will then be tested to

determine if the buffer is full. The buffer length is 100 bytes (64jj) .

The BUFF CONTR is incremented after storing data in the DATA BUFF.

(When the counter reads 64^ the buffer is full and this step will be by­

passed) . Also the buffer pointer (BUFF PNTR) is incremented every time

data is stored. The BUFF PNTR points to the next available location in

DATA BUFF for storage. Thus the first 100 points will be stored in the

memory. Since the incoming data is stored in TEMP. STORE it is available

for calculation whether or not it is stored in DATA BUFF. By changing 64^

to the required number, the length of the buffer can be changed. However,

as in the present case, the available memory restricts the buffer length.

After completing raJeulatiuns the inieirupt routine
util be rt^.jrered at 3C2F

Fit. *3
FLOW CHART OF THE f NTERRl’PT KoUTINF

- 2 9 -

-30-

With a sample rate of 100/sec, the buffer will contain the response of

the system for the first one second. Since the 'BUFF INTR' and 'BUFF PNTR’

are reset by executing the Start: Up routine only, data can be stored only

for the first second. Once the data has been stored the mode code will be

tested. This is achieved by loading the mode code in the 'A' register

and rotating it r^ght, through carry. The least significant bit in the A

register will shift into the carry. Now testing for carry, the mode code

is determined. On shifting the first time if the carry flag becomes '1'

the mode code is one, indicating FI mode of operation. If only on shifting

for the second time, the carry flag become '1', the mode code is 2 and this

indicates PID mode. If the carry flag remains 'O' both times the mode code

is 'O' and this means Proportional mode of operation.

The above described operation can easily be visualized by the following

Effect of RAR (rotate 'A' right through carry) instruction is to move

least significant bit of the A-register to carry.

A-register Carry A-register Carry

00000001 0 00000000 1

(After rotating right through carry)

Once the. mode of operation is determined the prog"am exits to the

proper routine. After the manipulation of data is complete the interrupt

routine will be reentered at 3C2F. Results from OUT BUFF are output via

port E8. By lowering bit 7 of port EA (Output 00^) the 'ENABLE LATCH'

monostable will be triggered. This completes servicing of the interrupt.

All register contents will then be restored and interrupt will be enabled.

The program returns to the background mode.

-31-

DIFFERENCE ROUTINE

The Difference routine takes the difference between the present and

previous sample data, multiplies it with (the difference gain constant)

and stores the results in the DIFF OUT register (3CEE and 3CF0) for the

use of the Summing routine. If the rise time of the 'plant* involved is

large, the difference between consecutive samples may not be significant
even after multiplying by the largest possible difference gain constant.

This is a limitation imposed by the finite word length of the computer,

A/D and D/A. In such cases the difference between the first and the Nth

Sample will be taken. Here 'N' is the number with which DIFF CONTR will

be compared. To be able to use this feature, i.e. to change the value of

N to suit the particular requirements, the desired value of N must be

entered in location 3C45 before executing the Start Up routine. The Dif­

ference routine will be executed if and oily if the mode code (MC) = 2.

The Difference routine starts at location 3C40 and is 64 bytes long.

On completing this routine the program will automatically enter the inte­

gration routine.

The Difference routine flow chart is shown in Fig. 10. First, all

flags are reset by executing an 'Exclusive OR’ instruction. Then the DIFF

CONTR is tested for the 5th sample. If it is not, the DIFF CONTR will be

incremented and the integration routine entered. If it is the 5th sample

the Difference routine execution will continue. In this case first the

new data (3CE6) is loaded in the B register and the previous data from
3CE7 is loaded in the A register. The difference between A and B ; taken

and stored in A. Then the sign flag is tested to see if it is positive or

negative.
If the difference is positive it will be multiplied by K^. T ■

Fig. 10

FLOW CHART OF THE DIFFERENCE RO 'TINE

-32-

- 3 3 -

Multiply and Complement routine stores the product in DE and 2's complement

of the product in HL. On reentering the Difference routine the contents of

DE and HL are exchanged and the product is stored in DIFF OUT buffer.

On the other hand if the difference is negative, A register will con­

tain the 2's complement of (A-B). If this is multiplied by the results

will overflow the 16 bits. [Note that for example, the 2's complement of

0001 is 1111]. For this reason the 2's complement of (A) is taken and multi­

plied by k^. The product 2's complement is stored in DIFF OUT buffer.

INTEGRATION ROUTINE

In this routine the difference between the set point and the data

(i.e the error) is multiplied by (integration gain constant) and added

to the contents of the INTG OUT buffer. When the difference between the

set point and the Data becomes zero the 'Plant' output has settled at the

set point. This routine can be used as pure Integral mode, in PI mode

or PID mode. To use this routine the mode code must be 1 or 2. After ex­

ecuting the Integral mode, the program will enter Proportional mode.

The Integral mode alone can be used by making and Kp = 0 thus, elim­

inating results of Difference and Proportional modes from the final output.

In this case the mode code can be 1 or 2 thus using the controller in PI

or PID modes. Another way of obtaining pure Integral mode is as follows.

The last instruction in this routine is 'JMP PROP', directing the program

to enter the Proportional mode. If this is changed as 'JMP SUM' the Pro­

portional routine is bypassed and pure Integral mode of operation is obtain­

ed. The Integration routine starts at 3C80 and requires 42 bytes.

The Integration routine flow chart is shown in Fig. 11. First the

flags are reset. The set point and data are loaded in the A and B registers

respectively. Then the difference between A and B is taken the sign flag

KesetFlagsJ

Fig. 11

FLOW CHART OF INTEGRATION’ ROUTINE

- 34 -

-35-

is tested to see if A-B is positive or negative. If the difference is

positive, it is multiplied by Kj, the integration gain constant. The product

will then be added to INTG OUT buffer. On the other hand if the difference,

is negative, for the reasons discussed in the Difference routine, 2’s com­

plement of the difference is multiplied by Kj. The Multiply and Complement

routine will return the product in DE and its 2's complement in HL registers.

The 2's complement of the product will be added to the INTG OUT buffer. The

program will then exit to the Proportional routine.

PROPORTIONAL ROUTINE

As the name implies the output of this routine is proportional to the

error (difference of set point and data). When this routine is used the

error is multiplied by Kp (the proportional gain constant) and the results

will be stored in the PROP OUT buffer. The D/A can output 0 volts when the

input is 00K and 5V for FF. Thus it is not possible to output negative

numbers. It is conceivable that the Proportional routine is used alone
(P mode), hence if the error is negative the output of the Proportional

mode is made zero. This difficulty does not arise with Integral and Difference

routines because the Diffe1" cce routine must be used in PID mode alone and

in the Integral mode the results are added to the previous sum

In case the OUT BUFF contains a negative; number the controller will

not function properly. This limits the maximum values of K^, and K^.

The Proportional routine starts at location 3CB0 and requires 35 bytes.

The flow chart of the Proportional routine is shown in Fig. 12. First

all flags are cleared. Next the set point and data are loaded in A and B
registers respectively. Then the error (A-B) is stored in A. The sign

flag is tested to see if the error is -Pve or -ve. If the error is negative,
PROP OUT buffer is cleared. If the error is +ve, it is multiplied by Kp and

Pig. 12

FLOW CHART OF PROPORTIONAL ROUTINE

-36-

-37-

the result is scored in the PROP OUT buffer and the jr.ogram will exit to

Summing routine.

SUMMING ROUTINE

The Summing routine sums the results from the Difference, Integration

and Proportional routines. The sum is stored in OUT BUFF and the program

returns to 3C2F in the Interrupt routine which outputs results. This rou­

tine starts at 3D70 and requires 26 bytes. The flow chart of Summing rou­

tine is shown in Fig. 13. After clearing the flags the contents of DIFF

OUT and INTG OUT are added. If there is no carry the PROP OUT is added

to the above sum. If there is no carry the sum is stored in OUT BUFF and

program returns to 3C2F. If there is a carry, the contents of OUT BUFF

are not modified. This is necessary to ensure that: if ''•here is overflow,

the output 'saturates'.

MULTIPLY AND COMPLEMENT ROUTINE

This routine multiplies two 8 bit numbers and stores the product in

DE registers. The 2fs complement of the product is stored in HL registers.

The two 8 bit numbers to be multiplied must be in A and B registers before

the Multiply and Complement routine is called. The starting address (Also

call address) is 3DA0. This program requires 29 bytes.

Fig. 14 is the flow chart of Multiply and Complement routine. First

H and L registers are defined as partial product registers and are cleared.

Since this routine multiplies two 8 bit numbers the C register, called the

loop counter, is loaded with 8. Data in B is loaded in E register and D

register is cleared. [This transfer is necessary to use DE register pair

and double byte addition instruction] . Next step is to shift partial product,

to left. First time this does not effect anything since HL contains zero.

The multiplier (A register) is rotated left through carry. If the carry is

1, the DE contents are added to HL and the loop counter is decremented. If

H. g. 13

SIKMI.: ROUTINE

- 3 8 -

Initialize Partial Product to !

Load loop count r C with 8 j

Move 2 to E
n-iO Clear D

-39-

-40-

the carry bit is zero there will be no addition, only the partial product

is shifted. This process continues till the loop counter reads zero. At

this point the multiplication is complete and the product is in EL registers.

Next the product is moved to DE registers and the. 2's complement of the

product is taken. The 2's complement is loaded in HL and control is return­

ed to the calling program.
OUTPUT SET POINT ROUTINE

The main use of this routine is to provide a step input to test the

'plant' response (with no control). As far as the controller is concerned

this routine is not necessary. However, this prc is useful to compare

the plant response, with and without control, to a step input. Since it

is written to be independent, this program can be used without executing

the Start Up routine. The set point value must be entered in 3CE1 before

executing this routine.

Fig. 15 is the flow chart of the Output Set Point (OSP) routi.ir .

First the. PPI2 is initialized. The Set Point is output to Port E8. To

trigger the 'LATCH ENABLE' monostable bit 7 of Port EA is lowered. As

mentioned before to be able to use bits 7 to 4 of Port EA, first the

PPI1 is initialized and the FD is output to Port E6. At this point the

B/A Output will 'Jump' to set point. This is equivalent to giving a

Step Input to the plant. The program will then enter a DO NOTHING loop.

One can replace the DO NOTHING loop with a 'HALT' instruction.

TYPING ROUTINE

This is another program that is not necessary for the controller

operation but provided for the convenience of the user. Even though

PROMPT 80 has a Typing routine in the Monitor, the format in which this

routine types data is not very convenient for use. Monitor Typing routine

Fig- 15

FLOW CHART OF OUTPUT SET POINT ROUTINE

-41-

Fi.)’. 1 C>
I'l.OW C H A R " O F TYPIiiG 8 O 0 T I 1 G

-42-

-43-

must be used for punching programs. The reason for this is when a program

is loaded in the PROMPT 80 via Teletype paper tape, it requires a special

format [4]. The Typing routine developed here types the address and con­

tents of the location in the following format.

ADDRESS CONTENTS

This is particularly useful when typing data from the DATA BUFF. Where-

ever possible some of the Monitor subprograms were used and one sub­

program called ’Space’ is written. Program ’Space’ will generate five

spaces between address and contents. The Typing program requires the

starting address must be loaded in 3ED1 and 3ED2 (low address first) and

the number of locations to be typed in 3ED4 before executing this routine.

This program starts in location 3ED0 and requires 47 bytes. The maximum

number of locations that can be typed at a time are 256. This limit comes

from the fact that the maximum number the counter can be loaded with is 256.

Fig. 16 is the flow chart of the Typing routine. The H and L registers

are used as pointer and the C register as counter. A leader tape is punched

in the beginning and at the end. If the leaders are not necessary ’O ’ must

be loaded in locations 3ED7, 3ED8, 3ED9, 3EEF and 3DF0, prior to execution.

While the leader is being punched nothing will be typed. First the address
is typed and after giving 5 spaces the contents of the location are typed.

Next the carriage is returned and line feed will be given. The pointer is

then incremented and the counter is decremented. After this the counter is
tested for zero. If it is not zero, the typing continues. If it is zero

’end’ leader is punched and the program enters a DO NOTHING loop.

-44

PLANT SIMULATOR

A second order plant was simulated using three Burr-Brown 3318/14

operational amplifiers. This simulator was used to test the operation

of the controller. A general linear second order system transfer function

is given by

C(s) __________ (6)
R(s) S2 + 2£ 01,3 + 0)2 n n

where C is the process variable, R, the input, w2 is natural frequency, £n
is the damping constant and S is Laplace operator. The differential equa­

tion governing such a system is

d2 c(t) + 2£0)„ dc(t) + io2c(t) to2 r(t). (7)-------- u ----- n = n
dt2 dt

For the values chosen for the components of the simulator the natural fre­

quency is approximately 3 radians/sec. or 0.5Hz. The flow chart for this

system is shown below

Fig. 17 is a Schematic diagram of the simulator.

Cl C2

Fig. 17
SECOND ORDER PLANT SIMULATOR

CHAPTER III

RESULTS AND DISCUSSION

In this chapter results of the controller performance are presented

and discussed. Hie plant simulator was used for testing so that the plant's

transfer function is known exactly and this makes it convenient to calcu­

late the closed loop responses and compare with experimental values. Again

the response of _he system was tested for a step input for the same reason.
It was already mentioned that the natural frequency is approximately

0.5Hz. Thus sample rate used is 100/sec. Due to the sufficiently large

sampling rate, the response can be calculated using analog techniques [root

locus, for example [1,2,8]] even though the controller is digital. From

the response of the plant to a step input, the value of £ in equation 6

can be determined using a graph of maximum percent overshoot vs £, the

damping constant [1], From Fig. 19 the maximum percent overshoot is found

to be 50% and this corresponds to

£ = 0.23

thus, with co2 =10, equation 6 becomes

C(s) = 10________ (8)

R(s) S2 + I.45S +10

The characteristic equation for this system is

S2 + 1.45S + 10 = 0

and has roots at

s1 2 = -0.73 + j 3.08

The roots are indicated as plant poles in Fig. 18.
-46-

)

-47-

-48-

PROPORTIONAL MODE

For Proportional mode the system block diagram is shown below.

R 4 ® — »— 10pi S2 + 1.45S + 10

Closed loop transfer function of the system is

Gp (s) C (s) 10Kp
P ' R(s) “ S2 + 1.45S + (10 +

for a Unit step input

C(s) _ 1 10Kp
S S2 +]L.45S + (10 + 10Kp)

using the final value Theorem the final value of

19b, 19c and 19d are the responses of the system

(9)

with Kp = IOjj, 50jj, and FOjj respectively. (Subscript H stands for hexadeci­

mal number). Since only the higher order bits of the final results are out­

put, this is equivalent to dividing Kp by 256. Thus the actual Kp's are 0.06,

0,31 and 0.94 for Figs. 19b, 19c and 19d respectively. For these

Kp's the final values are 0.06, 0.24 and 0.48 for a unit step input. The cor­

responding experimental values are 0.055, 0.233 and 0.477. The small, but

finite, difference is due to the tolerances of the components used with A/D

and D/A circuits. Using equation (9) the location of the closed loop poles,

for the three values of Kp chosen are shown in Table II.

TABLE II, , and closed loop poles
KP S1 S2
0.06 - 0.73 + T 3. 17 - 0.73 - j 3.17
0.31 - 0.73 + j 3.54 - 0.73 - j 3.54
0.94 - 0.73 + j 4.34 - 0.73 - j 4.34

i)xyT-yV
: - i; . • ' ' . ■ }i ■

• n&fe&z m v r ? - ? .

I4>-vOI

• .r̂n-f-:v

«£■*■*’-v s' 7-

•;>'v. ■ iv'r'

:li

'!.!•
i is: j■ 'ii;,,:'.1 '•

I i
i'IIji
ifi

Set point 70j,
7.(a) No c o n t r o l
(b) Kp - 10H
(c) ^ = 50„

(d) K? - F0h

\]\f^
■ - ■ ■ .

<.)
|

. • • - :v .v A - ..v :

• i •! i
?!•/■* ij

m m h
W - t B \ !l;• ■ .-1 ;

K -riifW

V i ;
l\r' (b)

f.rH?'- V..* * ̂rV;

. •' ' • V ' '7 7 -';■■•-r--77 : ■ ' ■ - : V? v5 ■ - \
■ ■ - • k M .; , t ,■■. •J1'J . '” .*• ’ - r' '

VWW^——
(d)

-50-

The closed loop locations are plotted in Fig. 18 enclosed in squares and

identified with values. As can be seen from Fig. 18 the poles move,

with increasing Kp, such that the damping constant, Z,, decreases. This

gives rise to increasing, overshoot and longer setting time. These con­

clusions agree very well with the system behavior as can be seen from

Fig. 19,
INTEGRAL MODE:

The system block diagram with the Integral Mode

below.

controller is shown

R S>— »-l Ki --- -— >— —— 10
r- s S2 + 1.45S + 10 *L__ — --------- — <<----- -— -

The closed loop transfer function for this system is

Gt C(S) 10KI
" R(S)'

given by

(ID

outnut can be shown

SJ + 1.45S2 + 10S + lOKj

Using the final value Theorem the final value of the

to be C - 1 for a unit step. i.e. after a sufficiently long time the out­

put will be same as input^^This is seen to be the case from Figs. 20b,

20, and 20d. Fig. 20a is the plant response for a step input and is shown

in all graphs for comparison. A.gain the finite difference between the con-

trolled and the uncontrolled ’outputs’ is due to the A/D. The characteristic

equation of the system is

(12)

values of entered in the program are 1, 2 and 3. However, since only

the high order 8 bits are'used the K^’s in equation 12 are 0.004 (=1/256)
0.008 (=2/256) and C.012 (=3/256) respectively.

S3 + 1..45S2 + 10S + 10Kj = 0

I

l

Set point 70h
(a) No control

(b) KI - 01H

(c) Kj - °2,.
(d) K » 031 V

Fig.20

Integral Mode

The roots of equation 12 are shown in Table III

TABLE III
*1 Root 1 Root 2 Root 3

0.004 - 0.004 -0.727 + j 3.078 -0.727 - j 3.078

0.008 - 0.008 -0.721 + j 3.077 -o .:721 - j 3.077
0.012 - 0.012 -0.714 + j 3.077 -o .;714 - j 3.077

First of all the three real roots are very close to the origin. The pre­

sence of the real root gives the exponential rise towards the final value.

However the damping is also decreasing with increasing % . Two factors

contribute to a faster rise time and oscillation as % increases. This

behavior is seen from Fig. 20b, 20c and 20d.

PROPORTIONAL PLUS INTEGRAL MODE

For a PI mode the block diagram is
•. V . i V:

\ . '.-'■If?''!
 ̂v., ;/•. j

R — . KI + KP 10f W 1 S S2 + 1.45S + 10

The closed loop transfer function Is

Gp-j-(S) __ C(S)
R(S)

10 [K S + Kj]
S3+1.45S2 + 10 (1+Kp) S+ 10%

(13)

The final value of the output will be 1.0 for a unit step input, (From final

value Theorem). Figs. 21b, 21c and 21d show the response of the system for

constant Kp - 0.31 with changing % . On analyzing the roofs (given in Table
IV) it is seen that the complex roots stay almost the same as % increases

giving rise to the same oscillating behavior but faster rise time. This
is seen to be the case from Figs. 21b, 21c and 21d.

TABLE IV

K = 0.31 P

-53-

KI Root 1 Root 2 Root 3

0.004 - 0.003 - 0.724 + j 3.55 - 0.724 - j 3.55

0.008 - 0.006 - 0.722 + j 5.55 - 0.722 - j 3.55

0.012 - 0.0089 - 0.721 + j 3.55 - 0.721 - j 3.55

When Kj is kept constant and is varied Figs. 22bp 22c, 22d. The roots
are shown in Table V.

TABLE V

K = 0.004 I

■i.; 4.y v ’ '

*p Root 1 Root 2
• >''•■' ■ ' ''

Root 3

0.062 - 0.0037 - 0.723 + j 3.178 - 0.723 - j 3.178

0.312 - 0.003 - 0.724 + j 3.55 - 0.724 - j 3.55
0.938 - 0.002 - 0.724 + j 4.34 - 0.724 - j 4.34

Here the real root did not change very much compared to the complex roots.
Hence it is expected that the rise time will be same but the oscillations
and hence the settling time increases with increasing Kp which is seen to

be the case.

ILnUiI

Set point 7 0 h

K1 “' 0,H

(a) Mo control

(b) * ? "
1°H

(c) Kp = 5 0 h

(d) K p (« fo h

Proportional - Integral Mode

PROPORTIONAL-INTEGRAL-DIFFERENCE MODE

For a FlC mode the system block diagram is shown below.

-5 6-

The closed loop transfer function is given by

10 [Kq S2 + K S + Kr]
G(S) = C(S) = _____________?______ ____________ (14)

R(s) s3 +(1.45+10%) S2+10(l+Kp) S+lOKj

Using the final value Theorem and a unit step input, the output can be. seen

to be unity. A root locus analysis can be done for this system as before.
The roots are given in Table VI.

TABLE VI

Kp - 0.31, % = 0.004

k d Root 1 Root 2 Root 3

0.0625 - 0.00298 - 1.036 + j 3.47 1.036 - j 3.47
0.31 - 0.00298 - 2.29 + j 2.808 2.29 - .1 2.98
0.938 - 0.00298 - 9.433 - 1.387

These indicate increased stabiLlity and Figs. 23b, 23c and 23d show this
be the case.

SUMMARY AND CONCLUSIONS

In this study a versatile real time-digital controller was designed.

The performance of the controller was tested on a second order plant simu­

lator and was found to be operating as expected. One of the major advantages

of this system is its versatility. Ivan though the mode code allows for P,

Sot point 7Ch

KX = 01H

Up 50H

(a) No control

(b) KU = 01H
(c) ^ *
(d) F5H

Proportional - Integral - Difference Mode

-58-

PI and FID modes of operations, it is possible to operate this controller

in I, ID and PD modes also. This can be achieved by making the appropriate

constants zero and running the controller in FID mode. For exampJa if

Kp = 0 on operating the system in PID mode it can easily be seen than the

controller functions as in ID mode.

One of the major restrictions is the size of A/D and D/A. If 12 or
16 bits are used higher gains can be obtained. If the memory is expanded

it is possible to control more than one system. An assemble would prove

to be an asset in reducing the time required for the development of software.

APPENDIX I

INTERRUPT ROUTINE

When there is an interrupt request the Monitor will set program

counter to 3C02. Hence the Interrupt routine starts at 3C02.
This routine will save all working registers, The data from A/D
will be read and stored in location 3CE6 for further use. The
'Buffer Length Counter’ (location 3D00) will be tested to de­
termine if the buffer is full. If the buffer is not full data
will be stored in the buffer. The next step is to test the

’Mode Code’ in location 3CE5. The program enters Proportional
mode if the code is 0. It enters Integral or Differential modes

if the code is 1 01 2 respectively. When the

complete all programs enter Interrupt routine

calculations are

at 3C2F to output

results to D/A. Total number of (Bytes) required 61.

-59-

- 6 0 -

LABEL ADDRESS DATA OR MNEMONIC
INSTRUCTION

COMMENT

INTER 3C02 C5 PUSH BC ;SAVE REGISTER CONTENTS

3C03 D5 PUSH DE ?
3C04 E5 PUSH HL

3C05 F5 PUSH PSW >
3C06 DB E9 READ PORT E9 ;READ INPUT FROM A/D
3C08 21 E6 3C LXI HL 3CE6 ;LOAD TEMP. DATA STORAGE ADDRESS

3C0B 77 MOV M,A ;TO H L. STORE DATA

3C0C 47 MOV B,A ;STOR DATA IN B

BUFLN 3 COD 21 00 3D LXI H,L ;FETCH BUFFER LENGTH COUNTER

3C10 7E MOV A,M ;AND CHEK TO SEE IF BUFFER
3C11 D6 64 SUI D6 ;IS FULL

3C13 CA IE 3C JZ 3C1F ;JUMP ON ZERO TO MODCK

3C16 34 INR M ;INCREMENT BUFFER LENGTH COUNTER
3C17 2A 01 3D LHLD 3D01 ;LOAD BUFFER POINTER IN HL
3C.LA 70 MOV M,B ;STORE DATA IN BUFFER
3C1B 23 INX HI, ;INCREMENT BUFFER POINTER
3C1C 22 01 3D SHLD 3D01 ;STORE 3UFFER POINTER

MODCK 3C1F 97 SUB A ;CLEAR FLAGS

3C20 21 E5 3C LXI HL 3C25 ;LOAD MODE CODE ADDRESS IN HL
3C23 7E MOV A,M ;FETCH MODE CODE
3C24 IF RAR ;CHECK IF MODE CODE IS 1
3C25 DA 80 3C JC INTG ;IF 1 PI MODE, JUMP TO INTG.
3C28 IF RAR ;CHECK IF MODE CODE IS 2

3C29 DA 40 3C JC DIFF ;IF 2 PID MODE. JUMP TO DIFF.

3C.2C C3 BO 3C JMP PROP ;JUMP! TO PROP.

-61-

LABEL

OUT

ADDRESS DATA OR MNEMONIC
INSTRUCTION

COMMENT

3C2F 21 FO 3C LXI HL 3CFO ;LOAD DATA BUFFER ADDRESS

;3C FO TO HL
3C32 7E MOV A,M ;FETCH DATA TO OUTPUT

3C33 D3 E8 OUT E8 ;OUTPUT DATA TO PORT E8
3C35 3E 00 MVI 00 ;ENABLE D/A LATCHES BY
3C37 D3 EA OUT EA ;OUTPUT 0 TO PORT EA
3C39 FI POP PSW ;RESTORE REGISTER CONTENTS
3C3A El POP HL 1
3C3C Cl POP BC 9

3C3D FB El ;ENABLE INTERRUPT

3C3E C9 RET :RETURN

;END OF INTERRUPT ROUTINE

-62-

;In this routine the difference between the present
;data and previous data is multiplied by KD , the
;difference gain constant. The product is stored in

;DIFF OUT, For reasons discussed m text this multi­

plication occurs once every 5 samples. If the present

;sample number is not a multiple of 5 the multiplication

;is bypassed and the difference counter (DIFF CONTR)

;(which keeps track of the number of samples) is incre­

mented. The number of samples required before

multiplication (N) can be changed by entering (N-l) in

;location 3C45 (here 1^5 hence location 3C45 contains 4).

jThis routine requires that the value of in 3CE2 be

;entered before execution. Mode code to execute this

DIFFEKENCE ROUTINE

;routine is 2. Starting address is 3C40.

LABEL ADDRESS DATA OR MNEMONIC COMMENT
INSTRUCTION

DIFF 3C40 AF XRA ;CLEAR FLAGS
* 3C41 3A EE 3C LDA 3CEE ;DIFF CONTR TO A

3C44 FE 04 CPI 04 ;CHECK TO SEE IF THIS IS

;5TH POINT
3C46 C2 79 3C JNZ INC ;IF IT IS NOT 5TH POINT

;JUMP TO INC
3C49 AF XRA ;CLEAR FLAG

3C4A 3A E7 3C LDA 3CE6 ;L0AD OLD DATA IN A

3C4D 47 MOV B,A ;0LD DATA TO B

-63-

LABEL ADDRESS DATA OR MNEMONIC COMMENT
INSTRUCTION

3C4E 3A E6 3C LDA 3CE7 ;NEW DATA TO A

3c51 90 SUB B ; A-B -> A
3C52 F2 61 3C JP PSLP ;IF A IS +ve JUMP

3C55 2F CMA ;TAKE 2's COMPLEMENT OF A
3C56 3C INR A 5
3C57 21 E2 3C LXI HL 3CE2 ;FETCH KD AND LOAD

3C5A 46 MOV B,M ; IT IN E

3C5B CD AO 3D CALL MULT ; RETURNS WITH PRODUCT IN DE

;AND 2’s COMPLEMENT OF

; PRODUCT IN HI,

3C5E C3 69 3C JUMP BUFF ;JUMP TO BUFF

PSLP 3C61 21 F.2 3C LXI HL, 3CE2 ;Kd TO B

3C64 46 MOVE B,M y

3C65 CD AO 3D CALL MULT y

3C68 EB XCHG y

BUFF 3C69 22 E8 3C SKLD 3CE8 ;STORE DIFF. PRODUCT
3C6C 3A E6 3C LDA 3CE6 ;STORE NEW DATA IN

3C6F 32 E7 3C STA 3CE7 ;0LD DATA LOCATION

3C73 AF XRA ;CLEAR DIFF CONTR
3C73 32 EE 3C STA 3C EE y

3C76 C3 70 3C JUMP EXIT1 y

INC 3C79 3C INR A ;INCREMENT DIFF CONTR
3C7A 32 EE 3C STA 3CEE y

EXIT1 3C7D C3 80 3C JUMP INTG ;ENTER INTEGRATION ROUTINE

-64-

;This routine integrates the error signal (Set point-data).

;Each time this routine is executed the difference between

;set point and data is multiplied by Kj, the integration
;gain constant and the result will be added to the value in

;INTG OUT register (3CEA, 3CEB). The set point must be in

;3CE1,Kt in 3CE3 and data in 3CE6 before this routine is

TNTEGRATIOW ROUTINE

;executed. Starting address of

LABEL ADDRESS DATA OR MNEMONIC
INSTRUCTION

INTG 3C80 AF XRA

3C81 3A El 3C LDA 3CE1

3C84 21 E6 3C LXI HL 3CE6

3C87 46 MOV B,M

3C88 90 SUB B

3C89 F2 99 3C JP UP

3C8C 2F CMA

3C8D 3C INRA

3C8E 21 E3 3C LXI HL 3CE3

3C91 46 MOV B,M

3C92 CD AO 3D CALL MULT

3C95 EB XCHG

3C96 C3 AD 3C JMP ADD

UP 3C99 21 E3 3C LXI HL 3CE3
3C9G 46 MOV B ,M

3C9D CD AO 3D CALL MULT
3CAO 2A EA 3C LHLD 3CEA

ADD 3 CAS 19 DAD DE

this routine is 3C80.

COMMENT

;CLEAR FLAGS

;FETCH SET POINT

;DATA ADDRESS TO HL

;DATA TO B

;A-B + A

;G0 TO UP IF +ve

;TAKE 2's COMPLEMENT OF A

9

;LOAD Kj IN B

9

;MULTIPLY ERROR WITH Kj

;2’s COMPLEMENT OF PRODUCT TO DE

;JUMP TO ADD
jKj TO b

9

9

;INTG OUT SUM TO HL
;ADD HL AND DE

LABEL

LABEL

START

-65-
ADDRESS DATA OR MNEMONIC COMMENT

INSTRUCTION

3CA4 22 EA 3C SHLD 3GEA ;STORE IN INTG OUT

3CA7 00 NOP 9

3CA8 00 NOP >

3CA9 00 NOP 9

3CAA 3C BO 3C JMP PROP ;GO TO PROPORTIONAL Ri 'TINE

START UP ROUTINE

;This routine must be used when first starting the system or if

;the system is stopped to change set point etc. This routine

;clears all buffers , initializes PPI'S and enables the INITIATE

;CONVERSION PULSES. Starting address is 3DCA.

ADDRESS DATA OR MNEMONIC COMMENT
INSTRUCTION

3DCA 00 NOP >
3DCB 3E 00 MVI A,0
3D CD 32 EE 3 STA 3CEE ;CLEAR DIFF. CONTR.

3DD0 00 NOP 5
3DD1 32 E7 3 ■t STA 3D00 ;CLEAR BUFFER LENGTH COUNTER

3DD4 32 E7 3("i STA 373C ;CLEAR PREVIOUS DATA REG.

3DD7 67 MOV H,A ;CLEAR H AND L

3DD8 6F MOV L,A 5

3D09 22 E8 3("1 SHLD 3CE8 ;CLEAR DIFF. OUT BUFFER

3DDC 22 EA 3(SHLD 3CEA ;CLEAR INTG. OUT BUFFER
BDEO 22 EC 3(-» SHLD 3CEC ;CLEAR PROP. OUT BUFFER

3DE2 22 EF 3(*1 SHLD 3CEF ;CLEAN* OUT. BUFF

3DE5 21 03 31) LXI H,L 3D03 y

3DE8 22 01 31) SHLD 3D01 ;RESET DATA BUFF. PNTR

- 6 6 -

LABEL ADDRESS DATA OR MNEMONIC
INSTRUCTION

COMMENT

3DEB 3E 83 MVI A, 83^ ;INITIALIZE PPI2

3DED D3 EB OUT EB >
3DEF 3E 70 MVI A, 70h ;INITIALIZE PPI1

3DF1 D3 E6 OUT E6 >
3DF3 3^ 80 MVI A, 80jj ;ENABLE INITIATE CONVERSION

3DF5 D3 EA OUT EA ;PULSES

3DF9 D3 E6 OUT E6 5

LOOP 3DFB C3 FB 3D JMP L00P1 ; JUMP TO LOOP .i

MULTIPLY AND COMPLEMENT

;This routine multiplies two 8 bit numbers and returns the product

;to DE register pair (low order bits in E register). The 2's

;complement of the product will appeal in HL register pair (low

;order bits in L). This program requires that the multiplier

;and multiply card be in A and B registers (order is immaterial)

;before calling this program. On completion control will be

;returned to the calling program. Starting address of this
;routine is 3D AO and requires 29 bytes.

LABEL ADDRESS nATA OR MNEMONIC COMMENT
INSTRUCTION

MULT 3DA0 21 00 00 LXI H, 00 ;CLEAR PARTIAL PRODUCT

3DA3 OE 08 MVI O 00 ;LGAD LOOP COUNTER WITH 8

3DA5 58 MOVIC, B >
3DA6 (—1 O' o o MVI D, 00

67-

LABEL ADDRESS DATA OR MNEMONIC
INSTRUCTION

COMMENT

LOOP 2 3DA8 29 DAD H 3

3DA9 17 RAL ;MULTIPLIER BIT TO CARRY
3DAA D2 BO 3D JNC DCR ;D0 NOT ADD IF NO CARRY

3DAD 19 DAD D ;ADD DE AND HL IF CARRY

3DAE CE ACI 00 ;WRAP CARRY AROUND

DCR 3DB0 OD DCR C ;DECREMENT LOOP COUNTER

3DB1 C2 A8 3D JNZ LOOP2 ; JUMP TO LOOP 2 IF C

;IS NOT ZERO

3DB4 EB XCHG ;PRODUCT TO DE

3DB5 7B MOV A,E ;TAKE 2’s COMPLEMENT OF

3DB6 2F CMA ;PRODUCT

3DB7 6F MOV L, AA 3

3DB9 7A MOV A, D 3

3DB9 2F CMA «
5

3DBA 67 MOV H, A 9

3DBB 23 TNXHL 3

3DBC C9 RET ;RETURN TO CALLING PROGRAM

PROPORTIONAL ROUTINE
;In this program the error is multiplied by Kp, the Proportion-

;ality gain constant, and the results are stored in PROP OUT

;buffer. (3CEC and 3CEP) high order bits in 3CED. If the error
;is negative the PROP OUT buffer will contain zero. Before

;executing this program and set point must be loaded in

;their respective locations. The starting address is 3CB0.

-68-

LABEL ADDRESS DATA OR MNEMONIC
INSTRUCTION

PROP 3CBO AT XRA

3CB1 21 El 3C LXI HL, 3CE1

3CB4 7E MOV A,M

3CB5 21 E6 3C LXI HL, 3CE6
3CB8 46 MOV B,M

3CB9 90 SUB B

3CBA F2 C5 3C JP POS

3CBD 97 SUB A

3CBE 57 MOV D,A

3CBF 5? MOV E,A

3CCO 00 NOP

3CC1 00 NOP

3CC2 C3 CC 3C JMP STORE

POS 3CC5 21 E4 3C LXI HL, 3C24

3CC8 46 MOV B,M

3CC9 CD AD 3D CALL MULT
STORE 3CCC EB XCHG

3CCD 22 EC 3C SHLD 3CE1

3CDO C3 70 3D JMP SUM

COMMENT

;CLEAR A

;SET POINT TO A

9

;DATA TO B

9

;A-B + A

;JUMP TO POS IF POSITIVE

;CLEAR FLAGS

;ERROR -ve

;CLEAR HL TO

;OUTPUT ZERO

;FETCh K AND P
;LOAD IT IN B

-Vi* L .
9

9

; STORE HL IN 3CEC

;GO TO SUMMING ROUTINE

-69-

;In this routine results of Proportional, Integral and Difference

;routines are added and the results are stored in OUT BUFF (3CEF,

;3CF0). All registers will be summed irrespective of the mode of

;operation, Since 'Start Up' routine clears all three buffers

;(PROP OUT, INTG OUT and DIFF OUT). Summing all buffers, say in
;Proportional mode, does not cause errors. If the results are

;such that the sum exceeds 16 bits, the previous contents of OUT

;BUFF are not altered. Before entering this routine the three

;buffers (DIFF OUT, INTG OUT and PROP OUT) must contain data to

;be Summed (or zero).

SUMMING ROUTINE

LABEL ADDRESS DATA OR MNEMONIC
INSTRUCTION

COMMENT

SUM 3D70 AF XRA :CLETR FLAGS

3D 71 2A E8 3C LHLD ;DIFF OUT TO HL
3D 7 4 F.B XCHG ;DIFF OUT TO DE

3D7b 2A EA 3C LHLD INTG ; INTG OUT TO HL

3D78 19 DAD DE ; HL+DE -► HL

3D79 DA 81 3D JC NOADD ; IF SUM: EXCEEDS 16 BITS

;G0 TO NOADD

3D7C EB XCHG ;SUM TO DE

3D7D 2A EC 3C LHLD PROP ;PROP OUT TO HL

3D80 19 DAD DE ;DE+HL -* HL

3D81 DA 87 3D JC NOADD ;IF SUM EXCEEDS 16 BITS
;GO TO NOADD

3D84 22 EF 3C SHLD OUT BUFF ;STORE SUM IN OUT BUFF

NOADD 3D87 C3 2F 3C JUMP OUT ;JUMP TO OUT.

-70-

;In this routine the contents of selected memory locations

;are typed. The format of typing is first the address and

;memory contents after 5 spaces. One location per line is

;typed. The starting address of the locations to be typed

;must appear in locations 3ED1 and 3ED2, number of locations

;(in hex) to be typed must be entered in location 3ED4 prior

;to execution. If leaders in the beginning and in the end are

;not needed, enter zero in 3ED7, 3ED8, 3ED9 and 3EEE, 3EEf

;and 3FF0. After typing all locations the program enters a

; *D0 NOTHING' loop. The maximum number of locations that

;can be typed using this program once ara 256. The starting

;address is 3ED0. This requires Monitor Subprograms PADDR,

;PBYTE, PEOL, CO and Lead. Subprogram 'Space' is part of

;this routine. To test this program load this program and

;execute from 3ED0. It should reproduce the addresses and

;contents of this program.

TYPING ROUTINE

LABEL ADDRESS DATA OR MNEMONIC
INSTRUCTION

COMMENT

TYPE 3ED0 21 DO 3E LXIHL, 3ED0 LOAD STARTING ADDRESS IN HL

3ED3 01 30 00 LXIBC, 0030 ;# OF LOCATIONS TO BE TYPED
TO BC (LOCATION COUNTER)

3EDC C5 PUSH BC. SAVE BC

3ED7 CD 07. 04 CALL LEAD ;PUNCH LEADER

-71-

LABEL

ADDR

LOOP 4

SPACE

CO

ADDRESS DATA OR MNEMONIC
INSTRUCTION

3 EDA CD 32 04 CALL PADDR

3EDD CD F4 3E CALL SPACE

3EE0 7E MOV A,M

3EE1 CD 61 04 CALL PBYTE
3EE4 CD A4 04 CALL PEOL

SEE 7 23 INX HL

3EE8 Cl POP BC

3EE9 OD DCR C

3EEA C5 PUSH BC

3EEB C2 DA 3E JNZ .ADDR

3EEE CD 07 04 CALL LEAD

3EF1 C3 FI 3E jmp :LOOP 4

3EF4 OE 20 MV I iC, 20
3EF6 C605 mvi :B,05

3EF8 CD FA 07 CALL CO

3EF3 05 DCR :B

3EFL C2 F8 3D JNZ (30

3EFF C9 RET

COMMENT

;TYPE ADDRESS

;GIVE 5 SPACES
;FETCH MEMORY CONTENTS

;A AND LOAD IN 'A'

;TYFE CONTENTS
;GIVE CARRIAGE RETURN

;AND LINE FEED

;INCREMENT HL (POINT

;TO NEXT LOCATION)

;DECREMENT LOCATION COUNTER

;IF NOT DONE CONTINUE

;PUNCH END LEADER

;ENTER DO NOTHING LuOP

;LOAD HEX CODE FOR SPACE IN C
;ENTER # OF SPACES

;GIV£ SPACE

;IF NOT DONE JUMP TO CO

;RETURN TO CALLING PROGRAM

1 VBEL

o. p

U JP3

OUTPUT SET POINT

;In this routine the set point in location 3CE1 is output

;via Port E8 and the 'LATCH ENABLE' monostable is triggered.
;Onee this is done the program enters a 'DO NOTHING loop'.

;The set point must be entered before executing this routine.

-72-

;Starting address of this routine is: 3F00.

ADDRESS DATA OR MNEMONIC COMMENT
INSTRUCTION

3F00 3E 83 MVI A, 83 ;INITIALIZE PPI2

3F02 D3 OUT’ EB ;

3F04 21 El 3C LXI HL 3CE1 ;MOVE SET POINT TO A

3F07 7 E MOV A,M

3F08 D3 F.8 OUT E8 ;OUT PUT SET POINT VIA PORT

3F0A 3E 70 MVI A, 70 INITIALIZE PPI1

3F0C D3 E6 OUT E6 ;

3F0E 3E 70 MVI A, 70 ;TRIGGER LATCH ENABLE

3F10 D3 EA OUT EA ;MONOSTABLE

3F12 3E FD MVI A, FD iENABLE BITS 7-4 OF POPT EA

3F14 De E6 *

3F16 C3 16 3F JMP LOOP3 ;ENTER DO NOTHING LOOP

INSTRUCTIONS TO OPERATE THE SYSTEM

In this appendix, instructions to operate the controller are given.
Since the 'PROMPT 80’ is the main component of the controller it is necessary

to know how to enter programs and execute them. Figure 24 is a sketch of
the PROMPT 80 front panel. A complete description of the controls can be
found in references 4 and 5 hence only a brief description will be given here.

The SYS RST, (System Reset), resets the system, initializes the registers
and enters the monitor. The 'Monitor1 is a program that resides in three IK

PROMS (Programmable Read Only Memories). MON INT, Monitor Interrupt, inter­
rupts user program and enters the monitor. The USR INT traps the PROMPT 80

to 3C02. Since a condition similar to pressing the USR INT is created with

the hardware of the controller, the Interrupt program starts at 3C02. Using

the HEX DATA/FUNCTIONS (Referred as Hex Key Board) data, addresses and function

codes can be entered (This point will be discussed shortly). There are 8

commands. The DISPLAY/MODIFf MEMORY together with the command is used to
check and change the memory contents as well as to enter programs manually.

In the following the Symbol [3] means press the key labeled 3. When the

DISFLAY/MODIFY MEMORY key is pressed in the display labeled 'HEX DAT ■•/FUNCTION'
(See Fig. 24) 'dn' will appear. Thus [dn] stands for press DISPLAY/MODIFY

MEMORY command. Next the required address is entered via hex key board ([3]

[C] [0] [2] for example). Now pressing 'NEXT' [,], displays the contents of
the location 3C02 in DATA field. Hence to enter 10^ in location 3C02 the
sequence is as follows.

[dn] [3] [C] [0] [2] [,] [1] [0] [.] the last key shown above is END/
EXECUTE, [.]. If consecutive memory locations are to be examined/modifled,
the END/EXECUTE [.] must be replaced by NEXT ([,]). Instead if NEXT is

APPENDIX II

- 7 3 -

F R O M
SOCKET

REGISTER CONTENTS ; ■ ---------

S Y S
R S T

M O N

INT

30 PIN'
CONNECT OK

HEX DATA/FUNCTION

3 dn

S C R O L L
REG.

IJSR
I N T

3

i___ i□
SINGLE
STEP

PREV­
IOUS

C O M M A N D S W I T C H E S

F i g . 24

S K E T C H O F P R O M P T 6 0 F R O N T P A N E L

replaced by PREVIOUS/CLEAR ENTRY, the previous location will be displayed.
If the PREVIOUS/CLEAR ENTRY is pressed before entering the complete com­
mand, the command will be cleared. The 'SCROLL REGISTER DISPLAY' command

is used to display various register contents on the 'REGISTER CONTENTS'
display. A light emitting diode (LED) next to the three register groups
indicate which registers are being displayed in the 'REGISTER DISPLAY GROUP'.

The GO command is used to execute programs. To execute the controller

programs (after they are loaded the following sequence is used.

[CO] [3] [D] [C] [A] [.]
In this case the the Start Up routine will be executed from the location 3DCA.
If, as mentioned in Chapter II (See Integration routine), it is necessary to

execute from 3DEE the following sequence

[GO] [3] [D] [E] [B] [.]
tarts execution from location 3DEB. (This is where the Start Up routine

must be entered so that INTG OUT buffer is not cleared). The computer can

be stopped at any time by pressing [SYS RST].
So far only one method of entering the program (via keyboard) is given.

The PROMPT 80 has a serial I/O port and hence can be used with a teletype.
The teletype connects to a connector on the back of PROMPT 80. It j.3 advis­

able to turn on the PROMPT 80 first and then to turn the teletype LINE-OFF-

LOCAL switch to LINE. To load a program using teletype paper tape reader

it must be punched in a special format (See reference A). Assuming that
the tape is already in this format enter the following

[0]. t'Jj. i.j

when the END/EXECUTE key is pressed the paper tape will be read. The paper
tape on which the controller programs are punched can be read into the computer
using the above sequence. To punch paper tapes in the required format, first
load the program in PROMPT 80 using the hex key board and command switches.

-75-

Then press the following
[1] [Starting address of the program tc be punched] [,] [Ending address] [.]
(note the first instructions for reading and punching paper tapes are functions

hence the function field will show FO and FI respectively). If the sequence

for reading paper tape is entered the display will show

FO 0
FUNCTION ADDRESS

The controller programs were also put on EPROM (Erasable Programmable
Read Only Memory). The EPROM is a MOS device and must be handled very care­

fully. To transfer programs from an EPROM into PROMPT 80 memory first dis­
connect the 50 pin connector, place the EPROM in the PROM Socket and lock it.

Che EPROM contains the controller program from 3C00 to 3F1F. Enter the

following via hex key board
[4] [3] [C] [0] [0] [,] [3] [F] [1] rF] r,i [0] [.]

The reading will be very fast. It is advisable to check the contents of at

least a few locations (to use the controller the EPROM must be removed and
the 50 pin connector reconnected) . To put a program on the EPROM, the required
sequence is [2] [STARTING ADDRESS OF PROGRAM] [,] [ENDING ADDRESS] [,] [0] [.].

The restrictions on the address are not clear from references 4,5. However,
the sequence used to program the EPROMS in the present work is

[2] [3] [C] [0] [0] [,] [3] [F] [1] [F] [,] [0] [.].

The A/D and interface circuits were assembled on a single card (Referred

here as A/D card) of HEATH ADD SYSTEM. Figure 25a shows the locations of

the components on this card. The L/A is on another card (Referred as D/A

card) of the HEATH ADD SYSTEM. Since a 50 pin connector is mounted on the
A/D card the port E8 connections for the D/A card must be given via jumpers

-76-

I
I

3 3 on

J30J7

15 5 Gn<i- 15

I I I !

REGULATOR
-5v

n

:r■n>

IC4
74123

x
gn

A/D Cain
ADJo

FREQ ADJ

O

1C ’

8700

N/D

0.1 0.1
~ U — -H—

IC2
555

I C 3

£
7 4 0 2 £

pc

Fig. 25a

C O M P O N E N T L A Y O U T

a:
ft

IC5

IC6
rc 7407§ B7r*j5C LODli

ICS

7407
>pare

IC7

between A/D and D/A cards. The necessary connections are shown in Figure
25b. The HEATH ADD SYSTEM provides the necessary power supplies by means

of connectors on the lower side of the A/D and D/A cards.
The controller can be operated by following the steps given below,

(1) Connect the A/D and D/A cards with the necessary jumpers.

(2) Connect Output of the plant to the A/D input and input of

the plant to D/A output.
(3) Enter the programs into PROMPT 80 either manually or using paper

tape and teletype or from EPROM. If EPROM is used the 50 pin
connector must be disconnected.

(4) Reconnect the 50 pin connector if it was disconnected in the

previous step.
(5) Enter values of the necessary constants such as Set Point, K^,

KT, K , and Mode code (MC).
P

(6) Execute Start Up routine by entering the following via hex key

board

[GO] [3] [D] [C] [A] [.].

If the INTG OUT should not be disturbed use [GO] [3] [D] [E] [B] [.] instead
of the above sequence.

The OUTPUT SET POINT routine can be executed by entering

[GO] [3] [F] [0] [07 [.].

To execute the typing routine alone, enter the starting address and
the number of bytes to be typed (in hex) via hex key board (See Typing

routine) followed by
[GO] [3] [E] [D] [0] [.].

-78-

A/D CARD

IX (Input to A/D >

INTR (To User Interrupt)

PATCH KNAH1.E

l: tTIATE CONVERSION

Bi >' 7 Kir 6
»! ! 5
BI r i>
BIT 3
Dll 2
bi r l
BI" 0

OSC.CAP. (C o n n e c t e x t e r n a l c a p . p l u s
t e r m i n a l t o cN ance

o: '.OUT.
_ > t
- f TV
Ct :>+ ' v'
•4- • y

FI ft. 2 3b
I* IN OUT Ol' A/D AND D/A CARDS AND INT‘T< CONNECTIONS

-79-

REFERENCES

(1) Benjamin C. Kuo, Automatic Control Systems, 3rd edition, Prentice
Hall Inc., 1975.

(2) Kalsuhiko Ogata, Modern Control Engineering, Prentice Hall Inc.,
1970.

(3) Adam Osborne and Associates, An Introduction to Micro Computers,
Adam Osborne and Associates Inc.

(4) Intellec Prompt 80 Micro Computer Users Manual, Intell Corporation,
1976.

(5) (a) SBC 80/10 Single Board Computer Hardware Reference Manual,
Intel Corporation, 1976.

(b) SBC 80/10 Reference Schematic Drawings.

(6) Monolithic CMOS A/P Converters, 8700 Series, Teledyne Semiconductor,
1977.

(7) 8 Bit D/A Converter. (The necessary information is in the Electrical
Engineering Department, University of North Dakota, Grand Forks,
North Dakota.)

(8) Peter Dransfield and Donald F. Haber, Introducing Root Locus,
Cambridge University Press, 1973.

-80-

	Design of a Microprocessor Based Real Time Digital Controller
	Recommended Citation

	tmp.1573146363.pdf.MIt1P

